File size: 2,178 Bytes
95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a 95e7143 9b3619a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53-demo-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: vi
split: test
args: vi
metrics:
- name: Wer
type: wer
value: 0.7303937698804431
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4640
- Wer: 0.7304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 17.8973 | 6.5620 | 400 | 3.4546 | 1.0 |
| 4.764 | 13.1157 | 800 | 1.4512 | 0.8837 |
| 0.7421 | 19.6777 | 1200 | 1.3554 | 0.7489 |
| 0.3618 | 26.2314 | 1600 | 1.4640 | 0.7304 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|