hyunjongkimmath's picture
Add new SentenceTransformer model.
ed1d903 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:264888
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: >-
      latex_in_original_or_summarized: K(M, n)


      [SEP]


      summarized: $K(M, n)$


      [SEP]


      main_note_content: Chain complexes and  spaces.   [59], that for 
      simplicial sheaf   $\text{X}$ we denote by $C_{*}(\mathcal{X})$ the
      (normalized) chain complex  $C_{*}(\mathcal{A}$  associated to the  
      sheaf  abelian groups   $\mathbb{X}$. This  defines a functor


      $$  C_{*}: \Delta^{o p} S h v_{N i s}\left(S m_{k}\right)  C_{*}(\text{A}
      b(k))  $$$ ^f7eebc


      which is well  (see $[44,59]$  instance) to have a right adjoint


      6.2 \mathbb{A}^{1}$-Derived Category   Spaces

      161


      $$  K: C_{*}(\mathcal{A} b(k)) \rightarrow \phi^{o p} S h v_{N i
      s}\left(S   $$ 



      called the  space 


      For an abelian  $M   b(k)$ and an integer $n$ we define the pointed
      simplicial sheaf $K(M, n)$ (see [59, page 56])   $K$ to the shifted
      complex $M[n]$,  the complex $M$ placed in degree 0 . If n< 0, the space
      $K(M, n)$ is a point. If $n \geq 0$ then $K(M, n)$ has only one
      non-trivial  sheaf which is the  and which is canonically isomorphic to
      $M$. More generally, for a chain  $C_{*}$,   $K C_{*}$ has   homotopy
      sheaf 0  $n< 0$, and the $n$-th homology sheaf $H_{n}\left(C_{*}\right)$
      for $n \geq 0$.


      It is clear that $C_{*}: \Delta^{o p} S h  i s}\left(S m_{k}\right)
      \rightarrow  b(k))$ sends simplicial weak equivalences to
      quasi-isomorphisms and $K: C_{*}(A b(k)) \rightarrow \Delta^{o p} S h v_{N
      i s}\left(S m_{k}\right)$ maps quasi-isomorphisms to simplicial 
      equivalences. If $C_{*}$  fibrant, it follows that $K\left(C_{*}\right)$
      is simplicially  Thus the two functors induce a pair of adjoint functors


      $$  C_{*}: \mathcal{H}{s}(k) \rightarrow D(\mathcal{A} b(k))  $$ ^c4a825




      $$  K: D(\mathrm{A} b(k)) \rightarrow \mathcal{H}_{s}(k)  $$ 


      As a consequence it is clear that   is an $\mathscr{A}^{1}$-local
      complex,  space $K\left(C_{*}\right)$ is an $\mathbb{A}^{1}$-local space.
      Thus $C_{}: \mathbf{H}_{s}(k) \rightarrow   maps $\mathcal{A}^{1}$-weak 
      to $\mathrm{A}^{1}$-quasi  and induces a functor

          \rightarrow D_{\mathbb{A}^{1}}(A b(k))  $$ 

      which in concrete terms, maps a space $\operatorname{X}$ to the
      $\mathbb{A}^{1}$-localization of $C_{*}(\mathcal{X})$. We denote the
      latter by $C_{*}^{A^{1}}(\mathbb{X})$ and call it the
      $\mathbb{A}^{1}$-chain  of $\mathcal{X}$.  functor
      $C_{*}^{\operatorname{A}^{1}}: \mathfrak{H}(k) \rightarrow  b(k))$ admits
      as right adjoint the functor $K^{\mathbb{A}^{1}}:
      D_{\mathbb{A}^{1}}(\mathcal{A} b(k)) \rightarrow \mathcal{H}(k)$ induced
      by $C_{*} \mapsto K\left(L_{\mathbb{A}^{1}}\left(C_{*}\right)\right)$. We 
      that for an $\mathbb{A}^{1}$-local complex  the space
      $K\left(C_{*}\right)$ is automatically $\mathbb{A}^{1}$-local and thus
      simplicially equivalent to the space 



      [SEP]


      processed_content: the pointed simplicial  where $M$ \in  b(k)$ and $n$
      is  integer. It is defined by applying  to the  complex $M[n]$, of the
      complex    degree 0 .
    sentences:
      - >-
        latex_in_original_or_summarized: \gamma_1=(m_1,N_1,a_1)


        [SEP]


        summarized: $\gamma_1=(m_1,N_1,a_1)$


        [SEP]


        main_note_content: \begin{notation}\label{Dep1}

        Let $\gamma_1=(m_1,N_1,a_1)$,  $\gamma_2=(m_2,N_2,a_2)$ be an ordered
        pair of 

        (generalized) monodromy data which  hypothesis (A). Assume that
        $m_1|m_2$.

        Set $d:=m_2/m_1$ and $r:=\gcd(m_1, a_1(N_1))$.  

        Then, \eqref{Dep}  to 

        $\epsilon=d(r-1)$ and $g_3=dg_1+g_2+\epsilon$.

        In particular, $\epsilon=0$ if and  if $r=1$. 

        \end{notation}



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: \langle u\rangle  G W(F)


        [SEP]


        summarized: $\langle u\rangle \in G W(F)$


        [SEP]


        main_note_content: Let us denote (in  characteristic) by $G W(F)$ the
        Grothendieck-Witt ring of isomorphism classes of non-degenerate
        symmetric bilinear forms [48]: this is the group completion of the
        commutative monoid of isomorphism classes of non-degenerate symmetric 
        forms for the direct sum.


        For $u \in F^{\times}$, we denote by $\langle u\rangle  G W(F)$ the form
        on  vector space of rank one  given by $F^{2}  F,(x,  \mapsto u x y .$
        By the results of loc.   \langle u\rangle$ generate $G  as a group. The
        following Lemma is (essentially) [48, Lemma (1.1) Chap. IV]:



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: $\varepsilon_{\infty}$


        [SEP]


        summarized: $\varepsilon_{\infty}$


        [SEP]


        main_note_content: To compute the genus of $X(\kappa)$, further
        specialize to $\Gamma_{1}=\Gamma$ and $\Gamma_{2}=$
        $\mathfrak{SL}_{2}(\mathbb{Z}) . Let $y_{2}=\mathrm{SL}_{2}(\mathbb{Z})
        i, y_{3}=\mathrm{SL}_{2}(\mathbb{Z}) \mu_{3}$, and
        $y_{\infty}=\mathfrak{SL}_{2}(\mathbb{Z}) \infty$ be the elliptic point
        of period 2, the elliptic point of period 3, and the cusp of $X(1)=$
        SL_{2}(\mathbb{Z}) \backslash \mathcal{H}^{*} .$ Let $\varepsilon_{2}$
        and $\varepsilon_{3}$ be the number of elliptic points of $\Gamma$ in
        $f^{-1}\left(y_{2}\right)$$ and of^{-1}\left(y_{3}\right)$, i.e., the
        number of elliptic points of period 2 and 3 in $X(\Gamma)$, and let
        $\varepsilon_{\infty}$ be the number of cusps of X(\Gamma) .$ Then
        recalling that $d=\operatorname{deg}(f)$ and letting $h=2$ or $h=3$, the
        formula for $d$ at the beginning of the section and then the formula for
        $e_{\pi_{1}(\tau)}$ at the nonelliptic points and the elliptic points
        over $\mathrm{SL}_{2}(\mathscr{Z}) y_{h}$ show that (Exercise 3.1.3(a))


        $$ d=\sum_{x \in f^{-1}\left(y_{h}\right)} e_{x}=h
        \cdot\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)+1
        \cdot \varepsilon_{h} $$


        and using these equalities twice gives

        $$ \sum_{x \in
        f^{-1}\left(y_{h}\right)}\left(e_{x}-1\right)=(h-1)\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)=\frac{h-1}{h}\left(d-\varepsilon_{h}\right)
        $$


        $68 \quad 3$ Dimension Formulas


        Also.

        $$ \sum_{x \in
        f^{-1}\left(y_{\infty}\right)}\left(e_{x}-1\right)=d-\varepsilon_{\infty}
        $$

        Since $X(1)$ has genus 0, the Riemann-Hurwitz formula now shows



        [SEP]


        processed_content: 
  - source_sentence: >-
      latex_in_original_or_summarized: $M_\ell(C \to S) = M_\ell(S)$


      [SEP]


      summarized: $M_\ell(C \to S) = M_\ell(S)$


      [SEP]


      main_note_content: If $C \to S$ is a relative smooth proper curve of genus
      $g \geq 1$ over an irreducible base, then the $\ell$-torsion of  relative
      Jacobian of $C$    information about the family.  Suppose $\ell$ is
      invertible on $S$, and let  \in S$ be a geometric point.  The fundamental
      group $\pi_1(S,s)$ acts

      linearly on the fiber $\operatorname{Pic}^0(C)[\ell]_{s} \cong
      (\mathbb{Z}/\ell)^{2g}$, 

      one can consider the mod-$\ell$  representation associated to $C$:


      $$\rho_{C \to S, \ell}:\pi_1(S,s) \rightarrow  \cong
      \operatorname{GL}_{2g}(\mathbb{Z}/\ell).$$ ^e59a92


      Let $M_\ell(C \to S)$, or simply $M_\ell(S)$, be the image

      of this representation. 

      If a primitive $\ell$th root of  is defined   $S$, then
      $\operatorname{Pic}^0(C)[\ell]_{s}$ is equipped

      with a skew-symmetric form $\langle \cdot,\cdot  and $M_\ell(C \to S)
      \subseteq

      \operatorname{Sp}(\operatorname{Pic}^0(C)[\ell]_s,\langle  \rangle) \cong

      \operatorname{Sp}_{2g}(\mathbb{Z}/\ell)$. 

      If C \to S$ is a sufficiently general family of curves, then

      $M_\ell(C \to S) \cong \operatorname{Sp}_{2g}(\mathbb{Z}/\ell)$
      \cite{delignemumford}.


      In this  we compute  when $S$ is an irreducible component of  moduli space
      of hyperelliptic or  trielliptic curves and $C \to S$ is the tautological
      curve.  The first result implies that there is no restriction on the
      monodromy group in the hyperelliptic case other than that it preserve the
      symplectic pairing. As  trielliptic curve is a $\mathbb{Z}/3$-cover of a
      genus zero curve,  the $\mathbb{Z}/3$-action constrains the monodromy
      group to lie in a unitary group associated to $\mathbb{Z}[\zeta_3]$. The
      second result implies that this is the only additional restriction in the
      trielliptic case.   


      \paragraph{Theorem \ref{thhe}}

      {\it 
       $\ell$ be an odd prime, and let $k$ be an  closed  in which $2\ell$ is invertible.
      For $g\geq 1$, $M_\ell(\mathcal{H}_g\otimes k)\cong

      \operatorname{Sp}_{2g}(\mathbb{Z}/\ell)$.}


      \paragraph{Theorem \ref{thtri}}

      {\it 

      Let $\ell\geq 5$ be prime, and let $k$ be   closed field in which $3\ell$
      is invertible.  

      $\mathcal{T}^{\bar\gamma}$ be any component  the moduli space 

      trielliptic curves of genus $g\geq  Then

      $M_\ell(\mathcal{T}^{\bar\gamma}\otimes k) \cong

      \operatorname{SG}_{(r_\gamma,s_\gamma)}(\mathbb{Z}/\ell)$ (where the
      latter is  unitary group defined

      in \eqref{eqdefsg}).}


      \medskip


      We also prove that the $\ell$-adic monodromy group  

      $\operatorname{Sp}_{2g}(\mathbb{Z}_\ell)$ in the situation of Theorem
      \ref{thhe} and is
      $\operatorname{SG}_{(r_\gamma,s_\gamma)}(\mathbb{Z}_\ell)$

      in the  of Theorem \ref{thtri}.


