language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def populateDB(db, packages): """Populate database with security notice information""" conn = sqlite3.connect(db) cur = conn.cursor() print "opened db successfully" for vul_id, package in packages.items(): for info in package: cur.execute('''INSERT INTO packages(name, version, release, vulnerabilityId, OS_name, OS_version) VALUES(?,?,?,?,?,?);''', (info['name'], info['version'], info['release'], vul_id, info['os_name'], info['os_version'])) conn.commit() conn.close()
def populateDB(db, packages): """Populate database with security notice information""" conn = sqlite3.connect(db) cur = conn.cursor() print "opened db successfully" for vul_id, package in packages.items(): for info in package: cur.execute('''INSERT INTO packages(name, version, release, vulnerabilityId, OS_name, OS_version) VALUES(?,?,?,?,?,?);''', (info['name'], info['version'], info['release'], vul_id, info['os_name'], info['os_version'])) conn.commit() conn.close()
Python
def add_target(self, target_name): """ Adding a target for iSCSI server. Args: Adds the target to existing target list Returns: Returns None if successful or exception. Query list_targets to get updated list """ if target_name not in self.list_targets(): self.target_list.append(target_name) else: raise iscsi_exceptions.NodeAlreadyInUseException()
def add_target(self, target_name): """ Adding a target for iSCSI server. Args: Adds the target to existing target list Returns: Returns None if successful or exception. Query list_targets to get updated list """ if target_name not in self.list_targets(): self.target_list.append(target_name) else: raise iscsi_exceptions.NodeAlreadyInUseException()
Python
def remove_target(self, target_name): """ Removes a target from iSCSI server. Args: Name of target that has to be removed. Returns: None if successful or exception. """ if target_name in self.list_targets(): self.target_list.remove(target_name) else: raise iscsi_exceptions.NodeAlreadyUnmappedException()
def remove_target(self, target_name): """ Removes a target from iSCSI server. Args: Name of target that has to be removed. Returns: None if successful or exception. """ if target_name in self.list_targets(): self.target_list.remove(target_name) else: raise iscsi_exceptions.NodeAlreadyUnmappedException()
Python
def list_targets(self): """ Lists all the targets in current iSCSI server. Returns: List of all targets. """ return self.target_list
def list_targets(self): """ Lists all the targets in current iSCSI server. Returns: List of all targets. """ return self.target_list
Python
def show_status(self): """ Shows the status of iSCSI server. Returns: String which is either "Running" or "Dead" """ return self.server_status
def show_status(self): """ Shows the status of iSCSI server. Returns: String which is either "Running" or "Dead" """ return self.server_status
Python
def runTest(self): """ Test clone image, clone a parent rbd snapshot into a COW child """ self.fs.clone(CEPH_IMG, CEPH_SNAP_IMG, CEPH_CHILD_IMG) children = self.fs.list_children(CEPH_IMG, CEPH_SNAP_IMG) children_imgs = [child[1] for child in children if child[0] == POOL] self.assertIn(CEPH_CHILD_IMG, children_imgs, "Error, cannot find child image") parent_info = self.fs.get_parent_info(CEPH_CHILD_IMG) self.assertEqual(CEPH_IMG, parent_info[1]) self.assertEqual(CEPH_SNAP_IMG, parent_info[2])
def runTest(self): """ Test clone image, clone a parent rbd snapshot into a COW child """ self.fs.clone(CEPH_IMG, CEPH_SNAP_IMG, CEPH_CHILD_IMG) children = self.fs.list_children(CEPH_IMG, CEPH_SNAP_IMG) children_imgs = [child[1] for child in children if child[0] == POOL] self.assertIn(CEPH_CHILD_IMG, children_imgs, "Error, cannot find child image") parent_info = self.fs.get_parent_info(CEPH_CHILD_IMG) self.assertEqual(CEPH_IMG, parent_info[1]) self.assertEqual(CEPH_SNAP_IMG, parent_info[2])
Python
def import_ceph_image(self, img): """ Import an image from ceph to be used by BMI Clone an image in ceph to be used by BMI. :param img: Name of image in ceph :return: True on successful completion """ try: ceph_img_name = str(img) # create a snapshot of the golden image and protect it # this is needed because, in ceph, you can only create clones from # snapshots. self.fs.snap_image(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) # insert golden image name into bmi db self.db.image.insert(ceph_img_name, self.pid) # get a name for our copy of the golden image. For instance an # image in ceph called centos6.7, after cloning, will be a given # a name like 4img1 based on the UID in config and image id in db snap_ceph_name = self.__get_ceph_image_name(ceph_img_name) # clone the snapshot of the golden image and then flatten it self.fs.clone(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME, snap_ceph_name) self.fs.flatten(snap_ceph_name) # create a snapshot of our newly created golden image so that when # we provision, we can easily make clones from this readily # available snapshot. self.fs.snap_image(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) # unprotect and delete the snapshot of the original golden because # we no longer need it. self.fs.snap_unprotect(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.remove_snapshot(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
def import_ceph_image(self, img): """ Import an image from ceph to be used by BMI Clone an image in ceph to be used by BMI. :param img: Name of image in ceph :return: True on successful completion """ try: ceph_img_name = str(img) # create a snapshot of the golden image and protect it # this is needed because, in ceph, you can only create clones from # snapshots. self.fs.snap_image(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) # insert golden image name into bmi db self.db.image.insert(ceph_img_name, self.pid) # get a name for our copy of the golden image. For instance an # image in ceph called centos6.7, after cloning, will be a given # a name like 4img1 based on the UID in config and image id in db snap_ceph_name = self.__get_ceph_image_name(ceph_img_name) # clone the snapshot of the golden image and then flatten it self.fs.clone(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME, snap_ceph_name) self.fs.flatten(snap_ceph_name) # create a snapshot of our newly created golden image so that when # we provision, we can easily make clones from this readily # available snapshot. self.fs.snap_image(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) # unprotect and delete the snapshot of the original golden because # we no longer need it. self.fs.snap_unprotect(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.remove_snapshot(ceph_img_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
Python
def import_ceph_snapshot(self, img, snap_name, protect): """ Import a snapshot from ceph to be used by BMI Clone a snapshot in ceph to be used by BMI. Similar to import_ceph_image except we can directly start the cloning process because it is already a snapshot. :param img: Name of snapshot in ceph :return: True on successful completion """ try: ceph_img_name = str(img) if protect: self.fs.snap_protect(ceph_img_name, snap_name) self.db.image.insert(ceph_img_name, self.pid) snap_ceph_name = self.__get_ceph_image_name(ceph_img_name) self.fs.clone(ceph_img_name, snap_name, snap_ceph_name) self.fs.flatten(snap_ceph_name) self.fs.snap_image(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
def import_ceph_snapshot(self, img, snap_name, protect): """ Import a snapshot from ceph to be used by BMI Clone a snapshot in ceph to be used by BMI. Similar to import_ceph_image except we can directly start the cloning process because it is already a snapshot. :param img: Name of snapshot in ceph :return: True on successful completion """ try: ceph_img_name = str(img) if protect: self.fs.snap_protect(ceph_img_name, snap_name) self.db.image.insert(ceph_img_name, self.pid) snap_ceph_name = self.__get_ceph_image_name(ceph_img_name) self.fs.clone(ceph_img_name, snap_name, snap_ceph_name) self.fs.flatten(snap_ceph_name) self.fs.snap_image(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(snap_ceph_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
Python
def copy_image(self, img1, dest_project, img2=None): """ Create a deep copy of src image :param img1: Name of src image :param dest_project: Name of the project where des image will be created :param img2: Name of des image :return: True on successful completion """ try: if not self.is_admin and (self.proj != dest_project): raise AuthorizationFailedException() dest_pid = self.__does_project_exist(dest_project) self.db.image.copy_image(self.proj, img1, dest_pid, img2) if img2 is not None: ceph_name = self.get_ceph_image_name_from_project(img2, dest_project) else: ceph_name = self.get_ceph_image_name_from_project(img1, dest_project) self.fs.clone(self.get_ceph_image_name_from_project( img1, self.proj), constants.DEFAULT_SNAPSHOT_NAME, ceph_name) self.fs.flatten(ceph_name) self.fs.snap_image(ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(ceph_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
def copy_image(self, img1, dest_project, img2=None): """ Create a deep copy of src image :param img1: Name of src image :param dest_project: Name of the project where des image will be created :param img2: Name of des image :return: True on successful completion """ try: if not self.is_admin and (self.proj != dest_project): raise AuthorizationFailedException() dest_pid = self.__does_project_exist(dest_project) self.db.image.copy_image(self.proj, img1, dest_pid, img2) if img2 is not None: ceph_name = self.get_ceph_image_name_from_project(img2, dest_project) else: ceph_name = self.get_ceph_image_name_from_project(img1, dest_project) self.fs.clone(self.get_ceph_image_name_from_project( img1, self.proj), constants.DEFAULT_SNAPSHOT_NAME, ceph_name) self.fs.flatten(ceph_name) self.fs.snap_image(ceph_name, constants.DEFAULT_SNAPSHOT_NAME) self.fs.snap_protect(ceph_name, constants.DEFAULT_SNAPSHOT_NAME) return self.__return_success(True) except (DBException, FileSystemException) as e: logger.exception('') return self.__return_error(e)
Python
def load(force=False): """ Loads the config by using BMI_CONFIG environment variable, else loads from default location :param force: Forces a reload of config :return: None """ global __config if __config is None or force: try: path = os.environ[ constants.CONFIG_LOCATION_ENV_VARIABLE] except KeyError: path = constants.CONFIG_DEFAULT_LOCATION __config = BMIConfig(path) __config.load_config() parse_config(__config)
def load(force=False): """ Loads the config by using BMI_CONFIG environment variable, else loads from default location :param force: Forces a reload of config :return: None """ global __config if __config is None or force: try: path = os.environ[ constants.CONFIG_LOCATION_ENV_VARIABLE] except KeyError: path = constants.CONFIG_DEFAULT_LOCATION __config = BMIConfig(path) __config.load_config() parse_config(__config)
Python
def load_config(self): """ Loads the config as per the given path :return: None """ if not self.config.read(self.configfile): raise IOError('cannot load ' + self.configfile)
def load_config(self): """ Loads the config as per the given path :return: None """ if not self.config.read(self.configfile): raise IOError('cannot load ' + self.configfile)
Python
def option(self, section, option, type=str, required=True): """ Parses the given option from config, converts to another type if required or raises an exception if found missing and adds it as attribute to config as cfg.section.option :param section: Section under which Option should be present :param option: Option should be parsed :param type: the conversion function for the required type like int,etc :param required: Whether an exception should be raised if missing :return: None """ try: value = self.config.get(section, option) section_obj = getattr(self, section, None) if section_obj is None: section_obj = ConfigSection() setattr(self, section, section_obj) if type is bool: v = value.lower() if v in ['true', 'false']: setattr(section_obj, option, v == 'true') else: raise ValueError else: setattr(section_obj, option, type(value)) except ConfigParser.Error: if required: raise config_exceptions.MissingOptionInConfigException(option, section) except ValueError: raise config_exceptions.InvalidValueConfigException(option, section)
def option(self, section, option, type=str, required=True): """ Parses the given option from config, converts to another type if required or raises an exception if found missing and adds it as attribute to config as cfg.section.option :param section: Section under which Option should be present :param option: Option should be parsed :param type: the conversion function for the required type like int,etc :param required: Whether an exception should be raised if missing :return: None """ try: value = self.config.get(section, option) section_obj = getattr(self, section, None) if section_obj is None: section_obj = ConfigSection() setattr(self, section, section_obj) if type is bool: v = value.lower() if v in ['true', 'false']: setattr(section_obj, option, v == 'true') else: raise ValueError else: setattr(section_obj, option, type(value)) except ConfigParser.Error: if required: raise config_exceptions.MissingOptionInConfigException(option, section) except ValueError: raise config_exceptions.InvalidValueConfigException(option, section)
Python
def section(self, section_name, required=True): """ Parses entire section and adds them to config object like option :param section_name: the section to parse :param required: Whether an exception should be raised if missing :return: None """ try: section = self.config.items(section_name) section_obj = getattr(self, section_name, None) if section_obj is None: section_obj = ConfigSection() setattr(self, section_name, section_obj) for name, value in section: setattr(section_obj, name, value) except ConfigParser.Error: if required: raise config_exceptions.MissingSectionInConfigException( section_name)
def section(self, section_name, required=True): """ Parses entire section and adds them to config object like option :param section_name: the section to parse :param required: Whether an exception should be raised if missing :return: None """ try: section = self.config.items(section_name) section_obj = getattr(self, section_name, None) if section_obj is None: section_obj = ConfigSection() setattr(self, section_name, section_obj) for name, value in section: setattr(section_obj, name, value) except ConfigParser.Error: if required: raise config_exceptions.MissingSectionInConfigException( section_name)
Python
def call(command, sudo=False): """ Executes the given command in shell :param command: the command to execute as string :param sudo: whether to execute as root (default is False) :return: output of command as string """ s_command = command.split() if sudo: s_command.insert(0, 'sudo') try: output = subprocess.check_output(s_command, stderr=subprocess.STDOUT) return output except subprocess.CalledProcessError as e: raise shell_exceptions.CommandFailedException(str(e))
def call(command, sudo=False): """ Executes the given command in shell :param command: the command to execute as string :param sudo: whether to execute as root (default is False) :return: output of command as string """ s_command = command.split() if sudo: s_command.insert(0, 'sudo') try: output = subprocess.check_output(s_command, stderr=subprocess.STDOUT) return output except subprocess.CalledProcessError as e: raise shell_exceptions.CommandFailedException(str(e))
Python
def call_service_command(command, service_name, final_status=None): """ Calls the given service command and checks whether it has status afterwards :param command: service command to call :param service_name: The service name :param final_status: The final status of the daemon after call :return: Output of Call """ full_command = "service %s %s" % (service_name, command) output = call(full_command, sudo=True) if final_status is not None: status = get_service_status(service_name) if status is not final_status: raise shell_exceptions.ServiceCommandFailedException(status) return output
def call_service_command(command, service_name, final_status=None): """ Calls the given service command and checks whether it has status afterwards :param command: service command to call :param service_name: The service name :param final_status: The final status of the daemon after call :return: Output of Call """ full_command = "service %s %s" % (service_name, command) output = call(full_command, sudo=True) if final_status is not None: status = get_service_status(service_name) if status is not final_status: raise shell_exceptions.ServiceCommandFailedException(status) return output
Python
def list_children(self, img_id, parent_snap): """ The snapshot of image whose children will be returned. Used only by tests. :param img_id: what the image is called :param parent_snap: the snapshot to read from :return: a list of (pool name, image name) tuples """ try: with self.__open_image(img_id) as img: img.set_snap(parent_snap) return img.list_children() except rbd.ImageNotFound: raise file_system_exceptions.ImageNotFoundException(img_id)
def list_children(self, img_id, parent_snap): """ The snapshot of image whose children will be returned. Used only by tests. :param img_id: what the image is called :param parent_snap: the snapshot to read from :return: a list of (pool name, image name) tuples """ try: with self.__open_image(img_id) as img: img.set_snap(parent_snap) return img.list_children() except rbd.ImageNotFound: raise file_system_exceptions.ImageNotFoundException(img_id)
Python
def is_snap_protected(self, img_id, snap_name): """ Find out whether a snapshot is protected from deletion Required only for tests :param img_id: what the image is called :param snap_name: the snapshot to check :return: bool- whether the snapshot is protected """ try: with self.__open_image(img_id) as img: return img.is_protected_snap(snap_name) except rbd.ImageNotFound: raise file_system_exceptions.ImageNotFoundException(img_id)
def is_snap_protected(self, img_id, snap_name): """ Find out whether a snapshot is protected from deletion Required only for tests :param img_id: what the image is called :param snap_name: the snapshot to check :return: bool- whether the snapshot is protected """ try: with self.__open_image(img_id) as img: return img.is_protected_snap(snap_name) except rbd.ImageNotFound: raise file_system_exceptions.ImageNotFoundException(img_id)
Python
def open_page (url): """Load page, and try to accept cookies and close pop-ups """ scraper.set_page (url) time.sleep (5) scraper.refresh_selenium() # Detect pop up logging selector_popup_close = "#popupContainer > div:nth-child(1) > img" popup_found = scraper.get_attrib (selector_popup_close, "src") if popup_found: scraper.click (selector_popup_close) scraper.refresh_selenium() # Detect pop up discounts selector_popup_close = "#st_news_letter_popup_3 > div > div > button" popup_found = scraper.get_attrib (selector_popup_close, "aria-label") if popup_found: scraper.click (selector_popup_close) scraper.refresh_selenium() # Accept cookies selector_accept = "#lgcookieslaw_accept" popup_found = scraper.get_text (selector_accept) if popup_found: scraper.click (selector_accept) scraper.refresh_selenium()
def open_page (url): """Load page, and try to accept cookies and close pop-ups """ scraper.set_page (url) time.sleep (5) scraper.refresh_selenium() # Detect pop up logging selector_popup_close = "#popupContainer > div:nth-child(1) > img" popup_found = scraper.get_attrib (selector_popup_close, "src") if popup_found: scraper.click (selector_popup_close) scraper.refresh_selenium() # Detect pop up discounts selector_popup_close = "#st_news_letter_popup_3 > div > div > button" popup_found = scraper.get_attrib (selector_popup_close, "aria-label") if popup_found: scraper.click (selector_popup_close) scraper.refresh_selenium() # Accept cookies selector_accept = "#lgcookieslaw_accept" popup_found = scraper.get_text (selector_accept) if popup_found: scraper.click (selector_accept) scraper.refresh_selenium()
Python
def read_arrow_batches_from_odbc( query: str, batch_size: int, connection_string: str, user: Optional[str] = None, password: Optional[str] = None, parameters: Optional[List[Optional[str]]] = None, max_text_size: Optional[int] = None, max_binary_size: Optional[int] = None, falliable_allocations: bool = True, ) -> Optional[BatchReader]: """ Execute the query and read the result as an iterator over Arrow batches. :param query: The SQL statement yielding the result set which is converted into arrow record batches. :param batch_size: The maxmium number rows within each batch. :param connection_string: ODBC Connection string used to connect to the data source. To find a connection string for your data source try https://www.connectionstrings.com/. :param user: Allows for specifying the user seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `UID`. :param password: Allows for specifying the password seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `PWD`. :param parameters: ODBC allows you to use a question mark as placeholder marker (``?``) for positional parameters. This argument takes a list of parameters those number must match the number of placholders in the SQL statement. Using this instead of literals helps you avoid SQL injections or may otherwise simplify your code. Currently all parameters are passed as VARCHAR strings. You can use `None` to pass `NULL`. :param max_text_size: An upper limit for the size of buffers bound to variadic text columns of the data source. This limit does not (directly) apply to the size of the created arrow buffers, but rather applies to the buffers used for the data in transit. Use this option if you have e.g. VARCHAR(MAX) fields in your database schema. In such a case without an upper limit, the ODBC driver of your data source is asked for the maximum size of an element, and is likely to answer with either 0 or a value which is way larger than any actual entry in the column If you can not adapt your database schema, this limit might be what you are looking for. On windows systems the size is double words (16Bit), as windows utilizes an UTF-16 encoding. So this translates to roughly the size in letters. On non windows systems this is the size in bytes and the datasource is assumed to utilize an UTF-8 encoding. ``None`` means no upper limit is set and the maximum element size, reported by ODBC is used to determine buffer sizes. :param max_binary_size: An upper limit for the size of buffers bound to variadic binary columns of the data source. This limit does not (directly) apply to the size of the created arrow buffers, but rather applies to the buffers used for the data in transit. Use this option if you have e.g. VARBINARY(MAX) fields in your database schema. In such a case without an upper limit, the ODBC driver of your data source is asked for the maximum size of an element, and is likely to answer with either 0 or a value which is way larger than any actual entry in the column. If you can not adapt your database schema, this limit might be what you are looking for. This is the maximum size in bytes of the binary column. :param falliable_allocations: If ``True`` an recoverable error is raised in case there is not enough memory to allocate the buffers. This option may incurr a performance penalty which scales with the batch size parameter (but not with the amount of actual data in the source). In case you can test your query against the schema you can safely set this to ``False``. The required memory will not depend on the amount of data in the data source. Default is ``True`` though, safety first. :return: In case the query does not produce a result set (e.g. in case of an INSERT statement), ``None`` is returned. Should the statement return a result set a ``BatchReader`` is returned, which implements the iterator protocol and iterates over individual arrow batches. """ query_bytes = query.encode("utf-8") connection = connect_to_database(connection_string, user, password) # Connecting to the database has been successful. Note that connection does not truly take # ownership of the connection. If it runs out of scope (e.g. due to a raised exception) the # connection would not be closed and its associated resources would not be freed. # However, this is fine since everything from here on out until we call arrow_odbc_reader_make # is infalliable. arrow_odbc_reader_make will truly take ownership of the connection. Even if it # should fail, it will be closed correctly. if parameters is None: parameters_array = FFI.NULL parameters_len = 0 encoded_parameters = [] else: parameters_array = ffi.new("ArrowOdbcParameter *[]", len(parameters)) parameters_len = len(parameters) # Must be kept alive. Within Rust code we only allocate an additional # indicator the string payload is just referenced. encoded_parameters = [to_bytes_and_len(p) for p in parameters] if max_text_size is None: max_text_size = 0 if max_binary_size is None: max_binary_size = 0 for p_index in range(0, parameters_len): (p_bytes, p_len) = encoded_parameters[p_index] parameters_array[p_index] = lib.arrow_odbc_parameter_string_make(p_bytes, p_len) reader_out = ffi.new("ArrowOdbcReader **") error = lib.arrow_odbc_reader_make( connection, query_bytes, len(query_bytes), batch_size, parameters_array, parameters_len, max_text_size, max_binary_size, falliable_allocations, reader_out, ) # See if we managed to execute the query successfully and return an # error if not raise_on_error(error) reader = reader_out[0] if reader == ffi.NULL: # The query ran successfully but did not produce a result set return None else: return BatchReader(reader)
