# SPDX-License-Identifier: Apache-2.0 # Adapted from https://github.com/sgl-project/sglang/pull/2575 import itertools import pytest import torch from .utils import SiluAndMul from moe import fused_moe from moe.fp8_utils import per_token_group_quant_fp8, w8a8_block_fp8_matmul from moe.platforms import current_platform if current_platform.get_device_capability() < (9, 0): pytest.skip("FP8 Triton requires CUDA 9.0 or higher", allow_module_level=True) # Test configurations DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32] NUM_TOKENS = [7, 83, 2048] D = [512, 4096, 5120, 13824] GROUP_SIZE = [64, 128, 256, 512] M = [1, 7, 83, 512, 2048] N = [128, 512, 1024, 4096, 7748, 13824] K = [256, 4096, 5120, 3884, 13824] # Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8 # and its hidden size is 7168. M_moe = [1, 7, 83, 512, 2048] N_moe = [4608] # [128, 4608, 13824] K_moe = [7168] # [256, 7168, 13824] BLOCK_SIZE = [[128, 128]] E = [256] # [8, 24, 128, 256] TOP_KS = [1] # [1, 2, 6] OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16] SEEDS = [0] def native_per_token_group_quant_fp8( x, group_size, eps=1e-10, dtype=torch.float8_e4m3fn ): """Function to perform per-token-group quantization on an input tensor `x` using native torch.""" assert x.shape[-1] % group_size == 0, ( "the last dimension of `x` cannot " "be divisible by `group_size`" ) assert x.is_contiguous(), "`x` is not contiguous" finfo = torch.finfo(dtype) fp8_min = finfo.min fp8_max = finfo.max x_ = x.reshape(x.numel() // group_size, group_size) amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32) x_s = amax / fp8_max x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype) x_q = x_q.reshape(x.shape) x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size,)) return x_q, x_s def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16): """Matrix multiplication with block-wise quantization using native torch.""" A = A.to(torch.float32) B = B.to(torch.float32) assert A.shape[-1] == B.shape[-1] assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2 assert len(block_size) == 2 block_n, block_k = block_size[0], block_size[1] assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1] assert A.shape[:-1] == As.shape[:-1] M = A.numel() // A.shape[-1] N, K = B.shape origin_C_shape = A.shape[:-1] + (N,) A = A.reshape(M, A.shape[-1]) As = As.reshape(M, As.shape[-1]) n_tiles = (N + block_n - 1) // block_n k_tiles = (K + block_k - 1) // block_k assert n_tiles == Bs.shape[0] assert k_tiles == Bs.shape[1] C_shape = (M, N) C = torch.zeros(C_shape, dtype=torch.float32, device=A.device) A_tiles = [A[:, i * block_k : min((i + 1) * block_k, K)] for i in range(k_tiles)] B_tiles = [ [ B[ j * block_n : min((j + 1) * block_n, N), i * block_k : min((i + 1) * block_k, K), ] for i in range(k_tiles) ] for j in range(n_tiles) ] C_tiles = [C[:, j * block_n : min((j + 1) * block_n, N)] for j in range(n_tiles)] As_tiles = [As[:, i : i + 1] for i in range(k_tiles)] for i in range(k_tiles): for j in range(n_tiles): a = A_tiles[i] b = B_tiles[j][i] c = C_tiles[j] s = As_tiles[i] * Bs[j][i] c[:, :] += torch.matmul(a, b.t()) * s C = C.reshape(origin_C_shape).to(output_dtype) return C def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape): """Fused moe with block-wise quantization using native torch.""" B, D = a.shape a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device) score = torch.softmax(score, dim=-1, dtype=torch.float32) topk_weight, topk_ids = torch.topk(score, topk) topk_weight = topk_weight.view(-1) topk_ids = topk_ids.view(-1) _, block_k = block_shape[0], block_shape[1] a_q, a_s = native_per_token_group_quant_fp8(a, block_k) a_q = a_q.to(torch.float32) for i in range(w1.shape[0]): mask = topk_ids == i if mask.sum(): inter_out = native_w8a8_block_fp8_matmul( a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype ) act_out = SiluAndMul().forward_native(inter_out) act_out_q, act_out_s = native_per_token_group_quant_fp8(act_out, block_k) act_out = act_out.to(torch.float32) out[mask] = native_w8a8_block_fp8_matmul( act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype ) return ( out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype) ).sum(dim=1) # Skip all tests if CUDA is not available pytest.importorskip("torch.cuda") @pytest.fixture(autouse=True) def setup_cuda(): torch.set_default_device("cuda") @pytest.mark.parametrize( "num_tokens,d,dtype,group_size,seed", itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS), ) @torch.inference_mode() def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed): torch.manual_seed(seed) x = torch.rand(num_tokens, d, dtype=dtype) ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size) out, scale = per_token_group_quant_fp8(x, group_size) assert torch.allclose(out.to(torch.float32), ref_out.to(torch.float32), rtol=0.15) assert torch.allclose(scale, ref_scale) @pytest.mark.parametrize( "M,N,K,block_size,out_dtype,seed", itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS), ) @torch.inference_mode() def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed): torch.manual_seed(seed) factor_for_scale = 1e-2 fp8_info = torch.finfo(torch.float8_e4m3fn) fp8_max, fp8_min = fp8_info.max, fp8_info.min A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) block_n, block_k = block_size[0], block_size[1] n_tiles = (N + block_n - 1) // block_n k_tiles = (K + block_k - 1) // block_k As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype) rel_diff = torch.mean( torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)) ) / torch.mean(torch.abs(ref_out.to(torch.float32))) assert rel_diff < 0.001 @pytest.mark.parametrize( "M,N,K,E,topk,block_size,dtype,seed", itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS), ) @torch.inference_mode() def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed): torch.manual_seed(seed) factor_for_scale = 1e-2 fp8_info = torch.finfo(torch.float8_e4m3fn) fp8_max, fp8_min = fp8_info.max, fp8_info.min a = torch.randn((M, K), dtype=dtype) / 10 w1_bf16 = (torch.rand((E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) del w1_bf16 w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) del w2_bf16 block_n, block_k = block_size[0], block_size[1] n_tiles_w1 = (2 * N + block_n - 1) // block_n n_tiles_w2 = (K + block_n - 1) // block_n k_tiles_w1 = (K + block_k - 1) // block_k k_tiles_w2 = (N + block_k - 1) // block_k w1_s = ( torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale ) w2_s = ( torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale ) score = torch.randn((M, E), dtype=dtype) out = fused_moe( a, w1, w2, score, topk, renormalize=False, use_fp8_w8a8=True, w1_scale=w1_s, w2_scale=w2_s, block_shape=block_size, ) ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_size) print(f"{out.sum()=}") print(f"{ref_out.sum()=}") rel_diff = torch.mean( torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)) ) / torch.mean(torch.abs(ref_out.to(torch.float32))) assert rel_diff < 0.03