arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2305.14601
2023-05-24T00:51:04Z
FaceFusion: Exploiting Full Spectrum of Multiple Datasets
[ "Chiyoung Song", "Dongjae Lee" ]
The size of training dataset is known to be among the most dominating aspects of training high-performance face recognition embedding model. Building a large dataset from scratch could be cumbersome and time-intensive, while combining multiple already-built datasets poses the risk of introducing large amount of label noise. We present a novel training method, named FaceFusion. It creates a fused view of different datasets that is untainted by identity conflicts, while concurrently training an embedding network using the view in an end-to-end fashion. Using the unified view of combined datasets enables the embedding network to be trained against the entire spectrum of the datasets, leading to a noticeable performance boost. Extensive experiments confirm superiority of our method, whose performance in public evaluation datasets surpasses not only that of using a single training dataset, but also that of previously known methods under various training circumstances.
[ "cs.CV" ]
false
2305.14621
2023-05-24T01:39:41Z
Realistically distributing object placements in synthetic training data improves the performance of vision-based object detection models
[ "Setareh Dabiri", "Vasileios Lioutas", "Berend Zwartsenberg", "Yunpeng Liu", "Matthew Niedoba", "Xiaoxuan Liang", "Dylan Green", "Justice Sefas", "Jonathan Wilder Lavington", "Frank Wood", "Adam Scibior" ]
When training object detection models on synthetic data, it is important to make the distribution of synthetic data as close as possible to the distribution of real data. We investigate specifically the impact of object placement distribution, keeping all other aspects of synthetic data fixed. Our experiment, training a 3D vehicle detection model in CARLA and testing on KITTI, demonstrates a substantial improvement resulting from improving the object placement distribution.
[ "cs.CV" ]
false
2305.14674
2023-05-24T03:32:03Z
T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified Visual Modalities
[ "Kangfu Mei", "Mo Zhou", "Vishal M. Patel" ]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces. While DPF shows great potential for unifying data generation of various modalities including images, videos, and 3D geometry, it does not scale to a higher data resolution. This can be attributed to the ``scaling property'', where it is difficult for the model to capture local structures through uniform sampling. To this end, we propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning, and incorporating additional guidance, e.g., text description, to complement the global geometry. The model can be scaled to generate high-resolution data while unifying multiple modalities. Experimental results on data generation in various modalities demonstrate the effectiveness of our model, as well as its potential as a foundation framework for scalable modality-unified visual content generation.
[ "cs.CV" ]
false
2305.14691
2023-05-24T03:53:20Z
Label-Efficient Learning in Agriculture: A Comprehensive Review
[ "Jiajia Li", "Dong Chen", "Xinda Qi", "Zhaojian Li", "Yanbo Huang", "Daniel Morris", "Xiaobo Tan" ]
The past decade has witnessed many great successes of machine learning (ML) and deep learning (DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural robotics, and precision livestock management. Despite tremendous progresses, one downside of such ML/DL models is that they generally rely on large-scale labeled datasets for training, and the performance of such models is strongly influenced by the size and quality of available labeled data samples. In addition, collecting, processing, and labeling such large-scale datasets is extremely costly and time-consuming, partially due to the rising cost in human labor. Therefore, developing label-efficient ML/DL methods for agricultural applications has received significant interests among researchers and practitioners. In fact, there are more than 50 papers on developing and applying deep-learning-based label-efficient techniques to address various agricultural problems since 2016, which motivates the authors to provide a timely and comprehensive review of recent label-efficient ML/DL methods in agricultural applications. To this end, we first develop a principled taxonomy to organize these methods according to the degree of supervision, including weak supervision (i.e., active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition, a systematic review of various agricultural applications exploiting these label-efficient algorithms, such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented. Finally, we discuss the current problems and challenges, as well as future research directions. A well-classified paper list can be accessed at https://github.com/DongChen06/Label-efficient-in-Agriculture.
[ "cs.CV" ]
false
2305.14715
2023-05-24T04:33:28Z
Leveraging Future Relationship Reasoning for Vehicle Trajectory Prediction
[ "Daehee Park", "Hobin Ryu", "Yunseo Yang", "Jegyeong Cho", "Jiwon Kim", "Kuk-Jin Yoon" ]
Understanding the interaction between multiple agents is crucial for realistic vehicle trajectory prediction. Existing methods have attempted to infer the interaction from the observed past trajectories of agents using pooling, attention, or graph-based methods, which rely on a deterministic approach. However, these methods can fail under complex road structures, as they cannot predict various interactions that may occur in the future. In this paper, we propose a novel approach that uses lane information to predict a stochastic future relationship among agents. To obtain a coarse future motion of agents, our method first predicts the probability of lane-level waypoint occupancy of vehicles. We then utilize the temporal probability of passing adjacent lanes for each agent pair, assuming that agents passing adjacent lanes will highly interact. We also model the interaction using a probabilistic distribution, which allows for multiple possible future interactions. The distribution is learned from the posterior distribution of interaction obtained from ground truth future trajectories. We validate our method on popular trajectory prediction datasets: nuScenes and Argoverse. The results show that the proposed method brings remarkable performance gain in prediction accuracy, and achieves state-of-the-art performance in long-term prediction benchmark dataset.
[ "cs.CV" ]
false
2305.14768
2023-05-24T06:17:53Z
Dual Path Transformer with Partition Attention
[ "Zhengkai Jiang", "Liang Liu", "Jiangning Zhang", "Yabiao Wang", "Mingang Chen", "Chengjie Wang" ]
This paper introduces a novel attention mechanism, called dual attention, which is both efficient and effective. The dual attention mechanism consists of two parallel components: local attention generated by Convolutional Neural Networks (CNNs) and long-range attention generated by Vision Transformers (ViTs). To address the high computational complexity and memory footprint of vanilla Multi-Head Self-Attention (MHSA), we introduce a novel Multi-Head Partition-wise Attention (MHPA) mechanism. The partition-wise attention approach models both intra-partition and inter-partition attention simultaneously. Building on the dual attention block and partition-wise attention mechanism, we present a hierarchical vision backbone called DualFormer. We evaluate the effectiveness of our model on several computer vision tasks, including image classification on ImageNet, object detection on COCO, and semantic segmentation on Cityscapes. Specifically, the proposed DualFormer-XS achieves 81.5\% top-1 accuracy on ImageNet, outperforming the recent state-of-the-art MPViT-XS by 0.6\% top-1 accuracy with much higher throughput.
[ "cs.CV" ]
false
2305.14787
2023-05-24T06:42:27Z
Polarimetric Imaging for Perception
[ "Michael Baltaxe", "Tomer Pe'er", "Dan Levi" ]
Autonomous driving and advanced driver-assistance systems rely on a set of sensors and algorithms to perform the appropriate actions and provide alerts as a function of the driving scene. Typically, the sensors include color cameras, radar, lidar and ultrasonic sensors. Strikingly however, although light polarization is a fundamental property of light, it is seldom harnessed for perception tasks. In this work we analyze the potential for improvement in perception tasks when using an RGB-polarimetric camera, as compared to an RGB camera. We examine monocular depth estimation and free space detection during the middle of the day, when polarization is independent of subject heading, and show that a quantifiable improvement can be achieved for both of them using state-of-the-art deep neural networks, with a minimum of architectural changes. We also present a new dataset composed of RGB-polarimetric images, lidar scans, GNSS / IMU readings and free space segmentations that further supports developing perception algorithms that take advantage of light polarization.
[ "cs.CV" ]
false
2305.14813
2023-05-24T07:09:25Z
Semi-Supervised and Long-Tailed Object Detection with CascadeMatch
[ "Yuhang Zang", "Kaiyang Zhou", "Chen Huang", "Chen Change Loy" ]
This paper focuses on long-tailed object detection in the semi-supervised learning setting, which poses realistic challenges, but has rarely been studied in the literature. We propose a novel pseudo-labeling-based detector called CascadeMatch. Our detector features a cascade network architecture, which has multi-stage detection heads with progressive confidence thresholds. To avoid manually tuning the thresholds, we design a new adaptive pseudo-label mining mechanism to automatically identify suitable values from data. To mitigate confirmation bias, where a model is negatively reinforced by incorrect pseudo-labels produced by itself, each detection head is trained by the ensemble pseudo-labels of all detection heads. Experiments on two long-tailed datasets, i.e., LVIS and COCO-LT, demonstrate that CascadeMatch surpasses existing state-of-the-art semi-supervised approaches -- across a wide range of detection architectures -- in handling long-tailed object detection. For instance, CascadeMatch outperforms Unbiased Teacher by 1.9 AP Fix on LVIS when using a ResNet50-based Cascade R-CNN structure, and by 1.7 AP Fix when using Sparse R-CNN with a Transformer encoder. We also show that CascadeMatch can even handle the challenging sparsely annotated object detection problem.
[ "cs.CV" ]
false
2305.14831
2023-05-24T07:36:47Z
OD-NeRF: Efficient Training of On-the-Fly Dynamic Neural Radiance Fields
[ "Zhiwen Yan", "Chen Li", "Gim Hee Lee" ]
Dynamic neural radiance fields (dynamic NeRFs) have demonstrated impressive results in novel view synthesis on 3D dynamic scenes. However, they often require complete video sequences for training followed by novel view synthesis, which is similar to playing back the recording of a dynamic 3D scene. In contrast, we propose OD-NeRF to efficiently train and render dynamic NeRFs on-the-fly which instead is capable of streaming the dynamic scene. When training on-the-fly, the training frames become available sequentially and the model is trained and rendered frame-by-frame. The key challenge of efficient on-the-fly training is how to utilize the radiance field estimated from the previous frames effectively. To tackle this challenge, we propose: 1) a NeRF model conditioned on the multi-view projected colors to implicitly track correspondence between the current and previous frames, and 2) a transition and update algorithm that leverages the occupancy grid from the last frame to sample efficiently at the current frame. Our algorithm can achieve an interactive speed of 6FPS training and rendering on synthetic dynamic scenes on-the-fly, and a significant speed-up compared to the state-of-the-art on real-world dynamic scenes.
[ "cs.CV" ]
false
2305.14840
2023-05-24T07:44:16Z
Predicting Token Impact Towards Efficient Vision Transformer
[ "Hong Wang", "Su Yang", "Xiaoke Huang", "Weishan Zhang" ]
Token filtering to reduce irrelevant tokens prior to self-attention is a straightforward way to enable efficient vision Transformer. This is the first work to view token filtering from a feature selection perspective, where we weigh the importance of a token according to how much it can change the loss once masked. If the loss changes greatly after masking a token of interest, it means that such a token has a significant impact on the final decision and is thus relevant. Otherwise, the token is less important for the final decision, so it can be filtered out. After applying the token filtering module generalized from the whole training data, the token number fed to the self-attention module can be obviously reduced in the inference phase, leading to much fewer computations in all the subsequent self-attention layers. The token filter can be realized using a very simple network, where we utilize multi-layer perceptron. Except for the uniqueness of performing token filtering only once from the very beginning prior to self-attention, the other core feature making our method different from the other token filters lies in the predictability of token impact from a feature selection point of view. The experiments show that the proposed method provides an efficient way to approach a light weighted model after optimized with a backbone by means of fine tune, which is easy to be deployed in comparison with the existing methods based on training from scratch.
[ "cs.CV", "I.5.1" ]
false
2305.14856
2023-05-24T08:06:12Z
Optimization-Based Improvement of Face Image Quality Assessment Techniques
[ "Žiga Babnik", "Naser Damer", "Vitomir Štruc" ]
Contemporary face recognition (FR) models achieve near-ideal recognition performance in constrained settings, yet do not fully translate the performance to unconstrained (realworld) scenarios. To help improve the performance and stability of FR systems in such unconstrained settings, face image quality assessment (FIQA) techniques try to infer sample-quality information from the input face images that can aid with the recognition process. While existing FIQA techniques are able to efficiently capture the differences between high and low quality images, they typically cannot fully distinguish between images of similar quality, leading to lower performance in many scenarios. To address this issue, we present in this paper a supervised quality-label optimization approach, aimed at improving the performance of existing FIQA techniques. The developed optimization procedure infuses additional information (computed with a selected FR model) into the initial quality scores generated with a given FIQA technique to produce better estimates of the "actual" image quality. We evaluate the proposed approach in comprehensive experiments with six state-of-the-art FIQA approaches (CR-FIQA, FaceQAN, SER-FIQ, PCNet, MagFace, SDD-FIQA) on five commonly used benchmarks (LFW, CFPFP, CPLFW, CALFW, XQLFW) using three targeted FR models (ArcFace, ElasticFace, CurricularFace) with highly encouraging results.
[ "cs.CV" ]
false
2305.14880
2023-05-24T08:31:38Z
Multiresolution Feature Guidance Based Transformer for Anomaly Detection
[ "Shuting Yan", "Pingping Chen", "Honghui Chen", "Huan Mao", "Feng Chen", "Zhijian Lin" ]
Anomaly detection is represented as an unsupervised learning to identify deviated images from normal images. In general, there are two main challenges of anomaly detection tasks, i.e., the class imbalance and the unexpectedness of anomalies. In this paper, we propose a multiresolution feature guidance method based on Transformer named GTrans for unsupervised anomaly detection and localization. In GTrans, an Anomaly Guided Network (AGN) pre-trained on ImageNet is developed to provide surrogate labels for features and tokens. Under the tacit knowledge guidance of the AGN, the anomaly detection network named Trans utilizes Transformer to effectively establish a relationship between features with multiresolution, enhancing the ability of the Trans in fitting the normal data manifold. Due to the strong generalization ability of AGN, GTrans locates anomalies by comparing the differences in spatial distance and direction of multi-scale features extracted from the AGN and the Trans. Our experiments demonstrate that the proposed GTrans achieves state-of-the-art performance in both detection and localization on the MVTec AD dataset. GTrans achieves image-level and pixel-level anomaly detection AUROC scores of 99.0% and 97.9% on the MVTec AD dataset, respectively.
