|
--- |
|
base_model: neuralsentry/starencoder-git-commits-mlm |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: starencoder-vulnfix-classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# starencoder-vulnfix-classification |
|
|
|
This model is a fine-tuned version of [neuralsentry/starencoder-git-commits-mlm](https://huggingface.co/neuralsentry/starencoder-git-commits-mlm) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1191 |
|
- Accuracy: 0.9703 |
|
- Precision: 0.9769 |
|
- Recall: 0.96 |
|
- F1: 0.9684 |
|
- Roc Auc: 0.9698 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 420 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| |
|
| 0.3716 | 0.33 | 66 | 0.2018 | 0.9296 | 0.9368 | 0.9133 | 0.9249 | 0.9288 | |
|
| 0.1745 | 0.67 | 132 | 0.1468 | 0.9533 | 0.9711 | 0.9293 | 0.9498 | 0.9522 | |
|
| 0.1346 | 1.0 | 198 | 0.1091 | 0.9657 | 0.9761 | 0.951 | 0.9634 | 0.9650 | |
|
| 0.0917 | 1.33 | 264 | 0.1294 | 0.9647 | 0.9790 | 0.946 | 0.9622 | 0.9638 | |
|
| 0.0877 | 1.67 | 330 | 0.1090 | 0.9668 | 0.9619 | 0.9683 | 0.9651 | 0.9669 | |
|
| 0.0731 | 2.0 | 396 | 0.1042 | 0.9688 | 0.9746 | 0.9593 | 0.9669 | 0.9684 | |
|
| 0.0342 | 2.33 | 462 | 0.1291 | 0.9692 | 0.9686 | 0.9663 | 0.9675 | 0.9690 | |
|
| 0.0375 | 2.67 | 528 | 0.1202 | 0.9706 | 0.9753 | 0.9623 | 0.9688 | 0.9702 | |
|
| 0.0342 | 3.0 | 594 | 0.1191 | 0.9703 | 0.9769 | 0.96 | 0.9684 | 0.9698 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.0 |
|
- Tokenizers 0.13.3 |
|
|