arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2305.15377
2023-05-24T17:37:33Z
Uncovering and Quantifying Social Biases in Code Generation
[ "Yan Liu", "Xiaokang Chen", "Yan Gao", "Zhe Su", "Fengji Zhang", "Daoguang Zan", "Jian-Guang Lou", "Pin-Yu Chen", "Tsung-Yi Ho" ]
With the popularity of automatic code generation tools, such as Copilot, the study of the potential hazards of these tools is gaining importance. In this work, we explore the social bias problem in pre-trained code generation models. We propose a new paradigm to construct code prompts and successfully uncover social biases in code generation models. To quantify the severity of social biases in generated code, we develop a dataset along with three metrics to evaluate the overall social bias and fine-grained unfairness across different demographics. Experimental results on three pre-trained code generation models (Codex, InCoder, and CodeGen) with varying sizes, reveal severe social biases. Moreover, we conduct analysis to provide useful insights for further choice of code generation models with low social bias. (This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.)
[ "cs.CL" ]
false
2305.15380
2023-05-24T17:40:20Z
Sentiment Analysis Using Aligned Word Embeddings for Uralic Languages
[ "Khalid Alnajjar", "Mika Hämäläinen", "Jack Rueter" ]
In this paper, we present an approach for translating word embeddings from a majority language into 4 minority languages: Erzya, Moksha, Udmurt and Komi-Zyrian. Furthermore, we align these word embeddings and present a novel neural network model that is trained on English data to conduct sentiment analysis and then applied on endangered language data through the aligned word embeddings. To test our model, we annotated a small sentiment analysis corpus for the 4 endangered languages and Finnish. Our method reached at least 56\% accuracy for each endangered language. The models and the sentiment corpus will be released together with this paper. Our research shows that state-of-the-art neural models can be used with endangered languages with the only requirement being a dictionary between the endangered language and a majority language.
[ "cs.CL" ]
false
2305.15389
2023-05-24T17:51:44Z
Comparing Humans and Models on a Similar Scale: Towards Cognitive Gender Bias Evaluation in Coreference Resolution
[ "Gili Lior", "Gabriel Stanovsky" ]
Spurious correlations were found to be an important factor explaining model performance in various NLP tasks (e.g., gender or racial artifacts), often considered to be ''shortcuts'' to the actual task. However, humans tend to similarly make quick (and sometimes wrong) predictions based on societal and cognitive presuppositions. In this work we address the question: can we quantify the extent to which model biases reflect human behaviour? Answering this question will help shed light on model performance and provide meaningful comparisons against humans. We approach this question through the lens of the dual-process theory for human decision-making. This theory differentiates between an automatic unconscious (and sometimes biased) ''fast system'' and a ''slow system'', which when triggered may revisit earlier automatic reactions. We make several observations from two crowdsourcing experiments of gender bias in coreference resolution, using self-paced reading to study the ''fast'' system, and question answering to study the ''slow'' system under a constrained time setting. On real-world data humans make $\sim$3\% more gender-biased decisions compared to models, while on synthetic data models are $\sim$12\% more biased.
[ "cs.CL" ]
false
2305.15501
2023-05-24T18:42:45Z
Deriving Language Models from Masked Language Models
[ "Lucas Torroba Hennigen", "Yoon Kim" ]
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions from MLMs, focusing on distributions over two tokens, which makes it possible to calculate exact distributional properties. We find that an approach based on identifying joints whose conditionals are closest to those of the MLM works well and outperforms existing Markov random field-based approaches. We further find that this derived model's conditionals can even occasionally outperform the original MLM's conditionals.
[ "cs.CL" ]
false
2305.15516
2023-05-24T19:14:57Z
Free Lunch for Efficient Textual Commonsense Integration in Language Models
[ "Wanyun Cui", "Xingran Chen" ]
Recent years have witnessed the emergence of textual commonsense knowledge bases, aimed at providing more nuanced and context-rich knowledge. The integration of external commonsense into language models has been shown to be a key enabler in advancing the state-of-the-art for a wide range of NLP tasks. However, incorporating textual commonsense descriptions is computationally expensive, as compared to encoding conventional symbolic knowledge. In this paper, we propose a method to improve its efficiency without modifying the model. We group training samples with similar commonsense descriptions into a single batch, thus reusing the encoded description across multiple samples. One key observation is that the upper bound of batch partitioning can be reduced to the classic {\it graph k-cut problem}. Consequently, we propose a spectral clustering-based algorithm to solve this problem. Extensive experiments illustrate that the proposed batch partitioning approach effectively reduces the computational cost while preserving performance. The efficiency improvement is more pronounced on larger datasets and on devices with more memory capacity, attesting to its practical utility for large-scale applications.
[ "cs.CL" ]
false
2305.15520
2023-05-24T19:17:13Z
Exploring Automatically Perturbed Natural Language Explanations in Relation Extraction
[ "Wanyun Cui", "Xingran Chen" ]
Previous research has demonstrated that natural language explanations provide valuable inductive biases that guide models, thereby improving the generalization ability and data efficiency. In this paper, we undertake a systematic examination of the effectiveness of these explanations. Remarkably, we find that corrupted explanations with diminished inductive biases can achieve competitive or superior performance compared to the original explanations. Our findings furnish novel insights into the characteristics of natural language explanations in the following ways: (1) the impact of explanations varies across different training styles and datasets, with previously believed improvements primarily observed in frozen language models. (2) While previous research has attributed the effect of explanations solely to their inductive biases, our study shows that the effect persists even when the explanations are completely corrupted. We propose that the main effect is due to the provision of additional context space. (3) Utilizing the proposed automatic perturbed context, we were able to attain comparable results to annotated explanations, but with a significant increase in computational efficiency, 20-30 times faster.
[ "cs.CL" ]
false
2305.15533
2023-05-24T19:37:23Z
Automated Refugee Case Analysis: An NLP Pipeline for Supporting Legal Practitioners
[ "Claire Barale", "Michael Rovatsos", "Nehal Bhuta" ]
In this paper, we introduce an end-to-end pipeline for retrieving, processing, and extracting targeted information from legal cases. We investigate an under-studied legal domain with a case study on refugee law in Canada. Searching case law for past similar cases is a key part of legal work for both lawyers and judges, the potential end-users of our prototype. While traditional named-entity recognition labels such as dates provide meaningful information in legal work, we propose to extend existing models and retrieve a total of 19 useful categories of items from refugee cases. After creating a novel data set of cases, we perform information extraction based on state-of-the-art neural named-entity recognition (NER). We test different architectures including two transformer models, using contextual and non-contextual embeddings, and compare general purpose versus domain-specific pre-training. The results demonstrate that models pre-trained on legal data perform best despite their smaller size, suggesting that domain matching had a larger effect than network architecture. We achieve a F1 score above 90% on five of the targeted categories and over 80% on four further categories.
[ "cs.CL" ]
false
2305.15582
2023-05-24T21:36:15Z
Balancing Effect of Training Dataset Distribution of Multiple Styles for Multi-Style Text Transfer
[ "Debarati Das", "David Ma", "Dongyeop Kang" ]
Text style transfer is an exciting task within the field of natural language generation that is often plagued by the need for high-quality paired datasets. Furthermore, training a model for multi-attribute text style transfer requires datasets with sufficient support across all combinations of the considered stylistic attributes, adding to the challenges of training a style transfer model. This paper explores the impact of training data input diversity on the quality of the generated text from the multi-style transfer model. We construct a pseudo-parallel dataset by devising heuristics to adjust the style distribution in the training samples. We balance our training dataset using marginal and joint distributions to train our style transfer models. We observe that a balanced dataset produces more effective control effects over multiple styles than an imbalanced or skewed one. Through quantitative analysis, we explore the impact of multiple style distributions in training data on style-transferred output. These findings will better inform the design of style-transfer datasets.
[ "cs.CL" ]
false
2305.15605
2023-05-24T22:34:01Z
Revisiting Sentence Union Generation as a Testbed for Text Consolidation
[ "Eran Hirsch", "Valentina Pyatkin", "Ruben Wolhandler", "Avi Caciularu", "Asi Shefer", "Ido Dagan" ]
Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models' consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
[ "cs.CL" ]
false
2305.14590
2023-05-24T00:07:40Z
RE$^2$: Region-Aware Relation Extraction from Visually Rich Documents
[ "Pritika Ramu", "Sijia Wang", "Lalla Mouatadid", "Joy Rimchala", "Lifu Huang" ]
Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose REgion-Aware Relation Extraction (RE$^2$) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. Extensive experiments across various datasets, languages and domains demonstrate the superiority of our proposed approach.
[ "cs.CL", "cs.AI" ]
false
2305.14592
2023-05-24T00:17:36Z
Instruction Tuning with Lexicons for Zero-Shot Style Classification
[ "Ruohao Guo", "Wei Xu", "Alan Ritter" ]
Style is used to convey authors' intentions and attitudes. Despite the success of large pre-trained language models on style classification, prior work relies on fine-tuning with labeled examples. Prompting large language models to classify style without fine-tuning is challenging because language styles can be difficult to define. In this study, we investigate the effectiveness of style lexicons as a means for instructing language models how to identify new styles that are unseen during training. Our experiments show that lexicon-based instructions improve transfer zero-shot performance significantly. We will release our code and data.
[ "cs.CL", "cs.LG" ]
false
2305.14618
2023-05-24T01:35:10Z
Abductive Commonsense Reasoning Exploiting Mutually Exclusive Explanations
[ "Wenting Zhao", "Justin T. Chiu", "Claire Cardie", "Alexander M. Rush" ]
Abductive reasoning aims to find plausible explanations for an event. This style of reasoning is critical for commonsense tasks where there are often multiple plausible explanations. Existing approaches for abductive reasoning in natural language processing (NLP) often rely on manually generated annotations for supervision; however, such annotations can be subjective and biased. Instead of using direct supervision, this work proposes an approach for abductive commonsense reasoning that exploits the fact that only a subset of explanations is correct for a given context. The method uses posterior regularization to enforce a mutual exclusion constraint, encouraging the model to learn the distinction between fluent explanations and plausible ones. We evaluate our approach on a diverse set of abductive reasoning datasets; experimental results show that our approach outperforms or is comparable to directly applying pretrained language models in a zero-shot manner and other knowledge-augmented zero-shot methods.
[ "cs.CL", "cs.AI" ]
false
2305.14622
2023-05-24T01:40:57Z
EXnet: Efficient In-context Learning for Data-less Text classification
[ "Debaditya Shome", "Kuldeep Yadav" ]
Large pre-trained language models (PLMs) have made significant progress in encoding world knowledge and spawned a new set of learning paradigms including zero-shot, few-shot, and in-context learning. Many language tasks can be modeled as a set of prompts (for example, is this text about geography?) and language models can provide binary answers, i.e., Yes or No. There is evidence to suggest that the next-word prediction used by many PLMs does not align well with zero-shot paradigms. Therefore, PLMs are fine-tuned as a question-answering system. In-context learning extends zero-shot learning by incorporating prompts and examples, resulting in increased task accuracy. Our paper presents EXnet, a model specifically designed to perform in-context learning without any limitations on the number of examples. We argue that in-context learning is an effective method to increase task accuracy, and providing examples facilitates cross-task generalization, especially when it comes to text classification tasks. With extensive experiments, we show that even our smallest model (15M parameters) generalizes to several unseen classification tasks and domains.
[ "cs.CL", "cs.LG" ]
false
2305.14688
2023-05-24T03:51:31Z
ExpertPrompting: Instructing Large Language Models to be Distinguished Experts
[ "Benfeng Xu", "An Yang", "Junyang Lin", "Quan Wang", "Chang Zhou", "Yongdong Zhang", "Zhendong Mao" ]
The answering quality of an aligned large language model (LLM) can be drastically improved if treated with proper crafting of prompts. In this paper, we propose ExpertPrompting to elicit the potential of LLMs to answer as distinguished experts. We first utilize In-Context Learning to automatically synthesize detailed and customized descriptions of the expert identity for each specific instruction, and then ask LLMs to provide answer conditioned on such agent background. Based on this augmented prompting strategy, we produce a new set of instruction-following data using GPT-3.5, and train a competitive open-source chat assistant called ExpertLLaMA. We employ GPT4-based evaluation to show that 1) the expert data is of significantly higher quality than vanilla answers, and 2) ExpertLLaMA outperforms existing open-source opponents and achieves 96\% of the original ChatGPT's capability. All data and the ExpertLLaMA model will be made publicly available at \url{https://github.com/OFA-Sys/ExpertLLaMA}.
[ "cs.CL", "cs.AI" ]
false
2305.14693
2023-05-24T03:53:43Z
Have Large Language Models Developed a Personality?: Applicability of Self-Assessment Tests in Measuring Personality in LLMs
[ "Xiaoyang Song", "Akshat Gupta", "Kiyan Mohebbizadeh", "Shujie Hu", "Anant Singh" ]
Have Large Language Models (LLMs) developed a personality? The short answer is a resounding "We Don't Know!". In this paper, we show that we do not yet have the right tools to measure personality in language models. Personality is an important characteristic that influences behavior. As LLMs emulate human-like intelligence and performance in various tasks, a natural question to ask is whether these models have developed a personality. Previous works have evaluated machine personality through self-assessment personality tests, which are a set of multiple-choice questions created to evaluate personality in humans. A fundamental assumption here is that human personality tests can accurately measure personality in machines. In this paper, we investigate the emergence of personality in five LLMs of different sizes ranging from 1.5B to 30B. We propose the Option-Order Symmetry property as a necessary condition for the reliability of these self-assessment tests. Under this condition, the answer to self-assessment questions is invariant to the order in which the options are presented. We find that many LLMs personality test responses do not preserve option-order symmetry. We take a deeper look at LLMs test responses where option-order symmetry is preserved to find that in these cases, LLMs do not take into account the situational statement being tested and produce the exact same answer irrespective of the situation being tested. We also identify the existence of inherent biases in these LLMs which is the root cause of the aforementioned phenomenon and makes self-assessment tests unreliable. These observations indicate that self-assessment tests are not the correct tools to measure personality in LLMs. Through this paper, we hope to draw attention to the shortcomings of current literature in measuring personality in LLMs and call for developing tools for machine personality measurement.