[ "cs.CV" ]
false
2305.14914
2023-05-24T09:03:18Z
GAMUS: A Geometry-aware Multi-modal Semantic Segmentation Benchmark for Remote Sensing Data
[ "Zhitong Xiong", "Sining Chen", "Yi Wang", "Lichao Mou", "Xiao Xiang Zhu" ]
Geometric information in the normalized digital surface models (nDSM) is highly correlated with the semantic class of the land cover. Exploiting two modalities (RGB and nDSM (height)) jointly has great potential to improve the segmentation performance. However, it is still an under-explored field in remote sensing due to the following challenges. First, the scales of existing datasets are relatively small and the diversity of existing datasets is limited, which restricts the ability of validation. Second, there is a lack of unified benchmarks for performance assessment, which leads to difficulties in comparing the effectiveness of different models. Last, sophisticated multi-modal semantic segmentation methods have not been deeply explored for remote sensing data. To cope with these challenges, in this paper, we introduce a new remote-sensing benchmark dataset for multi-modal semantic segmentation based on RGB-Height (RGB-H) data. Towards a fair and comprehensive analysis of existing methods, the proposed benchmark consists of 1) a large-scale dataset including co-registered RGB and nDSM pairs and pixel-wise semantic labels; 2) a comprehensive evaluation and analysis of existing multi-modal fusion strategies for both convolutional and Transformer-based networks on remote sensing data. Furthermore, we propose a novel and effective Transformer-based intermediary multi-modal fusion (TIMF) module to improve the semantic segmentation performance through adaptive token-level multi-modal fusion.The designed benchmark can foster future research on developing new methods for multi-modal learning on remote sensing data. Extensive analyses of those methods are conducted and valuable insights are provided through the experimental results. Code for the benchmark and baselines can be accessed at \url{https://github.com/EarthNets/RSI-MMSegmentation}.
[ "cs.CV" ]
false
2305.14918
2023-05-24T09:06:01Z
Incremental Dense Reconstruction from Monocular Video with Guided Sparse Feature Volume Fusion
[ "Xingxing Zuo", "Nan Yang", "Nathaniel Merrill", "Binbin Xu", "Stefan Leutenegger" ]
Incrementally recovering 3D dense structures from monocular videos is of paramount importance since it enables various robotics and AR applications. Feature volumes have recently been shown to enable efficient and accurate incremental dense reconstruction without the need to first estimate depth, but they are not able to achieve as high of a resolution as depth-based methods due to the large memory consumption of high-resolution feature volumes. This letter proposes a real-time feature volume-based dense reconstruction method that predicts TSDF (Truncated Signed Distance Function) values from a novel sparsified deep feature volume, which is able to achieve higher resolutions than previous feature volume-based methods, and is favorable in large-scale outdoor scenarios where the majority of voxels are empty. An uncertainty-aware multi-view stereo (MVS) network is leveraged to infer initial voxel locations of the physical surface in a sparse feature volume. Then for refining the recovered 3D geometry, deep features are attentively aggregated from multiview images at potential surface locations, and temporally fused. Besides achieving higher resolutions than before, our method is shown to produce more complete reconstructions with finer detail in many cases. Extensive evaluations on both public and self-collected datasets demonstrate a very competitive real-time reconstruction result for our method compared to state-of-the-art reconstruction methods in both indoor and outdoor settings.
[ "cs.CV" ]
false
2305.14962
2023-05-24T09:56:47Z
ICDAR 2023 Competition on Robust Layout Segmentation in Corporate Documents
[ "Christoph Auer", "Ahmed Nassar", "Maksym Lysak", "Michele Dolfi", "Nikolaos Livathinos", "Peter Staar" ]
Transforming documents into machine-processable representations is a challenging task due to their complex structures and variability in formats. Recovering the layout structure and content from PDF files or scanned material has remained a key problem for decades. ICDAR has a long tradition in hosting competitions to benchmark the state-of-the-art and encourage the development of novel solutions to document layout understanding. In this report, we present the results of our \textit{ICDAR 2023 Competition on Robust Layout Segmentation in Corporate Documents}, which posed the challenge to accurately segment the page layout in a broad range of document styles and domains, including corporate reports, technical literature and patents. To raise the bar over previous competitions, we engineered a hard competition dataset and proposed the recent DocLayNet dataset for training. We recorded 45 team registrations and received official submissions from 21 teams. In the presented solutions, we recognize interesting combinations of recent computer vision models, data augmentation strategies and ensemble methods to achieve remarkable accuracy in the task we posed. A clear trend towards adoption of vision-transformer based methods is evident. The results demonstrate substantial progress towards achieving robust and highly generalizing methods for document layout understanding.
[ "cs.CV" ]
false
2305.14969
2023-05-24T10:02:27Z
MMNet: Multi-Mask Network for Referring Image Segmentation
[ "Yichen Yan", "Xingjian He", "Wenxuan Wan", "Jing Liu" ]
Referring image segmentation aims to segment an object referred to by natural language expression from an image. However, this task is challenging due to the distinct data properties between text and image, and the randomness introduced by diverse objects and unrestricted language expression. Most of previous work focus on improving cross-modal feature fusion while not fully addressing the inherent uncertainty caused by diverse objects and unrestricted language. To tackle these problems, we propose an end-to-end Multi-Mask Network for referring image segmentation(MMNet). we first combine picture and language and then employ an attention mechanism to generate multiple queries that represent different aspects of the language expression. We then utilize these queries to produce a series of corresponding segmentation masks, assigning a score to each mask that reflects its importance. The final result is obtained through the weighted sum of all masks, which greatly reduces the randomness of the language expression. Our proposed framework demonstrates superior performance compared to state-of-the-art approaches on the two most commonly used datasets, RefCOCO, RefCOCO+ and G-Ref, without the need for any post-processing. This further validates the efficacy of our proposed framework.
[ "cs.CV" ]
false
2305.14977
2023-05-24T10:12:50Z
Sampling-based Uncertainty Estimation for an Instance Segmentation Network
[ "Florian Heidecker", "Ahmad El-Khateeb", "Bernhard Sick" ]
The examination of uncertainty in the predictions of machine learning (ML) models is receiving increasing attention. One uncertainty modeling technique used for this purpose is Monte-Carlo (MC)-Dropout, where repeated predictions are generated for a single input. Therefore, clustering is required to describe the resulting uncertainty, but only through efficient clustering is it possible to describe the uncertainty from the model attached to each object. This article uses Bayesian Gaussian Mixture (BGM) to solve this problem. In addition, we investigate different values for the dropout rate and other techniques, such as focal loss and calibration, which we integrate into the Mask-RCNN model to obtain the most accurate uncertainty approximation of each instance and showcase it graphically.
[ "cs.CV" ]
false
2305.15078
2023-05-24T11:57:03Z
Learning INR for Event-guided Rolling Shutter Frame Correction, Deblur, and Interpolation
[ "Yunfan Lu", "Guoqiang Liang", "Lin Wang" ]
Images captured by rolling shutter (RS) cameras under fast camera motion often contain obvious image distortions and blur, which can be modeled as a row-wise combination of a sequence of global shutter (GS) frames within the exposure time naturally, recovering high-frame-rate GS sharp frames from an RS blur image needs to simultaneously consider RS correction, deblur, and frame interpolation Taking this task is nontrivial, and to our knowledge, no feasible solutions exist by far. A naive way is to decompose the complete process into separate tasks and simply cascade existing methods; however, this results in cumulative errors and noticeable artifacts. Event cameras enjoy many advantages, e.g., high temporal resolution, making them potential for our problem. To this end, we make the first attempt to recover high-frame-rate sharp GS frames from an RS blur image and paired event data. Our key idea is to learn an implicit neural representation (INR) to directly map the position and time coordinates to RGB values to address the interlocking degradations in the image restoration process. Specifically, we introduce spatial-temporal implicit encoding (STE) to convert an RS blur image and events into a spatial-temporal representation (STR). To query a specific sharp frame (GS or RS), we embed the exposure time into STR and decode the embedded features to recover a sharp frame. Moreover, we propose an RS blur image-guided integral loss to better train the network. Our method is relatively lightweight as it contains only 0.379M parameters and demonstrates high efficiency as the STE is called only once for any number of interpolation frames. Extensive experiments show that our method significantly outperforms prior methods addressing only one or two of the tasks.
[ "cs.CV" ]
false
2305.15084
2023-05-24T12:02:42Z
Audio-Visual Dataset and Method for Anomaly Detection in Traffic Videos
[ "Błażej Leporowski", "Arian Bakhtiarnia", "Nicole Bonnici", "Adrian Muscat", "Luca Zanella", "Yiming Wang", "Alexandros Iosifidis" ]
We introduce the first audio-visual dataset for traffic anomaly detection taken from real-world scenes, called MAVAD, with a diverse range of weather and illumination conditions. In addition, we propose a novel method named AVACA that combines visual and audio features extracted from video sequences by means of cross-attention to detect anomalies. We demonstrate that the addition of audio improves the performance of AVACA by up to 5.2%. We also evaluate the impact of image anonymization, showing only a minor decrease in performance averaging at 1.7%.
[ "cs.CV" ]
false
2305.15091
2023-05-24T12:15:19Z
Modeling Complex Object Changes in Satellite Image Time-Series: Approach based on CSP and Spatiotemporal Graph
[ "Zouhayra Ayadi", "Wadii Boulila", "Imed Riadh Farah" ]
This paper proposes a method for automatically monitoring and analyzing the evolution of complex geographic objects. The objects are modeled as a spatiotemporal graph, which separates filiation relations, spatial relations, and spatiotemporal relations, and is analyzed by detecting frequent sub-graphs using constraint satisfaction problems (CSP). The process is divided into four steps: first, the identification of complex objects in each satellite image; second, the construction of a spatiotemporal graph to model the spatiotemporal changes of the complex objects; third, the creation of sub-graphs to be detected in the base spatiotemporal graph; and fourth, the analysis of the spatiotemporal graph by detecting the sub-graphs and solving a constraint network to determine relevant sub-graphs. The final step is further broken down into two sub-steps: (i) the modeling of the constraint network with defined variables and constraints, and (ii) the solving of the constraint network to find relevant sub-graphs in the spatiotemporal graph. Experiments were conducted using real-world satellite images representing several cities in Saudi Arabia, and the results demonstrate the effectiveness of the proposed approach.
[ "cs.CV" ]
false
2305.15114
2023-05-24T13:07:46Z
Thinking Twice: Clinical-Inspired Thyroid Ultrasound Lesion Detection Based on Feature Feedback
[ "Lingtao Wang", "Jianrui Ding", "Fenghe Tang", "Chunping Ning" ]
Accurate detection of thyroid lesions is a critical aspect of computer-aided diagnosis. However, most existing detection methods perform only one feature extraction process and then fuse multi-scale features, which can be affected by noise and blurred features in ultrasound images. In this study, we propose a novel detection network based on a feature feedback mechanism inspired by clinical diagnosis. The mechanism involves first roughly observing the overall picture and then focusing on the details of interest. It comprises two parts: a feedback feature selection module and a feature feedback pyramid. The feedback feature selection module efficiently selects the features extracted in the first phase in both space and channel dimensions to generate high semantic prior knowledge, which is similar to coarse observation. The feature feedback pyramid then uses this high semantic prior knowledge to enhance feature extraction in the second phase and adaptively fuses the two features, similar to fine observation. Additionally, since radiologists often focus on the shape and size of lesions for diagnosis, we propose an adaptive detection head strategy to aggregate multi-scale features. Our proposed method achieves an AP of 70.3% and AP50 of 99.0% on the thyroid ultrasound dataset and meets the real-time requirement. The code is available at https://github.com/HIT-wanglingtao/Thinking-Twice.
[ "cs.CV" ]
false
2305.15154
2023-05-24T13:51:48Z
Clinically Labeled Contrastive Learning for OCT Biomarker Classification
[ "Kiran Kokilepersaud", "Stephanie Trejo Corona", "Mohit Prabhushankar", "Ghassan AlRegib", "Charles Wykoff" ]
This paper presents a novel positive and negative set selection strategy for contrastive learning of medical images based on labels that can be extracted from clinical data. In the medical field, there exists a variety of labels for data that serve different purposes at different stages of a diagnostic and treatment process. Clinical labels and biomarker labels are two examples. In general, clinical labels are easier to obtain in larger quantities because they are regularly collected during routine clinical care, while biomarker labels require expert analysis and interpretation to obtain. Within the field of ophthalmology, previous work has shown that clinical values exhibit correlations with biomarker structures that manifest within optical coherence tomography (OCT) scans. We exploit this relationship by using the clinical data as pseudo-labels for our data without biomarker labels in order to choose positive and negative instances for training a backbone network with a supervised contrastive loss. In this way, a backbone network learns a representation space that aligns with the clinical data distribution available. Afterwards, we fine-tune the network trained in this manner with the smaller amount of biomarker labeled data with a cross-entropy loss in order to classify these key indicators of disease directly from OCT scans. We also expand on this concept by proposing a method that uses a linear combination of clinical contrastive losses. We benchmark our methods against state of the art self-supervised methods in a novel setting with biomarkers of varying granularity. We show performance improvements by as much as 5\% in total biomarker detection AUROC.
[ "cs.CV" ]
false
2305.15199
2023-05-24T14:35:54Z
Promoting Generalization in Cross-Dataset Remote Photoplethysmography
[ "Nathan Vance", "Jeremy Speth", "Benjamin Sporrer", "Patrick Flynn" ]
Remote Photoplethysmography (rPPG), or the remote monitoring of a subject's heart rate using a camera, has seen a shift from handcrafted techniques to deep learning models. While current solutions offer substantial performance gains, we show that these models tend to learn a bias to pulse wave features inherent to the training dataset. We develop augmentations to mitigate this learned bias by expanding both the range and variability of heart rates that the model sees while training, resulting in improved model convergence when training and cross-dataset generalization at test time. Through a 3-way cross dataset analysis we demonstrate a reduction in mean absolute error from over 13 beats per minute to below 3 beats per minute. We compare our method with other recent rPPG systems, finding similar performance under a variety of evaluation parameters.
