File size: 13,643 Bytes
4e4c64c
 
 
 
 
 
 
ac6157a
d353343
4e4c64c
d353343
a032fce
4e4c64c
 
 
 
 
 
 
 
64ccdd0
 
4e4c64c
64ccdd0
 
4e4c64c
 
 
 
ac6157a
4e4c64c
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
bb2cd38
62ef231
bb2cd38
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
62ef231
 
 
4e4c64c
 
 
 
 
 
62ef231
 
 
64ccdd0
62ef231
4e4c64c
64ccdd0
 
4e4c64c
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ccdd0
4e4c64c
 
 
64ccdd0
4e4c64c
 
 
64ccdd0
 
 
4e4c64c
 
 
 
 
 
 
 
62ef231
 
 
 
4e4c64c
 
62ef231
4e4c64c
 
62ef231
 
 
4e4c64c
62ef231
4e4c64c
62ef231
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353343
 
 
 
4e4c64c
62ef231
d353343
62ef231
4e4c64c
d353343
62ef231
d353343
4e4c64c
d353343
 
 
4e4c64c
 
 
 
d353343
 
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ccdd0
d353343
 
62ef231
d353343
64ccdd0
62ef231
d353343
4e4c64c
 
 
 
62ef231
 
 
 
64ccdd0
4e4c64c
62ef231
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fd0c3
4e4c64c
 
 
 
d353343
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#coding:utf-8

import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, spectral_norm
# from Utils.ASR.models import ASRCNN
from Utils.JDC.model import JDCNet
from Modules.hifigan import _tile, AdainResBlk1d
import yaml


class LearnedDownSample(nn.Module):
    def __init__(self, layer_type, dim_in):
        super().__init__()
        self.layer_type = layer_type

        if self.layer_type == 'none':
            raise ValueError
            # self.conv = nn.Identity()
        elif self.layer_type == 'timepreserve':
            raise ValueError
            # self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
        elif self.layer_type == 'half':
            self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)

    def forward(self, x):
        return self.conv(x)


class DownSample(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        elif self.layer_type == 'timepreserve':
            return F.avg_pool2d(x, (2, 1))
        elif self.layer_type == 'half':
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool2d(x, 2)
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)





class ResBlk(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none'):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample = DownSample(downsample)
        self.downsample_res = LearnedDownSample(downsample, dim_in)
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        if self.downsample:
            x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = self.conv1(x)
        x = self.downsample_res(x)
        if self.normalize:
            x = self.norm2(x)
        x = self.actv(x)
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance


class StyleEncoder(nn.Module):

    #  for both acoustic & prosodic ref_s/p

    def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
        super().__init__()
        blocks = []
        blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]

        repeat_num = 4
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, downsample='half')]
            dim_in = dim_out

        blocks += [nn.LeakyReLU(0.2)]
        blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
        
        # blocks += [nn.AdaptiveAvgPool2d(1)]   # THIS AVERAGES THE TIME-FRAMES OF SPEAKER STYLE
        
        blocks += [nn.LeakyReLU(0.2)]
        self.shared = nn.Sequential(*blocks)

        self.unshared = nn.Linear(dim_out, style_dim)

    def forward(self, x):
        h = self.shared(x)  # [bs, 512, 1, 11]
        
        h = h.mean(3, keepdims=True)  # UN COMMENT FOR TIME INVARIANT GLOBAL SPEAKER STYLE
        # h = .7 * h + .25 * h.mean(3, keepdims=True)
        h = h.transpose(1, 3)
        s = self.unshared(h)
        
        
        return s


class LinearNorm(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)


class ResBlk1d(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none', dropout_p=0.2):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample_type = downsample
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)
        self.dropout_p = dropout_p
        
        if self.downsample_type == 'none':
            self.pool = nn.Identity()
        else:
            self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))

    def downsample(self, x):
        if self.downsample_type == 'none':
            return x
        else:
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool1d(x, 2)

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv1(x)
        x = self.pool(x)
        if self.normalize:
            x = self.norm2(x)
            
