language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def decode_content(self, msg: RawMessage) -> bool:
"""Decode MIB_UPLOAD response message content.
Returns:
result : True if successful
"""
if self._ak:
# MIB_UPLOAD_NEXT response - normal flow
me_class, inst, attr_mask = struct.unpack_from("!HHH", msg, self.content_offset)
# Create & populate upload_me
me_class_type = MeClassMapper.me_by_class(me_class)
if me_class_type is None:
# This is not an error. There are many ME classes that we don't support
logger.debug("can't decode message for me_class {}. Skipped".format(me_class))
self._upload_me = None
return True
# Decode attributes
self._upload_me = me_class_type(inst)
ret = self.decode_attributes(msg, self.content_offset + 6, attr_mask, decode_me=self._upload_me)
logger.debug("decode: {}{}".format(self._upload_me, ret and ': OK' or ': FAILED'))
else:
# MIB_UPLOAD_NEXT request - debug flow
self._sequence_num = struct.unpack_from("!H", msg, self.content_offset)[0]
return ret | def decode_content(self, msg: RawMessage) -> bool:
"""Decode MIB_UPLOAD response message content.
Returns:
result : True if successful
"""
if self._ak:
# MIB_UPLOAD_NEXT response - normal flow
me_class, inst, attr_mask = struct.unpack_from("!HHH", msg, self.content_offset)
# Create & populate upload_me
me_class_type = MeClassMapper.me_by_class(me_class)
if me_class_type is None:
# This is not an error. There are many ME classes that we don't support
logger.debug("can't decode message for me_class {}. Skipped".format(me_class))
self._upload_me = None
return True
# Decode attributes
self._upload_me = me_class_type(inst)
ret = self.decode_attributes(msg, self.content_offset + 6, attr_mask, decode_me=self._upload_me)
logger.debug("decode: {}{}".format(self._upload_me, ret and ': OK' or ': FAILED'))
else:
# MIB_UPLOAD_NEXT request - debug flow
self._sequence_num = struct.unpack_from("!H", msg, self.content_offset)[0]
return ret |
Python | def reinit(self):
""" Re-initialize action, prepare for reuse """
self._ar = self._ar or self._ak
self._ak = False
self._content_len = 0 # will be calculated for extended
self._total_len = self._extended and 2044 or 44 | def reinit(self):
""" Re-initialize action, prepare for reuse """
self._ar = self._ar or self._ak
self._ak = False
self._content_len = 0 # will be calculated for extended
self._total_len = self._extended and 2044 or 44 |
Python | def rollback(self, onu: 'OnuDriver') -> 'OmciAction':
""" Create a roll-back action
Args:
onu : OnuDriver containing the current ONU MIB
Returns:
An action that rolls-back 'this' action, or None if not applicable
"""
return None | def rollback(self, onu: 'OnuDriver') -> 'OmciAction':
""" Create a roll-back action
Args:
onu : OnuDriver containing the current ONU MIB
Returns:
An action that rolls-back 'this' action, or None if not applicable
"""
return None |
Python | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB
Args:
onu : OnuDriver containing the current ONU MIB
Raises an exception in case of commit failure
"""
pass | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB
Args:
onu : OnuDriver containing the current ONU MIB
Raises an exception in case of commit failure
"""
pass |
Python | def decode_key_fields(msg: RawMessage) -> Tuple[int, int, int]:
"""Decode key fields of the raw message
Args:
msg: raw OMCI message
Returns:
tci, ak, action
"""
tci, mt, dev = struct.unpack_from('!HBB', msg, 0)
ak = bool((mt >> 5) & 0x1)
action = mt & 0x1f
extended = (dev == 0x0b)
content_offset = extended and 10 or 8
content_length = extended and struct.unpack_from('!H', msg, 8)[0] or 36
return tci, ak, action | def decode_key_fields(msg: RawMessage) -> Tuple[int, int, int]:
"""Decode key fields of the raw message
Args:
msg: raw OMCI message
Returns:
tci, ak, action
"""
tci, mt, dev = struct.unpack_from('!HBB', msg, 0)
ak = bool((mt >> 5) & 0x1)
action = mt & 0x1f
extended = (dev == 0x0b)
content_offset = extended and 10 or 8
content_length = extended and struct.unpack_from('!H', msg, 8)[0] or 36
return tci, ak, action |
Python | def next_tci(self) -> int:
""" This function resturns the next TCI value to be transmitted """
with self._lock:
self._tci = (self._tci == 0x7fff) and 1 or self._tci + 1
tci = self._tci
return tci | def next_tci(self) -> int:
""" This function resturns the next TCI value to be transmitted """
with self._lock:
self._tci = (self._tci == 0x7fff) and 1 or self._tci + 1
tci = self._tci
return tci |
Python | def ack_timeout(self) -> float:
""" Response timeout value (s).
OMH handler waits for response for ack_timeout (s) before retransmitting
or reporting a TIMEOUT failure.
"""
return self._ack_timeout | def ack_timeout(self) -> float:
""" Response timeout value (s).
OMH handler waits for response for ack_timeout (s) before retransmitting
or reporting a TIMEOUT failure.
"""
return self._ack_timeout |
Python | def recv(self, msg: RawMessage):
""" Message received from ONU.
This function is called by communication layer.
Args:
msg - Raw OMCI message
"""
# Peek in the common OMCI message header
tci, ak, action = OmciAction.decode_key_fields(msg)
# If this is a response, identify the requester.
# Otherwise, deliver to the registered subscriber for the action
if ak:
sender = None
with self._lock:
for _tci, _sender in self._pending_requests:
if _tci == tci:
self._pending_requests.remove((_tci, _sender))
sender = _sender
break
if sender:
sender.recv(msg)
else:
logger.warning("recv: unexpected ACK with TCI {} from ONU {} discarded.".format(tci, self._onu_id))
else:
# Not a response. Identify message handler by message type
if action not in OnuDriver._message_handler_by_mt:
logger.error("recv: Don't know how to handle MT {} from ONU {}. Message discarded.".format(
action, self._onu_id))
return
OnuDriver._message_handler_by_mt[action].recv(self, msg) | def recv(self, msg: RawMessage):
""" Message received from ONU.
This function is called by communication layer.