[ "cs.CV" ]
false
2305.15219
2023-05-24T15:00:01Z
DynStatF: An Efficient Feature Fusion Strategy for LiDAR 3D Object Detection
[ "Yao Rong", "Xiangyu Wei", "Tianwei Lin", "Yueyu Wang", "Enkelejda Kasneci" ]
Augmenting LiDAR input with multiple previous frames provides richer semantic information and thus boosts performance in 3D object detection, However, crowded point clouds in multi-frames can hurt the precise position information due to the motion blur and inaccurate point projection. In this work, we propose a novel feature fusion strategy, DynStaF (Dynamic-Static Fusion), which enhances the rich semantic information provided by the multi-frame (dynamic branch) with the accurate location information from the current single-frame (static branch). To effectively extract and aggregate complimentary features, DynStaF contains two modules, Neighborhood Cross Attention (NCA) and Dynamic-Static Interaction (DSI), operating through a dual pathway architecture. NCA takes the features in the static branch as queries and the features in the dynamic branch as keys (values). When computing the attention, we address the sparsity of point clouds and take only neighborhood positions into consideration. NCA fuses two features at different feature map scales, followed by DSI providing the comprehensive interaction. To analyze our proposed strategy DynStaF, we conduct extensive experiments on the nuScenes dataset. On the test set, DynStaF increases the performance of PointPillars in NDS by a large margin from 57.7% to 61.6%. When combined with CenterPoint, our framework achieves 61.0% mAP and 67.7% NDS, leading to state-of-the-art performance without bells and whistles.
[ "cs.CV" ]
false
2305.15248
2023-05-24T15:33:46Z
Delving Deeper into Data Scaling in Masked Image Modeling
[ "Cheng-Ze Lu", "Xiaojie Jin", "Qibin Hou", "Jun Hao Liew", "Ming-Ming Cheng", "Jiashi Feng" ]
Understanding whether self-supervised learning methods can scale with unlimited data is crucial for training large-scale models. In this work, we conduct an empirical study on the scaling capability of masked image modeling (MIM) methods (e.g., MAE) for visual recognition. Unlike most previous works that depend on the widely-used ImageNet dataset, which is manually curated and object-centric, we take a step further and propose to investigate this problem in a more practical setting. Specifically, we utilize the web-collected Coyo-700M dataset. We randomly sample varying numbers of training images from the Coyo dataset and construct a series of sub-datasets, containing 0.5M, 1M, 5M, 10M, and 100M images, for pre-training. Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models. The study reveals that: 1) MIM can be viewed as an effective method to improve the model capacity when the scale of the training data is relatively small; 2) Strong reconstruction targets can endow the models with increased capacities on downstream tasks; 3) MIM pre-training is data-agnostic under most scenarios, which means that the strategy of sampling pre-training data is non-critical. We hope these observations could provide valuable insights for future research on MIM.
[ "cs.CV" ]
false
2305.15302
2023-05-24T16:26:05Z
Multi-Modal Mutual Attention and Iterative Interaction for Referring Image Segmentation
[ "Chang Liu", "Henghui Ding", "Yulun Zhang", "Xudong Jiang" ]
We address the problem of referring image segmentation that aims to generate a mask for the object specified by a natural language expression. Many recent works utilize Transformer to extract features for the target object by aggregating the attended visual regions. However, the generic attention mechanism in Transformer only uses the language input for attention weight calculation, which does not explicitly fuse language features in its output. Thus, its output feature is dominated by vision information, which limits the model to comprehensively understand the multi-modal information, and brings uncertainty for the subsequent mask decoder to extract the output mask. To address this issue, we propose Multi-Modal Mutual Attention ($\mathrm{M^3Att}$) and Multi-Modal Mutual Decoder ($\mathrm{M^3Dec}$) that better fuse information from the two input modalities. Based on {$\mathrm{M^3Dec}$}, we further propose Iterative Multi-modal Interaction ($\mathrm{IMI}$) to allow continuous and in-depth interactions between language and vision features. Furthermore, we introduce Language Feature Reconstruction ($\mathrm{LFR}$) to prevent the language information from being lost or distorted in the extracted feature. Extensive experiments show that our proposed approach significantly improves the baseline and outperforms state-of-the-art referring image segmentation methods on RefCOCO series datasets consistently.
[ "cs.CV" ]
false
2305.15365
2023-05-24T17:15:19Z
Boundary Attention Mapping (BAM): Fine-grained saliency maps for segmentation of Burn Injuries
[ "Mahla Abdolahnejad", "Justin Lee", "Hannah Chan", "Alex Morzycki", "Olivier Ethier", "Anthea Mo", "Peter X. Liu", "Joshua N. Wong", "Colin Hong", "Rakesh Joshi" ]
Burn injuries can result from mechanisms such as thermal, chemical, and electrical insults. A prompt and accurate assessment of burns is essential for deciding definitive clinical treatments. Currently, the primary approach for burn assessments, via visual and tactile observations, is approximately 60%-80% accurate. The gold standard is biopsy and a close second would be non-invasive methods like Laser Doppler Imaging (LDI) assessments, which have up to 97% accuracy in predicting burn severity and the required healing time. In this paper, we introduce a machine learning pipeline for assessing burn severities and segmenting the regions of skin that are affected by burn. Segmenting 2D colour images of burns allows for the injured versus non-injured skin to be delineated, clearly marking the extent and boundaries of the localized burn/region-of-interest, even during remote monitoring of a burn patient. We trained a convolutional neural network (CNN) to classify four severities of burns. We built a saliency mapping method, Boundary Attention Mapping (BAM), that utilises this trained CNN for the purpose of accurately localizing and segmenting the burn regions from skin burn images. We demonstrated the effectiveness of our proposed pipeline through extensive experiments and evaluations using two datasets; 1) A larger skin burn image dataset consisting of 1684 skin burn images of four burn severities, 2) An LDI dataset that consists of a total of 184 skin burn images with their associated LDI scans. The CNN trained using the first dataset achieved an average F1-Score of 78% and micro/macro- average ROC of 85% in classifying the four burn severities. Moreover, a comparison between the BAM results and LDI results for measuring injury boundary showed that the segmentations generated by our method achieved 91.60% accuracy, 78.17% sensitivity, and 93.37% specificity.
[ "cs.CV" ]
false
2305.15391
2023-05-24T17:53:07Z
A Neural Space-Time Representation for Text-to-Image Personalization
[ "Yuval Alaluf", "Elad Richardson", "Gal Metzer", "Daniel Cohen-Or" ]
A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.
[ "cs.CV" ]
false
2305.15407
2023-05-24T17:59:18Z
Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic Contrast Sets
[ "Brandon Smith", "Miguel Farinha", "Siobhan Mackenzie Hall", "Hannah Rose Kirk", "Aleksandar Shtedritski", "Max Bain" ]
Vision-language models are growing in popularity and public visibility to generate, edit, and caption images at scale; but their outputs can perpetuate and amplify societal biases learned during pre-training on uncurated image-text pairs from the internet. Although debiasing methods have been proposed, we argue that these measurements of model bias lack validity due to dataset bias. We demonstrate there are spurious correlations in COCO Captions, the most commonly used dataset for evaluating bias, between background context and the gender of people in-situ. This is problematic because commonly-used bias metrics (such as Bias@K) rely on per-gender base rates. To address this issue, we propose a novel dataset debiasing pipeline to augment the COCO dataset with synthetic, gender-balanced contrast sets, where only the gender of the subject is edited and the background is fixed. However, existing image editing methods have limitations and sometimes produce low-quality images; so, we introduce a method to automatically filter the generated images based on their similarity to real images. Using our balanced synthetic contrast sets, we benchmark bias in multiple CLIP-based models, demonstrating how metrics are skewed by imbalance in the original COCO images. Our results indicate that the proposed approach improves the validity of the evaluation, ultimately contributing to more realistic understanding of bias in vision-language models.
[ "cs.CV" ]
false
2305.15483
2023-05-24T18:10:24Z
Weakly Supervised Vision-and-Language Pre-training with Relative Representations
[ "Chi Chen", "Peng Li", "Maosong Sun", "Yang Liu" ]
Weakly supervised vision-and-language pre-training (WVLP), which learns cross-modal representations with limited cross-modal supervision, has been shown to effectively reduce the data cost of pre-training while maintaining decent performance on downstream tasks. However, current WVLP methods use only local descriptions of images, i.e., object tags, as cross-modal anchors to construct weakly-aligned image-text pairs for pre-training. This affects the data quality and thus the effectiveness of pre-training. In this paper, we propose to directly take a small number of aligned image-text pairs as anchors, and represent each unaligned image and text by its similarities to these anchors, i.e., relative representations. We build a WVLP framework based on the relative representations, namely RELIT, which collects high-quality weakly-aligned image-text pairs from large-scale image-only and text-only data for pre-training through relative representation-based retrieval and generation. Experiments on four downstream tasks show that RELIT achieves new state-of-the-art results under the weakly supervised setting.
[ "cs.CV" ]
false
2305.14598
2023-05-24T00:42:06Z
Vision + Language Applications: A Survey
[ "Yutong Zhou", "Nobutaka Shimada" ]
Text-to-image generation has attracted significant interest from researchers and practitioners in recent years due to its widespread and diverse applications across various industries. Despite the progress made in the domain of vision and language research, the existing literature remains relatively limited, particularly with regard to advancements and applications in this field. This paper explores a relevant research track within multimodal applications, including text, vision, audio, and others. In addition to the studies discussed in this paper, we are also committed to continually updating the latest relevant papers, datasets, application projects and corresponding information at https://github.com/Yutong-Zhou-cv/Awesome-Text-to-Image
[ "cs.CV", "cs.MM" ]
false
2305.14612
2023-05-24T01:22:26Z
Assessment of Anterior Cruciate Ligament Injury Risk Based on Human Key Points Detection Algorithm
[ "Ziyu Gong", "Xiong Zhao", "Chen Yang" ]
This paper aims to detect the potential injury risk of the anterior cruciate ligament (ACL) by proposing an ACL potential injury risk assessment algorithm based on key points of the human body detected using computer vision technology. To obtain the key points data of the human body in each frame, OpenPose, an open source computer vision algorithm, was employed. The obtained data underwent preprocessing and were then fed into an ACL potential injury feature extraction model based on the Landing Error Evaluation System (LESS). This model extracted several important parameters, including the knee flexion angle, the trunk flexion on the sagittal plane, trunk flexion angle on the frontal plane, the ankle knee horizontal distance, and the ankle shoulder horizontal distance. Each of these features was assigned a threshold interval, and a segmented evaluation function was utilized to score them accordingly. To calculate the final score of the participant, the score values were input into a weighted scoring model designed based on the Analytic Hierarchy Process (AHP). The AHP based model takes into account the relative importance of each feature in the overall assessment. The results demonstrate that the proposed algorithm effectively detects the potential risk of ACL injury. The proposed algorithm demonstrates its effectiveness in detecting ACL injury risk, offering valuable insights for injury prevention and intervention strategies in sports and related fields. Code is available at: https://github.com/ZiyuGong-proj/Assessment-of-ACL-Injury-Risk-Based-on-Openpose
[ "cs.CV", "stat.AP" ]
false
2305.14657
2023-05-24T02:52:30Z
Dealing with Cross-Task Class Discrimination in Online Continual Learning
[ "Yiduo Guo", "Bing Liu", "Dongyan Zhao" ]
Existing continual learning (CL) research regards catastrophic forgetting (CF) as almost the only challenge. This paper argues for another challenge in class-incremental learning (CIL), which we call cross-task class discrimination (CTCD),~i.e., how to establish decision boundaries between the classes of the new task and old tasks with no (or limited) access to the old task data. CTCD is implicitly and partially dealt with by replay-based methods. A replay method saves a small amount of data (replay data) from previous tasks. When a batch of current task data arrives, the system jointly trains the new data and some sampled replay data. The replay data enables the system to partially learn the decision boundaries between the new classes and the old classes as the amount of the saved data is small. However, this paper argues that the replay approach also has a dynamic training bias issue which reduces the effectiveness of the replay data in solving the CTCD problem. A novel optimization objective with a gradient-based adaptive method is proposed to dynamically deal with the problem in the online CL process. Experimental results show that the new method achieves much better results in online CL.
[ "cs.LG", "cs.CV" ]
false
2305.14684
2023-05-24T03:45:03Z
Collaborative Auto-encoding for Blind Image Quality Assessment
[ "Zehong Zhou", "Fei Zhou", "Guoping Qiu" ]
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the lack of subjectively annotated data. This paper presents a novel BIQA method which overcomes this fundamental obstacle. Specifically, we design a pair of collaborative autoencoders (COAE) consisting of a content autoencoder (CAE) and a distortion autoencoder (DAE) that work together to extract content and distortion representations, which are shown to be highly descriptive of image quality. While the CAE follows a standard codec procedure, we introduce the CAE-encoded feature as an extra input to the DAE's decoder for reconstructing distorted images, thus effectively forcing DAE's encoder to extract distortion representations. The self-supervised learning framework allows the COAE including two feature extractors to be trained by almost unlimited amount of data, thus leaving limited samples with annotations to finetune a BIQA model. We will show that the proposed BIQA method achieves state-of-the-art performance and has superior generalization capability over other learning based models. The codes are available at: https://github.com/Macro-Zhou/NRIQA-VISOR/.
