Text Generation
Transformers
Safetensors
English
Chinese
bailing_moe
code
Mixture of Experts
conversational
custom_code
File size: 4,927 Bytes
47add84
8698812
 
47add84
 
 
 
 
 
 
 
8698812
 
47add84
 
 
 
8698812
6ae5691
 
 
 
 
 
 
265c05f
6ae5691
2aefd27
6ae5691
 
 
 
2aefd27
 
6ae5691
 
 
 
 
 
 
 
3b965e3
 
e83c3b8
6ae5691
 
2aefd27
 
 
 
 
 
 
 
 
 
 
 
6ae5691
 
4a8647a
6ae5691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aefd27
6ae5691
 
070bdc3
6ae5691
 
0c94323
 
 
 
2aefd27
0c94323
 
 
 
 
 
8698812
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
base_model:
- inclusionAI/Ling-Coder-lite-base
datasets:
- inclusionAI/Ling-Coder-SFT
- inclusionAI/Ling-Coder-SyntheticQA
- inclusionAI/Ling-Coder-DPO
language:
- en
- zh
library_name: transformers
license: mit
pipeline_tag: text-generation
tags:
- code
- moe
---

# Ling-Coder-lite

<p align="center">
    <img src="https://huggingface.co/inclusionAI/Ling-lite/resolve/main/ant-bailing.png" width="100"/>
<p>

<p align="center">
          πŸ€– <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>
          πŸ€— <a href="https://huggingface.co/inclusionAI">Hugging Face</a>
          πŸ–₯️ <a href="https://github.com/codefuse-ai/Ling-Coder-Lite">GitHub</a>
<p>

## Introduction

Ling-Coder-Lite is a MoE LLM provided and open-sourced by InclusionAI, which has 16.8B parameters with 2.75B activated parameters. This model demonstrates state-of-the-art performance on 12 coding benchmarks, while simultaneously offering competitive latency and throughput compared to code LLMs of similar size. In addition to open-sourcing the model itself, we also release a substantial amount of code-related data, including synthetic QA, SFT and DPO datasets. More details are described in the technique report [Ling-Coder-TR](https://huggingface.co/papers/2503.17793).

## Model Downloads

You can download the following table to see the various parameters for your use case. If you are located in mainland China, we also provide the model on modelscope.cn to speed up the download process.

<div align="center">

|     **Model**      | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
| :----------------: | :---------------: | :-------------------: | :----------------: | :----------: |
| Ling-Coder-lite-base |       16.8B       |         2.75B         |        16K         |      [πŸ€— HuggingFace](https://huggingface.co/inclusionAI/Ling-Coder-lite-base) |
| Ling-Coder-lite |       16.8B       |         2.75B         |        16K         |     [πŸ€— HuggingFace](https://huggingface.co/inclusionAI/Ling-Coder-lite)     |
| Ling-Coder-lite-GPTQ-Int8 |       16.8B       |         2.75B         |        16K         |     [πŸ€— HuggingFace](https://huggingface.co/inclusionAI/Ling-Coder-lite-GPTQ-Int8)     |
</div>

## Dataset Downloads

<div align="center">

|   **Model**    | **Samples** |                                                                     **Download**                                                                     |
| :------------: | :----------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------: |
| Ling-Coder-SyntheticQA |        24M         | [πŸ€— HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-SyntheticQA) |
| Ling-Coder-SFT  |        5M         |      [πŸ€— HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-SFT) |
| Ling-Coder-DPO  |        250K         | [πŸ€— HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-DPO) |

</div>

## Evaluation

Detailed evaluation results are reported in our technical report [Ling-Coder-TR](https://huggingface.co/papers/2503.17793).

## Quickstart
### πŸ€— Hugging Face Transformers

Here is a code snippet to show you how to use the chat model with `transformers`:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "inclusionAI/Ling-Coder-lite"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
    model_name, 
    trust_remote_code=True
)

prompt = "Write a quick sort algorithm in python."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

## Deployment
Please refer to [Github](https://github.com/codefuse-ai/Ling-Coder-Lite/blob/master/README.md)

## License
This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ling-Coder-lite/blob/main/LICENCE).

## Citation

```
@misc{codefuse2025samplemattersleveragingmixtureofexperts,
      title={Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM}, 
      author={Codefuse and Ling Team},
      year={2025},
      eprint={2503.17793},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.17793}, 
}
```