Update README.md
Browse files
README.md
CHANGED
@@ -25,12 +25,16 @@ tags:
|
|
25 |
<p align="center">
|
26 |
π€ <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>
|
27 |
π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a>
|
28 |
-
π₯οΈ <a href="https://github.com/
|
29 |
<p>
|
30 |
|
31 |
## Introduction
|
32 |
|
33 |
-
Ling-Coder-Lite is a MoE LLM provided and open-sourced by InclusionAI, which has 16.
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Model Downloads
|
36 |
|
@@ -44,6 +48,18 @@ You can download the following table to see the various parameters for your use
|
|
44 |
| Ling-Coder-lite | 16.8B | 2.75B | 16K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-Coder-lite) |
|
45 |
</div>
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
## Evaluation
|
48 |
|
49 |
Detailed evaluation results are reported in our technical report [Ling-Coder-TR](https://huggingface.co/papers/2503.17793).
|
@@ -93,7 +109,7 @@ print(response)
|
|
93 |
```
|
94 |
|
95 |
## Deployment
|
96 |
-
Please refer to [Github](https://github.com/
|
97 |
|
98 |
## License
|
99 |
This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ling-Coder-lite/blob/main/LICENCE).
|
@@ -103,7 +119,7 @@ This code repository is licensed under [the MIT License](https://huggingface.co/
|
|
103 |
```
|
104 |
@misc{codefuse2025samplemattersleveragingmixtureofexperts,
|
105 |
title={Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM},
|
106 |
-
author={Codefuse and Ling Team
|
107 |
year={2025},
|
108 |
eprint={2503.17793},
|
109 |
archivePrefix={arXiv},
|
|
|
25 |
<p align="center">
|
26 |
π€ <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>
|
27 |
π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a>
|
28 |
+
π₯οΈ <a href="https://github.com/codefuse-ai/Ling-Coder-Lite">GitHub</a>
|
29 |
<p>
|
30 |
|
31 |
## Introduction
|
32 |
|
33 |
+
Ling-Coder-Lite is a MoE LLM provided and open-sourced by InclusionAI, which has 16.8B parameters with 2.75B activated parameters. This model demonstrates state-of-the-art performance on 12 coding benchmarks, while simultaneously offering competitive latency and throughput compared to code LLMs of similar size. In addition to open-sourcing the model itself, we also release a substantial amount of code-related data, including synthetic QA, SFT and DPO datasets. More details are described in the technique report [Ling-Coder-TR](https://huggingface.co/papers/2503.17793).
|
34 |
+
|
35 |
+
<p align="center">
|
36 |
+
<img src="./data-accuracy-efficiency.png" width="1000"/>
|
37 |
+
<p>
|
38 |
|
39 |
## Model Downloads
|
40 |
|
|
|
48 |
| Ling-Coder-lite | 16.8B | 2.75B | 16K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-Coder-lite) |
|
49 |
</div>
|
50 |
|
51 |
+
## Dataset Downloads
|
52 |
+
|
53 |
+
<div align="center">
|
54 |
+
|
55 |
+
| **Model** | **Samples** | **Download** |
|
56 |
+
| :------------: | :----------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------: |
|
57 |
+
| Ling-Coder-SyntheticQA | 24M | [π€ HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-SyntheticQA) |
|
58 |
+
| Ling-Coder-SFT | 5M | [π€ HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-SFT) |
|
59 |
+
| Ling-Coder-DPO | 250K | [π€ HuggingFace](https://huggingface.co/datasets/inclusionAI/Ling-Coder-DPO) |
|
60 |
+
|
61 |
+
</div>
|
62 |
+
|
63 |
## Evaluation
|
64 |
|
65 |
Detailed evaluation results are reported in our technical report [Ling-Coder-TR](https://huggingface.co/papers/2503.17793).
|
|
|
109 |
```
|
110 |
|
111 |
## Deployment
|
112 |
+
Please refer to [Github](https://github.com/codefuse-ai/Ling-Coder-Lite/blob/master/README.md)
|
113 |
|
114 |
## License
|
115 |
This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ling-Coder-lite/blob/main/LICENCE).
|
|
|
119 |
```
|
120 |
@misc{codefuse2025samplemattersleveragingmixtureofexperts,
|
121 |
title={Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM},
|
122 |
+
author={Codefuse and Ling Team},
|
123 |
year={2025},
|
124 |
eprint={2503.17793},
|
125 |
archivePrefix={arXiv},
|