|
--- |
|
pipeline_tag: reinforcement-learning |
|
library_name: pytorch |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning |
|
- deep-reinforcement-learning |
|
- pytorch |
|
- gymnasium |
|
- collision-avoidance |
|
- navigation |
|
- self-driving |
|
- autonomous-vehicle |
|
model-index: |
|
- name: sac_v2-230704203226 |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: urban-road-v0 |
|
type: RoadEnv |
|
metrics: |
|
- type: mean-reward |
|
value: 0.53 - 0.72 |
|
name: mean-reward |
|
- name: sac_v2_lstm-230706072839 |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: urban-road-v0 |
|
type: RoadEnv |
|
metrics: |
|
- type: mean-reward |
|
value: 0.62 - 0.76 |
|
name: mean-reward |
|
|
|
--- |
|
|
|
This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv). |
|
|
|
## Models |
|
- Recurrent Soft Actor-Critic (RSAC/SAC-LSTM) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-lstm-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2_lstm.py)] |
|
- Recurrent Soft Actor-Critic Share (RSAC-Share) [[Paper](https://arxiv.org/abs/2110.12628)] [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm_share.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-rsac_share.py)] |
|
- Soft Actor-Critic (SAC) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2.py)] |
|
|
|
## Usage |
|
```Python |
|
# Register environment |
|
from road_env import register_road_envs |
|
register_road_envs() |
|
|
|
# Make environment |
|
import gymnasium as gym |
|
env = gym.make('urban-road-v0', render_mode='rgb_array') |
|
|
|
# Configure parameters (example) |
|
env.configure({ |
|
"random_seed": None, |
|
"duration": 60, |
|
}) |
|
|
|
obs, info = env.reset() |
|
|
|
# Graphic display |
|
import matplotlib.pyplot as plt |
|
plt.imshow(env.render()) |
|
|
|
# Execution |
|
done = truncated = False |
|
while not (done or truncated): |
|
action = ... # Your agent code here |
|
obs, reward, done, truncated, info = env.step(action) |
|
env.render() # Update graphic |
|
``` |