Args:
msg - Raw OMCI message
"""
# Peek in the common OMCI message header
tci, ak, action = OmciAction.decode_key_fields(msg)
# If this is a response, identify the requester.
# Otherwise, deliver to the registered subscriber for the action
if ak:
sender = None
with self._lock:
for _tci, _sender in self._pending_requests:
if _tci == tci:
self._pending_requests.remove((_tci, _sender))
sender = _sender
break
if sender:
sender.recv(msg)
else:
logger.warning("recv: unexpected ACK with TCI {} from ONU {} discarded.".format(tci, self._onu_id))
else:
# Not a response. Identify message handler by message type
if action not in OnuDriver._message_handler_by_mt:
logger.error("recv: Don't know how to handle MT {} from ONU {}. Message discarded.".format(
action, self._onu_id))
return
OnuDriver._message_handler_by_mt[action].recv(self, msg) |
Python | def dump_mib(self):
"""Dump the main MIB to the screen"""
print('=== Start of MIB dump for ONU {} ==='.format(self._onu_id))
all_me_classes = self.get_all_me_classes()
for me_class in all_me_classes:
for me in self.get_all_instances(me_class):
print('{}'.format(me))
print('=== End of MIB dump for ONU {} ==='.format(self._onu_id)) | def dump_mib(self):
"""Dump the main MIB to the screen"""
print('=== Start of MIB dump for ONU {} ==='.format(self._onu_id))
all_me_classes = self.get_all_me_classes()
for me_class in all_me_classes:
for me in self.get_all_instances(me_class):
print('{}'.format(me))
print('=== End of MIB dump for ONU {} ==='.format(self._onu_id)) |
Python | def tc_set(self, pbit: int, tc: int):
""" Set Traffic Class (TC) value for a pbit
Args:
pbit: 0..7
tc: 0..7
"""
assert 0 <= pbit <= 7
assert 0 <= tc <= 7
self._pbit_to_tc_map[pbit] = tc | def tc_set(self, pbit: int, tc: int):
""" Set Traffic Class (TC) value for a pbit
Args:
pbit: 0..7
tc: 0..7
"""
assert 0 <= pbit <= 7
assert 0 <= tc <= 7
self._pbit_to_tc_map[pbit] = tc |
Python | def pbits_by_tc(self, tc: int) -> Tuple[int, ...]:
""" Get all PBITS that map to the specified TC """
pbits = []
for pbit in range(len(self._pbit_to_tc_map)):
if tc == self._pbit_to_tc_map[pbit]:
pbits.append(pbit)
return tuple(pbits) | def pbits_by_tc(self, tc: int) -> Tuple[int, ...]:
""" Get all PBITS that map to the specified TC """
pbits = []
for pbit in range(len(self._pbit_to_tc_map)):
if tc == self._pbit_to_tc_map[pbit]:
pbits.append(pbit)
return tuple(pbits) |
Python | def recv(self, vomci_msg : tr451_vomci_sbi_message_pb2):
""" Message received via the channel.
Hand it over to the proxy for forwarding
"""
logger.info("ProxyGrpcClient: Received message")
self._parent.recv(self, vomci_msg) | def recv(self, vomci_msg : tr451_vomci_sbi_message_pb2):
""" Message received via the channel.
Hand it over to the proxy for forwarding
"""
logger.info("ProxyGrpcClient: Received message")
self._parent.recv(self, vomci_msg) |
Python | def create_8021p_svc_mapper(handler:OmhHandler, name: str) -> OMHStatus:
""" Create 802.1p Service Mapper
handler: OMH handler that requested this service
name: QoS profile name
Returns:
completion status
"""
all_instance_ids = handler._onu.get_all_instance_ids(omci_me_class['IEEE_8021_P_MAPPER_SVC_PROF'])
inst_id = len(all_instance_ids) > 0 and all_instance_ids[-1] + 1 or 1
profile_me = ieee_8021_p_mapper_svc_prof_me(
inst_id,
tp_ptr=OMCI_NULL_PTR,
interwork_tp_ptr_pri_0=OMCI_NULL_PTR,
interwork_tp_ptr_pri_1=OMCI_NULL_PTR,
interwork_tp_ptr_pri_2=OMCI_NULL_PTR,
interwork_tp_ptr_pri_3=OMCI_NULL_PTR,
interwork_tp_ptr_pri_4=OMCI_NULL_PTR,
interwork_tp_ptr_pri_5=OMCI_NULL_PTR,
interwork_tp_ptr_pri_6=OMCI_NULL_PTR,
interwork_tp_ptr_pri_7=OMCI_NULL_PTR,
unmarked_frame_opt='DERIVE_IMPLIED_PCP',
mapper_tp_type='BRIDGING_MAPPING')
profile_me.user_name = name
if handler.transaction(CreateAction(handler, profile_me)) != OMHStatus.OK:
return handler.logerr_and_return(
handler._transaction_status,
'Create IEEE 802.1p Mapper SVC Profile ME {}'.format(name))
return OMHStatus.OK | def create_8021p_svc_mapper(handler:OmhHandler, name: str) -> OMHStatus:
""" Create 802.1p Service Mapper
handler: OMH handler that requested this service
name: QoS profile name
Returns:
completion status
"""
all_instance_ids = handler._onu.get_all_instance_ids(omci_me_class['IEEE_8021_P_MAPPER_SVC_PROF'])
inst_id = len(all_instance_ids) > 0 and all_instance_ids[-1] + 1 or 1
profile_me = ieee_8021_p_mapper_svc_prof_me(
inst_id,
tp_ptr=OMCI_NULL_PTR,
interwork_tp_ptr_pri_0=OMCI_NULL_PTR,
interwork_tp_ptr_pri_1=OMCI_NULL_PTR,
interwork_tp_ptr_pri_2=OMCI_NULL_PTR,
interwork_tp_ptr_pri_3=OMCI_NULL_PTR,
interwork_tp_ptr_pri_4=OMCI_NULL_PTR,
interwork_tp_ptr_pri_5=OMCI_NULL_PTR,
interwork_tp_ptr_pri_6=OMCI_NULL_PTR,
interwork_tp_ptr_pri_7=OMCI_NULL_PTR,
unmarked_frame_opt='DERIVE_IMPLIED_PCP',
mapper_tp_type='BRIDGING_MAPPING')
profile_me.user_name = name
if handler.transaction(CreateAction(handler, profile_me)) != OMHStatus.OK:
return handler.logerr_and_return(
handler._transaction_status,
'Create IEEE 802.1p Mapper SVC Profile ME {}'.format(name))
