ginpham614's picture
End of training
9b3619a verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-demo-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.7303937698804431

wav2vec2-large-xlsr-53-demo-colab

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4640
  • Wer: 0.7304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
17.8973 6.5620 400 3.4546 1.0
4.764 13.1157 800 1.4512 0.8837
0.7421 19.6777 1200 1.3554 0.7489
0.3618 26.2314 1600 1.4640 0.7304

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0