--- pipeline_tag: reinforcement-learning library_name: pytorch language: - en tags: - reinforcement-learning - deep-reinforcement-learning - pytorch - gymnasium - collision-avoidance - navigation - self-driving - autonomous-vehicle model-index: - name: sac_v2-230704203226 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: urban-road-v0 type: RoadEnv metrics: - type: mean-reward value: 0.53 - 0.72 name: mean-reward - name: sac_v2_lstm-230706072839 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: urban-road-v0 type: RoadEnv metrics: - type: mean-reward value: 0.62 - 0.76 name: mean-reward --- This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv). ## Models - Recurrent Soft Actor-Critic (RSAC/SAC-LSTM) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-lstm-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2_lstm.py)] - Recurrent Soft Actor-Critic Share (RSAC-Share) [[Paper](https://arxiv.org/abs/2110.12628)] [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm_share.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-rsac_share.py)] - Soft Actor-Critic (SAC) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2.py)] ## Usage ```Python # Register environment from road_env import register_road_envs register_road_envs() # Make environment import gymnasium as gym env = gym.make('urban-road-v0', render_mode='rgb_array') # Configure parameters (example) env.configure({ "random_seed": None, "duration": 60, }) obs, info = env.reset() # Graphic display import matplotlib.pyplot as plt plt.imshow(env.render()) # Execution done = truncated = False while not (done or truncated): action = ... # Your agent code here obs, reward, done, truncated, info = env.step(action) env.render() # Update graphic ```