alishafique commited on
Commit
205034a
·
verified ·
1 Parent(s): 8114ac7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -16
README.md CHANGED
@@ -15,7 +15,7 @@ language:
15
 
16
  # Model Card for Alif Llama 3.1 8B Instruct
17
 
18
- **Alif Llama 3.1 8B Instruct** is an open-weight research release of a model with highly advanced multilingual reasoning capabilities. It focuses on human refined multilingual synthetic data distillation paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages.
19
 
20
  - **Developed by:** large-traversaal
21
  - **License:** apache-2.0
@@ -31,25 +31,42 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
31
  Install the transformers library and load Alif Llama 3.1 8B Instruct as follows:
32
 
33
  ```python
34
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
35
 
36
- model_id = "large-traversaal/Alif-Llama-3.1-8B-Instruct"
 
 
 
 
 
 
 
 
 
 
37
  tokenizer = AutoTokenizer.from_pretrained(model_id)
38
- model = AutoModelForCausalLM.from_pretrained(model_id)
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- # Format the message with the chat template
41
- messages = [{"role": "user", "content": "کراچی کی اہمیت کیا ہے؟"}]
42
- input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
43
 
44
- gen_tokens = model.generate(
45
- input_ids,
46
- max_new_tokens=100,
47
- do_sample=True,
48
- temperature=0.3,
49
- )
50
 
51
- gen_text = tokenizer.decode(gen_tokens[0])
52
- print(gen_text)
53
  ```
54
 
55
  ## Model Details
@@ -58,7 +75,7 @@ print(gen_text)
58
 
59
  **Output**: Models generate text only.
60
 
61
- **Model Architecture**: Aya Expanse 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes continued pretraining and supervised finetuning.
62
 
63
  For more details about how the model was trained, check out [our blogpost]().
64
 
 
15
 
16
  # Model Card for Alif Llama 3.1 8B Instruct
17
 
18
+ **Alif Llama 3.1 8B Instruct** is an open-weight model with highly advanced multilingual reasoning capabilities. It utilizes human refined multilingual synthetic data paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages.
19
 
20
  - **Developed by:** large-traversaal
21
  - **License:** apache-2.0
 
31
  Install the transformers library and load Alif Llama 3.1 8B Instruct as follows:
32
 
33
  ```python
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
35
+ import torch
36
+ from transformers import BitsAndBytesConfig
37
 
38
+ model_id = "large-traversaal/Alif-Llama-3.1-8B-Instruct" # Replace with your model
39
+
40
+ # 4-bit quantization configuration
41
+ quantization_config = BitsAndBytesConfig(
42
+ load_in_4bit=True,
43
+ bnb_4bit_compute_dtype=torch.float16,
44
+ bnb_4bit_use_double_quant=True,
45
+ bnb_4bit_quant_type="nf4"
46
+ )
47
+
48
+ # Load tokenizer and model in 4-bit
49
  tokenizer = AutoTokenizer.from_pretrained(model_id)
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_id,
52
+ quantization_config=quantization_config,
53
+ device_map="auto"
54
+ )
55
+
56
+ # Create text generation pipeline
57
+ chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
58
+
59
+ # Function to chat
60
+ def chat(message):
61
+ response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3)
62
+ return response[0]["generated_text"]
63
 
64
+ # Example chat
65
+ user_input = "کراچی کی اہمیت کیا ہے؟"
66
+ bot_response = chat(user_input)
67
 
68
+ print(bot_response)
 
 
 
 
 
69
 
 
 
70
  ```
71
 
72
  ## Model Details
 
75
 
76
  **Output**: Models generate text only.
77
 
78
+ **Model Architecture**: Alif Llama 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes continued pretraining and supervised finetuning.
79
 
80
  For more details about how the model was trained, check out [our blogpost]().
81