SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hyunjongkimmath/notation_linking_rag_sentence_transformers_all_MiniLM_L6_v2")
# Run inference
sentences = [
    'latex_in_original_or_summarized: \\pi\n\n[SEP]\n\nsummarized: $\\pi$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be theU valuation ring of $E$ and $\\pi$ be a generating element of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o}). We write $K^{\\bullet}  E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet}  E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing $E$. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Since $\\tilde{\\mathfrak{o}}$ is a fr~ee $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$!  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / ^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}= / ^{r} \\mathfrak{o}$ for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}(X, \\tilde{o}_{r e}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{} \\otimes_{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}    $$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, }_{l})$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, }_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{\\bullet} \\mapsto K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, }_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: \\mathfrak{o}\n\n[SEP]\n\nsummarized: $\\mathfrak{o}$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be the valuation ring of $E$ and $\\pi$ be a generating elem(ent of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o})$. We write $K^{\\bullet} \\otimes E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet} \\otimes E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing E. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=\\tilde{\\pi}^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Swnce $\\tilde{\\mathfrak{o}}$ is a free $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / \\tilde{\\pi}^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}=\\mathfrak{o} / \\pi^{r} \\mathfrak{o} for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}\\left(X, \\tilde{o}_{r e}\\right) \\\\  K^{\\bullet} \\mapsto K^{} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{\\bullet} _{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}  \\end{gathered}  $$$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{E} }_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} }_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}). From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: C / F_\\bullet\n\n[SEP]\n\nsummarized: $C / F_\\bullet$\n\n[SEP]\n\nmain_note_content: 2.4.5. This can be generalized as follows. For a simplicial object $F$. in $T$ we define a topos $T / F_{\\text {}}$ as follows. For each $[n] \\in $ we can consider the localized topos $T / F_{n}$. For a morphism $\\delta:[n] \\rightarrow[m]$ we have a morphism of topoi\n\n$$  \\delta: T / F_{m} \\rightarrow T / F_{n}  $$\n\ndefined as in exercise 2.F. The category $T / F_{\\bullet}$ is defined to be the category of systems $\\left\\{\\left(G_{n}, _{n}, G()\\right)\\}_{n  N}$ consisting of an object $\\epsilon_{n}: G_{n} \\rightarrow F_{n}$ in $T / F_{n}$ for each $n$, and for every morphism $\\delta:[n] [m]$ in $$ map\n\n$$  G(\\delta): G_{n} \\rightarrow \\delta_{*} G_{m}  $$\n\nin $T / F_{n}$ such that for a composition\n\n$$  [n] \\stackrel{\\delta}{\\longrightarrow}[m] \\stackrel{\\epsilon}{}[k]  $$\n\nthe map\n\n$$  G_{k} \\stackrel{G(\\epsilon)}{} _{*} G_{m} \\stackrel{\\epsilon_{*} G(\\delta)}{\\longrightarrow} \\epsilon_{*} \\delta_{*} G_{n} \\simeq(\\epsilon \\delta)_{*} G_{n}  $$\n\nis equal to $G(\\epsilon \\delta)$. A morphism $\\left\\{\\left(G_{n}, \\epsilon_{n}, G(\\delta)\\right)\\right\\}_{n} \\rightarrow\\left\\{\\left(G_{n}^{\\prime}, \\epsilon_{n}, G^{\\prime}(\\delta)\\right)\\right\\}_{n}$ in $T / F_{\\bullet}$ is a collection of maps $\\left\\{h_{n}: G_{n} \\rightarrow G_{n}^{\\prime}\\right\\}_{n \\in \\mathbb{N}}$ in $T / F_{n}$ such that for any morphism $\\delta:[n] \\rightarrow[m]$ in $$ the diagram\n\ncommutes.\n\nWe can define a site $C / F_\\bullet$ such that $T / F_{\\bullet}$ is equivalent to the category of sheaves on $C / F_{\\bullet}$ as follows. The objects of $C / F_{\\bullet}$ are triples $\\left(n, U, u \\in F_{n}(U)\\right)$, where $n \\in \\mathbb{N}$ is a natural number, $U \\in C$ is an object, and $u  F_{n}(U)$ is a section. A morphism $(n, U, u) \\rightarrow(m, V, v)$ is a pair $(, f)$, where $\\delta:[m] \\rightarrow[n]$ is a morphism in $$ and $f: U \\rightarrow V$ is a morphism in $C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \\rightarrow F_{m}(U)$ is equal to the image of $u$ under the map $\\delta^{*}: F_{n}(U) \\rightarrow F_{m}(U)$. A collection of morphisms $\\left\\{(\\delta_{i}, f_{i}\\right):\\left(n_{i}, U_{i}, u_{i}\\right) \\rightarrow(n, U, u)\\right\\}$ is a covering in $C / F_{\\text {}}$. if $n_{i}=n$ for all $i$, each $\\delta_{i}$ is the identity map, and the\n\n2.4. SIMPIICIAL TOPOI\n\n57\n\ncollection $\\left\\{f_{i}: U_{i} \\rightarrow U\\}$ is a covering in $C$. We leave it as exercise 2 .I that $C / F_{\\bullet}$ is a site with associated topos $T / F_{\\bullet}$.\n\n\n[SEP]\n\nprocessed_content: ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8457
cosine_accuracy_threshold 0.5248
cosine_f1 0.669
cosine_f1_threshold 0.3437
cosine_precision 0.6567
cosine_recall 0.6819
cosine_ap 0.6486
cosine_mcc 0.5579