return OMHStatus.OK |
Python | def create_mac_bridge_port(handler: OmhHandler, tp: ME) -> OMHStatus:
"""Create MAC Bridge Port Config Data for an interface
Args:
handler: OMH handler that requested this service
tp: Bridge port Termination Point
Returns:
completion status
"""
# Get mac_bridge_svc_prof ME
mac_bridge_svc_prof = handler._onu.get_first(omci_me_class['MAC_BRIDGE_SVC_PROF'])
if mac_bridge_svc_prof is None:
return handler.logerr_and_return(OMHStatus.INTERNAL_ERROR,
"MAC Bridge Service Profile ME doesn't exist")
all_bridge_ports = handler._onu.get_all_instance_ids(omci_me_class['MAC_BRIDGE_PORT_CONFIG_DATA'])
port_num = len(all_bridge_ports) > 0 and all_bridge_ports[-1] + 1 or 1
mac_bridge_port = mac_bridge_port_config_data_me(inst=port_num, bridge_id_ptr = mac_bridge_svc_prof.inst,
port_num = port_num, tp_ptr = tp.inst)
if type(tp) is pptp_eth_uni_me:
mac_bridge_port.tp_type = 'PHY_PATH_TP_ETH_UNI'
elif type(tp) is virtual_eth_intf_point_me:
mac_bridge_port.tp_type = 'VIRTUAL_ETH_INTERFACE_POINT'
elif type(tp) is ieee_8021_p_mapper_svc_prof_me:
mac_bridge_port.tp_type = 'IEEE_8021_P_MAPPER_SVC_PROF'
else:
return OMHStatus.NOT_SUPPORTED
status = handler.transaction(CreateAction(handler, mac_bridge_port))
if status == OMHStatus.OK:
tp.set_user_attr('bridge_port', mac_bridge_port.inst)
return OMHStatus.OK | def create_mac_bridge_port(handler: OmhHandler, tp: ME) -> OMHStatus:
"""Create MAC Bridge Port Config Data for an interface
Args:
handler: OMH handler that requested this service
tp: Bridge port Termination Point
Returns:
completion status
"""
# Get mac_bridge_svc_prof ME
mac_bridge_svc_prof = handler._onu.get_first(omci_me_class['MAC_BRIDGE_SVC_PROF'])
if mac_bridge_svc_prof is None:
return handler.logerr_and_return(OMHStatus.INTERNAL_ERROR,
"MAC Bridge Service Profile ME doesn't exist")
all_bridge_ports = handler._onu.get_all_instance_ids(omci_me_class['MAC_BRIDGE_PORT_CONFIG_DATA'])
port_num = len(all_bridge_ports) > 0 and all_bridge_ports[-1] + 1 or 1
mac_bridge_port = mac_bridge_port_config_data_me(inst=port_num, bridge_id_ptr = mac_bridge_svc_prof.inst,
port_num = port_num, tp_ptr = tp.inst)
if type(tp) is pptp_eth_uni_me:
mac_bridge_port.tp_type = 'PHY_PATH_TP_ETH_UNI'
elif type(tp) is virtual_eth_intf_point_me:
mac_bridge_port.tp_type = 'VIRTUAL_ETH_INTERFACE_POINT'
elif type(tp) is ieee_8021_p_mapper_svc_prof_me:
mac_bridge_port.tp_type = 'IEEE_8021_P_MAPPER_SVC_PROF'
else:
return OMHStatus.NOT_SUPPORTED
status = handler.transaction(CreateAction(handler, mac_bridge_port))
if status == OMHStatus.OK:
tp.set_user_attr('bridge_port', mac_bridge_port.inst)
return OMHStatus.OK |
Python | def create_ext_vlan_tag_oper_config_data(handler: OmhHandler, iface: ME, input_tpid: int = 0, output_tpid: int = 0) -> OMHStatus:
"""Create MAC Bridge Port Config Data for an interface
Requires user attribute iface.bridge_port_num to be set
"""
all_instances = handler._onu.get_all_instance_ids(omci_me_class['EXT_VLAN_TAG_OPER_CONFIG_DATA'])
inst = len(all_instances) > 0 and all_instances[-1] + 1 or 1
ext_vlan_tag = ext_vlan_tag_oper_config_data_me(inst)
if type(iface) is pptp_eth_uni_me:
ext_vlan_tag.assoc_type = 'PPTP_ETH_UNI'
elif type(iface) is virtual_eth_intf_point_me:
ext_vlan_tag.assoc_type = 'VEIP'
elif type(iface) is mac_bridge_port_config_data_me:
ext_vlan_tag.assoc_type = 'MAC_BRIDGE_PORT_CFG_DATA'
else:
return OMHStatus.NOT_SUPPORTED
ext_vlan_tag.assoc_me_ptr = iface.inst
status = handler.transaction(CreateAction(handler, ext_vlan_tag))
if status != OMHStatus.OK:
return status
# Now set attributes that can't be set by 'create' action
ext_vlan_tag.input_tpid = input_tpid != 0 and input_tpid or 0x8100
ext_vlan_tag.output_tpid = output_tpid != 0 and output_tpid or 0x8100
# XXX TODO: need to support additional downstream_mode values?
ext_vlan_tag.ds_mode = 'US_INVERSE'
status = handler.transaction(SetAction(handler, ext_vlan_tag, ('input_tpid', 'output_tpid', 'ds_mode')))
if status != OMHStatus.OK:
return status
iface.set_user_attr('ext_vlan_tag_op', inst)
return OMHStatus.OK | def create_ext_vlan_tag_oper_config_data(handler: OmhHandler, iface: ME, input_tpid: int = 0, output_tpid: int = 0) -> OMHStatus:
"""Create MAC Bridge Port Config Data for an interface
Requires user attribute iface.bridge_port_num to be set
"""
all_instances = handler._onu.get_all_instance_ids(omci_me_class['EXT_VLAN_TAG_OPER_CONFIG_DATA'])
inst = len(all_instances) > 0 and all_instances[-1] + 1 or 1
ext_vlan_tag = ext_vlan_tag_oper_config_data_me(inst)
if type(iface) is pptp_eth_uni_me:
ext_vlan_tag.assoc_type = 'PPTP_ETH_UNI'
elif type(iface) is virtual_eth_intf_point_me:
ext_vlan_tag.assoc_type = 'VEIP'
elif type(iface) is mac_bridge_port_config_data_me:
ext_vlan_tag.assoc_type = 'MAC_BRIDGE_PORT_CFG_DATA'
else:
return OMHStatus.NOT_SUPPORTED
ext_vlan_tag.assoc_me_ptr = iface.inst
status = handler.transaction(CreateAction(handler, ext_vlan_tag))
if status != OMHStatus.OK:
return status
# Now set attributes that can't be set by 'create' action
ext_vlan_tag.input_tpid = input_tpid != 0 and input_tpid or 0x8100
ext_vlan_tag.output_tpid = output_tpid != 0 and output_tpid or 0x8100
# XXX TODO: need to support additional downstream_mode values?
ext_vlan_tag.ds_mode = 'US_INVERSE'
status = handler.transaction(SetAction(handler, ext_vlan_tag, ('input_tpid', 'output_tpid', 'ds_mode')))
if status != OMHStatus.OK:
return status
iface.set_user_attr('ext_vlan_tag_op', inst)
return OMHStatus.OK |
Python | def create_vlan_tagging_filter_data(handler: OmhHandler, inst: int, name: str,
classifier: PacketClassifier, vlan_action: VlanAction) -> OMHStatus:
""" Create and configure VLAN Tagging Filter Data ME
Please note that vlan tagging filter is applied BEFORE vlan_action in the ingress
and AFTER vlan_action in the egress. Therefore, need to take 'action' into account.
Args:
handler: OMH handler that requested this service
inst: instance id. Must be equal to the instance of the associated MAC Bridge Port Data ME
classifier: Packet classifier
vlan_action: Packet VLAN action
Returns:
completion status
"""
# XXX: TODO: add support for multiple VLAN classifier in a sub-interface
if vlan_action is not None:
if vlan_action.action == VlanAction.Action.PUSH or vlan_action.action == VlanAction.Action.TRANSLATE:
o_vid = vlan_action.o_vid
elif vlan_action.action == VlanAction.Action.POP:
o_vid = classifier is None and None or classifier.field('i_vid')
else:
return handler.logerr_and_return(OMHStatus.NOT_SUPPORTED,
"VLAN action {} is not supported".format(vlan_action.action))
else:
o_vid = classifier is None and None or classifier.field('o_vid')
tcid = 0
if o_vid is None:
action = 'TAGGED_BRIDGING_A_NO_INVESTIGATION_UNTAGGED_BRIDGING_A'
elif o_vid.pbit != PBIT_VALUE_ANY:
tcid |= (o_vid.pbit << 13)
if o_vid.vid != VID_VALUE_ANY:
action = 'TAGGED_ACTION_H_TCI_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
tcid |= o_vid.vid
else:
action = 'TAGGED_ACTION_H_PRI_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
elif o_vid.vid != VID_VALUE_ANY:
# Classify by VID only
action = 'TAGGED_ACTION_H_VID_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
tcid |= o_vid.vid
vlan_filter = bytearray(2)
vlan_filter[0] = tcid >> 8
vlan_filter[1] = tcid & 0xff
tag_filter_me = vlan_tag_filter_data_me(inst, vlan_filter_list=vlan_filter, forward_oper=action, num_of_entries=1)
tag_filter_me.user_name = name
return handler.transaction(CreateAction(handler, tag_filter_me)) | def create_vlan_tagging_filter_data(handler: OmhHandler, inst: int, name: str,
classifier: PacketClassifier, vlan_action: VlanAction) -> OMHStatus:
""" Create and configure VLAN Tagging Filter Data ME
Please note that vlan tagging filter is applied BEFORE vlan_action in the ingress
and AFTER vlan_action in the egress. Therefore, need to take 'action' into account.
Args:
handler: OMH handler that requested this service
inst: instance id. Must be equal to the instance of the associated MAC Bridge Port Data ME
classifier: Packet classifier
vlan_action: Packet VLAN action
Returns:
completion status
"""
# XXX: TODO: add support for multiple VLAN classifier in a sub-interface
if vlan_action is not None:
if vlan_action.action == VlanAction.Action.PUSH or vlan_action.action == VlanAction.Action.TRANSLATE:
o_vid = vlan_action.o_vid
elif vlan_action.action == VlanAction.Action.POP:
o_vid = classifier is None and None or classifier.field('i_vid')
else:
return handler.logerr_and_return(OMHStatus.NOT_SUPPORTED,
"VLAN action {} is not supported".format(vlan_action.action))
else:
o_vid = classifier is None and None or classifier.field('o_vid')
tcid = 0
if o_vid is None:
action = 'TAGGED_BRIDGING_A_NO_INVESTIGATION_UNTAGGED_BRIDGING_A'
elif o_vid.pbit != PBIT_VALUE_ANY:
tcid |= (o_vid.pbit << 13)
if o_vid.vid != VID_VALUE_ANY:
action = 'TAGGED_ACTION_H_TCI_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
tcid |= o_vid.vid
else:
action = 'TAGGED_ACTION_H_PRI_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
elif o_vid.vid != VID_VALUE_ANY:
# Classify by VID only
action = 'TAGGED_ACTION_H_VID_INVESTIGATION_UNTAGGED_DISCARDING_C_DUP'
tcid |= o_vid.vid
vlan_filter = bytearray(2)
vlan_filter[0] = tcid >> 8
vlan_filter[1] = tcid & 0xff
tag_filter_me = vlan_tag_filter_data_me(inst, vlan_filter_list=vlan_filter, forward_oper=action, num_of_entries=1)
tag_filter_me.user_name = name
return handler.transaction(CreateAction(handler, tag_filter_me)) |
Python | def _set_8021p_mapper(handler: OmhHandler, mapper_me: ieee_8021_p_mapper_svc_prof_me,
pbit_to_tc: 'PbitToTCMapper', uni_name: str, pbit: int) -> (OMHStatus, bool):
""" Set up 802_1p mapper ME for a specified priority and all other priorities that
map to the same traffic class
"""
tc = pbit_to_tc.tc(pbit)
if tc is None:
return OMHStatus.OK, False
# Find a GEM port by UNI and TC
gem = get_gem_port_by_uni_tc(handler.onu, uni_name, tc)
if gem is None:
return OMHStatus.OK, False
# Find GAL ethernet profile
gal_eth_prof = handler.onu.get_by_name('gal_eth_prof')
if gal_eth_prof is None:
logger.error("set_8021p_mapper: GAL Ethernet Profile is not found")
return OMHStatus.INTERNAL_ERROR, False
# Create GEM_IW_TP
all_gem_iw_tp_inst = handler.onu.get_all_instance_ids(omci_me_class['GEM_IW_TP'])