def read_arrow_batches_from_odbc( query: str, batch_size: int, connection_string: str, user: Optional[str] = None, password: Optional[str] = None, parameters: Optional[List[Optional[str]]] = None, max_text_size: Optional[int] = None, max_binary_size: Optional[int] = None, falliable_allocations: bool = True, ) -> Optional[BatchReader]: """ Execute the query and read the result as an iterator over Arrow batches. :param query: The SQL statement yielding the result set which is converted into arrow record batches. :param batch_size: The maxmium number rows within each batch. :param connection_string: ODBC Connection string used to connect to the data source. To find a connection string for your data source try https://www.connectionstrings.com/. :param user: Allows for specifying the user seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `UID`. :param password: Allows for specifying the password seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `PWD`. :param parameters: ODBC allows you to use a question mark as placeholder marker (``?``) for positional parameters. This argument takes a list of parameters those number must match the number of placholders in the SQL statement. Using this instead of literals helps you avoid SQL injections or may otherwise simplify your code. Currently all parameters are passed as VARCHAR strings. You can use `None` to pass `NULL`. :param max_text_size: An upper limit for the size of buffers bound to variadic text columns of the data source. This limit does not (directly) apply to the size of the created arrow buffers, but rather applies to the buffers used for the data in transit. Use this option if you have e.g. VARCHAR(MAX) fields in your database schema. In such a case without an upper limit, the ODBC driver of your data source is asked for the maximum size of an element, and is likely to answer with either 0 or a value which is way larger than any actual entry in the column If you can not adapt your database schema, this limit might be what you are looking for. On windows systems the size is double words (16Bit), as windows utilizes an UTF-16 encoding. So this translates to roughly the size in letters. On non windows systems this is the size in bytes and the datasource is assumed to utilize an UTF-8 encoding. ``None`` means no upper limit is set and the maximum element size, reported by ODBC is used to determine buffer sizes. :param max_binary_size: An upper limit for the size of buffers bound to variadic binary columns of the data source. This limit does not (directly) apply to the size of the created arrow buffers, but rather applies to the buffers used for the data in transit. Use this option if you have e.g. VARBINARY(MAX) fields in your database schema. In such a case without an upper limit, the ODBC driver of your data source is asked for the maximum size of an element, and is likely to answer with either 0 or a value which is way larger than any actual entry in the column. If you can not adapt your database schema, this limit might be what you are looking for. This is the maximum size in bytes of the binary column. :param falliable_allocations: If ``True`` an recoverable error is raised in case there is not enough memory to allocate the buffers. This option may incurr a performance penalty which scales with the batch size parameter (but not with the amount of actual data in the source). In case you can test your query against the schema you can safely set this to ``False``. The required memory will not depend on the amount of data in the data source. Default is ``True`` though, safety first. :return: In case the query does not produce a result set (e.g. in case of an INSERT statement), ``None`` is returned. Should the statement return a result set a ``BatchReader`` is returned, which implements the iterator protocol and iterates over individual arrow batches. """ query_bytes = query.encode("utf-8") connection = connect_to_database(connection_string, user, password) # Connecting to the database has been successful. Note that connection does not truly take # ownership of the connection. If it runs out of scope (e.g. due to a raised exception) the # connection would not be closed and its associated resources would not be freed. # However, this is fine since everything from here on out until we call arrow_odbc_reader_make # is infalliable. arrow_odbc_reader_make will truly take ownership of the connection. Even if it # should fail, it will be closed correctly. if parameters is None: parameters_array = FFI.NULL parameters_len = 0 encoded_parameters = [] else: parameters_array = ffi.new("ArrowOdbcParameter *[]", len(parameters)) parameters_len = len(parameters) # Must be kept alive. Within Rust code we only allocate an additional # indicator the string payload is just referenced. encoded_parameters = [to_bytes_and_len(p) for p in parameters] if max_text_size is None: max_text_size = 0 if max_binary_size is None: max_binary_size = 0 for p_index in range(0, parameters_len): (p_bytes, p_len) = encoded_parameters[p_index] parameters_array[p_index] = lib.arrow_odbc_parameter_string_make(p_bytes, p_len) reader_out = ffi.new("ArrowOdbcReader **") error = lib.arrow_odbc_reader_make( connection, query_bytes, len(query_bytes), batch_size, parameters_array, parameters_len, max_text_size, max_binary_size, falliable_allocations, reader_out, ) # See if we managed to execute the query successfully and return an # error if not raise_on_error(error) reader = reader_out[0] if reader == ffi.NULL: # The query ran successfully but did not produce a result set return None else: return BatchReader(reader)
Python
def write_batch(self, batch): """ Fills the internal buffers of the writer with data from the batch. Every time they are full, the data is send to the database. To make sure all the data is is send ``flush`` must be called. """ with arrow_ffi.new("struct ArrowArray*") as c_array, \ arrow_ffi.new("struct ArrowSchema*") as c_schema: # Get the references to the C Data structures c_array_ptr = int(arrow_ffi.cast("uintptr_t", c_array)) c_schema_ptr = int(arrow_ffi.cast("uintptr_t", c_schema)) # Export the Array to the C Data structures. batch._export_to_c(c_array_ptr) batch.schema._export_to_c(c_schema_ptr) lib.arrow_odbc_writer_write_batch(self.handle, c_array, c_schema)
def write_batch(self, batch): """ Fills the internal buffers of the writer with data from the batch. Every time they are full, the data is send to the database. To make sure all the data is is send ``flush`` must be called. """ with arrow_ffi.new("struct ArrowArray*") as c_array, \ arrow_ffi.new("struct ArrowSchema*") as c_schema: # Get the references to the C Data structures c_array_ptr = int(arrow_ffi.cast("uintptr_t", c_array)) c_schema_ptr = int(arrow_ffi.cast("uintptr_t", c_schema)) # Export the Array to the C Data structures. batch._export_to_c(c_array_ptr) batch.schema._export_to_c(c_schema_ptr) lib.arrow_odbc_writer_write_batch(self.handle, c_array, c_schema)
Python
def flush(self): """ Inserts the remaining rows of the last chunk to the database. """ lib.arrow_odbc_writer_flush(self.handle)
def flush(self): """ Inserts the remaining rows of the last chunk to the database. """ lib.arrow_odbc_writer_flush(self.handle)
Python
def insert_into_table( reader: Any, chunk_size: int, table: str, connection_string: str, user: Optional[str] = None, password: Optional[str] = None, ): """ Consume the batches in the reader and insert them into a table on the database. :param reader: Reader is used to iterate over record batches. It must expose a `schema` attribute, referencing an Arrow schema. Each field in the schema must correspond to a column in the table with identical name. :param chunk_size: Number of records to insert in each roundtrip to the database. Independent of batch size (i.e. number of rows in an individual record batch). :param table: Name of a database table to insert into. Used to generate the insert statement for the bulk writer. :param connection_string: ODBC Connection string used to connect to the data source. To find a connection string for your data source try https://www.connectionstrings.com/. :param user: Allows for specifying the user seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `UID`. :param password: Allows for specifying the password seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `PWD`. """ table_bytes = table.encode("utf-8") # Allocate structures where we will export the Array data and the Array schema. They will be # released when we exit the with block. with arrow_ffi.new("struct ArrowSchema*") as c_schema: # Get the references to the C Data structures. c_schema_ptr = int(arrow_ffi.cast("uintptr_t", c_schema)) # Export the schema to the C Data structures. reader.schema._export_to_c(c_schema_ptr) connection = connect_to_database(connection_string, user, password) # Connecting to the database has been successful. Note that connection does not truly take # ownership of the connection. If it runs out of scope (e.g. due to a raised exception) the # connection would not be closed and its associated resources would not be freed. However # `arrow_odbc_writer_make` will take ownership of connection. Even if it should fail the # connection will be closed. writer_out = ffi.new("ArrowOdbcWriter **") lib.arrow_odbc_writer_make( connection, table_bytes, len(table_bytes), chunk_size, c_schema, writer_out ) writer = BatchWriter(writer_out[0]) # Write all batches in reader for batch in reader: writer.write_batch(batch) writer.flush()
def insert_into_table( reader: Any, chunk_size: int, table: str, connection_string: str, user: Optional[str] = None, password: Optional[str] = None, ): """ Consume the batches in the reader and insert them into a table on the database. :param reader: Reader is used to iterate over record batches. It must expose a `schema` attribute, referencing an Arrow schema. Each field in the schema must correspond to a column in the table with identical name. :param chunk_size: Number of records to insert in each roundtrip to the database. Independent of batch size (i.e. number of rows in an individual record batch). :param table: Name of a database table to insert into. Used to generate the insert statement for the bulk writer. :param connection_string: ODBC Connection string used to connect to the data source. To find a connection string for your data source try https://www.connectionstrings.com/. :param user: Allows for specifying the user seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `UID`. :param password: Allows for specifying the password seperatly from the connection string if it is not already part of it. The value will eventually be escaped and attached to the connection string as `PWD`. """ table_bytes = table.encode("utf-8") # Allocate structures where we will export the Array data and the Array schema. They will be # released when we exit the with block. with arrow_ffi.new("struct ArrowSchema*") as c_schema: # Get the references to the C Data structures. c_schema_ptr = int(arrow_ffi.cast("uintptr_t", c_schema)) # Export the schema to the C Data structures. reader.schema._export_to_c(c_schema_ptr) connection = connect_to_database(connection_string, user, password) # Connecting to the database has been successful. Note that connection does not truly take # ownership of the connection. If it runs out of scope (e.g. due to a raised exception) the # connection would not be closed and its associated resources would not be freed. However # `arrow_odbc_writer_make` will take ownership of connection. Even if it should fail the # connection will be closed. writer_out = ffi.new("ArrowOdbcWriter **") lib.arrow_odbc_writer_make( connection, table_bytes, len(table_bytes), chunk_size, c_schema, writer_out ) writer = BatchWriter(writer_out[0]) # Write all batches in reader for batch in reader: writer.write_batch(batch) writer.flush()
Python
def register_device_with_private_key(device_id, realm, private_key_file, pairing_base_url) -> str: """ Registers a Device against an Astarte instance/realm with a Private Key Returns the Credentials secret for the Device Parameters ---------- device_id : str The Device ID to register. realm : str The Realm in which to register the Device. private_key_file : str Path to the Private Key file for the Realm. It will be used to Authenticate against Pairing API. pairing_base_url : str The Base URL of Pairing API of the Astarte Instance the Device will be registered in. """ return __register_device( device_id, realm, __register_device_headers_with_private_key(private_key_file), pairing_base_url)
def register_device_with_private_key(device_id, realm, private_key_file, pairing_base_url) -> str: """ Registers a Device against an Astarte instance/realm with a Private Key Returns the Credentials secret for the Device Parameters ---------- device_id : str The Device ID to register. realm : str The Realm in which to register the Device. private_key_file : str Path to the Private Key file for the Realm. It will be used to Authenticate against Pairing API. pairing_base_url : str The Base URL of Pairing API of the Astarte Instance the Device will be registered in. """ return __register_device( device_id, realm, __register_device_headers_with_private_key(private_key_file), pairing_base_url)
Python
def register_device_with_jwt_token(device_id, realm, jwt_token, pairing_base_url) -> str: """ Registers a Device against an Astarte instance/realm with a JWT Token Returns the Credentials secret for the Device Parameters ---------- device_id : str The Device ID to register. realm : str The Realm in which to register the Device. jwt_token : str A JWT Token to Authenticate against Pairing API. The token must have access to Pairing API and to the agent API paths. pairing_base_url : str The Base URL of Pairing API of the Astarte Instance the Device will be registered in. """ return __register_device( device_id, realm, __register_device_headers_with_jwt_token(jwt_token), pairing_base_url)
def register_device_with_jwt_token(device_id, realm, jwt_token, pairing_base_url) -> str: """ Registers a Device against an Astarte instance/realm with a JWT Token Returns the Credentials secret for the Device Parameters ---------- device_id : str The Device ID to register. realm : str The Realm in which to register the Device. jwt_token : str A JWT Token to Authenticate against Pairing API. The token must have access to Pairing API and to the agent API paths. pairing_base_url : str The Base URL of Pairing API of the Astarte Instance the Device will be registered in. """ return __register_device( device_id, realm, __register_device_headers_with_jwt_token(jwt_token), pairing_base_url)
Python
def add_interface(self, interface_definition): """ Adds an Interface to the Device This will add an Interface definition to the Device. It has to be called before :py:func:`connect`, as it will be used for building the Device Introspection. Parameters ---------- interface_definition : dict An Astarte Interface definition in the form of a Python dictionary. Usually obtained by using json.loads on an Interface file. """ self.__interfaces[ interface_definition["interface_name"]] = interface_definition
def add_interface(self, interface_definition): """ Adds an Interface to the Device This will add an Interface definition to the Device. It has to be called before :py:func:`connect`, as it will be used for building the Device Introspection. Parameters ---------- interface_definition : dict An Astarte Interface definition in the form of a Python dictionary. Usually obtained by using json.loads on an Interface file. """ self.__interfaces[ interface_definition["interface_name"]] = interface_definition
Python
def remove_interface(self, interface_name): """ Removes an Interface from the Device Removes an Interface definition from the Device. It has to be called before :py:func:`connect`, as it will be used for building the Device Introspection. Parameters ---------- interface_name : dict The name of an Interface previously added with :py:func:`add_interface`. """ if interface_name in self.__interfaces: del self.__interfaces[interface_name]
def remove_interface(self, interface_name): """ Removes an Interface from the Device Removes an Interface definition from the Device. It has to be called before :py:func:`connect`, as it will be used for building the Device Introspection. Parameters ---------- interface_name : dict The name of an Interface previously added with :py:func:`add_interface`. """ if interface_name in self.__interfaces: del self.__interfaces[interface_name]
Python
def connect(self): """ Connects the Device asynchronously. When calling connect, a new connection thread is spawned and the Device will start a connection routine. The function might return before the Device connects: you want to use the on_connected callback to ensure you are notified upon connection. In case the Device gets disconnected unexpectedly, it will try to reconnect indefinitely until disconnect() is called. """ if self.__is_connected: return if not self.__is_crypto_setup: self.__setup_crypto() transport_info = pairing_handler.obtain_device_transport_information( self.__device_id, self.__realm, self.__credentials_secret, self.__pairing_base_url) broker_url = "" # We support only MQTTv1 for transport, transport_data in transport_info["protocols"].items(): if transport != "astarte_mqtt_v1": continue # Get the Broker URL broker_url = transport_data["broker_url"] # Grab the URL components we care about parsed_url = urlparse(broker_url) self.__mqtt_client.connect_async(parsed_url.hostname, parsed_url.port) self.__mqtt_client.loop_start()
def connect(self): """ Connects the Device asynchronously. When calling connect, a new connection thread is spawned and the Device will start a connection routine. The function might return before the Device connects: you want to use the on_connected callback to ensure you are notified upon connection. In case the Device gets disconnected unexpectedly, it will try to reconnect indefinitely until disconnect() is called. """ if self.__is_connected: return if not self.__is_crypto_setup: self.__setup_crypto() transport_info = pairing_handler.obtain_device_transport_information( self.__device_id, self.__realm, self.__credentials_secret, self.__pairing_base_url) broker_url = "" # We support only MQTTv1 for transport, transport_data in transport_info["protocols"].items(): if transport != "astarte_mqtt_v1": continue # Get the Broker URL broker_url = transport_data["broker_url"] # Grab the URL components we care about parsed_url = urlparse(broker_url) self.__mqtt_client.connect_async(parsed_url.hostname, parsed_url.port) self.__mqtt_client.loop_start()
Python
def disconnect(self): """ Disconnects the Device asynchronously. When calling disconnect, the connection thread is requested to terminate the disconnection, and the thread is stopped when the disconnection happens. The function might return before the Device connects: you want to use the on_disconnected callback to ensure you are notified upon connection. When doing so, check the return code parameter: if it is 0, it means the disconnection happened following an explicit disconnection request. """ if not self.__is_connected: return self.__mqtt_client.disconnect()
def disconnect(self): """ Disconnects the Device asynchronously. When calling disconnect, the connection thread is requested to terminate the disconnection, and the thread is stopped when the disconnection happens. The function might return before the Device connects: you want to use the on_disconnected callback to ensure you are notified upon connection. When doing so, check the return code parameter: if it is 0, it means the disconnection happened following an explicit disconnection request. """ if not self.__is_connected: return self.__mqtt_client.disconnect()
Python
def is_connected(self) -> bool: """ Returns whether the Device is currently connected. """ return self.__is_connected
def is_connected(self) -> bool: """ Returns whether the Device is currently connected. """ return self.__is_connected
Python
def send(self, interface_name, interface_path, payload, timestamp=None): """ Sends an individual message to an interface. Parameters ---------- interface_name : str The name of an the Interface to send data to. interface_path : str The path on the Interface to send data to. payload : object The value to be sent. The type should be compatible to the one specified in the interface path. timestamp : datetime, optional If sending a Datastream with explicit_timestamp, you can specify a datetime object which will be registered as the timestamp for the value. """ if self.__is_interface_aggregate(interface_name): raise Exception( f'Interface {interface_name} is an aggregate interface. You should use send_aggregate.' ) # TODO: validate paths object_payload = {'v': payload} if timestamp: object_payload['t'] = timestamp self.__send_generic( f'{self.__get_base_topic()}/{interface_name}{interface_path}', object_payload)
def send(self, interface_name, interface_path, payload, timestamp=None): """ Sends an individual message to an interface. Parameters ---------- interface_name : str The name of an the Interface to send data to. interface_path : str The path on the Interface to send data to. payload : object The value to be sent. The type should be compatible to the one specified in the interface path. timestamp : datetime, optional If sending a Datastream with explicit_timestamp, you can specify a datetime object which will be registered as the timestamp for the value. """ if self.__is_interface_aggregate(interface_name): raise Exception( f'Interface {interface_name} is an aggregate interface. You should use send_aggregate.' ) # TODO: validate paths object_payload = {'v': payload} if timestamp: object_payload['t'] = timestamp self.__send_generic( f'{self.__get_base_topic()}/{interface_name}{interface_path}', object_payload)
Python
def send_aggregate(self, interface_name, payload, timestamp=None): """ Sends an aggregate message to an interface Parameters ---------- interface_name : str The name of an the Interface to send data to. payload : dict A dictionary containing the path:value map for the aggregate. timestamp : datetime, optional If the Datastream has explicit_timestamp, you can specify a datetime object which will be registered as the timestamp for the value. """ if not self.__is_interface_aggregate(interface_name): raise Exception( f'Interface {interface_name} is not an aggregate interface. You should use send.' ) # TODO: validate paths object_payload = {'v': payload} if timestamp: object_payload['t'] = timestamp self.__send_generic(f'{self.__get_base_topic()}/{interface_name}', object_payload)
def send_aggregate(self, interface_name, payload, timestamp=None): """ Sends an aggregate message to an interface Parameters ---------- interface_name : str The name of an the Interface to send data to. payload : dict A dictionary containing the path:value map for the aggregate. timestamp : datetime, optional If the Datastream has explicit_timestamp, you can specify a datetime object which will be registered as the timestamp for the value. """ if not self.__is_interface_aggregate(interface_name): raise Exception( f'Interface {interface_name} is not an aggregate interface. You should use send.' ) # TODO: validate paths object_payload = {'v': payload} if timestamp: object_payload['t'] = timestamp self.__send_generic(f'{self.__get_base_topic()}/{interface_name}', object_payload)
Python
def span_context_to_string(trace_id, span_id, parent_id, flags): """ Serialize span ID to a string {trace_id}:{span_id}:{parent_id}:{flags} Numbers are encoded as variable-length lower-case hex strings. If parent_id is None, it is written as 0. :param trace_id: :param span_id: :param parent_id: :param flags: """ parent_id = parent_id or 0 return '{:x}:{:x}:{:x}:{:x}'.format(trace_id, span_id, parent_id, flags)
def span_context_to_string(trace_id, span_id, parent_id, flags): """ Serialize span ID to a string {trace_id}:{span_id}:{parent_id}:{flags} Numbers are encoded as variable-length lower-case hex strings. If parent_id is None, it is written as 0. :param trace_id: :param span_id: :param parent_id: :param flags: """ parent_id = parent_id or 0 return '{:x}:{:x}:{:x}:{:x}'.format(trace_id, span_id, parent_id, flags)
Python
def span_context_from_string(value): """ Decode span ID from a string into a TraceContext. Returns None if the string value is malformed. :param value: formatted {trace_id}:{span_id}:{parent_id}:{flags} """ if type(value) is list and len(value) > 0: # sometimes headers are presented as arrays of values if len(value) > 1: raise SpanContextCorruptedException( 'trace context must be a string or array of 1: "%s"' % value) value = value[0] if not isinstance(value, (str,)): raise SpanContextCorruptedException( 'trace context not a string "%s"' % value) parts = value.split(':') if len(parts) != 4: raise SpanContextCorruptedException( 'malformed trace context "%s"' % value) try: trace_id = int(parts[0], 16) span_id = int(parts[1], 16) parent_id = int(parts[2], 16) flags = int(parts[3], 16) if trace_id < 1 or span_id < 1 or parent_id < 0 or flags < 0: raise SpanContextCorruptedException( 'malformed trace context "%s"' % value) if parent_id == 0: parent_id = None return trace_id, span_id, parent_id, flags except ValueError as e: raise SpanContextCorruptedException( 'malformed trace context "%s": %s' % (value, e))
def span_context_from_string(value): """ Decode span ID from a string into a TraceContext. Returns None if the string value is malformed. :param value: formatted {trace_id}:{span_id}:{parent_id}:{flags} """ if type(value) is list and len(value) > 0: # sometimes headers are presented as arrays of values if len(value) > 1: raise SpanContextCorruptedException( 'trace context must be a string or array of 1: "%s"' % value) value = value[0] if not isinstance(value, (str,)): raise SpanContextCorruptedException( 'trace context not a string "%s"' % value) parts = value.split(':') if len(parts) != 4: raise SpanContextCorruptedException( 'malformed trace context "%s"' % value) try: trace_id = int(parts[0], 16) span_id = int(parts[1], 16) parent_id = int(parts[2], 16) flags = int(parts[3], 16) if trace_id < 1 or span_id < 1 or parent_id < 0 or flags < 0: raise SpanContextCorruptedException( 'malformed trace context "%s"' % value) if parent_id == 0: parent_id = None return trace_id, span_id, parent_id, flags except ValueError as e: raise SpanContextCorruptedException( 'malformed trace context "%s": %s' % (value, e))
Python
def close(self) -> Future: """ Ensure that all spans from the queue are submitted. Returns Future that will be completed once the queue is empty. """ return ioloop_util.submit(self._flush, io_loop=self.io_loop)
def close(self) -> Future: """ Ensure that all spans from the queue are submitted. Returns Future that will be completed once the queue is empty. """ return ioloop_util.submit(self._flush, io_loop=self.io_loop)
Python
def start_span(self, operation_name: Optional[str] = None, child_of: Union[None, Span, SpanContext] = None, references: Union[List[Reference], None, Reference] = None, tags: Union[dict, None] = None, start_time: Optional[float] = None, ignore_active_span: bool = False, ) -> Span: """ Start and return a new Span representing a unit of work. :param operation_name: name of the operation represented by the new span from the perspective of the current service. :param child_of: shortcut for 'child_of' reference :param references: (optional) either a single Reference object or a list of Reference objects that identify one or more parent SpanContexts. (See the opentracing.Reference documentation for detail) :param tags: optional dictionary of Span Tags. The caller gives up ownership of that dictionary, because the Tracer may use it as-is to avoid extra data copying. :param start_time: an explicit Span start time as a unix timestamp per time.time() :param ignore_active_span: an explicit flag that ignores the current active :class:`Scope` and creates a root :class:`Span` :return: Returns an already-started Span instance. """ parent = child_of if self.active_span is not None \ and not ignore_active_span \ and not parent: parent = self.active_span # allow Span to be passed as reference, not just SpanContext if isinstance(parent, Span): parent = parent.context valid_references = None if references: valid_references = list() if not isinstance(references, list): references = [references] for reference in references: if reference.referenced_context is not None: valid_references.append(reference) # setting first reference as parent if valid_references and (parent is None or not parent.has_trace): parent = valid_references[0].referenced_context rpc_server = bool(tags and tags.get(ext_tags.SPAN_KIND) == ext_tags.SPAN_KIND_RPC_SERVER) if parent is None or not parent.has_trace: trace_id = self._random_id(self.max_trace_id_bits) span_id = self._random_id(constants._max_id_bits) parent_id = None flags = 0 baggage = None if parent is None: sampled, sampler_tags = \ self.sampler.is_sampled(trace_id, operation_name or '') if sampled: flags = SAMPLED_FLAG tags = tags or {} for k, v in sampler_tags.items(): tags[k] = v elif parent.debug_id and self.is_debug_allowed(operation_name): flags = SAMPLED_FLAG | DEBUG_FLAG tags = tags or {} tags[self.debug_id_header] = parent.debug_id if parent and parent.baggage: baggage = dict(parent.baggage) # TODO do we need to clone? else: trace_id = parent.trace_id if rpc_server and self.one_span_per_rpc: # Zipkin-style one-span-per-RPC span_id = parent.span_id parent_id = parent.parent_id else: span_id = self._random_id(constants._max_id_bits) parent_id = parent.span_id flags = parent.flags baggage = dict(parent.baggage) # TODO do we need to clone? span_ctx = SpanContext(trace_id=trace_id, span_id=span_id, parent_id=parent_id, flags=flags, baggage=baggage) span = Span(context=span_ctx, tracer=self, operation_name=operation_name or '', tags=tags, start_time=start_time, references=valid_references) self._emit_span_metrics(span=span, join=rpc_server) return span