Training Details

Training Dataset

Unnamed Dataset

  • Size: 264,888 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 72 tokens
    • mean: 248.73 tokens
    • max: 256 tokens
    • min: 63 tokens
    • mean: 248.25 tokens
    • max: 256 tokens
    • min: 0.0
    • mean: 0.23
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    latex_in_original_or_summarized: {}^{\mathrm{P}} \mathrm{D}^{ 0}(\mathrm{X}, O)

    [SEP]

    summarized: ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$

    [SEP]

    main_note_content: Def1inition 2.1.2. The subcategory ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ (resp. ${}^{} \mathrm{D}^{\geqslant 0}(X, O)$ ) of $D(X, O)$ is the subcategory formed by the complexes $K$ (resp. $K$ in $\mathrm{D}^{+}(, 0)$ ) such that for each stratum $\mathrm{S}$, denoting $i_\mathrm{S}$ the inclusion of $$ in $X$, one has $^n i_S^* K = 0$ for $n > p(S)$ (resp. $H^n i_S^! K = 0$ for $n < p(\mathrm{S})$).

    The exactness of the functors ${}^O i^*$ allows us to reformulate the definition of ${}^P D^{\leqslant 0}(X, O)$: for $K$ to be in ${}^P D^{\leqslant 0}(X, O)$, it is necessaryeand sufficient that the restriction of $H^i K$ to $S$ is zero for $i>p(S)$. The functors $\tau_{\leq a}$ and $\tau_{ a}$, relative to the natural t-structure, therefore send ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ into itself.

    If the fun...
    latex_in_original_or_summarized: f_*, f^*, f_{!}, f^{!}

    [SEP]

    summarized: $f^*$

    [SEP]

    main_note_content: o.0. Notations and terminology.

    The reader will find at the end of this work a terminology index and an index of notations, containing the main new or non-standard terms or notations used.

    Be careful that from 1.4 onwards, we generally simply denote by $f_*, f^*, f_{!}, f^{!}$ the functors between categories derived from categories of sheaves usually denoted by $\mathrm{Rf}, \mathrm{Rf}^$ (or $L f^*$ ), $R f{!}$ and $R f^{!}$, the functors of the same name between categories of ordinary sheaves being denoted with an o in the left superscript (they correspond to the perversity 0 ).