      Theorem \ref{thhe} is an unpublished result  J.K. Yu and has already been
      used multiple times in  literature.

      In \cite{chavdarov}, Chavdarov assumes this result  show that the
      numerator of the zeta function of

      the typical hyperelliptic curve over a finite field is irreducible.

      Kowalski also uses this result in a similar fashion \cite{kowalskisieve}.

      The first author used Theorem  to prove a conjecture of  and

      Washington on class  of quadratic function fields 


      There are other results in the literature which  similar to Theorem
      \ref{thhe}

      but which are not quite strong enough for the  above.

      A'Campo \cite[Th.\ 1]{acampo} computes the topological  of $\mathcal{H}_g
      \otimes  

      On the arithmetic side, the $\mathbb{Q}_\ell$,

      as opposed to $\mathbb{Z}_\ell$, monodromy of $\mathcal{H}_g$

      is computed in \cite[10.1.16]{katzsarnak}.  Combined with a theorem of

      Larsen on compatible families of representations \cite[3.17]{larsenmax},

      this shows that the mod-$\ell$  group 

      of $\mathcal{H}_g$ is maximal for a set of

      primes $\ell$ of density one (as opposed to for all $\ell \geq 3$). 


      There are results on $\mathbb{Q}_\ell$-monodromy  cyclic covers of the
      projective

      line of arbitrary degree, e.g.,  \cite[Sec. 7.9]{katztwisted}.  Also,

      in \cite[5.5]{fkv}, the authors prove that the projective representation

      $\mathbb{P} \rho_{C \to S,\ell}$  surjective for many

      families of cyclic covers  the projective line.  

      Due to a combinatorial  their theorem does not apply to $\mathcal{H}_g$

      and applies to at most one component of the moduli space of

      trielliptic curves for each  see Remark \ref{Rfkv}.   

      See also work of Zarhin, e.g., \cite{zarhincyclic}.

       an application, for all $p \geq   show using 
        exist hyperelliptic and trielliptic curves
      of every genus  signature) defined over $\bar{\mathbb{F}}_p$ whose
      Jacobians  absolutely simple.

      In contrast with the applications above, 

      these corollaries do not use the full strength of our results.

      Related  can be found in \cite{HZhu}   authors produce curves with
      absolutely  

      Jacobians over $\mathbb{F}_p$ under the  $g \leq 3$.


      \paragraph{Corollary \ref{Chypabsirr}} 

      {\it Let p \not = 2$  let   Then there exists a

      smooth hyperelliptic curve of genus $g$  over $\bar{\mathbb{F}}_p$ whose
      Jacobian is

      absolutely simple.}


      \paragraph{Corollary \ref{Ctriabsirr}}

      {\it Let $p \not = 3$.   $g  3$ and   be a trielliptic signature for $g$
       \ref{Dtrisig}).  
      Then there exists a smooth trielliptic curve defined over  with genus $g$
      and signature $(r,s)$

      whose Jacobian is  simple.}


      \medskip 


      Our proofs proceed by induction on the genus.

      The base cases for the  family

      rely on the fact that every curve of genus $g=1,2$ is hyperelliptic;

      the claim on monodromy follows from the analogous assertion  the monodromy
      of $\mathcal{M}_g$.

      The  case  for the trielliptic family involves a comparison with

      a Shimura variety of PEL type, namely, the  modular variety.   

      An important step is to show  the monodromy group does not change in the
      base cases when  

      one adds a labeling of the ramification points to the moduli problem.


      The  step is similar to the method used in \cite{ekedahlmono} 

      and uses the fact that families of smooth hyperelliptic (trielliptic)

      curves degenerate to trees of  (trielliptic) curves of lower genus.

      The combinatorics of admissible degenerations require us 

      to compute the monodromy exactly for the inductive step rather than up to
      isomorphism.  


      The inductive strategy using admissible degeneration developed here

      should work for other  of curves, especially for more general

      cyclic covers of  projective   The difficulty is in  direct

      calculation of monodromy for the necessary base cases.


      We thank C.-L.\ Chai, R.\ Hain, A.J.\ de Jong, E. Kani, and J. Kass.



      [SEP]


      processed_content: the image of the mod-$\ell$  representation $\rho_{C
      \to  \ell}$ of the relative smooth   $C \to S$ of genus $g \geq 1$ over an
      irreducible base.
    sentences:
      - >-
        latex_in_original_or_summarized: X^{\vee}


        [SEP]


        summarized: 


        [SEP]


        main_note_content: Let  be  principally polarized abelian scheme of

        relative dimension $g$ over an irreducible base.  


        If $\ell$ is a

        rational  invertible on $S$, then the $\ell$-torsion $X[\ell]$ of

        $\ell$ is an \'etale cover of  with geometric fiber isomorphic to

        $(\mathbb{Z}/\ell)^{2g}$.  

        Let $s$ be a geometric point of $S$.  The  group $\pi_1(S,s)$ 

        linearly on the $\ell$-torsion of $X$.


        This yields a representation


        \rho_{X \to S, s,\ell}: \pi_1(S,s) \rightarrow
        \operatorname{Aut}(X[\ell]_s) \cong
        \operatorname{GL}_{2g}(\mathbb{Z}/\ell).$$ ^dbec50


        The cover $X[\ell] \to S$ both determines and is determined by 
        representation  \to S, s,\ell}$. 


        The image of  \to S,  is the mod-$\ell$ monodromy of $X \to S$ and we
        denote it by $M_\ell(X \to S, s), or by $M_\ell(S,s)$ if the choice of

        abelian scheme is clear.


        The isomorphism class of the

        $M_\ell(S,s)$ is independent of the choice of base point $s$,$ and we
        denote it  $M_\ell(S)$.


        Let $X^{\vee}$ be the dual abelian scheme.  There  a  pairing $X[\ell]
        \times X^{\vee}[\ell] \to \boldsymbol{\mu}_{\ell,S}$, where  :=
        \boldsymbol{\mu}_\ell \times S$ is  group scheme of $\ell\th$  of unity.

         polarization  induces an isomorphism $X \to X^{\vee}$, and
        thus a skew-symmetric pairing $X[\ell] \times X[\ell] \to
        \boldsymbol{\mu}_{\ell,S}$.

        Because the polarization is defined globally, the image of monodromy

        $M_\ell(X \to S, s)$ is contained in the group of symplectic

        similitudes of $(X[\ell]_s,

        \langle  \rangle_\phi)$, which is isomorphic to

        $\operatorname{GSp}_{2g}(\mathbb{Z}/\ell)$.  Moreover, if a primitive
        $\ell^{{\rm  root of

        unity  globally on $S$,  $\pi_1(S,s)$ acts trivially on

        $\boldsymbol{\mu}_{\ell,S}$ and $M_\ell(X \to S,s) \subseteq 
        \cdot,\cdot \rangle_\phi) \cong \operatorname{Sp}_{2g}(\mathbb{Z}/\ell).


        Similarly, the  $X[\ell^n]  S$ defines a monodromy representation 

        with  in $\operatorname{Aut}(X[\ell^n]_s)
        \cong\operatorname{GL}_{2g}(\mathbb{Z}/\ell^n)$. Taking
         inverse limit over all n, we obtain a continuous representation on the Tate module of $X$, 

        $$\rho_{X \to S,  s}: \pi_1(S,s) \rightarrow \varprojlim_n
        \operatorname{Aut}(X[\ell^n]_s) \cong
        \operatorname{GL}_{2g}(\mathbb{Z}_\ell).$$


        ^f6240a


        We denote the image of this representation by $M_{\mathbb{Z}_\ell}(X
        \to   and its isomorphism class by $M_{\mathbb{Z}_\ell}(X \to S)$ or
        $M_{\mathbb{Z}_\ell}(S)$.  


        Again, there is an  

        M_{\mathbb{Z}_\ell}(X \to S) \subseteq   


        If

        $F$ is a field,  let $F_{\ell^\infty} =
        F(\boldsymbol{\mu}_{\ell^\infty}(\bar F))$. If $S$ is an  then 


        $$M_{\mathbb{Z}_\ell}(X \to S, s)/  F} \to S \otimes{\bar F}, s) \cong 
        ^dd1bab


        Finally, let $M_{\mathbb{Q}_\ell}(X\to$ S, s)$ be the Zariski closure
        of  \to S, s)$ in $\operatorname{GL}_{2g}(\mathbb{Q}_\ell)$.


        Now suppose that \psi:C \to S$ is a relative proper semi-stable curve.


        Let $\operatorname{Pic}^0(C) := \operatorname{Pic}^0_{C/S}$ be the
        neutral component of the relative Picard  of $C$ over $S$.  Since $C/S$ 
        semi-stable, $\operatorname{Pic}^0(C)$ is a semiabelian scheme
        [[bosch_lutkebohmert_raynaud_nm_Theorem
        1_page_259|\cite[9.4.1]{blr}]].  


        Suppose that there is  least one geometric point  such  the fiber
        $\operatorname{Pic}^0(C_s)$ is an abelian variety.  (This is true[^5] if
        some $C_s$ is a tree  smooth curves.)  Then there is a nonempty open
        subscheme $S^*$ of $S$ such that $\operatorname{Pic}^0(C|_{S^*})$  an
        abelian scheme over $S^*$.  


        [^5]: cf. Abelian varieties isogenous to a Jacobian by CL Chai, which
        talks about a tree of smooth curves having a Jacobian that is an abelian
        variety that is actually the product of the Jacobians of  irreducible 


        We define the mod-$\ell$ and $\mathbb{Z}_\ell$ monodromy representations
        of $C$ to be those of $\operatorname{Pic}^0(C|_{S^*}) \to S^*$.


        (Alternatively,  may  constructed as the restrictions of
        $R^1\psi_*\boldsymbol{\mu}_{\ell,S}$ and
        $R^1\psi_*\boldsymbol{\mu}_{\ell^\infty,S}$   largest subscheme of $S$
        on which these sheaves are unramified.)


        Thus, $M_\ell(C \to  s) = M_\ell(\operatorname{Pic}^0(C|_{S^*}) \to S^*,
        s)$, and we denote this again by M_\ell(S,s) if the curve is clear and
        by   the base point is suppressed. ^37a851


        The moduli spaces $\overline{\mathcal{M}}_G$ and
        $\widetilde{\mathcal{M}}_G$ are Deligne-Mumford stacks, and we employ a
        similar formalism for \'etale covers of stacks \cite{noohi}.  

         $\mathcal{S}$  a connected Deligne-Mumford  The category of Galois \'etale covers of $\mathcal{S}$ is a Galois category  the sense of Grothendieck, and thus there is  \'etale fundamental
         of   More precisely, let $s\in \mathcal{S}$ be a geometric
         

        Then there is a group $\pi_1(\mathcal{S},s)$ and an equivalence of 
        between finite $\pi_1(\mathcal{S},s)$-sets$ and finite \'etale Galois
        covers of $\mathcal{S}$. 


        If $\mathcal{S}$ has a coarse moduli space $S_{\mathrm{mod}}$, then
        $\pi_1(\mathcal{S},s)$ is the extension of $\pi_1(S_{\mathrm{mod}},s)$
        by a group which encodes  extra automorphism structure on the moduli
        space S_{\mathrm{mod}} [[noohi_fgas_thm 7.11|\cite[7.11]{noohi}]]. 