[ "cs.CV", "eess.IV" ]
false
2305.14731
2023-05-24T05:09:43Z
AutoDepthNet: High Frame Rate Depth Map Reconstruction using Commodity Depth and RGB Cameras
[ "Peyman Gholami", "Robert Xiao" ]
Depth cameras have found applications in diverse fields, such as computer vision, artificial intelligence, and video gaming. However, the high latency and low frame rate of existing commodity depth cameras impose limitations on their applications. We propose a fast and accurate depth map reconstruction technique to reduce latency and increase the frame rate in depth cameras. Our approach uses only a commodity depth camera and color camera in a hybrid camera setup; our prototype is implemented using a Kinect Azure depth camera at 30 fps and a high-speed RGB iPhone 11 Pro camera captured at 240 fps. The proposed network, AutoDepthNet, is an encoder-decoder model that captures frames from the high-speed RGB camera and combines them with previous depth frames to reconstruct a stream of high frame rate depth maps. On GPU, with a 480 x 270 output resolution, our system achieves an inference time of 8 ms, enabling real-time use at up to 200 fps with parallel processing. AutoDepthNet can estimate depth values with an average RMS error of 0.076, a 44.5% improvement compared to an optical flow-based comparison method. Our method can also improve depth map quality by estimating depth values for missing and invalidated pixels. The proposed method can be easily applied to existing depth cameras and facilitates the use of depth cameras in applications that require high-speed depth estimation. We also showcase the effectiveness of the framework in upsampling different sparse datasets e.g. video object segmentation. As a demonstration of our method, we integrated our framework into existing body tracking systems and demonstrated the robustness of the proposed method in such applications.
[ "cs.CV", "cs.AI" ]
false
2305.14754
2023-05-24T05:57:58Z
SUVR: A Search-based Approach to Unsupervised Visual Representation Learning
[ "Yi-Zhan Xu", "Chih-Yao Chen", "Cheng-Te Li" ]
Unsupervised learning has grown in popularity because of the difficulty of collecting annotated data and the development of modern frameworks that allow us to learn from unlabeled data. Existing studies, however, either disregard variations at different levels of similarity or only consider negative samples from one batch. We argue that image pairs should have varying degrees of similarity, and the negative samples should be allowed to be drawn from the entire dataset. In this work, we propose Search-based Unsupervised Visual Representation Learning (SUVR) to learn better image representations in an unsupervised manner. We first construct a graph from the image dataset by the similarity between images, and adopt the concept of graph traversal to explore positive samples. In the meantime, we make sure that negative samples can be drawn from the full dataset. Quantitative experiments on five benchmark image classification datasets demonstrate that SUVR can significantly outperform strong competing methods on unsupervised embedding learning. Qualitative experiments also show that SUVR can produce better representations in which similar images are clustered closer together than unrelated images in the latent space.
[ "cs.CV", "cs.LG" ]
false
2305.14846
2023-05-24T07:54:44Z
Introducing Competition to Boost the Transferability of Targeted Adversarial Examples through Clean Feature Mixup
[ "Junyoung Byun", "Myung-Joon Kwon", "Seungju Cho", "Yoonji Kim", "Changick Kim" ]
Deep neural networks are widely known to be susceptible to adversarial examples, which can cause incorrect predictions through subtle input modifications. These adversarial examples tend to be transferable between models, but targeted attacks still have lower attack success rates due to significant variations in decision boundaries. To enhance the transferability of targeted adversarial examples, we propose introducing competition into the optimization process. Our idea is to craft adversarial perturbations in the presence of two new types of competitor noises: adversarial perturbations towards different target classes and friendly perturbations towards the correct class. With these competitors, even if an adversarial example deceives a network to extract specific features leading to the target class, this disturbance can be suppressed by other competitors. Therefore, within this competition, adversarial examples should take different attack strategies by leveraging more diverse features to overwhelm their interference, leading to improving their transferability to different models. Considering the computational complexity, we efficiently simulate various interference from these two types of competitors in feature space by randomly mixing up stored clean features in the model inference and named this method Clean Feature Mixup (CFM). Our extensive experimental results on the ImageNet-Compatible and CIFAR-10 datasets show that the proposed method outperforms the existing baselines with a clear margin. Our code is available at https://github.com/dreamflake/CFM.
[ "cs.CV", "cs.LG" ]
false
2305.14885
2023-05-24T08:34:43Z
Towards View-invariant and Accurate Loop Detection Based on Scene Graph
[ "Chuhao Liu", "Shaojie Shen" ]
Loop detection plays a key role in visual Simultaneous Localization and Mapping (SLAM) by correcting the accumulated pose drift. In indoor scenarios, the richly distributed semantic landmarks are view-point invariant and hold strong descriptive power in loop detection. The current semantic-aided loop detection embeds the topology between semantic instances to search a loop. However, current semantic-aided loop detection methods face challenges in dealing with ambiguous semantic instances and drastic viewpoint differences, which are not fully addressed in the literature. This paper introduces a novel loop detection method based on an incrementally created scene graph, targeting the visual SLAM at indoor scenes. It jointly considers the macro-view topology, micro-view topology, and occupancy of semantic instances to find correct correspondences. Experiments using handheld RGB-D sequence show our method is able to accurately detect loops in drastically changed viewpoints. It maintains a high precision in observing objects with similar topology and appearance. Our method also demonstrates that it is robust in changed indoor scenes.
[ "cs.CV", "cs.RO" ]
false
2305.14985
2023-05-24T10:19:57Z
IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models
[ "Haoxuan You", "Rui Sun", "Zhecan Wang", "Long Chen", "Gengyu Wang", "Hammad A. Ayyubi", "Kai-Wei Chang", "Shih-Fu Chang" ]
The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT
[ "cs.CV", "cs.CL" ]
false
2305.14986
2023-05-24T10:21:31Z
Non-adversarial Robustness of Deep Learning Methods for Computer Vision
[ "Gorana Gojić", "Vladimir Vincan", "Ognjen Kundačina", "Dragiša Mišković", "Dinu Dragan" ]
Non-adversarial robustness, also known as natural robustness, is a property of deep learning models that enables them to maintain performance even when faced with distribution shifts caused by natural variations in data. However, achieving this property is challenging because it is difficult to predict in advance the types of distribution shifts that may occur. To address this challenge, researchers have proposed various approaches, some of which anticipate potential distribution shifts, while others utilize knowledge about the shifts that have already occurred to enhance model generalizability. In this paper, we present a brief overview of the most recent techniques for improving the robustness of computer vision methods, as well as a summary of commonly used robustness benchmark datasets for evaluating the model's performance under data distribution shifts. Finally, we examine the strengths and limitations of the approaches reviewed and identify general trends in deep learning robustness improvement for computer vision.
[ "cs.LG", "cs.CV" ]
false
2305.15087
2023-05-24T12:05:53Z
Pento-DIARef: A Diagnostic Dataset for Learning the Incremental Algorithm for Referring Expression Generation from Examples
[ "Philipp Sadler", "David Schlangen" ]
NLP tasks are typically defined extensionally through datasets containing example instantiations (e.g., pairs of image i and text t), but motivated intensionally through capabilities invoked in verbal descriptions of the task (e.g., "t is a description of i, for which the content of i needs to be recognised and understood"). We present Pento-DIARef, a diagnostic dataset in a visual domain of puzzle pieces where referring expressions are generated by a well-known symbolic algorithm (the "Incremental Algorithm"), which itself is motivated by appeal to a hypothesised capability (eliminating distractors through application of Gricean maxims). Our question then is whether the extensional description (the dataset) is sufficient for a neural model to pick up the underlying regularity and exhibit this capability given the simple task definition of producing expressions from visual inputs. We find that a model supported by a vision detection step and a targeted data generation scheme achieves an almost perfect BLEU@1 score and sentence accuracy, whereas simpler baselines do not.
[ "cs.CL", "cs.CV" ]
false
2305.15097
2023-05-24T12:27:42Z
Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach
[ "Jiesheng Yang", "Andreas Wilde", "Karsten Menzel", "Md Zubair Sheikh", "Boris Kuznetsov" ]
Construction progress monitoring (CPM) is essential for effective project management, ensuring on-time and on-budget delivery. Traditional CPM methods often rely on manual inspection and reporting, which are time-consuming and prone to errors. This paper proposes a novel approach for automated CPM using state-of-the-art object detection algorithms. The proposed method leverages e.g. YOLOv8's real-time capabilities and high accuracy to identify and track construction elements within site images and videos. A dataset was created, consisting of various building elements and annotated with relevant objects for training and validation. The performance of the proposed approach was evaluated using standard metrics, such as precision, recall, and F1-score, demonstrating significant improvement over existing methods. The integration of Computer Vision into CPM provides stakeholders with reliable, efficient, and cost-effective means to monitor project progress, facilitating timely decision-making and ultimately contributing to the successful completion of construction projects.
[ "cs.CV", "cs.AI" ]
false
2305.15227
2023-05-24T15:09:41Z
Real time dense anomaly detection by learning on synthetic negative data
[ "Anja Delić", "Matej Grcić", "Siniša Šegvić" ]
Most approaches to dense anomaly detection rely on generative modeling or on discriminative methods that train with negative data. We consider a recent hybrid method that optimizes the same shared representation according to cross-entropy of the discriminative predictions, and negative log likelihood of the predicted energy-based density. We extend that work with a jointly trained generative flow that samples synthetic negatives at the border of the inlier distribution. The proposed extension provides potential to learn the hybrid method without real negative data. Our experiments analyze the impact of training with synthetic negative data and validate contribution of the energy-based density during training and evaluation.
[ "cs.CV", "cs.LG" ]
false
2305.15311
2023-05-24T16:31:30Z
Personalized Dictionary Learning for Heterogeneous Datasets
[ "Geyu Liang", "Naichen Shi", "Raed Al Kontar", "Salar Fattahi" ]
We introduce a relevant yet challenging problem named Personalized Dictionary Learning (PerDL), where the goal is to learn sparse linear representations from heterogeneous datasets that share some commonality. In PerDL, we model each dataset's shared and unique features as global and local dictionaries. Challenges for PerDL not only are inherited from classical dictionary learning (DL), but also arise due to the unknown nature of the shared and unique features. In this paper, we rigorously formulate this problem and provide conditions under which the global and local dictionaries can be provably disentangled. Under these conditions, we provide a meta-algorithm called Personalized Matching and Averaging (PerMA) that can recover both global and local dictionaries from heterogeneous datasets. PerMA is highly efficient; it converges to the ground truth at a linear rate under suitable conditions. Moreover, it automatically borrows strength from strong learners to improve the prediction of weak learners. As a general framework for extracting global and local dictionaries, we show the application of PerDL in different learning tasks, such as training with imbalanced datasets and video surveillance.
[ "cs.LG", "cs.CV" ]
false
2305.15316
2023-05-24T16:33:02Z
Training on Thin Air: Improve Image Classification with Generated Data
[ "Yongchao Zhou", "Hshmat Sahak", "Jimmy Ba" ]
Acquiring high-quality data for training discriminative models is a crucial yet challenging aspect of building effective predictive systems. In this paper, we present Diffusion Inversion, a simple yet effective method that leverages the pre-trained generative model, Stable Diffusion, to generate diverse, high-quality training data for image classification. Our approach captures the original data distribution and ensures data coverage by inverting images to the latent space of Stable Diffusion, and generates diverse novel training images by conditioning the generative model on noisy versions of these vectors. We identify three key components that allow our generated images to successfully supplant the original dataset, leading to a 2-3x enhancement in sample complexity and a 6.5x decrease in sampling time. Moreover, our approach consistently outperforms generic prompt-based steering methods and KNN retrieval baseline across a wide range of datasets. Additionally, we demonstrate the compatibility of our approach with widely-used data augmentation techniques, as well as the reliability of the generated data in supporting various neural architectures and enhancing few-shot learning.
[ "cs.CV", "cs.LG" ]
false
2305.15367
2023-05-24T17:22:39Z
SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation
[ "Yunxiang Li", "Meixu Chen", "Wenxuan Yang", "Kai Wang", "Jun Ma", "Alan C. Bovik", "You Zhang" ]
Image translation has wide applications, such as style transfer and modality conversion, usually aiming to generate images having both high degrees of realism and faithfulness. These problems remain difficult, especially when it is important to preserve semantic structures. Traditional image-level similarity metrics are of limited use, since the semantics of an image are high-level, and not strongly governed by pixel-wise faithfulness to an original image. Towards filling this gap, we introduce SAMScore, a generic semantic structural similarity metric for evaluating the faithfulness of image translation models. SAMScore is based on the recent high-performance Segment Anything Model (SAM), which can perform semantic similarity comparisons with standout accuracy. We applied SAMScore on 19 image translation tasks, and found that it is able to outperform all other competitive metrics on all of the tasks. We envision that SAMScore will prove to be a valuable tool that will help to drive the vibrant field of image translation, by allowing for more precise evaluations of new and evolving translation models. The code is available at https://github.com/Kent0n-Li/SAMScore.
[ "cs.CV", "cs.AI" ]
false
2305.15551
2023-05-24T20:33:38Z
Malicious or Benign? Towards Effective Content Moderation for Children's Videos
[ "Syed Hammad Ahmed", "Muhammad Junaid Khan", "H. M. Umer Qaisar", "Gita Sukthankar" ]
Online video platforms receive hundreds of hours of uploads every minute, making manual content moderation impossible. Unfortunately, the most vulnerable consumers of malicious video content are children from ages 1-5 whose attention is easily captured by bursts of color and sound. Scammers attempting to monetize their content may craft malicious children's videos that are superficially similar to educational videos, but include scary and disgusting characters, violent motions, loud music, and disturbing noises. Prominent video hosting platforms like YouTube have taken measures to mitigate malicious content on their platform, but these videos often go undetected by current content moderation tools that are focused on removing pornographic or copyrighted content. This paper introduces our toolkit Malicious or Benign for promoting research on automated content moderation of children's videos. We present 1) a customizable annotation tool for videos, 2) a new dataset with difficult to detect test cases of malicious content and 3) a benchmark suite of state-of-the-art video classification models.
