File size: 7,731 Bytes
be26e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Type

import torch
import triton
import triton.language as tl


def is_weak_contiguous(x: torch.Tensor):
    strides = x.stride()
    sizes = x.shape
    is_not_transpose = strides[0] == 1 and (strides[1] >= max(1, sizes[0]))
    is_transpose = strides[1] == 1 and (strides[0] >= max(1, sizes[1]))
    return is_transpose or is_not_transpose


@triton.jit
def scaled_mm_kernel(a_ptr, b_ptr, scale_a_ptr, scale_b_ptr, c_ptr, bias_ptr,
                     M, N, K, stride_am, stride_ak, stride_bk, stride_bn,
                     stride_cm, stride_cn, ACCUMULATOR_DTYPE: tl.constexpr,
                     BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr,
                     BLOCK_SIZE_K: tl.constexpr,
                     BLOCK_SIZE_SCALE_A: tl.constexpr,
                     BLOCK_SIZE_SCALE_B: tl.constexpr):
    pid = tl.program_id(axis=0)

    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)

    pid_m = pid // num_pid_n
    pid_n = pid % num_pid_n

    accumulator_dtype = ACCUMULATOR_DTYPE
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N),
                           dtype=accumulator_dtype)

    # NOTE: Some tensor inputs are so large, they will cause int32 overflow
    # so it is necessary to use tl.int64 for all the offsets, else SEGV will
    # eventually occur.

    # Offsets and masks.
    offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
    masks_am = offsets_am < M

    offsets_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
    masks_bn = offsets_bn < N

    offsets_k = tl.arange(0, BLOCK_SIZE_K).to(tl.int64)
    offsets_a = (stride_am * offsets_am[:, None] +
                 stride_ak * offsets_k[None, :])
    offsets_b = (stride_bk * offsets_k[:, None] +
                 stride_bn * offsets_bn[None, :])

    # NOTE: BLOCK_SIZE_SCALE_A could be 1 or BLOCK_SIZE_M, so need to create
    # appropriate offsets and masks for each case. Same goes for
    # BLOCK_SIZE_SCALE_B.
    offsets_scale_am = (tl.arange(0, BLOCK_SIZE_SCALE_A) +
                        (BLOCK_SIZE_SCALE_A > 1) * pid_m * BLOCK_SIZE_M)
    masks_scale_am = offsets_scale_am < M

    offsets_scale_bn = (tl.arange(0, BLOCK_SIZE_SCALE_B) +
                        (BLOCK_SIZE_SCALE_B > 1) * pid_n * BLOCK_SIZE_N)
    masks_scale_bn = offsets_scale_bn < N

    a_ptrs = a_ptr + offsets_a
    b_ptrs = b_ptr + offsets_b

    scale_a_ptrs = scale_a_ptr + offsets_scale_am
    scale_b_ptrs = scale_b_ptr + offsets_scale_bn

    for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
        masks_k = offsets_k < K
        masks_a = masks_am[:, None] & masks_k[None, :]
        a = tl.load(a_ptrs, mask=masks_a)

        masks_b = masks_k[:, None] & masks_bn[None, :]
        b = tl.load(b_ptrs, mask=masks_b)

        # Accumulate results.
        accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)

        offsets_k += BLOCK_SIZE_K
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk

    # Apply scale at end.
    masks_scale_a = masks_scale_am[:, None] & (tl.arange(0, 1) < 1)[:, None]
    scale_a = tl.load(scale_a_ptrs[:, None], masks_scale_a)
    # Need to broadcast to the appropriate size, if scale_a is already
    # (BLOCK_SIZE_M, 1) then it will broadcast to its own shape. Same goes
    # for scale_b below.
    scale_a = scale_a.broadcast_to((BLOCK_SIZE_M, 1))
    accumulator = scale_a * accumulator.to(tl.float32)

    masks_scale_b = masks_scale_bn[:, None] & (tl.arange(0, 1) < 1)[None, :]
    scale_b = tl.load(scale_b_ptrs[:, None], masks_scale_b)
    scale_b = scale_b.broadcast_to((BLOCK_SIZE_N, 1))
    accumulator = scale_b.T * accumulator.to(tl.float32)

