|
|
|
|
|
|
|
import itertools |
|
|
|
import pytest |
|
import torch |
|
|
|
from .utils import SiluAndMul |
|
from moe import fused_moe |
|
from moe.fp8_utils import per_token_group_quant_fp8, w8a8_block_fp8_matmul |
|
from moe.platforms import current_platform |
|
|
|
if current_platform.get_device_capability() < (9, 0): |
|
pytest.skip("FP8 Triton requires CUDA 9.0 or higher", allow_module_level=True) |
|
|
|
|
|
DTYPES = [torch.bfloat16] |
|
NUM_TOKENS = [7, 83, 2048] |
|
D = [512, 4096, 5120, 13824] |
|
GROUP_SIZE = [64, 128, 256, 512] |
|
M = [1, 7, 83, 512, 2048] |
|
N = [128, 512, 1024, 4096, 7748, 13824] |
|
K = [256, 4096, 5120, 3884, 13824] |
|
|
|
|
|
M_moe = [1, 7, 83, 512, 2048] |
|
N_moe = [4608] |
|
K_moe = [7168] |
|
BLOCK_SIZE = [[128, 128]] |
|
E = [256] |
|
TOP_KS = [1] |
|
OUT_DTYPES = [torch.bfloat16] |
|
SEEDS = [0] |
|
|
|
|
|
def native_per_token_group_quant_fp8( |
|
x, group_size, eps=1e-10, dtype=torch.float8_e4m3fn |
|
): |
|
"""Function to perform per-token-group quantization on an input tensor |
|
`x` using native torch.""" |
|
assert x.shape[-1] % group_size == 0, ( |
|
"the last dimension of `x` cannot " "be divisible by `group_size`" |
|
) |
|
assert x.is_contiguous(), "`x` is not contiguous" |
|
|
|
finfo = torch.finfo(dtype) |
|
fp8_min = finfo.min |
|
fp8_max = finfo.max |
|
|
|
x_ = x.reshape(x.numel() // group_size, group_size) |
|
amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32) |
|
x_s = amax / fp8_max |
|
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype) |
|
x_q = x_q.reshape(x.shape) |
|
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size,)) |
|
|
|
return x_q, x_s |
|
|
|
|
|
def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16): |
|
"""Matrix multiplication with block-wise quantization using native torch.""" |
|
A = A.to(torch.float32) |
|
B = B.to(torch.float32) |
|
assert A.shape[-1] == B.shape[-1] |
|
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2 |
|
assert len(block_size) == 2 |
|
block_n, block_k = block_size[0], block_size[1] |
|
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1] |
|
assert A.shape[:-1] == As.shape[:-1] |
|
|
|
M = A.numel() // A.shape[-1] |
|
N, K = B.shape |
|
origin_C_shape = A.shape[:-1] + (N,) |
|
A = A.reshape(M, A.shape[-1]) |
|
As = As.reshape(M, As.shape[-1]) |
|
n_tiles = (N + block_n - 1) // block_n |
|
k_tiles = (K + block_k - 1) // block_k |
|
assert n_tiles == Bs.shape[0] |
|
assert k_tiles == Bs.shape[1] |
|
|
|
C_shape = (M, N) |
|
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device) |
|
|
|
A_tiles = [A[:, i * block_k : min((i + 1) * block_k, K)] for i in range(k_tiles)] |
|
B_tiles = [ |
|
[ |
|
B[ |
|
j * block_n : min((j + 1) * block_n, N), |
|
i * block_k : min((i + 1) * block_k, K), |
|
] |
|
for i in range(k_tiles) |
|
] |
|
for j in range(n_tiles) |
|
] |
|
C_tiles = [C[:, j * block_n : min((j + 1) * block_n, N)] for j in range(n_tiles)] |
|
As_tiles = [As[:, i : i + 1] for i in range(k_tiles)] |
|
|
|
for i in range(k_tiles): |
|
for j in range(n_tiles): |
|
a = A_tiles[i] |
|
b = B_tiles[j][i] |
|
c = C_tiles[j] |
|
s = As_tiles[i] * Bs[j][i] |
|
c[:, :] += torch.matmul(a, b.t()) * s |
|
|
|
C = C.reshape(origin_C_shape).to(output_dtype) |
|
return C |
|
|
|
|
|
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape): |
|
"""Fused moe with block-wise quantization using native torch.""" |
|
B, D = a.shape |
|
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) |
|
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device) |
|
score = torch.softmax(score, dim=-1, dtype=torch.float32) |
|
topk_weight, topk_ids = torch.topk(score, topk) |
|
topk_weight = topk_weight.view(-1) |
|
topk_ids = topk_ids.view(-1) |
|
|
|
_, block_k = block_shape[0], block_shape[1] |
|
a_q, a_s = native_per_token_group_quant_fp8(a, block_k) |
|
a_q = a_q.to(torch.float32) |
|
for i in range(w1.shape[0]): |
|
mask = topk_ids == i |
|
if mask.sum(): |
|
inter_out = native_w8a8_block_fp8_matmul( |
|
a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype |
