|
|
|
|
|
import os |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
|
|
from Utils.JDC.model import JDCNet |
|
from Modules.hifigan import _tile, AdainResBlk1d |
|
import yaml |
|
|
|
|
|
class LearnedDownSample(nn.Module): |
|
def __init__(self, layer_type, dim_in): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
if self.layer_type == 'none': |
|
raise ValueError |
|
|
|
elif self.layer_type == 'timepreserve': |
|
raise ValueError |
|
|
|
elif self.layer_type == 'half': |
|
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class DownSample(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
elif self.layer_type == 'timepreserve': |
|
return F.avg_pool2d(x, (2, 1)) |
|
elif self.layer_type == 'half': |
|
if x.shape[-1] % 2 != 0: |
|
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) |
|
return F.avg_pool2d(x, 2) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
|
|
|
|
|
|
|
|
class ResBlk(nn.Module): |
|
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), |
|
normalize=False, downsample='none'): |
|
super().__init__() |
|
self.actv = actv |
|
self.normalize = normalize |
|
self.downsample = DownSample(downsample) |
|
self.downsample_res = LearnedDownSample(downsample, dim_in) |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out) |
|
|
|
def _build_weights(self, dim_in, dim_out): |
|
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) |
|
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) |
|
if self.normalize: |
|
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) |
|
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) |
|
if self.learned_sc: |
|
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def _shortcut(self, x): |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
if self.downsample: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def _residual(self, x): |
|
if self.normalize: |
|
x = self.norm1(x) |
|
x = self.actv(x) |
|
x = self.conv1(x) |
|
x = self.downsample_res(x) |
|
if self.normalize: |
|
x = self.norm2(x) |
|
x = self.actv(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._shortcut(x) + self._residual(x) |
|
return x / math.sqrt(2) |
|
|
|
|
|
class StyleEncoder(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): |
|
super().__init__() |
|
blocks = [] |
|
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] |
|
|
|
repeat_num = 4 |
|
for _ in range(repeat_num): |
|
dim_out = min(dim_in*2, max_conv_dim) |
|
blocks += [ResBlk(dim_in, dim_out, downsample='half')] |
|
dim_in = dim_out |
|
|
|
blocks += [nn.LeakyReLU(0.2)] |
|
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] |
|
|
|
|
|
|
|
blocks += [nn.LeakyReLU(0.2)] |
|
self.shared = nn.Sequential(*blocks) |
|
|
|
self.unshared = nn.Linear(dim_out, style_dim) |
|
|
|
def forward(self, x): |
|
h = self.shared(x) |
|
|
|
h = h.mean(3, keepdims=True) |
|
|
|
h = h.transpose(1, 3) |
|
s = self.unshared(h) |
|
|
|
|
|
return s |
|
|
|
|
|
class LinearNorm(torch.nn.Module): |
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): |
|
super(LinearNorm, self).__init__() |
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) |
|
|
|
torch.nn.init.xavier_uniform_( |
|
self.linear_layer.weight, |
|
gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
def forward(self, x): |
|
return self.linear_layer(x) |
|
|
|
|
|
class ResBlk1d(nn.Module): |
|
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), |
|
normalize=False, downsample='none', dropout_p=0.2): |
|
super().__init__() |
|
self.actv = actv |
|
self.normalize = normalize |
|
self.downsample_type = downsample |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out) |
|
self.dropout_p = dropout_p |
|
|
|
if self.downsample_type == 'none': |
|
self.pool = nn.Identity() |
|
else: |
|
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) |
|
|
|
def _build_weights(self, dim_in, dim_out): |
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) |
|
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) |
|
if self.normalize: |
|
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) |
|
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) |
|
if self.learned_sc: |
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def downsample(self, x): |
|
if self.downsample_type == 'none': |
|
return x |
|
else: |
|
if x.shape[-1] % 2 != 0: |
|
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) |
|
return F.avg_pool1d(x, 2) |
|
|
|
def _shortcut(self, x): |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
x = self.downsample(x) |
|
return x |
|
|
|
def _residual(self, x): |
|
if self.normalize: |
|
x = self.norm1(x) |
|
x = self.actv(x) |
|
x = F.dropout(x, p=self.dropout_p, training=self.training) |
|
|
|
x = self.conv1(x) |
|
x = self.pool(x) |
|
if self.normalize: |
|
x = self.norm2(x) |
|
|
|