[ "cs.CL", "cs.LG" ]
false
2305.14701
2023-05-24T04:11:59Z
Modeling rapid language learning by distilling Bayesian priors into artificial neural networks
[ "R. Thomas McCoy", "Thomas L. Griffiths" ]
Humans can learn languages from remarkably little experience. Developing computational models that explain this ability has been a major challenge in cognitive science. Bayesian models that build in strong inductive biases - factors that guide generalization - have been successful at explaining how humans might generalize from few examples in controlled settings but are usually too restrictive to be tractably applied to more naturalistic data. By contrast, neural networks have flexible representations that allow them to learn well from naturalistic data but require many more examples than humans receive. We show that learning from limited naturalistic data is possible with an approach that combines the strong inductive biases of a Bayesian model with the flexible representations of a neural network. This approach works by distilling a Bayesian model's biases into a neural network. Like a Bayesian model, the resulting system can learn formal linguistic patterns from a small number of examples. Like a neural network, it can also learn aspects of English syntax from a corpus of natural language - and it outperforms a standard neural network at acquiring the linguistic phenomena of recursion and priming. Bridging the divide between Bayesian models and neural networks makes it possible to handle a broader range of learning scenarios than either approach can handle on its own.
[ "cs.CL", "cs.AI" ]
false
2305.14717
2023-05-24T04:38:29Z
Exploiting Correlations Between Contexts and Definitions with Multiple Definition Modeling
[ "Linhan Zhang", "Qian Chen", "Wen Wang", "Yuxin Jiang", "Bing Li", "Wei Wang", "Xin Cao" ]
Definition modeling is an important task in advanced natural language applications such as understanding and conversation. Since its introduction, it focus on generating one definition for a target word or phrase in a given context, which we refer to as Single Definition Modeling (SDM). However, this approach does not adequately model the correlations and patterns among different contexts and definitions of words. In addition, the creation of a training dataset for SDM requires significant human expertise and effort. In this paper, we carefully design a new task called Multiple Definition Modeling (MDM) that pool together all contexts and definition of target words. We demonstrate the ease of creating a model as well as multiple training sets automatically. % In the experiments, we demonstrate and analyze the benefits of MDM, including improving SDM's performance by using MDM as the pretraining task and its comparable performance in the zero-shot setting.
[ "cs.CL", "cs.AI" ]
false
2305.14751
2023-05-24T05:53:38Z
DialogVCS: Robust Natural Language Understanding in Dialogue System Upgrade
[ "Zefan Cai", "Xin Zheng", "Tianyu Liu", "Xu Wang", "Haoran Meng", "Jiaqi Han", "Gang Yuan", "Binghuai Lin", "Baobao Chang", "Yunbo Cao" ]
In the constant updates of the product dialogue systems, we need to retrain the natural language understanding (NLU) model as new data from the real users would be merged into the existent data accumulated in the last updates. Within the newly added data, new intents would emerge and might have semantic entanglement with the existing intents, e.g. new intents that are semantically too specific or generic are actually subset or superset of some existing intents in the semantic space, thus impairing the robustness of the NLU model. As the first attempt to solve this problem, we setup a new benchmark consisting of 4 Dialogue Version Control dataSets (DialogVCS). We formulate the intent detection with imperfect data in the system update as a multi-label classification task with positive but unlabeled intents, which asks the models to recognize all the proper intents, including the ones with semantic entanglement, in the inference. We also propose comprehensive baseline models and conduct in-depth analyses for the benchmark, showing that the semantically entangled intents can be effectively recognized with an automatic workflow.
[ "cs.CL", "cs.AI" ]
false
2305.14842
2023-05-24T07:48:41Z
Exploring Sentiment Analysis Techniques in Natural Language Processing: A Comprehensive Review
[ "Karthick Prasad Gunasekaran" ]
Sentiment analysis (SA) is the automated process of detecting and understanding the emotions conveyed through written text. Over the past decade, SA has gained significant popularity in the field of Natural Language Processing (NLP). With the widespread use of social media and online platforms, SA has become crucial for companies to gather customer feedback and shape their marketing strategies. Additionally, researchers rely on SA to analyze public sentiment on various topics. In this particular research study, a comprehensive survey was conducted to explore the latest trends and techniques in SA. The survey encompassed a wide range of methods, including lexicon-based, graph-based, network-based, machine learning, deep learning, ensemble-based, rule-based, and hybrid techniques. The paper also addresses the challenges and opportunities in SA, such as dealing with sarcasm and irony, analyzing multi-lingual data, and addressing ethical concerns. To provide a practical case study, Twitter was chosen as one of the largest online social media platforms. Furthermore, the researchers shed light on the diverse application areas of SA, including social media, healthcare, marketing, finance, and politics. The paper also presents a comparative and comprehensive analysis of existing trends and techniques, datasets, and evaluation metrics. The ultimate goal is to offer researchers and practitioners a systematic review of SA techniques, identify existing gaps, and suggest possible improvements. This study aims to enhance the efficiency and accuracy of SA processes, leading to smoother and error-free outcomes.
[ "cs.CL", "cs.AI" ]
false
2305.14891
2023-05-24T08:41:23Z
Extracting Psychological Indicators Using Question Answering
[ "Luka Pavlović" ]
In this work, we propose a method for extracting text spans that may indicate one of the BIG5 psychological traits using a question-answering task with examples that have no answer for the asked question. We utilized the RoBERTa model fine-tuned on SQuAD 2.0 dataset. The model was further fine-tuned utilizing comments from Reddit. We examined the effect of the percentage of examples with no answer in the training dataset on the overall performance. The results obtained in this study are in line with the SQuAD 2.0 benchmark and present a good baseline for further research.
[ "cs.CL", "cs.CY" ]
false
2305.14917
2023-05-24T09:04:18Z
Structural Ambiguity and its Disambiguation in Language Model Based Parsers: the Case of Dutch Clause Relativization
[ "Gijs Wijnholds", "Michael Moortgat" ]
This paper addresses structural ambiguity in Dutch relative clauses. By investigating the task of disambiguation by grounding, we study how the presence of a prior sentence can resolve relative clause ambiguities. We apply this method to two parsing architectures in an attempt to demystify the parsing and language model components of two present-day neural parsers. Results show that a neurosymbolic parser, based on proof nets, is more open to data bias correction than an approach based on universal dependencies, although both setups suffer from a comparable initial data bias.
[ "cs.CL", "cs.AI" ]
false
2305.15024
2023-05-24T11:06:23Z
ChatAgri: Exploring Potentials of ChatGPT on Cross-linguistic Agricultural Text Classification
[ "Biao Zhao", "Weiqiang Jin", "Javier Del Ser", "Guang Yang" ]
In the era of sustainable smart agriculture, a massive amount of agricultural news text is being posted on the Internet, in which massive agricultural knowledge has been accumulated. In this context, it is urgent to explore effective text classification techniques for users to access the required agricultural knowledge with high efficiency. Mainstream deep learning approaches employing fine-tuning strategies on pre-trained language models (PLMs), have demonstrated remarkable performance gains over the past few years. Nonetheless, these methods still face many drawbacks that are complex to solve, including: 1. Limited agricultural training data due to the expensive-cost and labour-intensive annotation; 2. Poor domain transferability, especially of cross-linguistic ability; 3. Complex and expensive large models deployment.Inspired by the extraordinary success brought by the recent ChatGPT (e.g. GPT-3.5, GPT-4), in this work, we systematically investigate and explore the capability and utilization of ChatGPT applying to the agricultural informatization field. ....(shown in article).... Code has been released on Github https://github.com/albert-jin/agricultural_textual_classification_ChatGPT.
[ "cs.CL", "cs.AI" ]
false
2305.15048
2023-05-24T11:38:39Z
Ranger: A Toolkit for Effect-Size Based Multi-Task Evaluation
[ "Mete Sertkan", "Sophia Althammer", "Sebastian Hofstätter" ]
In this paper, we introduce Ranger - a toolkit to facilitate the easy use of effect-size-based meta-analysis for multi-task evaluation in NLP and IR. We observed that our communities often face the challenge of aggregating results over incomparable metrics and scenarios, which makes conclusions and take-away messages less reliable. With Ranger, we aim to address this issue by providing a task-agnostic toolkit that combines the effect of a treatment on multiple tasks into one statistical evaluation, allowing for comparison of metrics and computation of an overall summary effect. Our toolkit produces publication-ready forest plots that enable clear communication of evaluation results over multiple tasks. Our goal with the ready-to-use Ranger toolkit is to promote robust, effect-size-based evaluation and improve evaluation standards in the community. We provide two case studies for common IR and NLP settings to highlight Ranger's benefits.
[ "cs.CL", "cs.IR" ]
false
2305.15053
2023-05-24T11:43:40Z
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
[ "Kevin Lin", "Kyle Lo", "Joseph E. Gonzalez", "Dan Klein" ]
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
[ "cs.CL", "cs.IR" ]
false
2305.15075
2023-05-24T11:56:01Z
HuatuoGPT, towards Taming Language Model to Be a Doctor
[ "Hongbo Zhang", "Junying Chen", "Feng Jiang", "Fei Yu", "Zhihong Chen", "Jianquan Li", "Guiming Chen", "Xiangbo Wu", "Zhiyi Zhang", "Qingying Xiao", "Xiang Wan", "Benyou Wang", "Haizhou Li" ]
In this paper, we present HuatuoGPT, a large language model (LLM) for medical consultation. The core recipe of HuatuoGPT is to leverage both \textit{distilled data from ChatGPT} and \textit{real-world data from doctors} in the supervised fine-tuned stage. The responses of ChatGPT are usually detailed, well-presented and informative while it cannot perform like a doctor in many aspects, e.g. for integrative diagnosis. We argue that real-world data from doctors would be complementary to distilled data in the sense the former could tame a distilled language model to perform like doctors. To better leverage the strengths of both data, we train a reward model to align the language model with the merits that both data bring, following an RLAIF (reinforced learning from AI feedback) fashion. To evaluate and benchmark the models, we propose a comprehensive evaluation scheme (including automatic and manual metrics). Experimental results demonstrate that HuatuoGPT achieves state-of-the-art results in performing medical consultation among open-source LLMs in GPT-4 evaluation, human evaluation, and medical benchmark datasets. It is worth noting that by using additional real-world data and RLAIF, the distilled language model (i.e., HuatuoGPT) outperforms its teacher model ChatGPT in most cases. Our code, data, and models are publicly available at \url{https://github.com/FreedomIntelligence/HuatuoGPT}. The online demo is available at \url{https://www.HuatuoGPT.cn/}.
[ "cs.CL", "cs.AI" ]
false
2305.15130
2023-05-24T13:25:20Z
On Degrees of Freedom in Defining and Testing Natural Language Understanding
[ "Saku Sugawara", "Shun Tsugita" ]
Natural language understanding (NLU) studies often exaggerate or underestimate the capabilities of systems, thereby limiting the reproducibility of their findings. These erroneous evaluations can be attributed to the difficulty of defining and testing NLU adequately. In this position paper, we reconsider this challenge by identifying two types of researcher degrees of freedom. We revisit Turing's original interpretation of the Turing test and indicate that an NLU test does not provide an operational definition; it merely provides inductive evidence that the test subject understands the language sufficiently well to meet stakeholder objectives. In other words, stakeholders are free to arbitrarily define NLU through their objectives. To use the test results as inductive evidence, stakeholders must carefully assess if the interpretation of test scores is valid or not. However, designing and using NLU tests involve other degrees of freedom, such as specifying target skills and defining evaluation metrics. As a result, achieving consensus among stakeholders becomes difficult. To resolve this issue, we propose a validity argument, which is a framework comprising a series of validation criteria across test components. By demonstrating that current practices in NLU studies can be associated with those criteria and organizing them into a comprehensive checklist, we prove that the validity argument can serve as a coherent guideline for designing credible test sets and facilitating scientific communication.
[ "cs.CL", "cs.AI" ]
false
2305.15186
2023-05-24T14:26:30Z
SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation
[ "Tetsu Kasanishi", "Masaru Isonuma", "Junichiro Mori", "Ichiro Sakata" ]
Automatic literature review generation is one of the most challenging tasks in natural language processing. Although large language models have tackled literature review generation, the absence of large-scale datasets has been a stumbling block to the progress. We release SciReviewGen, consisting of over 10,000 literature reviews and 690,000 papers cited in the reviews. Based on the dataset, we evaluate recent transformer-based summarization models on the literature review generation task, including Fusion-in-Decoder extended for literature review generation. Human evaluation results show that some machine-generated summaries are comparable to human-written reviews, while revealing the challenges of automatic literature review generation such as hallucinations and a lack of detailed information. Our dataset and code are available at https://github.com/tetsu9923/SciReviewGen.
