req_mod_ner_modelv2 / README.md
denizspynk's picture
update model card README.md
05e8063
|
raw
history blame
4.36 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: req_mod_ner_modelv2
    results: []

req_mod_ner_modelv2

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7795
  • Precision: 0.5932
  • Recall: 0.6034
  • F1: 0.5983
  • Accuracy: 0.9193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 32

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 120 0.5525 0.6538 0.2931 0.4048 0.9007
No log 2.0 240 0.3596 0.5447 0.5776 0.5607 0.9120
No log 3.0 360 0.4229 0.5495 0.4310 0.4831 0.9031
No log 4.0 480 0.4091 0.5435 0.6466 0.5906 0.9185
0.2667 5.0 600 0.5476 0.6837 0.5776 0.6262 0.9233
0.2667 6.0 720 0.4703 0.5610 0.5948 0.5774 0.9185
0.2667 7.0 840 0.5904 0.5897 0.5948 0.5923 0.9185
0.2667 8.0 960 0.6285 0.5772 0.6121 0.5941 0.9177
0.0436 9.0 1080 0.7077 0.6095 0.5517 0.5792 0.9153
0.0436 10.0 1200 0.6974 0.5929 0.5776 0.5852 0.9177
0.0436 11.0 1320 0.6777 0.5205 0.6552 0.5802 0.9104
0.0436 12.0 1440 0.6601 0.6174 0.6121 0.6147 0.9201
0.0216 13.0 1560 0.6536 0.5809 0.6810 0.6270 0.9209
0.0216 14.0 1680 0.7329 0.5571 0.6724 0.6094 0.9153
0.0216 15.0 1800 0.7276 0.6809 0.5517 0.6095 0.9201
0.0216 16.0 1920 0.7243 0.6017 0.6121 0.6068 0.9209
0.0164 17.0 2040 0.6963 0.592 0.6379 0.6141 0.9217
0.0164 18.0 2160 0.7418 0.6071 0.5862 0.5965 0.9209
0.0164 19.0 2280 0.8015 0.6667 0.5690 0.6140 0.9241
0.0164 20.0 2400 0.7075 0.5168 0.6638 0.5811 0.9136
0.0098 21.0 2520 0.7847 0.6262 0.5776 0.6009 0.9201
0.0098 22.0 2640 0.7588 0.5812 0.5862 0.5837 0.9177
0.0098 23.0 2760 0.7439 0.5530 0.6293 0.5887 0.9153
0.0098 24.0 2880 0.7619 0.5932 0.6034 0.5983 0.9169
0.0067 25.0 3000 0.7605 0.5948 0.5948 0.5948 0.9201
0.0067 26.0 3120 0.7635 0.5847 0.5948 0.5897 0.9185
0.0067 27.0 3240 0.7732 0.6106 0.5948 0.6026 0.9193
0.0067 28.0 3360 0.7727 0.5897 0.5948 0.5923 0.9185
0.0067 29.0 3480 0.7748 0.6 0.5948 0.5974 0.9201
0.006 30.0 3600 0.7759 0.5932 0.6034 0.5983 0.9193
0.006 31.0 3720 0.7792 0.5932 0.6034 0.5983 0.9193
0.006 32.0 3840 0.7795 0.5932 0.6034 0.5983 0.9193

Framework versions

  • Transformers 4.24.0
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.11.0