File size: 2,178 Bytes
95e7143
 
9b3619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95e7143
 
9b3619a
 
95e7143
9b3619a
95e7143
9b3619a
 
 
 
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
95e7143
9b3619a
 
 
 
 
 
 
 
 
 
 
 
95e7143
9b3619a
95e7143
9b3619a
 
 
 
 
 
95e7143
 
9b3619a
95e7143
9b3619a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53-demo-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_11_0
      type: common_voice_11_0
      config: vi
      split: test
      args: vi
    metrics:
    - name: Wer
      type: wer
      value: 0.7303937698804431
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-53-demo-colab

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4640
- Wer: 0.7304

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 17.8973       | 6.5620  | 400  | 3.4546          | 1.0    |
| 4.764         | 13.1157 | 800  | 1.4512          | 0.8837 |
| 0.7421        | 19.6777 | 1200 | 1.3554          | 0.7489 |
| 0.3618        | 26.2314 | 1600 | 1.4640          | 0.7304 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0