    # Convert to output format.
    c = accumulator.to(c_ptr.type.element_ty)

    # Add bias, it's already in output format, so add it after conversion.
    if bias_ptr:
        offsets_bias = offsets_bn
        bias_ptrs = bias_ptr + offsets_bias
        bias_mask = offsets_bias < N
        bias = tl.load(bias_ptrs, bias_mask)
        c += bias

    # Save output
    offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)
    offs_cm = offs_cm.to(tl.int64)
    offs_cn = offs_cn.to(tl.int64)
    c_ptrs = (c_ptr + stride_cm * offs_cm[:, None] +
              stride_cn * offs_cn[None, :])
    c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)

    tl.store(c_ptrs, c, mask=c_mask)


# input   - [M, K]
# weight - [K, N]
def triton_scaled_mm(input: torch.Tensor,
                     weight: torch.Tensor,
                     scale_a: torch.Tensor,
                     scale_b: torch.Tensor,
                     out_dtype: Type[torch.dtype],
                     bias: Optional[torch.Tensor] = None,
                     block_size_m: int = 32,
                     block_size_n: int = 32,
                     block_size_k: int = 32,
                     use_heuristic=True) -> torch.Tensor:
    M, K = input.shape
    N = weight.shape[1]

    assert N > 0 and K > 0 and M > 0
    assert weight.shape[0] == K
    assert input.dtype == weight.dtype

    scale_a = scale_a.reshape(-1, 1) if scale_a.dim() <= 1 else scale_a
    scale_b = scale_b.reshape(-1, 1) if scale_b.dim() <= 1 else scale_b

    assert scale_a.dtype == scale_b.dtype and scale_a.is_floating_point()
    assert scale_a.shape == torch.Size([1, 1]) or scale_a.shape == torch.Size(
        [M, 1])
    assert scale_b.shape == torch.Size([1, 1]) or scale_b.shape == torch.Size(
        [N, 1])
    assert out_dtype.is_floating_point
    assert bias is None or bias.is_floating_point()
    assert is_weak_contiguous(input)
    assert is_weak_contiguous(weight)

    grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
        N, META['BLOCK_SIZE_N']), )

    result = torch.empty((M, N), dtype=out_dtype, device=input.device)

    has_scalar = lambda x: x.shape[0] == 1 and x.shape[1] == 1

    if use_heuristic:
        is_small_N = N < 8192
        next_power_of_2_M = max(32, triton.next_power_of_2(M))
        if next_power_of_2_M <= 32:
            tile_shape = (64, 64, 256) if is_small_N else (64, 128, 256)
        elif next_power_of_2_M <= 64:
            tile_shape = (64, 64, 256)
        elif next_power_of_2_M <= 128:
            tile_shape = (64, 128, 128)
        else:
            tile_shape = (128, 128, 128)

    block_size_m, block_size_n, block_size_k = tile_shape

    block_size_sa = 1 if has_scalar(scale_a) else block_size_m
    block_size_sb = 1 if has_scalar(scale_b) else block_size_n

    accumulator_dtype = tl.float32 if input.is_floating_point() else tl.int32

    # A = input, B = weight, C = result
    # A = M x K, B = K x N, C = M x N
    scaled_mm_kernel[grid](input,
                           weight,
                           scale_a,
                           scale_b,
                           result,
                           bias,
                           M,
                           N,
                           K,
                           input.stride(0),
                           input.stride(1),
                           weight.stride(0),
                           weight.stride(1),
                           result.stride(0),
                           result.stride(1),
                           accumulator_dtype,
                           BLOCK_SIZE_M=block_size_m,
                           BLOCK_SIZE_N=block_size_n,
                           BLOCK_SIZE_K=block_size_k,
                           BLOCK_SIZE_SCALE_A=block_size_sa,
                           BLOCK_SIZE_SCALE_B=block_size_sb)

    return result.to(out_dtype)