Add Triton scaled matmul kernel from vLLM
Browse files- README.md +6 -0
- tests/__init__.py +0 -0
- tests/test_triton_scaled_mm.py +105 -0
- torch-ext/triton_scaled_mm/__init__.py +3 -0
- torch-ext/triton_scaled_mm/triton_scaled_mm.py +205 -0
README.md
CHANGED
@@ -1,3 +1,9 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- kernel
|
5 |
---
|
6 |
+
|
7 |
+
## triton-scaled-mm
|
8 |
+
|
9 |
+
Triton scaled matrix multiplication kernel [from vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py).
|
tests/__init__.py
ADDED
File without changes
|
tests/test_triton_scaled_mm.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: Apache-2.0
|
2 |
+
"""Tests for the triton_scaled_mm kernel
|
3 |
+
|
4 |
+
Run `pytest tests/kernels/test_triton_scaled_mm.py`.
|
5 |
+
"""
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
import pytest
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from triton_scaled_mm import triton_scaled_mm
|
12 |
+
|
13 |
+
device = "cuda"
|
14 |
+
|
15 |
+
|
16 |
+
def scaled_mm_torch(
|
17 |
+
a: torch.Tensor,
|
18 |
+
b: torch.Tensor,
|
19 |
+
scale_a: torch.Tensor,
|
20 |
+
scale_b: torch.Tensor,
|
21 |
+
out_dtype: type[torch.dtype],
|
22 |
+
bias: Optional[torch.Tensor] = None,
|
23 |
+
) -> torch.Tensor:
|
24 |
+
out = torch.mm(a.to(torch.float32), b.to(torch.float32))
|
25 |
+
out = scale_a * out
|
26 |
+
out = scale_b.T * out
|
27 |
+
out = out.to(out_dtype)
|
28 |
+
if bias is not None:
|
29 |
+
out = out + bias
|
30 |
+
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
def get_8bit_types():
|
35 |
+
types = [torch.int8]
|
36 |
+
minor, major = torch.cuda.get_device_capability()
|
37 |
+
capability = major * 10 + minor
|
38 |
+
supports_fp8 = capability >= 89
|
39 |
+
|
40 |
+
if torch.version.hip is not None:
|
41 |
+
types.append(torch.float8_e4m3fnuz)
|
42 |
+
elif torch.version.cuda is not None and torch.cuda.is_available():
|
43 |
+
types.append(torch.float8_e4m3fn)
|
44 |
+
return types
|
45 |
+
|
46 |
+
|
47 |
+
@pytest.mark.parametrize("M", [1, 33, 64, 512])
|
48 |
+
@pytest.mark.parametrize("N", [256, 971, 20486])
|
49 |
+
@pytest.mark.parametrize("K", [128, 496, 1024])
|
50 |
+
@pytest.mark.parametrize("out_dtype", [torch.float16, torch.bfloat16])
|
51 |
+
@pytest.mark.parametrize("in_dtype", get_8bit_types())
|
52 |
+
@pytest.mark.parametrize("use_scalar_scale_a", [True, False])
|
53 |
+
@pytest.mark.parametrize("use_scalar_scale_b", [True, False])
|
54 |
+
@pytest.mark.parametrize("use_bias", [True, False])
|
55 |
+
def test_scaled_mm(
|
56 |
+
M, N, K, in_dtype, out_dtype, use_scalar_scale_a, use_scalar_scale_b, use_bias
|
57 |
+
):
|
58 |
+
is_floating_point_type = lambda t: torch.tensor([1, 1], dtype=t).is_floating_point()
|
59 |
+
|
60 |
+
torch.manual_seed(0)
