Text Generation
Transformers
Safetensors
English
Chinese
bailing_moe
code
Mixture of Experts
conversational
custom_code
twelveand0 nielsr HF Staff commited on
Commit
8698812
·
verified ·
1 Parent(s): 0c94323

Add link to paper and mention Github repository (#1)

Browse files

- Add link to paper and mention Github repository (e56d963ff921359d26349b7c00c96a9b03c6c914)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- license: mit
 
3
  datasets:
4
  - inclusionAI/Ling-Coder-SFT
5
  - inclusionAI/Ling-Coder-SyntheticQA
@@ -7,14 +8,14 @@ datasets:
7
  language:
8
  - en
9
  - zh
10
- base_model:
11
- - inclusionAI/Ling-Coder-lite-base
12
- pipeline_tag: text-generation
13
  library_name: transformers
 
 
14
  tags:
15
  - code
16
  - moe
17
  ---
 
18
  # Ling-Coder-lite
19
 
20
  <p align="center">
@@ -29,6 +30,8 @@ tags:
29
 
30
  ## Introduction
31
 
 
 
32
  Ling-Coder-Lite is a MoE LLM provided and open-sourced by InclusionAI, which has 16.8 billion parameters with 2.75 billion activated parameters. Ling-Coder-Lite performs impressively on coding tasks compared to existing models in the industry. Specifically, Ling-Coder-Lite further pre-training from an intermediate checkpoint of Ling-Lite, incorporating an additional 3 trillion tokens. This extended pre-training significantly boosts the coding abilities of Ling-Lite, while preserving its strong performance in general language tasks.
33
 
34
  ## Model Downloads
@@ -109,4 +112,4 @@ This code repository is licensed under [the MIT License](https://huggingface.co/
109
  primaryClass={cs.LG},
110
  url={https://arxiv.org/abs/2503.17793},
111
  }
112
- ```
 
1
  ---
2
+ base_model:
3
+ - inclusionAI/Ling-Coder-lite-base
4
  datasets:
5
  - inclusionAI/Ling-Coder-SFT
6
  - inclusionAI/Ling-Coder-SyntheticQA
 
8
  language:
9
  - en
10
  - zh
 
 
 
11
  library_name: transformers
12
+ license: mit
13
+ pipeline_tag: text-generation
14
  tags:
15
  - code
16
  - moe
17
  ---
18
+
19
  # Ling-Coder-lite
20
 
21
  <p align="center">
 
30
 
31
  ## Introduction
32
 
33
+ This repository contains the model described in the paper [Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM](https://huggingface.co/papers/2503.17793).
34
+
35
  Ling-Coder-Lite is a MoE LLM provided and open-sourced by InclusionAI, which has 16.8 billion parameters with 2.75 billion activated parameters. Ling-Coder-Lite performs impressively on coding tasks compared to existing models in the industry. Specifically, Ling-Coder-Lite further pre-training from an intermediate checkpoint of Ling-Lite, incorporating an additional 3 trillion tokens. This extended pre-training significantly boosts the coding abilities of Ling-Lite, while preserving its strong performance in general language tasks.
36
 
37
  ## Model Downloads
 
112
  primaryClass={cs.LG},
113
  url={https://arxiv.org/abs/2503.17793},
114
  }
115
+ ```