alishafique commited on
Commit
80343c6
·
verified ·
1 Parent(s): 47c60fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -9,14 +9,80 @@ tags:
9
  license: apache-2.0
10
  language:
11
  - en
 
12
  ---
13
 
14
- # Uploaded model
 
 
 
 
 
 
15
 
16
  - **Developed by:** large-traversaal
17
  - **License:** apache-2.0
18
  - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B
 
 
19
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
12
+ - ur
13
  ---
14
 
15
+
16
+ # Model Card for Alif Llama 3.1 8B Instruct
17
+
18
+ <img src="aya-expanse-8B.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
19
+
20
+ **Alif Llama 3.1 8B Instruct** is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the result of a year’s dedicated research from [Cohere For AI](https://cohere.for.ai/), including [data arbitrage](https://arxiv.org/abs/2408.14960), [multilingual preference training](https://arxiv.org/abs/2407.02552), [safety tuning](https://arxiv.org/abs/2406.18682), and [model merging](https://arxiv.org/abs/2410.10801). The result is a powerful multilingual large language model.
21
+
22
 
23
  - **Developed by:** large-traversaal
24
  - **License:** apache-2.0
25
  - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B
26
+ - **Model:** Alif Llama 3.1 8B Instruct
27
+ - **Model Size:** 8 billion parameters
28
 
29
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
30
 
31
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
32
+
33
+
34
+
35
+ ### How to Use Alif Llama
36
+
37
+ Install the transformers library and load Alif Llama 3.1 8B Instruct as follows:
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
+
42
+ model_id = "CohereForAI/aya-expanse-8b"
43
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
44
+ model = AutoModelForCausalLM.from_pretrained(model_id)
45
+
46
+ # Format the message with the chat template
47
+ messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
48
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
49
+ ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
50
+
51
+ gen_tokens = model.generate(
52
+ input_ids,
53
+ max_new_tokens=100,
54
+ do_sample=True,
55
+ temperature=0.3,
56
+ )
57
+
58
+ gen_text = tokenizer.decode(gen_tokens[0])
59
+ print(gen_text)
60
+ ```
61
+
62
+
63
+ ## Model Details
64
+
65
+ **Input**: Models input text only.
66
+
67
+ **Output**: Models generate text only.
68
+
69
+ **Model Architecture**: Aya Expanse 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes supervised finetuning, preference training, and model merging.
70
+
71
+ For more details about how the model was trained, check out [our blogpost](https://huggingface.co/blog/aya-expanse).
72
+
73
+ ### Evaluation
74
+
75
+ We evaluated Aya Expanse 8B against Gemma 2 9B, Llama 3.1 8B, Ministral 8B, and Qwen 2.5 7B using the `dolly_human_edited` subset from the [Aya Evaluation Suite dataset](https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite) and m-ArenaHard, a dataset based on the [Arena-Hard-Auto dataset](https://huggingface.co/datasets/lmarena-ai/arena-hard-auto-v0.1) and translated to the 23 languages we support in Aya Expanse 8B. Win-rates were determined using gpt-4o-2024-08-06 as a judge. For a conservative benchmark, we report results from gpt-4o-2024-08-06, though gpt-4o-mini scores showed even stronger performance.
76
+
77
+ The m-ArenaHard dataset, used to evaluate Aya Expanse’s capabilities, is publicly available [here](https://huggingface.co/datasets/CohereForAI/m-ArenaHard).
78
+
79
+ <img src="winrates_marenahard_complete.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
80
+ <img src="winrates_dolly.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
81
+ <img src="winrates_by_lang.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
82
+ <img src="winrates_step_by_step.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
83
+
84
+
85
+ ### Model Card Contact
86
+
87
+ For errors or additional questions about details in this model card, contact [email protected].
88
+