File size: 2,554 Bytes
0878a3a
 
 
 
 
 
 
 
 
 
 
 
e606fe2
0878a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f90915
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language: 
  - en
datasets:
  - mindchain/wikitext2
  - yahma/alpaca-cleaned
metrics:
  - perplexity
  - accuracy
base_model:
  - TinyLlama/TinyLlama_v1.1
model-index:
  - name: TinyLlama_v1.1_mix_wikitext_alpaca_1bit_BitDistiller_baseline
    results:
      - task:
          type: multiple-choice
          name: QA Benchmarking
        dataset:
          type: allenai/arc
          name: ARC-Challenge
          config: challenge
          split: test
        metrics:
          - type: accuracy
            name: Accuracy
            value: 0.2150170648464164
          - type: accuracy
            name: Normalized Accuracy
            value: 0.24744027303754265
      - task:
          type: multiple-choice
          name: QA Benchmarking
        dataset:
          type: hellaswag
          name: HellaSwag
          split: test
        metrics:
          - type: accuracy
            name: Accuracy
            value: 0.2568213503286198
          - type: accuracy
            name: Normalized Accuracy
            value: 0.253359888468433
      - task:
          type: multiple-choice
          name: QA Benchmarking
        dataset:
          type: piqa
          name: PIQA
          split: validation
        metrics:
          - type: accuracy
            name: Accuracy
            value: 0.5282916213275299
          - type: accuracy
            name: Normalized Accuracy
            value: 0.5027203482845702
      - task:
          type: multiple-choice
          name: QA Benchmarking
        dataset:
          type: winogrande
          name: Winogrande
          split: test
        metrics:
          - type: accuracy
            name: Accuracy
            value: 0.5122336227308603
      - task:
          type: multiple-choice
          name: QA Benchmarking
        dataset:
          type: aggregated
          name: QA-Avg
        metrics:
          - type: accuracy
            name: QA Average
            value: 0.3780991480835666
---

# TinyLlama_v1.1_1bit_BitDistiller
This is a 1-bit quantized version of TinyLlama v1.1, trained using BitDistiller with asymmetric quantization and self-distillation (CAKLD) to optimize accuracy retention under extreme compression. The model is fine-tuned on WikiText-2 and Alpaca-cleaned datasets and evaluated on multiple-choice QA benchmarks.

Key Features:
- 1-bit quantization for ultra-efficient inference.
- Asymmetric weight clipping to reduce precision loss.
- CAKLD knowledge distillation to preserve performance.
- Tested on ARC-Challenge, HellaSwag, PIQA, and Winogrande.