[ "cs.CV", "cs.SI" ]
false
2305.15562
2023-05-24T20:52:34Z
Let There Be Order: Rethinking Ordering in Autoregressive Graph Generation
[ "Jie Bu", "Kazi Sajeed Mehrab", "Anuj Karpatne" ]
Conditional graph generation tasks involve training a model to generate a graph given a set of input conditions. Many previous studies employ autoregressive models to incrementally generate graph components such as nodes and edges. However, as graphs typically lack a natural ordering among their components, converting a graph into a sequence of tokens is not straightforward. While prior works mostly rely on conventional heuristics or graph traversal methods like breadth-first search (BFS) or depth-first search (DFS) to convert graphs to sequences, the impact of ordering on graph generation has largely been unexplored. This paper contributes to this problem by: (1) highlighting the crucial role of ordering in autoregressive graph generation models, (2) proposing a novel theoretical framework that perceives ordering as a dimensionality reduction problem, thereby facilitating a deeper understanding of the relationship between orderings and generated graph accuracy, and (3) introducing "latent sort," a learning-based ordering scheme to perform dimensionality reduction of graph tokens. Our experimental results showcase the effectiveness of latent sort across a wide range of graph generation tasks, encouraging future works to further explore and develop learning-based ordering schemes for autoregressive graph generation.
[ "cs.LG", "cs.CV" ]
false
2305.15584
2023-05-24T21:41:08Z
Understanding Label Bias in Single Positive Multi-Label Learning
[ "Julio Arroyo", "Pietro Perona", "Elijah Cole" ]
Annotating data for multi-label classification is prohibitively expensive because every category of interest must be confirmed to be present or absent. Recent work on single positive multi-label (SPML) learning shows that it is possible to train effective multi-label classifiers using only one positive label per image. However, the standard benchmarks for SPML are derived from traditional multi-label classification datasets by retaining one positive label for each training example (chosen uniformly at random) and discarding all other labels. In realistic settings it is not likely that positive labels are chosen uniformly at random. This work introduces protocols for studying label bias in SPML and provides new empirical results.
[ "cs.LG", "cs.CV" ]
false
2305.15608
2023-05-24T22:51:52Z
Semantic Segmentation by Semantic Proportions
[ "Halil Ibrahim Aysel", "Xiaohao Cai", "Adam Prügel-Bennett" ]
Semantic segmentation is a critical task in computer vision that aims to identify and classify individual pixels in an image, with numerous applications for example autonomous driving and medical image analysis. However, semantic segmentation can be super challenging particularly due to the need for large amounts of annotated data. Annotating images is a time-consuming and costly process, often requiring expert knowledge and significant effort. In this paper, we propose a novel approach for semantic segmentation by eliminating the need of ground-truth segmentation maps. Instead, our approach requires only the rough information of individual semantic class proportions, shortened as semantic proportions. It greatly simplifies the data annotation process and thus will significantly reduce the annotation time and cost, making it more feasible for large-scale applications. Moreover, it opens up new possibilities for semantic segmentation tasks where obtaining the full ground-truth segmentation maps may not be feasible or practical. Extensive experimental results demonstrate that our approach can achieve comparable and sometimes even better performance against the benchmark method that relies on the ground-truth segmentation maps. Utilising semantic proportions suggested in this work offers a promising direction for future research in the field of semantic segmentation.
[ "cs.CV", "cs.AI" ]
false
2306.01756
2023-05-24T04:02:49Z
CSI-Based Efficient Self-Quarantine Monitoring System Using Branchy Convolution Neural Network
[ "Jingtao Guo", "Ivan Wang-Hei Ho" ]
Nowadays, Coronavirus disease (COVID-19) has become a global pandemic because of its fast spread in various countries. To build an anti-epidemic barrier, self-isolation is required for people who have been to any at-risk places or have been in close contact with infected people. However, existing camera or wearable device-based monitoring systems may present privacy leakage risks or cause user inconvenience in some cases. In this paper, we propose a Wi-Fi-based device-free self-quarantine monitoring system. Specifically, we exploit channel state information (CSI) derived from Wi-Fi signals as human activity features. We collect CSI data in a simulated self-quarantine scenario and present BranchyGhostNet, a lightweight convolution neural network (CNN) with an early exit prediction branch, for the efficient joint task of room occupancy detection (ROD) and human activity recognition (HAR). The early exiting branch is used for ROD, and the final one is used for HAR. Our experimental results indicate that the proposed model can achieve an average accuracy of 98.19% for classifying five different human activities. They also confirm that after leveraging the early exit prediction mechanism, the inference latency for ROD can be significantly reduced by 54.04% when compared with the final exiting branch while guaranteeing the accuracy of ROD.
[ "cs.CV", "cs.LG" ]
false
2305.14672
2023-05-24T03:25:33Z
Quantifying Character Similarity with Vision Transformers
[ "Xinmei Yang", "Abhishek Arora", "Shao-Yu Jheng", "Melissa Dell" ]
Record linkage is a bedrock of quantitative social science, as analyses often require linking data from multiple, noisy sources. Off-the-shelf string matching methods are widely used, as they are straightforward and cheap to implement and scale. Not all character substitutions are equally probable, and for some settings there are widely used handcrafted lists denoting which string substitutions are more likely, that improve the accuracy of string matching. However, such lists do not exist for many settings, skewing research with linked datasets towards a few high-resource contexts that are not representative of the diversity of human societies. This study develops an extensible way to measure character substitution costs for OCR'ed documents, by employing large-scale self-supervised training of vision transformers (ViT) with augmented digital fonts. For each language written with the CJK script, we contrastively learn a metric space where different augmentations of the same character are represented nearby. In this space, homoglyphic characters - those with similar appearance such as ``O'' and ``0'' - have similar vector representations. Using the cosine distance between characters' representations as the substitution cost in an edit distance matching algorithm significantly improves record linkage compared to other widely used string matching methods, as OCR errors tend to be homoglyphic in nature. Homoglyphs can plausibly capture character visual similarity across any script, including low-resource settings. We illustrate this by creating homoglyph sets for 3,000 year old ancient Chinese characters, which are highly pictorial. Fascinatingly, a ViT is able to capture relationships in how different abstract concepts were conceptualized by ancient societies, that have been noted in the archaeological literature.
[ "cs.CL", "cs.CV", "econ.GN", "q-fin.EC" ]
false
2305.14841
2023-05-24T07:45:54Z
Deep Learning-based Bio-Medical Image Segmentation using UNet Architecture and Transfer Learning
[ "Nima Hassanpour", "Abouzar Ghavami" ]
Image segmentation is a branch of computer vision that is widely used in real world applications including biomedical image processing. With recent advancement of deep learning, image segmentation has achieved at a very high level performance. Recently, UNet architecture is found as the core of novel deep learning segmentation methods. In this paper we implement UNet architecture from scratch with using basic blocks in Pytorch and evaluate its performance on multiple biomedical image datasets. We also use transfer learning to apply novel modified UNet segmentation packages on the biomedical image datasets. We fine tune the pre-trained transferred model with each specific dataset. We compare its performance with our fundamental UNet implementation. We show that transferred learning model has better performance in image segmentation than UNet model that is implemented from scratch.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.15149
2023-05-24T13:48:36Z
Reliability Scores from Saliency Map Clusters for Improved Image-based Harvest-Readiness Prediction in Cauliflower
[ "Jana Kierdorf", "Ribana Roscher" ]
Cauliflower is a hand-harvested crop that must fulfill high-quality standards in sales making the timing of harvest important. However, accurately determining harvest-readiness can be challenging due to the cauliflower head being covered by its canopy. While deep learning enables automated harvest-readiness estimation, errors can occur due to field-variability and limited training data. In this paper, we analyze the reliability of a harvest-readiness classifier with interpretable machine learning. By identifying clusters of saliency maps, we derive reliability scores for each classification result using knowledge about the domain and the image properties. For unseen data, the reliability can be used to (i) inform farmers to improve their decision-making and (ii) increase the model prediction accuracy. Using RGB images of single cauliflower plants at different developmental stages from the GrowliFlower dataset, we investigate various saliency mapping approaches and find that they result in different quality of reliability scores. With the most suitable interpretation tool, we adjust the classification result and achieve a 15.72% improvement of the overall accuracy to 88.14% and a 15.44% improvement of the average class accuracy to 88.52% for the GrowliFlower dataset.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.15241
2023-05-24T15:25:19Z
Robust Classification via a Single Diffusion Model
[ "Huanran Chen", "Yinpeng Dong", "Zhengyi Wang", "Xiao Yang", "Chengqi Duan", "Hang Su", "Jun Zhu" ]
Recently, diffusion models have been successfully applied to improving adversarial robustness of image classifiers by purifying the adversarial noises or generating realistic data for adversarial training. However, the diffusion-based purification can be evaded by stronger adaptive attacks while adversarial training does not perform well under unseen threats, exhibiting inevitable limitations of these methods. To better harness the expressive power of diffusion models, in this paper we propose Robust Diffusion Classifier (RDC), a generative classifier that is constructed from a pre-trained diffusion model to be adversarially robust. Our method first maximizes the data likelihood of a given input and then predicts the class probabilities of the optimized input using the conditional likelihood of the diffusion model through Bayes' theorem. Since our method does not require training on particular adversarial attacks, we demonstrate that it is more generalizable to defend against multiple unseen threats. In particular, RDC achieves $73.24\%$ robust accuracy against $\ell_\infty$ norm-bounded perturbations with $\epsilon_\infty=8/255$ on CIFAR-10, surpassing the previous state-of-the-art adversarial training models by $+2.34\%$. The findings highlight the potential of generative classifiers by employing diffusion models for adversarial robustness compared with the commonly studied discriminative classifiers.
[ "cs.CV", "cs.CR", "cs.LG" ]
false
2305.15544
2023-05-24T20:18:21Z
Fast Adversarial CNN-based Perturbation Attack on No-Reference Image- and Video-Quality Metrics
[ "Ekaterina Shumitskaya", "Anastasia Antsiferova", "Dmitriy Vatolin" ]
Modern neural-network-based no-reference image- and video-quality metrics exhibit performance as high as full-reference metrics. These metrics are widely used to improve visual quality in computer vision methods and compare video processing methods. However, these metrics are not stable to traditional adversarial attacks, which can cause incorrect results. Our goal is to investigate the boundaries of no-reference metrics applicability, and in this paper, we propose a fast adversarial perturbation attack on no-reference quality metrics. The proposed attack (FACPA) can be exploited as a preprocessing step in real-time video processing and compression algorithms. This research can yield insights to further aid in designing of stable neural-network-based no-reference quality metrics.
[ "cs.CV", "cs.MM", "eess.IV" ]
false
2305.16347
2023-05-24T14:48:18Z
Prompt Evolution for Generative AI: A Classifier-Guided Approach
[ "Melvin Wong", "Yew-Soon Ong", "Abhishek Gupta", "Kavitesh K. Bali", "Caishun Chen" ]
Synthesis of digital artifacts conditioned on user prompts has become an important paradigm facilitating an explosion of use cases with generative AI. However, such models often fail to connect the generated outputs and desired target concepts/preferences implied by the prompts. Current research addressing this limitation has largely focused on enhancing the prompts before output generation or improving the model's performance up front. In contrast, this paper conceptualizes prompt evolution, imparting evolutionary selection pressure and variation during the generative process to produce multiple outputs that satisfy the target concepts/preferences better. We propose a multi-objective instantiation of this broader idea that uses a multi-label image classifier-guided approach. The predicted labels from the classifiers serve as multiple objectives to optimize, with the aim of producing diversified images that meet user preferences. A novelty of our evolutionary algorithm is that the pre-trained generative model gives us implicit mutation operations, leveraging the model's stochastic generative capability to automate the creation of Pareto-optimized images more faithful to user preferences.
[ "cs.LG", "cs.AI", "cs.CV", "cs.NE", "I.2" ]
false
2306.04629
2023-05-24T15:42:38Z
Generative Adversarial Shaders for Real-Time Realism Enhancement
[ "Arturo Salmi", "Szabolcs Cséfalvay", "James Imber" ]
Application of realism enhancement methods, particularly in real-time and resource-constrained settings, has been frustrated by the expense of existing methods. These achieve high quality results only at the cost of long runtimes and high bandwidth, memory, and power requirements. We present an efficient alternative: a high-performance, generative shader-based approach that adapts machine learning techniques to real-time applications, even in resource-constrained settings such as embedded and mobile GPUs. The proposed learnable shader pipeline comprises differentiable functions that can be trained in an end-to-end manner using an adversarial objective, allowing for faithful reproduction of the appearance of a target image set without manual tuning. The shader pipeline is optimized for highly efficient execution on the target device, providing temporally stable, faster-than-real time results with quality competitive with many neural network-based methods.
[ "cs.GR", "cs.CV", "cs.LG", "I.2; I.3; I.4" ]
false
2307.06392
2023-05-24T21:00:50Z
Deep learning-based Segmentation of Rabbit fetal skull with limited and sub-optimal annotations
[ "Rajath Soans", "Alexa Gleason", "Tosha Shah", "Corey Miller", "Barbara Robinson", "Kimberly Brannen", "Antong Chen" ]
In this paper, we propose a deep learning-based method to segment the skeletal structures in the micro-CT images of Dutch-Belted rabbit fetuses which can assist in the assessment of drug-induced skeletal abnormalities as a required study in developmental and reproductive toxicology (DART). Our strategy leverages sub-optimal segmentation labels of 22 skull bones from 26 micro-CT volumes and maps them to 250 unlabeled volumes on which a deep CNN-based segmentation model is trained. In the experiments, our model was able to achieve an average Dice Similarity Coefficient (DSC) of 0.89 across all bones on the testing set, and 14 out of the 26 skull bones reached average DSC >0.93. Our next steps are segmenting the whole body followed by developing a model to classify abnormalities.