[ "cs.CL", "cs.AI" ]
false
2305.15233
2023-05-24T15:14:49Z
Boosting Cross-lingual Transferability in Multilingual Models via In-Context Learning
[ "Sunkyoung Kim", "Dayeon Ki", "Yireun Kim", "Jinsik Lee" ]
Existing cross-lingual transfer (CLT) prompting methods are only concerned with monolingual demonstration examples in the source language. In this paper, we propose In-CLT, a novel cross-lingual transfer prompting method that leverages both source and target languages to construct the demonstration examples. We conduct comprehensive evaluations on multilingual benchmarks, focusing on question answering tasks. Experiment results show that In-CLT prompt not only improves multilingual models' cross-lingual transferability, but also demonstrates remarkable unseen language generalization ability. In-CLT prompting, in particular, improves model performance by 10 to 20\% points on average when compared to prior cross-lingual transfer approaches. We also observe the surprising performance gain on the other multilingual benchmarks, especially in reasoning tasks. Furthermore, we investigate the relationship between lexical similarity and pre-training corpora in terms of the cross-lingual transfer gap.
[ "cs.CL", "cs.AI" ]
false
2305.15268
2023-05-24T15:55:40Z
EvEval: A Comprehensive Evaluation of Event Semantics for Large Language Models
[ "Zhengwei Tao", "Zhi Jin", "Xiaoying Bai", "Haiyan Zhao", "Yanlin Feng", "Jia Li", "Wenpeng Hu" ]
Events serve as fundamental units of occurrence within various contexts. The processing of event semantics in textual information forms the basis of numerous natural language processing (NLP) applications. Recent studies have begun leveraging large language models (LLMs) to address event semantic processing. However, the extent that LLMs can effectively tackle these challenges remains uncertain. Furthermore, the lack of a comprehensive evaluation framework for event semantic processing poses a significant challenge in evaluating these capabilities. In this paper, we propose an overarching framework for event semantic processing, encompassing understanding, reasoning, and prediction, along with their fine-grained aspects. To comprehensively evaluate the event semantic processing abilities of models, we introduce a novel benchmark called EVEVAL. We collect 8 datasets that cover all aspects of event semantic processing. Extensive experiments are conducted on EVEVAL, leading to several noteworthy findings based on the obtained results.
[ "cs.CL", "cs.AI" ]
false
2305.15321
2023-05-24T16:37:35Z
Towards Foundation Models for Relational Databases [Vision Paper]
[ "Liane Vogel", "Benjamin Hilprecht", "Carsten Binnig" ]
Tabular representation learning has recently gained a lot of attention. However, existing approaches only learn a representation from a single table, and thus ignore the potential to learn from the full structure of relational databases, including neighboring tables that can contain important information for a contextualized representation. Moreover, current models are significantly limited in scale, which prevents that they learn from large databases. In this paper, we thus introduce our vision of relational representation learning, that can not only learn from the full relational structure, but also can scale to larger database sizes that are commonly found in real-world. Moreover, we also discuss opportunities and challenges we see along the way to enable this vision and present initial very promising results. Overall, we argue that this direction can lead to foundation models for relational databases that are today only available for text and images.
[ "cs.DB", "cs.CL" ]
false
2305.15334
2023-05-24T16:48:11Z
Gorilla: Large Language Model Connected with Massive APIs
[ "Shishir G. Patil", "Tianjun Zhang", "Xin Wang", "Joseph E. Gonzalez" ]
Large Language Models (LLMs) have seen an impressive wave of advances recently, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4, largely due to their inability to generate accurate input arguments and their tendency to hallucinate the wrong usage of an API call. We release Gorilla, a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at https://gorilla.cs.berkeley.edu
[ "cs.CL", "cs.AI" ]
false
2305.15338
2023-05-24T16:50:36Z
Measuring and Mitigating Constraint Violations of In-Context Learning for Utterance-to-API Semantic Parsing
[ "Shufan Wang", "Sebastien Jean", "Sailik Sengupta", "James Gung", "Nikolaos Pappas", "Yi Zhang" ]
In executable task-oriented semantic parsing, the system aims to translate users' utterances in natural language to machine-interpretable programs (API calls) that can be executed according to pre-defined API specifications. With the popularity of Large Language Models (LLMs), in-context learning offers a strong baseline for such scenarios, especially in data-limited regimes. However, LLMs are known to hallucinate and therefore pose a formidable challenge in constraining generated content. Thus, it remains uncertain if LLMs can effectively perform task-oriented utterance-to-API generation where respecting API's structural and task-specific constraints is crucial. In this work, we seek to measure, analyze and mitigate such constraints violations. First, we identify the categories of various constraints in obtaining API-semantics from task-oriented utterances, and define fine-grained metrics that complement traditional ones. Second, we leverage these metrics to conduct a detailed error analysis of constraints violations seen in state-of-the-art LLMs, which motivates us to investigate two mitigation strategies: Semantic-Retrieval of Demonstrations (SRD) and API-aware Constrained Decoding (API-CD). Our experiments show that these strategies are effective at reducing constraints violations and improving the quality of the generated API calls, but require careful consideration given their implementation complexity and latency.
[ "cs.AI", "cs.CL" ]
false
2305.15344
2023-05-24T16:57:04Z
Learning Answer Generation using Supervision from Automatic Question Answering Evaluators
[ "Matteo Gabburo", "Siddhant Garg", "Rik Koncel-Kedziorski", "Alessandro Moschitti" ]
Recent studies show that sentence-level extractive QA, i.e., based on Answer Sentence Selection (AS2), is outperformed by Generation-based QA (GenQA) models, which generate answers using the top-k answer sentences ranked by AS2 models (a la retrieval-augmented generation style). In this paper, we propose a novel training paradigm for GenQA using supervision from automatic QA evaluation models (GAVA). Specifically, we propose three strategies to transfer knowledge from these QA evaluation models to a GenQA model: (i) augmenting training data with answers generated by the GenQA model and labelled by GAVA (either statically, before training, or (ii) dynamically, at every training epoch); and (iii) using the GAVA score for weighting the generator loss during the learning of the GenQA model. We evaluate our proposed methods on two academic and one industrial dataset, obtaining a significant improvement in answering accuracy over the previous state of the art.
[ "cs.CL", "cs.LG" ]
false
2305.15358
2023-05-24T17:10:45Z
Context-Aware Transformer Pre-Training for Answer Sentence Selection
[ "Luca Di Liello", "Siddhant Garg", "Alessandro Moschitti" ]
Answer Sentence Selection (AS2) is a core component for building an accurate Question Answering pipeline. AS2 models rank a set of candidate sentences based on how likely they answer a given question. The state of the art in AS2 exploits pre-trained transformers by transferring them on large annotated datasets, while using local contextual information around the candidate sentence. In this paper, we propose three pre-training objectives designed to mimic the downstream fine-tuning task of contextual AS2. This allows for specializing LMs when fine-tuning for contextual AS2. Our experiments on three public and two large-scale industrial datasets show that our pre-training approaches (applied to RoBERTa and ELECTRA) can improve baseline contextual AS2 accuracy by up to 8% on some datasets.
[ "cs.CL", "cs.LG" ]
false
2305.15387
2023-05-24T17:48:40Z
Peek Across: Improving Multi-Document Modeling via Cross-Document Question-Answering
[ "Avi Caciularu", "Matthew E. Peters", "Jacob Goldberger", "Ido Dagan", "Arman Cohan" ]
The integration of multi-document pre-training objectives into language models has resulted in remarkable improvements in multi-document downstream tasks. In this work, we propose extending this idea by pre-training a generic multi-document model from a novel cross-document question answering pre-training objective. To that end, given a set (or cluster) of topically-related documents, we systematically generate semantically-oriented questions from a salient sentence in one document and challenge the model, during pre-training, to answer these questions while "peeking" into other topically-related documents. In a similar manner, the model is also challenged to recover the sentence from which the question was generated, again while leveraging cross-document information. This novel multi-document QA formulation directs the model to better recover cross-text informational relations, and introduces a natural augmentation that artificially increases the pre-training data. Further, unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation (e.g., QA) and long text generation (e.g., summarization). Following this scheme, we pre-train our model -- termed QAmden -- and evaluate its performance across several multi-document tasks, including multi-document QA, summarization, and query-focused summarization, yielding improvements of up to 7%, and significantly outperforms zero-shot GPT-3.5 and GPT-4.
[ "cs.CL", "cs.AI" ]
false
2305.15507
2023-05-24T18:54:39Z
The Larger They Are, the Harder They Fail: Language Models do not Recognize Identifier Swaps in Python
[ "Antonio Valerio Miceli-Barone", "Fazl Barez", "Ioannis Konstas", "Shay B. Cohen" ]
Large Language Models (LLMs) have successfully been applied to code generation tasks, raising the question of how well these models understand programming. Typical programming languages have invariances and equivariances in their semantics that human programmers intuitively understand and exploit, such as the (near) invariance to the renaming of identifiers. We show that LLMs not only fail to properly generate correct Python code when default function names are swapped, but some of them even become more confident in their incorrect predictions as the model size increases, an instance of the recently discovered phenomenon of Inverse Scaling, which runs contrary to the commonly observed trend of increasing prediction quality with increasing model size. Our findings indicate that, despite their astonishing typical-case performance, LLMs still lack a deep, abstract understanding of the content they manipulate, making them unsuitable for tasks that statistically deviate from their training data, and that mere scaling is not enough to achieve such capability.
[ "cs.CL", "cs.AI" ]
false
2305.15525
2023-05-24T19:25:16Z
Large Language Models are Few-Shot Health Learners
[ "Xin Liu", "Daniel McDuff", "Geza Kovacs", "Isaac Galatzer-Levy", "Jacob Sunshine", "Jiening Zhan", "Ming-Zher Poh", "Shun Liao", "Paolo Di Achille", "Shwetak Patel" ]
Large language models (LLMs) can capture rich representations of concepts that are useful for real-world tasks. However, language alone is limited. While existing LLMs excel at text-based inferences, health applications require that models be grounded in numerical data (e.g., vital signs, laboratory values in clinical domains; steps, movement in the wellness domain) that is not easily or readily expressed as text in existing training corpus. We demonstrate that with only few-shot tuning, a large language model is capable of grounding various physiological and behavioral time-series data and making meaningful inferences on numerous health tasks for both clinical and wellness contexts. Using data from wearable and medical sensor recordings, we evaluate these capabilities on the tasks of cardiac signal analysis, physical activity recognition, metabolic calculation (e.g., calories burned), and estimation of stress reports and mental health screeners.
[ "cs.CL", "cs.LG" ]
false
2305.15541
2023-05-24T19:59:51Z
Harnessing the Power of Large Language Models for Natural Language to First-Order Logic Translation
[ "Yuan Yang", "Siheng Xiong", "Ali Payani", "Ehsan Shareghi", "Faramarz Fekri" ]
Translating natural language sentences to first-order logic (NL-FOL translation) is a longstanding challenge in the NLP and formal logic literature. This paper introduces LogicLLaMA, a LLaMA-7B model fine-tuned for NL-FOL translation using LoRA on a single GPU. LogicLLaMA is capable of directly translating natural language into FOL rules, which outperforms GPT-3.5. LogicLLaMA is also equipped to correct FOL rules predicted by GPT-3.5, and can achieve similar performance as GPT-4 with a fraction of the cost. This correction ability was achieved by a novel supervised fine-tuning (SFT) + reinforcement learning with human feedback (RLHF) framework, which initially trains on synthetically perturbed NL-FOL pairs to encourage chain-of-thought reasoning and then fine-tunes with RLHF on GPT-3.5 outputs using a FOL verifier as the reward model. To train LogicLLaMA, we present MALLS (large language $\textbf{M}$odel gener$\textbf{A}$ted N$\textbf{L}$-FO$\textbf{L}$ pair$\textbf{S}$), a dataset of 34K high-quality and diverse sentence-level NL-FOL pairs collected from GPT-4. The dataset was created by implementing a pipeline that prompts GPT-4 for pairs, and dynamically adjusts the prompts to ensure the collection of pairs with rich and diverse contexts at different levels of complexity, and verifies the validity of the generated FOL rules. Codes, weights, and data are available at $\href{https://github.com/gblackout/LogicLLaMA}{{\small \text{https://github.com/gblackout/LogicLLaMA}}}$.
[ "cs.CL", "cs.AI" ]
false
2305.15587
2023-05-24T21:52:13Z
How do humans perceive adversarial text? A reality check on the validity and naturalness of word-based adversarial attacks
[ "Salijona Dyrmishi", "Salah Ghamizi", "Maxime Cordy" ]
Natural Language Processing (NLP) models based on Machine Learning (ML) are susceptible to adversarial attacks -- malicious algorithms that imperceptibly modify input text to force models into making incorrect predictions. However, evaluations of these attacks ignore the property of imperceptibility or study it under limited settings. This entails that adversarial perturbations would not pass any human quality gate and do not represent real threats to human-checked NLP systems. To bypass this limitation and enable proper assessment (and later, improvement) of NLP model robustness, we have surveyed 378 human participants about the perceptibility of text adversarial examples produced by state-of-the-art methods. Our results underline that existing text attacks are impractical in real-world scenarios where humans are involved. This contrasts with previous smaller-scale human studies, which reported overly optimistic conclusions regarding attack success. Through our work, we hope to position human perceptibility as a first-class success criterion for text attacks, and provide guidance for research to build effective attack algorithms and, in turn, design appropriate defence mechanisms.