|
61 |
+
|
62 |
+
# NOTE: There are cases, where if the matrix is large enough, an output
|
63 |
+
# like 65504.4 can be produced, and can easily turn into inf when
|
64 |
+
# multiplied when using float16/bfloat16. This means one function, e.g.,
|
65 |
+
# testing function, and another function, e.g. golden function, can
|
66 |
+
# produce a non-inf value while the other produces an inf value, and
|
67 |
+
# will cause assert_close/allclose to fail, even though if overflow
|
68 |
+
# wouldn't have occurred, the values would have been "close."
|
69 |
+
#
|
70 |
+
# So, the values here are kept small enough to avoid this situation.
|
71 |
+
if is_floating_point_type(in_dtype):
|
72 |
+
a = (0.25 * torch.rand((M, K), dtype=torch.float32, device=device)).to(in_dtype)
|
73 |
+
b = (0.25 * torch.rand((K, N), dtype=torch.float32, device=device)).to(in_dtype)
|
74 |
+
else:
|
75 |
+
a = torch.randint(-32, 32, (M, K), dtype=in_dtype, device=device)
|
76 |
+
b = torch.randint(-32, 32, (K, N), dtype=in_dtype, device=device)
|
77 |
+
|
78 |
+
if use_scalar_scale_a:
|
79 |
+
scale_a = torch.rand((1, 1), device=device)
|
80 |
+
else:
|
81 |
+
scale_a = 0.25 * torch.rand((M, 1), device=device)
|
82 |
+
|
83 |
+
if use_scalar_scale_b:
|
84 |
+
scale_b = torch.rand((1, 1), device=device)
|
85 |
+
else:
|
86 |
+
scale_b = 0.25 * torch.rand((N, 1), device=device)
|
87 |
+
|
88 |
+
bias = None
|
89 |
+
if use_bias:
|
90 |
+
bias = torch.rand((N,), device=device, dtype=out_dtype)
|
91 |
+
|
92 |
+
c_check = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
93 |
+
|
94 |
+
a_cpu = a.cpu()
|
95 |
+
b_cpu = b.cpu()
|
96 |
+
scale_a_cpu = scale_a.cpu()
|
97 |
+
scale_b_cpu = scale_b.cpu()
|
98 |
+
bias_cpu = None if bias is None else bias.cpu()
|
99 |
+
|
100 |
+
c_actual = scaled_mm_torch(
|
101 |
+
a_cpu, b_cpu, scale_a_cpu, scale_b_cpu, out_dtype, bias_cpu
|
102 |
+
)
|
103 |
+
|
104 |
+
c_check_cpu = c_check.cpu()
|
105 |
+
torch.testing.assert_close(c_check_cpu, c_actual, rtol=1e-1, atol=1e-1)
|
torch-ext/triton_scaled_mm/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .triton_scaled_mm import triton_scaled_mm
|
2 |
+
|
3 |
+
__all__ = ["triton_scaled_mm"]
|
torch-ext/triton_scaled_mm/triton_scaled_mm.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: Apache-2.0
|
2 |
+
|
3 |
+
from typing import Optional, Type
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import triton
|
7 |
+
import triton.language as tl
|
8 |
+
|
9 |
+
|
10 |
+
def is_weak_contiguous(x: torch.Tensor):
|
11 |
+
strides = x.stride()
|
12 |
+
sizes = x.shape
|
13 |
+
is_not_transpose = strides[0] == 1 and (strides[1] >= max(1, sizes[0]))
|
14 |
+
is_transpose = strides[1] == 1 and (strides[0] >= max(1, sizes[1]))
|
15 |
+
return is_transpose or is_not_transpose
|
16 |
+
|
17 |
+
|
18 |
+
@triton.jit
|
19 |
+
def scaled_mm_kernel(a_ptr, b_ptr, scale_a_ptr, scale_b_ptr, c_ptr, bias_ptr,
|
20 |
+
M, N, K, stride_am, stride_ak, stride_bk, stride_bn,
|
21 |
+
stride_cm, stride_cn, ACCUMULATOR_DTYPE: tl.constexpr,
|
22 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr,
|
23 |
+
BLOCK_SIZE_K: tl.constexpr,
|
24 |
+
BLOCK_SIZE_SCALE_A: tl.constexpr,
|
25 |
+
BLOCK_SIZE_SCALE_B: tl.constexpr):
|
26 |
+
pid = tl.program_id(axis=0)
|
27 |
+
|
28 |
+
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
29 |
+
|
30 |
+
pid_m = pid // num_pid_n
|
31 |
+
pid_n = pid % num_pid_n
|
32 |
+
|
33 |
+
accumulator_dtype = ACCUMULATOR_DTYPE
|
34 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N),
|
35 |
+
dtype=accumulator_dtype)