def start_span(self, operation_name: Optional[str] = None, child_of: Union[None, Span, SpanContext] = None, references: Union[List[Reference], None, Reference] = None, tags: Union[dict, None] = None, start_time: Optional[float] = None, ignore_active_span: bool = False, ) -> Span: """ Start and return a new Span representing a unit of work. :param operation_name: name of the operation represented by the new span from the perspective of the current service. :param child_of: shortcut for 'child_of' reference :param references: (optional) either a single Reference object or a list of Reference objects that identify one or more parent SpanContexts. (See the opentracing.Reference documentation for detail) :param tags: optional dictionary of Span Tags. The caller gives up ownership of that dictionary, because the Tracer may use it as-is to avoid extra data copying. :param start_time: an explicit Span start time as a unix timestamp per time.time() :param ignore_active_span: an explicit flag that ignores the current active :class:`Scope` and creates a root :class:`Span` :return: Returns an already-started Span instance. """ parent = child_of if self.active_span is not None \ and not ignore_active_span \ and not parent: parent = self.active_span # allow Span to be passed as reference, not just SpanContext if isinstance(parent, Span): parent = parent.context valid_references = None if references: valid_references = list() if not isinstance(references, list): references = [references] for reference in references: if reference.referenced_context is not None: valid_references.append(reference) # setting first reference as parent if valid_references and (parent is None or not parent.has_trace): parent = valid_references[0].referenced_context rpc_server = bool(tags and tags.get(ext_tags.SPAN_KIND) == ext_tags.SPAN_KIND_RPC_SERVER) if parent is None or not parent.has_trace: trace_id = self._random_id(self.max_trace_id_bits) span_id = self._random_id(constants._max_id_bits) parent_id = None flags = 0 baggage = None if parent is None: sampled, sampler_tags = \ self.sampler.is_sampled(trace_id, operation_name or '') if sampled: flags = SAMPLED_FLAG tags = tags or {} for k, v in sampler_tags.items(): tags[k] = v elif parent.debug_id and self.is_debug_allowed(operation_name): flags = SAMPLED_FLAG | DEBUG_FLAG tags = tags or {} tags[self.debug_id_header] = parent.debug_id if parent and parent.baggage: baggage = dict(parent.baggage) # TODO do we need to clone? else: trace_id = parent.trace_id if rpc_server and self.one_span_per_rpc: # Zipkin-style one-span-per-RPC span_id = parent.span_id parent_id = parent.parent_id else: span_id = self._random_id(constants._max_id_bits) parent_id = parent.span_id flags = parent.flags baggage = dict(parent.baggage) # TODO do we need to clone? span_ctx = SpanContext(trace_id=trace_id, span_id=span_id, parent_id=parent_id, flags=flags, baggage=baggage) span = Span(context=span_ctx, tracer=self, operation_name=operation_name or '', tags=tags, start_time=start_time, references=valid_references) self._emit_span_metrics(span=span, join=rpc_server) return span
Python
def close(self) -> Future: """ Perform a clean shutdown of the tracer, flushing any traces that may be buffered in memory. :return: Returns a tornado.concurrent.Future that indicates if the flush has been completed. """ self.sampler.close() return self.reporter.close()
def close(self) -> Future: """ Perform a clean shutdown of the tracer, flushing any traces that may be buffered in memory. :return: Returns a tornado.concurrent.Future that indicates if the flush has been completed. """ self.sampler.close() return self.reporter.close()
Python
def _deriveLogin(self, email, firstName, lastName, userName=None): """ Attempt to automatically create a login name from existing user information from OAuth2 providers. Attempts to generate it from the username on the provider, the email address, or first and last name. If not possible, returns None and it is left to the caller to generate their own login for the user or choose to fail. :param email: The email address. :type email: str """ # Note, the user's OAuth2 ID should never be used to form a login name, # as many OAuth2 services consider that to be private data for login in self._generateLogins(email, firstName, lastName, userName): login = login.lower() if self._testLogin(login): return login raise Exception('Could not generate a unique login name for %s (%s %s)' % (email, firstName, lastName))
def _deriveLogin(self, email, firstName, lastName, userName=None): """ Attempt to automatically create a login name from existing user information from OAuth2 providers. Attempts to generate it from the username on the provider, the email address, or first and last name. If not possible, returns None and it is left to the caller to generate their own login for the user or choose to fail. :param email: The email address. :type email: str """ # Note, the user's OAuth2 ID should never be used to form a login name, # as many OAuth2 services consider that to be private data for login in self._generateLogins(email, firstName, lastName, userName): login = login.lower() if self._testLogin(login): return login raise Exception('Could not generate a unique login name for %s (%s %s)' % (email, firstName, lastName))
Python
def _generateLogins(self, email, firstName, lastName, userName=None): """ Generate a series of reasonable login names for a new user based on their basic information sent to us by the provider. """ # If they have a username on the other service, try that if userName: yield userName userName = re.sub('[\W_]+', '', userName) yield userName for i in range(1, 6): yield '%s%d' % (userName, i) # Next try to use the prefix from their email address prefix = email.split('@')[0] yield prefix yield re.sub('[\W_]+', '', prefix) # Finally try to use their first and last name yield '%s%s' % (firstName, lastName) for i in range(1, 6): yield '%s%s%d' % (firstName, lastName, i)
def _generateLogins(self, email, firstName, lastName, userName=None): """ Generate a series of reasonable login names for a new user based on their basic information sent to us by the provider. """ # If they have a username on the other service, try that if userName: yield userName userName = re.sub('[\W_]+', '', userName) yield userName for i in range(1, 6): yield '%s%d' % (userName, i) # Next try to use the prefix from their email address prefix = email.split('@')[0] yield prefix yield re.sub('[\W_]+', '', prefix) # Finally try to use their first and last name yield '%s%s' % (firstName, lastName) for i in range(1, 6): yield '%s%s%d' % (firstName, lastName, i)
Python
def validator( *fields: str, pre: bool = False, each_item: bool = False, always: bool = False, check_fields: bool = False, whole: bool = None, allow_reuse: bool = False, ) -> Callable[[AnyCallable], classmethod]: """Shortcut to Pydantic `@validator` decorator with check_fields=False.""" return pyd_validator( *fields, pre=pre, each_item=each_item, always=always, check_fields=check_fields, whole=whole, allow_reuse=allow_reuse, )
def validator( *fields: str, pre: bool = False, each_item: bool = False, always: bool = False, check_fields: bool = False, whole: bool = None, allow_reuse: bool = False, ) -> Callable[[AnyCallable], classmethod]: """Shortcut to Pydantic `@validator` decorator with check_fields=False.""" return pyd_validator( *fields, pre=pre, each_item=each_item, always=always, check_fields=check_fields, whole=whole, allow_reuse=allow_reuse, )
Python
def add_fields(cls, **field_definitions: Tuple[str, Any]) -> None: """Add fields to the model. Adapted from here : https://github.com/samuelcolvin/pydantic/issues/1937#issuecomment-695313040 """ new_fields: Dict[str, ModelField] = {} new_annotations: Dict[str, Optional[type]] = {} validators = None for f_name, f_def in field_definitions.items(): f_annotation, f_value = f_def if cls.__vg__: validators = cls.__vg__.get_validators(f_name) new_fields[f_name] = ModelField.infer( name=f_name, value=f_value, annotation=f_annotation, class_validators=validators, config=cls.__config__, ) cls.__fields__.update(new_fields) cls.__annotations__.update(new_annotations)
def add_fields(cls, **field_definitions: Tuple[str, Any]) -> None: """Add fields to the model. Adapted from here : https://github.com/samuelcolvin/pydantic/issues/1937#issuecomment-695313040 """ new_fields: Dict[str, ModelField] = {} new_annotations: Dict[str, Optional[type]] = {} validators = None for f_name, f_def in field_definitions.items(): f_annotation, f_value = f_def if cls.__vg__: validators = cls.__vg__.get_validators(f_name) new_fields[f_name] = ModelField.infer( name=f_name, value=f_value, annotation=f_annotation, class_validators=validators, config=cls.__config__, ) cls.__fields__.update(new_fields) cls.__annotations__.update(new_annotations)
Python
def register_scalar(self, name: str, typing: Any) -> None: """Register a custom scalar to use when binding pydantic models. Args: name (str): Scalar name, must match the one the schema typing (Any): Python typing for the scalar """ self._type_map[name] = typing
def register_scalar(self, name: str, typing: Any) -> None: """Register a custom scalar to use when binding pydantic models. Args: name (str): Scalar name, must match the one the schema typing (Any): Python typing for the scalar """ self._type_map[name] = typing
Python
def resolve_field_typing( self, gql_field, schema: GraphQLSchema ) -> Tuple[Any, Optional[Any]]: """Find out the proper typing to use for a given GraphQL field. Args: gql_field ([type]): The GraphQL for which to find typing schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised when the GraphQL field type is a custom type for which no pydantic model has been defined. Returns: Tuple[Any, Optional[Any]]: A tuple `(typing, default_value)` to pass to `add_fields`. """ field_type: Any = None default_value = None if isinstance(gql_field, (GraphQLObjectType, GraphQLInputObjectType)): sub_model: Optional[Type[GraphQLModel]] = self.models.get(gql_field.name) if not sub_model: raise PydanticBindError( f'There is no pydantic model binded to "{gql_field.name}" GraphQL type' ) if not sub_model.__initialized__: self.process_model(sub_model, schema) field_type = sub_model elif isinstance(gql_field, GraphQLNonNull): field_type, _ = self.resolve_field_typing(gql_field.of_type, schema) # Ellipsis as default value in the pydantic model mark the field as required default_value = ... elif isinstance(gql_field, GraphQLScalarType): field_type = self._type_map.get(gql_field.name) elif isinstance(gql_field, GraphQLList): of_type, default_of_type = self.resolve_field_typing( gql_field.of_type, schema ) if default_of_type is None: of_type = Optional[of_type] field_type = List[of_type] # type: ignore return field_type, default_value
def resolve_field_typing( self, gql_field, schema: GraphQLSchema ) -> Tuple[Any, Optional[Any]]: """Find out the proper typing to use for a given GraphQL field. Args: gql_field ([type]): The GraphQL for which to find typing schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised when the GraphQL field type is a custom type for which no pydantic model has been defined. Returns: Tuple[Any, Optional[Any]]: A tuple `(typing, default_value)` to pass to `add_fields`. """ field_type: Any = None default_value = None if isinstance(gql_field, (GraphQLObjectType, GraphQLInputObjectType)): sub_model: Optional[Type[GraphQLModel]] = self.models.get(gql_field.name) if not sub_model: raise PydanticBindError( f'There is no pydantic model binded to "{gql_field.name}" GraphQL type' ) if not sub_model.__initialized__: self.process_model(sub_model, schema) field_type = sub_model elif isinstance(gql_field, GraphQLNonNull): field_type, _ = self.resolve_field_typing(gql_field.of_type, schema) # Ellipsis as default value in the pydantic model mark the field as required default_value = ... elif isinstance(gql_field, GraphQLScalarType): field_type = self._type_map.get(gql_field.name) elif isinstance(gql_field, GraphQLList): of_type, default_of_type = self.resolve_field_typing( gql_field.of_type, schema ) if default_of_type is None: of_type = Optional[of_type] field_type = List[of_type] # type: ignore return field_type, default_value
Python
def resolve_model_fields( self, model: Type[GraphQLModel], gql_type: Any, schema: GraphQLSchema ) -> Dict[str, Any]: """Translate fields from a GraphQL type into pydantic ones. Args: gql_type (Any): GraphQL type on which to translate fields schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised when a fields can't be translated Returns: Dict[str, Any]: A dict with pydantic field names as keys and pydantic fields as values. All field names are converted to snake_case """ pyd_fields = {} input_fields: List[str] = gql_type.fields.keys() if model.GraphQL.include is not None: input_fields = model.GraphQL.include if model.GraphQL.exclude: raise PydanticBindError( "You cannot use include and exclude on a GraphQLModel" ) for name in input_fields: if name not in model.GraphQL.exclude: try: field = gql_type.fields[name] except KeyError as error: raise PydanticBindError( f'field "{name}" does not exist on type {gql_type.name}' ) from error field_type, default_value = self.resolve_field_typing( field.type, schema ) if model.GraphQL.fields and name in model.GraphQL.fields: field_type = model.GraphQL.fields[name] if field_type is None: raise PydanticBindError( f'Don\'t know how to map "{name}" field from GraphQL type {gql_type.name}' ) if default_value is None: field_type = Optional[field_type] # Convert names to snake case pyd_fields[convert_camel_case_to_snake(name)] = ( field_type, default_value, ) return pyd_fields
def resolve_model_fields( self, model: Type[GraphQLModel], gql_type: Any, schema: GraphQLSchema ) -> Dict[str, Any]: """Translate fields from a GraphQL type into pydantic ones. Args: gql_type (Any): GraphQL type on which to translate fields schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised when a fields can't be translated Returns: Dict[str, Any]: A dict with pydantic field names as keys and pydantic fields as values. All field names are converted to snake_case """ pyd_fields = {} input_fields: List[str] = gql_type.fields.keys() if model.GraphQL.include is not None: input_fields = model.GraphQL.include if model.GraphQL.exclude: raise PydanticBindError( "You cannot use include and exclude on a GraphQLModel" ) for name in input_fields: if name not in model.GraphQL.exclude: try: field = gql_type.fields[name] except KeyError as error: raise PydanticBindError( f'field "{name}" does not exist on type {gql_type.name}' ) from error field_type, default_value = self.resolve_field_typing( field.type, schema ) if model.GraphQL.fields and name in model.GraphQL.fields: field_type = model.GraphQL.fields[name] if field_type is None: raise PydanticBindError( f'Don\'t know how to map "{name}" field from GraphQL type {gql_type.name}' ) if default_value is None: field_type = Optional[field_type] # Convert names to snake case pyd_fields[convert_camel_case_to_snake(name)] = ( field_type, default_value, ) return pyd_fields
Python
def process_model(self, model: Type[GraphQLModel], schema: GraphQLSchema) -> None: """Add fields to the given pydantic model. Args: model (Type[GraphQLModel]): The pydantic model on which to add fields schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised if `gql_type` is None or if no corresponding GraphQL type has been found. """ if not model.GraphQL.gql_type: raise PydanticBindError( f"Can't find gql_type on pydantic model {model.__name__}." " You must define gql_type attribute in the GraphQL inner class" " when subclassing GraphQLToPydantic" ) type_ = schema.type_map.get(model.GraphQL.gql_type) if not type_: raise PydanticBindError( f"The GraphQL type {model.GraphQL.gql_type} does not exists" ) if not model.__initialized__: fields = self.resolve_model_fields(model, type_, schema) model.__initialized__ = True model.add_fields(**fields)
def process_model(self, model: Type[GraphQLModel], schema: GraphQLSchema) -> None: """Add fields to the given pydantic model. Args: model (Type[GraphQLModel]): The pydantic model on which to add fields schema (GraphQLSchema): GraphQL schema Raises: PydanticBindError: Raised if `gql_type` is None or if no corresponding GraphQL type has been found. """ if not model.GraphQL.gql_type: raise PydanticBindError( f"Can't find gql_type on pydantic model {model.__name__}." " You must define gql_type attribute in the GraphQL inner class" " when subclassing GraphQLToPydantic" ) type_ = schema.type_map.get(model.GraphQL.gql_type) if not type_: raise PydanticBindError( f"The GraphQL type {model.GraphQL.gql_type} does not exists" ) if not model.__initialized__: fields = self.resolve_model_fields(model, type_, schema) model.__initialized__ = True model.add_fields(**fields)
Python
async def csrf(request): # pylint: disable=unused-argument """CSRF route. Set the CSRF cookie and return a `JSONResponse with the token`. We need this REST endpoint to protect against CSRF because all GraphQL queries use POST method, so they are not safe to transmit the token. """ token = get_new_token() response = JSONResponse({"csrftoken": token}) response.set_cookie( settings.CSRF_COOKIE_NAME, token, httponly=settings.CSRF_COOKIE_HTTPONLY, secure=settings.CSRF_COOKIE_SECURE, ) return response
async def csrf(request): # pylint: disable=unused-argument """CSRF route. Set the CSRF cookie and return a `JSONResponse with the token`. We need this REST endpoint to protect against CSRF because all GraphQL queries use POST method, so they are not safe to transmit the token. """ token = get_new_token() response = JSONResponse({"csrftoken": token}) response.set_cookie( settings.CSRF_COOKIE_NAME, token, httponly=settings.CSRF_COOKIE_HTTPONLY, secure=settings.CSRF_COOKIE_SECURE, ) return response
Python
def auth_user_tablename() -> str: """Get the auth table name from settings or generate it.""" return settings.AUTH_USER_MODEL_TABLENAME or get_tablename( settings.AUTH_USER_MODEL.rsplit(".", 3)[-3], settings.AUTH_USER_MODEL.split(".")[-1], )
def auth_user_tablename() -> str: """Get the auth table name from settings or generate it.""" return settings.AUTH_USER_MODEL_TABLENAME or get_tablename( settings.AUTH_USER_MODEL.rsplit(".", 3)[-3], settings.AUTH_USER_MODEL.split(".")[-1], )
Python
async def _get_object( self, obj_class: Model, key: str, obj: Type[Model] = None, identifier: str = None, ) -> Model: """Lazy getter for model objects.""" obj_ = None if obj: obj_ = obj elif identifier: obj_ = await obj_class.query.where( getattr(obj_class, key) == identifier ).gino.first() if not obj_: raise DoesNotExist(self) if not obj_: raise Exception( f"You must provide either a {obj_class.__name__} object or a {key}" ) return obj_
async def _get_object( self, obj_class: Model, key: str, obj: Type[Model] = None, identifier: str = None, ) -> Model: """Lazy getter for model objects.""" obj_ = None if obj: obj_ = obj elif identifier: obj_ = await obj_class.query.where( getattr(obj_class, key) == identifier ).gino.first() if not obj_: raise DoesNotExist(self) if not obj_: raise Exception( f"You must provide either a {obj_class.__name__} object or a {key}" ) return obj_
Python
async def add_role( self, role: Optional[Permission] = None, name: Optional[str] = None ): """Add a role to the user.""" role_ = await self._get_object(Role, "name", role, name) await UserRole.create(user=self.id, role=role_.id)
async def add_role( self, role: Optional[Permission] = None, name: Optional[str] = None ): """Add a role to the user.""" role_ = await self._get_object(Role, "name", role, name) await UserRole.create(user=self.id, role=role_.id)
Python
async def role_perms(self) -> List[Role]: """Load user roles and permissions.""" query = UserRole.join(Role).join(RolePermission).join(Permission).select() return ( await query.where(UserRole.user == self.id) .gino.load(Role.distinct(Role.id).load(add_permission=Permission.load())) .query.gino.all() )
async def role_perms(self) -> List[Role]: """Load user roles and permissions.""" query = UserRole.join(Role).join(RolePermission).join(Permission).select() return ( await query.where(UserRole.user == self.id) .gino.load(Role.distinct(Role.id).load(add_permission=Permission.load())) .query.gino.all() )
Python
def error_formatter(error: GraphQLError, debug: bool = False): """Replace Ariadne default error formatter. Args: error (GraphQLError): The GraphQL error debug (bool, optional): True if ASGI app has been instantiated with debug=True. Defaults to False. Returns: dict: [description] """ if debug: # If debug is enabled, reuse Ariadne's formatting logic formatted = format_error(error, debug) else: formatted = error.formatted # pragma: no cover return formatted
def error_formatter(error: GraphQLError, debug: bool = False): """Replace Ariadne default error formatter. Args: error (GraphQLError): The GraphQL error debug (bool, optional): True if ASGI app has been instantiated with debug=True. Defaults to False. Returns: dict: [description] """ if debug: # If debug is enabled, reuse Ariadne's formatting logic formatted = format_error(error, debug) else: formatted = error.formatted # pragma: no cover return formatted
Python
def assert_data_in_response(cls, response: dict, data: Dict[str, Any]): """Assert that the response contains the specified key with the corresponding values. Args: response (dict): Response data to check data (Dict[str, Any]): Data that should be present in `response` """ for key, value in data.items(): if key in response: assert response[key] == value
def assert_data_in_response(cls, response: dict, data: Dict[str, Any]): """Assert that the response contains the specified key with the corresponding values. Args: response (dict): Response data to check data (Dict[str, Any]): Data that should be present in `response` """ for key, value in data.items(): if key in response: assert response[key] == value
Python
async def _get_scopes(user: user_model) -> list: """Return a list of user role names.""" role_perms = await user.role_perms() # Cache role permissions if they are not there for role in role_perms: cached_role = await cache.get(role.name) if not cached_role: permissions = [p.to_dict() for p in role.permissions] await cache.set(role.name, permissions) return [role.name for role in role_perms]
async def _get_scopes(user: user_model) -> list: """Return a list of user role names.""" role_perms = await user.role_perms() # Cache role permissions if they are not there for role in role_perms: cached_role = await cache.get(role.name) if not cached_role: permissions = [p.to_dict() for p in role.permissions] await cache.set(role.name, permissions) return [role.name for role in role_perms]
Python
def run_migrations_offline(metadata, config): # pragma: no cover """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=metadata, literal_binds=True, dialect_opts={"paramstyle": "named"}, ) with context.begin_transaction(): context.run_migrations()
def run_migrations_offline(metadata, config): # pragma: no cover """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=metadata, literal_binds=True, dialect_opts={"paramstyle": "named"}, ) with context.begin_transaction(): context.run_migrations()
Python
def run_migrations_online(metadata, config): # pragma: no cover """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = engine_from_config( config.get_section(config.config_ini_section), prefix="sqlalchemy.", poolclass=pool.NullPool, ) with connectable.connect() as connection: context.configure(connection=connection, target_metadata=metadata) with context.begin_transaction(): context.run_migrations()
def run_migrations_online(metadata, config): # pragma: no cover """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = engine_from_config( config.get_section(config.config_ini_section), prefix="sqlalchemy.", poolclass=pool.NullPool, ) with connectable.connect() as connection: context.configure(connection=connection, target_metadata=metadata) with context.begin_transaction(): context.run_migrations()
Python
def verify_expected(expected): """ binds the expected value to the acoustics_verify methods """ def acoustics_verify(claw): from clawpack.pyclaw.util import check_diff import numpy as np # tests are done across the entire domain of q normally q0=claw.frames[0].state.get_q_global() qfinal=claw.frames[claw.num_output_times].state.get_q_global() # and q_global is only returned on process 0 if q0 != None and qfinal != None: q0 = q0.reshape([-1]) qfinal = qfinal.reshape([-1]) dx=claw.solution.domain.grid.delta[0] test = dx*np.sum(np.abs(qfinal-q0)) return check_diff(expected, test, abstol=1e-4) else: return return acoustics_verify
def verify_expected(expected): """ binds the expected value to the acoustics_verify methods """ def acoustics_verify(claw): from clawpack.pyclaw.util import check_diff import numpy as np # tests are done across the entire domain of q normally q0=claw.frames[0].state.get_q_global() qfinal=claw.frames[claw.num_output_times].state.get_q_global() # and q_global is only returned on process 0 if q0 != None and qfinal != None: q0 = q0.reshape([-1]) qfinal = qfinal.reshape([-1]) dx=claw.solution.domain.grid.delta[0] test = dx*np.sum(np.abs(qfinal-q0)) return check_diff(expected, test, abstol=1e-4) else: return return acoustics_verify
Python
def advection(kernel_language='Python',iplot=False,htmlplot=False,use_petsc=False,solver_type='classic',outdir='./_output'): """ Example python script for solving the 1d advection equation. """ import numpy as np if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language from clawpack.riemann import rp_advection solver.num_waves = rp_advection.num_waves if solver.kernel_language=='Python': solver.rp = rp_advection.rp_advection_1d else: from clawpack import riemann solver.rp = riemann.rp1_advection solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u']=1. grid = state.grid xc=grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.tfinal =1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def advection(kernel_language='Python',iplot=False,htmlplot=False,use_petsc=False,solver_type='classic',outdir='./_output'): """ Example python script for solving the 1d advection equation. """ import numpy as np if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language from clawpack.riemann import rp_advection solver.num_waves = rp_advection.num_waves if solver.kernel_language=='Python': solver.rp = rp_advection.rp_advection_1d else: from clawpack import riemann solver.rp = riemann.rp1_advection solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u']=1. grid = state.grid xc=grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.tfinal =1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
Python
def check_validity(self): r"""Check that the controller has been properly set up and is ready to run. Checks validity of the solver """ # Check to make sure we have a valid solver to use if self.solver is None: raise Exception("No solver set in controller.") if not isinstance(self.solver,Solver): raise Exception("Solver is not of correct type.") if not self.solver.is_valid(): raise Exception("The solver failed to initialize properly.") # Check to make sure the initial solution is valid if not self.solution.is_valid(): raise Exception("Initial solution is not valid.") if not all([state.is_valid() for state in self.solution.states]): raise Exception("Initial states are not valid.")
def check_validity(self): r"""Check that the controller has been properly set up and is ready to run. Checks validity of the solver """ # Check to make sure we have a valid solver to use if self.solver is None: raise Exception("No solver set in controller.") if not isinstance(self.solver,Solver): raise Exception("Solver is not of correct type.") if not self.solver.is_valid(): raise Exception("The solver failed to initialize properly.") # Check to make sure the initial solution is valid if not self.solution.is_valid(): raise Exception("Initial solution is not valid.") if not all([state.is_valid() for state in self.solution.states]): raise Exception("Initial states are not valid.")