[ "cs.CL", "cs.AI" ]
false
2305.16343
2023-05-24T10:05:59Z
A Distributed Automatic Domain-Specific Multi-Word Term Recognition Architecture using Spark Ecosystem
[ "Ciprian-Octavian Truică", "Neculai-Ovidiu Istrate", "Elena-Simona Apostol" ]
Automatic Term Recognition is used to extract domain-specific terms that belong to a given domain. In order to be accurate, these corpus and language-dependent methods require large volumes of textual data that need to be processed to extract candidate terms that are afterward scored according to a given metric. To improve text preprocessing and candidate terms extraction and scoring, we propose a distributed Spark-based architecture to automatically extract domain-specific terms. The main contributions are as follows: (1) propose a novel distributed automatic domain-specific multi-word term recognition architecture built on top of the Spark ecosystem; (2) perform an in-depth analysis of our architecture in terms of accuracy and scalability; (3) design an easy-to-integrate Python implementation that enables the use of Big Data processing in fields such as Computational Linguistics and Natural Language Processing. We prove empirically the feasibility of our architecture by performing experiments on two real-world datasets.
[ "cs.CL", "cs.AI" ]
false
2306.04657
2023-05-24T10:25:12Z
Improving Empathetic Dialogue Generation by Dynamically Infusing Commonsense Knowledge
[ "Hua Cai", "Xuli Shen", "Qing Xu", "Weilin Shen", "Xiaomei Wang", "Weifeng Ge", "Xiaoqing Zheng", "Xiangyang Xue" ]
In empathetic conversations, individuals express their empathy towards others. Previous work has mainly focused on generating empathetic responses by utilizing the speaker's emotion. Besides, external commonsense knowledge has been applied to enhance the system's understandings of the speaker's situation. However, given an event, commonsense knowledge base contains various relations, potentially leading to confusion for the dialogue system. Consequently, inconsistencies arise among the emotion, generated response and speaker's contextual information. To this end, we propose a novel approach for empathetic response generation, which incorporates an adaptive module for commonsense knowledge selection to ensure consistency between the generated empathetic responses and the speaker's situation. This selected knowledge is used to refine the commonsense cognition and empathy expression for generated responses. Experimental results show that our approach significantly outperforms baseline models in both automatic and human evaluations, exhibiting the generation of more coherent and empathetic responses. Moreover, case studies highlight the interpretability of knowledge selection in the responses and the effectiveness of adaptive module in our model. Code: https://github.com/Hanscal/DCKS.
[ "cs.CL", "cs.AI" ]
false
2305.14597
2023-05-24T00:40:49Z
Voices of Her: Analyzing Gender Differences in the AI Publication World
[ "Yiwen Ding", "Jiarui Liu", "Zhiheng Lyu", "Kun Zhang", "Bernhard Schoelkopf", "Zhijing Jin", "Rada Mihalcea" ]
While several previous studies have analyzed gender bias in research, we are still missing a comprehensive analysis of gender differences in the AI community, covering diverse topics and different development trends. Using the AI Scholar dataset of 78K researchers in the field of AI, we identify several gender differences: (1) Although female researchers tend to have fewer overall citations than males, this citation difference does not hold for all academic-age groups; (2) There exist large gender homophily in co-authorship on AI papers; (3) Female first-authored papers show distinct linguistic styles, such as longer text, more positive emotion words, and more catchy titles than male first-authored papers. Our analysis provides a window into the current demographic trends in our AI community, and encourages more gender equality and diversity in the future. Our code and data are at https://github.com/causalNLP/ai-scholar-gender.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.14775
2023-05-24T06:26:11Z
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
[ "Amirhossein Kazemnejad", "Mehdi Rezagholizadeh", "Prasanna Parthasarathi", "Sarath Chandar" ]
While pre-trained language models (PLMs) have shown evidence of acquiring vast amounts of knowledge, it remains unclear how much of this parametric knowledge is actually usable in performing downstream tasks. We propose a systematic framework to measure parametric knowledge utilization in PLMs. Our framework first extracts knowledge from a PLM's parameters and subsequently constructs a downstream task around this extracted knowledge. Performance on this task thus depends exclusively on utilizing the model's possessed knowledge, avoiding confounding factors like insufficient signal. As an instantiation, we study factual knowledge of PLMs and measure utilization across 125M to 13B parameter PLMs. We observe that: (1) PLMs exhibit two gaps - in acquired vs. utilized knowledge, (2) they show limited robustness in utilizing knowledge under distribution shifts, and (3) larger models close the acquired knowledge gap but the utilized knowledge gap remains. Overall, our study provides insights into PLMs' capabilities beyond their acquired knowledge.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.14784
2023-05-24T06:39:45Z
Anthropomorphization of AI: Opportunities and Risks
[ "Ameet Deshpande", "Tanmay Rajpurohit", "Karthik Narasimhan", "Ashwin Kalyan" ]
Anthropomorphization is the tendency to attribute human-like traits to non-human entities. It is prevalent in many social contexts -- children anthropomorphize toys, adults do so with brands, and it is a literary device. It is also a versatile tool in science, with behavioral psychology and evolutionary biology meticulously documenting its consequences. With widespread adoption of AI systems, and the push from stakeholders to make it human-like through alignment techniques, human voice, and pictorial avatars, the tendency for users to anthropomorphize it increases significantly. We take a dyadic approach to understanding this phenomenon with large language models (LLMs) by studying (1) the objective legal implications, as analyzed through the lens of the recent blueprint of AI bill of rights and the (2) subtle psychological aspects customization and anthropomorphization. We find that anthropomorphized LLMs customized for different user bases violate multiple provisions in the legislative blueprint. In addition, we point out that anthropomorphization of LLMs affects the influence they can have on their users, thus having the potential to fundamentally change the nature of human-AI interaction, with potential for manipulation and negative influence. With LLMs being hyper-personalized for vulnerable groups like children and patients among others, our work is a timely and important contribution. We propose a conservative strategy for the cautious use of anthropomorphization to improve trustworthiness of AI systems.
[ "cs.AI", "cs.CL", "cs.CY", "cs.LG" ]
false
2305.14888
2023-05-24T08:37:27Z
Privacy Implications of Retrieval-Based Language Models
[ "Yangsibo Huang", "Samyak Gupta", "Zexuan Zhong", "Kai Li", "Danqi Chen" ]
Retrieval-based language models (LMs) have demonstrated improved interpretability, factuality, and adaptability compared to their parametric counterparts, by incorporating retrieved text from external datastores. While it is well known that parametric models are prone to leaking private data, it remains unclear how the addition of a retrieval datastore impacts model privacy. In this work, we present the first study of privacy risks in retrieval-based LMs, particularly $k$NN-LMs. Our goal is to explore the optimal design and training procedure in domains where privacy is of concern, aiming to strike a balance between utility and privacy. Crucially, we find that $k$NN-LMs are more susceptible to leaking private information from their private datastore than parametric models. We further explore mitigations of privacy risks. When privacy information is targeted and readily detected in the text, we find that a simple sanitization step would completely eliminate the risks, while decoupling query and key encoders achieves an even better utility-privacy trade-off. Otherwise, we consider strategies of mixing public and private data in both datastore and encoder training. While these methods offer modest improvements, they leave considerable room for future work. Together, our findings provide insights for practitioners to better understand and mitigate privacy risks in retrieval-based LMs. Our code is available at: https://github.com/Princeton-SysML/kNNLM_privacy .
[ "cs.CL", "cs.CR", "cs.LG" ]
false
2305.14904
2023-05-24T08:56:35Z
Identifying Informational Sources in News Articles
[ "Alexander Spangher", "Nanyun Peng", "Jonathan May", "Emilio Ferrara" ]
News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists.
[ "cs.CL", "cs.AI", "cs.CY" ]
false
2305.14981
2023-05-24T10:15:17Z
Improving Factuality of Abstractive Summarization without Sacrificing Summary Quality
[ "Tanay Dixit", "Fei Wang", "Muhao Chen" ]
Improving factual consistency of abstractive summarization has been a widely studied topic. However, most of the prior works on training factuality-aware models have ignored the negative effect it has on summary quality. We propose EFACTSUM (i.e., Effective Factual Summarization), a candidate summary generation and ranking technique to improve summary factuality without sacrificing summary quality. We show that using a contrastive learning framework with our refined candidate summaries leads to significant gains on both factuality and similarity-based metrics. Specifically, we propose a ranking strategy in which we effectively combine two metrics, thereby preventing any conflict during training. Models trained using our approach show up to 6 points of absolute improvement over the base model with respect to FactCC on XSUM and 11 points on CNN/DM, without negatively affecting either similarity-based metrics or absractiveness.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.15008
2023-05-24T10:48:05Z
Are Chatbots Ready for Privacy-Sensitive Applications? An Investigation into Input Regurgitation and Prompt-Induced Sanitization
[ "Aman Priyanshu", "Supriti Vijay", "Ayush Kumar", "Rakshit Naidu", "Fatemehsadat Mireshghallah" ]
LLM-powered chatbots are becoming widely adopted in applications such as healthcare, personal assistants, industry hiring decisions, etc. In many of these cases, chatbots are fed sensitive, personal information in their prompts, as samples for in-context learning, retrieved records from a database, or as part of the conversation. The information provided in the prompt could directly appear in the output, which might have privacy ramifications if there is sensitive information there. As such, in this paper, we aim to understand the input copying and regurgitation capabilities of these models during inference and how they can be directly instructed to limit this copying by complying with regulations such as HIPAA and GDPR, based on their internal knowledge of them. More specifically, we find that when ChatGPT is prompted to summarize cover letters of a 100 candidates, it would retain personally identifiable information (PII) verbatim in 57.4% of cases, and we find this retention to be non-uniform between different subgroups of people, based on attributes such as gender identity. We then probe ChatGPT's perception of privacy-related policies and privatization mechanisms by directly instructing it to provide compliant outputs and observe a significant omission of PII from output.