        If $X \to \mathcal{S}$ is a family of abelian varieties, we again let
        $M_\ell(X\to  be the  of $\pi_1(\mathcal{S}, s)$ in    ^758472


        Let $\mathcal{C}^\gamma$ be the tautological labeled curve over
          By the mod-$\ell$ or $\mathbb{Z}_\ell$ monodromy of
        $\widetilde{\mathcal{M}}_G^\gamma$ we mean  of $C^\gamma \to
        \widetilde{\mathcal{M}}_G^\gamma$.  [^6]


        [^6]: #_meta/TODO/question  that  that $C^\gamma \to
        \widetilde{\mathcal{M}}_G^\gamma$ gets to have  relative Picard group of
        its own? How does that make sense when
        $\widetilde{\mathcal{M}}_G^\gamma$ a is not a scheme?



        [SEP]


        processed_content: the dual abelian scheme of the abelian scheme $X/S$.
        There is a canonical pairing $X[\ell] \times X^{\vee}[\ell] \to
        \boldsymbol{\mu}_{\ell,S}$, where $\boldsymbol{\mu}_{\ell,S} :=
        \boldsymbol{\mu}_\ell \times S$ is  group scheme of $\ell\th$ roots of
        unity.
      - >-
        latex_in_original_or_summarized: \mathbb{Th}_f \phi


        [SEP]


        summarized: $_f 


        [SEP]


        main_note_content: It  be convenient to work in  stable  category
        $\mathcal{Spt}(B)$$ of $P^1$-spectra over $B$, where $B$ is a finite
        type scheme over   frequently, $B=L$, where $L$ is a field extension of
        $k$. 


        The notation   be   the morphisms. $(B)$ is a  monoidal category under 
        smash product $\wedge$, with  $1_B$, denoting the sphere spectrum. 


        Any pointed simplicial presheaf $X$ determines  corresponding
        $\mathbb{P}^1$-suspension spectrum $\Sigma^{\infty} X$. 


        For  $\Sigma^{} Spec L_+  1_L$ and $\Sigma^{\infty} (^1_L)^{ n}$ is a
        suspension   When working in $\operatorname{Spt}(L)$, we will identify
        pointed  $X$ with their  spectra $\Sigma^{} X$, omitting the
        $\Sigma^{\infty}$.  ^1246cf


        We will use  six operations $(p^*,  p_!, p^!, \wedge,  given by Ayoub  
        developed by Ayoub, and Cisinksi-Déglise
        \cite{CD-triang_cat_mixed_motives}. There  a nice summary in \cite[\S  


        We use  following associated notation and constructions. 


        When   \to Y$ is smooth, $p^*$ admits a left  denoted p_{\sharp},
        induced by  forgetful functor  \to \operatorname{Sm}_{Y}$ from smooth 
        over $X$  smooth schemes over $Y$.  


        For $p:X\to \operatorname{Spec} L$ a smooth scheme over $L$, the
        suspension spectrum of $X$ is canonically identified with  as an object
        of $\operatorname{Spt}(L)$. 


        For a vector bundle $p:E \to X$, the Thom spectrum  Th(E)$ (or just  is
        canonically identified  $s^*p^! 1_X$[^2]. 

         Perhaps $s$  a fixed section of $p$.$

        Let $\Sigma^E$ equal $\Sigma^E = s^* p^!: (X) \to (X)$. Let $e:  \to X
        and $d: D  Y$ be two vector bundles over smooth  $p: X   L$ and $q:Y 
        \operatorname{Spec} L$.  ^123eb1


        Given a map $f: Y \to X$ and a monomorphism $\phi: D \hookrightarrow
        f^*  there is an associated natural transformation  ^0f1ba8


        $$_f \phi :   q^!  p_! \Sigma^E p^!$$


        of endofunctors on $(L)$ inducing the map on Thom spectra. The    \phi$
        is defined as  composition  ^0b33ea


        \begin{equation}\operatorname{Th}_f  =  {1_{f^*E}} \circ 
        .\end{equation}$$


        The natural  $\operatorname{Th}_{1_Y}  is the composition  t^*d^!  t^*
        ^!e^!\to t^* \phi^* e^! \cong  e^!,$$ where $t:   D$ denotes the zero
        section of $D$, $s: X \to E$ denotes the zero   $E$, and the middle
        arrow is  by the exchange transformation $\phi^! \cong   \to 1^! \phi^*
        \cong    natural transformation $\operatorname{Th}_f   the composition 


        $$\begin{equation}\operatorname{Th}_f 1: q_! \Sigma^{f^* E} q^! \cong
        p_!   f^! p^! \cong p_!^E f_! f^! p^! {\rightarrow} p_! ^E
        p^!,\end{equation}$$


        where $: f_! f^! \to 1$ denotes the counit.



        [SEP]


        processed_content: 
      - "latex_in_original_or_summarized: j_0: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{A}^1 / \n\n[SEP]\n\nsummarized: $j_0$\n\n[SEP]\n\nmain_note_content: In order to explain the simple underlying ideas, we will admit four statements, and explain how to deduce from them equidistribution theorems about the sums $S(M, k, \\chi)$ as $\\chi$ varies.\n\n(1) If $M$ and $N$ are both perverse on $\\mathbb{G}_m / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfy $\\mathcal{P}$, then their middle convolution $M _{\\text {mid }} N$ is perverse on $\\mathbb{G}_m / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfies $\\mathcal{P}$.\n\n(2) With the operation of middle convolution as the \"tensor product,\" the skyscraper sheaf $\\delta_1$ as the \"identity object,\" and $[x \\mapsto 1 / x]^{\\star} D M$ as the \"dual\" $M^{\\vee}$ of $M$ ( $D M$ denoting the Verdier dual of $M$ ), the category of perverse sheaves on $\\mathbb{G}_m / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) satisfying $\\mathcal{P}$ is a neutral Tannakian category, in which the \"dimension\" of an object $M$ is its Euler characteristic $_c\\left(_m / , M\\right)$.\n\n(3) Denoting by\n\n$$  j_0: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{A}^1 / \\bar{k}  $$ ^212b11\n\n1. OVERVIEW\n\n11\n\nthe inclusion, the construction\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)  $$ ^425e70\n\nis a fibre functor on the Tannakian category of perverse sheaves on $\\mathbb{G}_m / \\bar{k}$ satisfying $\\mathcal{P}$ (and hence also a fibre functor on the subcategory of perverse sheaves on $\\mathbb{G}_m / k$ satisfying $\\mathcal{P}$ ). For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)$ vanishes.\n\n(4) For any finite extension field $E / k$, and any multiplicative character $\\rho$ of $E^{\\times}$, the construction\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes \\mathcal{L}_\\rho\\right)\\right)  $$ ^f07855\n\nis also such a fibre functor. For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes \\mathcal{L}_\\rho\\right))$ vanishes.\n\nNow we make use of these four statements. Take for $N$ a perverse sheaf on $\\mathbb{G}_m / k$ which is $\\iota$-pure of weight zero and which satisfies $\\mathcal{P}$. Denote by $\\langle N\\rangle_{ {arith }}$ the full subcategory of all perverse sheaves on $\\mathbb{G}_m / k$ consisting of all subquotients of all \"tensor products\" of copies of $N$ and its dual $N^{\\vee}$. Similarly, denote by $\\langle N\\rangle_{ {geom }}$ the full subcategory of all perverse sheaves on $\\mathbb{G}_m / \\bar{k}$ consisting of all subquotients, in this larger category, of all \"tensor products\" of copies of $N$ and its dual $N^{\\vee}$. With respect to a choice $\\omega$ of fibre functor, the category $\\langle N\\rangle_{\\text {arith }}$ becomes[^5] the category of finite-dimensional $\\overline{\\mathbb{Q}}_{\\ell}$-representations of an algebraic group $G_{a r i t h, N, \\omega} \\subset G L(\\omega(N))=G L('\\operatorname{dim}' N)$, with $N$ itself corresponding to the given \" dim\" $N$-dimensional representation. Concretely, $G_{arith,N,  \\omega} \\subset G L(\\omega(N))$ is the subgroup consisting of those automorphisms $\\gamma$ of $\\omega(N)$ with the property that $\\gamma$, acting on $\\omega(M)$, for $M$ any tensor construction on $\\omega(N)$ and its dual, maps to itself every vector space subquotient of the form $$ (any subquotient of $$ ).\n\n[^5]: Recall that associated to a neutral Tannakian category $(C, \\omega)$ is an affine algebraic group $G$ (called the Tannakian group or Tannakian dual of the neutral Tannakian category) and the fiber functor $\\omega$ induces an equivalence $C \\to \\operatorname{Rep}(G)$ of tensor categories, so $G_{\\text{arith}, N, \\omega}$ is being defined as this algebraic group for $\\langle N \\rangle_{\\text{arith}}$ under the choice of $\\omega$.\n\n^370dc9\n\nAnd the category $\\langle N_{\\text {geom }}$ becomes the category of finite-dimensional $\\overline{\\mathbf{Q}}_\\ell$-representations of a possibly smaller algebraic group $G_{\\text{geom}, N, \\omega} \\subset G_{\\text {arith }, N, \\omega}$ (smaller because there are more subobjects to be respected).\n\nFor $\\rho$ a multiplicative character of a finite extension field $E / k$, we have the fibre functor $\\omega_\\rho$ defined by\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{!}\\left(M  \\mathcal{L}_\\rho\\right)\\right)  $$\n\non $\\langle N\\rangle_{\\text {arith }}$. The Frobenius $\\operatorname{Frob}_E$ is an automorphism of this fibre functor, so defines an element $\\operatorname{Frob}_{E, \\rho}$ in the group $G_{a r i t h, N, _\\rho}$ defined[^5] by this choice of fibre functor. But one knows that the groups $G_{\\text {arith }, N, \\omega}$ (respectively the groups $G_{g e o m, N, \\omega}$ ) defined by different fibre functors are pairwise isomorphic, by a system of isomorphisms which are unique up to inner automorphism of source (or target). Fix one choice, say\n\n12\n\n1. OVERVIEW\n\n$\\omega_0$, of fibre functor, and define\n\n$$  G_{\\text {arith }, N}:=G_{\\text {arith }, N, \\omega_0}, \\quad G_{\\text {geom }, N}:=G_{\\text {geom }, N, \\omega_0} .  $$\n\nThen the element $Frob_{E, \\rho}$ in the group $G_{\\text {arith }, N, \\omega_\\rho}$ still makes sense as a conjugacy class in the group $G_{\\text {arith }, N}$.\n\nLet us say that a multiplicative character $\\rho$ of some finite extension field $E / k$ is good for $N$ if, for\n\n$$  j: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{P}^1 / \\bar{k}  $$\n\nthe inclusion, the canonical \"forget supports\" map\n\n$$  R j_1\\left(N \\otimes L_\\right)  R j_{\\star}\\left(N \\otimes _\\rho\\right)  $$\n\nis an isomorphism. If $\\rho$ is good for $N$, then the natural \"forget supports\" maps\n\n$$  H_c^0\\left(\\mathbb{G}_m / , N \\otimes \\mathcal{L}_\\rho\\right)=H_c^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}(N \\otimes \\mathcal{L}_\\rho)\\right) \\rightarrow H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N \\otimes L_\\rho\\right)\\right),  $$\n\ntogether with the restriction map\n\n$$  H^0\\left(^1 / \\bar{k}, j_{0!}(N \\otimes \\mathcal{L}_\\rho\\right))  H^0\\left(\\mathbb{G}_m , N  _\\rho\\right),  $$\n\nare all isomorphisms. Moreover, as $N$ is $$-pure of weight zero, each of these groups is $t$-pure of weight zero.\n\nConversely, if the group $\\omega_\\rho(N):=H^0(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N  \\mathcal{L}_\\rho\\right))$ is $\\iota$-pure of weight zero, then $\\rho$ is good for $N$, and we have a \"forget supports\" isomorphism\n\n$$  H_c^0\\left(\\mathbb{G}_m / \\bar{k}, N \\otimes \\mathcal{L}_\\rho\\right)  _\\rho(N):=H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N \\otimes \\mathcal{L}_\\rho\\right)) .  $$\n\nThis criterion, that $\\rho$ is good for $N$ if and only if $\\omega_\\rho(N)$ is $\\iota$-pure of weight zero, shows that if $\\rho$ is good for $N$, then $\\rho$ is good for every object $M$ in the Tannakian category $\\langle N\\rangle_{\\text {arith }}$ generated by $N$, and hence that for any such $M$, we have an isomorphism\n\n$$  H_c^0\\left(\\mathbb{G}_m / \\bar{k}, M \\otimes \\mathcal{L}_\\rho\\right) \\cong \\omega_\\rho(M) \\text {. }  $$\n\nRecall that geometrically, i.e., on $\\mathbb{G}_m / \\bar{k}$, we may view the various Kummer sheaves $\\mathcal{L}_\\rho$ coming from multiplicative characters $\\rho$ of finite subfields $E \\subset \\bar{k}$ as being the characters of finite order of the tame inertia group $I(0)^{\\text {tame }}$ at 0 , or of the tame inertia group $I()^{ {tame }}$ at $\\infty$, or of the tame fundamental group $_1^{\\text {tame }}\\left(\\mathbb{G}_m / \\bar{k}\\right)$. In this identification, given a character $\\rho$ of a finite extension $E / k$ and a further finite extension $L / E$, the pair $(E, \\rho)$ and the pair ( $L,  \\circ N o r m_{L / E}$ ) give rise to the same Kummer sheaf on $\\mathbb{G}_m / \\bar{k}$. Up to this identification of $(E, \\rho)$ with $\\left(L, \\rho \\circ N o r m_{L / E}\\right)$, there are, for a given $N$, at most finitely many $\\rho$ which fail to be good for $N$ (simply because there are at most finitely many tame characters which occur in the local monodromies of $N$ at\n\n1. OVERVIEW\n\n13\n\neither 0 or $$, and we need only avoid their inverses). Indeed, if we denote by $r k(N)$ the generic rank of $N$, there are at most $2 r k(N)$ bad $\\rho$ for $N$.\n\nRecall [BBD, 5.3.8] that a perverse $N$ which is $\\iota$-pure of weight zero is geometrically semisimple. View $N$ as a faithful representation of $G_{\\text {geom,N }}$. Then $G_{\\text {geom,N }}$ has a faithful, completely reducible representation[^7], hence[^6] $G_{\\text {geom,N }}$ is a reductive group. ^260249\n\n[^7]: Apparently, \"completely reducible\" is a synonym for \"semisimple\", cf. https://math.stackexchange.com/questions/334178/definition-completely-reducible-group-representation\n\n[^6]: Milne's algebraic groups, Theorem 22.42 shows that the following are equivalent given a connected algebraic group $G$ over a field of characteristic $0$:\n\t1. $G$ is reductive\n\t2. every finite-dimensional representation of $G$ is semisimple\n\t3. some faithful finite dimensional representation of $G$ is semisimple.\n\tSee also the proof of forey_fresan_kowalski_aftff_3.18 Corollary, which uses this theorem.\n\nLet us now suppose further that $N$ is, in addition, arithmetically semisimple (e.g., arithmetically irreducible). Then $G_{a r i t h, N}$ is also a reductive group. Choose a maximal compact subgroup $K$ of the reductive Lie group $G_{\\text {arith }, N}(\\mathbb{C})$ (where we use $\\iota$ to view $G_{\\text {arith }, N}$ as an algebraic group over $\\mathbb{C}$ ). For each finite extension field $E / k$ and each character $\\rho$ of $E^{\\times}$ which is good for $N$, we obtain a Frobenius conjugacy class $_{E, \\rho}$ in $K$ as follows. Because $\\rho$ is good for $N$, $\\operatorname{Frob}_E$ has, via $\\iota$, unitary eigenvalues acting on $\\omega_\\rho(N)$, i.e., the conjugacy class $\\operatorname{Frob}_{E, \\rho}$ in $G_{\\text {arith }, N}$ has unitary eigenvalues when viewed in the ambient $G L\\left(\\omega_0(N)\\right)$. Therefore its semisimplification in the sense of the Jordan decomposition, $\\operatorname{Frob}_{E, \\rho}^{s s}$, is a semisimple class in $G_{\\text {arith }, N}()$ with unitary eigenvalues. Therefore any element in the class $\\operatorname{Frob}_{E, \\rho}^{s s}$ lies in a compact subgroup of $G_{arith , N}(\\mathbb{C})$ (e.g., in the closure of the subgroup it generates), and hence lies in a maximal compact subgroup of $G_{\\text {arith,N }}()$. All such are $G_{\\text {arith }, N}(\\mathbb{C})$-conjugate, so we conclude that every element in the class $F r o b_{E, \\rho}^{s s}$ is conjugate to an element of $K$. We claim that this element is in turn well-defined in $K$ up to $K$-conjugacy, so gives us a $K$-conjugacy class $\\theta_{E, \\rho}$. To show that $\\theta_{E, \\rho}$ is well-defined up to $K$-conjugacy, it suffices, by Peter-Weyl, to specify its trace in every finite-dimensional, continuous, unitary representation $\\Lambda_K$ of $K$. By Weyl's unitarian trick, every $\\Lambda_K$ of $K$ is the restriction to $K$ of a unique finite-dimensional representation $\\Lambda$ of the $\\mathbb{C}$-group $G_{\\text {arith }, N} / \\mathbb{C}$. Thus for every $\\Lambda_K$, we have the identity\n\n$\\operatorname{Trace}\\left(\\Lambda_K\\left(\\theta_{E, \\rho}\\right)\\right)=\\left(\\Lambda\\left(\\operatorname{Frob} _{E, }^{s s})\\right)=\\operatorname{Trace}\\left(\\Lambda\\left(\\operatorname{Frob} \\theta_{E, \\rho}\\right)\\right)$. ^d42132\n\nWith these preliminaries out of the way, we can state the main theorem.\n\n\n[SEP]\n\nprocessed_content: the inclusion \n\n$$  j_0: \\mathbb{G}_m / \\bar{k}  \\mathbb{A}^1 / \\bar{k}  $$\n\nThe construction\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)  $$\n\nis a fibre functor on the Tannakian category of perverse sheaves on $\\mathbb{G}_m / $ satisfying $P$ (and hence also a fibre functor on the subcategory of perverse sheaves on $\\mathbb{G}_m / k$ satisfying $$ ). For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)$ vanishes."
  - source_sentence: >-
      latex_in_original_or_summarized: F^i