Python
def run(self): r""" Convenience routine that will evolve solution based on the traditional clawpack output and run parameters. This function uses the run parameters and solver parameters to evolve the solution to the end time specified in run_data, outputting at the appropriate times. :Input: None :Ouput: (dict) - Return a dictionary of the status of the solver. :Version: 1.0 (2009-05-01) """ import numpy as np frame = FrameCounter() frame.set_counter(self.start_frame) if self.keep_copy: self.frames = [] self.solver.setup(self.solution) self.solver.dt = self.solver.dt_initial self.check_validity() # Write initial gauge values self.solver.write_gauge_values(self.solution) # Output styles if self.output_style == 1: output_times = np.linspace(self.solution.t, self.tfinal,self.num_output_times+1) elif self.output_style == 2: output_times = self.out_times elif self.output_style == 3: output_times = np.ones((self.num_output_times+1)) else: raise Exception("Invalid output style %s" % self.output_style) # Output and save initial frame if self.keep_copy: self.frames.append(copy.deepcopy(self.solution)) if self.output_format is not None: if os.path.exists(self.outdir) and self.overwrite==False: raise Exception("Refusing to overwrite existing output data. \ \nEither delete/move the directory or set controller.overwrite=True.") if self.compute_p is not None: self.compute_p(self.solution.state) self.solution.write(frame,self.outdir_p, self.output_format, self.file_prefix_p, write_aux = False, options = self.output_options, write_p = True) self.solution.write(frame,self.outdir, self.output_format, self.output_file_prefix, self.write_aux_init, self.output_options) self.write_F('w') self.log_info("Solution %s computed for time t=%f" % (frame,self.solution.t) ) for t in output_times[1:]: if self.output_style < 3: status = self.solver.evolve_to_time(self.solution,t) else: # Take nstepout steps and output for n in xrange(self.nstepout): status = self.solver.evolve_to_time(self.solution) frame.increment() if self.keep_copy: # Save current solution to dictionary with frame as key self.frames.append(copy.deepcopy(self.solution)) if self.output_format is not None: if self.compute_p is not None: self.compute_p(self.solution.state) self.solution.write(frame,self.outdir_p, self.output_format, self.file_prefix_p, write_aux = False, options = self.output_options, write_p = True) self.solution.write(frame,self.outdir, self.output_format, self.output_file_prefix, self.write_aux_always, self.output_options) self.write_F() self.log_info("Solution %s computed for time t=%f" % (frame,self.solution.t)) for gfile in self.solution.state.grid.gauge_files: gfile.flush() self.solver.teardown() for gfile in self.solution.state.grid.gauge_files: gfile.close() # Return the current status of the solver return status
def run(self): r""" Convenience routine that will evolve solution based on the traditional clawpack output and run parameters. This function uses the run parameters and solver parameters to evolve the solution to the end time specified in run_data, outputting at the appropriate times. :Input: None :Ouput: (dict) - Return a dictionary of the status of the solver. :Version: 1.0 (2009-05-01) """ import numpy as np frame = FrameCounter() frame.set_counter(self.start_frame) if self.keep_copy: self.frames = [] self.solver.setup(self.solution) self.solver.dt = self.solver.dt_initial self.check_validity() # Write initial gauge values self.solver.write_gauge_values(self.solution) # Output styles if self.output_style == 1: output_times = np.linspace(self.solution.t, self.tfinal,self.num_output_times+1) elif self.output_style == 2: output_times = self.out_times elif self.output_style == 3: output_times = np.ones((self.num_output_times+1)) else: raise Exception("Invalid output style %s" % self.output_style) # Output and save initial frame if self.keep_copy: self.frames.append(copy.deepcopy(self.solution)) if self.output_format is not None: if os.path.exists(self.outdir) and self.overwrite==False: raise Exception("Refusing to overwrite existing output data. \ \nEither delete/move the directory or set controller.overwrite=True.") if self.compute_p is not None: self.compute_p(self.solution.state) self.solution.write(frame,self.outdir_p, self.output_format, self.file_prefix_p, write_aux = False, options = self.output_options, write_p = True) self.solution.write(frame,self.outdir, self.output_format, self.output_file_prefix, self.write_aux_init, self.output_options) self.write_F('w') self.log_info("Solution %s computed for time t=%f" % (frame,self.solution.t) ) for t in output_times[1:]: if self.output_style < 3: status = self.solver.evolve_to_time(self.solution,t) else: # Take nstepout steps and output for n in xrange(self.nstepout): status = self.solver.evolve_to_time(self.solution) frame.increment() if self.keep_copy: # Save current solution to dictionary with frame as key self.frames.append(copy.deepcopy(self.solution)) if self.output_format is not None: if self.compute_p is not None: self.compute_p(self.solution.state) self.solution.write(frame,self.outdir_p, self.output_format, self.file_prefix_p, write_aux = False, options = self.output_options, write_p = True) self.solution.write(frame,self.outdir, self.output_format, self.output_file_prefix, self.write_aux_always, self.output_options) self.write_F() self.log_info("Solution %s computed for time t=%f" % (frame,self.solution.t)) for gfile in self.solution.state.grid.gauge_files: gfile.flush() self.solver.teardown() for gfile in self.solution.state.grid.gauge_files: gfile.close() # Return the current status of the solver return status
Python
def _create_DA(self): r"""Returns a PETSc DA and associated global Vec. Note that no local vector is returned. """ from petsc4py import PETSc if hasattr(PETSc.DA, 'PeriodicType'): if self.num_dim == 1: periodic_type = PETSc.DA.PeriodicType.X elif self.num_dim == 2: periodic_type = PETSc.DA.PeriodicType.XY elif self.num_dim == 3: periodic_type = PETSc.DA.PeriodicType.XYZ else: raise Exception("Invalid number of dimensions") DA = PETSc.DA().create(dim=self.num_dim, dof=1, sizes=self.num_cells_global, periodic_type = periodic_type, stencil_width=0, comm=PETSc.COMM_WORLD) else: DA = PETSc.DA().create(dim=self.num_dim, dof=1, sizes=self.num_cells_global, boundary_type = PETSc.DA.BoundaryType.PERIODIC, stencil_width=0, comm=PETSc.COMM_WORLD) return DA
def _create_DA(self): r"""Returns a PETSc DA and associated global Vec. Note that no local vector is returned. """ from petsc4py import PETSc if hasattr(PETSc.DA, 'PeriodicType'): if self.num_dim == 1: periodic_type = PETSc.DA.PeriodicType.X elif self.num_dim == 2: periodic_type = PETSc.DA.PeriodicType.XY elif self.num_dim == 3: periodic_type = PETSc.DA.PeriodicType.XYZ else: raise Exception("Invalid number of dimensions") DA = PETSc.DA().create(dim=self.num_dim, dof=1, sizes=self.num_cells_global, periodic_type = periodic_type, stencil_width=0, comm=PETSc.COMM_WORLD) else: DA = PETSc.DA().create(dim=self.num_dim, dof=1, sizes=self.num_cells_global, boundary_type = PETSc.DA.BoundaryType.PERIODIC, stencil_width=0, comm=PETSc.COMM_WORLD) return DA
Python
def advection2D(iplot=False,use_petsc=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d advection equation. """ #=========================================================================== # Import libraries #=========================================================================== if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver = pyclaw.ClawSolver2D() solver.dimensional_split = 1 solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_advection solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic solver.bc_lower[1] = pyclaw.BC.periodic solver.bc_upper[1] = pyclaw.BC.periodic solver.num_waves = 1 solver.cfl_max=1.0 solver.cfl_desired = 0.9 #=========================================================================== # Initialize domain, then initialize the solution associated to the domain and # finally initialize aux array #=========================================================================== # Domain: mx=50; my=50 x = pyclaw.Dimension('x',0.0,1.0,mx) y = pyclaw.Dimension('y',0.0,1.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u'] = 0.5 # Parameters (global auxiliary variables) state.problem_data['v'] = 1.0 # Initial solution # ================ qinit(state) # This function is defined above #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir #=========================================================================== # Solve the problem #=========================================================================== status = claw.run() #=========================================================================== # Plot results #=========================================================================== if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def advection2D(iplot=False,use_petsc=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d advection equation. """ #=========================================================================== # Import libraries #=========================================================================== if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver = pyclaw.ClawSolver2D() solver.dimensional_split = 1 solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_advection solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic solver.bc_lower[1] = pyclaw.BC.periodic solver.bc_upper[1] = pyclaw.BC.periodic solver.num_waves = 1 solver.cfl_max=1.0 solver.cfl_desired = 0.9 #=========================================================================== # Initialize domain, then initialize the solution associated to the domain and # finally initialize aux array #=========================================================================== # Domain: mx=50; my=50 x = pyclaw.Dimension('x',0.0,1.0,mx) y = pyclaw.Dimension('y',0.0,1.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u'] = 0.5 # Parameters (global auxiliary variables) state.problem_data['v'] = 1.0 # Initial solution # ================ qinit(state) # This function is defined above #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir #=========================================================================== # Solve the problem #=========================================================================== status = claw.run() #=========================================================================== # Plot results #=========================================================================== if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
Python
def write(self,frame,path='./',file_format='ascii',file_prefix=None, write_aux=False,options={},write_p=False): r""" Write out a representation of the solution Writes out a suitable representation of this solution object based on the format requested. The path is built from the optional path and file_prefix arguments. Will raise an IOError if unsuccessful. :Input: - *frame* - (int) Frame number to append to the file output - *path* - (string) Root path, will try and create the path if it does not already exist. ``default = './'`` - *format* - (string or list of strings) a string or list of strings containing the desired output formats. ``default = 'ascii'`` - *file_prefix* - (string) Prefix for the file name. Defaults to the particular io modules default. - *write_aux* - (book) Write the auxillary array out as well if present. ``default = False`` - *options* - (dict) Dictionary of optional arguments dependent on which format is being used. ``default = {}`` """ # Determine if we need to create the path path = os.path.expandvars(os.path.expanduser(path)) if not os.path.exists(path): try: os.makedirs(path) except OSError: print "directory already exists, ignoring" # Call the correct write function based on the output format if isinstance(file_format,str): format_list = [file_format] elif isinstance(file_format,list): format_list = file_format if 'petsc' in format_list: from clawpack.petclaw import io # Loop over list of formats requested for form in format_list: write_func = eval('io.write_%s' % form) if file_prefix is None: write_func(self,frame,path,write_aux=write_aux, options=options,write_p=write_p) else: write_func(self,frame,path,file_prefix=file_prefix, write_aux=write_aux,options=options, write_p=write_p) msg = "Wrote out solution in format %s for time t=%s" % (form,self.t) logging.getLogger('io').info(msg)
def write(self,frame,path='./',file_format='ascii',file_prefix=None, write_aux=False,options={},write_p=False): r""" Write out a representation of the solution Writes out a suitable representation of this solution object based on the format requested. The path is built from the optional path and file_prefix arguments. Will raise an IOError if unsuccessful. :Input: - *frame* - (int) Frame number to append to the file output - *path* - (string) Root path, will try and create the path if it does not already exist. ``default = './'`` - *format* - (string or list of strings) a string or list of strings containing the desired output formats. ``default = 'ascii'`` - *file_prefix* - (string) Prefix for the file name. Defaults to the particular io modules default. - *write_aux* - (book) Write the auxillary array out as well if present. ``default = False`` - *options* - (dict) Dictionary of optional arguments dependent on which format is being used. ``default = {}`` """ # Determine if we need to create the path path = os.path.expandvars(os.path.expanduser(path)) if not os.path.exists(path): try: os.makedirs(path) except OSError: print "directory already exists, ignoring" # Call the correct write function based on the output format if isinstance(file_format,str): format_list = [file_format] elif isinstance(file_format,list): format_list = file_format if 'petsc' in format_list: from clawpack.petclaw import io # Loop over list of formats requested for form in format_list: write_func = eval('io.write_%s' % form) if file_prefix is None: write_func(self,frame,path,write_aux=write_aux, options=options,write_p=write_p) else: write_func(self,frame,path,file_prefix=file_prefix, write_aux=write_aux,options=options, write_p=write_p) msg = "Wrote out solution in format %s for time t=%s" % (form,self.t) logging.getLogger('io').info(msg)
Python
def read(self,frame,path='./_output',file_format='ascii',file_prefix=None, read_aux=True,options={}, **kargs): r""" Reads in a Solution object from a file Reads in and initializes this Solution with the data specified. This function will raise an IOError if it was unsuccessful. Any format must conform to the following call signiture and return True if the file has been successfully read into the given solution or False otherwise. Options is a dictionary of parameters that each format can specify. See the ascii module for an example.:: read_<format>(solution,path,frame,file_prefix,options={}) ``<format>`` is the name of the format in question. :Input: - *frame* - (int) Frame number to be read in - *path* - (string) Base path to the files to be read. ``default = './'`` - *format* - (string) Format of the file, should match on of the modules inside of the io package. ``default = 'ascii'`` - *file_prefix* - (string) Name prefix in front of all the files, defaults to whatever the format defaults to, e.g. fort for ascii - *options* - (dict) Dictionary of optional arguments dependent on the format being read in. ``default = {}`` :Output: - (bool) - True if read was successful, False otherwise """ if file_format=='petsc': from clawpack.petclaw import io path = os.path.expandvars(os.path.expanduser(path)) read_func = eval('io.read_%s' % file_format) if file_prefix is None: read_func(self,frame,path,read_aux=read_aux,options=options) else: read_func(self,frame,path,file_prefix=file_prefix, read_aux=read_aux,options=options) logging.getLogger('io').info("Read in solution for time t=%s" % self.t)
def read(self,frame,path='./_output',file_format='ascii',file_prefix=None, read_aux=True,options={}, **kargs): r""" Reads in a Solution object from a file Reads in and initializes this Solution with the data specified. This function will raise an IOError if it was unsuccessful. Any format must conform to the following call signiture and return True if the file has been successfully read into the given solution or False otherwise. Options is a dictionary of parameters that each format can specify. See the ascii module for an example.:: read_<format>(solution,path,frame,file_prefix,options={}) ``<format>`` is the name of the format in question. :Input: - *frame* - (int) Frame number to be read in - *path* - (string) Base path to the files to be read. ``default = './'`` - *format* - (string) Format of the file, should match on of the modules inside of the io package. ``default = 'ascii'`` - *file_prefix* - (string) Name prefix in front of all the files, defaults to whatever the format defaults to, e.g. fort for ascii - *options* - (dict) Dictionary of optional arguments dependent on the format being read in. ``default = {}`` :Output: - (bool) - True if read was successful, False otherwise """ if file_format=='petsc': from clawpack.petclaw import io path = os.path.expandvars(os.path.expanduser(path)) read_func = eval('io.read_%s' % file_format) if file_prefix is None: read_func(self,frame,path,read_aux=read_aux,options=options) else: read_func(self,frame,path,file_prefix=file_prefix, read_aux=read_aux,options=options) logging.getLogger('io').info("Read in solution for time t=%s" % self.t)
Python
def is_valid(self): r""" Checks that all required solver attributes are set. Checks to make sure that all the required attributes for the solver have been set correctly. All required attributes that need to be set are contained in the attributes list of the class. Will post debug level logging message of which required attributes have not been set. :Output: - *valid* - (bool) True if the solver is valid, False otherwise """ valid = True if any([bcmeth == BC.custom for bcmeth in self.bc_lower]): if self.user_bc_lower is None: self.logger.debug('Lower custom BC function has not been set.') valid = False if any([bcmeth == BC.custom for bcmeth in self.bc_upper]): if self.user_bc_upper is None: self.logger.debug('Upper custom BC function has not been set.') valid = False return valid
def is_valid(self): r""" Checks that all required solver attributes are set. Checks to make sure that all the required attributes for the solver have been set correctly. All required attributes that need to be set are contained in the attributes list of the class. Will post debug level logging message of which required attributes have not been set. :Output: - *valid* - (bool) True if the solver is valid, False otherwise """ valid = True if any([bcmeth == BC.custom for bcmeth in self.bc_lower]): if self.user_bc_lower is None: self.logger.debug('Lower custom BC function has not been set.') valid = False if any([bcmeth == BC.custom for bcmeth in self.bc_upper]): if self.user_bc_upper is None: self.logger.debug('Upper custom BC function has not been set.') valid = False return valid
Python
def allocate_bc_arrays(self,state): r""" Create numpy arrays for q and aux with ghost cells attached. These arrays are referred to throughout the code as qbc and auxbc. This is typically called by solver.setup(). """ import numpy as np qbc_dim = [n+2*self.num_ghost for n in state.grid.num_cells] qbc_dim.insert(0,state.num_eqn) self.qbc = np.zeros(qbc_dim,order='F') auxbc_dim = [n+2*self.num_ghost for n in state.grid.num_cells] auxbc_dim.insert(0,state.num_aux) self.auxbc = np.empty(auxbc_dim,order='F') if state.num_aux>0: self.apply_aux_bcs(state)
def allocate_bc_arrays(self,state): r""" Create numpy arrays for q and aux with ghost cells attached. These arrays are referred to throughout the code as qbc and auxbc. This is typically called by solver.setup(). """ import numpy as np qbc_dim = [n+2*self.num_ghost for n in state.grid.num_cells] qbc_dim.insert(0,state.num_eqn) self.qbc = np.zeros(qbc_dim,order='F') auxbc_dim = [n+2*self.num_ghost for n in state.grid.num_cells] auxbc_dim.insert(0,state.num_aux) self.auxbc = np.empty(auxbc_dim,order='F') if state.num_aux>0: self.apply_aux_bcs(state)
Python
def apply_q_bcs(self,state): r""" Fills in solver.qbc (the local vector), including ghost cell values. This function returns an array of dimension determined by the :attr:`num_ghost` attribute. The type of boundary condition set is determined by :attr:`bc_lower` and :attr:`bc_upper` for the approprate dimension. Valid values for :attr:`bc_lower` and :attr:`bc_upper` include: - 'custom' or 0: A user defined boundary condition will be used, the appropriate Dimension method user_bc_lower or user_bc_upper will be called. - 'extrap' or 1: Zero-order extrapolation. - 'periodic' or 2: Periodic boundary conditions. - 'wall' or 3: Wall boundary conditions. It is assumed that the second component of q represents velocity or momentum. :Input: - *grid* - (:class:`Patch`) The grid being operated on. - *state* - The state being operated on; this may or may not be the same as *grid*. Generally it is the same as *grid* for the classic algorithms and other one-level algorithms, but different for method-of-lines algorithms like SharpClaw. :Output: - (ndarray(num_eqn,...)) q array with boundary ghost cells added and set .. note:: Note that for user-defined boundary conditions, the array sent to the boundary condition has not been rolled. """ import numpy as np self.qbc = state.get_qbc_from_q(self.num_ghost,self.qbc) grid = state.grid for idim,dim in enumerate(grid.dimensions): # First check if we are actually on the boundary # (in case of a parallel run) if state.grid.lower[idim] == state.patch.lower_global[idim]: # If a user defined boundary condition is being used, send it on, # otherwise roll the axis to front position and operate on it if self.bc_lower[idim] == BC.custom: self.qbc_lower(state,dim,state.t,self.qbc,idim) elif self.bc_lower[idim] == BC.periodic: if state.grid.upper[idim] == state.patch.upper_global[idim]: # This process owns the whole domain self.qbc_lower(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.qbc_lower(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) if state.grid.upper[idim] == state.patch.upper_global[idim]: if self.bc_upper[idim] == BC.custom: self.qbc_upper(state,dim,state.t,self.qbc,idim) elif self.bc_upper[idim] == BC.periodic: if state.grid.lower[idim] == state.patch.lower_global[idim]: # This process owns the whole domain self.qbc_upper(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.qbc_upper(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim)