[ "cs.CL", "cs.AI", "cs.CY" ]
false
2305.15032
2023-05-24T11:16:09Z
How to Distill your BERT: An Empirical Study on the Impact of Weight Initialisation and Distillation Objectives
[ "Xinpeng Wang", "Leonie Weissweiler", "Hinrich Schütze", "Barbara Plank" ]
Recently, various intermediate layer distillation (ILD) objectives have been shown to improve compression of BERT models via Knowledge Distillation (KD). However, a comprehensive evaluation of the objectives in both task-specific and task-agnostic settings is lacking. To the best of our knowledge, this is the first work comprehensively evaluating distillation objectives in both settings. We show that attention transfer gives the best performance overall. We also study the impact of layer choice when initializing the student from the teacher layers, finding a significant impact on the performance in task-specific distillation. For vanilla KD and hidden states transfer, initialisation with lower layers of the teacher gives a considerable improvement over higher layers, especially on the task of QNLI (up to an absolute percentage change of 17.8 in accuracy). Attention transfer behaves consistently under different initialisation settings. We release our code as an efficient transformer-based model distillation framework for further studies.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.15138
2023-05-24T13:35:08Z
Topic-Guided Self-Introduction Generation for Social Media Users
[ "Chunpu Xu", "Jing Li", "Piji Li", "Min Yang" ]
Millions of users are active on social media. To allow users to better showcase themselves and network with others, we explore the auto-generation of social media self-introduction, a short sentence outlining a user's personal interests. While most prior work profiles users with tags (e.g., ages), we investigate sentence-level self-introductions to provide a more natural and engaging way for users to know each other. Here we exploit a user's tweeting history to generate their self-introduction. The task is non-trivial because the history content may be lengthy, noisy, and exhibit various personal interests. To address this challenge, we propose a novel unified topic-guided encoder-decoder (UTGED) framework; it models latent topics to reflect salient user interest, whose topic mixture then guides encoding a user's history and topic words control decoding their self-introduction. For experiments, we collect a large-scale Twitter dataset, and extensive results show the superiority of our UTGED to the advanced encoder-decoder models without topic modeling.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.15222
2023-05-24T15:05:53Z
Neural Summarization of Electronic Health Records
[ "Koyena Pal", "Seyed Ali Bahrainian", "Laura Mercurio", "Carsten Eickhoff" ]
Hospital discharge documentation is among the most essential, yet time-consuming documents written by medical practitioners. The objective of this study was to automatically generate hospital discharge summaries using neural network summarization models. We studied various data preparation and neural network training techniques that generate discharge summaries. Using nursing notes and discharge summaries from the MIMIC-III dataset, we studied the viability of the automatic generation of various sections of a discharge summary using four state-of-the-art neural network summarization models (BART, T5, Longformer and FLAN-T5). Our experiments indicated that training environments including nursing notes as the source, and discrete sections of the discharge summary as the target output (e.g. "History of Present Illness") improve language model efficiency and text quality. According to our findings, the fine-tuned BART model improved its ROUGE F1 score by 43.6% against its standard off-the-shelf version. We also found that fine-tuning the baseline BART model with other setups caused different degrees of improvement (up to 80% relative improvement). We also observed that a fine-tuned T5 generally achieves higher ROUGE F1 scores than other fine-tuned models and a fine-tuned FLAN-T5 achieves the highest ROUGE score overall, i.e., 45.6. For majority of the fine-tuned language models, summarizing discharge summary report sections separately outperformed the summarization the entire report quantitatively. On the other hand, fine-tuning language models that were previously instruction fine-tuned showed better performance in summarizing entire reports. This study concludes that a focused dataset designed for the automatic generation of discharge summaries by a language model can produce coherent Discharge Summary sections.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2305.15374
2023-05-24T17:32:58Z
ASPER: Answer Set Programming Enhanced Neural Network Models for Joint Entity-Relation Extraction
[ "Trung Hoang Le", "Huiping Cao", "Tran Cao Son" ]
A plethora of approaches have been proposed for joint entity-relation (ER) extraction. Most of these methods largely depend on a large amount of manually annotated training data. However, manual data annotation is time consuming, labor intensive, and error prone. Human beings learn using both data (through induction) and knowledge (through deduction). Answer Set Programming (ASP) has been a widely utilized approach for knowledge representation and reasoning that is elaboration tolerant and adept at reasoning with incomplete information. This paper proposes a new approach, ASP-enhanced Entity-Relation extraction (ASPER), to jointly recognize entities and relations by learning from both data and domain knowledge. In particular, ASPER takes advantage of the factual knowledge (represented as facts in ASP) and derived knowledge (represented as rules in ASP) in the learning process of neural network models. We have conducted experiments on two real datasets and compare our method with three baselines. The results show that our ASPER model consistently outperforms the baselines.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.15403
2023-05-24T17:59:03Z
AV-TranSpeech: Audio-Visual Robust Speech-to-Speech Translation
[ "Rongjie Huang", "Huadai Liu", "Xize Cheng", "Yi Ren", "Linjun Li", "Zhenhui Ye", "Jinzheng He", "Lichao Zhang", "Jinglin Liu", "Xiang Yin", "Zhou Zhao" ]
Direct speech-to-speech translation (S2ST) aims to convert speech from one language into another, and has demonstrated significant progress to date. Despite the recent success, current S2ST models still suffer from distinct degradation in noisy environments and fail to translate visual speech (i.e., the movement of lips and teeth). In this work, we present AV-TranSpeech, the first audio-visual speech-to-speech (AV-S2ST) translation model without relying on intermediate text. AV-TranSpeech complements the audio stream with visual information to promote system robustness and opens up a host of practical applications: dictation or dubbing archival films. To mitigate the data scarcity with limited parallel AV-S2ST data, we 1) explore self-supervised pre-training with unlabeled audio-visual data to learn contextual representation, and 2) introduce cross-modal distillation with S2ST models trained on the audio-only corpus to further reduce the requirements of visual data. Experimental results on two language pairs demonstrate that AV-TranSpeech outperforms audio-only models under all settings regardless of the type of noise. With low-resource audio-visual data (10h, 30h), cross-modal distillation yields an improvement of 7.6 BLEU on average compared with baselines. Audio samples are available at https://AV-TranSpeech.github.io
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.15498
2023-05-24T18:40:43Z
Large Language Models for User Interest Journeys
[ "Konstantina Christakopoulou", "Alberto Lalama", "Cj Adams", "Iris Qu", "Yifat Amir", "Samer Chucri", "Pierce Vollucci", "Fabio Soldo", "Dina Bseiso", "Sarah Scodel", "Lucas Dixon", "Ed H. Chi", "Minmin Chen" ]
Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation. Their potential for deeper user understanding and improved personalized user experience on recommendation platforms is, however, largely untapped. This paper aims to address this gap. Recommender systems today capture users' interests through encoding their historical activities on the platforms. The generated user representations are hard to examine or interpret. On the other hand, if we were to ask people about interests they pursue in their life, they might talk about their hobbies, like I just started learning the ukulele, or their relaxation routines, e.g., I like to watch Saturday Night Live, or I want to plant a vertical garden. We argue, and demonstrate through extensive experiments, that LLMs as foundation models can reason through user activities, and describe their interests in nuanced and interesting ways, similar to how a human would. We define interest journeys as the persistent and overarching user interests, in other words, the non-transient ones. These are the interests that we believe will benefit most from the nuanced and personalized descriptions. We introduce a framework in which we first perform personalized extraction of interest journeys, and then summarize the extracted journeys via LLMs, using techniques like few-shot prompting, prompt-tuning and fine-tuning. Together, our results in prompting LLMs to name extracted user journeys in a large-scale industrial platform demonstrate great potential of these models in providing deeper, more interpretable, and controllable user understanding. We believe LLM powered user understanding can be a stepping stone to entirely new user experiences on recommendation platforms that are journey-aware, assistive, and enabling frictionless conversation down the line.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2305.15594
2023-05-24T22:06:08Z
Flocks of Stochastic Parrots: Differentially Private Prompt Learning for Large Language Models
[ "Haonan Duan", "Adam Dziedzic", "Nicolas Papernot", "Franziska Boenisch" ]
Large language models (LLMs) are excellent in-context learners. However, the sensitivity of data contained in prompts raises privacy concerns. Our work first shows that these concerns are valid: we instantiate a simple but highly effective membership inference attack against the data used to prompt LLMs. To address this vulnerability, one could forego prompting and resort to fine-tuning LLMs with known algorithms for private gradient descent. However, this comes at the expense of the practicality and efficiency offered by prompting. Therefore, we propose to privately learn to prompt. We first show that soft prompts can be obtained privately through gradient descent on downstream data. However, this is not the case for discrete prompts. Thus, we orchestrate a noisy vote among an ensemble of LLMs presented with different prompts, i.e., a flock of stochastic parrots. The vote privately transfers the flock's knowledge into a single public prompt. We show that LLMs prompted with our private algorithms closely match the non-private baselines. For example, using GPT3 as the base model, we achieve a downstream accuracy of 92.7% on the sst2 dataset with ($\epsilon=0.147, \delta=10^{-6}$)-differential privacy vs. 95.2% for the non-private baseline. Through our experiments, we also show that our prompt-based approach is easily deployed with existing commercial APIs.
[ "cs.LG", "cs.CL", "cs.CR" ]
false
2305.15597
2023-05-24T22:09:35Z
Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language Models
[ "Pengcheng Jiang", "Shivam Agarwal", "Bowen Jin", "Xuan Wang", "Jimeng Sun", "Jiawei Han" ]
The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM), exhibiting limited performance and requiring expensive efforts from experts. To this end, we propose TAGREAL that automatically generates quality query prompts and retrieves support information from large text corpora to probe knowledge from PLM for KG completion. The results show that TAGREAL achieves state-of-the-art performance on two benchmark datasets. We find that TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2305.16338
2023-05-24T01:20:22Z
Think Before You Act: Decision Transformers with Internal Working Memory
[ "Jikun Kang", "Romain Laroche", "Xindi Yuan", "Adam Trischler", "Xue Liu", "Jie Fu" ]
Large language model (LLM)-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and compute. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired, we propose an internal working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in both Atari games and meta-world object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
[ "cs.LG", "cs.AI", "cs.CL" ]
true
2305.16349
2023-05-24T19:10:46Z
Lexinvariant Language Models
[ "Qian Huang", "Eric Zelikman", "Sarah Li Chen", "Yuhuai Wu", "Gregory Valiant", "Percy Liang" ]
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without \emph{any} fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the \textit{a priori} identity of any token. To answer this, we study \textit{lexinvariant}language models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
[ "cs.CL", "cs.AI", "cs.LG" ]
true
2305.18330
2023-05-24T07:10:56Z
#REVAL: a semantic evaluation framework for hashtag recommendation
[ "Areej Alsini", "Du Q. Huynh", "Amitava Datta" ]
Automatic evaluation of hashtag recommendation models is a fundamental task in many online social network systems. In the traditional evaluation method, the recommended hashtags from an algorithm are firstly compared with the ground truth hashtags for exact correspondences. The number of exact matches is then used to calculate the hit rate, hit ratio, precision, recall, or F1-score. This way of evaluating hashtag similarities is inadequate as it ignores the semantic correlation between the recommended and ground truth hashtags. To tackle this problem, we propose a novel semantic evaluation framework for hashtag recommendation, called #REval. This framework includes an internal module referred to as BERTag, which automatically learns the hashtag embeddings. We investigate on how the #REval framework performs under different word embedding methods and different numbers of synonyms and hashtags in the recommendation using our proposed #REval-hit-ratio measure. Our experiments of the proposed framework on three large datasets show that #REval gave more meaningful hashtag synonyms for hashtag recommendation evaluation. Our analysis also highlights the sensitivity of the framework to the word embedding technique, with #REval based on BERTag more superior over #REval based on FastText and Word2Vec.
[ "cs.IR", "cs.AI", "cs.CL", "I.2.7" ]
false
2305.14655
2023-05-24T02:51:29Z
Learning Survival Distribution with Implicit Survival Function
[ "Yu Ling", "Weimin Tan", "Bo Yan" ]
Survival analysis aims at modeling the relationship between covariates and event occurrence with some untracked (censored) samples. In implementation, existing methods model the survival distribution with strong assumptions or in a discrete time space for likelihood estimation with censorship, which leads to weak generalization. In this paper, we propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions,and employ numerical integration to approximate the cumulative distribution function for prediction and optimization. Experimental results show that ISF outperforms the state-of-the-art methods in three public datasets and has robustness to the hyperparameter controlling estimation precision.
[ "cs.LG" ]
false
2305.14712
2023-05-24T04:27:57Z
On the Generalization of Diffusion Model
[ "Mingyang Yi", "Jiacheng Sun", "Zhenguo Li" ]
The diffusion probabilistic generative models are widely used to generate high-quality data. Though they can synthetic data that does not exist in the training set, the rationale behind such generalization is still unexplored. In this paper, we formally define the generalization of the generative model, which is measured by the mutual information between the generated data and the training set. The definition originates from the intuition that the model which generates data with less correlation to the training set exhibits better generalization ability. Meanwhile, we show that for the empirical optimal diffusion model, the data generated by a deterministic sampler are all highly related to the training set, thus poor generalization. This result contradicts the observation of the trained diffusion model's (approximating empirical optima) extrapolation ability (generating unseen data). To understand this contradiction, we empirically verify the difference between the sufficiently trained diffusion model and the empirical optima. We found, though obtained through sufficient training, there still exists a slight difference between them, which is critical to making the diffusion model generalizable. Moreover, we propose another training objective whose empirical optimal solution has no potential generalization problem. We empirically show that the proposed training objective returns a similar model to the original one, which further verifies the generalization ability of the trained diffusion model.
[ "cs.LG" ]
false
2305.14745
2023-05-24T05:39:46Z
Applications of Machine Learning in Detecting Afghan Fake Banknotes
[ "Hamida Ashna", "Ziaullah Momand" ]
Fake currency, unauthorized imitation money lacking government approval, constitutes a form of fraud. Particularly in Afghanistan, the prevalence of fake currency poses significant challenges and detrimentally impacts the economy. While banks and commercial establishments employ authentication machines, the public lacks access to such systems, necessitating a program that can detect counterfeit banknotes accessible to all. This paper introduces a method using image processing to identify counterfeit Afghan banknotes by analyzing specific security features. Extracting first and second order statistical features from input images, the WEKA machine learning tool was employed to construct models and perform classification with Random Forest, PART, and Na\"ive Bayes algorithms. The Random Forest algorithm achieved exceptional accuracy of 99% in detecting fake Afghan banknotes, indicating the efficacy of the proposed method as a solution for identifying counterfeit currency.
[ "cs.LG" ]
false
2305.15174
2023-05-24T14:06:02Z
Simultaneous identification of models and parameters of scientific simulators
[ "Cornelius Schröder", "Jakob H. Macke" ]
Many scientific models are composed of multiple discrete components, and scien tists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematically selecting model components, but defining prior distributions over model components and developing associated inference schemes has been challenging. We approach this problem in an amortized simulation-based inference framework: We define implicit model priors over a fixed set of candidate components and train neural networks to infer joint probability distributions over both, model components and associated parameters from simulations. To represent distributions over model components, we introduce a conditional mixture of multivariate binary distributions in the Grassmann formalism. Our approach can be applied to any compositional stochastic simulator without requiring access to likelihood evaluations. We first illustrate our method on a simple time series model with redundant components and show that it can retrieve joint posterior distribution over a set of symbolic expressions and their parameters while accurately capturing redundancy with strongly correlated posteriors. We then apply our approach to drift-diffusion models, a commonly used model class in cognitive neuroscience. After validating the method on synthetic data, we show that our approach explains experimental data as well as previous methods, but that our fully probabilistic approach can help to discover multiple data-consistent model configurations, as well as reveal non-identifiable model components and parameters. Our method provides a powerful tool for data-driven scientific inquiry which will allow scientists to systematically identify essential model components and make uncertainty-informed modelling decisions.
[ "cs.LG" ]
false
2305.15563
2023-05-24T20:54:48Z
Fantastic DNN Classifiers and How to Identify them without Data
[ "Nathaniel Dean", "Dilip Sarkar" ]
Current algorithms and architecture can create excellent DNN classifier models from example data. In general, larger training datasets result in better model estimations, which improve test performance. Existing methods for predicting generalization performance are based on hold-out test examples. To the best of our knowledge, at present no method exists that can estimate the quality of a trained DNN classifier without test data. In this paper, we show that the quality of a trained DNN classifier can be assessed without any example data. We consider DNNs to be composed of a feature extractor and a feature classifier; the feature extractor's output is fed to the classifier. The proposed method iteratively creates class prototypes in the input space for each class by minimizing a cross-entropy loss function at the output of the network. We use these prototypes and their feature relationships to reveal the quality of the classifier. We have developed two metrics: one using the features of the prototypes and the other using adversarial examples corresponding to each prototype. Empirical evaluations show that accuracy obtained from test examples is directly proportional to quality measures obtained from the proposed metrics. We report our observations for ResNet18 with Tiny ImageNet, CIFAR100, and CIFAR10 datasets. The proposed metrics can be used to compare performances of two or more classifiers without test examples.