|
36 |
+
|
37 |
+
# NOTE: Some tensor inputs are so large, they will cause int32 overflow
|
38 |
+
# so it is necessary to use tl.int64 for all the offsets, else SEGV will
|
39 |
+
# eventually occur.
|
40 |
+
|
41 |
+
# Offsets and masks.
|
42 |
+
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
|
43 |
+
masks_am = offsets_am < M
|
44 |
+
|
45 |
+
offsets_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
|
46 |
+
masks_bn = offsets_bn < N
|
47 |
+
|
48 |
+
offsets_k = tl.arange(0, BLOCK_SIZE_K).to(tl.int64)
|
49 |
+
offsets_a = (stride_am * offsets_am[:, None] +
|
50 |
+
stride_ak * offsets_k[None, :])
|
51 |
+
offsets_b = (stride_bk * offsets_k[:, None] +
|
52 |
+
stride_bn * offsets_bn[None, :])
|
53 |
+
|
54 |
+
# NOTE: BLOCK_SIZE_SCALE_A could be 1 or BLOCK_SIZE_M, so need to create
|
55 |
+
# appropriate offsets and masks for each case. Same goes for
|
56 |
+
# BLOCK_SIZE_SCALE_B.
|
57 |
+
offsets_scale_am = (tl.arange(0, BLOCK_SIZE_SCALE_A) +
|
58 |
+
(BLOCK_SIZE_SCALE_A > 1) * pid_m * BLOCK_SIZE_M)
|
59 |
+
masks_scale_am = offsets_scale_am < M
|
60 |
+
|
61 |
+
offsets_scale_bn = (tl.arange(0, BLOCK_SIZE_SCALE_B) +
|
62 |
+
(BLOCK_SIZE_SCALE_B > 1) * pid_n * BLOCK_SIZE_N)
|
63 |
+
masks_scale_bn = offsets_scale_bn < N
|
64 |
+
|
65 |
+
a_ptrs = a_ptr + offsets_a
|
66 |
+
b_ptrs = b_ptr + offsets_b
|
67 |
+
|
68 |
+
scale_a_ptrs = scale_a_ptr + offsets_scale_am
|
69 |
+
scale_b_ptrs = scale_b_ptr + offsets_scale_bn
|
70 |
+
|
71 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
72 |
+
masks_k = offsets_k < K
|
73 |
+
masks_a = masks_am[:, None] & masks_k[None, :]
|
74 |
+
a = tl.load(a_ptrs, mask=masks_a)
|
75 |
+
|
76 |
+
masks_b = masks_k[:, None] & masks_bn[None, :]
|
77 |
+
b = tl.load(b_ptrs, mask=masks_b)
|
78 |
+
|
79 |
+
# Accumulate results.
|
80 |
+
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
|
81 |
+
|
82 |
+
offsets_k += BLOCK_SIZE_K
|
83 |
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
84 |
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
85 |
+
|
86 |
+
# Apply scale at end.
|
87 |
+
masks_scale_a = masks_scale_am[:, None] & (tl.arange(0, 1) < 1)[:, None]
|
88 |
+
scale_a = tl.load(scale_a_ptrs[:, None], masks_scale_a)
|
89 |
+
# Need to broadcast to the appropriate size, if scale_a is already
|
90 |
+
# (BLOCK_SIZE_M, 1) then it will broadcast to its own shape. Same goes
|
91 |
+
# for scale_b below.
|
92 |
+
scale_a = scale_a.broadcast_to((BLOCK_SIZE_M, 1))
|
93 |
+
accumulator = scale_a * accumulator.to(tl.float32)
|
94 |
+
|
95 |
+
masks_scale_b = masks_scale_bn[:, None] & (tl.arange(0, 1) < 1)[None, :]
|
96 |
+
scale_b = tl.load(scale_b_ptrs[:, None], masks_scale_b)
|
97 |
+
scale_b = scale_b.broadcast_to((BLOCK_SIZE_N, 1))
|
98 |
+
accumulator = scale_b.T * accumulator.to(tl.float32)
|
99 |
+
|
100 |
+
# Convert to output format.
|
101 |
+
c = accumulator.to(c_ptr.type.element_ty)