x = self.actv(x) |
|
x = F.dropout(x, p=self.dropout_p, training=self.training) |
|
|
|
x = self.conv2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._shortcut(x) + self._residual(x) |
|
return x / math.sqrt(2) |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, -1) |
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) |
|
return x.transpose(1, -1) |
|
|
|
class TextEncoder(nn.Module): |
|
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): |
|
super().__init__() |
|
self.embedding = nn.Embedding(n_symbols, channels) |
|
|
|
padding = (kernel_size - 1) // 2 |
|
self.cnn = nn.ModuleList() |
|
for _ in range(depth): |
|
self.cnn.append(nn.Sequential( |
|
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), |
|
LayerNorm(channels), |
|
actv, |
|
nn.Dropout(0.2), |
|
)) |
|
|
|
|
|
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) |
|
|
|
def forward(self, x, input_lengths): |
|
x = self.embedding(x) |
|
x = x.transpose(1, 2) |
|
for c in self.cnn: |
|
x = c(x) |
|
x = x.transpose(1, 2) |
|
input_lengths = input_lengths.cpu().numpy() |
|
x = nn.utils.rnn.pack_padded_sequence( |
|
x, input_lengths, |
|
batch_first=True, |
|
enforce_sorted=False) |
|
self.lstm.flatten_parameters() |
|
x, _ = self.lstm(x) |
|
x, _ = nn.utils.rnn.pad_packed_sequence( |
|
x, batch_first=True) |
|
x = x.transpose(-1, -2) |
|
return x |
|
|
|
class AdaLayerNorm(nn.Module): |
|
|
|
|
|
|
|
def __init__(self, style_dim, channels=None, eps=1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.fc = nn.Linear(style_dim, 1024) |
|
|
|
def forward(self, x, s): |
|
h = self.fc(s.transpose(1, 2)) |
|
gamma = h[:, :, :512] |
|
beta = h[:, :, 512:1024] |
|
|
|
x = F.layer_norm(x.transpose(1, 2), (512, ), eps=self.eps) |
|
x = (1 + gamma) * x + beta |
|
return x |
|
|
|
class ProsodyPredictor(nn.Module): |
|
|
|
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): |
|
super().__init__() |
|
|
|
self.text_encoder = DurationEncoder(sty_dim=style_dim, |
|
d_model=d_hid, |
|
nlayers=nlayers, |
|
dropout=dropout) |
|
|
|
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) |
|
self.duration_proj = LinearNorm(d_hid, max_dur) |
|
|
|
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) |
|
self.F0 = nn.ModuleList() |
|
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) |
|
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) |
|
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) |
|
|
|
self.N = nn.ModuleList() |
|
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) |
|
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) |
|
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) |
|
|
|
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) |
|
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) |
|
|
|
def F0Ntrain(self, x, s): |
|
print(x.shape, s.shape, 'F)N T T T') |
|
x, _ = self.shared(x.transpose(1, 2)) |
|
|
|
x = x.transpose(1, 2) |
|
|
|
|
|
F0 = x |
|
|
|
for block in self.F0: |
|
print(f'LOOP {F0.shape=} {s.shape=}\n') |
|
|
|
F0 = block(F0, s) |
|
F0 = self.F0_proj(F0) |
|
print('____________________________2nd F0Ntra') |
|
N = x |
|
|
|
for block in self.N: |
|
N = block(N, s) |
|
N = self.N_proj(N) |
|
|
|
return F0, N |
|
|
|
class DurationEncoder(nn.Module): |
|
|
|
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): |
|
super().__init__() |
|
self.lstms = nn.ModuleList() |
|
for _ in range(nlayers): |
|
self.lstms.append(nn.LSTM(d_model + sty_dim, |
|
d_model // 2, |
|
num_layers=1, |
|
batch_first=True, |
|
bidirectional=True, |
|
dropout=dropout)) |
|
self.lstms.append(AdaLayerNorm(sty_dim, d_model)) |
|
|
|
|
|
self.dropout = dropout |
|
self.d_model = d_model |
|
self.sty_dim = sty_dim |
|
|
|
def forward(self, x, style, text_lengths): |
|
|
|
|
|
|
|
style = _tile(style, length=x.shape[2]) |
|
|
|
x = torch.cat([x, style], axis=1) |
|
|
|
input_lengths = text_lengths.cpu().numpy() |
|
|
|
for block in self.lstms: |
|
if isinstance(block, AdaLayerNorm): |
|
|
|
print(f'\n=========ENTER ADALAYNORM L479 models.py {x.shape=}, {style.shape=}') |
|
x = block(x, style) |
|
x = torch.cat([x.transpose(1, 2), style], axis=1) |
|
|
|
else: |
|
|
|
x = x.transpose(-1, -2) |
|
x = nn.utils.rnn.pack_padded_sequence( |
|
x, input_lengths, batch_first=True, enforce_sorted=False) |
|
block.flatten_parameters() |
|
x, _ = block(x) |
|
x, _ = nn.utils.rnn.pad_packed_sequence( |
|
x, batch_first=True) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = x.transpose(-1, -2) |
|
return x.transpose(-1, -2) |
|
|
|
|
|
|
|
|
|
def load_F0_models(path): |
|
|
|
|
|
F0_model = JDCNet(num_class=1, seq_len=192) |
|
path = path.replace('.t7', '.pth') |
|
params = torch.load(path, map_location='cpu')['net'] |
|
F0_model.load_state_dict(params) |
|
_ = F0_model.train() |
|
|
|
return F0_model |