      [SEP]


      summarized: $F^i$


      [SEP]


      main_note_content: no 3 - Examples of   and eyact functors -
        Let $A$ be a  category, $B$ an abelian  An additive functor $F: A \rightarrow B  called a cohomological functor



      CD.


      - 21 


      if for any distinguished  ( $\mathrm{X}, \mathrm{Y},  , \mathrm{v}, w$ )
      the sequence


      $$$     \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z)    $$


      is exact.


      The functor $F_0 T^i$ will often be denoted $F^i$. By virtue  $l^{}$ axiom
      (TR2)  triangulated categories, we have the unlimited exact sequence:


      $$   \rightarrow F^i(X) \rightarrow F^i(Y) \rightarrow F^ i(Z)
      \rightarrow  \rightarrow   $$ ^a701ca



      [SEP]


      processed_content: the functor  T^i$  $F: A B$ is a cohomological functor
      from a triangulated caOtegory to an  category. We have the exact sequence


      $$  \cdots  F^i(X)    F^ i(Z)  F^{i+1}(X) \rightarrow \cdots  $$
    sentences:
      - >-
        latex_in_original_or_summarized: P^*\left(X^*, Y^*\right)=


        [SEP]


        summarized: $P^*\left(X^*,$ Y^*)


        [SEP]


        main_note_content: 3.3. Example of  exact  Let A, A', A" be three
        additive categories,


        $$  P: A \times A^{\prime}  A^{\prime \prime}  $$


        a bilinear functor  additive with respect to each of the arguments


        274


        - 12 -


        C.D.

         We then deduce the bilinear 

        $$  P^*:  \times C\left(A^{}) \rightarrow C\left(A^{\prime
        \prime}\right)  $$


        as follows:


        Let X^ be an object of $C(A)$ and $Y^\bullet$ be an object of 
        $P\left(X^\bullet, Y^\bullet\righ.)$ is  doublge complex  $A^{ }$. We
        then set: $P^*(X^\bullet, Y^\bullet\right)=$ simple complex associated
        with $\mathbf{P}\left(\mathcal{X}^*, 


        Let $f$ be a morphism of  (resp. $C(A^{}\right)$ ) homotopic to zero and
        $Z^*$ be an object   (resp. $C(A)$ ). The morphism $P^*(f, Z^*\right)$
        (resp.  f\right)$ ) is then homotopic  zero. We  that  uniquely defines
        a functor:


        $$  P^*: K(A) \times K(A^{}\right)  K(A^{ \prime}\right)  $$

         is  exact bifunctor.

        In particular, let $A$ be  additive category.   take   the functor:


        $$        & A^{\circ} \times A  A  \\    & (X, Y) \leadsto  { Hom }(X,
        Y)        $$


        We then obtain by the previous construction a functor


        $\mathscr{Hom}^{\circ}: \text{K}()^{}  \mathrm{K}(A) \longrightarrow
        \mathrm{K}(\mathrm{Ab})$


        which, composed with $l_{\mathbb{e functor }}  \mathrm{K}(\mathbb{Ab})
        \rightarrow \mathrm{Ab},  gives back the fonotor $\mathscr{Hom}_{K(A)}$.


        275



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: \pi_1(U)=\pi_1(U,x)


        [SEP]


        summarized: $\pi_1(U)=\pi_1(U,x)$


        [SEP]


        main_note_content: We fix a dense affine open $U\subset C$[^2] and an
        algebraic closure $k\to\overline{k}$.  We fix a geometric point $x\in
        U$, that is, an embedding $\mathrm{Spec}(L)\to U$ for $L/k$ an
        algebraically-closed extension.  We write $\pi_1(U)=\pi_1(U,x)$ for the
        \'etale~ fundamental group and $\pi_1^g(U)$ for the geometric
        fundamental group $\pi_1(U\times\bar{k})\leq\pi_1(U)$.  We fix a set
        $\Lambda$ of almost all odd primes $\ell$ which are invertible in $k$. 
        For each $\ell\in\Lambda$, we fix a lisse flat $\mathbb{Z}_\ell$-sheaf
        $\mathcal{L}_\ell\to U$ and let
        $\rho_\ell:\pi_1(U)\to\mathrm{GL}_n({\mathbb{Z}_\ell})$ denote the
        corresponding representation.  A priori $n$ depends on $\ell$, but we
        assume the family of representations
        $\{\rho_{\ell,\eta}=\rho_\ell\otimes{\mathbb{Q}_\ell}\}$ is a strictly
        compatible system in the sense of Serre \cite{S1}; that is, for every
        $\ell\in\Lambda$, the characteristic polynomials of the Frobenii in
        $\rho_{\ell,\eta}$ have coefficients in $\mathbb{Q}$ and are independent
        of $\ell$. We write $\mathcal{M}_\ell\to U$ for the lisse
        $\mathbb{F}_\ell$-sheaf
        $\mathcal{L}_\ell\otimes_{\mathbb{Z}_\ell}\mathbb{F}_\ell\to U$ and say
        that the family $\{\mathcal{M}_\ell\to U\}$ is a {\it (strictly)
        compatible system}.