[ "q-bio.QM", "cs.CV", "eess.IV", "q-bio.TO" ]
false
2305.14625
2023-05-24T01:48:33Z
KNN-LM Does Not Improve Open-ended Text Generation
[ "Shufan Wang", "Yixiao Song", "Andrew Drozdov", "Aparna Garimella", "Varun Manjunatha", "Mohit Iyyer" ]
In this paper, we study the generation quality of interpolation-based retrieval-augmented language models (LMs). These methods, best exemplified by the KNN-LM, interpolate the LM's predicted distribution of the next word with a distribution formed from the most relevant retrievals for a given prefix. While the KNN-LM and related methods yield impressive decreases in perplexity, we discover that they do not exhibit corresponding improvements in open-ended generation quality, as measured by both automatic evaluation metrics (e.g., MAUVE) and human evaluations. Digging deeper, we find that interpolating with a retrieval distribution actually increases perplexity compared to a baseline Transformer LM for the majority of tokens in the WikiText-103 test set, even though the overall perplexity is lower due to a smaller number of tokens for which perplexity dramatically decreases after interpolation. However, when decoding a long sequence at inference time, significant improvements on this smaller subset of tokens are washed out by slightly worse predictions on most tokens. Furthermore, we discover that the entropy of the retrieval distribution increases faster than that of the base LM as the generated sequence becomes longer, which indicates that retrieval is less reliable when using model-generated text as queries (i.e., is subject to exposure bias). We hope that our analysis spurs future work on improved decoding algorithms and interpolation strategies for retrieval-augmented language models.
[ "cs.CL" ]
false
2305.14630
2023-05-24T02:03:23Z
Testing Causal Models of Word Meaning in GPT-3 and -4
[ "Sam Musker", "Ellie Pavlick" ]
Large Language Models (LLMs) have driven extraordinary improvements in NLP. However, it is unclear how such models represent lexical concepts-i.e., the meanings of the words they use. This paper evaluates the lexical representations of GPT-3 and GPT-4 through the lens of HIPE theory, a theory of concept representations which focuses on representations of words describing artifacts (such as "mop", "pencil", and "whistle"). The theory posits a causal graph that relates the meanings of such words to the form, use, and history of the objects to which they refer. We test LLMs using the same stimuli originally used by Chaigneau et al. (2004) to evaluate the theory in humans, and consider a variety of prompt designs. Our experiments concern judgements about causal outcomes, object function, and object naming. We find no evidence that GPT-3 encodes the causal structure hypothesized by HIPE, but do find evidence that GPT-4 encodes such structure. The results contribute to a growing body of research characterizing the representational capacity of large language models.
[ "cs.CL", "I.2.7" ]
false
2305.14645
2023-05-24T02:30:31Z
Iteratively Improving Biomedical Entity Linking and Event Extraction via Hard Expectation-Maximization
[ "Xiaochu Li", "Minqian Liu", "Zhiyang Xu", "Lifu Huang" ]
Biomedical entity linking and event extraction are two crucial tasks to support text understanding and retrieval in the biomedical domain. These two tasks intrinsically benefit each other: entity linking disambiguates the biomedical concepts by referring to external knowledge bases and the domain knowledge further provides additional clues to understand and extract the biological processes, while event extraction identifies a key trigger and entities involved to describe each biological process which also captures the structural context to better disambiguate the biomedical entities. However, previous research typically solves these two tasks separately or in a pipeline, leading to error propagation. What's more, it's even more challenging to solve these two tasks together as there is no existing dataset that contains annotations for both tasks. To solve these challenges, we propose joint biomedical entity linking and event extraction by regarding the event structures and entity references in knowledge bases as latent variables and updating the two task-specific models in a hard Expectation-Maximization (EM) fashion: (1) predicting the missing variables for each partially annotated dataset based on the current two task-specific models, and (2) updating the parameters of each model on the corresponding pseudo completed dataset. Experimental results on two benchmark datasets: Genia 2011 for event extraction and BC4GO for entity linking, show that our joint framework significantly improves the model for each individual task and outperforms the strong baselines for both tasks. We will make the code and model checkpoints publicly available once the paper is accepted.
[ "cs.CL" ]
false
2305.14660
2023-05-24T02:53:48Z
Complex Mathematical Symbol Definition Structures: A Dataset and Model for Coordination Resolution in Definition Extraction
[ "Anna Martin-Boyle", "Andrew Head", "Kyle Lo", "Risham Sidhu", "Marti A. Hearst", "Dongyeop Kang" ]
Mathematical symbol definition extraction is important for improving scholarly reading interfaces and scholarly information extraction (IE). However, the task poses several challenges: math symbols are difficult to process as they are not composed of natural language morphemes; and scholarly papers often contain sentences that require resolving complex coordinate structures. We present SymDef, an English language dataset of 5,927 sentences from full-text scientific papers where each sentence is annotated with all mathematical symbols linked with their corresponding definitions. This dataset focuses specifically on complex coordination structures such as "respectively" constructions, which often contain overlapping definition spans. We also introduce a new definition extraction method that masks mathematical symbols, creates a copy of each sentence for each symbol, specifies a target symbol, and predicts its corresponding definition spans using slot filling. Our experiments show that our definition extraction model significantly outperforms RoBERTa and other strong IE baseline systems by 10.9 points with a macro F1 score of 84.82. With our dataset and model, we can detect complex definitions in scholarly documents to make scientific writing more readable.
[ "cs.CL", "I.2.7" ]
false
2305.14676
2023-05-24T03:33:21Z
GRILL: Grounded Vision-language Pre-training via Aligning Text and Image Regions
[ "Woojeong Jin", "Subhabrata Mukherjee", "Yu Cheng", "Yelong Shen", "Weizhu Chen", "Ahmed Hassan Awadallah", "Damien Jose", "Xiang Ren" ]
Generalization to unseen tasks is an important ability for few-shot learners to achieve better zero-/few-shot performance on diverse tasks. However, such generalization to vision-language tasks including grounding and generation tasks has been under-explored; existing few-shot VL models struggle to handle tasks that involve object grounding and multiple images such as visual commonsense reasoning or NLVR2. In this paper, we introduce GRILL, GRounded vIsion Language aLigning, a novel VL model that can be generalized to diverse tasks including visual question answering, captioning, and grounding tasks with no or very few training instances. Specifically, GRILL learns object grounding and localization by exploiting object-text alignments, which enables it to transfer to grounding tasks in a zero-/few-shot fashion. We evaluate our model on various zero-/few-shot VL tasks and show that it consistently surpasses the state-of-the-art few-shot methods.
[ "cs.CL" ]
false
2305.14682
2023-05-24T03:42:44Z
TACR: A Table-alignment-based Cell-selection and Reasoning Model for Hybrid Question-Answering
[ "Jian Wu", "Yicheng Xu", "Yan Gao", "Jian-Guang Lou", "Börje F. Karlsson", "Manabu Okumura" ]
Hybrid Question-Answering (HQA), which targets reasoning over tables and passages linked from table cells, has witnessed significant research in recent years. A common challenge in HQA and other passage-table QA datasets is that it is generally unrealistic to iterate over all table rows, columns, and linked passages to retrieve evidence. Such a challenge made it difficult for previous studies to show their reasoning ability in retrieving answers. To bridge this gap, we propose a novel Table-alignment-based Cell-selection and Reasoning model (TACR) for hybrid text and table QA, evaluated on the HybridQA and WikiTableQuestions datasets. In evidence retrieval, we design a table-question-alignment enhanced cell-selection method to retrieve fine-grained evidence. In answer reasoning, we incorporate a QA module that treats the row containing selected cells as context. Experimental results over the HybridQA and WikiTableQuestions (WTQ) datasets show that TACR achieves state-of-the-art results on cell selection and outperforms fine-grained evidence retrieval baselines on HybridQA, while achieving competitive performance on WTQ. We also conducted a detailed analysis to demonstrate that being able to align questions to tables in the cell-selection stage can result in important gains from experiments of over 90\% table row and column selection accuracy, meanwhile also improving output explainability.
[ "cs.CL" ]
false
2305.14696
2023-05-24T04:01:27Z
SELFOOD: Self-Supervised Out-Of-Distribution Detection via Learning to Rank
[ "Dheeraj Mekala", "Adithya Samavedhi", "Chengyu Dong", "Jingbo Shang" ]
Deep neural classifiers trained with cross-entropy loss (CE loss) often suffer from poor calibration, necessitating the task of out-of-distribution (OOD) detection. Traditional supervised OOD detection methods require expensive manual annotation of in-distribution and OOD samples. To address the annotation bottleneck, we introduce SELFOOD, a self-supervised OOD detection method that requires only in-distribution samples as supervision. We cast OOD detection as an inter-document intra-label (IDIL) ranking problem and train the classifier with our pairwise ranking loss, referred to as IDIL loss. Specifically, given a set of in-distribution documents and their labels, for each label, we train the classifier to rank the softmax scores of documents belonging to that label to be higher than the scores of documents that belong to other labels. Unlike CE loss, our IDIL loss function reaches zero when the desired confidence ranking is achieved and gradients are backpropagated to decrease probabilities associated with incorrect labels rather than continuously increasing the probability of the correct label. Extensive experiments with several classifiers on multiple classification datasets demonstrate the effectiveness of our method in both coarse- and fine-grained settings.
[ "cs.CL" ]
false
2305.14716
2023-05-24T04:36:32Z
GlobalBench: A Benchmark for Global Progress in Natural Language Processing
[ "Yueqi Song", "Catherine Cui", "Simran Khanuja", "Pengfei Liu", "Fahim Faisal", "Alissa Ostapenko", "Genta Indra Winata", "Alham Fikri Aji", "Samuel Cahyawijaya", "Yulia Tsvetkov", "Antonios Anastasopoulos", "Graham Neubig" ]
Despite the major advances in NLP, significant disparities in NLP system performance across languages still exist. Arguably, these are due to uneven resource allocation and sub-optimal incentives to work on less resourced languages. To track and further incentivize the global development of equitable language technology, we introduce GlobalBench. Prior multilingual benchmarks are static and have focused on a limited number of tasks and languages. In contrast, GlobalBench is an ever-expanding collection that aims to dynamically track progress on all NLP datasets in all languages. Rather than solely measuring accuracy, GlobalBench also tracks the estimated per-speaker utility and equity of technology across all languages, providing a multi-faceted view of how language technology is serving people of the world. Furthermore, GlobalBench is designed to identify the most under-served languages, and rewards research efforts directed towards those languages. At present, the most under-served languages are the ones with a relatively high population, but nonetheless overlooked by composite multilingual benchmarks (like Punjabi, Portuguese, and Wu Chinese). Currently, GlobalBench covers 966 datasets in 190 languages, and has 1,128 system submissions spanning 62 languages.
[ "cs.CL" ]
false
2305.14719
2023-05-24T04:47:55Z
CuRIAM: Corpus re Interpretation and Metalanguage in U.S. Supreme Court Opinions
[ "Michael Kranzlein", "Nathan Schneider", "Kevin Tobia" ]
Most judicial decisions involve the interpretation of legal texts; as such, judicial opinion requires the use of language as a medium to comment on or draw attention to other language. Language used this way is called metalanguage. We develop an annotation schema for categorizing types of legal metalanguage and apply our schema to a set of U.S. Supreme Court opinions, yielding a corpus totaling 59k tokens. We remark on several patterns observed in the kinds of metalanguage used by the justices.
[ "cs.CL" ]
false
2305.14725
2023-05-24T05:01:48Z
AMELI: Enhancing Multimodal Entity Linking with Fine-Grained Attributes
[ "Barry Menglong Yao", "Yu Chen", "Qifan Wang", "Sijia Wang", "Minqian Liu", "Zhiyang Xu", "Licheng Yu", "Lifu Huang" ]
We propose attribute-aware multimodal entity linking, where the input is a mention described with a text and image, and the goal is to predict the corresponding target entity from a multimodal knowledge base (KB) where each entity is also described with a text description, a visual image and a set of attributes and values. To support this research, we construct AMELI, a large-scale dataset consisting of 18,472 reviews and 35,598 products. To establish baseline performance on AMELI, we experiment with the current state-of-the-art multimodal entity linking approaches and our enhanced attribute-aware model and demonstrate the importance of incorporating the attribute information into the entity linking process. To be best of our knowledge, we are the first to build benchmark dataset and solutions for the attribute-aware multimodal entity linking task. Datasets and codes will be made publicly available.
[ "cs.CL", "I.2.7" ]
false
2305.14739
2023-05-24T05:19:15Z
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
[ "Weijia Shi", "Xiaochuang Han", "Mike Lewis", "Yulia Tsvetkov", "Luke Zettlemoyer", "Scott Wen-tau Yih" ]
Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations. To mitigate this issue, we present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the output probabilities when a model is used with and without context. Our experiments show that CAD, without additional training, significantly improves the faithfulness of different LM families, including OPT, GPT, LLaMA and FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality metrics). Furthermore, CAD is particularly effective in overriding a model's prior knowledge when it contradicts the provided context, leading to substantial improvements in tasks where resolving the knowledge conflict is essential.
[ "cs.CL" ]
false
2305.14750
2023-05-24T05:53:11Z
Mastering the ABCDs of Complex Questions: Answer-Based Claim Decomposition for Fine-grained Self-Evaluation
[ "Nishant Balepur", "Jie Huang", "Samraj Moorjani", "Hari Sundaram", "Kevin Chen-Chuan Chang" ]
When answering complex questions, large language models (LLMs) may produce answers that do not satisfy all criteria of the question. While existing self-evaluation techniques aim to detect if such answers are correct, these techniques are unable to determine which criteria of the question are satisfied by the generated answers. To address this issue, we propose answer-based claim decomposition (ABCD), a prompting strategy that decomposes questions into a series of true/false claims that can be used to verify which criteria of the input question an answer satisfies. Using the decomposed ABCD claims, we perform fine-grained self-evaluation. Through preliminary experiments on three datasets, including a newly-collected challenge dataset ObscureQA, we find that GPT-3.5 has some ability to determine to what extent its answer satisfies the criteria of the input question, and can give insights into the errors and knowledge gaps of the model.