def apply_q_bcs(self,state): r""" Fills in solver.qbc (the local vector), including ghost cell values. This function returns an array of dimension determined by the :attr:`num_ghost` attribute. The type of boundary condition set is determined by :attr:`bc_lower` and :attr:`bc_upper` for the approprate dimension. Valid values for :attr:`bc_lower` and :attr:`bc_upper` include: - 'custom' or 0: A user defined boundary condition will be used, the appropriate Dimension method user_bc_lower or user_bc_upper will be called. - 'extrap' or 1: Zero-order extrapolation. - 'periodic' or 2: Periodic boundary conditions. - 'wall' or 3: Wall boundary conditions. It is assumed that the second component of q represents velocity or momentum. :Input: - *grid* - (:class:`Patch`) The grid being operated on. - *state* - The state being operated on; this may or may not be the same as *grid*. Generally it is the same as *grid* for the classic algorithms and other one-level algorithms, but different for method-of-lines algorithms like SharpClaw. :Output: - (ndarray(num_eqn,...)) q array with boundary ghost cells added and set .. note:: Note that for user-defined boundary conditions, the array sent to the boundary condition has not been rolled. """ import numpy as np self.qbc = state.get_qbc_from_q(self.num_ghost,self.qbc) grid = state.grid for idim,dim in enumerate(grid.dimensions): # First check if we are actually on the boundary # (in case of a parallel run) if state.grid.lower[idim] == state.patch.lower_global[idim]: # If a user defined boundary condition is being used, send it on, # otherwise roll the axis to front position and operate on it if self.bc_lower[idim] == BC.custom: self.qbc_lower(state,dim,state.t,self.qbc,idim) elif self.bc_lower[idim] == BC.periodic: if state.grid.upper[idim] == state.patch.upper_global[idim]: # This process owns the whole domain self.qbc_lower(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.qbc_lower(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) if state.grid.upper[idim] == state.patch.upper_global[idim]: if self.bc_upper[idim] == BC.custom: self.qbc_upper(state,dim,state.t,self.qbc,idim) elif self.bc_upper[idim] == BC.periodic: if state.grid.lower[idim] == state.patch.lower_global[idim]: # This process owns the whole domain self.qbc_upper(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.qbc_upper(state,dim,state.t,np.rollaxis(self.qbc,idim+1,1),idim)
Python
def qbc_lower(self,state,dim,t,qbc,idim): r""" Apply lower boundary conditions to qbc Sets the lower coordinate's ghost cells of *qbc* depending on what :attr:`bc_lower` is. If :attr:`bc_lower` = 0 then the user boundary condition specified by :attr:`user_bc_lower` is used. Note that in this case the function :attr:`user_bc_lower` belongs only to this dimension but :attr:`user_bc_lower` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *qbc* - (ndarray(...,num_eqn)) Array with added ghost cells which will be set in this routines """ if self.bc_lower[idim] == BC.custom: self.user_bc_lower(state,dim,t,qbc,self.num_ghost) elif self.bc_lower[idim] == BC.extrap: for i in xrange(self.num_ghost): qbc[:,i,...] = qbc[:,self.num_ghost,...] elif self.bc_lower[idim] == BC.periodic: # This process owns the whole patch qbc[:,:self.num_ghost,...] = qbc[:,-2*self.num_ghost:-self.num_ghost,...] elif self.bc_lower[idim] == BC.wall: for i in xrange(self.num_ghost): qbc[:,i,...] = qbc[:,2*self.num_ghost-1-i,...] qbc[idim+1,i,...] = -qbc[idim+1,2*self.num_ghost-1-i,...] # Negate normal velocity else: raise NotImplementedError("Boundary condition %s not implemented" % self.bc_lower)
def qbc_lower(self,state,dim,t,qbc,idim): r""" Apply lower boundary conditions to qbc Sets the lower coordinate's ghost cells of *qbc* depending on what :attr:`bc_lower` is. If :attr:`bc_lower` = 0 then the user boundary condition specified by :attr:`user_bc_lower` is used. Note that in this case the function :attr:`user_bc_lower` belongs only to this dimension but :attr:`user_bc_lower` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *qbc* - (ndarray(...,num_eqn)) Array with added ghost cells which will be set in this routines """ if self.bc_lower[idim] == BC.custom: self.user_bc_lower(state,dim,t,qbc,self.num_ghost) elif self.bc_lower[idim] == BC.extrap: for i in xrange(self.num_ghost): qbc[:,i,...] = qbc[:,self.num_ghost,...] elif self.bc_lower[idim] == BC.periodic: # This process owns the whole patch qbc[:,:self.num_ghost,...] = qbc[:,-2*self.num_ghost:-self.num_ghost,...] elif self.bc_lower[idim] == BC.wall: for i in xrange(self.num_ghost): qbc[:,i,...] = qbc[:,2*self.num_ghost-1-i,...] qbc[idim+1,i,...] = -qbc[idim+1,2*self.num_ghost-1-i,...] # Negate normal velocity else: raise NotImplementedError("Boundary condition %s not implemented" % self.bc_lower)
Python
def qbc_upper(self,state,dim,t,qbc,idim): r""" Apply upper boundary conditions to qbc Sets the upper coordinate's ghost cells of *qbc* depending on what :attr:`bc_upper` is. If :attr:`bc_upper` = 0 then the user boundary condition specified by :attr:`user_bc_upper` is used. Note that in this case the function :attr:`user_bc_upper` belongs only to this dimension but :attr:`user_bc_upper` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *qbc* - (ndarray(...,num_eqn)) Array with added ghost cells which will be set in this routines """ if self.bc_upper[idim] == BC.custom: self.user_bc_upper(state,dim,t,qbc,self.num_ghost) elif self.bc_upper[idim] == BC.extrap: for i in xrange(self.num_ghost): qbc[:,-i-1,...] = qbc[:,-self.num_ghost-1,...] elif self.bc_upper[idim] == BC.periodic: # This process owns the whole patch qbc[:,-self.num_ghost:,...] = qbc[:,self.num_ghost:2*self.num_ghost,...] elif self.bc_upper[idim] == BC.wall: for i in xrange(self.num_ghost): qbc[:,-i-1,...] = qbc[:,-2*self.num_ghost+i,...] qbc[idim+1,-i-1,...] = -qbc[idim+1,-2*self.num_ghost+i,...] # Negate normal velocity else: raise NotImplementedError("Boundary condition %s not implemented" % self.bc_lower)
def qbc_upper(self,state,dim,t,qbc,idim): r""" Apply upper boundary conditions to qbc Sets the upper coordinate's ghost cells of *qbc* depending on what :attr:`bc_upper` is. If :attr:`bc_upper` = 0 then the user boundary condition specified by :attr:`user_bc_upper` is used. Note that in this case the function :attr:`user_bc_upper` belongs only to this dimension but :attr:`user_bc_upper` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *qbc* - (ndarray(...,num_eqn)) Array with added ghost cells which will be set in this routines """ if self.bc_upper[idim] == BC.custom: self.user_bc_upper(state,dim,t,qbc,self.num_ghost) elif self.bc_upper[idim] == BC.extrap: for i in xrange(self.num_ghost): qbc[:,-i-1,...] = qbc[:,-self.num_ghost-1,...] elif self.bc_upper[idim] == BC.periodic: # This process owns the whole patch qbc[:,-self.num_ghost:,...] = qbc[:,self.num_ghost:2*self.num_ghost,...] elif self.bc_upper[idim] == BC.wall: for i in xrange(self.num_ghost): qbc[:,-i-1,...] = qbc[:,-2*self.num_ghost+i,...] qbc[idim+1,-i-1,...] = -qbc[idim+1,-2*self.num_ghost+i,...] # Negate normal velocity else: raise NotImplementedError("Boundary condition %s not implemented" % self.bc_lower)
Python
def apply_aux_bcs(self,state): r""" Appends boundary cells to aux and fills them with appropriate values. This function returns an array of dimension determined by the :attr:`num_ghost` attribute. The type of boundary condition set is determined by :attr:`aux_bc_lower` and :attr:`aux_bc_upper` for the approprate dimension. Valid values for :attr:`aux_bc_lower` and :attr:`aux_bc_upper` include: - 'custom' or 0: A user defined boundary condition will be used, the appropriate Dimension method user_aux_bc_lower or user_aux_bc_upper will be called. - 'extrap' or 1: Zero-order extrapolation. - 'periodic' or 2: Periodic boundary conditions. - 'wall' or 3: Wall boundary conditions. It is assumed that the second component of q represents velocity or momentum. :Input: - *patch* - (:class:`Patch`) The patch being operated on. - *state* - The state being operated on; this may or may not be the same as *patch*. Generally it is the same as *patch* for the classic algorithms and other one-level algorithms, but different for method-of-lines algorithms like SharpClaw. :Output: - (ndarray(num_aux,...)) q array with boundary ghost cells added and set .. note:: Note that for user-defined boundary conditions, the array sent to the boundary condition has not been rolled. """ import numpy as np self.auxbc = state.get_auxbc_from_aux(self.num_ghost,self.auxbc) patch = state.patch for idim,dim in enumerate(patch.dimensions): # First check if we are actually on the boundary # (in case of a parallel run) if state.grid.lower[idim] == state.patch.lower_global[idim]: # If a user defined boundary condition is being used, send it on, # otherwise roll the axis to front position and operate on it if self.aux_bc_lower[idim] == BC.custom: self.auxbc_lower(state,dim,state.t,self.auxbc,idim) elif self.aux_bc_lower[idim] == BC.periodic: if state.grid.upper[idim] == state.patch.upper_global[idim]: # This process owns the whole patch self.auxbc_lower(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.auxbc_lower(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) if state.grid.upper[idim] == state.patch.upper_global[idim]: if self.aux_bc_upper[idim] == BC.custom: self.auxbc_upper(state,dim,state.t,self.auxbc,idim) elif self.aux_bc_upper[idim] == BC.periodic: if state.grid.lower[idim] == state.patch.lower_global[idim]: # This process owns the whole patch self.auxbc_upper(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.auxbc_upper(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim)
def apply_aux_bcs(self,state): r""" Appends boundary cells to aux and fills them with appropriate values. This function returns an array of dimension determined by the :attr:`num_ghost` attribute. The type of boundary condition set is determined by :attr:`aux_bc_lower` and :attr:`aux_bc_upper` for the approprate dimension. Valid values for :attr:`aux_bc_lower` and :attr:`aux_bc_upper` include: - 'custom' or 0: A user defined boundary condition will be used, the appropriate Dimension method user_aux_bc_lower or user_aux_bc_upper will be called. - 'extrap' or 1: Zero-order extrapolation. - 'periodic' or 2: Periodic boundary conditions. - 'wall' or 3: Wall boundary conditions. It is assumed that the second component of q represents velocity or momentum. :Input: - *patch* - (:class:`Patch`) The patch being operated on. - *state* - The state being operated on; this may or may not be the same as *patch*. Generally it is the same as *patch* for the classic algorithms and other one-level algorithms, but different for method-of-lines algorithms like SharpClaw. :Output: - (ndarray(num_aux,...)) q array with boundary ghost cells added and set .. note:: Note that for user-defined boundary conditions, the array sent to the boundary condition has not been rolled. """ import numpy as np self.auxbc = state.get_auxbc_from_aux(self.num_ghost,self.auxbc) patch = state.patch for idim,dim in enumerate(patch.dimensions): # First check if we are actually on the boundary # (in case of a parallel run) if state.grid.lower[idim] == state.patch.lower_global[idim]: # If a user defined boundary condition is being used, send it on, # otherwise roll the axis to front position and operate on it if self.aux_bc_lower[idim] == BC.custom: self.auxbc_lower(state,dim,state.t,self.auxbc,idim) elif self.aux_bc_lower[idim] == BC.periodic: if state.grid.upper[idim] == state.patch.upper_global[idim]: # This process owns the whole patch self.auxbc_lower(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.auxbc_lower(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) if state.grid.upper[idim] == state.patch.upper_global[idim]: if self.aux_bc_upper[idim] == BC.custom: self.auxbc_upper(state,dim,state.t,self.auxbc,idim) elif self.aux_bc_upper[idim] == BC.periodic: if state.grid.lower[idim] == state.patch.lower_global[idim]: # This process owns the whole patch self.auxbc_upper(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim) else: pass #Handled automatically by PETSc else: self.auxbc_upper(state,dim,state.t,np.rollaxis(self.auxbc,idim+1,1),idim)
Python
def auxbc_lower(self,state,dim,t,auxbc,idim): r""" Apply lower boundary conditions to auxbc Sets the lower coordinate's ghost cells of *auxbc* depending on what :attr:`aux_bc_lower` is. If :attr:`aux_bc_lower` = 0 then the user boundary condition specified by :attr:`user_aux_bc_lower` is used. Note that in this case the function :attr:`user_aux_bc_lower` belongs only to this dimension but :attr:`user_aux_bc_lower` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *auxbc* - (ndarray(num_aux,...)) Array with added ghost cells which will be set in this routines """ if self.aux_bc_lower[idim] == BC.custom: self.user_aux_bc_lower(state,dim,t,auxbc,self.num_ghost) elif self.aux_bc_lower[idim] == BC.extrap: for i in xrange(self.num_ghost): auxbc[:,i,...] = auxbc[:,self.num_ghost,...] elif self.aux_bc_lower[idim] == BC.periodic: # This process owns the whole patch auxbc[:,:self.num_ghost,...] = auxbc[:,-2*self.num_ghost:-self.num_ghost,...] elif self.aux_bc_lower[idim] == BC.wall: for i in xrange(self.num_ghost): auxbc[:,i,...] = auxbc[:,2*self.num_ghost-1-i,...] elif self.aux_bc_lower[idim] is None: raise Exception("One or more of the aux boundary conditions aux_bc_upper has not been specified.") else: raise NotImplementedError("Boundary condition %s not implemented" % self.aux_bc_lower)
def auxbc_lower(self,state,dim,t,auxbc,idim): r""" Apply lower boundary conditions to auxbc Sets the lower coordinate's ghost cells of *auxbc* depending on what :attr:`aux_bc_lower` is. If :attr:`aux_bc_lower` = 0 then the user boundary condition specified by :attr:`user_aux_bc_lower` is used. Note that in this case the function :attr:`user_aux_bc_lower` belongs only to this dimension but :attr:`user_aux_bc_lower` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *auxbc* - (ndarray(num_aux,...)) Array with added ghost cells which will be set in this routines """ if self.aux_bc_lower[idim] == BC.custom: self.user_aux_bc_lower(state,dim,t,auxbc,self.num_ghost) elif self.aux_bc_lower[idim] == BC.extrap: for i in xrange(self.num_ghost): auxbc[:,i,...] = auxbc[:,self.num_ghost,...] elif self.aux_bc_lower[idim] == BC.periodic: # This process owns the whole patch auxbc[:,:self.num_ghost,...] = auxbc[:,-2*self.num_ghost:-self.num_ghost,...] elif self.aux_bc_lower[idim] == BC.wall: for i in xrange(self.num_ghost): auxbc[:,i,...] = auxbc[:,2*self.num_ghost-1-i,...] elif self.aux_bc_lower[idim] is None: raise Exception("One or more of the aux boundary conditions aux_bc_upper has not been specified.") else: raise NotImplementedError("Boundary condition %s not implemented" % self.aux_bc_lower)
Python
def auxbc_upper(self,state,dim,t,auxbc,idim): r""" Apply upper boundary conditions to auxbc Sets the upper coordinate's ghost cells of *auxbc* depending on what :attr:`aux_bc_upper` is. If :attr:`aux_bc_upper` = 0 then the user boundary condition specified by :attr:`user_aux_bc_upper` is used. Note that in this case the function :attr:`user_aux_bc_upper` belongs only to this dimension but :attr:`user_aux_bc_upper` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *auxbc* - (ndarray(num_aux,...)) Array with added ghost cells which will be set in this routines """ if self.aux_bc_upper[idim] == BC.custom: self.user_aux_bc_upper(state,dim,t,auxbc,self.num_ghost) elif self.aux_bc_upper[idim] == BC.extrap: for i in xrange(self.num_ghost): auxbc[:,-i-1,...] = auxbc[:,-self.num_ghost-1,...] elif self.aux_bc_upper[idim] == BC.periodic: # This process owns the whole patch auxbc[:,-self.num_ghost:,...] = auxbc[:,self.num_ghost:2*self.num_ghost,...] elif self.aux_bc_upper[idim] == BC.wall: for i in xrange(self.num_ghost): auxbc[:,-i-1,...] = auxbc[:,-2*self.num_ghost+i,...] elif self.aux_bc_lower[idim] is None: raise Exception("One or more of the aux boundary conditions aux_bc_lower has not been specified.") else: raise NotImplementedError("Boundary condition %s not implemented" % self.aux_bc_lower)
def auxbc_upper(self,state,dim,t,auxbc,idim): r""" Apply upper boundary conditions to auxbc Sets the upper coordinate's ghost cells of *auxbc* depending on what :attr:`aux_bc_upper` is. If :attr:`aux_bc_upper` = 0 then the user boundary condition specified by :attr:`user_aux_bc_upper` is used. Note that in this case the function :attr:`user_aux_bc_upper` belongs only to this dimension but :attr:`user_aux_bc_upper` could set all user boundary conditions at once with the appropriate calling sequence. :Input: - *patch* - (:class:`Patch`) Patch that the dimension belongs to :Input/Ouput: - *auxbc* - (ndarray(num_aux,...)) Array with added ghost cells which will be set in this routines """ if self.aux_bc_upper[idim] == BC.custom: self.user_aux_bc_upper(state,dim,t,auxbc,self.num_ghost) elif self.aux_bc_upper[idim] == BC.extrap: for i in xrange(self.num_ghost): auxbc[:,-i-1,...] = auxbc[:,-self.num_ghost-1,...] elif self.aux_bc_upper[idim] == BC.periodic: # This process owns the whole patch auxbc[:,-self.num_ghost:,...] = auxbc[:,self.num_ghost:2*self.num_ghost,...] elif self.aux_bc_upper[idim] == BC.wall: for i in xrange(self.num_ghost): auxbc[:,-i-1,...] = auxbc[:,-2*self.num_ghost+i,...] elif self.aux_bc_lower[idim] is None: raise Exception("One or more of the aux boundary conditions aux_bc_lower has not been specified.") else: raise NotImplementedError("Boundary condition %s not implemented" % self.aux_bc_lower)
Python
def evolve_to_time(self,solution,tend=None): r""" Evolve solution from solution.t to tend. If tend is not specified, take a single step. This method contains the machinery to evolve the solution object in ``solution`` to the requested end time tend if given, or one step if not. :Input: - *solution* - (:class:`Solution`) Solution to be evolved - *tend* - (float) The end time to evolve to, if not provided then the method will take a single time step. :Output: - (dict) - Returns the status dictionary of the solver """ if not self._is_set_up: self.setup(solution) if tend == None: take_one_step = True else: take_one_step = False # Parameters for time-stepping tstart = solution.t # Reset status dictionary self.status['cflmax'] = self.cfl.get_cached_max() self.status['dtmin'] = self.dt self.status['dtmax'] = self.dt self.status['numsteps'] = 0 # Setup for the run if not self.dt_variable: if take_one_step: self.max_steps = 1 else: self.max_steps = int((tend - tstart + 1e-10) / self.dt) if abs(self.max_steps*self.dt - (tend - tstart)) > 1e-5 * (tend-tstart): raise Exception('dt does not divide (tend-tstart) and dt is fixed!') if self.dt_variable == 1 and self.cfl_desired > self.cfl_max: raise Exception('Variable time-stepping and desired CFL > maximum CFL') if tend <= tstart and not take_one_step: self.logger.info("Already at or beyond end time: no evolution required.") self.max_steps = 0 # Main time-stepping loop for n in xrange(self.max_steps): state = solution.state # Adjust dt so that we hit tend exactly if we are near tend if not take_one_step: if solution.t + self.dt > tend and tstart < tend: self.dt = tend - solution.t if tend - solution.t - self.dt < 1.e-14: self.dt = tend - solution.t # Keep a backup in case we need to retake a time step if self.dt_variable: q_backup = state.q.copy('F') told = solution.t self.step(solution) # Check to make sure that the Courant number was not too large cfl = self.cfl.get_cached_max() if cfl <= self.cfl_max: # Accept this step self.status['cflmax'] = max(cfl, self.status['cflmax']) if self.dt_variable==True: solution.t += self.dt else: #Avoid roundoff error if dt_variable=False: solution.t = tstart+(n+1)*self.dt # Verbose messaging self.logger.debug("Step %i CFL = %f dt = %f t = %f" % (n,cfl,self.dt,solution.t)) self.write_gauge_values(solution) # Increment number of time steps completed self.status['numsteps'] += 1 else: # Reject this step self.logger.debug("Rejecting time step, CFL number too large") if self.dt_variable: state.q = q_backup solution.t = told else: # Give up, we cannot adapt, abort self.status['cflmax'] = \ max(cfl, self.status['cflmax']) raise Exception('CFL too large, giving up!') # Choose new time step if self.dt_variable: if cfl > 0.0: self.dt = min(self.dt_max,self.dt * self.cfl_desired / cfl) self.status['dtmin'] = min(self.dt, self.status['dtmin']) self.status['dtmax'] = max(self.dt, self.status['dtmax']) else: self.dt = self.dt_max # See if we are finished yet if (solution.t >= tend and not take_one_step) or (take_one_step and self.status['numsteps'] > 0): break # End of main time-stepping loop ------------------------------------- if self.dt_variable and solution.t < tend \ and self.status['numsteps'] == self.max_steps: raise Exception("Maximum number of timesteps have been taken") return self.status
def evolve_to_time(self,solution,tend=None): r""" Evolve solution from solution.t to tend. If tend is not specified, take a single step. This method contains the machinery to evolve the solution object in ``solution`` to the requested end time tend if given, or one step if not. :Input: - *solution* - (:class:`Solution`) Solution to be evolved - *tend* - (float) The end time to evolve to, if not provided then the method will take a single time step. :Output: - (dict) - Returns the status dictionary of the solver """ if not self._is_set_up: self.setup(solution) if tend == None: take_one_step = True else: take_one_step = False # Parameters for time-stepping tstart = solution.t # Reset status dictionary self.status['cflmax'] = self.cfl.get_cached_max() self.status['dtmin'] = self.dt self.status['dtmax'] = self.dt self.status['numsteps'] = 0 # Setup for the run if not self.dt_variable: if take_one_step: self.max_steps = 1 else: self.max_steps = int((tend - tstart + 1e-10) / self.dt) if abs(self.max_steps*self.dt - (tend - tstart)) > 1e-5 * (tend-tstart): raise Exception('dt does not divide (tend-tstart) and dt is fixed!') if self.dt_variable == 1 and self.cfl_desired > self.cfl_max: raise Exception('Variable time-stepping and desired CFL > maximum CFL') if tend <= tstart and not take_one_step: self.logger.info("Already at or beyond end time: no evolution required.") self.max_steps = 0 # Main time-stepping loop for n in xrange(self.max_steps): state = solution.state # Adjust dt so that we hit tend exactly if we are near tend if not take_one_step: if solution.t + self.dt > tend and tstart < tend: self.dt = tend - solution.t if tend - solution.t - self.dt < 1.e-14: self.dt = tend - solution.t # Keep a backup in case we need to retake a time step if self.dt_variable: q_backup = state.q.copy('F') told = solution.t self.step(solution) # Check to make sure that the Courant number was not too large cfl = self.cfl.get_cached_max() if cfl <= self.cfl_max: # Accept this step self.status['cflmax'] = max(cfl, self.status['cflmax']) if self.dt_variable==True: solution.t += self.dt else: #Avoid roundoff error if dt_variable=False: solution.t = tstart+(n+1)*self.dt # Verbose messaging self.logger.debug("Step %i CFL = %f dt = %f t = %f" % (n,cfl,self.dt,solution.t)) self.write_gauge_values(solution) # Increment number of time steps completed self.status['numsteps'] += 1 else: # Reject this step self.logger.debug("Rejecting time step, CFL number too large") if self.dt_variable: state.q = q_backup solution.t = told else: # Give up, we cannot adapt, abort self.status['cflmax'] = \ max(cfl, self.status['cflmax']) raise Exception('CFL too large, giving up!') # Choose new time step if self.dt_variable: if cfl > 0.0: self.dt = min(self.dt_max,self.dt * self.cfl_desired / cfl) self.status['dtmin'] = min(self.dt, self.status['dtmin']) self.status['dtmax'] = max(self.dt, self.status['dtmax']) else: self.dt = self.dt_max # See if we are finished yet if (solution.t >= tend and not take_one_step) or (take_one_step and self.status['numsteps'] > 0): break # End of main time-stepping loop ------------------------------------- if self.dt_variable and solution.t < tend \ and self.status['numsteps'] == self.max_steps: raise Exception("Maximum number of timesteps have been taken") return self.status
Python
def step(self,solution): r""" Take one step This method is only a stub and should be overridden by all solvers who would like to use the default time-stepping in evolve_to_time. """ raise NotImplementedError("No stepping routine has been defined!")
def step(self,solution): r""" Take one step This method is only a stub and should be overridden by all solvers who would like to use the default time-stepping in evolve_to_time. """ raise NotImplementedError("No stepping routine has been defined!")