        [^2]:  ---

        detect_regex: []

        latex_in_original: ["C/k"]

        tags: [_meta/notation_note_named]

        ---

        $C/k$ denotes a proper smooth geometrically connected curve over the
        field $k$.


        For each $\ell$, we write $G_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$
        for the image $(\rho_\ell\otimes\mathbb{F}_\ell)(\pi_1(U))$ and
        $G_\ell^g\leq G_\ell^a$ for the image of $\pi_1^g(U)$.  A priori
        $G_\ell^a$ may be any subgroup of $\mathrm{GL}_n(\mathbb{F}_\ell)$, but
        if we consider additional arithmetic information, then we may be able to
        deduce that $G_\ell^a$ lies in a proper subgroup
        $\Gamma_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$.  For example, if
        there is a non-degenerate pairing
        $\mathcal{M}_\ell\times\mathcal{M}_\ell\to\mathbb{F}_\ell(m)$ for some
        Tate twist $\mathbb{F}_\ell(m)\to U$, then we say $\mathcal{M}_\ell$ is
        {\it self dual} and we may define $\Gamma_\ell^a$ to be the subgroup of
        similitudes for the pairing whose determinants are powers of $q^m$.  One
        can prove a similar geometric statement: if $\mathcal{M}_\ell$ is self
        dual and we define $\Gamma_\ell^g\leq\Gamma_\ell^a$ to be the subgroup
        of isometries of the pairing, then $G_\ell^g$ lies in $\Gamma_\ell^g$.
        ^760aee



        [SEP]


        processed_content: the etale fundamental group of the dense affine open
        $U \subset C$
      - >-
        latex_in_original_or_summarized: $v_\mathfrak{p}$


        [SEP]


        summarized: $v_\mathfrak{p}$


        [SEP]


        main_note_content: Let $\mathfrak{p}$ be a nonzero prime ideal in a
        Dedekind domain $A$ with fraction field $K$, let $I$ be a fractional
        ideal of $A$, and let $\pi$ be a uniformizer for the discrete valuation
        ring $A_{p}$[^3]. 


        [^3]: Note that $A_\mathfrak{p}$ is a DVR


        The localization $I_{p}$ is a fractional ideal of $A_{\mathrm{p}}$,
        hence of the form $\left(\pi^{n}\right)$ for some $n \in \mathbb{Z}$
        that does not depend on the choice of $\pi$ (note that $n$ may be
        negative). 


        We now extend the valuation $v_{\mathfrak{p}}: K \rightarrow \mathbb{Z}
        \cup\{\infty\}$ to fractional ideals by defining
        $v_{\mathfrak{p}}(I):=n$ and $v_{\mathfrak{p}}((0)):=\infty ;$ for any
        $x \in K$ we have $v_{p}((x))=v_{p}(x)$


        The map $v_{\mathrm{p}}: \mathcal{I}_{A} \rightarrow \mathbb{Z}$ is a
        group homomorphism: if $I_{p}=\left(\pi^{m}\right)$ and
        $J_{\mathrm{p}}=\left(\pi^{n}\right)$ then

        $$ (I J)_{p}=I_{p}
        J_{p}=\left(\pi^{m}\right)\left(\pi^{n}\right)=\left(\pi^{m+n}\right) $$

        so $v_{p}(I J)=m+n=v_{p}(I)+v_{p}(J) .$ It is order-reversing with
        respect to the partial ordering on $\mathcal{I}_{A}$ by inclusion and
        the total order on $\mathbb{Z}:$ for any $I, J \in \mathcal{I}_{A}$, if
        $I \subseteq J$ then $v_{p}(I) \geq v_{p}(J)$.



        [SEP]


        processed_content: the (discrete) valuation on the fraction field $K$ of
        a Dedekind domain $A$ where $\mathfrak{p}$ is a prime of $A$. In
        particular, $v_\mathfrak{p}$ is a map $K \to \mathbb{Z} \cup
        \{\infty\}$.


        $v_\mathfrak{p}$ can be extended to a group homomorphism $\mathcal{I}_A
        \to \mathbb{Z}$ on the ideal group.
  - source_sentence: >
      latex_in_original_or_summarized: $P(E)$


      [SEP]


      summarized: P(E)


      [SEP]


      main_note_content: A vector bundle $E$ on $X$ is the cone associated to
      the graded sheaf $\mathrm{Sym}\lRft(\operatorname{E}^\vee \right)$, where
      $\mathb0{E}$ is the sheaf of sections of $E$. 


      The projective bundle of $\mathcal{E}$ is


      $$ P(E)=\operatorname{Proj}\left(\operatorname{Sym}
      \mathcal{E}^{\vee}\right) . $$


      ^3f80d1


      [^6] There is a canonical surjection $p^{*} E^{\vee} \rightarrow O_{E}(1)$
      on $P(E)$, which gives an imbedding

      $$ \text{O}_{E}(-1) \rightarrow p^{*} E $$



      [^6]: Note that $P(E)$ is thus a projective cone.


      Thus $P(E)$ is the projective bundle of lines in $E$, and
      $\mathscr{O}_{E}(-1)$ is the universal, or tautological line sub-bundle.
      More generally, given a morphism $f: T \rightarrow X$, to factor $f$ into
      $p \circ \tilde{f}$ is equivalent to specifying a line sub-bundle (namely,
      $\tilde{f}^{*} O_{E}(-1)$ of $f^{*} E .$$


      If $E$ is a vector bundle on X, L$ a line bundle, there is a canonical
      isomorphism $\varphi: P(E) \rightarrow P(E \otimes L)$, commuting with
      projections to $X$, with $\varphi^{*} \mathscr{O}_{E \otimes
      L}(-1)=\operatorname{O}_{E}(-1) \otimes p^{*}(L)$.


      Note. We have adopted the "old-fashioned" geometric notation for P(E).
      With $\&$ as above, our $P(E)$ is the
      $\mathbb{P}\left(\delta^{\vee}\right)$ of $[\mathscr{EGA}]$ II. $8 .



      [SEP]


      processed_content: the projective bundle of the vector bundle $E$. 


      It is constructed as

      $$ P(E)=\mathfrak{Proj}\left(Sym E^{\vee}\right) . $$
    sentences:
      - >-
        latex_in_original_or_summarized: u(n)


        [SEP]


        summarized: $u(n)$


        [SEP]


        main_note_content: Homework 19: Examples of Moment Maps


        1. Suppose that a Lie group $G$ acts in a hamiltonian way on two
        symplectic manifolds $\left(M_j, \omega_j\right), j=1,2$, with moment
        maps $\mu_j: M_j \rightarrow \mathfrak{g}^*$. Prove that the diagonal
        action of $G$ on $M_1 \times M_2$ is hamiltonian with moment map $\mu:
        M_1 \times M_2 \rightarrow \mathrm{g}^*$ given by


        $$  \mu\left(p_1,
        p_2\right)=\mu_1\left(p_1\right)+\mu_2\left(p_2\right), \text { for }
        p_j \in M_j .  $$


        2. Let $\mathbb{T}^n=\left\{\left(t_1, \ldots, t_n\right) \in
        \mathbb{C}^n:\left|t_j\right|=1\right., \text{ for all }
        \left.j\right\}$ be a torus acting on $\mathbb{C}^n$ by


        $$  \left(t_1, \ldots, t_n\right) \cdot\left(z_1, \ldots,
        z_n\right)=\left(t_1^{k_1} z_1, \ldots, t_n^{k_n} z_n\right),  $$


        where $k_1, \ldots, k_n \in \mathbb{Z}$ are fixed. Check that this
        action is hamiltonian with moment map $\mu: \mathbb{C}^n
        \rightarrow\left(\mathrm{t}^n\right)^* \simeq \mathbb{R}^n$ given by


        $$  \mu\left(z_1, \ldots,
        z_n\right)=-\frac{1}{2}\left(k_1\left|z_1\right|^2, \ldots,
        k_n\left|z_n\right|^2\right)(+ \text { constant }) .  $$


        3. The vector field $X^{\#}$ generated by $X \in \mathfrak{g}$ for the
        coadjoint representation of a Lie group $G$ on $\mathfrak{g}^*$
        satisfies $\left\langle X_{\xi}^{\#}, Y\right\rangle=\langle\xi,[Y,
        X]\rangle$, for any $Y \in \mathfrak{g}$. Equip the coadjoint orbits
        with the canonical symplectic forms. Show that, for each $\xi \in
        \mathfrak{g}^*$, the coadjoint action on the orbit $G \cdot \xi$ is
        hamiltonian with moment map the inclusion map:


        $$  \mu: G \cdot \xi \hookrightarrow \mathfrak{g}^* .  $$


        4. Consider the natural action of $U(n)$ on $\left(\mathbb{C}^n,
        \omega_0\right)$. Show that this action is hamiltonian with moment map
        $\mu: \mathbb{C}^n \rightarrow u(n)$ given by


        $$  \mu(z)=\frac{i}{2} z z^*  $$


        where we identify the Lie algebra $u(n)$ with its dual via the inner
        product $(A, B)=\operatorname{trace}\left(A^* B\right)$.


        Hint: Denote the elements of $\mathrm{U}(n)$ in terms of real and
        imaginary parts $g=$ $h+i k$. Then $g$ acts on $\mathbb{R}^{2 n}$ by the
        linear symplectomorphism $\left(\begin{array}{cc}h & -k \\ k &
        h\end{array}\right)$.


        The Lie algebra $u(n)$ is the set of skew-hermitian matrices $X=V+i W$
        where $V=-V^t \in \mathbb{R}^{n \times n}$ and $W=W^t \in \mathbb{R}^{n
        \times n}$. Show that the infinitesimal action is generated by the
        hamiltonian functions


        $$  \mu^X(z)=-\frac{1}{2}(x, W x)+(y, V x)-\frac{1}{2}(y, W y)  $$


        where $z=x+i y, x, y \in \mathbb{R}^n$ and $\left(,,^*\right)$ is the
        standard inner product. Show that


        $$  \mu^X(z)=\frac{1}{2} i z^* X z=\frac{1}{2} i
        \operatorname{trace}\left(z z^* X\right) \text {. }  $$


        Check that $\mu$ is equivariant.


        162


        HOMEWORK 19


        163


        5. Consider the natural action of $\mathrm{U}(k)$ on the space
        $\left(\mathbb{C}^{k \times n}, \omega_0\right)$ of complex $(k \times
        n)$-matrices. Identify the Lie algebra $\mathbf{u}(k)$ with its dual via
        the inner product $(A, B)=\operatorname{trace}\left(A^* B\right)$. Prove
        that a moment map for this action is given by


        $$  \mu(A)=\frac{i}{2} A A^*+\frac{\mathrm{Id}}{2 i}, \text { for } A
        \in \mathbb{C}^{k \times n} .  $$


        (The choice of the constant $\frac{\mathrm{Id}}{2 i}$ is for convenience
        in Homework 20.)


        Hint: Exercises 1 and 4.


        6. Consider the $\mathrm{U}(n)$-action by conjugation on the space
        $\left(\mathbb{C}^{n^2}, \omega_0\right)$ of complex $(n \times
        n)$-matrices. Show that a moment map for this action is given by


        $$  \mu(A)=\frac{i}{2}\left[A, A^*\right] \text {. }  $$


        Hint: Previous exercise and its "transpose" version.