[ "cs.CL" ]
false
2305.14763
2023-05-24T06:14:31Z
Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in Large Language Models
[ "Natalie Shapira", "Mosh Levy", "Seyed Hossein Alavi", "Xuhui Zhou", "Yejin Choi", "Yoav Goldberg", "Maarten Sap", "Vered Shwartz" ]
The escalating debate on AI's capabilities warrants developing reliable metrics to assess machine "intelligence". Recently, many anecdotal examples were used to suggest that newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM); however, prior work reached conflicting conclusions regarding those abilities. We investigate the extent of LLMs' N-ToM through an extensive evaluation on 6 tasks and find that while LLMs exhibit certain N-ToM abilities, this behavior is far from being robust. We further examine the factors impacting performance on N-ToM tasks and discover that LLMs struggle with adversarial examples, indicating reliance on shallow heuristics rather than robust ToM abilities. We caution against drawing conclusions from anecdotal examples, limited benchmark testing, and using human-designed psychological tests to evaluate models.
[ "cs.CL" ]
false
2305.14783
2023-05-24T06:39:12Z
Disentangled Phonetic Representation for Chinese Spelling Correction
[ "Zihong Liang", "Xiaojun Quan", "Qifan Wang" ]
Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.
[ "cs.CL" ]
false
2305.14847
2023-05-24T07:57:04Z
Drafting Event Schemas using Language Models
[ "Anisha Gunjal", "Greg Durrett" ]
Past work has studied event prediction and event language modeling, sometimes mediated through structured representations of knowledge in the form of event schemas. Such schemas can lead to explainable predictions and forecasting of unseen events given incomplete information. In this work, we look at the process of creating such schemas to describe complex events. We use large language models (LLMs) to draft schemas directly in natural language, which can be further refined by human curators as necessary. Our focus is on whether we can achieve sufficient diversity and recall of key events and whether we can produce the schemas in a sufficiently descriptive style. We show that large language models are able to achieve moderate recall against schemas taken from two different datasets, with even better results when multiple prompts and multiple samples are combined. Moreover, we show that textual entailment methods can be used for both matching schemas to instances of events as well as evaluating overlap between gold and predicted schemas. Our method paves the way for easier distillation of event knowledge from large language model into schemas.
[ "cs.CL" ]
false
2305.14857
2023-05-24T08:06:33Z
BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual Transfer
[ "Akari Asai", "Sneha Kudugunta", "Xinyan Velocity Yu", "Terra Blevins", "Hila Gonen", "Machel Reid", "Yulia Tsvetkov", "Sebastian Ruder", "Hannaneh Hajishirzi" ]
Despite remarkable advancements in few-shot generalization in natural language processing, most models are developed and evaluated primarily in English. To facilitate research on few-shot cross-lingual transfer, we introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format and provides a fixed set of few-shot examples and instructions. BUFFET is designed to establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer across a broad range of tasks and languages. Using BUFFET, we perform thorough evaluations of state-of-the-art multilingual large language models with different transfer methods, namely in-context learning and fine-tuning. Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer. In particular, ChatGPT with in-context learning often performs worse than much smaller mT5-base models fine-tuned on English task data and few-shot in-language examples. Our analysis suggests various avenues for future research in few-shot cross-lingual transfer, such as improved pretraining, understanding, and future evaluations.
[ "cs.CL" ]
false
2305.14898
2023-05-24T08:52:08Z
PIVOINE: Instruction Tuning for Open-world Information Extraction
[ "Keming Lu", "Xiaoman Pan", "Kaiqiang Song", "Hongming Zhang", "Dong Yu", "Jianshu Chen" ]
We consider the problem of Open-world Information Extraction (Open-world IE), which extracts comprehensive entity profiles from unstructured texts. Different from the conventional closed-world setting of Information Extraction (IE), Open-world IE considers a more general situation where entities and relations could be beyond a predefined ontology. More importantly, we seek to develop a large language model (LLM) that is able to perform Open-world IE to extract desirable entity profiles characterized by (possibly fine-grained) natural language instructions. We achieve this by finetuning LLMs using instruction tuning. In particular, we construct INSTRUCTOPENWIKI, a substantial instruction tuning dataset for Open-world IE enriched with a comprehensive corpus, extensive annotations, and diverse instructions. We finetune the pretrained BLOOM models on INSTRUCTOPENWIKI and obtain PIVOINE, an LLM for Open-world IE with strong instruction-following capabilities. Our experiments demonstrate that PIVOINE significantly outperforms traditional closed-world methods and other LLM baselines, displaying impressive generalization capabilities on both unseen instructions and out-of-ontology cases. Consequently, PIVOINE emerges as a promising solution to tackle the open-world challenge in IE effectively.
[ "cs.CL" ]
false
2305.14908
2023-05-24T08:59:00Z
PURR: Efficiently Editing Language Model Hallucinations by Denoising Language Model Corruptions
[ "Anthony Chen", "Panupong Pasupat", "Sameer Singh", "Hongrae Lee", "Kelvin Guu" ]
The remarkable capabilities of large language models have been accompanied by a persistent drawback: the generation of false and unsubstantiated claims commonly known as "hallucinations". To combat this issue, recent research has introduced approaches that involve editing and attributing the outputs of language models, particularly through prompt-based editing. However, the inference cost and speed of using large language models for editing currently bottleneck prompt-based methods. These bottlenecks motivate the training of compact editors, which is challenging due to the scarcity of training data for this purpose. To overcome these challenges, we exploit the power of large language models to introduce corruptions (i.e., noise) into text and subsequently fine-tune compact editors to denoise the corruptions by incorporating relevant evidence. Our methodology is entirely unsupervised and provides us with faux hallucinations for training in any domain. Our Petite Unsupervised Research and Revision model, PURR, not only improves attribution over existing editing methods based on fine-tuning and prompting, but also achieves faster execution times by orders of magnitude.
[ "cs.CL" ]
false
2305.14913
2023-05-24T09:03:01Z
CoLaDa: A Collaborative Label Denoising Framework for Cross-lingual Named Entity Recognition
[ "Tingting Ma", "Qianhui Wu", "Huiqiang Jiang", "Börje F. Karlsson", "Tiejun Zhao", "Chin-Yew Lin" ]
Cross-lingual named entity recognition (NER) aims to train an NER system that generalizes well to a target language by leveraging labeled data in a given source language. Previous work alleviates the data scarcity problem by translating source-language labeled data or performing knowledge distillation on target-language unlabeled data. However, these methods may suffer from label noise due to the automatic labeling process. In this paper, we propose CoLaDa, a Collaborative Label Denoising Framework, to address this problem. Specifically, we first explore a model-collaboration-based denoising scheme that enables models trained on different data sources to collaboratively denoise pseudo labels used by each other. We then present an instance-collaboration-based strategy that considers the label consistency of each token's neighborhood in the representation space for denoising. Experiments on different benchmark datasets show that the proposed CoLaDa achieves superior results compared to previous methods, especially when generalizing to distant languages.
[ "cs.CL" ]
false
2305.14929
2023-05-24T09:11:11Z
Aligning Language Models to User Opinions
[ "EunJeong Hwang", "Bodhisattwa Prasad Majumder", "Niket Tandon" ]
An important aspect of developing LLMs that interact with humans is to align models' behavior to their users. It is possible to prompt an LLM into behaving as a certain persona, especially a user group or ideological persona the model captured during its pertaining stage. But, how to best align an LLM with a specific user and not a demographic or ideological group remains an open question. Mining public opinion surveys (by Pew Research), we find that the opinions of a user and their demographics and ideologies are not mutual predictors. We use this insight to align LLMs by modeling both user opinions as well as user demographics and ideology, achieving up to 7 points accuracy gains in predicting public opinions from survey questions across a broad set of topics. In addition to the typical approach of prompting LLMs with demographics and ideology, we discover that utilizing the most relevant past opinions from individual users enables the model to predict user opinions more accurately.
[ "cs.CL" ]
false
2305.14935
2023-05-24T09:17:05Z
Modeling Appropriate Language in Argumentation
[ "Timon Ziegenbein", "Shahbaz Syed", "Felix Lange", "Martin Potthast", "Henning Wachsmuth" ]
Online discussion moderators must make ad-hoc decisions about whether the contributions of discussion participants are appropriate or should be removed to maintain civility. Existing research on offensive language and the resulting tools cover only one aspect among many involved in such decisions. The question of what is considered appropriate in a controversial discussion has not yet been systematically addressed. In this paper, we operationalize appropriate language in argumentation for the first time. In particular, we model appropriateness through the absence of flaws, grounded in research on argument quality assessment, especially in aspects from rhetoric. From these, we derive a new taxonomy of 14 dimensions that determine inappropriate language in online discussions. Building on three argument quality corpora, we then create a corpus of 2191 arguments annotated for the 14 dimensions. Empirical analyses support that the taxonomy covers the concept of appropriateness comprehensively, showing several plausible correlations with argument quality dimensions. Moreover, results of baseline approaches to assessing appropriateness suggest that all dimensions can be modeled computationally on the corpus.
[ "cs.CL" ]
false
2305.14936
2023-05-24T09:18:28Z
Trade-Offs Between Fairness and Privacy in Language Modeling
[ "Cleo Matzken", "Steffen Eger", "Ivan Habernal" ]
Protecting privacy in contemporary NLP models is gaining in importance. So does the need to mitigate social biases of such models. But can we have both at the same time? Existing research suggests that privacy preservation comes at the price of worsening biases in classification tasks. In this paper, we explore the extent to which this tradeoff really holds when we incorporate both privacy preservation and de-biasing techniques into training text generation models. How does improving the model along one dimension affect the other dimension as well as the utility of the model? We conduct an extensive set of experiments that include bias detection, privacy attacks, language modeling, and performance on downstream tasks.
[ "cs.CL" ]
false
2305.14963
2023-05-24T09:57:06Z
PESCO: Prompt-enhanced Self Contrastive Learning for Zero-shot Text Classification
[ "Yau-Shian Wang", "Ta-Chung Chi", "Ruohong Zhang", "Yiming Yang" ]
We present PESCO, a novel contrastive learning framework that substantially improves the performance of zero-shot text classification. We formulate text classification as a neural text matching problem where each document is treated as a query, and the system learns the mapping from each query to the relevant class labels by (1) adding prompts to enhance label matching, and (2) using retrieved labels to enrich the training set in a self-training loop of contrastive learning. PESCO achieves state-of-the-art performance on four benchmark text classification datasets. On DBpedia, we achieve 98.5\% accuracy without any labeled data, which is close to the fully-supervised result. Extensive experiments and analyses show all the components of PESCO are necessary for improving the performance of zero-shot text classification.
[ "cs.CL" ]
false
2305.15005
2023-05-24T10:45:25Z
Sentiment Analysis in the Era of Large Language Models: A Reality Check
[ "Wenxuan Zhang", "Yue Deng", "Bing Liu", "Sinno Jialin Pan", "Lidong Bing" ]
Sentiment analysis (SA) has been a long-standing research area in natural language processing. It can offer rich insights into human sentiments and opinions and has thus seen considerable interest from both academia and industry. With the advent of large language models (LLMs) such as ChatGPT, there is a great potential for their employment on SA problems. However, the extent to which existing LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring deeper understanding or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs' SA abilities and propose a novel benchmark, \textsc{SentiEval}, for a more comprehensive and realistic evaluation. Data and code during our investigations are available at \url{https://github.com/DAMO-NLP-SG/LLM-Sentiment}.
[ "cs.CL" ]
false
2305.15010
2023-05-24T10:48:53Z
Injecting Knowledge into Biomedical Pre-trained Models via Polymorphism and Synonymous Substitution
[ "Hongbo Zhang", "Xiang Wan", "Benyou Wang" ]
Pre-trained language models (PLMs) were considered to be able to store relational knowledge present in the training data. However, some relational knowledge seems to be discarded unsafely in PLMs due to \textbf{report bias}: low-frequency relational knowledge might be underexpressed compared to high-frequency one in PLMs. This gives us a hint that relational knowledge might not be redundant to the stored knowledge of PLMs, but rather be complementary. To additionally inject relational knowledge into PLMs, we propose a simple-yet-effective approach to inject relational knowledge into PLMs, which is inspired by three observations (namely, polymorphism, synonymous substitution, and association). In particular, we switch entities in the training corpus to related entities (either hypernyms/hyponyms/synonyms, or arbitrarily-related concepts). Experimental results show that the proposed approach could not only better capture relational knowledge, but also improve the performance in various biomedical downstream tasks. Our model is available in \url{https://github.com/StevenZHB/BioPLM_InjectingKnowledge}.
[ "cs.CL" ]
false
2305.15014
2023-05-24T10:57:53Z
Unlocking Temporal Question Answering for Large Language Models Using Code Execution
[ "Xingxuan Li", "Liying Cheng", "Qingyu Tan", "Hwee Tou Ng", "Shafiq Joty", "Lidong Bing" ]
Large language models (LLMs) have made significant progress in natural language processing (NLP), and are utilized extensively in various applications. Recent works, such as chain-of-thought (CoT), have shown that intermediate reasoning steps can improve the performance of LLMs for complex reasoning tasks, such as math problems and symbolic question-answering tasks. However, we notice the challenge that LLMs face when it comes to temporal reasoning. Our preliminary experiments show that generating intermediate reasoning steps does not always boost the performance of complex temporal question-answering tasks. Therefore, we propose a novel framework that combines the extraction capability of LLMs and the logical reasoning capability of a Python solver to tackle this issue. Extensive experiments and analysis demonstrate the effectiveness of our framework in handling intricate time-bound reasoning tasks.