Python
def write_gauge_values(self,solution): r"""Write solution (or derived quantity) values at each gauge coordinate to file. """ for i,gauge in enumerate(solution.state.grid.gauges): if self.num_dim == 1: ix=gauge[0]; aux=solution.state.aux[:,ix] q=solution.state.q[:,ix] elif self.num_dim == 2: ix=gauge[0]; iy=gauge[1] aux=solution.state.aux[:,ix,iy] q=solution.state.q[:,ix,iy] p=self.compute_gauge_values(q,aux) t=solution.t solution.state.grid.gauge_files[i].write(str(t)+' '+' '.join(str(j) for j in p)+'\n')
def write_gauge_values(self,solution): r"""Write solution (or derived quantity) values at each gauge coordinate to file. """ for i,gauge in enumerate(solution.state.grid.gauges): if self.num_dim == 1: ix=gauge[0]; aux=solution.state.aux[:,ix] q=solution.state.q[:,ix] elif self.num_dim == 2: ix=gauge[0]; iy=gauge[1] aux=solution.state.aux[:,ix,iy] q=solution.state.q[:,ix,iy] p=self.compute_gauge_values(q,aux) t=solution.t solution.state.grid.gauge_files[i].write(str(t)+' '+' '.join(str(j) for j in p)+'\n')
Python
def wcblast(use_petsc=False,iplot=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a pair of interacting shock waves. The conserved quantities are density, momentum density, and total energy density. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.rp = riemann.rp1_euler_with_efix solver.num_waves = 3 solver.bc_lower[0]=pyclaw.BC.wall solver.bc_upper[0]=pyclaw.BC.wall # Initialize domain mx=500; x = pyclaw.Dimension('x',0.0,1.0,mx) domain = pyclaw.Domain([x]) num_eqn = 3 state = pyclaw.State(domain,num_eqn) state.problem_data['gamma']= gamma state.problem_data['gamma1']= gamma1 state.q[0,:] = 1. state.q[1,:] = 0. x =state.grid.x.centers state.q[2,:] = ( (x<0.1)*1.e3 + (0.1<=x)*(x<0.9)*1.e-2 + (0.9<=x)*1.e2 ) / gamma1 solver.limiters = 4 claw = pyclaw.Controller() claw.tfinal = 0.038 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw.solution.q
def wcblast(use_petsc=False,iplot=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a pair of interacting shock waves. The conserved quantities are density, momentum density, and total energy density. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.rp = riemann.rp1_euler_with_efix solver.num_waves = 3 solver.bc_lower[0]=pyclaw.BC.wall solver.bc_upper[0]=pyclaw.BC.wall # Initialize domain mx=500; x = pyclaw.Dimension('x',0.0,1.0,mx) domain = pyclaw.Domain([x]) num_eqn = 3 state = pyclaw.State(domain,num_eqn) state.problem_data['gamma']= gamma state.problem_data['gamma1']= gamma1 state.q[0,:] = 1. state.q[1,:] = 0. x =state.grid.x.centers state.q[2,:] = ( (x<0.1)*1.e3 + (0.1<=x)*(x<0.9)*1.e-2 + (0.9<=x)*1.e2 ) / gamma1 solver.limiters = 4 claw = pyclaw.Controller() claw.tfinal = 0.038 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw.solution.q
Python
def write_petsc(solution,frame,path='./',file_prefix='claw',write_aux=False,options={},write_p=False): r""" Write out pickle and PETSc data files representing the solution. Common data is written from process 0 in pickle files. Shared data is written from all processes into PETSc data files. :Input: - *solution* - (:class:`~pyclaw.solution.Solution`) pyclaw object to be output - *frame* - (int) Frame number - *path* - (string) Root path - *file_prefix* - (string) Prefix for the file name. ``default = 'claw'`` - *write_aux* - (bool) Boolean controlling whether the associated auxiliary array should be written out. ``default = False`` - *options* - (dict) Optional argument dictionary, see `PETScIO Option Table`_ .. _`PETScIO Option Table`: format : one of 'ascii' or 'binary' clobber : if True (Default), files will be overwritten """ # Option parsing option_defaults = {'format':'binary','clobber':True} for k in option_defaults.iterkeys(): if options.has_key(k): pass else: options[k] = option_defaults[k] clobber = options['clobber'] pickle_filename = os.path.join(path, '%s.pkl' % file_prefix) + str(frame).zfill(4) if options['format']=='vtk': viewer_filename = os.path.join(path, file_prefix+str(frame).zfill(4)+'.vtk') else: viewer_filename = os.path.join(path, '%s.ptc' % file_prefix) + str(frame).zfill(4) if solution.num_aux > 0 and write_aux: write_aux = True aux_filename = os.path.join(path, '%s_aux.ptc' % file_prefix) else: write_aux = False if not clobber: if os.path.exists(pickle_filename): raise IOError('Cowardly refusing to clobber %s!' % pickle_filename) if os.path.exists(viewer_filename): raise IOError('Cowardly refusing to clobber %s!' % viewer_filename) if write_aux and os.path.exists(aux_filename): raise IOError('Cowardly refusing to clobber %s!' % aux_filename) rank = PETSc.Comm.getRank(PETSc.COMM_WORLD) if rank==0: pickle_file = open(pickle_filename,'wb') # explicitly dumping a dictionary here to help out anybody trying to read the pickle file if write_p: pickle.dump({'t':solution.t,'num_eqn':solution.mp,'nstates':len(solution.states), 'num_aux':solution.num_aux,'num_dim':solution.domain.num_dim,'write_aux':write_aux, 'problem_data' : solution.problem_data}, pickle_file) else: pickle.dump({'t':solution.t,'num_eqn':solution.num_eqn,'nstates':len(solution.states), 'num_aux':solution.num_aux,'num_dim':solution.domain.num_dim,'write_aux':write_aux, 'problem_data' : solution.problem_data}, pickle_file) # now set up the PETSc viewers if options['format'] == 'ascii': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.WRITE) if write_aux: aux_viewer = PETSc.Viewer().createASCII(aux_filename, PETSc.Viewer.Mode.WRITE) elif options['format'] == 'binary': if hasattr(PETSc.Viewer,'createMPIIO'): viewer = PETSc.Viewer().createMPIIO(viewer_filename, PETSc.Viewer.Mode.WRITE) else: viewer = PETSc.Viewer().createBinary(viewer_filename, PETSc.Viewer.Mode.WRITE) if write_aux: if hasattr(PETSc.Viewer,'createMPIIO'): aux_viewer = PETSc.Viewer().createMPIIO(aux_filename, PETSc.Viewer.Mode.WRITE) else: aux_viewer = PETSc.Viewer().createBinary(aux_filename, PETSc.Viewer.Mode.WRITE) elif options['format'] == 'vtk': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.WRITE, format=PETSc.Viewer.Format.ASCII_VTK) if write_aux: aux_viewer = PETSc.Viewer().createASCII(aux_filename, PETSc.Viewer.Mode.WRITE) else: raise IOError('format type %s not supported' % options['format']) for state in solution.states: patch = state.patch if rank==0: pickle.dump({'level':patch.level, 'names':patch.name,'lower':patch.lower_global, 'num_cells':patch.num_cells_global,'delta':patch.delta}, pickle_file) # we will reenable this bad boy when we switch over to petsc-dev # state.q_da.view(viewer) if write_p: state.gpVec.view(viewer) else: state.gqVec.view(viewer) if write_aux: state.gauxVec.view(aux_viewer) viewer.flush() viewer.destroy() if rank==0: pickle_file.close()
def write_petsc(solution,frame,path='./',file_prefix='claw',write_aux=False,options={},write_p=False): r""" Write out pickle and PETSc data files representing the solution. Common data is written from process 0 in pickle files. Shared data is written from all processes into PETSc data files. :Input: - *solution* - (:class:`~pyclaw.solution.Solution`) pyclaw object to be output - *frame* - (int) Frame number - *path* - (string) Root path - *file_prefix* - (string) Prefix for the file name. ``default = 'claw'`` - *write_aux* - (bool) Boolean controlling whether the associated auxiliary array should be written out. ``default = False`` - *options* - (dict) Optional argument dictionary, see `PETScIO Option Table`_ .. _`PETScIO Option Table`: format : one of 'ascii' or 'binary' clobber : if True (Default), files will be overwritten """ # Option parsing option_defaults = {'format':'binary','clobber':True} for k in option_defaults.iterkeys(): if options.has_key(k): pass else: options[k] = option_defaults[k] clobber = options['clobber'] pickle_filename = os.path.join(path, '%s.pkl' % file_prefix) + str(frame).zfill(4) if options['format']=='vtk': viewer_filename = os.path.join(path, file_prefix+str(frame).zfill(4)+'.vtk') else: viewer_filename = os.path.join(path, '%s.ptc' % file_prefix) + str(frame).zfill(4) if solution.num_aux > 0 and write_aux: write_aux = True aux_filename = os.path.join(path, '%s_aux.ptc' % file_prefix) else: write_aux = False if not clobber: if os.path.exists(pickle_filename): raise IOError('Cowardly refusing to clobber %s!' % pickle_filename) if os.path.exists(viewer_filename): raise IOError('Cowardly refusing to clobber %s!' % viewer_filename) if write_aux and os.path.exists(aux_filename): raise IOError('Cowardly refusing to clobber %s!' % aux_filename) rank = PETSc.Comm.getRank(PETSc.COMM_WORLD) if rank==0: pickle_file = open(pickle_filename,'wb') # explicitly dumping a dictionary here to help out anybody trying to read the pickle file if write_p: pickle.dump({'t':solution.t,'num_eqn':solution.mp,'nstates':len(solution.states), 'num_aux':solution.num_aux,'num_dim':solution.domain.num_dim,'write_aux':write_aux, 'problem_data' : solution.problem_data}, pickle_file) else: pickle.dump({'t':solution.t,'num_eqn':solution.num_eqn,'nstates':len(solution.states), 'num_aux':solution.num_aux,'num_dim':solution.domain.num_dim,'write_aux':write_aux, 'problem_data' : solution.problem_data}, pickle_file) # now set up the PETSc viewers if options['format'] == 'ascii': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.WRITE) if write_aux: aux_viewer = PETSc.Viewer().createASCII(aux_filename, PETSc.Viewer.Mode.WRITE) elif options['format'] == 'binary': if hasattr(PETSc.Viewer,'createMPIIO'): viewer = PETSc.Viewer().createMPIIO(viewer_filename, PETSc.Viewer.Mode.WRITE) else: viewer = PETSc.Viewer().createBinary(viewer_filename, PETSc.Viewer.Mode.WRITE) if write_aux: if hasattr(PETSc.Viewer,'createMPIIO'): aux_viewer = PETSc.Viewer().createMPIIO(aux_filename, PETSc.Viewer.Mode.WRITE) else: aux_viewer = PETSc.Viewer().createBinary(aux_filename, PETSc.Viewer.Mode.WRITE) elif options['format'] == 'vtk': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.WRITE, format=PETSc.Viewer.Format.ASCII_VTK) if write_aux: aux_viewer = PETSc.Viewer().createASCII(aux_filename, PETSc.Viewer.Mode.WRITE) else: raise IOError('format type %s not supported' % options['format']) for state in solution.states: patch = state.patch if rank==0: pickle.dump({'level':patch.level, 'names':patch.name,'lower':patch.lower_global, 'num_cells':patch.num_cells_global,'delta':patch.delta}, pickle_file) # we will reenable this bad boy when we switch over to petsc-dev # state.q_da.view(viewer) if write_p: state.gpVec.view(viewer) else: state.gqVec.view(viewer) if write_aux: state.gauxVec.view(aux_viewer) viewer.flush() viewer.destroy() if rank==0: pickle_file.close()
Python
def read_petsc(solution,frame,path='./',file_prefix='claw',read_aux=False,options={}): r""" Read in pickles and PETSc data files representing the solution :Input: - *solution* - (:class:`~pyclaw.solution.Solution`) Solution object to read the data into. - *frame* - (int) Frame number to be read in - *path* - (string) Path to the current directory of the file - *file_prefix* - (string) Prefix of the files to be read in. ``default = 'fort'`` - *read_aux* (bool) Whether or not an auxiliary file will try to be read in. ``default = False`` - *options* - (dict) Optional argument dictionary, see `PETScIO Option Table`_ .. _`PETScIO Option Table`: format : one of 'ascii' or 'binary' """ # Option parsing option_defaults = {'format':'binary'} for k in option_defaults.iterkeys(): if options.has_key(k): pass else: options[k] = option_defaults[k] pickle_filename = os.path.join(path, '%s.pkl' % file_prefix) + str(frame).zfill(4) viewer_filename = os.path.join(path, '%s.ptc' % file_prefix) + str(frame).zfill(4) aux_viewer_filename = os.path.join(path, '%s_aux.ptc' % file_prefix) if frame < 0: # Don't construct file names with negative frameno values. raise IOError("Frame " + str(frame) + " does not exist ***") pickle_file = open(pickle_filename,'rb') # this dictionary is mostly holding debugging information, only nstates is needed # most of this information is explicitly saved in the individual patches value_dict = pickle.load(pickle_file) nstates = value_dict['nstates'] num_dim = value_dict['num_dim'] num_aux = value_dict['num_aux'] num_eqn = value_dict['num_eqn'] # now set up the PETSc viewer if options['format'] == 'ascii': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.READ) if read_aux: aux_viewer = PETSc.Viewer().createASCII(aux_viewer_filename, PETSc.Viewer.Mode.READ) elif options['format'] == 'binary': if hasattr(PETSc.Viewer,'createMPIIO'): viewer = PETSc.Viewer().createMPIIO(viewer_filename, PETSc.Viewer.Mode.READ) else: viewer = PETSc.Viewer().createBinary(viewer_filename, PETSc.Viewer.Mode.READ) if read_aux: if os.path.exists(aux_viewer_filename): if hasattr(PETSc.Viewer,'createMPIIO'): aux_viewer = PETSc.Viewer().createMPIIO(aux_viewer_filename, PETSc.Viewer.Mode.READ) else: aux_viewer = PETSc.Viewer().createBinary(aux_viewer_filename, PETSc.Viewer.Mode.READ) else: from warnings import warn aux_file_path = os.path.join(path,aux_viewer_filename) warn('read_aux=True but aux file %s does not exist' % aux_file_path) read_aux=False else: raise IOError('format type %s not supported' % options['format']) patches = [] for m in xrange(nstates): patch_dict = pickle.load(pickle_file) level = patch_dict['level'] names = patch_dict['names'] lower = patch_dict['lower'] n = patch_dict['num_cells'] d = patch_dict['delta'] from clawpack import petclaw dimensions = [] for i in xrange(num_dim): dimensions.append( #pyclaw.solution.Dimension(names[i],lower[i],lower[i] + n[i]*d[i],n[i])) petclaw.Dimension(names[i],lower[i],lower[i] + n[i]*d[i],n[i])) #patch = pyclaw.solution.Patch(dimensions) patch = petclaw.Patch(dimensions) patch.level = level #state = pyclaw.state.State(patch) state = petclaw.State(patch,num_eqn,num_aux) ## state.t = value_dict['t'] state.problem_data = value_dict['problem_data'] # DA View/Load is broken in Petsc-3.1.8, we can load/view the DA if needed in petsc-3.2 # state.q_da.load(viewer) state.gqVec.load(viewer) if read_aux: state.gauxVec.load(aux_viewer) solution.states.append(state) patches.append(state.patch) solution.domain = petclaw.geometry.Domain(patches) pickle_file.close() viewer.destroy() if read_aux: aux_viewer.destroy()
def read_petsc(solution,frame,path='./',file_prefix='claw',read_aux=False,options={}): r""" Read in pickles and PETSc data files representing the solution :Input: - *solution* - (:class:`~pyclaw.solution.Solution`) Solution object to read the data into. - *frame* - (int) Frame number to be read in - *path* - (string) Path to the current directory of the file - *file_prefix* - (string) Prefix of the files to be read in. ``default = 'fort'`` - *read_aux* (bool) Whether or not an auxiliary file will try to be read in. ``default = False`` - *options* - (dict) Optional argument dictionary, see `PETScIO Option Table`_ .. _`PETScIO Option Table`: format : one of 'ascii' or 'binary' """ # Option parsing option_defaults = {'format':'binary'} for k in option_defaults.iterkeys(): if options.has_key(k): pass else: options[k] = option_defaults[k] pickle_filename = os.path.join(path, '%s.pkl' % file_prefix) + str(frame).zfill(4) viewer_filename = os.path.join(path, '%s.ptc' % file_prefix) + str(frame).zfill(4) aux_viewer_filename = os.path.join(path, '%s_aux.ptc' % file_prefix) if frame < 0: # Don't construct file names with negative frameno values. raise IOError("Frame " + str(frame) + " does not exist ***") pickle_file = open(pickle_filename,'rb') # this dictionary is mostly holding debugging information, only nstates is needed # most of this information is explicitly saved in the individual patches value_dict = pickle.load(pickle_file) nstates = value_dict['nstates'] num_dim = value_dict['num_dim'] num_aux = value_dict['num_aux'] num_eqn = value_dict['num_eqn'] # now set up the PETSc viewer if options['format'] == 'ascii': viewer = PETSc.Viewer().createASCII(viewer_filename, PETSc.Viewer.Mode.READ) if read_aux: aux_viewer = PETSc.Viewer().createASCII(aux_viewer_filename, PETSc.Viewer.Mode.READ) elif options['format'] == 'binary': if hasattr(PETSc.Viewer,'createMPIIO'): viewer = PETSc.Viewer().createMPIIO(viewer_filename, PETSc.Viewer.Mode.READ) else: viewer = PETSc.Viewer().createBinary(viewer_filename, PETSc.Viewer.Mode.READ) if read_aux: if os.path.exists(aux_viewer_filename): if hasattr(PETSc.Viewer,'createMPIIO'): aux_viewer = PETSc.Viewer().createMPIIO(aux_viewer_filename, PETSc.Viewer.Mode.READ) else: aux_viewer = PETSc.Viewer().createBinary(aux_viewer_filename, PETSc.Viewer.Mode.READ) else: from warnings import warn aux_file_path = os.path.join(path,aux_viewer_filename) warn('read_aux=True but aux file %s does not exist' % aux_file_path) read_aux=False else: raise IOError('format type %s not supported' % options['format']) patches = [] for m in xrange(nstates): patch_dict = pickle.load(pickle_file) level = patch_dict['level'] names = patch_dict['names'] lower = patch_dict['lower'] n = patch_dict['num_cells'] d = patch_dict['delta'] from clawpack import petclaw dimensions = [] for i in xrange(num_dim): dimensions.append( #pyclaw.solution.Dimension(names[i],lower[i],lower[i] + n[i]*d[i],n[i])) petclaw.Dimension(names[i],lower[i],lower[i] + n[i]*d[i],n[i])) #patch = pyclaw.solution.Patch(dimensions) patch = petclaw.Patch(dimensions) patch.level = level #state = pyclaw.state.State(patch) state = petclaw.State(patch,num_eqn,num_aux) ## state.t = value_dict['t'] state.problem_data = value_dict['problem_data'] # DA View/Load is broken in Petsc-3.1.8, we can load/view the DA if needed in petsc-3.2 # state.q_da.load(viewer) state.gqVec.load(viewer) if read_aux: state.gauxVec.load(aux_viewer) solution.states.append(state) patches.append(state.patch) solution.domain = petclaw.geometry.Domain(patches) pickle_file.close() viewer.destroy() if read_aux: aux_viewer.destroy()
Python
def read_petsc_t(frame,path='./',file_prefix='claw'): r"""Read only the petsc.pkl file and return the data :Input: - *frame* - (int) Frame number to be read in - *path* - (string) Path to the current directory of the file - *file_prefix* - (string) Prefix of the files to be read in. ``default = 'claw'`` :Output: - (list) List of output variables - *t* - (int) Time of frame - *num_eqn* - (int) Number of equations in the frame - *npatches* - (int) Number of patches - *num_aux* - (int) Auxillary value in the frame - *num_dim* - (int) Number of dimensions in q and aux """ base_path = os.path.join(path,) path = os.path.join(base_path, '%s.pkl' % file_prefix) + str(frame).zfill(4) try: f = open(path,'rb') logger.debug("Opening %s file." % path) patch_dict = pickle.load(f) t = patch_dict['t'] num_eqn = patch_dict['num_eqn'] nstates = patch_dict['nstates'] num_aux = patch_dict['num_aux'] num_dim = patch_dict['num_dim'] f.close() except(IOError): raise except: logger.error("File " + path + " should contain t, num_eqn, npatches, num_aux, num_dim") print "File " + path + " should contain t, num_eqn, npatches, num_aux, num_dim" raise return t,num_eqn,nstates,num_aux,num_dim
def read_petsc_t(frame,path='./',file_prefix='claw'): r"""Read only the petsc.pkl file and return the data :Input: - *frame* - (int) Frame number to be read in - *path* - (string) Path to the current directory of the file - *file_prefix* - (string) Prefix of the files to be read in. ``default = 'claw'`` :Output: - (list) List of output variables - *t* - (int) Time of frame - *num_eqn* - (int) Number of equations in the frame - *npatches* - (int) Number of patches - *num_aux* - (int) Auxillary value in the frame - *num_dim* - (int) Number of dimensions in q and aux """ base_path = os.path.join(path,) path = os.path.join(base_path, '%s.pkl' % file_prefix) + str(frame).zfill(4) try: f = open(path,'rb') logger.debug("Opening %s file." % path) patch_dict = pickle.load(f) t = patch_dict['t'] num_eqn = patch_dict['num_eqn'] nstates = patch_dict['nstates'] num_aux = patch_dict['num_aux'] num_dim = patch_dict['num_dim'] f.close() except(IOError): raise except: logger.error("File " + path + " should contain t, num_eqn, npatches, num_aux, num_dim") print "File " + path + " should contain t, num_eqn, npatches, num_aux, num_dim" raise return t,num_eqn,nstates,num_aux,num_dim
Python
def acoustics(use_petsc=False,kernel_language='Fortran',solver_type='classic',iplot=False,htmlplot=False,outdir='./_output',weno_order=5): """ This example solves the 1-dimensional acoustics equations in a homogeneous medium. """ from numpy import sqrt, exp, cos #================================================================= # Import the appropriate classes, depending on the options passed #================================================================= if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver = pyclaw.ClawSolver1D() elif solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() solver.weno_order=weno_order else: raise Exception('Unrecognized value of solver_type.') #======================================================================== # Instantiate the solver and define the system of equations to be solved #======================================================================== solver.kernel_language=kernel_language from clawpack.riemann import rp_acoustics solver.num_waves=rp_acoustics.num_waves if kernel_language=='Python': solver.rp = rp_acoustics.rp_acoustics_1d else: from clawpack.riemann import rp1_acoustics solver.rp = rp1_acoustics solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #======================================================================== # Instantiate the domain and set the boundary conditions #======================================================================== x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain,num_eqn) #======================================================================== # Set problem-specific variables #======================================================================== rho = 1.0 bulk = 1.0 state.problem_data['rho']=rho state.problem_data['bulk']=bulk state.problem_data['zz']=sqrt(rho*bulk) state.problem_data['cc']=sqrt(bulk/rho) #======================================================================== # Set the initial condition #======================================================================== xc=domain.grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = exp(-beta * (xc-x0)**2) * cos(gamma * (xc - x0)) state.q[1,:] = 0. solver.dt_initial=domain.grid.delta[0]/state.problem_data['cc']*0.1 #======================================================================== # Set up the controller object #======================================================================== claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.keep_copy = True claw.num_output_times = 5 claw.tfinal = 1.0 # Solve status = claw.run() # Plot results if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw
def acoustics(use_petsc=False,kernel_language='Fortran',solver_type='classic',iplot=False,htmlplot=False,outdir='./_output',weno_order=5): """ This example solves the 1-dimensional acoustics equations in a homogeneous medium. """ from numpy import sqrt, exp, cos #================================================================= # Import the appropriate classes, depending on the options passed #================================================================= if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver = pyclaw.ClawSolver1D() elif solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() solver.weno_order=weno_order else: raise Exception('Unrecognized value of solver_type.') #======================================================================== # Instantiate the solver and define the system of equations to be solved #======================================================================== solver.kernel_language=kernel_language from clawpack.riemann import rp_acoustics solver.num_waves=rp_acoustics.num_waves if kernel_language=='Python': solver.rp = rp_acoustics.rp_acoustics_1d else: from clawpack.riemann import rp1_acoustics solver.rp = rp1_acoustics solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #======================================================================== # Instantiate the domain and set the boundary conditions #======================================================================== x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain,num_eqn) #======================================================================== # Set problem-specific variables #======================================================================== rho = 1.0 bulk = 1.0 state.problem_data['rho']=rho state.problem_data['bulk']=bulk state.problem_data['zz']=sqrt(rho*bulk) state.problem_data['cc']=sqrt(bulk/rho) #======================================================================== # Set the initial condition #======================================================================== xc=domain.grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = exp(-beta * (xc-x0)**2) * cos(gamma * (xc - x0)) state.q[1,:] = 0. solver.dt_initial=domain.grid.delta[0]/state.problem_data['cc']*0.1 #======================================================================== # Set up the controller object #======================================================================== claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.keep_copy = True claw.num_output_times = 5 claw.tfinal = 1.0 # Solve status = claw.run() # Plot results if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw
Python
def acoustics2D(kernel_language='Fortran',iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d acoustics equations. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver=pyclaw.ClawSolver2D() solver.dimensional_split=False solver.limiters = pyclaw.limiters.tvd.MC elif solver_type=='sharpclaw': solver=pyclaw.SharpClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_vc_acoustics solver.num_waves = 2 solver.bc_lower[0]=pyclaw.BC.wall solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.wall solver.bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.wall solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.wall solver.aux_bc_upper[1]=pyclaw.BC.extrap # Initialize domain mx=200; my=200 x = pyclaw.Dimension('x',-1.0,1.0,mx) y = pyclaw.Dimension('y',-1.0,1.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 3 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) # Cell centers coordinates grid = state.grid Y,X = np.meshgrid(grid.y.centers,grid.x.centers) # Set aux arrays rhol = 4.0 rhor = 1.0 bulkl = 4.0 bulkr = 4.0 cl = np.sqrt(bulkl/rhol) cr = np.sqrt(bulkr/rhor) state.aux[0,:,:] = rhol*(X<0.) + rhor*(X>=0.) # Density state.aux[1,:,:] = cl*(X<0.) + cr*(X>=0.) # Sound speed # Set initial condition x0 = -0.5; y0 = 0. r = np.sqrt((X-x0)**2 + (Y-y0)**2) width=0.1; rad=0.25 state.q[0,:,:] = (np.abs(r-rad)<=width)*(1.+np.cos(np.pi*(r-rad)/width)) state.q[1,:,:] = 0. state.q[2,:,:] = 0. claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir=outdir claw.num_output_times = 20 # Solve claw.tfinal = 0.6 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir,file_format=claw.output_format) if iplot: pyclaw.plot.interactive_plot(outdir=outdir,file_format=claw.output_format) return claw
def acoustics2D(kernel_language='Fortran',iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d acoustics equations. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver=pyclaw.ClawSolver2D() solver.dimensional_split=False solver.limiters = pyclaw.limiters.tvd.MC elif solver_type=='sharpclaw': solver=pyclaw.SharpClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_vc_acoustics solver.num_waves = 2 solver.bc_lower[0]=pyclaw.BC.wall solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.wall solver.bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.wall solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.wall solver.aux_bc_upper[1]=pyclaw.BC.extrap # Initialize domain mx=200; my=200 x = pyclaw.Dimension('x',-1.0,1.0,mx) y = pyclaw.Dimension('y',-1.0,1.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 3 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) # Cell centers coordinates grid = state.grid Y,X = np.meshgrid(grid.y.centers,grid.x.centers) # Set aux arrays rhol = 4.0 rhor = 1.0 bulkl = 4.0 bulkr = 4.0 cl = np.sqrt(bulkl/rhol) cr = np.sqrt(bulkr/rhor) state.aux[0,:,:] = rhol*(X<0.) + rhor*(X>=0.) # Density state.aux[1,:,:] = cl*(X<0.) + cr*(X>=0.) # Sound speed # Set initial condition x0 = -0.5; y0 = 0. r = np.sqrt((X-x0)**2 + (Y-y0)**2) width=0.1; rad=0.25 state.q[0,:,:] = (np.abs(r-rad)<=width)*(1.+np.cos(np.pi*(r-rad)/width)) state.q[1,:,:] = 0. state.q[2,:,:] = 0. claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir=outdir claw.num_output_times = 20 # Solve claw.tfinal = 0.6 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir,file_format=claw.output_format) if iplot: pyclaw.plot.interactive_plot(outdir=outdir,file_format=claw.output_format) return claw
Python
def stegoton(use_petsc=0,kernel_language='Fortran',solver_type='classic',iplot=0,htmlplot=0,outdir='./_output'): """ Stegoton problem. Nonlinear elasticity in periodic medium. See LeVeque & Yong (2003). $$\\epsilon_t - u_x = 0$$ $$\\rho(x) u_t - \\sigma(\\epsilon,x)_x = 0$$ """ vary_Z=False if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language if kernel_language=='Python': solver.set_riemann_solver('nonlinear_elasticity') elif kernel_language=='Fortran': from clawpack import riemann solver.rp = riemann.rp1_nonlinear_elasticity_fwave solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #Use the same BCs for the aux array solver.aux_bc_lower = solver.bc_lower solver.aux_bc_upper = solver.bc_lower xlower=0.0; xupper=600.0 cellsperlayer=6; mx=int(round(xupper-xlower))*cellsperlayer x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain,num_eqn) #Set global parameters alpha = 0.5 KA = 1.0 KB = 4.0 rhoA = 1.0 rhoB = 4.0 state.problem_data = {} state.problem_data['t1'] = 10.0 state.problem_data['tw1'] = 10.0 state.problem_data['a1'] = 0.0 state.problem_data['alpha'] = alpha state.problem_data['KA'] = KA state.problem_data['KB'] = KB state.problem_data['rhoA'] = rhoA state.problem_data['rhoB'] = rhoB state.problem_data['trtime'] = 250.0 state.problem_data['trdone'] = False #Initialize q and aux xc=state.grid.x.centers state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,solver.aux_bc_lower[0],xupper=xupper) qinit(state,ic=2,a2=1.0,xupper=xupper) tfinal=500.; num_output_times = 10; solver.max_steps = 5000000 solver.fwave = True solver.before_step = b4step solver.user_bc_lower=moving_wall_bc solver.user_bc_upper=zero_bc solver.num_waves=2 if solver_type=='sharpclaw': solver.lim_type = 2 solver.char_decomp=0 claw = pyclaw.Controller() claw.keep_copy = False claw.output_style = 1 claw.num_output_times = num_output_times claw.tfinal = tfinal claw.solution = pyclaw.Solution(state,domain) claw.solver = solver if vary_Z==True: #Zvalues = [1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.5,4.0] Zvalues = [3.5,4.0] #a2values= [0.9766161130681, 1.0888194560100042, 1.1601786315361329, 1.20973731651806, 1.2462158254919984] for ii,Z in enumerate(Zvalues): a2=1.0 #a2values[ii] KB = Z rhoB = Z state.problem_data['KB'] = KB state.problem_data['rhoB'] = rhoB state.problem_data['trdone'] = False state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,bc_lower,xupper=xupper) patch.x.bc_lower=2 patch.x.bc_upper=2 state.t = 0.0 qinit(state,ic=2,a2=a2) init_solution = Solution(state,domain) claw.solution = init_solution claw.solution.t = 0.0 claw.tfinal = tfinal claw.outdir = './_output_Z'+str(Z)+'_'+str(cellsperlayer) status = claw.run() else: # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def stegoton(use_petsc=0,kernel_language='Fortran',solver_type='classic',iplot=0,htmlplot=0,outdir='./_output'): """ Stegoton problem. Nonlinear elasticity in periodic medium. See LeVeque & Yong (2003). $$\\epsilon_t - u_x = 0$$ $$\\rho(x) u_t - \\sigma(\\epsilon,x)_x = 0$$ """ vary_Z=False if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language if kernel_language=='Python': solver.set_riemann_solver('nonlinear_elasticity') elif kernel_language=='Fortran': from clawpack import riemann solver.rp = riemann.rp1_nonlinear_elasticity_fwave solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #Use the same BCs for the aux array solver.aux_bc_lower = solver.bc_lower solver.aux_bc_upper = solver.bc_lower xlower=0.0; xupper=600.0 cellsperlayer=6; mx=int(round(xupper-xlower))*cellsperlayer x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain,num_eqn) #Set global parameters alpha = 0.5 KA = 1.0 KB = 4.0 rhoA = 1.0 rhoB = 4.0 state.problem_data = {} state.problem_data['t1'] = 10.0 state.problem_data['tw1'] = 10.0 state.problem_data['a1'] = 0.0 state.problem_data['alpha'] = alpha state.problem_data['KA'] = KA state.problem_data['KB'] = KB state.problem_data['rhoA'] = rhoA state.problem_data['rhoB'] = rhoB state.problem_data['trtime'] = 250.0 state.problem_data['trdone'] = False #Initialize q and aux xc=state.grid.x.centers state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,solver.aux_bc_lower[0],xupper=xupper) qinit(state,ic=2,a2=1.0,xupper=xupper) tfinal=500.; num_output_times = 10; solver.max_steps = 5000000 solver.fwave = True solver.before_step = b4step solver.user_bc_lower=moving_wall_bc solver.user_bc_upper=zero_bc solver.num_waves=2 if solver_type=='sharpclaw': solver.lim_type = 2 solver.char_decomp=0 claw = pyclaw.Controller() claw.keep_copy = False claw.output_style = 1 claw.num_output_times = num_output_times claw.tfinal = tfinal claw.solution = pyclaw.Solution(state,domain) claw.solver = solver if vary_Z==True: #Zvalues = [1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.5,4.0] Zvalues = [3.5,4.0] #a2values= [0.9766161130681, 1.0888194560100042, 1.1601786315361329, 1.20973731651806, 1.2462158254919984] for ii,Z in enumerate(Zvalues): a2=1.0 #a2values[ii] KB = Z rhoB = Z state.problem_data['KB'] = KB state.problem_data['rhoB'] = rhoB state.problem_data['trdone'] = False state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,bc_lower,xupper=xupper) patch.x.bc_lower=2 patch.x.bc_upper=2 state.t = 0.0 qinit(state,ic=2,a2=a2) init_solution = Solution(state,domain) claw.solution = init_solution claw.solution.t = 0.0 claw.tfinal = tfinal claw.outdir = './_output_Z'+str(Z)+'_'+str(cellsperlayer) status = claw.run() else: # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
Python
def acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ #=========================================================================== # Global variables #=========================================================================== global INIT_MIN_MESH_WIDTH global SUBDIVISION_FACTOR global XI global XF global TFINAL global NUM_OUTPUT_TIMES #=========================================================================== # Import libraries #=========================================================================== if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann # Peano Solver peanoSolver = peanoclaw.Solver(solver, INIT_MIN_MESH_WIDTH, init, refinement_criterion=refinement_criterion ) solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR my = SUBDIVISION_FACTOR mz = SUBDIVISION_FACTOR x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = TFINAL claw.keep_copy = True claw.solution = peanoclaw.solution.Solution(state,domain) #pyclaw.Solution(state,domain) claw.solver = peanoSolver #solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES #=========================================================================== # Solve the problem #=========================================================================== status = claw.run()
def acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ #=========================================================================== # Global variables #=========================================================================== global INIT_MIN_MESH_WIDTH global SUBDIVISION_FACTOR global XI global XF global TFINAL global NUM_OUTPUT_TIMES #=========================================================================== # Import libraries #=========================================================================== if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann # Peano Solver peanoSolver = peanoclaw.Solver(solver, INIT_MIN_MESH_WIDTH, init, refinement_criterion=refinement_criterion ) solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR my = SUBDIVISION_FACTOR mz = SUBDIVISION_FACTOR x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = TFINAL claw.keep_copy = True claw.solution = peanoclaw.solution.Solution(state,domain) #pyclaw.Solution(state,domain) claw.solver = peanoSolver #solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES #=========================================================================== # Solve the problem #=========================================================================== status = claw.run()
Python
def step(self, maximum_timestep_size, estimated_next_dt): r""" Performs one timestep on the subgrid. This might result in several runs of the solver to find the maximum allowed timestep size in terms of stability. :Input: - *maximum_timestep_size* - This is the maximum allowed timestep size in terms of the grid topology and the global timestep. I.e. neighboring subgrids might forbid a timestep on this subgrid. Also this subgrid is not allowed to advance further than the the global timestep. - *estimated_next_dt*- This is the estimation for the maximum allowed timestep size in terms of stability and results from the cfl number of the last timestep performed on this grid. """ self.solver.dt = min(maximum_timestep_size, estimated_next_dt) # Set qbc and timestep for the current patch self.solver.qbc = self.qbc self.solver.dt_max = maximum_timestep_size self.solver.evolve_to_time(self.solution) return self.solution.state.q
def step(self, maximum_timestep_size, estimated_next_dt): r""" Performs one timestep on the subgrid. This might result in several runs of the solver to find the maximum allowed timestep size in terms of stability. :Input: - *maximum_timestep_size* - This is the maximum allowed timestep size in terms of the grid topology and the global timestep. I.e. neighboring subgrids might forbid a timestep on this subgrid. Also this subgrid is not allowed to advance further than the the global timestep. - *estimated_next_dt*- This is the estimation for the maximum allowed timestep size in terms of stability and results from the cfl number of the last timestep performed on this grid. """ self.solver.dt = min(maximum_timestep_size, estimated_next_dt) # Set qbc and timestep for the current patch self.solver.qbc = self.qbc self.solver.dt_max = maximum_timestep_size self.solver.evolve_to_time(self.solution) return self.solution.state.q
Python
def acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ #=========================================================================== # Import libraries #=========================================================================== global INIT_MIN_MESH_WIDTH global NUM_OUTPUT_TIMES global TFINAL if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann # Peano Solver peanoSolver = peanoclaw.Solver(solver, INIT_MIN_MESH_WIDTH, init, refinement_criterion=refinement_criterion ) solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR my = SUBDIVISION_FACTOR mz = SUBDIVISION_FACTOR x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = TFINAL claw.keep_copy = True claw.solution = peanoclaw.solution.Solution(state,domain) #pyclaw.Solution(state,domain) claw.solver = peanoSolver #solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES #solver.before_step = _probe status = claw.run() return claw
def acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ #=========================================================================== # Import libraries #=========================================================================== global INIT_MIN_MESH_WIDTH global NUM_OUTPUT_TIMES global TFINAL if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann # Peano Solver peanoSolver = peanoclaw.Solver(solver, INIT_MIN_MESH_WIDTH, init, refinement_criterion=refinement_criterion ) solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR my = SUBDIVISION_FACTOR mz = SUBDIVISION_FACTOR x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) #=========================================================================== # Set up controller and controller parameters #=========================================================================== claw = pyclaw.Controller() claw.tfinal = TFINAL claw.keep_copy = True claw.solution = peanoclaw.solution.Solution(state,domain) #pyclaw.Solution(state,domain) claw.solver = peanoSolver #solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES #solver.before_step = _probe status = claw.run() return claw
Python
def pyclaw_acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ global NUM_OUTPUT_TIMES global TFINAL if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR * CELLS my = SUBDIVISION_FACTOR * CELLS mz = SUBDIVISION_FACTOR * CELLS x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) init(state) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES # Solve claw.tfinal = TFINAL status = claw.run() return claw
def pyclaw_acoustics3D(iplot=False,htmlplot=False,use_petsc=False,outdir='./_output',solver_type='classic',**kwargs): """ Example python script for solving the 3d acoustics equations. """ global NUM_OUTPUT_TIMES global TFINAL if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': solver=pyclaw.ClawSolver3D() else: raise Exception('Unrecognized solver_type.') from clawpack import riemann solver.rp = riemann.rp3_vc_acoustics solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap solver.bc_lower[2]=pyclaw.BC.extrap solver.bc_upper[2]=pyclaw.BC.extrap solver.aux_bc_lower[0]=pyclaw.BC.extrap solver.aux_bc_upper[0]=pyclaw.BC.extrap solver.aux_bc_lower[1]=pyclaw.BC.extrap solver.aux_bc_upper[1]=pyclaw.BC.extrap solver.aux_bc_lower[2]=pyclaw.BC.extrap solver.aux_bc_upper[2]=pyclaw.BC.extrap solver.dimensional_split=True solver.limiters = pyclaw.limiters.tvd.MC #=========================================================================== # Initialize domain and state, then initialize the solution associated to the # state and finally initialize aux array #=========================================================================== # Initialize domain mx = SUBDIVISION_FACTOR * CELLS my = SUBDIVISION_FACTOR * CELLS mz = SUBDIVISION_FACTOR * CELLS x = pyclaw.Dimension('x', XI, XF, mx) y = pyclaw.Dimension('y', XI, XF, my) z = pyclaw.Dimension('z', XI, XF, mz) domain = pyclaw.Domain([x,y,z]) num_eqn = 4 num_aux = 2 # density, sound speed state = pyclaw.State(domain,num_eqn,num_aux) init(state) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir=outdir claw.num_output_times = NUM_OUTPUT_TIMES # Solve claw.tfinal = TFINAL status = claw.run() return claw
Python
def kpp(use_petsc=False,iplot=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d KPP equations. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D() else: solver = pyclaw.ClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_kpp solver.num_waves = 1 solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap # Initialize domain mx=200; my=200 x = pyclaw.Dimension('x',-2.0,2.0,mx) y = pyclaw.Dimension('y',-2.0,2.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 1 state = pyclaw.State(domain,num_eqn) qinit(state) solver.dimensional_split = 1 solver.cfl_max = 1.0 solver.cfl_desired = 0.9 solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.minmod claw = pyclaw.Controller() claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.num_output_times = 10 # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def kpp(use_petsc=False,iplot=False,htmlplot=False,outdir='./_output',solver_type='classic'): """ Example python script for solving the 2d KPP equations. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D() else: solver = pyclaw.ClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_kpp solver.num_waves = 1 solver.bc_lower[0]=pyclaw.BC.extrap solver.bc_upper[0]=pyclaw.BC.extrap solver.bc_lower[1]=pyclaw.BC.extrap solver.bc_upper[1]=pyclaw.BC.extrap # Initialize domain mx=200; my=200 x = pyclaw.Dimension('x',-2.0,2.0,mx) y = pyclaw.Dimension('y',-2.0,2.0,my) domain = pyclaw.Domain([x,y]) num_eqn = 1 state = pyclaw.State(domain,num_eqn) qinit(state) solver.dimensional_split = 1 solver.cfl_max = 1.0 solver.cfl_desired = 0.9 solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.minmod claw = pyclaw.Controller() claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.num_output_times = 10 # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
Python
def qinit(state,mx,my): """ Initialize with two Gaussian pulses. """ # The following parameters match the vaules used in clawpack # ========================================================== # First gaussian pulse A1 = 1. # Amplitude beta1 = 40. # Decay factor x1 = -0.5 # x-coordinate of the centers y1 = 0. # y-coordinate of the centers # Second gaussian pulse A2 = -1. # Amplitude beta2 = 40. # Decay factor x2 = 0.5 # x-coordinate of the centers y2 = 0. # y-coordinate of the centers # Compute location of all grid cell centers coordinates and store them state.grid.compute_p_centers(recompute=True) xp = state.grid.p_centers[0] yp = state.grid.p_centers[1] state.q[0,:,:] = A1*np.exp(-beta1*(np.square(xp-x1) + np.square(yp-y1)))\ + A2*np.exp(-beta2*(np.square(xp-x2) + np.square(yp-y2)))
def qinit(state,mx,my): """ Initialize with two Gaussian pulses. """ # The following parameters match the vaules used in clawpack # ========================================================== # First gaussian pulse A1 = 1. # Amplitude beta1 = 40. # Decay factor x1 = -0.5 # x-coordinate of the centers y1 = 0. # y-coordinate of the centers # Second gaussian pulse A2 = -1. # Amplitude beta2 = 40. # Decay factor x2 = 0.5 # x-coordinate of the centers y2 = 0. # y-coordinate of the centers # Compute location of all grid cell centers coordinates and store them state.grid.compute_p_centers(recompute=True) xp = state.grid.p_centers[0] yp = state.grid.p_centers[1] state.q[0,:,:] = A1*np.exp(-beta1*(np.square(xp-x1) + np.square(yp-y1)))\ + A2*np.exp(-beta2*(np.square(xp-x2) + np.square(yp-y2)))
Python
def velocities_upper(state,dim,t,auxbc,num_ghost): """ Set the velocities for the ghost cells outside the outer radius of the annulus. """ from mapc2p import mapc2p grid=state.grid mx = grid.num_cells[0] my = grid.num_cells[1] dxc = grid.delta[0] dyc = grid.delta[1] if dim == grid.dimensions[0]: xc1d = grid.lower[0]+dxc*(np.arange(mx+num_ghost,mx+2*num_ghost+1)-num_ghost) yc1d = grid.lower[1]+dyc*(np.arange(my+2*num_ghost+1)-num_ghost) yc,xc = np.meshgrid(yc1d,xc1d) xp,yp = mapc2p(xc,yc) auxbc[:,-num_ghost:,:] = velocities_capa(xp,yp,dxc,dyc) else: raise Exception('Custum BC for this boundary is not appropriate!')
def velocities_upper(state,dim,t,auxbc,num_ghost): """ Set the velocities for the ghost cells outside the outer radius of the annulus. """ from mapc2p import mapc2p grid=state.grid mx = grid.num_cells[0] my = grid.num_cells[1] dxc = grid.delta[0] dyc = grid.delta[1] if dim == grid.dimensions[0]: xc1d = grid.lower[0]+dxc*(np.arange(mx+num_ghost,mx+2*num_ghost+1)-num_ghost) yc1d = grid.lower[1]+dyc*(np.arange(my+2*num_ghost+1)-num_ghost) yc,xc = np.meshgrid(yc1d,xc1d) xp,yp = mapc2p(xc,yc) auxbc[:,-num_ghost:,:] = velocities_capa(xp,yp,dxc,dyc) else: raise Exception('Custum BC for this boundary is not appropriate!')
Python
def velocities_lower(state,dim,t,auxbc,num_ghost): """ Set the velocities for the ghost cells outside the inner radius of the annulus. """ from mapc2p import mapc2p grid=state.grid my = grid.num_cells[1] dxc = grid.delta[0] dyc = grid.delta[1] if dim == grid.dimensions[0]: xc1d = grid.lower[0]+dxc*(np.arange(num_ghost+1)-num_ghost) yc1d = grid.lower[1]+dyc*(np.arange(my+2*num_ghost+1)-num_ghost) yc,xc = np.meshgrid(yc1d,xc1d) xp,yp = mapc2p(xc,yc) auxbc[:,0:num_ghost,:] = velocities_capa(xp,yp,dxc,dyc) else: raise Exception('Custum BC for this boundary is not appropriate!')
def velocities_lower(state,dim,t,auxbc,num_ghost): """ Set the velocities for the ghost cells outside the inner radius of the annulus. """ from mapc2p import mapc2p grid=state.grid my = grid.num_cells[1] dxc = grid.delta[0] dyc = grid.delta[1] if dim == grid.dimensions[0]: xc1d = grid.lower[0]+dxc*(np.arange(num_ghost+1)-num_ghost) yc1d = grid.lower[1]+dyc*(np.arange(my+2*num_ghost+1)-num_ghost) yc,xc = np.meshgrid(yc1d,xc1d) xp,yp = mapc2p(xc,yc) auxbc[:,0:num_ghost,:] = velocities_capa(xp,yp,dxc,dyc) else: raise Exception('Custum BC for this boundary is not appropriate!')
