File size: 2,473 Bytes
4601e01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: neuralsentry/starencoder-git-commits-mlm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: starencoder-vulnfix-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# starencoder-vulnfix-classification
This model is a fine-tuned version of [neuralsentry/starencoder-git-commits-mlm](https://huggingface.co/neuralsentry/starencoder-git-commits-mlm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1191
- Accuracy: 0.9703
- Precision: 0.9769
- Recall: 0.96
- F1: 0.9684
- Roc Auc: 0.9698
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 420
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
| 0.3716 | 0.33 | 66 | 0.2018 | 0.9296 | 0.9368 | 0.9133 | 0.9249 | 0.9288 |
| 0.1745 | 0.67 | 132 | 0.1468 | 0.9533 | 0.9711 | 0.9293 | 0.9498 | 0.9522 |
| 0.1346 | 1.0 | 198 | 0.1091 | 0.9657 | 0.9761 | 0.951 | 0.9634 | 0.9650 |
| 0.0917 | 1.33 | 264 | 0.1294 | 0.9647 | 0.9790 | 0.946 | 0.9622 | 0.9638 |
| 0.0877 | 1.67 | 330 | 0.1090 | 0.9668 | 0.9619 | 0.9683 | 0.9651 | 0.9669 |
| 0.0731 | 2.0 | 396 | 0.1042 | 0.9688 | 0.9746 | 0.9593 | 0.9669 | 0.9684 |
| 0.0342 | 2.33 | 462 | 0.1291 | 0.9692 | 0.9686 | 0.9663 | 0.9675 | 0.9690 |
| 0.0375 | 2.67 | 528 | 0.1202 | 0.9706 | 0.9753 | 0.9623 | 0.9688 | 0.9702 |
| 0.0342 | 3.0 | 594 | 0.1191 | 0.9703 | 0.9769 | 0.96 | 0.9684 | 0.9698 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3
|