#coding:utf-8 import os import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import weight_norm, spectral_norm # from Utils.ASR.models import ASRCNN from Utils.JDC.model import JDCNet from Modules.hifigan import _tile, AdainResBlk1d import yaml class LearnedDownSample(nn.Module): def __init__(self, layer_type, dim_in): super().__init__() self.layer_type = layer_type if self.layer_type == 'none': raise ValueError # self.conv = nn.Identity() elif self.layer_type == 'timepreserve': raise ValueError # self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) elif self.layer_type == 'half': self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) else: raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) def forward(self, x): return self.conv(x) class DownSample(nn.Module): def __init__(self, layer_type): super().__init__() self.layer_type = layer_type def forward(self, x): if self.layer_type == 'none': return x elif self.layer_type == 'timepreserve': return F.avg_pool2d(x, (2, 1)) elif self.layer_type == 'half': if x.shape[-1] % 2 != 0: x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) return F.avg_pool2d(x, 2) else: raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) class ResBlk(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize=False, downsample='none'): super().__init__() self.actv = actv self.normalize = normalize self.downsample = DownSample(downsample) self.downsample_res = LearnedDownSample(downsample, dim_in) self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = self.downsample(x) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) x = self.downsample_res(x) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, x): x = self._shortcut(x) + self._residual(x) return x / math.sqrt(2) # unit variance class StyleEncoder(nn.Module): # for both acoustic & prosodic ref_s/p def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): super().__init__() blocks = [] blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] repeat_num = 4 for _ in range(repeat_num): dim_out = min(dim_in*2, max_conv_dim) blocks += [ResBlk(dim_in, dim_out, downsample='half')] dim_in = dim_out blocks += [nn.LeakyReLU(0.2)] blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] # blocks += [nn.AdaptiveAvgPool2d(1)] # THIS AVERAGES THE TIME-FRAMES OF SPEAKER STYLE blocks += [nn.LeakyReLU(0.2)] self.shared = nn.Sequential(*blocks) self.unshared = nn.Linear(dim_out, style_dim) def forward(self, x): h = self.shared(x) # [bs, 512, 1, 11] h = h.mean(3, keepdims=True) # UN COMMENT FOR TIME INVARIANT GLOBAL SPEAKER STYLE # h = .7 * h + .25 * h.mean(3, keepdims=True) h = h.transpose(1, 3) s = self.unshared(h) return s class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ResBlk1d(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize=False, downsample='none', dropout_p=0.2): super().__init__() self.actv = actv self.normalize = normalize self.downsample_type = downsample self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) self.dropout_p = dropout_p if self.downsample_type == 'none': self.pool = nn.Identity() else: self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) def _build_weights(self, dim_in, dim_out): self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) if self.normalize: self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) def downsample(self, x): if self.downsample_type == 'none': return x else: if x.shape[-1] % 2 != 0: x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) return F.avg_pool1d(x, 2) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) x = self.downsample(x) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = F.dropout(x, p=self.dropout_p, training=self.training) x = self.conv1(x) x = self.pool(x) if self.normalize: x = self.norm2(x) x = self.actv(x) x = F.dropout(x, p=self.dropout_p, training=self.training) x = self.conv2(x) return x def forward(self, x): x = self._shortcut(x) + self._residual(x) return x / math.sqrt(2) # unit variance class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) class TextEncoder(nn.Module): def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): super().__init__() self.embedding = nn.Embedding(n_symbols, channels) padding = (kernel_size - 1) // 2 self.cnn = nn.ModuleList() for _ in range(depth): self.cnn.append(nn.Sequential( weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), LayerNorm(channels), actv, nn.Dropout(0.2), )) # self.cnn = nn.Sequential(*self.cnn) self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) def forward(self, x, input_lengths): x = self.embedding(x) # [B, T, emb] x = x.transpose(1, 2) # [B, emb, T] for c in self.cnn: x = c(x) x = x.transpose(1, 2) # [B, T, chn] input_lengths = input_lengths.cpu().numpy() x = nn.utils.rnn.pack_padded_sequence( x, input_lengths, batch_first=True, enforce_sorted=False) self.lstm.flatten_parameters() x, _ = self.lstm(x) x, _ = nn.utils.rnn.pad_packed_sequence( x, batch_first=True) x = x.transpose(-1, -2) return x class AdaLayerNorm(nn.Module): # only instantianted in DurationPredictor() def __init__(self, style_dim, channels=None, eps=1e-5): super().__init__() self.eps = eps self.fc = nn.Linear(style_dim, 1024) def forward(self, x, s): h = self.fc(s.transpose(1, 2)) # has to be transposed due to interpolate needing the last dim to be frames gamma = h[:, :, :512] beta = h[:, :, 512:1024] x = F.layer_norm(x.transpose(1, 2), (512, ), eps=self.eps) x = (1 + gamma) * x + beta return x # [1, 75, 512] class ProsodyPredictor(nn.Module): def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): super().__init__() self.text_encoder = DurationEncoder(sty_dim=style_dim, d_model=d_hid, nlayers=nlayers, dropout=dropout) self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) self.duration_proj = LinearNorm(d_hid, max_dur) self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) self.F0 = nn.ModuleList() self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) self.N = nn.ModuleList() self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) def F0Ntrain(self, x, s): print(x.shape, s.shape, 'F)N T T T') x, _ = self.shared(x.transpose(1, 2)) # [bs, time, ch] LSTM x = x.transpose(1, 2) # [bs, ch, time] F0 = x for block in self.F0: print(f'LOOP {F0.shape=} {s.shape=}\n') # )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128]) F0 = block(F0, s) # This is an AdainResBlk1d expects conv1d dimensions F0 = self.F0_proj(F0) print('____________________________2nd F0Ntra') N = x for block in self.N: N = block(N, s) N = self.N_proj(N) return F0, N class DurationEncoder(nn.Module): def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): super().__init__() self.lstms = nn.ModuleList() for _ in range(nlayers): self.lstms.append(nn.LSTM(d_model + sty_dim, d_model // 2, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout)) self.lstms.append(AdaLayerNorm(sty_dim, d_model)) self.dropout = dropout self.d_model = d_model self.sty_dim = sty_dim def forward(self, x, style, text_lengths): # style = style[:, :, 0, :].transpose(2, 1) # [bs, 128, 11] style = _tile(style, length=x.shape[2]) # replicate style vector to duration of txt - F.interpolate or cyclic/tile x = torch.cat([x, style], axis=1) # [bs, 640, 75] input_lengths = text_lengths.cpu().numpy() for block in self.lstms: if isinstance(block, AdaLayerNorm): print(f'\n=========ENTER ADALAYNORM L479 models.py {x.shape=}, {style.shape=}') x = block(x, style) # [bs, 75, 512] x = torch.cat([x.transpose(1, 2), style], axis=1) # [bs, 512, 75] else: # print(f'{x.shape=} ENTER LSTM') # [bs, 640, 75] LSTM reduce ch 640 -> 512 x = x.transpose(-1, -2) x = nn.utils.rnn.pack_padded_sequence( x, input_lengths, batch_first=True, enforce_sorted=False) block.flatten_parameters() x, _ = block(x) x, _ = nn.utils.rnn.pad_packed_sequence( x, batch_first=True) x = F.dropout(x, p=self.dropout, training=self.training) x = x.transpose(-1, -2) return x.transpose(-1, -2) def load_F0_models(path): # load F0 model F0_model = JDCNet(num_class=1, seq_len=192) path = path.replace('.t7', '.pth') params = torch.load(path, map_location='cpu')['net'] F0_model.load_state_dict(params) _ = F0_model.train() return F0_model