File size: 2,430 Bytes
45a8cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cordv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cordv2

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1800
- Precision: 0.9519
- Recall: 0.9568
- F1: 0.9544
- Accuracy: 0.9656

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.5625  | 250  | 0.7355          | 0.7503    | 0.7595 | 0.7549 | 0.8216   |
| 1.0406        | 3.125   | 500  | 0.4019          | 0.8576    | 0.8787 | 0.8680 | 0.9006   |
| 1.0406        | 4.6875  | 750  | 0.2671          | 0.9028    | 0.9260 | 0.9143 | 0.9384   |
| 0.2814        | 6.25    | 1000 | 0.2293          | 0.9380    | 0.9332 | 0.9356 | 0.9473   |
| 0.2814        | 7.8125  | 1250 | 0.1763          | 0.9426    | 0.9445 | 0.9435 | 0.9622   |
| 0.1349        | 9.375   | 1500 | 0.1926          | 0.9437    | 0.9476 | 0.9456 | 0.9613   |
| 0.1349        | 10.9375 | 1750 | 0.1848          | 0.9481    | 0.9579 | 0.9530 | 0.9647   |
| 0.082         | 12.5    | 2000 | 0.2028          | 0.9490    | 0.9558 | 0.9524 | 0.9626   |
| 0.082         | 14.0625 | 2250 | 0.1878          | 0.9510    | 0.9579 | 0.9544 | 0.9652   |
| 0.0584        | 15.625  | 2500 | 0.1800          | 0.9519    | 0.9568 | 0.9544 | 0.9656   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1