kernel
moe / tests /kernels /test_block_fp8.py
danieldk's picture
danieldk HF staff
Vendor `w8a8_block_fp8_matmul` and `per_token_group_quant_fp8`
b41d28a
# SPDX-License-Identifier: Apache-2.0
# Adapted from https://github.com/sgl-project/sglang/pull/2575
import itertools
import pytest
import torch
from .utils import SiluAndMul
from moe import fused_moe
from moe.fp8_utils import per_token_group_quant_fp8, w8a8_block_fp8_matmul
from moe.platforms import current_platform
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher", allow_module_level=True)
# Test configurations
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
NUM_TOKENS = [7, 83, 2048]
D = [512, 4096, 5120, 13824]
GROUP_SIZE = [64, 128, 256, 512]
M = [1, 7, 83, 512, 2048]
N = [128, 512, 1024, 4096, 7748, 13824]
K = [256, 4096, 5120, 3884, 13824]
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
# and its hidden size is 7168.
M_moe = [1, 7, 83, 512, 2048]
N_moe = [4608] # [128, 4608, 13824]
K_moe = [7168] # [256, 7168, 13824]
BLOCK_SIZE = [[128, 128]]
E = [256] # [8, 24, 128, 256]
TOP_KS = [1] # [1, 2, 6]
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
SEEDS = [0]
def native_per_token_group_quant_fp8(
x, group_size, eps=1e-10, dtype=torch.float8_e4m3fn
):
"""Function to perform per-token-group quantization on an input tensor
`x` using native torch."""
assert x.shape[-1] % group_size == 0, (
"the last dimension of `x` cannot " "be divisible by `group_size`"
)
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
x_ = x.reshape(x.numel() // group_size, group_size)
amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / fp8_max
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size,))
return x_q, x_s
def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16):
"""Matrix multiplication with block-wise quantization using native torch."""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
assert A.shape[:-1] == As.shape[:-1]
M = A.numel() // A.shape[-1]
N, K = B.shape
origin_C_shape = A.shape[:-1] + (N,)
A = A.reshape(M, A.shape[-1])
As = As.reshape(M, As.shape[-1])
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
assert n_tiles == Bs.shape[0]
assert k_tiles == Bs.shape[1]
C_shape = (M, N)
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
A_tiles = [A[:, i * block_k : min((i + 1) * block_k, K)] for i in range(k_tiles)]
B_tiles = [
[
B[
j * block_n : min((j + 1) * block_n, N),
i * block_k : min((i + 1) * block_k, K),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
C_tiles = [C[:, j * block_n : min((j + 1) * block_n, N)] for j in range(n_tiles)]
As_tiles = [As[:, i : i + 1] for i in range(k_tiles)]
for i in range(k_tiles):
for j in range(n_tiles):
a = A_tiles[i]
b = B_tiles[j][i]
c = C_tiles[j]
s = As_tiles[i] * Bs[j][i]
c[:, :] += torch.matmul(a, b.t()) * s
C = C.reshape(origin_C_shape).to(output_dtype)
return C
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""Fused moe with block-wise quantization using native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_fp8_matmul(
a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype
)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_fp8_matmul(
act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype
)
return (
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
).sum(dim=1)
# Skip all tests if CUDA is not available
pytest.importorskip("torch.cuda")
@pytest.fixture(autouse=True)
def setup_cuda():
torch.set_default_device("cuda")
@pytest.mark.parametrize(
"num_tokens,d,dtype,group_size,seed",
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS),
)
@torch.inference_mode()
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
torch.manual_seed(seed)
x = torch.rand(num_tokens, d, dtype=dtype)
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
out, scale = per_token_group_quant_fp8(x, group_size)
assert torch.allclose(out.to(torch.float32), ref_out.to(torch.float32), rtol=0.15)
assert torch.allclose(scale, ref_scale)
@pytest.mark.parametrize(
"M,N,K,block_size,out_dtype,seed",
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS),
)
@torch.inference_mode()
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
rel_diff = torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))
) / torch.mean(torch.abs(ref_out.to(torch.float32)))
assert rel_diff < 0.001
@pytest.mark.parametrize(
"M,N,K,E,topk,block_size,dtype,seed",
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS),
)
@torch.inference_mode()
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_bf16 = (torch.rand((E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w1_bf16
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w2_bf16
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
)
w2_s = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale
)
score = torch.randn((M, E), dtype=dtype)
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_size)
print(f"{out.sum()=}")
print(f"{ref_out.sum()=}")
rel_diff = torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))
) / torch.mean(torch.abs(ref_out.to(torch.float32)))
assert rel_diff < 0.03