functionX86's picture
layoutlmv3-finetuned-cordv2
45a8cbb verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cordv2
    results: []

layoutlmv3-finetuned-cordv2

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1800
  • Precision: 0.9519
  • Recall: 0.9568
  • F1: 0.9544
  • Accuracy: 0.9656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.5625 250 0.7355 0.7503 0.7595 0.7549 0.8216
1.0406 3.125 500 0.4019 0.8576 0.8787 0.8680 0.9006
1.0406 4.6875 750 0.2671 0.9028 0.9260 0.9143 0.9384
0.2814 6.25 1000 0.2293 0.9380 0.9332 0.9356 0.9473
0.2814 7.8125 1250 0.1763 0.9426 0.9445 0.9435 0.9622
0.1349 9.375 1500 0.1926 0.9437 0.9476 0.9456 0.9613
0.1349 10.9375 1750 0.1848 0.9481 0.9579 0.9530 0.9647
0.082 12.5 2000 0.2028 0.9490 0.9558 0.9524 0.9626
0.082 14.0625 2250 0.1878 0.9510 0.9579 0.9544 0.9652
0.0584 15.625 2500 0.1800 0.9519 0.9568 0.9544 0.9656

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1