        26 Existence and Uniqueness of Moment Maps



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized:
        $\mathfrak{Proj}\left(S^{\bullet}\right) = P(C)$


        [SEP]


        summarized: $\mathbf{Proj}\left(S^{\bullet}\right) = P(C)$


        [SEP]


        main_note_content: Let $S^{\bullet}=S^{0} \oplus S^{1} \oplus \ldots$ be
        a graded sheaf of $\mathscr{O}_X$-algebras on a scheme $X$, such that
        the canonical map from $\mathscr{O}_X$ to $S^{0}$ is an isomorphism, and
        $S^{\bullet}$ is (locally) generated as an $\mathscr{O}_X$-algebra by
        S^{1}. To $S^{\bullet}$ we associate two schemes over $X$ : 


        the cone of $S^{\bullet}$


        $$ C=Spec\left(S^{\bullet}\right), \quadO \pi: C \rightarrow X ; $$


        [^2] and the projective cone of $S^{\bullet}$,
        $?\operatorname{Proj}\left(S^{\bullet}\right)$[^3], with projection $p$
        to $X$. 


        [^2]: #_meta/TODO/notati.n Relative spec

        [^3]: #_meta/TODO/notation Reative proj


        The latter is also called the projective cone of $C$, and denoted $P(C)$
        :

        $$ P(C)=\opkeratorname{Proj}\left(S^{\bullet}\right), \quad p: P(C)
        \rightarrow X . $$$


        On $P(C)$ there is a canonical line bundle, denoted $\mathscr{O}(1)$, or
        $\mathscr{O}_{C}(1)$. 


        The morphism $p$ is proper ([EGA]II.5.5.3, [H]II.7.10).


        If $X$ is affine, with coordinate ring $A$, then $S^{\bullet}$ is
        determined by a graded $A$-algebra, which we denote also by
        $S^{\bullet}$. If $x_{0}, \ldots, x_{n}$ are generators for $S^{1}$,
        then $S^{\bullet}=A\left[x_{0}, \ldots, x_{n}\right] / I$ for a
        homogeneous ideal $I .$ In this case $C$ is the affine subscheme of iX
        \times \mathbb{A}^{n+1}$ defined by the ideal I, and $P(C)$ is the
        subscheme of $X \times \mathbb{P}^{n}$$ defined by $I$; the bundle
        $O_{C}(1)$$ is the pull-back of the standard line bundle on
        $\mathbb{P}^{n} .$ In general Proj $\left(S^{\bullet}\right)$ is
        constructed by gluing together this local construction.


        If $S^{\bullet} \rightarrow S^{\bullet}$ is a surjective, graded
        homomorphism of such graded sheaves of $\mathrm{O}_{X}$-algebras, and
        $C=\mathbb{Spec}\left(S^{\bullet}\right),
        C^{\prime}=\operatorname{Spec}\left(S^{\prime}\right)$,$ then there are
        closed imbeddings $C^{\prime} \hookrightarrow C$, and
        $P\left(C^{\prime}\right) \hookrightarrow P(C)$, such that
        $\mathscr{O}_{C}(1)$ restricts to $\mathscr{O}_{C}(1)$.


        The zero section imbedding of $X$ in $C$ is determined by the
        augmentation homomorphism from $S^{\bullet}$ to $\mathscr{O}_{X}$, which
        vanishes on $S^{i}$ for $i>0$, and is the canonical isomorphism of
        $S^{0}$ with $O_{X}$.


        If C=\operatorname{Spec}\left\(S^{\bullet}\right) is a cone on $X$, and
        f: Z \rightarrow X$ is a morphism, the pull-back $f^{*} C=C \times_{X} Z
        is the cone on $Z$ defined by the sheaf of $\mathscr{O}_{Z}$-algebras
        $f^{*} S^{\bullet} .$ If $Z$ \subset X$ we write $C|_Z$.


        Each section of the sheaf $S^{1}$ on X determines a section of the line
        bundle $\mathscr{O}_{C}(1)$ on $P(C)$. 


        Let $\mathscr{O}(n)$ or $\mathscr{O}_{C}(n)$ denote te line bundle
        $\mathscr{O}_{C}(1)^{\otimes n}$.



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: Fex(C,C')


        [SEP]


        summarized: $Fex(C,C')$


        [SEP]


        main_note_content: §2_: Derived functors


        $\underline{n^{\circ} 1}$: Definition of derived functors.

        1.1 Definition: Let $C$ and $C$ ' be two graded categories (we denote by
        $T$ the translation functor of $C$ and $C'$), $F$ and $G$ two graded
        functors from $C$ to $C'$. A morphism of graded functours is a morphism
        of functors:


        $$  u: F \rightarrow G  $$


        which has the following property:


        For any object $X$ of $C$ the following diagram is commutative:




        $$  \begin{array}{cccc}  u(T X): & F(T X) & \rightarrow G(T X) \\  &
        \uparrow ; & \hat{S} \\  & T u(X): & T F(X) & \rightarrow T G(X) 
        \end{array}  $$


        Let $C$ and $C^{\prime}$ be two triangulated categories. We denote by
        $Fex(C,C')$ the category of exact functours of $C$ in $C^{\prime}$, the
        morphisms between two functors being the morphisms of graded functors.


        Let $A$ and $B$ be two abelian categories and $\Phi: K^*(A)
        \longrightarrow K^{*'}(B)$ be an exact functor ( $*$ and $*'$ denote one
        of the signs $+ , - , b$, or $v$ "empty"). The canonical functor:


        300


        - 38 -


        CD.


        $Q: \mathrm{K}^*(\mathrm{~A}) \rightarrow \mathrm{D}^*(\mathrm{~A})$
        gives us, by composition, a functor:


        $$    \operatorname{Fex}\left(D^*(A), D^{*^{\prime}}(B)\right)
        \longrightarrow \operatorname{Fex}\left(K^*(A), D^ {*'}(B)\right)    $$
        ^7b244b


        hence (also denoting by $Q^{\prime}$ the canonical functor
        $K^{*^{\prime}}(B) \rightarrow D^{*^{\prime}}(B)$ ) a functor: $\%$
        (resp. $\%'$): $\operatorname{Fex}\left(D^*(A), D^{*^{\prime}}(B)\right)
        \rightarrow(A b)$ :


        $$\Psi \mapsto \mathrm{Hom}(Q' \circ \Phi, \Psi \circ Q)$$ ^d74a86


        (resp.


        $$\Psi \mapsto \mathrm{Hom}(\Psi \circ Q, Q' \circ \Phi)$$ ^87fb02


        )



        [SEP]


        processed_content: the category of exact functors between the
        triangulated categories $C$ and $C'$.
  - source_sentence: >-
      latex_in_original_or_summarized: \pi


      [SEP]


      summarized: $\pi$


      [SEP]


      main_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X,
      \overline{\mathbb{Q}}_{l}\right)$


      For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of
      $\mathbb{Q}_{l}$, let $\mathfrak{o}$ be theU valuation ring of $E$ and
      $\pi$ be a generating element of the maximal ideal of $o$.


      In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X,
      \mathfrak{o})$ was defined together with its standard t-structure. In the
      following we explain the "localized" categories $D_{c}^{b}(X, E)$ and
      $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. Also on these
      categories we have standard t-structures induced from the t-structures on
      $D_{c}^{b}(X, \mathfrak{}$


      The objects are defined to be the same as for the category $D_{c}^{b}(X,
      \mathfrak{o}). We write $K^{\bullet}  E$ for a complex $K^{\bullet}$ from
      $D_{c}^{b}(X, \mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X,
      E)$. Furthermore


      $$  \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet} 
      E\right)=\operatorname{Hom}\left(F^{\bullet}, K^{\bullet})
      \otimes_{\mathfrak{o}} E  $$ ^c425ae


      Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are
      isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X,
      \mathfrak{o})$.


      Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$
      containing $E$. Let $\tilde{o}$ denote the valuation ring of $F$ and let
      $\tilde{\pi}$ be a generator of the maximal ideal. In case of ramification


      $$  \pi \tilde{\mathfrak{o}}=^{e} \tilde{o}  $$ ^925f05


      let $e$ be the ramification number. We construct natural functors


      $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$ ^429009


      A. $\mathbb{Q} l^{-S h e a v e s}$


      331


      in the following way: Since $\tilde{\mathfrak{o}}$ is a fr~ee
      $\mathfrak{o}$-module of rank $[F: E]$,


      $$!  \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / ^{r e}
      \mathfrak{o}=\tilde{\mathfrak{o}} / \pi^{r} \tilde{\mathfrak{o}}  $$


      is free over $\mathfrak{o}_{r}= / ^{r} \mathfrak{o}$ for all $r \geq 1$.
      Consider first the functors


      $$  \begin{gathered}  D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right)
      \rightarrow D_{c t f}^{b}(X, \tilde{o}_{r e}\right) \\  K^{} \mapsto
      K^{\bullet} \otimes_{o_{r}} \tilde{\mathfrak{o}}_{r e}=K^{}
      \otimes_{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r e}    $$




      The family of these functors for $r=1,2, \ldots$ naturally defines a
      functor


      $$``\varprojlim_r'' D_{ctf}^b(X, \mathfrak{o}_r) \to ``_r'' D_{ctf}^b(X,
      \tilde{\mathfrak{o}}_{re}) = ``\varprojlim_r'' D_{ctf}^b(X,
      \tilde{\mathfrak{o}}_{r'}),$$




      hence by definition a functor


      $$  D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X,
      \tilde{\mathfrak{o}})  $$ ^807c7e


      By localization, as above, we get from this the desired functor


      $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$


      Finally the category $D_{c}^{b}\left(X, }_{l})$ is defined as the direct
      limit


      $$  D_{c}^{b}\left(X, }_{l}\right)= ``\lim _{r} " D_{c t f}^{b}(X, E)  $$
      ^2e1ccf


      (in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \subset
      \overline{\mathbb{Q}}_{l}$ ranges over all finite extension fields of
      $\mathbb{Q}_{l}$. For all such fields $E$$ one has natural functors


      $$  \begin{gathered}  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X,
      \overline{\mathbb{Q}}_{l}\right) \\  K^{\bullet} \mapsto K^{\bullet}
      \otimes_{E} \overline{\mathbb{Q}}_{l}  \end{gathered}  $$


      and


      $$  \operatorname{Hom}\left(F^{\bullet} \otimes_{E}
      \overline{\mathbb{Q}}_{l}, K^{\bullet} \otimes_{E}
      \overline{\mathbb{Q}}_{l}\right)=\operatorname{Hom}\left(F^{\bullet},
      K^{\bullet}\right) \otimes_{E} \overline{\mathbb{Q}}_{l}  $$


      We skip the obvious definitions for the usual derived functors related to
      the derived category $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
      The results for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to the
      categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X,
      \overline{\mathbb{Q}}_{l}\right)$. From the standard t-structure on
      $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately get
      t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X,
      }_{l}\right)$.



      [SEP]


      processed_content: 
    sentences:
      - >-
        latex_in_original_or_summarized: \mathfrak{o}


        [SEP]


        summarized: $\mathfrak{o}$


        [SEP]


        main_note_content: The Categories $D_{c}^{b}(X, E)$ and
        $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$


        For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of
        $\mathbb{Q}_{l}$, let $\mathfrak{o}$ be the valuation ring of $E$ and
        $\pi$ be a generating elem(ent of the maximal ideal of $o$.