[ "cs.LG", "I.5.1" ]
false
2305.15591
2023-05-24T21:58:19Z
Lightweight Learner for Shared Knowledge Lifelong Learning
[ "Yunhao Ge", "Yuecheng Li", "Di Wu", "Ao Xu", "Adam M. Jones", "Amanda Sofie Rios", "Iordanis Fostiropoulos", "Shixian Wen", "Po-Hsuan Huang", "Zachary William Murdock", "Gozde Sahin", "Shuo Ni", "Kiran Lekkala", "Sumedh Anand Sontakke", "Laurent Itti" ]
In Lifelong Learning (LL), agents continually learn as they encounter new conditions and tasks. Most current LL is limited to a single agent that learns tasks sequentially. Dedicated LL machinery is then deployed to mitigate the forgetting of old tasks as new tasks are learned. This is inherently slow. We propose a new Shared Knowledge Lifelong Learning (SKILL) challenge, which deploys a decentralized population of LL agents that each sequentially learn different tasks, with all agents operating independently and in parallel. After learning their respective tasks, agents share and consolidate their knowledge over a decentralized communication network, so that, in the end, all agents can master all tasks. We present one solution to SKILL which uses Lightweight Lifelong Learning (LLL) agents, where the goal is to facilitate efficient sharing by minimizing the fraction of the agent that is specialized for any given task. Each LLL agent thus consists of a common task-agnostic immutable part, where most parameters are, and individual task-specific modules that contain fewer parameters but are adapted to each task. Agents share their task-specific modules, plus summary information ("task anchors") representing their tasks in the common task-agnostic latent space of all agents. Receiving agents register each received task-specific module using the corresponding anchor. Thus, every agent improves its ability to solve new tasks each time new task-specific modules and anchors are received. On a new, very challenging SKILL-102 dataset with 102 image classification tasks (5,033 classes in total, 2,041,225 training, 243,464 validation, and 243,464 test images), we achieve much higher (and SOTA) accuracy over 8 LL baselines, while also achieving near perfect parallelization. Code and data can be found at https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning
[ "cs.LG" ]
false
2305.15621
2023-05-24T23:49:06Z
Matrix Estimation for Offline Reinforcement Learning with Low-Rank Structure
[ "Xumei Xi", "Christina Lee Yu", "Yudong Chen" ]
We consider offline Reinforcement Learning (RL), where the agent does not interact with the environment and must rely on offline data collected using a behavior policy. Previous works provide policy evaluation guarantees when the target policy to be evaluated is covered by the behavior policy, that is, state-action pairs visited by the target policy must also be visited by the behavior policy. We show that when the MDP has a latent low-rank structure, this coverage condition can be relaxed. Building on the connection to weighted matrix completion with non-uniform observations, we propose an offline policy evaluation algorithm that leverages the low-rank structure to estimate the values of uncovered state-action pairs. Our algorithm does not require a known feature representation, and our finite-sample error bound involves a novel discrepancy measure quantifying the discrepancy between the behavior and target policies in the spectral space. We provide concrete examples where our algorithm achieves accurate estimation while existing coverage conditions are not satisfied. Building on the above evaluation algorithm, we further design an offline policy optimization algorithm and provide non-asymptotic performance guarantees.
[ "cs.LG" ]
false
2305.16348
2023-05-24T18:55:54Z
Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production
[ "Alireza Shafizadeh", "Hossein Shahbeik", "Shahin Rafiee", "Aysooda Moradi", "Mohammadreza Shahbaz", "Meysam Madadi", "Cheng Li", "Wanxi Peng", "Meisam Tabatabaei", "Mortaza Aghbashlo" ]
Hydrothermal carbonization (HTC) is a process that converts biomass into versatile hydrochar without the need for prior drying. The physicochemical properties of hydrochar are influenced by biomass properties and processing parameters, making it challenging to optimize for specific applications through trial-and-error experiments. To save time and money, machine learning can be used to develop a model that characterizes hydrochar produced from different biomass sources under varying reaction processing parameters. Thus, this study aims to develop an inclusive model to characterize hydrochar using a database covering a range of biomass types and reaction processing parameters. The quality and quantity of hydrochar are predicted using two models (decision tree regression and support vector regression). The decision tree regression model outperforms the support vector regression model in terms of forecast accuracy (R2 > 0.88, RMSE < 6.848, and MAE < 4.718). Using an evolutionary algorithm, optimum inputs are identified based on cost functions provided by the selected model to optimize hydrochar for energy production, soil amendment, and pollutant adsorption, resulting in hydrochar yields of 84.31%, 84.91%, and 80.40%, respectively. The feature importance analysis reveals that biomass ash/carbon content and operating temperature are the primary factors affecting hydrochar production in the HTC process.
[ "cs.LG" ]
false
2305.16350
2023-05-24T19:59:21Z
Using evolutionary machine learning to characterize and optimize co-pyrolysis of biomass feedstocks and polymeric wastes
[ "Hossein Shahbeik", "Alireza Shafizadeh", "Mohammad Hossein Nadian", "Dorsa Jeddi", "Seyedali Mirjalili", "Yadong Yang", "Su Shiung Lam", "Junting Pan", "Meisam Tabatabaei", "Mortaza Aghbashlo" ]
Co-pyrolysis of biomass feedstocks with polymeric wastes is a promising strategy for improving the quantity and quality parameters of the resulting liquid fuel. Numerous experimental measurements are typically conducted to find the optimal operating conditions. However, performing co-pyrolysis experiments is highly challenging due to the need for costly and lengthy procedures. Machine learning (ML) provides capabilities to cope with such issues by leveraging on existing data. This work aims to introduce an evolutionary ML approach to quantify the (by)products of the biomass-polymer co-pyrolysis process. A comprehensive dataset covering various biomass-polymer mixtures under a broad range of process conditions is compiled from the qualified literature. The database was subjected to statistical analysis and mechanistic discussion. The input features are constructed using an innovative approach to reflect the physics of the process. The constructed features are subjected to principal component analysis to reduce their dimensionality. The obtained scores are introduced into six ML models. Gaussian process regression model tuned by particle swarm optimization algorithm presents better prediction performance (R2 > 0.9, MAE < 0.03, and RMSE < 0.06) than other developed models. The multi-objective particle swarm optimization algorithm successfully finds optimal independent parameters.
[ "cs.LG" ]
false
2305.14606
2023-05-24T01:10:58Z
Taylor Learning
[ "James Schmidt" ]
Empirical risk minimization stands behind most optimization in supervised machine learning. Under this scheme, labeled data is used to approximate an expected cost (risk), and a learning algorithm updates model-defining parameters in search of an empirical risk minimizer, with the aim of thereby approximately minimizing expected cost. Parameter update is often done by some sort of gradient descent. In this paper, we introduce a learning algorithm to construct models for real analytic functions using neither gradient descent nor empirical risk minimization. Observing that such functions are defined by local information, we situate familiar Taylor approximation methods in the context of sampling data from a distribution, and prove a nonuniform learning result.
[ "stat.ML", "cs.LG" ]
false
2305.14608
2023-05-24T01:12:08Z
Inverse Reinforcement Learning with the Average Reward Criterion
[ "Feiyang Wu", "Jingyang Ke", "Anqi Wu" ]
We study the problem of Inverse Reinforcement Learning (IRL) with an average-reward criterion. The goal is to recover an unknown policy and a reward function when the agent only has samples of states and actions from an experienced agent. Previous IRL methods assume that the expert is trained in a discounted environment, and the discount factor is known. This work alleviates this assumption by proposing an average-reward framework with efficient learning algorithms. We develop novel stochastic first-order methods to solve the IRL problem under the average-reward setting, which requires solving an Average-reward Markov Decision Process (AMDP) as a subproblem. To solve the subproblem, we develop a Stochastic Policy Mirror Descent (SPMD) method under general state and action spaces that needs $\mathcal{{O}}(1/\varepsilon)$ steps of gradient computation. Equipped with SPMD, we propose the Inverse Policy Mirror Descent (IPMD) method for solving the IRL problem with a $\mathcal{O}(1/\varepsilon^2)$ complexity. To the best of our knowledge, the aforementioned complexity results are new in IRL. Finally, we corroborate our analysis with numerical experiments using the MuJoCo benchmark and additional control tasks.
[ "cs.LG", "cs.AI" ]
false
2305.14644
2023-05-24T02:27:34Z
KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning World Models in Autonomous Driving Tasks
[ "Hemanth Manjunatha", "Andrey Pak", "Dimitar Filev", "Panagiotis Tsiotras" ]
Autonomous driving has received a great deal of attention in the automotive industry and is often seen as the future of transportation. The development of autonomous driving technology has been greatly accelerated by the growth of end-to-end machine learning techniques that have been successfully used for perception, planning, and control tasks. An important aspect of autonomous driving planning is knowing how the environment evolves in the immediate future and taking appropriate actions. An autonomous driving system should effectively use the information collected from the various sensors to form an abstract representation of the world to maintain situational awareness. For this purpose, deep learning models can be used to learn compact latent representations from a stream of incoming data. However, most deep learning models are trained end-to-end and do not incorporate any prior knowledge (e.g., from physics) of the vehicle in the architecture. In this direction, many works have explored physics-infused neural network (PINN) architectures to infuse physics models during training. Inspired by this observation, we present a Kalman filter augmented recurrent neural network architecture to learn the latent representation of the traffic flow using front camera images only. We demonstrate the efficacy of the proposed model in both imitation and reinforcement learning settings using both simulated and real-world datasets. The results show that incorporating an explicit model of the vehicle (states estimated using Kalman filtering) in the end-to-end learning significantly increases performance.
[ "cs.LG", "cs.RO" ]
false
2305.14709
2023-05-24T04:26:21Z
Regret Matching+: (In)Stability and Fast Convergence in Games
[ "Gabriele Farina", "Julien Grand-Clément", "Christian Kroer", "Chung-Wei Lee", "Haipeng Luo" ]
Regret Matching+ (RM+) and its variants are important algorithms for solving large-scale games. However, a theoretical understanding of their success in practice is still a mystery. Moreover, recent advances on fast convergence in games are limited to no-regret algorithms such as online mirror descent, which satisfy stability. In this paper, we first give counterexamples showing that RM+ and its predictive version can be unstable, which might cause other players to suffer large regret. We then provide two fixes: restarting and chopping off the positive orthant that RM+ works in. We show that these fixes are sufficient to get $O(T^{1/4})$ individual regret and $O(1)$ social regret in normal-form games via RM+ with predictions. We also apply our stabilizing techniques to clairvoyant updates in the uncoupled learning setting for RM+ and prove desirable results akin to recent works for Clairvoyant online mirror descent. Our experiments show the advantages of our algorithms over vanilla RM+-based algorithms in matrix and extensive-form games.
[ "cs.GT", "cs.LG" ]
false
2305.14765
2023-05-24T06:16:11Z
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
[ "Insung Kong", "Dongyoon Yang", "Jongjin Lee", "Ilsang Ohn", "Gyuseung Baek", "Yongdai Kim" ]
Bayesian approaches for learning deep neural networks (BNN) have been received much attention and successfully applied to various applications. Particularly, BNNs have the merit of having better generalization ability as well as better uncertainty quantification. For the success of BNN, search an appropriate architecture of the neural networks is an important task, and various algorithms to find good sparse neural networks have been proposed. In this paper, we propose a new node-sparse BNN model which has good theoretical properties and is computationally feasible. We prove that the posterior concentration rate to the true model is near minimax optimal and adaptive to the smoothness of the true model. In particular the adaptiveness is the first of its kind for node-sparse BNNs. In addition, we develop a novel MCMC algorithm which makes the Bayesian inference of the node-sparse BNN model feasible in practice.
[ "stat.ML", "cs.LG" ]
false
2305.14814
2023-05-24T07:09:53Z
What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding
[ "Nicolas Keriven", "Samuel Vaiter" ]
We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on large graphs, with a focus on their expressive power. Existing analyses relate this notion to the graph isomorphism problem, which is mostly relevant for graphs of small sizes, or studied graph classification or regression tasks, while prediction tasks on nodes are far more relevant on large graphs. Recently, several works showed that, on very general random graphs models, GNNs converge to certains functions as the number of nodes grows. In this paper, we provide a more complete and intuitive description of the function space generated by equivariant GNNs for node-tasks, through general notions of convergence that encompass several previous examples. We emphasize the role of input node features, and study the impact of node Positional Encodings (PEs), a recent line of work that has been shown to yield state-of-the-art results in practice. Through the study of several examples of PEs on large random graphs, we extend previously known universality results to significantly more general models. Our theoretical results hint at some normalization tricks, which is shown numerically to have a positive impact on GNN generalization on synthetic and real data. Our proofs contain new concentration inequalities of independent interest.
[ "cs.LG", "stat.ML" ]
false
2305.14826
2023-05-24T07:34:15Z
Building Transportation Foundation Model via Generative Graph Transformer
[ "Xuhong Wang", "Ding Wang", "Liang Chen", "Yilun Lin" ]
Efficient traffic management is crucial for maintaining urban mobility, especially in densely populated areas where congestion, accidents, and delays can lead to frustrating and expensive commutes. However, existing prediction methods face challenges in terms of optimizing a single objective and understanding the complex composition of the transportation system. Moreover, they lack the ability to understand the macroscopic system and cannot efficiently utilize big data. In this paper, we propose a novel approach, Transportation Foundation Model (TFM), which integrates the principles of traffic simulation into traffic prediction. TFM uses graph structures and dynamic graph generation algorithms to capture the participatory behavior and interaction of transportation system actors. This data-driven and model-free simulation method addresses the challenges faced by traditional systems in terms of structural complexity and model accuracy and provides a foundation for solving complex transportation problems with real data. The proposed approach shows promising results in accurately predicting traffic outcomes in an urban transportation setting.