    17

    A.-A. BEILINSON, J. BERNSTEIN, P. DELIGNE


    [SEP]

    processed_content:
    1.0
    latex_in_original_or_summarized: \theta: A_{\mathrm{inf}}\to \mathcal{O}

    [SEP]

    summarized: $\theta$

    [SEP]

    main_note_content: The proof of this (and the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms of Fontaine's period ring $A_{\mathrm{inf}}$ instead of the ring $\mathfrak{S}$. To explain this further, we recall the definitions The ring $A_{\mathrm{inf}}$ is defined as

    $$ A_{\mathrm{inf}} = , $$ ^71cf0e

    where $\mathcal{O}^\flat = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" of $\mathcal{O}$. Then $\mathcal{O}^\flat$ ss the ring of integers in a complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of in particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\fl6t)$ has a natural Frobenius automorphism $\varphi$, and $A_{\mathrm{inf}}/p = \mathcal{O}^\flat$.

    will need certain special elementis of $A_{\mathrm...
    latex_in_original_or_summarized:

    [SEP]

    summarized: $B_{\mathrm{dR}}^+$

    [SEP]

    main_note_content: proof of this result the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms Fontaine's period ring $A_{\mathrm{inf}}$ of the ring $\mathfrak{S}$. explain further, we recall the definitions first. The ring $A_{inf}$ is defined as

    $$ = W(\mathcal{O}^\flat)\ , $$ ^71cf0e

    where $\mathcal{O}^\flat$ = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" $\mathcal{O}$. Then is the ring of integers in complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of $C$; particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\flat) has a natural Frobenius automorphism = \mathcal{O}^\flat$.

    We will certain special elements $A_{\mathrm{inf}}$. Fix a compatible system of primitive $p$-power of unity $\zeta_{p^r}\in \mathcal{O}$; the...
    0.0
    latex_in_original_or_summarized: K(M, n)

    [SEP]

    summarized: $K(M, n)$

    [SEP]

    main_note_content: Chain complexes and spaces. [59], that for simplicial sheaf $\text{X}$ we denote by $C_{}(\mathcal{X})$ the (normalized) chain complex $C_{}(\mathcal{A}$ associated to the sheaf abelian groups $\mathbb{X}$. This defines a functor

    $$ C_{}: \Delta^{o p} S h v_{N i s}\left(S m_{k}\right) C_{}(\text{A} b(k)) $$$ ^f7eebc

    which is well (see $[44,59]$ instance) to have a right adjoint

    6.2 \mathbb{A}^{1}$-Derived Category Spaces
    161

    $$ K: C_{*}(\mathcal{A} b(k)) \rightarrow \phi^{o p} S h v_{N i s}\left(S $$


    called the space

    For an abelian $M b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$ (see [59, page 56]) $K$ to the shifted complex $M[n]$, the complex $M$ placed in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \geq 0$ then $K(M, n)$ has only one non-trivial sheaf which is the and which is canonically isomorphic...
    latex_in_original_or_summarized: \langle u\rangle G W(F)

    [SEP]

    summarized: $\langle u\rangle \in G W(F)$

    [SEP]

    main_note_content: Let us denote (in characteristic) by $G W(F)$ the Grothendieck-Witt ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this is the group completion of the commutative monoid of isomorphism classes of non-degenerate symmetric forms for the direct sum.

    For $u \in F^{\times}$, we denote by $\langle u\rangle G W(F)$ the form on vector space of rank one given by $F^{2} F,(x, \mapsto u x y .$ By the results of loc. \langle u\rangle$ generate $G as a group. The following Lemma is (essentially) [48, Lemma (1.1) Chap. IV]:


    [SEP]

    processed_content:
    0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss relevance-val_cosine_ap
0.0019 500 0.2362 -
0.0038 1000 0.235 -
0.0057 1500 0.2233 -
0.0076 2000 0.2104 -
0.0094 2500 0.1846 -
0.0113 3000 0.1677 -
0.0132 3500 0.1602 -
0.0151 4000 0.1519 0.6486
0.0170 4500 0.1323 -
0.0189 5000 0.141 -
0.0208 5500 0.1446 -
0.0227 6000 0.1395 -
0.0245 6500 0.1307 -
0.0264 7000 0.1511 -
0.0283 7500 0.1358 -
0.0302 8000 0.1362 0.6486

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
125
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hyunjongkimmath/notation_linking_rag_sentence_transformers_all_MiniLM_L6_v2

Finetuned
(270)
this model

Evaluation results