File size: 8,890 Bytes
b41d28a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# SPDX-License-Identifier: Apache-2.0
# Adapted from https://github.com/sgl-project/sglang/pull/2575
import itertools
import pytest
import torch
from .utils import SiluAndMul
from moe import fused_moe
from moe.fp8_utils import per_token_group_quant_fp8, w8a8_block_fp8_matmul
from moe.platforms import current_platform
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher", allow_module_level=True)
# Test configurations
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
NUM_TOKENS = [7, 83, 2048]
D = [512, 4096, 5120, 13824]
GROUP_SIZE = [64, 128, 256, 512]
M = [1, 7, 83, 512, 2048]
N = [128, 512, 1024, 4096, 7748, 13824]
K = [256, 4096, 5120, 3884, 13824]
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
# and its hidden size is 7168.
M_moe = [1, 7, 83, 512, 2048]
N_moe = [4608] # [128, 4608, 13824]
K_moe = [7168] # [256, 7168, 13824]
BLOCK_SIZE = [[128, 128]]
E = [256] # [8, 24, 128, 256]
TOP_KS = [1] # [1, 2, 6]
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
SEEDS = [0]
def native_per_token_group_quant_fp8(
x, group_size, eps=1e-10, dtype=torch.float8_e4m3fn
):
"""Function to perform per-token-group quantization on an input tensor
`x` using native torch."""
assert x.shape[-1] % group_size == 0, (
"the last dimension of `x` cannot " "be divisible by `group_size`"
)
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
x_ = x.reshape(x.numel() // group_size, group_size)
amax = x_.abs().max(dim=-1, keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / fp8_max
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size,))
return x_q, x_s
def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16):
"""Matrix multiplication with block-wise quantization using native torch."""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
assert A.shape[:-1] == As.shape[:-1]
M = A.numel() // A.shape[-1]
N, K = B.shape
origin_C_shape = A.shape[:-1] + (N,)
A = A.reshape(M, A.shape[-1])
As = As.reshape(M, As.shape[-1])
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
assert n_tiles == Bs.shape[0]
assert k_tiles == Bs.shape[1]
C_shape = (M, N)
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
A_tiles = [A[:, i * block_k : min((i + 1) * block_k, K)] for i in range(k_tiles)]
B_tiles = [
[
B[
j * block_n : min((j + 1) * block_n, N),
i * block_k : min((i + 1) * block_k, K),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
C_tiles = [C[:, j * block_n : min((j + 1) * block_n, N)] for j in range(n_tiles)]
As_tiles = [As[:, i : i + 1] for i in range(k_tiles)]
for i in range(k_tiles):
for j in range(n_tiles):
a = A_tiles[i]
b = B_tiles[j][i]
c = C_tiles[j]
s = As_tiles[i] * Bs[j][i]
c[:, :] += torch.matmul(a, b.t()) * s
C = C.reshape(origin_C_shape).to(output_dtype)
return C
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""Fused moe with block-wise quantization using native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_fp8_matmul(
a_q[mask], w1[i], a_s[mask], w1_s[i], block_shape, output_dtype=a.dtype
)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_fp8_matmul(
act_out_q, w2[i], act_out_s, w2_s[i], block_shape, output_dtype=a.dtype
)
return (
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
).sum(dim=1)
# Skip all tests if CUDA is not available
pytest.importorskip("torch.cuda")
@pytest.fixture(autouse=True)
def setup_cuda():
torch.set_default_device("cuda")
@pytest.mark.parametrize(
"num_tokens,d,dtype,group_size,seed",
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS),
)
@torch.inference_mode()
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
torch.manual_seed(seed)
x = torch.rand(num_tokens, d, dtype=dtype)
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
out, scale = per_token_group_quant_fp8(x, group_size)
assert torch.allclose(out.to(torch.float32), ref_out.to(torch.float32), rtol=0.15)
assert torch.allclose(scale, ref_scale)
@pytest.mark.parametrize(
"M,N,K,block_size,out_dtype,seed",
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS),
)
@torch.inference_mode()
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
rel_diff = torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))
) / torch.mean(torch.abs(ref_out.to(torch.float32)))
assert rel_diff < 0.001
@pytest.mark.parametrize(
"M,N,K,E,topk,block_size,dtype,seed",
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS),
)
@torch.inference_mode()
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_bf16 = (torch.rand((E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w1_bf16
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w2_bf16
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
)
w2_s = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale
)
score = torch.randn((M, E), dtype=dtype)
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_size)
print(f"{out.sum()=}")
print(f"{ref_out.sum()=}")
rel_diff = torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))
) / torch.mean(torch.abs(ref_out.to(torch.float32)))
assert rel_diff < 0.03
|