danieldk's picture
danieldk HF staff
Add Triton scaled matmul kernel from vLLM
be26e8c
# SPDX-License-Identifier: Apache-2.0
from typing import Optional, Type
import torch
import triton
import triton.language as tl
def is_weak_contiguous(x: torch.Tensor):
strides = x.stride()
sizes = x.shape
is_not_transpose = strides[0] == 1 and (strides[1] >= max(1, sizes[0]))
is_transpose = strides[1] == 1 and (strides[0] >= max(1, sizes[1]))
return is_transpose or is_not_transpose
@triton.jit
def scaled_mm_kernel(a_ptr, b_ptr, scale_a_ptr, scale_b_ptr, c_ptr, bias_ptr,
M, N, K, stride_am, stride_ak, stride_bk, stride_bn,
stride_cm, stride_cn, ACCUMULATOR_DTYPE: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
BLOCK_SIZE_SCALE_A: tl.constexpr,
BLOCK_SIZE_SCALE_B: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
accumulator_dtype = ACCUMULATOR_DTYPE
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N),
dtype=accumulator_dtype)
# NOTE: Some tensor inputs are so large, they will cause int32 overflow
# so it is necessary to use tl.int64 for all the offsets, else SEGV will
# eventually occur.
# Offsets and masks.
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
masks_am = offsets_am < M
offsets_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
masks_bn = offsets_bn < N
offsets_k = tl.arange(0, BLOCK_SIZE_K).to(tl.int64)
offsets_a = (stride_am * offsets_am[:, None] +
stride_ak * offsets_k[None, :])
offsets_b = (stride_bk * offsets_k[:, None] +
stride_bn * offsets_bn[None, :])
# NOTE: BLOCK_SIZE_SCALE_A could be 1 or BLOCK_SIZE_M, so need to create
# appropriate offsets and masks for each case. Same goes for
# BLOCK_SIZE_SCALE_B.
offsets_scale_am = (tl.arange(0, BLOCK_SIZE_SCALE_A) +
(BLOCK_SIZE_SCALE_A > 1) * pid_m * BLOCK_SIZE_M)
masks_scale_am = offsets_scale_am < M
offsets_scale_bn = (tl.arange(0, BLOCK_SIZE_SCALE_B) +
(BLOCK_SIZE_SCALE_B > 1) * pid_n * BLOCK_SIZE_N)
masks_scale_bn = offsets_scale_bn < N
a_ptrs = a_ptr + offsets_a
b_ptrs = b_ptr + offsets_b
scale_a_ptrs = scale_a_ptr + offsets_scale_am
scale_b_ptrs = scale_b_ptr + offsets_scale_bn
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
masks_k = offsets_k < K
masks_a = masks_am[:, None] & masks_k[None, :]
a = tl.load(a_ptrs, mask=masks_a)
masks_b = masks_k[:, None] & masks_bn[None, :]
b = tl.load(b_ptrs, mask=masks_b)
# Accumulate results.
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
offsets_k += BLOCK_SIZE_K
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# Apply scale at end.
masks_scale_a = masks_scale_am[:, None] & (tl.arange(0, 1) < 1)[:, None]
scale_a = tl.load(scale_a_ptrs[:, None], masks_scale_a)
# Need to broadcast to the appropriate size, if scale_a is already
# (BLOCK_SIZE_M, 1) then it will broadcast to its own shape. Same goes
# for scale_b below.
scale_a = scale_a.broadcast_to((BLOCK_SIZE_M, 1))
accumulator = scale_a * accumulator.to(tl.float32)
masks_scale_b = masks_scale_bn[:, None] & (tl.arange(0, 1) < 1)[None, :]
scale_b = tl.load(scale_b_ptrs[:, None], masks_scale_b)
scale_b = scale_b.broadcast_to((BLOCK_SIZE_N, 1))
accumulator = scale_b.T * accumulator.to(tl.float32)
# Convert to output format.
c = accumulator.to(c_ptr.type.element_ty)
# Add bias, it's already in output format, so add it after conversion.
if bias_ptr:
offsets_bias = offsets_bn
bias_ptrs = bias_ptr + offsets_bias
bias_mask = offsets_bias < N
bias = tl.load(bias_ptrs, bias_mask)
c += bias
# Save output
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
offs_cm = offs_cm.to(tl.int64)
offs_cn = offs_cn.to(tl.int64)
c_ptrs = (c_ptr + stride_cm * offs_cm[:, None] +
stride_cn * offs_cn[None, :])
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# input - [M, K]
# weight - [K, N]
def triton_scaled_mm(input: torch.Tensor,
weight: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: Type[torch.dtype],
bias: Optional[torch.Tensor] = None,
block_size_m: int = 32,
block_size_n: int = 32,
block_size_k: int = 32,
use_heuristic=True) -> torch.Tensor:
M, K = input.shape
N = weight.shape[1]
assert N > 0 and K > 0 and M > 0
assert weight.shape[0] == K
assert input.dtype == weight.dtype
scale_a = scale_a.reshape(-1, 1) if scale_a.dim() <= 1 else scale_a
scale_b = scale_b.reshape(-1, 1) if scale_b.dim() <= 1 else scale_b
assert scale_a.dtype == scale_b.dtype and scale_a.is_floating_point()
assert scale_a.shape == torch.Size([1, 1]) or scale_a.shape == torch.Size(
[M, 1])
assert scale_b.shape == torch.Size([1, 1]) or scale_b.shape == torch.Size(
[N, 1])
assert out_dtype.is_floating_point
assert bias is None or bias.is_floating_point()
assert is_weak_contiguous(input)
assert is_weak_contiguous(weight)
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
N, META['BLOCK_SIZE_N']), )
result = torch.empty((M, N), dtype=out_dtype, device=input.device)
has_scalar = lambda x: x.shape[0] == 1 and x.shape[1] == 1
if use_heuristic:
is_small_N = N < 8192
next_power_of_2_M = max(32, triton.next_power_of_2(M))
if next_power_of_2_M <= 32:
tile_shape = (64, 64, 256) if is_small_N else (64, 128, 256)
elif next_power_of_2_M <= 64:
tile_shape = (64, 64, 256)
elif next_power_of_2_M <= 128:
tile_shape = (64, 128, 128)
else:
tile_shape = (128, 128, 128)
block_size_m, block_size_n, block_size_k = tile_shape
block_size_sa = 1 if has_scalar(scale_a) else block_size_m
block_size_sb = 1 if has_scalar(scale_b) else block_size_n
accumulator_dtype = tl.float32 if input.is_floating_point() else tl.int32
# A = input, B = weight, C = result
# A = M x K, B = K x N, C = M x N
scaled_mm_kernel[grid](input,
weight,
scale_a,
scale_b,
result,
bias,
M,
N,
K,
input.stride(0),
input.stride(1),
weight.stride(0),
weight.stride(1),
result.stride(0),
result.stride(1),
accumulator_dtype,
BLOCK_SIZE_M=block_size_m,
BLOCK_SIZE_N=block_size_n,
BLOCK_SIZE_K=block_size_k,
BLOCK_SIZE_SCALE_A=block_size_sa,
BLOCK_SIZE_SCALE_B=block_size_sb)
return result.to(out_dtype)