|
) |
|
act_out = SiluAndMul().forward_native(inter_out) |
|
act_out_q, act_out_s = native_per_token_group_quant_fp8(act_out, block_k) |
|
act_out = act_out.to(torch.float32) |
|
out[mask] = native_w8a8_block_fp8_matmul( |
|
act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype |
|
) |
|
return ( |
|
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype) |
|
).sum(dim=1) |
|
|
|
|
|
|
|
pytest.importorskip("torch.cuda") |
|
|
|
|
|
@pytest.fixture(autouse=True) |
|
def setup_cuda(): |
|
torch.set_default_device("cuda") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"num_tokens,d,dtype,group_size,seed", |
|
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS), |
|
) |
|
@torch.inference_mode() |
|
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed): |
|
torch.manual_seed(seed) |
|
x = torch.rand(num_tokens, d, dtype=dtype) |
|
|
|
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size) |
|
out, scale = per_token_group_quant_fp8(x, group_size) |
|
|
|
assert torch.allclose(out.to(torch.float32), ref_out.to(torch.float32), rtol=0.15) |
|
assert torch.allclose(scale, ref_scale) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"M,N,K,block_size,out_dtype,seed", |
|
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS), |
|
) |
|
@torch.inference_mode() |
|
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed): |
|
torch.manual_seed(seed) |
|
factor_for_scale = 1e-2 |
|
fp8_info = torch.finfo(torch.float8_e4m3fn) |
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min |
|
|
|
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max |
|
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) |
|
|
|
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max |
|
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) |
|
|
|
block_n, block_k = block_size[0], block_size[1] |
|
n_tiles = (N + block_n - 1) // block_n |
|
k_tiles = (K + block_k - 1) // block_k |
|
|
|
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale |
|
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale |
|
|
|
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) |
|
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) |
|
|
|
rel_diff = torch.mean( |
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)) |
|
) / torch.mean(torch.abs(ref_out.to(torch.float32))) |
|
assert rel_diff < 0.001 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"M,N,K,E,topk,block_size,dtype,seed", |
|
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS), |
|
) |
|
@torch.inference_mode() |
|
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed): |
|
torch.manual_seed(seed) |
|
factor_for_scale = 1e-2 |
|
fp8_info = torch.finfo(torch.float8_e4m3fn) |
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min |
|
|
|
a = torch.randn((M, K), dtype=dtype) / 10 |
|
|
|
w1_bf16 = (torch.rand((E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max |
|
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) |
|
del w1_bf16 |
|
|
|
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max |
|
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) |
|
del w2_bf16 |
|
|
|
block_n, block_k = block_size[0], block_size[1] |
|
n_tiles_w1 = (2 * N + block_n - 1) // block_n |
|
n_tiles_w2 = (K + block_n - 1) // block_n |
|
k_tiles_w1 = (K + block_k - 1) // block_k |
|
k_tiles_w2 = (N + block_k - 1) // block_k |
|
|
|
w1_s = ( |
|
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale |
|
) |
|
w2_s = ( |
|
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale |
|
) |
|
|
|
score = torch.randn((M, E), dtype=dtype) |
|
|
|
out = fused_moe( |
|
a, |
|
w1, |
|
w2, |
|
score, |
|
topk, |
|
renormalize=False, |
|
use_fp8_w8a8=True, |
|
w1_scale=w1_s, |
|
w2_scale=w2_s, |
|
block_shape=block_size, |
|
) |
|
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_size) |
|
|
|
print(f"{out.sum()=}") |
|
print(f"{ref_out.sum()=}") |
|
|
|
rel_diff = torch.mean( |
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)) |
|
) / torch.mean(torch.abs(ref_out.to(torch.float32))) |
|
assert rel_diff < 0.03 |
|
|