[ "cs.CL" ]
false
2305.15041
2023-05-24T11:27:59Z
Generating Faithful Synthetic Data with Large Language Models: A Case Study in Computational Social Science
[ "Veniamin Veselovsky", "Manoel Horta Ribeiro", "Akhil Arora", "Martin Josifoski", "Ashton Anderson", "Robert West" ]
Large Language Models (LLMs) have democratized synthetic data generation, which in turn has the potential to simplify and broaden a wide gamut of NLP tasks. Here, we tackle a pervasive problem in synthetic data generation: its generative distribution often differs from the distribution of real-world data researchers care about (in other words, it is unfaithful). In a case study on sarcasm detection, we study three strategies to increase the faithfulness of synthetic data: grounding, filtering, and taxonomy-based generation. We evaluate these strategies using the performance of classifiers trained with generated synthetic data on real-world data. While all three strategies improve the performance of classifiers, we find that grounding works best for the task at hand. As synthetic data generation plays an ever-increasing role in NLP research, we expect this work to be a stepping stone in improving its utility. We conclude this paper with some recommendations on how to generate high(er)-fidelity synthetic data for specific tasks.
[ "cs.CL" ]
false
2305.15044
2023-05-24T11:34:39Z
Is Summary Useful or Not? An Extrinsic Human Evaluation of Text Summaries on Downstream Tasks
[ "Xiao Pu", "Mingqi Gao", "Xiaojun Wan" ]
Research on automated text summarization relies heavily on human and automatic evaluation. While recent work on human evaluation mainly adopted intrinsic evaluation methods, judging the generic quality of text summaries, e.g. informativeness and coherence, our work focuses on evaluating the usefulness of text summaries with extrinsic methods. We carefully design three different downstream tasks for extrinsic human evaluation of summaries, i.e., question answering, text classification and text similarity assessment. We carry out experiments using system rankings and user behavior data to evaluate the performance of different summarization models. We find summaries are particularly useful in tasks that rely on an overall judgment of the text, while being less effective for question answering tasks. The results show that summaries generated by fine-tuned models lead to higher consistency in usefulness across all three tasks, as rankings of fine-tuned summarization systems are close across downstream tasks according to the proposed extrinsic metrics. Summaries generated by models in the zero-shot setting, however, are found to be biased towards the text classification and similarity assessment tasks, due to its general and less detailed summary style. We further evaluate the correlation of 14 intrinsic automatic metrics with human criteria and show that intrinsic automatic metrics perform well in evaluating the usefulness of summaries in the question-answering task, but are less effective in the other two tasks. This highlights the limitations of relying solely on intrinsic automatic metrics in evaluating the performance and usefulness of summaries.
[ "cs.CL" ]
false
2305.15045
2023-05-24T11:35:31Z
SETI: Systematicity Evaluation of Textual Inference
[ "Xiyan Fu", "Anette Frank" ]
We propose SETI (Systematicity Evaluation of Textual Inference), a novel and comprehensive benchmark designed for evaluating pre-trained language models (PLMs) for their systematicity capabilities in the domain of textual inference. Specifically, SETI offers three different NLI tasks and corresponding datasets to evaluate various types of systematicity in reasoning processes. In order to solve these tasks, models are required to perform compositional inference based on known primitive constituents. We conduct experiments of SETI on six widely used PLMs. Results show that various PLMs are able to solve unseen compositional inferences when having encountered the knowledge of how to combine primitives, with good performance. However, they are considerably limited when this knowledge is unknown to the model (40-100% points decrease). Furthermore, we find that PLMs can improve drastically once exposed to crucial compositional knowledge in minimalistic shots. These findings position SETI as the first benchmark for measuring the future progress of PLMs in achieving systematicity generalization in the textual inference.
[ "cs.CL" ]
false
2305.15051
2023-05-24T11:41:33Z
A Monte Carlo Language Model Pipeline for Zero-Shot Sociopolitical Event Extraction
[ "Erica Cai", "Brendan O'Connor" ]
We consider dyadic zero-shot event extraction (EE) to identify actions between pairs of actors. The \emph{zero-shot} setting allows social scientists or other non-computational researchers to extract any customized, user-specified set of events without training, resulting in a \emph{dyadic} event database, allowing insight into sociopolitical relational dynamics among actors and the higher level organizations or countries they represent. Unfortunately, we find that current zero-shot EE methods perform poorly for the task, with issues including word sense ambiguity, modality mismatch, and efficiency. Straightforward application of large language model prompting typically performs even worse. We address these challenges with a new fine-grained, multi-stage generative question-answer method, using a Monte Carlo approach to exploit and overcome the randomness of generative outputs. It performs 90\% fewer queries than a previous approach, with strong performance on the widely-used Automatic Content Extraction dataset. Finally, we extend our method to extract affiliations of actor arguments and demonstrate our method and findings on a dyadic international relations case study.
[ "cs.CL" ]
false
2305.15056
2023-05-24T11:45:59Z
Reasoning over Hierarchical Question Decomposition Tree for Explainable Question Answering
[ "Jiajie Zhang", "Shulin Cao", "Tingjia Zhang", "Xin Lv", "Jiaxin Shi", "Qi Tian", "Juanzi Li", "Lei Hou" ]
Explainable question answering (XQA) aims to answer a given question and provide an explanation why the answer is selected. Existing XQA methods focus on reasoning on a single knowledge source, e.g., structured knowledge bases, unstructured corpora, etc. However, integrating information from heterogeneous knowledge sources is essential to answer complex questions. In this paper, we propose to leverage question decomposing for heterogeneous knowledge integration, by breaking down a complex question into simpler ones, and selecting the appropriate knowledge source for each sub-question. To facilitate reasoning, we propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT). First, we build the Hierarchical Question Decomposition Tree (HQDT) to understand the semantics of a complex question; then, we conduct probabilistic reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels and search for a best solution considering the decomposing and answering probabilities. The experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly, demonstrating the effectiveness of leveraging question decomposing for knowledge integration and our RoHT framework.
[ "cs.CL" ]
false
2305.15098
2023-05-24T12:28:35Z
Referral Augmentation for Zero-Shot Information Retrieval
[ "Michael Tang", "Shunyu Yao", "John Yang", "Karthik Narasimhan" ]
We propose Referral-Augmented Retrieval (RAR), a simple technique that concatenates document indices with referrals, i.e. text from other documents that cite or link to the given document, to provide significant performance gains for zero-shot information retrieval. The key insight behind our method is that referrals provide a more complete, multi-view representation of a document, much like incoming page links in algorithms like PageRank provide a comprehensive idea of a webpage's importance. RAR works with both sparse and dense retrievers, and outperforms generative text expansion techniques such as DocT5Query and Query2Doc a 37% and 21% absolute improvement on ACL paper retrieval Recall@10 -- while also eliminating expensive model training and inference. We also analyze different methods for multi-referral aggregation and show that RAR enables up-to-date information retrieval without re-training.
[ "cs.CL" ]
false
2305.15099
2023-05-24T12:33:06Z
Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator
[ "Ziwei He", "Meng Yang", "Minwei Feng", "Jingcheng Yin", "Xinbing Wang", "Jingwen Leng", "Zhouhan Lin" ]
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer's inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. \footnote{Our code is publicly available at \url{https://github.com/LUMIA-Group/FourierTransformer}}
[ "cs.CL" ]
false
2305.15108
2023-05-24T12:55:04Z
The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing
[ "Debayan Banerjee", "Pranav Ajit Nair", "Ricardo Usbeck", "Chris Biemann" ]
In this work, we analyse the role of output vocabulary for text-to-text (T2T) models on the task of SPARQL semantic parsing. We perform experiments within the the context of knowledge graph question answering (KGQA), where the task is to convert questions in natural language to the SPARQL query language. We observe that the query vocabulary is distinct from human vocabulary. Language Models (LMs) are pre-dominantly trained for human language tasks, and hence, if the query vocabulary is replaced with a vocabulary more attuned to the LM tokenizer, the performance of models may improve. We carry out carefully selected vocabulary substitutions on the queries and find absolute gains in the range of 17% on the GrailQA dataset.
[ "cs.CL" ]
false
2305.15119
2023-05-24T13:11:04Z
Another Dead End for Morphological Tags? Perturbed Inputs and Parsing
[ "Alberto Muñoz-Ortiz", "David Vilares" ]
The usefulness of part-of-speech tags for parsing has been heavily questioned due to the success of word-contextualized parsers. Yet, most studies are limited to coarse-grained tags and high quality written content; while we know little about their influence when it comes to models in production that face lexical errors. We expand these setups and design an adversarial attack to verify if the use of morphological information by parsers: (i) contributes to error propagation or (ii) if on the other hand it can play a role to correct mistakes that word-only neural parsers make. The results on 14 diverse UD treebanks show that under such attacks, for transition- and graph-based models their use contributes to degrade the performance even faster, while for the (lower-performing) sequence labeling parsers they are helpful. We also show that if morphological tags were utopically robust against lexical perturbations, they would be able to correct parsing mistakes.
[ "cs.CL" ]
false
2305.15175
2023-05-24T14:06:27Z
Pre-training Multi-party Dialogue Models with Latent Discourse Inference
[ "Yiyang Li", "Xinting Huang", "Wei Bi", "Hai Zhao" ]
Multi-party dialogues are more difficult for models to understand than one-to-one two-party dialogues, since they involve multiple interlocutors, resulting in interweaving reply-to relations and information flows. To step over these obstacles, an effective way is to pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying. However, due to the lack of explicitly annotated discourse labels in multi-party dialogue corpora, previous works fail to scale up the pre-training process by putting aside the unlabeled multi-party conversational data for nothing. To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model by unsupervised latent variable inference methods. Experiments on multiple downstream tasks show that our pre-trained model outperforms strong baselines by large margins and achieves state-of-the-art (SOTA) results, justifying the effectiveness of our method. The official implementation of this paper is available at https://github.com/EricLee8/MPD_EMVI.
[ "cs.CL" ]
false
2305.15183
2023-05-24T14:18:52Z
Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?
[ "Chenming Tang", "Xiuyu Wu", "Yunfang Wu" ]
Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.
[ "cs.CL" ]
false
2305.15212
2023-05-24T14:51:01Z
Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model Fine-tuning
[ "Zhen-Ru Zhang", "Chuanqi Tan", "Haiyang Xu", "Chengyu Wang", "Jun Huang", "Songfang Huang" ]
Fine-tuning large pre-trained language models on various downstream tasks with whole parameters is prohibitively expensive. Hence, Parameter-efficient fine-tuning has attracted attention that only optimizes a few task-specific parameters with the frozen pre-trained model. In this work, we focus on prefix tuning, which only optimizes continuous prefix vectors (i.e. pseudo tokens) inserted into Transformer layers. Based on the observation that the learned syntax and semantics representation varies a lot at different layers, we argue that the adaptive prefix will be further tailored to each layer than the fixed one, enabling the fine-tuning more effective and efficient. Thus, we propose Adaptive Prefix Tuning (APT) to adjust the prefix in terms of both fine-grained token level and coarse-grained layer level with a gate mechanism. Experiments on the SuperGLUE and NER datasets show the effectiveness of APT. In addition, taking the gate as a probing, we validate the efficiency and effectiveness of the variable prefix.
[ "cs.CL" ]
false
2305.15262
2023-05-24T15:48:29Z
Revisiting Parallel Context Windows: A Frustratingly Simple Alternative and Chain-of-Thought Deterioration
[ "Kejuan Yang", "Xiao Liu", "Kaiwen Men", "Aohan Zeng", "Yuxiao Dong", "Jie Tang" ]
We identify two crucial limitations in the evaluation of recent parallel-integrated method Parallel Context Windows (PCW), which extends the maximum context lengths of language models, e.g., 2048 for LLaMA, by harnessing window-wise attention and positional embedding techniques. We first show that a simple yet strong baseline, weighted sum ensemble, is missing for the in-context few-shot classification. Moreover, on more challenging Chain-of-Thought (CoT) reasoning (e.g., HotpotQA), PCW would present unexpected deterioration regarding question miscomprehension and false inference. Based on our findings, we suggest that the existing PCW design may not guarantee sufficient improvement and practicality in handling lengthy documents in real-world applications. More community efforts on enabling language models' long context understanding ability should be paid.
[ "cs.CL" ]
false
2305.15273
2023-05-24T15:59:44Z
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
[ "Qihuang Zhong", "Liang Ding", "Juhua Liu", "Xuebo Liu", "Min Zhang", "Bo Du", "Dacheng Tao" ]
Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.
[ "cs.CL" ]
false
2305.15275
2023-05-24T16:00:54Z
Self-Evolution Learning for Discriminative Language Model Pretraining
[ "Qihuang Zhong", "Liang Ding", "Juhua Liu", "Bo Du", "Dacheng Tao" ]
Masked language modeling, widely used in discriminative language model (e.g., BERT) pretraining, commonly adopts a random masking strategy. However, random masking does not consider the importance of the different words in the sentence meaning, where some of them are more worthy to be predicted. Therefore, various masking strategies (e.g., entity-level masking) are proposed, but most of them require expensive prior knowledge and generally train from scratch without reusing existing model weights. In this paper, we present Self-Evolution learning (SE), a simple and effective token masking and learning method to fully and wisely exploit the knowledge from data. SE focuses on learning the informative yet under-explored tokens and adaptively regularizes the training by introducing a novel Token-specific Label Smoothing approach. Experiments on 10 tasks show that our SE brings consistent and significant improvements (+1.43~2.12 average scores) upon different PLMs. In-depth analyses demonstrate that SE improves linguistic knowledge learning and generalization.
[ "cs.CL" ]
false