Python
def stream(xp,yp): """ Calculates the stream function in physical space. Clockwise rotation. One full rotation corresponds to 1 (second). """ streamValue = np.pi*(xp**2 + yp**2) return streamValue
def stream(xp,yp): """ Calculates the stream function in physical space. Clockwise rotation. One full rotation corresponds to 1 (second). """ streamValue = np.pi*(xp**2 + yp**2) return streamValue
Python
def verify_classic_shockbubble(test_state): import os from clawpack.pyclaw.util import check_diff import numpy as np """ verifies 2d euler shockbubble from a previously verified classic run """ test_q=test_state.get_q_global() if test_q != None: thisdir = os.path.dirname(__file__) expected_density = np.loadtxt(os.path.join(thisdir,'verify_shockbubble_classic.txt')) test_density = test_q[0,:,:] test_err = np.linalg.norm(expected_density-test_density) expected_err = 0 return check_diff(expected_err, test_err, abstol=1e-12)
def verify_classic_shockbubble(test_state): import os from clawpack.pyclaw.util import check_diff import numpy as np """ verifies 2d euler shockbubble from a previously verified classic run """ test_q=test_state.get_q_global() if test_q != None: thisdir = os.path.dirname(__file__) expected_density = np.loadtxt(os.path.join(thisdir,'verify_shockbubble_classic.txt')) test_density = test_q[0,:,:] test_err = np.linalg.norm(expected_density-test_density) expected_err = 0 return check_diff(expected_err, test_err, abstol=1e-12)
Python
def qbc_lower_y(state,dim,t,qbc,num_ghost): """ Impose periodic boundary condition to q at the bottom boundary for the sphere. This function does not work in parallel. """ for j in range(num_ghost): qbc1D = np.copy(qbc[:,:,2*num_ghost-1-j]) qbc[:,:,j] = qbc1D[:,::-1]
def qbc_lower_y(state,dim,t,qbc,num_ghost): """ Impose periodic boundary condition to q at the bottom boundary for the sphere. This function does not work in parallel. """ for j in range(num_ghost): qbc1D = np.copy(qbc[:,:,2*num_ghost-1-j]) qbc[:,:,j] = qbc1D[:,::-1]
Python
def qbc_upper_y(state,dim,t,qbc,num_ghost): """ Impose periodic boundary condition to q at the top boundary for the sphere. This function does not work in parallel. """ my = state.grid.num_cells[1] for j in range(num_ghost): qbc1D = np.copy(qbc[:,:,my+num_ghost-1-j]) qbc[:,:,my+num_ghost+j] = qbc1D[:,::-1]
def qbc_upper_y(state,dim,t,qbc,num_ghost): """ Impose periodic boundary condition to q at the top boundary for the sphere. This function does not work in parallel. """ my = state.grid.num_cells[1] for j in range(num_ghost): qbc1D = np.copy(qbc[:,:,my+num_ghost-1-j]) qbc[:,:,my+num_ghost+j] = qbc1D[:,::-1]
Python
def auxbc_lower_y(state,dim,t,auxbc,num_ghost): """ Impose periodic boundary condition to aux at the bottom boundary for the sphere. """ grid=state.grid # Get parameters and variables that have to be passed to the fortran src2 # routine. mx, my = grid.num_cells[0], grid.num_cells[1] xlower, ylower = grid.lower[0], grid.lower[1] dx, dy = grid.delta[0],grid.delta[1] # Impose BC auxtemp = auxbc.copy() auxtemp = problem.setaux(mx,my,num_ghost,mx,my,xlower,ylower,dx,dy,auxtemp,Rsphere) auxbc[:,:,:num_ghost] = auxtemp[:,:,:num_ghost]
def auxbc_lower_y(state,dim,t,auxbc,num_ghost): """ Impose periodic boundary condition to aux at the bottom boundary for the sphere. """ grid=state.grid # Get parameters and variables that have to be passed to the fortran src2 # routine. mx, my = grid.num_cells[0], grid.num_cells[1] xlower, ylower = grid.lower[0], grid.lower[1] dx, dy = grid.delta[0],grid.delta[1] # Impose BC auxtemp = auxbc.copy() auxtemp = problem.setaux(mx,my,num_ghost,mx,my,xlower,ylower,dx,dy,auxtemp,Rsphere) auxbc[:,:,:num_ghost] = auxtemp[:,:,:num_ghost]
Python
def auxbc_upper_y(state,dim,t,auxbc,num_ghost): """ Impose periodic boundary condition to aux at the top boundary for the sphere. """ grid=state.grid # Get parameters and variables that have to be passed to the fortran src2 # routine. mx, my = grid.num_cells[0], grid.num_cells[1] xlower, ylower = grid.lower[0], grid.lower[1] dx, dy = grid.delta[0],grid.delta[1] # Impose BC auxtemp = auxbc.copy() auxtemp = problem.setaux(mx,my,num_ghost,mx,my,xlower,ylower,dx,dy,auxtemp,Rsphere) auxbc[:,:,-num_ghost:] = auxtemp[:,:,-num_ghost:]
def auxbc_upper_y(state,dim,t,auxbc,num_ghost): """ Impose periodic boundary condition to aux at the top boundary for the sphere. """ grid=state.grid # Get parameters and variables that have to be passed to the fortran src2 # routine. mx, my = grid.num_cells[0], grid.num_cells[1] xlower, ylower = grid.lower[0], grid.lower[1] dx, dy = grid.delta[0],grid.delta[1] # Impose BC auxtemp = auxbc.copy() auxtemp = problem.setaux(mx,my,num_ghost,mx,my,xlower,ylower,dx,dy,auxtemp,Rsphere) auxbc[:,:,-num_ghost:] = auxtemp[:,:,-num_ghost:]
Python
def burgers(use_petsc=0,kernel_language='Fortran',iplot=0,htmlplot=0,outdir='./_output',solver_type='classic'): """ Example python script for solving the 1d Burgers equation. """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language if kernel_language=='Python': solver.rp = riemann.rp_burgers_1d elif kernel_language=='Fortran': solver.rp = riemann.rp1_burgers solver.num_waves = 1 solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x',0.0,1.0,500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) grid = state.grid xc=grid.x.centers state.q[0,:] = np.sin(np.pi*2*xc) + 0.50 state.problem_data['efix']=True #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal =0.5 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def burgers(use_petsc=0,kernel_language='Fortran',iplot=0,htmlplot=0,outdir='./_output',solver_type='classic'): """ Example python script for solving the 1d Burgers equation. """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language if kernel_language=='Python': solver.rp = riemann.rp_burgers_1d elif kernel_language=='Fortran': solver.rp = riemann.rp1_burgers solver.num_waves = 1 solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x',0.0,1.0,500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) grid = state.grid xc=grid.x.centers state.q[0,:] = np.sin(np.pi*2*xc) + 0.50 state.problem_data['efix']=True #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal =0.5 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
Python
def run_app_from_main(application): r""" Runs an application from apps/, automatically parsing command line keyword arguments (key=value) as parameters to the application, with positional arguments being passed to PETSc (if it is enabled). Perhaps we should take the PETSc approach of having a database of PyClaw options that can be queried for options on specific objects within the PyClaw runtime instead of front-loading everything through the application main... """ # Arguments to the PyClaw should be keyword based, positional arguments # will be passed to PETSc petsc_args, app_kwargs = _info_from_argv(sys.argv) if 'use_petsc' in app_kwargs and app_kwargs['use_petsc']: import petsc4py petsc_args = [arg.replace('--','-') for arg in sys.argv[1:] if '=' not in arg] petsc4py.init(petsc_args) output=application(**app_kwargs) return output
def run_app_from_main(application): r""" Runs an application from apps/, automatically parsing command line keyword arguments (key=value) as parameters to the application, with positional arguments being passed to PETSc (if it is enabled). Perhaps we should take the PETSc approach of having a database of PyClaw options that can be queried for options on specific objects within the PyClaw runtime instead of front-loading everything through the application main... """ # Arguments to the PyClaw should be keyword based, positional arguments # will be passed to PETSc petsc_args, app_kwargs = _info_from_argv(sys.argv) if 'use_petsc' in app_kwargs and app_kwargs['use_petsc']: import petsc4py petsc_args = [arg.replace('--','-') for arg in sys.argv[1:] if '=' not in arg] petsc4py.init(petsc_args) output=application(**app_kwargs) return output
Python
def gen_variants(application, verifier, kernel_languages=('Fortran',), **kwargs): r""" Generator of runnable variants of a test application given a verifier Given an application, a script for verifying its output, and a list of kernel languages to try, generates all possible variants of the application to try by taking a product of the available kernel_languages and (petclaw/pyclaw). For many applications, this will generate 4 variants: the product of the two main kernel languages ('Fortran' and 'Python'), against the the two parallel modes (petclaw and pyclaw). For more information on how the verifier function should be implemented, see util.test_app for a description, and util.check_diff for an example. All unrecognized keyword arguments are passed through to the application. """ arg_dicts = build_variant_arg_dicts(kernel_languages) for test_kwargs in arg_dicts: test_kwargs.update(kwargs) yield (test_app, application, verifier, test_kwargs) return
def gen_variants(application, verifier, kernel_languages=('Fortran',), **kwargs): r""" Generator of runnable variants of a test application given a verifier Given an application, a script for verifying its output, and a list of kernel languages to try, generates all possible variants of the application to try by taking a product of the available kernel_languages and (petclaw/pyclaw). For many applications, this will generate 4 variants: the product of the two main kernel languages ('Fortran' and 'Python'), against the the two parallel modes (petclaw and pyclaw). For more information on how the verifier function should be implemented, see util.test_app for a description, and util.check_diff for an example. All unrecognized keyword arguments are passed through to the application. """ arg_dicts = build_variant_arg_dicts(kernel_languages) for test_kwargs in arg_dicts: test_kwargs.update(kwargs) yield (test_app, application, verifier, test_kwargs) return
Python
def check_diff(expected, test, **kwargs): r""" Checks the difference between expected and test values, return None if ok This function expects either the keyword argument 'abstol' or 'reltol'. """ if 'abstol' in kwargs: if abs(expected - test) < kwargs['abstol']: return None else: return (expected, test, 'abstol : %s' % kwargs['abstol']) elif 'reltol' in kwargs: if abs((expected - test)/expected) < kwargs['reltol']: return None else: return (expected, test, 'reltol : %s' % kwargs['reltol']) else: raise Exception('Incorrect use of check_diff verifier, specify tol!')
def check_diff(expected, test, **kwargs): r""" Checks the difference between expected and test values, return None if ok This function expects either the keyword argument 'abstol' or 'reltol'. """ if 'abstol' in kwargs: if abs(expected - test) < kwargs['abstol']: return None else: return (expected, test, 'abstol : %s' % kwargs['abstol']) elif 'reltol' in kwargs: if abs((expected - test)/expected) < kwargs['reltol']: return None else: return (expected, test, 'reltol : %s' % kwargs['reltol']) else: raise Exception('Incorrect use of check_diff verifier, specify tol!')
Python
def compile_library(source_list,module_name,interface_functions=[], local_path='./',library_path='./',f2py_flags='', FC=None,FFLAGS=None,recompile=False,clean=False): r""" Compiles and wraps fortran source into a callable module in python. This function uses f2py to create an interface from python to the fortran sources in source_list. The source_list can either be a list of names of source files in which case compile_library will search for the file in local_path and then in library_path. If a path is given, the file will be checked to see if it exists, if not it will look for the file in the above resolution order. If any source file is not found, an IOException is raised. The list interface_functions allows the user to specify which fortran functions are actually available to python. The interface functions are assumed to be in the file with their name, i.e. claw1 is located in 'claw1.f95' or 'claw1.f'. The interface from fortran may be different than the original function call in fortran so the user should make sure to check the automatically created doc string for the fortran module for proper use. Source files will not be recompiled if they have not been changed. One set of options of note is for enabling OpenMP, it requires the usual fortran flags but the OpenMP library also must be compiled in, this is done with the flag -lgomp. The call to compile_library would then be: compile_library(src,module_name,f2py_flags='-lgomp',FFLAGS='-fopenmp') For complete optimization use: FFLAGS='-O3 -fopenmp -funroll-loops -finline-functions -fdefault-real-8' :Input: - *source_list* - (list of strings) List of source files, if these are just names of the source files, i.e. 'bc1.f' then they will be searched for in the default source resolution order, if an explicit path is given, i.e. './bc1.f', then the function will use that source if it can find it. - *module_name* - (string) Name of the resulting module - *interface_functions* - (list of strings) List of function names to provide access to, if empty, all functions are accessible to python. Defaults to []. - *local_path* - (string) The base path for source resolution, defaults to './'. - *library_path* - (string) The library path for source resolution, defaults to './'. - *f2py_flags* - (string) f2py flags to be passed - *FC* - (string) Override the environment variable FC and use it to compile, note that this does not replace the compiler that f2py uses, only the object file compilation (functions that do not have interfaces) - *FFLAGS* - (string) Override the environment variable FFLAGS and pass them to the fortran compiler - *recompile* - (bool) Force recompilation of the library, defaults to False - *clean* - (bool) Force a clean build of all source files """ # Setup logger logger = logging.getLogger('f2py') temp_file = tempfile.TemporaryFile() logger.info('Compiling %s' % module_name) # Force recompile if the clean flag is set if clean: recompile = True # Expand local_path and library_path local_path = os.path.expandvars(local_path) local_path = os.path.expanduser(local_path) library_path = os.path.expandvars(library_path) library_path = os.path.expanduser(library_path) # Fetch environment variables we need for compilation if FC is None: if os.environ.has_key('FC'): FC = os.environ['FC'] else: FC = 'gfortran' if FFLAGS is None: if os.environ.has_key('FFLAGS'): FFLAGS = os.environ['FFLAGS'] else: FFLAGS = '' # Create the list of paths to sources path_list = [] for source in source_list: # Check to see if the source looks like a path, i.e. it contains the # os.path.sep character if source.find(os.path.sep) >= 0: source = os.path.expandvars(source) source = os.path.expanduser(source) # This is a path, check to see if it's valid if os.path.exists(source): path_list.append(source) continue # Otherwise, take the last part of the path and try searching for # it in the resolution order source = os.path.split(source) # Search for the source file in local_path and then library_path if os.path.exists(os.path.join(local_path,source)): path_list.append(os.path.join(local_path,source)) continue elif os.path.exists(os.path.join(library_path,source)): path_list.append(os.path.join(library_path,source)) continue else: raise IOError('Could not find source file %s' % source) # Compile each of the source files if the object files are not present or # if the modification date of the source file is newer than the object # file's creation date object_list = [] src_list = [] for path in path_list: object_path = os.path.join(os.path.split(path)[0], '.'.join((os.path.split(path)[1].split('.')[:-1][0],'o'))) # Check to see if this path contains one of the interface functions if os.path.split(path)[1].split('.')[:-1][0] in interface_functions: src_list.append(path) continue # If there are no interface functions specified, then all source files # must be included in the f2py call elif len(interface_functions) == 0: src_list.append(path) continue if os.path.exists(object_path) and not clean: # Check to see if the modification date of the source file is # greater than the object file if os.path.getmtime(object_path) > os.path.getmtime(path): object_list.append(object_path) continue # Compile the source file into the object file command = '%s %s -c %s -o %s' % (FC,FFLAGS,path,object_path) logger.debug(command) subprocess.call(command,shell=True,stdout=temp_file) object_list.append(object_path) # Check to see if recompile is needed if not recompile: module_path = os.path.join('.','.'.join((module_name,'so'))) if os.path.exists(module_path): for src in src_list: if os.path.getmtime(module_path) < os.path.getmtime(src): recompile = True break for obj in object_list: if os.path.getmtime(module_path) < os.path.getmtime(obj): recompile = True break else: recompile = True if recompile: # Wrap the object files into a python module f2py_command = "f2py -c" # Add standard compiler flags f2py_command = ' '.join((f2py_command,f2py_flags)) f2py_command = ' '.join((f2py_command,"--f90flags='%s'" % FFLAGS)) # Add module names f2py_command = ' '.join((f2py_command,'-m %s' % module_name)) # Add source files f2py_command = ' '.join((f2py_command,' '.join(src_list))) # Add object files f2py_command = ' '.join((f2py_command,' '.join(object_list))) # Add interface functions if len(interface_functions) > 0: f2py_command = ' '.join( (f2py_command,'only:') ) for interface in interface_functions: f2py_command = ' '.join( (f2py_command,interface) ) f2py_command = ''.join( (f2py_command,' :') ) logger.debug(f2py_command) status = subprocess.call(f2py_command,shell=True,stdout=temp_file) if status == 0: logger.info("Module %s compiled" % module_name) else: logger.info("Module %s failed to compile with code %s" % (module_name,status)) sys.exit(13) else: logger.info("Module %s is up to date." % module_name) temp_file.seek(0) logger.debug(temp_file.read()) temp_file.close()
def compile_library(source_list,module_name,interface_functions=[], local_path='./',library_path='./',f2py_flags='', FC=None,FFLAGS=None,recompile=False,clean=False): r""" Compiles and wraps fortran source into a callable module in python. This function uses f2py to create an interface from python to the fortran sources in source_list. The source_list can either be a list of names of source files in which case compile_library will search for the file in local_path and then in library_path. If a path is given, the file will be checked to see if it exists, if not it will look for the file in the above resolution order. If any source file is not found, an IOException is raised. The list interface_functions allows the user to specify which fortran functions are actually available to python. The interface functions are assumed to be in the file with their name, i.e. claw1 is located in 'claw1.f95' or 'claw1.f'. The interface from fortran may be different than the original function call in fortran so the user should make sure to check the automatically created doc string for the fortran module for proper use. Source files will not be recompiled if they have not been changed. One set of options of note is for enabling OpenMP, it requires the usual fortran flags but the OpenMP library also must be compiled in, this is done with the flag -lgomp. The call to compile_library would then be: compile_library(src,module_name,f2py_flags='-lgomp',FFLAGS='-fopenmp') For complete optimization use: FFLAGS='-O3 -fopenmp -funroll-loops -finline-functions -fdefault-real-8' :Input: - *source_list* - (list of strings) List of source files, if these are just names of the source files, i.e. 'bc1.f' then they will be searched for in the default source resolution order, if an explicit path is given, i.e. './bc1.f', then the function will use that source if it can find it. - *module_name* - (string) Name of the resulting module - *interface_functions* - (list of strings) List of function names to provide access to, if empty, all functions are accessible to python. Defaults to []. - *local_path* - (string) The base path for source resolution, defaults to './'. - *library_path* - (string) The library path for source resolution, defaults to './'. - *f2py_flags* - (string) f2py flags to be passed - *FC* - (string) Override the environment variable FC and use it to compile, note that this does not replace the compiler that f2py uses, only the object file compilation (functions that do not have interfaces) - *FFLAGS* - (string) Override the environment variable FFLAGS and pass them to the fortran compiler - *recompile* - (bool) Force recompilation of the library, defaults to False - *clean* - (bool) Force a clean build of all source files """ # Setup logger logger = logging.getLogger('f2py') temp_file = tempfile.TemporaryFile() logger.info('Compiling %s' % module_name) # Force recompile if the clean flag is set if clean: recompile = True # Expand local_path and library_path local_path = os.path.expandvars(local_path) local_path = os.path.expanduser(local_path) library_path = os.path.expandvars(library_path) library_path = os.path.expanduser(library_path) # Fetch environment variables we need for compilation if FC is None: if os.environ.has_key('FC'): FC = os.environ['FC'] else: FC = 'gfortran' if FFLAGS is None: if os.environ.has_key('FFLAGS'): FFLAGS = os.environ['FFLAGS'] else: FFLAGS = '' # Create the list of paths to sources path_list = [] for source in source_list: # Check to see if the source looks like a path, i.e. it contains the # os.path.sep character if source.find(os.path.sep) >= 0: source = os.path.expandvars(source) source = os.path.expanduser(source) # This is a path, check to see if it's valid if os.path.exists(source): path_list.append(source) continue # Otherwise, take the last part of the path and try searching for # it in the resolution order source = os.path.split(source) # Search for the source file in local_path and then library_path if os.path.exists(os.path.join(local_path,source)): path_list.append(os.path.join(local_path,source)) continue elif os.path.exists(os.path.join(library_path,source)): path_list.append(os.path.join(library_path,source)) continue else: raise IOError('Could not find source file %s' % source) # Compile each of the source files if the object files are not present or # if the modification date of the source file is newer than the object # file's creation date object_list = [] src_list = [] for path in path_list: object_path = os.path.join(os.path.split(path)[0], '.'.join((os.path.split(path)[1].split('.')[:-1][0],'o'))) # Check to see if this path contains one of the interface functions if os.path.split(path)[1].split('.')[:-1][0] in interface_functions: src_list.append(path) continue # If there are no interface functions specified, then all source files # must be included in the f2py call elif len(interface_functions) == 0: src_list.append(path) continue if os.path.exists(object_path) and not clean: # Check to see if the modification date of the source file is # greater than the object file if os.path.getmtime(object_path) > os.path.getmtime(path): object_list.append(object_path) continue # Compile the source file into the object file command = '%s %s -c %s -o %s' % (FC,FFLAGS,path,object_path) logger.debug(command) subprocess.call(command,shell=True,stdout=temp_file) object_list.append(object_path) # Check to see if recompile is needed if not recompile: module_path = os.path.join('.','.'.join((module_name,'so'))) if os.path.exists(module_path): for src in src_list: if os.path.getmtime(module_path) < os.path.getmtime(src): recompile = True break for obj in object_list: if os.path.getmtime(module_path) < os.path.getmtime(obj): recompile = True break else: recompile = True if recompile: # Wrap the object files into a python module f2py_command = "f2py -c" # Add standard compiler flags f2py_command = ' '.join((f2py_command,f2py_flags)) f2py_command = ' '.join((f2py_command,"--f90flags='%s'" % FFLAGS)) # Add module names f2py_command = ' '.join((f2py_command,'-m %s' % module_name)) # Add source files f2py_command = ' '.join((f2py_command,' '.join(src_list))) # Add object files f2py_command = ' '.join((f2py_command,' '.join(object_list))) # Add interface functions if len(interface_functions) > 0: f2py_command = ' '.join( (f2py_command,'only:') ) for interface in interface_functions: f2py_command = ' '.join( (f2py_command,interface) ) f2py_command = ''.join( (f2py_command,' :') ) logger.debug(f2py_command) status = subprocess.call(f2py_command,shell=True,stdout=temp_file) if status == 0: logger.info("Module %s compiled" % module_name) else: logger.info("Module %s failed to compile with code %s" % (module_name,status)) sys.exit(13) else: logger.info("Module %s is up to date." % module_name) temp_file.seek(0) logger.debug(temp_file.read()) temp_file.close()
Python
def construct_function_handle(path,function_name=None): r""" Constructs a function handle from the file at path. This function will attempt to construct a function handle from the python file at path. :Input: - *path* - (string) Path to the file containing the function - *function_name* - (string) Name of the function defined in the file that the handle will point to. Defaults to the same name as the file without the extension. :Output: - (func) Function handle to the constructed function, None if this has failed. """ # Determine the resulting function_name if function_name is None: function_name = path.split('/')[-1].split('.')[0] full_path = os.path.abspath(path) if os.path.exists(full_path): suffix = path.split('.')[-1] # This is a python file and we just need to read it and map it if suffix in ['py']: execfile(full_path,globals()) return eval('%s' % function_name) else: raise Exception("Invalid file type for function handle.") else: raise Exception("Invalid file path %s" % path)
def construct_function_handle(path,function_name=None): r""" Constructs a function handle from the file at path. This function will attempt to construct a function handle from the python file at path. :Input: - *path* - (string) Path to the file containing the function - *function_name* - (string) Name of the function defined in the file that the handle will point to. Defaults to the same name as the file without the extension. :Output: - (func) Function handle to the constructed function, None if this has failed. """ # Determine the resulting function_name if function_name is None: function_name = path.split('/')[-1].split('.')[0] full_path = os.path.abspath(path) if os.path.exists(full_path): suffix = path.split('.')[-1] # This is a python file and we just need to read it and map it if suffix in ['py']: execfile(full_path,globals()) return eval('%s' % function_name) else: raise Exception("Invalid file type for function handle.") else: raise Exception("Invalid file path %s" % path)