project-2 / README.md
dung6903's picture
End of training
e2080b7 verified
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: project-2
    results: []

project-2

This model is a fine-tuned version of vinai/phobert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4960
  • Accuracy: 0.8288
  • F1: 0.8286
  • Precision: 0.8303
  • Recall: 0.8288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5283 1.0 1407 0.4587 0.7804 0.7789 0.7883 0.7804
0.4276 2.0 2814 0.4844 0.7708 0.7649 0.8012 0.7708
0.3729 3.0 4221 0.4045 0.8216 0.8214 0.8232 0.8216
0.314 4.0 5628 0.5072 0.8116 0.8098 0.8236 0.8116
0.268 5.0 7035 0.5467 0.8036 0.8008 0.8215 0.8036
0.2162 6.0 8442 0.4960 0.8288 0.8286 0.8303 0.8288
0.1786 7.0 9849 0.5648 0.828 0.8280 0.8280 0.828
0.1514 8.0 11256 0.6146 0.8232 0.8231 0.8240 0.8232
0.127 9.0 12663 0.6901 0.8272 0.8270 0.8284 0.8272
0.1041 10.0 14070 0.7387 0.8256 0.8253 0.8276 0.8256

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0