gem_iw_tp_inst = len(all_gem_iw_tp_inst) > 0 and all_gem_iw_tp_inst[-1] + 1 or 1
gem_iw_tp = gem_iw_tp_me(
gem_iw_tp_inst,
gem_port_net_ctp_conn_ptr = gem.inst,
iw_opt = 'IEEE_8021_P_MAPPER',
svc_prof_ptr = mapper_me.inst,
iw_tp_ptr = OMCI_NULL_PTR,
gal_prof_ptr = gal_eth_prof.inst
)
status = handler.transaction(CreateAction(handler, gem_iw_tp))
if status != OMHStatus.OK:
return status, False
# Plug GEM IW_TP into all priorities that map to the same tc
pbits_by_tc = pbit_to_tc.pbits_by_tc(tc)
for pbit in pbits_by_tc:
_set_8021p_priority(mapper_me, pbit, gem_iw_tp.inst)
return OMHStatus.OK, True | def _set_8021p_mapper(handler: OmhHandler, mapper_me: ieee_8021_p_mapper_svc_prof_me,
pbit_to_tc: 'PbitToTCMapper', uni_name: str, pbit: int) -> (OMHStatus, bool):
""" Set up 802_1p mapper ME for a specified priority and all other priorities that
map to the same traffic class
"""
tc = pbit_to_tc.tc(pbit)
if tc is None:
return OMHStatus.OK, False
# Find a GEM port by UNI and TC
gem = get_gem_port_by_uni_tc(handler.onu, uni_name, tc)
if gem is None:
return OMHStatus.OK, False
# Find GAL ethernet profile
gal_eth_prof = handler.onu.get_by_name('gal_eth_prof')
if gal_eth_prof is None:
logger.error("set_8021p_mapper: GAL Ethernet Profile is not found")
return OMHStatus.INTERNAL_ERROR, False
# Create GEM_IW_TP
all_gem_iw_tp_inst = handler.onu.get_all_instance_ids(omci_me_class['GEM_IW_TP'])
gem_iw_tp_inst = len(all_gem_iw_tp_inst) > 0 and all_gem_iw_tp_inst[-1] + 1 or 1
gem_iw_tp = gem_iw_tp_me(
gem_iw_tp_inst,
gem_port_net_ctp_conn_ptr = gem.inst,
iw_opt = 'IEEE_8021_P_MAPPER',
svc_prof_ptr = mapper_me.inst,
iw_tp_ptr = OMCI_NULL_PTR,
gal_prof_ptr = gal_eth_prof.inst
)
status = handler.transaction(CreateAction(handler, gem_iw_tp))
if status != OMHStatus.OK:
return status, False
# Plug GEM IW_TP into all priorities that map to the same tc
pbits_by_tc = pbit_to_tc.pbits_by_tc(tc)
for pbit in pbits_by_tc:
_set_8021p_priority(mapper_me, pbit, gem_iw_tp.inst)
return OMHStatus.OK, True |
Python | def encode_content(self) -> RawMessage:
"""Encode CREATE request message content.
Returns:
raw OMCI message content
"""
return bytearray() | def encode_content(self) -> RawMessage:
"""Encode CREATE request message content.
Returns:
raw OMCI message content
"""
return bytearray() |
Python | def decode_content(self, msg: RawMessage) -> bool:
"""Decode CREATE response message content.
Returns:
result : True if successful
"""
if self._ak:
# MIB_RESET response - normal flow
self._omci_result = struct.unpack_from("!H", msg, self.content_offset)[0]
return True | def decode_content(self, msg: RawMessage) -> bool:
"""Decode CREATE response message content.
Returns:
result : True if successful
"""
if self._ak:
# MIB_RESET response - normal flow
self._omci_result = struct.unpack_from("!H", msg, self.content_offset)[0]
return True |
Python | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB/
Args:
onu : OnuDriver containing the current ONU MIB
Raises: an exception in case of commit failure
"""
if not onu.delete(self._me.me_class, self._me.inst):
raise Exception('{} - failed to commit to the local MIB'.format(self.name)) | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB/
Args:
onu : OnuDriver containing the current ONU MIB
Raises: an exception in case of commit failure
"""
if not onu.delete(self._me.me_class, self._me.inst):
raise Exception('{} - failed to commit to the local MIB'.format(self.name)) |
Python | def _init_and_connect(self) -> OnuDriver:
""" Initialize and connect
Args: args : command line arguments
Returns: OnuDriver or None of connection failed
"""
# Create gRPC channel and try to connect
if (self._args.server_mode):
logger.info("Test {}: waiting for connection on port {}:{}..".
format(self._name, self._args.polt_host, self._args.port))
self._server = GrpcServer(port=self._args.port, name=self._args.vomci_name)
connections = self._server.connections()
while len(connections.values()) == 0:
time.sleep(1)
connection = list(connections.values())[0];
connection.connected(connection.remote_endpoint_name)
olt = OltDatabase.OltGetFirst()
# Add ONU to the database
onu = olt.OnuAdd(self._args.onu_name, (self._args.cterm_name, self._args.onu_id), tci=self._args.tci)
else:
logger.info("Test {}: connecting to {}:{}..".format(self._name, self._args.polt_host, self._args.port))
channel = GrpcClientChannel(name=self._args.vomci_name)
ret_val = channel.connect(host=self._args.polt_host, port=self._args.port)
if not ret_val:
logger.warning("Test {}: connection failed".format(self._name))
return None
olt = channel.add_managed_onu(channel.remote_endpoint_name, self._args.onu_name, (self._args.cterm_name, self._args.onu_id), tci=self._args.tci)
logger.info("test_YangtoOmciMapper: connected to the pOLT: {}".format(olt.id))
onu = olt.OnuGet((self._args.cterm_name, self._args.onu_id))
logger.info("Test {}: connected to {}".format(self._name, olt.id))
return onu | def _init_and_connect(self) -> OnuDriver:
""" Initialize and connect
Args: args : command line arguments
Returns: OnuDriver or None of connection failed
"""
# Create gRPC channel and try to connect
if (self._args.server_mode):
logger.info("Test {}: waiting for connection on port {}:{}..".