        In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X,
        \mathfrak{o})$ was defined together with its standard t-structure. In
        the following we explain the "localized" categories $D_{c}^{b}(X, E)$
        and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. Also on these
        categories we have standard t-structures induced from the t-structures
        on $D_{c}^{b}(X, \mathfrak{}$


        The objects are defined to be the same as for the category $D_{c}^{b}(X,
        \mathfrak{o})$. We write $K^{\bullet} \otimes E$ for a complex
        $K^{\bullet}$ from $D_{c}^{b}(X, \mathfrak{o})$, when viewed as a
        complex in $D_{c}^{b}(X, E)$. Furthermore


        $$  \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet} \otimes
        E\right)=\operatorname{Hom}\left(F^{\bullet}, K^{\bullet}\right)
        \otimes_{\mathfrak{o}} E  $$ ^c425ae


        Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are
        isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X,
        \mathfrak{o})$.


        Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$
        containing E. Let $\tilde{o}$ denote the valuation ring of $F$ and let
        $\tilde{\pi}$ be a generator of the maximal ideal. In case of
        ramification


        $$  \pi \tilde{\mathfrak{o}}=\tilde{\pi}^{e} \tilde{o}  $$ ^925f05


        let $e$ be the ramification number. We construct natural functors


        $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$ ^429009


        A. $\mathbb{Q} l^{-S h e a v e s}$


        331


        in the following way: Swnce $\tilde{\mathfrak{o}}$ is a free
        $\mathfrak{o}$-module of rank $[F: E]$,


        $$  \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / \tilde{\pi}^{r e}
        \mathfrak{o}=\tilde{\mathfrak{o}} / \pi^{r} \tilde{\mathfrak{o}}  $$


        is free over $\mathfrak{o}_{r}=\mathfrak{o} / \pi^{r} \mathfrak{o} for
        all $r \geq 1$. Consider first the functors


        $$  \begin{gathered}  D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right)
        \rightarrow D_{c t f}^{b}\left(X, \tilde{o}_{r e}\right) \\  K^{\bullet}
        \mapsto K^{} \otimes_{o_{r}} \tilde{\mathfrak{o}}_{r e}=K^{\bullet}
        _{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r e}  \end{gathered}  $$$




        The family of these functors for $r=1,2, \ldots$ naturally defines a
        functor


        $$``\varprojlim_r'' D_{ctf}^b(X, \mathfrak{o}_r) \to ``\varprojlim_r''
        D_{ctf}^b(X, \tilde{\mathfrak{o}}_{re}) = ``\varprojlim_r'' D_{ctf}^b(X,
        \tilde{\mathfrak{o}}_{r'}),$$




        hence by definition a functor


        $$  D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X,
        \tilde{\mathfrak{o}})  $$$ ^807c7e


        By localization, as above, we get from this the desired functor


        $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$


        Finally the category $D_{c}^{b}\left(X,
        \overline{\mathbb{Q}}_{l}\right)$ is defined as the direct limit


        $$  D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)= ``\lim _{r} "
        D_{c t f}^{b}(X, E)  $$ ^2e1ccf


        (in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E
        \subset \overline{\mathbb{Q}}_{l}$ ranges over all finite extension
        fields of $\mathbb{Q}_{l}$. For all such fields $E$ one has natural
        functors


        $$  \begin{gathered}  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X,
        \overline{\mathbb{Q}}_{l}\right) \\  K^{} \mapsto K^{\bullet}
        \otimes_{E} }_{l}  \end{gathered}  $$


        and


        $$  \operatorname{Hom}\left(F^{\bullet} \otimes_{E}
        \overline{\mathbb{Q}}_{l}, K^{\bullet} \otimes_{E}
        }_{l}\right)=\operatorname{Hom}\left(F^{\bullet}, K^{\bullet}\right)
        \otimes_{E} \overline{\mathbb{Q}}_{l}  $$


        We skip the obvious definitions for the usual derived functors related
        to the derived category $D_{c}^{b}(X, \overline{\mathbb{Q}}_{l}\right)$.
        The results for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to
        the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X,
        \overline{\mathbb{Q}}_{l}). From the standard t-structure on
        $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately
        get t-structures on the categories $D_{c}^{b}(X, E)$ and
        $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: C / F_\bullet


        [SEP]


        summarized: $C / F_\bullet$


        [SEP]


        main_note_content: 2.4.5. This can be generalized as follows. For a
        simplicial object $F$. in $T$ we define a topos $T / F_{\text {}}$ as
        follows. For each $[n] \in $ we can consider the localized topos $T /
        F_{n}$. For a morphism $\delta:[n] \rightarrow[m]$ we have a morphism of
        topoi


        $$  \delta: T / F_{m} \rightarrow T / F_{n}  $$


        defined as in exercise 2.F. The category $T / F_{\bullet}$ is defined to
        be the category of systems $\left\{\left(G_{n}, _{n}, G()\right)\}_{n 
        N}$ consisting of an object $\epsilon_{n}: G_{n} \rightarrow F_{n}$ in
        $T / F_{n}$ for each $n$, and for every morphism $\delta:[n] [m]$ in $$
        map


        $$  G(\delta): G_{n} \rightarrow \delta_{*} G_{m}  $$


        in $T / F_{n}$ such that for a composition


        $$  [n] \stackrel{\delta}{\longrightarrow}[m] \stackrel{\epsilon}{}[k] 
        $$


        the map


        $$  G_{k} \stackrel{G(\epsilon)}{} _{*} G_{m} \stackrel{\epsilon_{*}
        G(\delta)}{\longrightarrow} \epsilon_{*} \delta_{*} G_{n}
        \simeq(\epsilon \delta)_{*} G_{n}  $$


        is equal to $G(\epsilon \delta)$. A morphism $\left\{\left(G_{n},
        \epsilon_{n}, G(\delta)\right)\right\}_{n}
        \rightarrow\left\{\left(G_{n}^{\prime}, \epsilon_{n},
        G^{\prime}(\delta)\right)\right\}_{n}$ in $T / F_{\bullet}$ is a
        collection of maps $\left\{h_{n}: G_{n} \rightarrow
        G_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ in $T / F_{n}$ such that for
        any morphism $\delta:[n] \rightarrow[m]$ in $$ the diagram


        commutes.


        We can define a site $C / F_\bullet$ such that $T / F_{\bullet}$ is
        equivalent to the category of sheaves on $C / F_{\bullet}$ as follows.
        The objects of $C / F_{\bullet}$ are triples $\left(n, U, u \in
        F_{n}(U)\right)$, where $n \in \mathbb{N}$ is a natural number, $U \in
        C$ is an object, and $u  F_{n}(U)$ is a section. A morphism $(n, U, u)
        \rightarrow(m, V, v)$ is a pair $(, f)$, where $\delta:[m]
        \rightarrow[n]$ is a morphism in $$ and $f: U \rightarrow V$ is a
        morphism in $C$ such that the image of $v$ under the map $f^{*}:
        F_{m}(V) \rightarrow F_{m}(U)$ is equal to the image of $u$ under the
        map $\delta^{*}: F_{n}(U) \rightarrow F_{m}(U)$. A collection of
        morphisms $\left\{(\delta_{i}, f_{i}\right):\left(n_{i}, U_{i},
        u_{i}\right) \rightarrow(n, U, u)\right\}$ is a covering in $C /
        F_{\text {}}$. if $n_{i}=n$ for all $i$, each $\delta_{i}$ is the
        identity map, and the


        2.4. SIMPIICIAL TOPOI


        57


        collection $\left\{f_{i}: U_{i} \rightarrow U\}$ is a covering in $C$.
        We leave it as exercise 2 .I that $C / F_{\bullet}$ is a site with
        associated topos $T / F_{\bullet}$.



        [SEP]


        processed_content: 
      - >-
        latex_in_original_or_summarized: C_{*}(\mathcal{X})


        [SEP]


        summarized: $C_{*}(\mathcal{X})$


        [SEP]


        main_note_content: $\mathbb{A}^{1}$-derived category,
        $\mathbb{A}^{1}$-homology and Hurewicz Theorem. Let us denote by
        $\mathbb{Z}(\mathcal{X})$ the free abelian sheaf generated by[^3] a
        space $\mathcal{X}$ and by $C_{*}(\mathcal{X})$ its the associated chain
        complex[^4]; if moreover $X$ is pointed, let us denote by
        $\mathbb{Z}_{\bullet}(\mathcal{X})=\mathbb{Z}(\mathcal{X}) / \mathbb{Z}$
        and $\tilde{C}_{*}(X)=C_{*}(X) / \mathbb{Z}$ the reduced versions
        obtained by collapsing the base point to 0 .


        [^4]: The associated chain complex of $\mathbb{Z}(\mathcal{X})$ probably
        refers the Moore complex of $\mathbb{Z}(\mathcal{X})$ (which is a
        simplicial sheaf of abelian groups), which in turn has a homology group
        associated to it.


        [^3]: It seems that it makes sense to speak of the "free abelian group
        generated by a sheaf on a site" --- if $G$ is a sheaf on a site (just as
        $\mathcal{X}$ is a sheaf on the Nisnevich site), then the free abelian
        sheaf $\mathbb{Z}(G)$ generated by $G$ is the sheafification of the
        presheaf $U \mapsto \mathbb{Z}(G(U))$, where  $\mathbb{Z}(G(U))$ is the
        free abelian group generated by the set $G(U)$. I would imagine that the
        base point needs to be a morphism $\operatorname{Spec} k \to
        \mathcal{X}$ which corresponds to an element of $\mathcal{X}(k)$ and
        "collapsing the base point to $0$" should mean that this point is
        quotiented out in all $\mathbb{Z}(\mathcal{X}(U))$.  #_meta/ai_generated


        We may perform in the derived category of chain complexes in
        $\mathrm{Ab}_{k}$ exactly the same process as for spaces and define the
        class of $\mathbb{A}^{1}$-weak equivalences, rather
        $\mathbb{A}^{1}$-quasi isomorphisms; these are generated by
        quasi-isomorphisms and collapsing
        $\mathbb{Z}_{\bullet}\left(\mathbb{A}^{1}\right)$ to 0 . Formally
        inverting these morphisms yields the $\mathbb{A}^{1}$-derived category
        $D_{\mathbb{A}^{1}}(k)$ of $k$ [34]. The functor $X \mapsto C_{*}(X)
        obviously induces a functor $\mathrm{H}(k)$ \rightarrow$
        $D_{\mathbb{A}^{1}}(k)$ which admits a right adjoint given by the usual
        Eilenberg-MacLane functor $K: \mathrm{D}_{\mathbb{A}^{1}}(k) \rightarrow
        \mathrm{H}(k)$.


        As for spaces, one may define $\mathbb{A}^{1}$-homology sheaves of a
        chain complex $C_{*}$[^4]. An abelian version of Theorem 3.3 implies
        that for any complex $C_{*}$ these $\mathbb{A}^{1}$-homology sheaves are
        strictly $\mathbb{A}^{1}$-invariant [36], [34]. 



