File size: 2,363 Bytes
d1bda87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2080b7
 
 
 
 
d1bda87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3d26c
 
d1bda87
 
 
 
 
 
 
 
 
e2080b7
 
 
 
 
 
 
 
 
 
d1bda87
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: project-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# project-2

This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4960
- Accuracy: 0.8288
- F1: 0.8286
- Precision: 0.8303
- Recall: 0.8288

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5283        | 1.0   | 1407  | 0.4587          | 0.7804   | 0.7789 | 0.7883    | 0.7804 |
| 0.4276        | 2.0   | 2814  | 0.4844          | 0.7708   | 0.7649 | 0.8012    | 0.7708 |
| 0.3729        | 3.0   | 4221  | 0.4045          | 0.8216   | 0.8214 | 0.8232    | 0.8216 |
| 0.314         | 4.0   | 5628  | 0.5072          | 0.8116   | 0.8098 | 0.8236    | 0.8116 |
| 0.268         | 5.0   | 7035  | 0.5467          | 0.8036   | 0.8008 | 0.8215    | 0.8036 |
| 0.2162        | 6.0   | 8442  | 0.4960          | 0.8288   | 0.8286 | 0.8303    | 0.8288 |
| 0.1786        | 7.0   | 9849  | 0.5648          | 0.828    | 0.8280 | 0.8280    | 0.828  |
| 0.1514        | 8.0   | 11256 | 0.6146          | 0.8232   | 0.8231 | 0.8240    | 0.8232 |
| 0.127         | 9.0   | 12663 | 0.6901          | 0.8272   | 0.8270 | 0.8284    | 0.8272 |
| 0.1041        | 10.0  | 14070 | 0.7387          | 0.8256   | 0.8253 | 0.8276    | 0.8256 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0