format(self._name, self._args.polt_host, self._args.port))
self._server = GrpcServer(port=self._args.port, name=self._args.vomci_name)
connections = self._server.connections()
while len(connections.values()) == 0:
time.sleep(1)
connection = list(connections.values())[0];
connection.connected(connection.remote_endpoint_name)
olt = OltDatabase.OltGetFirst()
# Add ONU to the database
onu = olt.OnuAdd(self._args.onu_name, (self._args.cterm_name, self._args.onu_id), tci=self._args.tci)
else:
logger.info("Test {}: connecting to {}:{}..".format(self._name, self._args.polt_host, self._args.port))
channel = GrpcClientChannel(name=self._args.vomci_name)
ret_val = channel.connect(host=self._args.polt_host, port=self._args.port)
if not ret_val:
logger.warning("Test {}: connection failed".format(self._name))
return None
olt = channel.add_managed_onu(channel.remote_endpoint_name, self._args.onu_name, (self._args.cterm_name, self._args.onu_id), tci=self._args.tci)
logger.info("test_YangtoOmciMapper: connected to the pOLT: {}".format(olt.id))
onu = olt.OnuGet((self._args.cterm_name, self._args.onu_id))
logger.info("Test {}: connected to {}".format(self._name, olt.id))
return onu |
Python | def run(self, extra_args : Optional[Any] = None) -> int:
""" Run an OMH handler or a list of OMH handlers --iter number of times """
if self._args is None:
self.parse_arguments()
if self._handler_type is None:
logger.error('handler type must be set')
return -1
if not isinstance(self._handler_type, tuple) and not isinstance(self._handler_type, list):
self._handler_type = (self._handler_type,)
extra_args = (extra_args, )
self._onu = self._init_and_connect()
if self._onu is None:
return -1
self._onu.set_flow_control(max_retries=self._args.retries, ack_timeout=self._args.timeout)
# Run the sequence the requiured number of iterations
for iter in range(self._args.iters):
if self._args.iters > 1:
logger.info("Test {}: iteration {}".format(self._name, iter + 1))
if iter > 0:
input("Press Enter to continue...")
handler = TestOmhDriver.TestHandler(self._onu, self._handler_type, extra_args)
if self._args.background:
logger.info("Test {}: starting execution in the background".format(self._name))
handler.start(self._handler_completed)
logger.info("Test {}: Waiting for completion..".format(handler._name))
self._sem.acquire()
else:
logger.info("Test {}: starting execution in the foreground".format(self._name))
handler.run()
logger.info("Test {}: Finished execution. Status: {}".format(self._name, handler.status.name))
self._update_status(handler.status)
if handler.status != OMHStatus.OK:
break
if self._onu.olt.channel is not None:
self._onu.olt.channel.disconnect()
if self._server is not None:
self._server.stop()
if self._args.dump_mib:
self._onu.dump_mib()
return self._status.value | def run(self, extra_args : Optional[Any] = None) -> int:
""" Run an OMH handler or a list of OMH handlers --iter number of times """
if self._args is None:
self.parse_arguments()
if self._handler_type is None:
logger.error('handler type must be set')
return -1
if not isinstance(self._handler_type, tuple) and not isinstance(self._handler_type, list):
self._handler_type = (self._handler_type,)
extra_args = (extra_args, )
self._onu = self._init_and_connect()
if self._onu is None:
return -1
self._onu.set_flow_control(max_retries=self._args.retries, ack_timeout=self._args.timeout)
# Run the sequence the requiured number of iterations
for iter in range(self._args.iters):
if self._args.iters > 1:
logger.info("Test {}: iteration {}".format(self._name, iter + 1))
if iter > 0:
input("Press Enter to continue...")
handler = TestOmhDriver.TestHandler(self._onu, self._handler_type, extra_args)
if self._args.background:
logger.info("Test {}: starting execution in the background".format(self._name))
handler.start(self._handler_completed)
logger.info("Test {}: Waiting for completion..".format(handler._name))
self._sem.acquire()
else:
logger.info("Test {}: starting execution in the foreground".format(self._name))
handler.run()
logger.info("Test {}: Finished execution. Status: {}".format(self._name, handler.status.name))
self._update_status(handler.status)
if handler.status != OMHStatus.OK:
break
if self._onu.olt.channel is not None:
self._onu.olt.channel.disconnect()
if self._server is not None:
self._server.stop()
if self._args.dump_mib:
self._onu.dump_mib()
return self._status.value |
Python | def raw_value(self, value: AttrValue) -> AttrRawValue:
"""Convert data item user value to raw value.
Args:
value: external attribute value
Returns:
raw (internal) attribute value
"""
raise Exception('Unimplemented raw_value() method') | def raw_value(self, value: AttrValue) -> AttrRawValue:
"""Convert data item user value to raw value.
Args:
value: external attribute value
Returns:
raw (internal) attribute value
"""
raise Exception('Unimplemented raw_value() method') |
Python | def value(self, raw_value: AttrRawValue) -> AttrValue:
"""Convert data item raw value to user value.
Args:
raw_value: raw (internal) attribute value
Returns:
External attribute value
"""
raise Exception('Unimplemented value() method') | def value(self, raw_value: AttrRawValue) -> AttrValue:
"""Convert data item raw value to user value.
Args:
raw_value: raw (internal) attribute value
Returns:
External attribute value
"""
raise Exception('Unimplemented value() method') |
Python | def add_managed_onus(self, comm_channel):
"""
Add managed onus to communication channel, as per configuration.
This function should be called by the GrpcServer when
a new client connection is initiated.
"""
for managed_onu in ManagementChain.GetManagedOnus():
if managed_onu.downstream_endpoint_name == comm_channel.remote_endpoint_name:
onu_id = (managed_onu.ct_ref, managed_onu.onu_id)
comm_channel.add_managed_onu(managed_onu.olt_name, managed_onu.onu_name, onu_id) | def add_managed_onus(self, comm_channel):
"""
Add managed onus to communication channel, as per configuration.
This function should be called by the GrpcServer when
a new client connection is initiated.
"""
for managed_onu in ManagementChain.GetManagedOnus():
if managed_onu.downstream_endpoint_name == comm_channel.remote_endpoint_name:
onu_id = (managed_onu.ct_ref, managed_onu.onu_id)
comm_channel.add_managed_onu(managed_onu.olt_name, managed_onu.onu_name, onu_id) |
Python | def trigger_create_onu(self, onu_name) -> (bool, str):
"""
Add ONU with onu_name to management chain.