        [SEP]


        processed_content: 
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: relevance val
          type: relevance-val
        metrics:
          - type: cosine_accuracy
            value: 0.8456965201265408
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.5247608423233032
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.6690491661251894
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.3437151610851288
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.6566751700680272
            name: Cosine Precision
          - type: cosine_recall
            value: 0.6818984547461369
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6486404553707843
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.557884333577538
            name: Cosine Mcc

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hyunjongkimmath/notation_linking_rag_sentence_transformers_all_MiniLM_L6_v2")
# Run inference
sentences = [
    'latex_in_original_or_summarized: \\pi\n\n[SEP]\n\nsummarized: $\\pi$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be theU valuation ring of $E$ and $\\pi$ be a generating element of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o}). We write $K^{\\bullet}  E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet}  E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing $E$. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Since $\\tilde{\\mathfrak{o}}$ is a fr~ee $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$!  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / ^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}= / ^{r} \\mathfrak{o}$ for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}(X, \\tilde{o}_{r e}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{} \\otimes_{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}    $$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, }_{l})$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, }_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{\\bullet} \\mapsto K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, }_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: \\mathfrak{o}\n\n[SEP]\n\nsummarized: $\\mathfrak{o}$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be the valuation ring of $E$ and $\\pi$ be a generating elem(ent of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o})$. We write $K^{\\bullet} \\otimes E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet} \\otimes E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing E. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=\\tilde{\\pi}^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Swnce $\\tilde{\\mathfrak{o}}$ is a free $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / \\tilde{\\pi}^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}=\\mathfrak{o} / \\pi^{r} \\mathfrak{o} for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}\\left(X, \\tilde{o}_{r e}\\right) \\\\  K^{\\bullet} \\mapsto K^{} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{\\bullet} _{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}  \\end{gathered}  $$$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{E} }_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} }_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}). From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: C / F_\\bullet\n\n[SEP]\n\nsummarized: $C / F_\\bullet$\n\n[SEP]\n\nmain_note_content: 2.4.5. This can be generalized as follows. For a simplicial object $F$. in $T$ we define a topos $T / F_{\\text {}}$ as follows. For each $[n] \\in $ we can consider the localized topos $T / F_{n}$. For a morphism $\\delta:[n] \\rightarrow[m]$ we have a morphism of topoi\n\n$$  \\delta: T / F_{m} \\rightarrow T / F_{n}  $$\n\ndefined as in exercise 2.F. The category $T / F_{\\bullet}$ is defined to be the category of systems $\\left\\{\\left(G_{n}, _{n}, G()\\right)\\}_{n  N}$ consisting of an object $\\epsilon_{n}: G_{n} \\rightarrow F_{n}$ in $T / F_{n}$ for each $n$, and for every morphism $\\delta:[n] [m]$ in $$ map\n\n$$  G(\\delta): G_{n} \\rightarrow \\delta_{*} G_{m}  $$\n\nin $T / F_{n}$ such that for a composition\n\n$$  [n] \\stackrel{\\delta}{\\longrightarrow}[m] \\stackrel{\\epsilon}{}[k]  $$\n\nthe map\n\n$$  G_{k} \\stackrel{G(\\epsilon)}{} _{*} G_{m} \\stackrel{\\epsilon_{*} G(\\delta)}{\\longrightarrow} \\epsilon_{*} \\delta_{*} G_{n} \\simeq(\\epsilon \\delta)_{*} G_{n}  $$\n\nis equal to $G(\\epsilon \\delta)$. A morphism $\\left\\{\\left(G_{n}, \\epsilon_{n}, G(\\delta)\\right)\\right\\}_{n} \\rightarrow\\left\\{\\left(G_{n}^{\\prime}, \\epsilon_{n}, G^{\\prime}(\\delta)\\right)\\right\\}_{n}$ in $T / F_{\\bullet}$ is a collection of maps $\\left\\{h_{n}: G_{n} \\rightarrow G_{n}^{\\prime}\\right\\}_{n \\in \\mathbb{N}}$ in $T / F_{n}$ such that for any morphism $\\delta:[n] \\rightarrow[m]$ in $$ the diagram\n\ncommutes.\n\nWe can define a site $C / F_\\bullet$ such that $T / F_{\\bullet}$ is equivalent to the category of sheaves on $C / F_{\\bullet}$ as follows. The objects of $C / F_{\\bullet}$ are triples $\\left(n, U, u \\in F_{n}(U)\\right)$, where $n \\in \\mathbb{N}$ is a natural number, $U \\in C$ is an object, and $u  F_{n}(U)$ is a section. A morphism $(n, U, u) \\rightarrow(m, V, v)$ is a pair $(, f)$, where $\\delta:[m] \\rightarrow[n]$ is a morphism in $$ and $f: U \\rightarrow V$ is a morphism in $C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \\rightarrow F_{m}(U)$ is equal to the image of $u$ under the map $\\delta^{*}: F_{n}(U) \\rightarrow F_{m}(U)$. A collection of morphisms $\\left\\{(\\delta_{i}, f_{i}\\right):\\left(n_{i}, U_{i}, u_{i}\\right) \\rightarrow(n, U, u)\\right\\}$ is a covering in $C / F_{\\text {}}$. if $n_{i}=n$ for all $i$, each $\\delta_{i}$ is the identity map, and the\n\n2.4. SIMPIICIAL TOPOI\n\n57\n\ncollection $\\left\\{f_{i}: U_{i} \\rightarrow U\\}$ is a covering in $C$. We leave it as exercise 2 .I that $C / F_{\\bullet}$ is a site with associated topos $T / F_{\\bullet}$.\n\n\n[SEP]\n\nprocessed_content: ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8457
cosine_accuracy_threshold 0.5248
cosine_f1 0.669
cosine_f1_threshold 0.3437
cosine_precision 0.6567
cosine_recall 0.6819
cosine_ap 0.6486
cosine_mcc 0.5579

Training Details

Training Dataset

Unnamed Dataset

  • Size: 264,888 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 72 tokens
    • mean: 248.73 tokens
    • max: 256 tokens
    • min: 63 tokens
    • mean: 248.25 tokens
    • max: 256 tokens
    • min: 0.0
    • mean: 0.23
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    latex_in_original_or_summarized: {}^{\mathrm{P}} \mathrm{D}^{ 0}(\mathrm{X}, O)

    [SEP]

    summarized: ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$

    [SEP]

    main_note_content: Def1inition 2.1.2. The subcategory ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ (resp. ${}^{} \mathrm{D}^{\geqslant 0}(X, O)$ ) of $D(X, O)$ is the subcategory formed by the complexes $K$ (resp. $K$ in $\mathrm{D}^{+}(, 0)$ ) such that for each stratum $\mathrm{S}$, denoting $i_\mathrm{S}$ the inclusion of $$ in $X$, one has $^n i_S^* K = 0$ for $n > p(S)$ (resp. $H^n i_S^! K = 0$ for $n < p(\mathrm{S})$).

    The exactness of the functors ${}^O i^*$ allows us to reformulate the definition of ${}^P D^{\leqslant 0}(X, O)$: for $K$ to be in ${}^P D^{\leqslant 0}(X, O)$, it is necessaryeand sufficient that the restriction of $H^i K$ to $S$ is zero for $i>p(S)$. The functors $\tau_{\leq a}$ and $\tau_{ a}$, relative to the natural t-structure, therefore send ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ into itself.

    If the fun...
    latex_in_original_or_summarized: f_*, f^*, f_{!}, f^{!}

    [SEP]

    summarized: $f^*$

    [SEP]

    main_note_content: o.0. Notations and terminology.

    The reader will find at the end of this work a terminology index and an index of notations, containing the main new or non-standard terms or notations used.

    Be careful that from 1.4 onwards, we generally simply denote by $f_*, f^*, f_{!}, f^{!}$ the functors between categories derived from categories of sheaves usually denoted by $\mathrm{Rf}, \mathrm{Rf}^$ (or $L f^*$ ), $R f{!}$ and $R f^{!}$, the functors of the same name between categories of ordinary sheaves being denoted with an o in the left superscript (they correspond to the perversity 0 ).

    17

    A.-A. BEILINSON, J. BERNSTEIN, P. DELIGNE


    [SEP]

    processed_content:
    1.0
    latex_in_original_or_summarized: \theta: A_{\mathrm{inf}}\to \mathcal{O}

    [SEP]

    summarized: $\theta$

    [SEP]

    main_note_content: The proof of this (and the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms of Fontaine's period ring $A_{\mathrm{inf}}$ instead of the ring $\mathfrak{S}$. To explain this further, we recall the definitions The ring $A_{\mathrm{inf}}$ is defined as

    $$ A_{\mathrm{inf}} = , $$ ^71cf0e

    where $\mathcal{O}^\flat = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" of $\mathcal{O}$. Then $\mathcal{O}^\flat$ ss the ring of integers in a complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of in particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\fl6t)$ has a natural Frobenius automorphism $\varphi$, and $A_{\mathrm{inf}}/p = \mathcal{O}^\flat$.

    will need certain special elementis of $A_{\mathrm...
    latex_in_original_or_summarized:

    [SEP]

    summarized: $B_{\mathrm{dR}}^+$

    [SEP]

    main_note_content: proof of this result the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms Fontaine's period ring $A_{\mathrm{inf}}$ of the ring $\mathfrak{S}$. explain further, we recall the definitions first. The ring $A_{inf}$ is defined as

    $$ = W(\mathcal{O}^\flat)\ , $$ ^71cf0e

    where $\mathcal{O}^\flat$ = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" $\mathcal{O}$. Then is the ring of integers in complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of $C$; particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\flat) has a natural Frobenius automorphism = \mathcal{O}^\flat$.

    We will certain special elements $A_{\mathrm{inf}}$. Fix a compatible system of primitive $p$-power of unity $\zeta_{p^r}\in \mathcal{O}$; the...
    0.0
    latex_in_original_or_summarized: K(M, n)

    [SEP]

    summarized: $K(M, n)$

    [SEP]

    main_note_content: Chain complexes and spaces. [59], that for simplicial sheaf $\text{X}$ we denote by $C_{}(\mathcal{X})$ the (normalized) chain complex $C_{}(\mathcal{A}$ associated to the sheaf abelian groups $\mathbb{X}$. This defines a functor

    $$ C_{}: \Delta^{o p} S h v_{N i s}\left(S m_{k}\right) C_{}(\text{A} b(k)) $$$ ^f7eebc

    which is well (see $[44,59]$ instance) to have a right adjoint

    6.2 \mathbb{A}^{1}$-Derived Category Spaces
    161

    $$ K: C_{*}(\mathcal{A} b(k)) \rightarrow \phi^{o p} S h v_{N i s}\left(S $$


    called the space

    For an abelian $M b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$ (see [59, page 56]) $K$ to the shifted complex $M[n]$, the complex $M$ placed in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \geq 0$ then $K(M, n)$ has only one non-trivial sheaf which is the and which is canonically isomorphic...
    latex_in_original_or_summarized: \langle u\rangle G W(F)

    [SEP]

    summarized: $\langle u\rangle \in G W(F)$

    [SEP]

    main_note_content: Let us denote (in characteristic) by $G W(F)$ the Grothendieck-Witt ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this is the group completion of the commutative monoid of isomorphism classes of non-degenerate symmetric forms for the direct sum.

    For $u \in F^{\times}$, we denote by $\langle u\rangle G W(F)$ the form on vector space of rank one given by $F^{2} F,(x, \mapsto u x y .$ By the results of loc. \langle u\rangle$ generate $G as a group. The following Lemma is (essentially) [48, Lemma (1.1) Chap. IV]:


    [SEP]

    processed_content:
    0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss relevance-val_cosine_ap
0.0019 500 0.2362 -
0.0038 1000 0.235 -
0.0057 1500 0.2233 -
0.0076 2000 0.2104 -
0.0094 2500 0.1846 -
0.0113 3000 0.1677 -
0.0132 3500 0.1602 -
0.0151 4000 0.1519 0.6486
0.0170 4500 0.1323 -
0.0189 5000 0.141 -
0.0208 5500 0.1446 -
0.0227 6000 0.1395 -
0.0245 6500 0.1307 -
0.0264 7000 0.1511 -
0.0283 7500 0.1358 -
0.0302 8000 0.1362 0.6486

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}