|
102 |
+
|
103 |
+
# Add bias, it's already in output format, so add it after conversion.
|
104 |
+
if bias_ptr:
|
105 |
+
offsets_bias = offsets_bn
|
106 |
+
bias_ptrs = bias_ptr + offsets_bias
|
107 |
+
bias_mask = offsets_bias < N
|
108 |
+
bias = tl.load(bias_ptrs, bias_mask)
|
109 |
+
c += bias
|
110 |
+
|
111 |
+
# Save output
|
112 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
|
113 |
+
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
|
114 |
+
offs_cm = offs_cm.to(tl.int64)
|
115 |
+
offs_cn = offs_cn.to(tl.int64)
|
116 |
+
c_ptrs = (c_ptr + stride_cm * offs_cm[:, None] +
|
117 |
+
stride_cn * offs_cn[None, :])
|
118 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
|
119 |
+
|
120 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
121 |
+
|
122 |
+
|
123 |
+
# input - [M, K]
|
124 |
+
# weight - [K, N]
|
125 |
+
def triton_scaled_mm(input: torch.Tensor,
|
126 |
+
weight: torch.Tensor,
|
127 |
+
scale_a: torch.Tensor,
|
128 |
+
scale_b: torch.Tensor,
|
129 |
+
out_dtype: Type[torch.dtype],
|
130 |
+
bias: Optional[torch.Tensor] = None,
|
131 |
+
block_size_m: int = 32,
|
132 |
+
block_size_n: int = 32,
|
133 |
+
block_size_k: int = 32,
|
134 |
+
use_heuristic=True) -> torch.Tensor:
|
135 |
+
M, K = input.shape
|
136 |
+
N = weight.shape[1]
|
137 |
+
|
138 |
+
assert N > 0 and K > 0 and M > 0
|
139 |
+
assert weight.shape[0] == K
|
140 |
+
assert input.dtype == weight.dtype
|
141 |
+
|
142 |
+
scale_a = scale_a.reshape(-1, 1) if scale_a.dim() <= 1 else scale_a
|
143 |
+
scale_b = scale_b.reshape(-1, 1) if scale_b.dim() <= 1 else scale_b
|
144 |
+
|
145 |
+
assert scale_a.dtype == scale_b.dtype and scale_a.is_floating_point()
|
146 |
+
assert scale_a.shape == torch.Size([1, 1]) or scale_a.shape == torch.Size(
|
147 |
+
[M, 1])
|
148 |
+
assert scale_b.shape == torch.Size([1, 1]) or scale_b.shape == torch.Size(
|
149 |
+
[N, 1])
|
150 |
+
assert out_dtype.is_floating_point
|
151 |
+
assert bias is None or bias.is_floating_point()
|
152 |
+
assert is_weak_contiguous(input)
|
153 |
+
assert is_weak_contiguous(weight)
|
154 |
+
|
155 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
156 |
+
N, META['BLOCK_SIZE_N']), )
|
157 |
+
|
158 |
+
result = torch.empty((M, N), dtype=out_dtype, device=input.device)
|
159 |
+
|
160 |
+
has_scalar = lambda x: x.shape[0] == 1 and x.shape[1] == 1
|
161 |
+
|
162 |
+
if use_heuristic:
|
163 |
+
is_small_N = N < 8192
|
164 |
+
next_power_of_2_M = max(32, triton.next_power_of_2(M))
|
165 |
+
if next_power_of_2_M <= 32:
|
166 |
+
tile_shape = (64, 64, 256) if is_small_N else (64, 128, 256)
|
167 |
+
elif next_power_of_2_M <= 64:
|
168 |
+
tile_shape = (64, 64, 256)
|
169 |
+
elif next_power_of_2_M <= 128:
|
170 |
+
tile_shape = (64, 128, 128)
|
171 |
+
else:
|
172 |
+
tile_shape = (128, 128, 128)
|
173 |
+
|
174 |
+
block_size_m, block_size_n, block_size_k = tile_shape
|
175 |
+
|
176 |
+
block_size_sa = 1 if has_scalar(scale_a) else block_size_m
|
177 |
+
block_size_sb = 1 if has_scalar(scale_b) else block_size_n
|
178 |
+
|
179 |
+
accumulator_dtype = tl.float32 if input.is_floating_point() else tl.int32
|
180 |
+
|
181 |
+
# A = input, B = weight, C = result
|
182 |
+
# A = M x K, B = K x N, C = M x N
|
183 |
+
scaled_mm_kernel[grid](input,
|
184 |
+
weight,
|
185 |
+
scale_a,
|
186 |
+
scale_b,
|
187 |
+
result,
|
188 |
+
bias,
|
189 |
+
M,
|
190 |
+
N,
|
191 |
+
K,
|
192 |
+
input.stride(0),
|
193 |
+
input.stride(1),
|
194 |
+
weight.stride(0),
|
195 |
+
weight.stride(1),
|
196 |
+
result.stride(0),
|
197 |
+
result.stride(1),
|
198 |
+
accumulator_dtype,
|
199 |
+
BLOCK_SIZE_M=block_size_m,
|
200 |
+
BLOCK_SIZE_N=block_size_n,
|
201 |
+
BLOCK_SIZE_K=block_size_k,
|
202 |
+
BLOCK_SIZE_SCALE_A=block_size_sa,
|
203 |
+
BLOCK_SIZE_SCALE_B=block_size_sb)
|
204 |
+
|
205 |
+
return result.to(out_dtype)
|