[ "cs.LG", "cs.AI" ]
false
2305.14852
2023-05-24T08:01:49Z
SWAMP: Sparse Weight Averaging with Multiple Particles for Iterative Magnitude Pruning
[ "Moonseok Choi", "Hyungi Lee", "Giung Nam", "Juho Lee" ]
Given the ever-increasing size of modern neural networks, the significance of sparse architectures has surged due to their accelerated inference speeds and minimal memory demands. When it comes to global pruning techniques, Iterative Magnitude Pruning (IMP) still stands as a state-of-the-art algorithm despite its simple nature, particularly in extremely sparse regimes. In light of the recent finding that the two successive matching IMP solutions are linearly connected without a loss barrier, we propose Sparse Weight Averaging with Multiple Particles (SWAMP), a straightforward modification of IMP that achieves performance comparable to an ensemble of two IMP solutions. For every iteration, we concurrently train multiple sparse models, referred to as particles, using different batch orders yet the same matching ticket, and then weight average such models to produce a single mask. We demonstrate that our method consistently outperforms existing baselines across different sparsities through extensive experiments on various data and neural network structures.
[ "cs.LG", "cs.AI" ]
false
2305.14984
2023-05-24T10:18:45Z
Adversarial robustness of amortized Bayesian inference
[ "Manuel Glöckler", "Michael Deistler", "Jakob H. Macke" ]
Bayesian inference usually requires running potentially costly inference procedures separately for every new observation. In contrast, the idea of amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data, which can subsequently be used to rapidly perform inference (i.e., to return estimates of posterior distributions) for new observations. This approach has been applied to many real-world models in the sciences and engineering, but it is unclear how robust the approach is to adversarial perturbations in the observed data. Here, we study the adversarial robustness of amortized Bayesian inference, focusing on simulation-based estimation of multi-dimensional posterior distributions. We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples, across several benchmark tasks and a real-world example from neuroscience. We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator, and show how it improves the adversarial robustness of amortized Bayesian inference.
[ "cs.LG", "stat.ML" ]
false
2305.15042
2023-05-24T11:30:33Z
Test like you Train in Implicit Deep Learning
[ "Zaccharie Ramzi", "Pierre Ablin", "Gabriel Peyré", "Thomas Moreau" ]
Implicit deep learning has recently gained popularity with applications ranging from meta-learning to Deep Equilibrium Networks (DEQs). In its general formulation, it relies on expressing some components of deep learning pipelines implicitly, typically via a root equation called the inner problem. In practice, the solution of the inner problem is approximated during training with an iterative procedure, usually with a fixed number of inner iterations. During inference, the inner problem needs to be solved with new data. A popular belief is that increasing the number of inner iterations compared to the one used during training yields better performance. In this paper, we question such an assumption and provide a detailed theoretical analysis in a simple setting. We demonstrate that overparametrization plays a key role: increasing the number of iterations at test time cannot improve performance for overparametrized networks. We validate our theory on an array of implicit deep-learning problems. DEQs, which are typically overparametrized, do not benefit from increasing the number of iterations at inference while meta-learning, which is typically not overparametrized, benefits from it.
[ "cs.LG", "stat.ML" ]
false
2305.15167
2023-05-24T13:59:03Z
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
[ "Siu Lun Chau", "Krikamol Muandet", "Dino Sejdinovic" ]
We present a novel approach for explaining Gaussian processes (GPs) that can utilize the full analytical covariance structure present in GPs. Our method is based on the popular solution concept of Shapley values extended to stochastic cooperative games, resulting in explanations that are random variables. The GP explanations generated using our approach satisfy similar favorable axioms to standard Shapley values and possess a tractable covariance function across features and data observations. This covariance allows for quantifying explanation uncertainties and studying the statistical dependencies between explanations. We further extend our framework to the problem of predictive explanation, and propose a Shapley prior over the explanation function to predict Shapley values for new data based on previously computed ones. Our extensive illustrations demonstrate the effectiveness of the proposed approach.
[ "stat.ML", "cs.LG" ]
false
2305.15228
2023-05-24T15:09:41Z
Short and Straight: Geodesics on Differentiable Manifolds
[ "Daniel Kelshaw", "Luca Magri" ]
Manifolds discovered by machine learning models provide a compact representation of the underlying data. Geodesics on these manifolds define locally length-minimising curves and provide a notion of distance, which are key for reduced-order modelling, statistical inference, and interpolation. In this work, we first analyse existing methods for computing length-minimising geodesics. We find that these are not suitable for obtaining valid paths, and thus, geodesic distances. We remedy these shortcomings by leveraging numerical tools from differential geometry, which provide the means to obtain Hamiltonian-conserving geodesics. Second, we propose a model-based parameterisation for distance fields and geodesic flows on continuous manifolds. Our approach exploits a manifold-aware extension to the Eikonal equation, eliminating the need for approximations or discretisation. Finally, we develop a curvature-based training mechanism, sampling and scaling points in regions of the manifold exhibiting larger values of the Ricci scalar. This sampling and scaling approach ensures that we capture regions of the manifold subject to higher degrees of geodesic deviation. Our proposed methods provide principled means to compute valid geodesics and geodesic distances on manifolds. This work opens opportunities for latent-space interpolation, optimal control, and distance computation on differentiable manifolds.
[ "cs.LG", "cs.CG" ]
false
2305.15234
2023-05-24T15:18:46Z
On the road to more accurate mobile cellular traffic predictions
[ "Natalia Vassileva Vesselinova" ]
The main contribution reported in the paper is a novel paradigm through which mobile cellular traffic forecasting is made substantially more accurate. Specifically, by incorporating freely available road metrics we characterise the data generation process and spatial dependencies. Therefore, this provides a means for improving the forecasting estimates. We employ highway flow and average speed variables together with a cellular network traffic metric in a light learning structure to predict the short-term future load on a cell covering a segment of a highway. This is in sharp contrast to prior art that mainly studies urban scenarios (with pedestrian and limited vehicular speeds) and develops machine learning approaches that use exclusively network metrics and meta information to make mid-term and long-term predictions. The learning structure can be used at a cell or edge level, and can find application in both federated and centralised learning.
[ "cs.LG", "cs.NI" ]
false
2305.15242
2023-05-24T15:27:04Z
Machine Unlearning: its nature, scope, and importance for a "delete culture"
[ "Luciano Floridi" ]
The article explores the cultural shift from recording to deleting information in the digital age and its implications on privacy, intellectual property (IP), and Large Language Models like ChatGPT. It begins by defining a delete culture where information, in principle legal, is made unavailable or inaccessible because unacceptable or undesirable, especially but not only due to its potential to infringe on privacy or IP. Then it focuses on two strategies in this context: deleting, to make information unavailable; and blocking, to make it inaccessible. The article argues that both strategies have significant implications, particularly for machine learning (ML) models where information is not easily made unavailable. However, the emerging research area of Machine Unlearning (MU) is highlighted as a potential solution. MU, still in its infancy, seeks to remove specific data points from ML models, effectively making them 'forget' completely specific information. If successful, MU could provide a feasible means to manage the overabundance of information and ensure a better protection of privacy and IP. However, potential ethical risks, such as misuse, overuse, and underuse of MU, should be systematically studied to devise appropriate policies.
[ "cs.CY", "cs.LG" ]
false
2305.15254
2023-05-24T15:38:43Z
Attention to Mean-Fields for Particle Cloud Generation
[ "Benno Käch", "Isabell Melzer-Pellmann" ]
The generation of collider data using machine learning has emerged as a prominent research topic in particle physics due to the increasing computational challenges associated with traditional Monte Carlo simulation methods, particularly for future colliders with higher luminosity. Although generating particle clouds is analogous to generating point clouds, accurately modelling the complex correlations between the particles presents a considerable challenge. Additionally, variable particle cloud sizes further exacerbate these difficulties, necessitating more sophisticated models. In this work, we propose a novel model that utilizes an attention-based aggregation mechanism to address these challenges. The model is trained in an adversarial training paradigm, ensuring that both the generator and critic exhibit permutation equivariance/invariance with respect to their input. A novel feature matching loss in the critic is introduced to stabilize the training. The proposed model performs competitively to the state-of-art whilst having significantly fewer parameters.
[ "hep-ex", "cs.LG" ]
false
2305.15276
2023-05-24T16:02:28Z
Robust Sparse Mean Estimation via Incremental Learning
[ "Jianhao Ma", "Rui Ray Chen", "Yinghui He", "Salar Fattahi", "Wei Hu" ]
In this paper, we study the problem of robust sparse mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples drawn from a heavy-tailed distribution. Existing estimators face two critical challenges in this setting. First, they are limited by a conjectured computational-statistical tradeoff, implying that any computationally efficient algorithm needs $\tilde\Omega(k^2)$ samples, while its statistically-optimal counterpart only requires $\tilde O(k)$ samples. Second, the existing estimators fall short of practical use as they scale poorly with the ambient dimension. This paper presents a simple mean estimator that overcomes both challenges under moderate conditions: it runs in near-linear time and memory (both with respect to the ambient dimension) while requiring only $\tilde O(k)$ samples to recover the true mean. At the core of our method lies an incremental learning phenomenon: we introduce a simple nonconvex framework that can incrementally learn the top-$k$ nonzero elements of the mean while keeping the zero elements arbitrarily small. Unlike existing estimators, our method does not need any prior knowledge of the sparsity level $k$. We prove the optimality of our estimator by providing a matching information-theoretic lower bound. Finally, we conduct a series of simulations to corroborate our theoretical findings. Our code is available at https://github.com/huihui0902/Robust_mean_estimation.
[ "cs.LG", "stat.ML" ]
false
2305.15331
2023-05-24T16:43:21Z
No-Regret Online Prediction with Strategic Experts
[ "Omid Sadeghi", "Maryam Fazel" ]
We study a generalization of the online binary prediction with expert advice framework where at each round, the learner is allowed to pick $m\geq 1$ experts from a pool of $K$ experts and the overall utility is a modular or submodular function of the chosen experts. We focus on the setting in which experts act strategically and aim to maximize their influence on the algorithm's predictions by potentially misreporting their beliefs about the events. Among others, this setting finds applications in forecasting competitions where the learner seeks not only to make predictions by aggregating different forecasters but also to rank them according to their relative performance. Our goal is to design algorithms that satisfy the following two requirements: 1) $\textit{Incentive-compatible}$: Incentivize the experts to report their beliefs truthfully, and 2) $\textit{No-regret}$: Achieve sublinear regret with respect to the true beliefs of the best fixed set of $m$ experts in hindsight. Prior works have studied this framework when $m=1$ and provided incentive-compatible no-regret algorithms for the problem. We first show that a simple reduction of our problem to the $m=1$ setting is neither efficient nor effective. Then, we provide algorithms that utilize the specific structure of the utility functions to achieve the two desired goals.
[ "cs.LG", "cs.GT" ]
false
2305.15333
2023-05-24T16:45:38Z
Breaking the Curse of Quality Saturation with User-Centric Ranking
[ "Zhuokai Zhao", "Yang Yang", "Wenyu Wang", "Chihuang Liu", "Yu Shi", "Wenjie Hu", "Haotian Zhang", "Shuang Yang" ]
A key puzzle in search, ads, and recommendation is that the ranking model can only utilize a small portion of the vastly available user interaction data. As a result, increasing data volume, model size, or computation FLOPs will quickly suffer from diminishing returns. We examined this problem and found that one of the root causes may lie in the so-called ``item-centric'' formulation, which has an unbounded vocabulary and thus uncontrolled model complexity. To mitigate quality saturation, we introduce an alternative formulation named ``user-centric ranking'', which is based on a transposed view of the dyadic user-item interaction data. We show that this formulation has a promising scaling property, enabling us to train better-converged models on substantially larger data sets.
[ "cs.IR", "cs.LG" ]
false
2305.15337
2023-05-24T16:50:05Z
A Deep Generative Model for Interactive Data Annotation through Direct Manipulation in Latent Space
[ "Hannes Kath", "Thiago S. Gouvêa", "Daniel Sonntag" ]
The impact of machine learning (ML) in many fields of application is constrained by lack of annotated data. Among existing tools for ML-assisted data annotation, one little explored tool type relies on an analogy between the coordinates of a graphical user interface and the latent space of a neural network for interaction through direct manipulation. In the present work, we 1) expand the paradigm by proposing two new analogies: time and force as reflecting iterations and gradients of network training; 2) propose a network model for learning a compact graphical representation of the data that takes into account both its internal structure and user provided annotations; and 3) investigate the impact of model hyperparameters on the learned graphical representations of the data, identifying candidate model variants for a future user study.
[ "cs.LG", "cs.HC" ]
false
2305.15348
2023-05-24T16:59:41Z
READ: Recurrent Adaptation of Large Transformers
[ "Sid Wang", "John Nguyen", "Ke Li", "Carole-Jean Wu" ]
Fine-tuning large-scale Transformers has led to the explosion of many AI applications across Natural Language Processing and Computer Vision tasks. However, fine-tuning all pre-trained model parameters becomes impractical as the model size and number of tasks increase. Parameter-efficient transfer learning (PETL) methods aim to address these challenges. While effective in reducing the number of trainable parameters, PETL methods still require significant energy and computational resources to fine-tune. In this paper, we introduce \textbf{RE}current \textbf{AD}aption (READ) -- a lightweight and memory-efficient fine-tuning method -- to overcome the limitations of the current PETL approaches. Specifically, READ inserts a small RNN network alongside the backbone model so that the model does not have to back-propagate through the large backbone network. Through comprehensive empirical evaluation of the GLUE benchmark, we demonstrate READ can achieve a $56\%$ reduction in the training memory consumption and an $84\%$ reduction in the GPU energy usage while retraining high model quality compared to full-tuning. Additionally, the model size of READ does not grow with the backbone model size, making it a highly scalable solution for fine-tuning large Transformers.
