Commit
·
05e8063
1
Parent(s):
a956294
update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,8 +43,8 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 0.0001
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
@@ -54,38 +54,38 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log | 1.0 |
|
58 |
-
| No log | 2.0 |
|
59 |
-
|
|
60 |
-
|
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7795
|
23 |
+
- Precision: 0.5932
|
24 |
+
- Recall: 0.6034
|
25 |
+
- F1: 0.5983
|
26 |
+
- Accuracy: 0.9193
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 120 | 0.5525 | 0.6538 | 0.2931 | 0.4048 | 0.9007 |
|
58 |
+
| No log | 2.0 | 240 | 0.3596 | 0.5447 | 0.5776 | 0.5607 | 0.9120 |
|
59 |
+
| No log | 3.0 | 360 | 0.4229 | 0.5495 | 0.4310 | 0.4831 | 0.9031 |
|
60 |
+
| No log | 4.0 | 480 | 0.4091 | 0.5435 | 0.6466 | 0.5906 | 0.9185 |
|
61 |
+
| 0.2667 | 5.0 | 600 | 0.5476 | 0.6837 | 0.5776 | 0.6262 | 0.9233 |
|
62 |
+
| 0.2667 | 6.0 | 720 | 0.4703 | 0.5610 | 0.5948 | 0.5774 | 0.9185 |
|
63 |
+
| 0.2667 | 7.0 | 840 | 0.5904 | 0.5897 | 0.5948 | 0.5923 | 0.9185 |
|
64 |
+
| 0.2667 | 8.0 | 960 | 0.6285 | 0.5772 | 0.6121 | 0.5941 | 0.9177 |
|
65 |
+
| 0.0436 | 9.0 | 1080 | 0.7077 | 0.6095 | 0.5517 | 0.5792 | 0.9153 |
|
66 |
+
| 0.0436 | 10.0 | 1200 | 0.6974 | 0.5929 | 0.5776 | 0.5852 | 0.9177 |
|
67 |
+
| 0.0436 | 11.0 | 1320 | 0.6777 | 0.5205 | 0.6552 | 0.5802 | 0.9104 |
|
68 |
+
| 0.0436 | 12.0 | 1440 | 0.6601 | 0.6174 | 0.6121 | 0.6147 | 0.9201 |
|
69 |
+
| 0.0216 | 13.0 | 1560 | 0.6536 | 0.5809 | 0.6810 | 0.6270 | 0.9209 |
|
70 |
+
| 0.0216 | 14.0 | 1680 | 0.7329 | 0.5571 | 0.6724 | 0.6094 | 0.9153 |
|
71 |
+
| 0.0216 | 15.0 | 1800 | 0.7276 | 0.6809 | 0.5517 | 0.6095 | 0.9201 |
|
72 |
+
| 0.0216 | 16.0 | 1920 | 0.7243 | 0.6017 | 0.6121 | 0.6068 | 0.9209 |
|
73 |
+
| 0.0164 | 17.0 | 2040 | 0.6963 | 0.592 | 0.6379 | 0.6141 | 0.9217 |
|
74 |
+
| 0.0164 | 18.0 | 2160 | 0.7418 | 0.6071 | 0.5862 | 0.5965 | 0.9209 |
|
75 |
+
| 0.0164 | 19.0 | 2280 | 0.8015 | 0.6667 | 0.5690 | 0.6140 | 0.9241 |
|
76 |
+
| 0.0164 | 20.0 | 2400 | 0.7075 | 0.5168 | 0.6638 | 0.5811 | 0.9136 |
|
77 |
+
| 0.0098 | 21.0 | 2520 | 0.7847 | 0.6262 | 0.5776 | 0.6009 | 0.9201 |
|
78 |
+
| 0.0098 | 22.0 | 2640 | 0.7588 | 0.5812 | 0.5862 | 0.5837 | 0.9177 |
|
79 |
+
| 0.0098 | 23.0 | 2760 | 0.7439 | 0.5530 | 0.6293 | 0.5887 | 0.9153 |
|
80 |
+
| 0.0098 | 24.0 | 2880 | 0.7619 | 0.5932 | 0.6034 | 0.5983 | 0.9169 |
|
81 |
+
| 0.0067 | 25.0 | 3000 | 0.7605 | 0.5948 | 0.5948 | 0.5948 | 0.9201 |
|
82 |
+
| 0.0067 | 26.0 | 3120 | 0.7635 | 0.5847 | 0.5948 | 0.5897 | 0.9185 |
|
83 |
+
| 0.0067 | 27.0 | 3240 | 0.7732 | 0.6106 | 0.5948 | 0.6026 | 0.9193 |
|
84 |
+
| 0.0067 | 28.0 | 3360 | 0.7727 | 0.5897 | 0.5948 | 0.5923 | 0.9185 |
|
85 |
+
| 0.0067 | 29.0 | 3480 | 0.7748 | 0.6 | 0.5948 | 0.5974 | 0.9201 |
|
86 |
+
| 0.006 | 30.0 | 3600 | 0.7759 | 0.5932 | 0.6034 | 0.5983 | 0.9193 |
|
87 |
+
| 0.006 | 31.0 | 3720 | 0.7792 | 0.5932 | 0.6034 | 0.5983 | 0.9193 |
|
88 |
+
| 0.006 | 32.0 | 3840 | 0.7795 | 0.5932 | 0.6034 | 0.5983 | 0.9193 |
|
89 |
|
90 |
|
91 |
### Framework versions
|