To be called by the kafka interface when a
"create ONU" request is received.
Args:
onu_name: unique name of ONU
"""
if ManagementChain.GetOnu(onu_name) is not None:
er_string = "ONU {} already exists in the management chain".format(onu_name)
logger.error(er_string)
self._kafka_if.send_unsuccessful_response(onu_name, error_msg=er_string)
return
ManagementChain.CreateOnu(onu_name)
logger.info("Onu {} was created in vOMCi".format(onu_name))
self._kafka_if.send_successful_response(onu_name) | def trigger_create_onu(self, onu_name) -> (bool, str):
"""
Add ONU with onu_name to management chain.
To be called by the kafka interface when a
"create ONU" request is received.
Args:
onu_name: unique name of ONU
"""
if ManagementChain.GetOnu(onu_name) is not None:
er_string = "ONU {} already exists in the management chain".format(onu_name)
logger.error(er_string)
self._kafka_if.send_unsuccessful_response(onu_name, error_msg=er_string)
return
ManagementChain.CreateOnu(onu_name)
logger.info("Onu {} was created in vOMCi".format(onu_name))
self._kafka_if.send_successful_response(onu_name) |
Python | def trigger_set_onu_communication(self, olt_name: str, onu_name: str, channel_termination: str,
onu_tc_id: int, available: bool, olt_endpoint_name: str,
voltmf_endpoint_name: str, voltmf_name: str):
"""
Use arguments to set/update the communication points and management chain
of given ONU. Then initiate the ONU detect sequence. To be called by
the kafka interface when a "set ONU communication" request is received.
"""
managed_onu = ManagementChain.SetOnuCommunication(olt_name, onu_name, channel_termination,
onu_tc_id, available, olt_endpoint_name,
voltmf_endpoint_name, voltmf_name)
# Assign channel if communication is available
channel = None
for channel in self._server.connections().values():
if managed_onu.downstream_endpoint_name == channel.remote_endpoint_name:
onu_id = (managed_onu.ct_ref, managed_onu.onu_id)
channel.add_managed_onu(managed_onu.olt_name, onu_name, onu_id)
break
managed_onu.SetDsChannel(channel)
if available:
if channel is None:
error_msg = "ONU {}: can't enable communication. remote-endpoint {} is not connected".format(
onu_name, managed_onu.downstream_endpoint_name)
logger.error(error_msg)
self._kafka_if.send_unsuccessful_response(onu_name, error_msg=error_msg)
self.trigger_onu_mib_sync(olt_name, olt_endpoint_name, onu_name, channel_termination, onu_tc_id)
else:
self._kafka_if.send_successful_response(onu_name) | def trigger_set_onu_communication(self, olt_name: str, onu_name: str, channel_termination: str,
onu_tc_id: int, available: bool, olt_endpoint_name: str,
voltmf_endpoint_name: str, voltmf_name: str):
"""
Use arguments to set/update the communication points and management chain
of given ONU. Then initiate the ONU detect sequence. To be called by
the kafka interface when a "set ONU communication" request is received.
"""
managed_onu = ManagementChain.SetOnuCommunication(olt_name, onu_name, channel_termination,
onu_tc_id, available, olt_endpoint_name,
voltmf_endpoint_name, voltmf_name)
# Assign channel if communication is available
channel = None
for channel in self._server.connections().values():
if managed_onu.downstream_endpoint_name == channel.remote_endpoint_name:
onu_id = (managed_onu.ct_ref, managed_onu.onu_id)
channel.add_managed_onu(managed_onu.olt_name, onu_name, onu_id)
break
managed_onu.SetDsChannel(channel)
if available:
if channel is None:
error_msg = "ONU {}: can't enable communication. remote-endpoint {} is not connected".format(
onu_name, managed_onu.downstream_endpoint_name)
logger.error(error_msg)
self._kafka_if.send_unsuccessful_response(onu_name, error_msg=error_msg)
self.trigger_onu_mib_sync(olt_name, olt_endpoint_name, onu_name, channel_termination, onu_tc_id)
else:
self._kafka_if.send_successful_response(onu_name) |
Python | def merge(self, candidate: 'OnuMib', me_class: int):
""" Merge values from candidate into this MIB """
if me_class is None:
for cl in candidate._per_class_dict.values():
self._merge_me_class(cl)
else:
if me_class in candidate._per_class_dict:
self._merge_me_class(candidate._per_class_dict[me_class]) | def merge(self, candidate: 'OnuMib', me_class: int):
""" Merge values from candidate into this MIB """
if me_class is None:
for cl in candidate._per_class_dict.values():
self._merge_me_class(cl)
else:
if me_class in candidate._per_class_dict:
self._merge_me_class(candidate._per_class_dict[me_class]) |
Python | def field(self, name: str) -> Any:
""" Get classification field value, if any """
if name not in self._fields:
return None
return self._fields[name] | def field(self, name: str) -> Any:
""" Get classification field value, if any """
if name not in self._fields:
return None
return self._fields[name] |
Python | def _get_ip_host_config_by_index(self, index: int) -> ME:
""" Get IP host config ME by index
Returns:
IP_HOST_CONFIG ME or None if not found
"""
all_ip_host_mes = self._onu.get_all_instances(omci_me_class['IP_HOST_CONFIG_DATA'])
if all_ip_host_mes is None or index >= len(all_ip_host_mes):
return None
return all_ip_host_mes[index] | def _get_ip_host_config_by_index(self, index: int) -> ME:
""" Get IP host config ME by index
Returns:
IP_HOST_CONFIG ME or None if not found
"""
all_ip_host_mes = self._onu.get_all_instances(omci_me_class['IP_HOST_CONFIG_DATA'])
if all_ip_host_mes is None or index >= len(all_ip_host_mes):
return None
return all_ip_host_mes[index] |
Python | def encode_content(self) -> RawMessage:
"""Encode SET request message content.
Returns:
raw OMCI message content
"""
if not self._ak:
# SET request - normal flow
msg = struct.pack("!H", self._attr_mask)
msg += self.encode_attributes(msg)
else:
# SET response - mainly for debugging
msg = struct.pack("!HHH", self._omci_result, self._opt_attrs_mask, self._attr_exec_mask)
return msg | def encode_content(self) -> RawMessage:
"""Encode SET request message content.