[ "cs.LG", "cs.AI" ]
false
2305.15353
2023-05-24T17:06:59Z
A Virtual Reality Tool for Representing, Visualizing and Updating Deep Learning Models
[ "Hannes Kath", "Bengt Lüers", "Thiago S. Gouvêa", "Daniel Sonntag" ]
Deep learning is ubiquitous, but its lack of transparency limits its impact on several potential application areas. We demonstrate a virtual reality tool for automating the process of assigning data inputs to different categories. A dataset is represented as a cloud of points in virtual space. The user explores the cloud through movement and uses hand gestures to categorise portions of the cloud. This triggers gradual movements in the cloud: points of the same category are attracted to each other, different groups are pushed apart, while points are globally distributed in a way that utilises the entire space. The space, time, and forces observed in virtual reality can be mapped to well-defined machine learning concepts, namely the latent space, the training epochs and the backpropagation. Our tool illustrates how the inner workings of deep neural networks can be made tangible and transparent. We expect this approach to accelerate the autonomous development of deep learning applications by end users in novel areas.
[ "cs.HC", "cs.LG" ]
false
2305.15529
2023-05-24T19:35:42Z
Editable Graph Neural Network for Node Classifications
[ "Zirui Liu", "Zhimeng Jiang", "Shaochen Zhong", "Kaixiong Zhou", "Li Li", "Rui Chen", "Soo-Hyun Choi", "Xia Hu" ]
Despite Graph Neural Networks (GNNs) have achieved prominent success in many graph-based learning problem, such as credit risk assessment in financial networks and fake news detection in social networks. However, the trained GNNs still make errors and these errors may cause serious negative impact on society. \textit{Model editing}, which corrects the model behavior on wrongly predicted target samples while leaving model predictions unchanged on unrelated samples, has garnered significant interest in the fields of computer vision and natural language processing. However, model editing for graph neural networks (GNNs) is rarely explored, despite GNNs' widespread applicability. To fill the gap, we first observe that existing model editing methods significantly deteriorate prediction accuracy (up to $50\%$ accuracy drop) in GNNs while a slight accuracy drop in multi-layer perception (MLP). The rationale behind this observation is that the node aggregation in GNNs will spread the editing effect throughout the whole graph. This propagation pushes the node representation far from its original one. Motivated by this observation, we propose \underline{E}ditable \underline{G}raph \underline{N}eural \underline{N}etworks (EGNN), a neighbor propagation-free approach to correct the model prediction on misclassified nodes. Specifically, EGNN simply stitches an MLP to the underlying GNNs, where the weights of GNNs are frozen during model editing. In this way, EGNN disables the propagation during editing while still utilizing the neighbor propagation scheme for node prediction to obtain satisfactory results. Experiments demonstrate that EGNN outperforms existing baselines in terms of effectiveness (correcting wrong predictions with lower accuracy drop), generalizability (correcting wrong predictions for other similar nodes), and efficiency (low training time and memory) on various graph datasets.
[ "cs.LG", "cs.SI" ]
false
2305.15536
2023-05-24T19:45:56Z
RAND: Robustness Aware Norm Decay For Quantized Seq2seq Models
[ "David Qiu", "David Rim", "Shaojin Ding", "Oleg Rybakov", "Yanzhang He" ]
With the rapid increase in the size of neural networks, model compression has become an important area of research. Quantization is an effective technique at decreasing the model size, memory access, and compute load of large models. Despite recent advances in quantization aware training (QAT) technique, most papers present evaluations that are focused on computer vision tasks, which have different training dynamics compared to sequence tasks. In this paper, we first benchmark the impact of popular techniques such as straight through estimator, pseudo-quantization noise, learnable scale parameter, clipping, etc. on 4-bit seq2seq models across a suite of speech recognition datasets ranging from 1,000 hours to 1 million hours, as well as one machine translation dataset to illustrate its applicability outside of speech. Through the experiments, we report that noise based QAT suffers when there is insufficient regularization signal flowing back to the quantization scale. We propose low complexity changes to the QAT process to improve model accuracy (outperforming popular learnable scale and clipping methods). With the improved accuracy, it opens up the possibility to exploit some of the other benefits of noise based QAT: 1) training a single model that performs well in mixed precision mode and 2) improved generalization on long form speech recognition.
[ "eess.AS", "cs.LG" ]
false
2305.15574
2023-05-24T21:15:23Z
Deep Stochastic Processes via Functional Markov Transition Operators
[ "Jin Xu", "Emilien Dupont", "Kaspar Märtens", "Tom Rainforth", "Yee Whye Teh" ]
We introduce Markov Neural Processes (MNPs), a new class of Stochastic Processes (SPs) which are constructed by stacking sequences of neural parameterised Markov transition operators in function space. We prove that these Markov transition operators can preserve the exchangeability and consistency of SPs. Therefore, the proposed iterative construction adds substantial flexibility and expressivity to the original framework of Neural Processes (NPs) without compromising consistency or adding restrictions. Our experiments demonstrate clear advantages of MNPs over baseline models on a variety of tasks.
[ "stat.ML", "cs.LG" ]
false
2305.15603
2023-05-24T22:26:38Z
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural Networks
[ "Artur P. Toshev", "Gianluca Galletti", "Johannes Brandstetter", "Stefan Adami", "Nikolaus A. Adams" ]
We contribute to the vastly growing field of machine learning for engineering systems by demonstrating that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models than their non-equivariant counterparts. We benchmark two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow, and evaluate the models based on different performance measures, such as kinetic energy or Sinkhorn distance. In addition, we investigate different embedding methods of physical-information histories for equivariant models. We find that while currently being rather slow to train and evaluate, equivariant models with our proposed history embeddings learn more accurate physical interactions.
[ "cs.LG", "physics.flu-dyn" ]
false
2305.16341
2023-05-24T08:08:56Z
TaxoKnow: Taxonomy as Prior Knowledge in the Loss Function of Multi-class Classification
[ "Mohsen Pourvali", "Yao Meng", "Chen Sheng", "Yangzhou Du" ]
In this paper, we investigate the effectiveness of integrating a hierarchical taxonomy of labels as prior knowledge into the learning algorithm of a flat classifier. We introduce two methods to integrate the hierarchical taxonomy as an explicit regularizer into the loss function of learning algorithms. By reasoning on a hierarchical taxonomy, a neural network alleviates its output distributions over the classes, allowing conditioning on upper concepts for a minority class. We limit ourselves to the flat classification task and provide our experimental results on two industrial in-house datasets and two public benchmarks, RCV1 and Amazon product reviews. Our obtained results show the significant effect of a taxonomy in increasing the performance of a learner in semisupervised multi-class classification and the considerable results obtained in a fully supervised fashion.
[ "cs.LG", "cs.AI" ]
false
2305.16346
2023-05-24T14:45:54Z
Artificial Intelligence-Based Methods for Precision Medicine: Diabetes Risk Prediction
[ "Farida Mohsen", "Hamada R. H. Al-Absi", "Noha A. Yousri", "Nady El Hajj", "Zubair Shah" ]
The rising prevalence of type 2 diabetes mellitus (T2DM) necessitates the development of predictive models for T2DM risk assessment. Artificial intelligence (AI) models are being extensively used for this purpose, but a comprehensive review of their advancements and challenges is lacking. This scoping review analyzes existing literature on AI-based models for T2DM risk prediction. Forty studies were included, mainly published in the past four years. Traditional machine learning models were more prevalent than deep learning models. Electronic health records were the most commonly used data source. Unimodal AI models relying on EHR data were prominent, while only a few utilized multimodal models. Both unimodal and multimodal models showed promising performance, with the latter outperforming the former. Internal validation was common, while external validation was limited. Interpretability methods were reported in half of the studies. Few studies reported novel biomarkers, and open-source code availability was limited. This review provides insights into the current state and limitations of AI-based T2DM risk prediction models and highlights challenges for their development and clinical implementation.
[ "cs.LG", "cs.AI" ]
false
2310.11470
2023-05-24T13:38:38Z
Classic machine learning methods
[ "Johann Faouzi", "Olivier Colliot" ]
In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted to supervised learning techniques for classification and regression, including nearest-neighbor methods, linear and logistic regressions, support vector machines and tree-based algorithms. We also describe the problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsupervised learning methods, namely for clustering and dimensionality reduction.
[ "cs.LG", "cs.AI" ]
false
2305.14656
2023-05-24T02:51:45Z
RSRM: Reinforcement Symbolic Regression Machine
[ "Yilong Xu", "Yang Liu", "Hao Sun" ]
In nature, the behaviors of many complex systems can be described by parsimonious math equations. Automatically distilling these equations from limited data is cast as a symbolic regression process which hitherto remains a grand challenge. Keen efforts in recent years have been placed on tackling this issue and demonstrated success in symbolic regression. However, there still exist bottlenecks that current methods struggle to break when the discrete search space tends toward infinity and especially when the underlying math formula is intricate. To this end, we propose a novel Reinforcement Symbolic Regression Machine (RSRM) that masters the capability of uncovering complex math equations from only scarce data. The RSRM model is composed of three key modules: (1) a Monte Carlo tree search (MCTS) agent that explores optimal math expression trees consisting of pre-defined math operators and variables, (2) a Double Q-learning block that helps reduce the feasible search space of MCTS via properly understanding the distribution of reward, and (3) a modulated sub-tree discovery block that heuristically learns and defines new math operators to improve representation ability of math expression trees. Biding of these modules yields the state-of-the-art performance of RSRM in symbolic regression as demonstrated by multiple sets of benchmark examples. The RSRM model shows clear superiority over several representative baseline models.
[ "cs.LG", "cs.AI", "cs.SC" ]
false
2305.14689
2023-05-24T03:52:48Z
Under-Parameterized Double Descent for Ridge Regularized Least Squares Denoising of Data on a Line
[ "Rishi Sonthalia", "Xinyue Li", "Bochao Gu" ]
The relationship between the number of training data points, the number of parameters in a statistical model, and the generalization capabilities of the model has been widely studied. Previous work has shown that double descent can occur in the over-parameterized regime, and believe that the standard bias-variance trade-off holds in the under-parameterized regime. In this paper, we present a simple example that provably exhibits double descent in the under-parameterized regime. For simplicity, we look at the ridge regularized least squares denoising problem with data on a line embedded in high-dimension space. By deriving an asymptotically accurate formula for the generalization error, we observe sample-wise and parameter-wise double descent with the peak in the under-parameterized regime rather than at the interpolation point or in the over-parameterized regime. Further, the peak of the sample-wise double descent curve corresponds to a peak in the curve for the norm of the estimator, and adjusting $\mu$, the strength of the ridge regularization, shifts the location of the peak. We observe that parameter-wise double descent occurs for this model for small $\mu$. For larger values of $\mu$, we observe that the curve for the norm of the estimator has a peak but that this no longer translates to a peak in the generalization error. Moreover, we study the training error for this problem. The considered problem setup allows for studying the interaction between two regularizers. We provide empirical evidence that the model implicitly favors using the ridge regularizer over the input data noise regularizer. Thus, we show that even though both regularizers regularize the same quantity, i.e., the norm of the estimator, they are not equivalent.
[ "stat.ML", "cs.LG", "math.ST", "stat.TH" ]
false
2305.14752
2023-05-24T05:54:10Z
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
[ "Yiannis Charalambous", "Norbert Tihanyi", "Ridhi Jain", "Youcheng Sun", "Mohamed Amine Ferrag", "Lucas C. Cordeiro" ]
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
[ "cs.SE", "cs.AI", "cs.FL", "cs.LG" ]
false
2305.15157
2023-05-24T13:52:18Z
Towards More Suitable Personalization in Federated Learning via Decentralized Partial Model Training
[ "Yifan Shi", "Yingqi Liu", "Yan Sun", "Zihao Lin", "Li Shen", "Xueqian Wang", "Dacheng Tao" ]
Personalized federated learning (PFL) aims to produce the greatest personalized model for each client to face an insurmountable problem--data heterogeneity in real FL systems. However, almost all existing works have to face large communication burdens and the risk of disruption if the central server fails. Only limited efforts have been used in a decentralized way but still suffers from inferior representation ability due to sharing the full model with its neighbors. Therefore, in this paper, we propose a personalized FL framework with a decentralized partial model training called DFedAlt. It personalizes the "right" components in the modern deep models by alternately updating the shared and personal parameters to train partially personalized models in a peer-to-peer manner. To further promote the shared parameters aggregation process, we propose DFedSalt integrating the local Sharpness Aware Minimization (SAM) optimizer to update the shared parameters. It adds proper perturbation in the direction of the gradient to overcome the shared model inconsistency across clients. Theoretically, we provide convergence analysis of both algorithms in the general non-convex setting for decentralized partial model training in PFL. Our experiments on several real-world data with various data partition settings demonstrate that (i) decentralized training is more suitable for partial personalization, which results in state-of-the-art (SOTA) accuracy compared with the SOTA PFL baselines; (ii) the shared parameters with proper perturbation make partial personalized FL more suitable for decentralized training, where DFedSalt achieves most competitive performance.
[ "cs.LG", "cs.DC", "math.OC" ]
false