|
--- |
|
language: |
|
- en |
|
datasets: |
|
- mindchain/wikitext2 |
|
- yahma/alpaca-cleaned |
|
metrics: |
|
- perplexity |
|
- accuracy |
|
base_model: |
|
- TinyLlama/TinyLlama_v1.1 |
|
model-index: |
|
- name: TinyLlama_v1.1_mix_wikitext_alpaca_1bit_BitDistiller_baseline |
|
results: |
|
- task: |
|
type: multiple-choice |
|
name: QA Benchmarking |
|
dataset: |
|
type: allenai/arc |
|
name: ARC-Challenge |
|
config: challenge |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
name: Accuracy |
|
value: 0.2150170648464164 |
|
- type: accuracy |
|
name: Normalized Accuracy |
|
value: 0.24744027303754265 |
|
- task: |
|
type: multiple-choice |
|
name: QA Benchmarking |
|
dataset: |
|
type: hellaswag |
|
name: HellaSwag |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
name: Accuracy |
|
value: 0.2568213503286198 |
|
- type: accuracy |
|
name: Normalized Accuracy |
|
value: 0.253359888468433 |
|
- task: |
|
type: multiple-choice |
|
name: QA Benchmarking |
|
dataset: |
|
type: piqa |
|
name: PIQA |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
name: Accuracy |
|
value: 0.5282916213275299 |
|
- type: accuracy |
|
name: Normalized Accuracy |
|
value: 0.5027203482845702 |
|
- task: |
|
type: multiple-choice |
|
name: QA Benchmarking |
|
dataset: |
|
type: winogrande |
|
name: Winogrande |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
name: Accuracy |
|
value: 0.5122336227308603 |
|
- task: |
|
type: multiple-choice |
|
name: QA Benchmarking |
|
dataset: |
|
type: aggregated |
|
name: QA-Avg |
|
metrics: |
|
- type: accuracy |
|
name: QA Average |
|
value: 0.3780991480835666 |
|
--- |
|
|
|
# TinyLlama_v1.1_1bit_BitDistiller |
|
This is a 1-bit quantized version of TinyLlama v1.1, trained using BitDistiller with asymmetric quantization and self-distillation (CAKLD) to optimize accuracy retention under extreme compression. The model is fine-tuned on WikiText-2 and Alpaca-cleaned datasets and evaluated on multiple-choice QA benchmarks. |
|
|
|
Key Features: |
|
- 1-bit quantization for ultra-efficient inference. |
|
- Asymmetric weight clipping to reduce precision loss. |
|
- CAKLD knowledge distillation to preserve performance. |
|
- Tested on ARC-Challenge, HellaSwag, PIQA, and Winogrande. |