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)

class TextEncoder(nn.Module):
    def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
        super().__init__()
        self.embedding = nn.Embedding(n_symbols, channels)

        padding = (kernel_size - 1) // 2
        self.cnn = nn.ModuleList()
        for _ in range(depth):
            self.cnn.append(nn.Sequential(
                weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
                LayerNorm(channels),
                actv,
                nn.Dropout(0.2),
            ))
        # self.cnn = nn.Sequential(*self.cnn)

        self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)

    def forward(self, x, input_lengths):
        x = self.embedding(x)  # [B, T, emb]
        x = x.transpose(1, 2)  # [B, emb, T]
        for c in self.cnn:
            x = c(x)    
        x = x.transpose(1, 2)  # [B, T, chn]
        input_lengths = input_lengths.cpu().numpy()
        x = nn.utils.rnn.pack_padded_sequence(
            x, input_lengths,
            batch_first=True,
            enforce_sorted=False)
        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        x, _ = nn.utils.rnn.pad_packed_sequence(
            x, batch_first=True)
        x = x.transpose(-1, -2)
        return x
    
class AdaLayerNorm(nn.Module):
    
    # only instantianted in DurationPredictor()
    
    def __init__(self, style_dim, channels=None, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.fc = nn.Linear(style_dim, 1024)

    def forward(self, x, s):
        h = self.fc(s.transpose(1, 2))  # has to be transposed due to interpolate needing the last dim to be frames
        gamma = h[:, :, :512]
        beta = h[:, :, 512:1024]
        
        x = F.layer_norm(x.transpose(1, 2), (512, ), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x  # [1, 75, 512]

class ProsodyPredictor(nn.Module):

    def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
        super().__init__() 
        
        self.text_encoder = DurationEncoder(sty_dim=style_dim, 
                                            d_model=d_hid,
                                            nlayers=nlayers, 
                                            dropout=dropout)

        self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.duration_proj = LinearNorm(d_hid, max_dur)
        
        self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.F0 = nn.ModuleList()
        self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))

        self.N = nn.ModuleList()
        self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        
        self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
        self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
    
    def F0Ntrain(self, x, s):
        print(x.shape, s.shape, 'F)N T T T')
        x, _ = self.shared(x.transpose(1, 2))  # [bs, time, ch] LSTM

        x = x.transpose(1, 2)  # [bs, ch, time]
        
        
        F0 = x
        
        for block in self.F0:
            print(f'LOOP {F0.shape=} {s.shape=}\n')
            # )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
            F0 = block(F0, s)  # This is an AdainResBlk1d expects conv1d dimensions
        F0 = self.F0_proj(F0)
        print('____________________________2nd F0Ntra')
        N = x
        
        for block in self.N:
            N = block(N, s)
        N = self.N_proj(N)
        
        return F0, N

class DurationEncoder(nn.Module):

    def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
        super().__init__()
        self.lstms = nn.ModuleList()
        for _ in range(nlayers):
            self.lstms.append(nn.LSTM(d_model + sty_dim, 
                                 d_model // 2, 
                                 num_layers=1, 
                                 batch_first=True, 
                                 bidirectional=True, 
                                 dropout=dropout))
            self.lstms.append(AdaLayerNorm(sty_dim, d_model))
        
        
        self.dropout = dropout
        self.d_model = d_model
        self.sty_dim = sty_dim

    def forward(self, x, style, text_lengths):

        # style = style[:, :, 0, :].transpose(2, 1)  # [bs, 128, 11]
        
        style = _tile(style, length=x.shape[2])  # replicate style vector to duration of txt - F.interpolate or cyclic/tile

        x = torch.cat([x, style], axis=1)  # [bs, 640, 75]

        input_lengths = text_lengths.cpu().numpy()
        
        for block in self.lstms:
            if isinstance(block, AdaLayerNorm):
                
                print(f'\n=========ENTER ADALAYNORM L479 models.py {x.shape=}, {style.shape=}')
                x = block(x, style)   # [bs, 75, 512]
                x = torch.cat([x.transpose(1, 2), style], axis=1) # [bs, 512, 75]

            else:
                # print(f'{x.shape=} ENTER LSTM')  # [bs, 640, 75]  LSTM reduce ch 640 -> 512
                x = x.transpose(-1, -2)
                x = nn.utils.rnn.pack_padded_sequence(
                    x, input_lengths, batch_first=True, enforce_sorted=False)
                block.flatten_parameters()
                x, _ = block(x)
                x, _ = nn.utils.rnn.pad_packed_sequence(
                    x, batch_first=True)
                x = F.dropout(x, p=self.dropout, training=self.training)
                x = x.transpose(-1, -2)
        return x.transpose(-1, -2)

    
    
    
def load_F0_models(path):
    # load F0 model

    F0_model = JDCNet(num_class=1, seq_len=192)
    path = path.replace('.t7', '.pth')
    params = torch.load(path, map_location='cpu')['net']
    F0_model.load_state_dict(params)
    _ = F0_model.train()
    
    return F0_model