Returns:
raw OMCI message content
"""
if not self._ak:
# SET request - normal flow
msg = struct.pack("!H", self._attr_mask)
msg += self.encode_attributes(msg)
else:
# SET response - mainly for debugging
msg = struct.pack("!HHH", self._omci_result, self._opt_attrs_mask, self._attr_exec_mask)
return msg |
Python | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB.
Args:
onu : OnuDriver containing the current ONU MIB
Raises: an exception in case of commit failure
"""
if not onu.set(self._me):
raise Exception('{} - failed to commit to the local MIB'.format(self.name)) | def commit(self, onu: 'OnuDriver'):
""" Commit action results top ONU MIB.
Args:
onu : OnuDriver containing the current ONU MIB
Raises: an exception in case of commit failure
"""
if not onu.set(self._me):
raise Exception('{} - failed to commit to the local MIB'.format(self.name)) |
Python | def rollback(self, onu: 'OnuDriver') -> 'OmciAction':
""" Create a roll-back action.
Args:
onu : OnuDriver containing the current ONU MIB
Returns:
An action that rolls-back 'this' action, or None if not applicable
"""
# If action failed - there is nothing to rollback
if self._omci_result != 0 and self._omci_result != omci_status['ATTRIBUTES_FAILED_OR_UNKNOWN']:
return None
# Lookup ME in the ONU MIB. It is OK if it fails. It might've been set after CREATE.
# In this case the CREATE's rollback will take care of it
old_me = onu.get(self._me_class, self._inst, log_error = False)
if old_me is None:
return None
return SetAction(self._owner, old_me, extended=self._extended) | def rollback(self, onu: 'OnuDriver') -> 'OmciAction':
""" Create a roll-back action.
Args:
onu : OnuDriver containing the current ONU MIB
Returns:
An action that rolls-back 'this' action, or None if not applicable
"""
# If action failed - there is nothing to rollback
if self._omci_result != 0 and self._omci_result != omci_status['ATTRIBUTES_FAILED_OR_UNKNOWN']:
return None
# Lookup ME in the ONU MIB. It is OK if it fails. It might've been set after CREATE.
# In this case the CREATE's rollback will take care of it
old_me = onu.get(self._me_class, self._inst, log_error = False)
if old_me is None:
return None
return SetAction(self._owner, old_me, extended=self._extended) |
Python | def user_attr(self, name: str):
""" Retrieve user-defined attribute stored in ME instance
Args:
name: user attribute name
Returns:
user attribute value or None if not found
"""
if self._user_data is None or name not in self._user_data:
return None
return self._user_data[name] | def user_attr(self, name: str):
""" Retrieve user-defined attribute stored in ME instance
Args:
name: user attribute name
Returns:
user attribute value or None if not found
"""
if self._user_data is None or name not in self._user_data:
return None
return self._user_data[name] |
Python | def clear_user_attr(self, name: str):
""" Clear user-defined attribute stored in ME instance
Args:
name: user attribute name
"""
if self._user_data is not None and name in self._user_data:
del self._user_data[name] | def clear_user_attr(self, name: str):
""" Clear user-defined attribute stored in ME instance
Args:
name: user attribute name
"""
if self._user_data is not None and name in self._user_data:
del self._user_data[name] |
Python | def attr(self, number_or_name: Union[int, str]) -> Attr:
"""Find a ME attribute descriptor by number or name.
Args:
number_or_name: ME attribute number or name.
Returns:
`Attr` descriptor.
"""
if isinstance(number_or_name, int):
assert number_or_name >= 0 and number_or_name < len(self.attrs)
return self.attrs[number_or_name]
assert number_or_name in self._attr_names
return self.attrs[self._attr_names.index(number_or_name)] | def attr(self, number_or_name: Union[int, str]) -> Attr:
"""Find a ME attribute descriptor by number or name.
Args:
number_or_name: ME attribute number or name.
Returns:
`Attr` descriptor.
"""
if isinstance(number_or_name, int):
assert number_or_name >= 0 and number_or_name < len(self.attrs)
return self.attrs[number_or_name]
assert number_or_name in self._attr_names
return self.attrs[self._attr_names.index(number_or_name)] |
Python | def attr_value(self, number_or_name: Union[int, str]) -> AttrValue:
"""Find a ME attribute by number or name and return its value.
Args:
number_or_name: ME attribute number or name.
Returns:
`Attr` value.
"""
a = self.attr(number_or_name)
val = self._attr_values[a.number]
if val is None:
val = a.default_value()
return val | def attr_value(self, number_or_name: Union[int, str]) -> AttrValue:
"""Find a ME attribute by number or name and return its value.
Args:
number_or_name: ME attribute number or name.
Returns:
`Attr` value.
"""
a = self.attr(number_or_name)
val = self._attr_values[a.number]
if val is None:
val = a.default_value()
return val |
Python | def attr_is_set(self, number_or_name: Union[int, str]) -> bool:
"""Find a ME attribute by number or name and return True if the attr is set explicitly.
Args:
number_or_name: ME attribute number or name.
"""
a = self.attr(number_or_name)
return self._attr_values[a.number] is not None | def attr_is_set(self, number_or_name: Union[int, str]) -> bool:
"""Find a ME attribute by number or name and return True if the attr is set explicitly.
Args:
number_or_name: ME attribute number or name.
"""
a = self.attr(number_or_name)
return self._attr_values[a.number] is not None |
Python | def attr_is_encoded(self, number_or_name: Union[int, str]) -> bool:
"""Find a ME attribute by number or name and return True if the attr is set explicitly.
Args:
number_or_name: ME attribute number or name.
"""
a = self.attr(number_or_name)
return self._attr_encoded[a.number] | def attr_is_encoded(self, number_or_name: Union[int, str]) -> bool:
"""Find a ME attribute by number or name and return True if the attr is set explicitly.
Args:
number_or_name: ME attribute number or name.
"""
a = self.attr(number_or_name)
return self._attr_encoded[a.number] |
Python | def attr_encode(self, number_or_name: Union[int, str]) -> bytearray:
"""Encode a ME attribute value.
Args:
number_or_name: ME attribute number or name.
value: single value or ``None``.
Returns:
Encoded buffer. If ``None`` was supplied, an empty buffer is
returned.
"""
a = self.attr(number_or_name)
val = self._attr_values[a.number]
buffer = a.data_type.encode(val)
self._attr_encoded[a.number] = True
return buffer | def attr_encode(self, number_or_name: Union[int, str]) -> bytearray:
"""Encode a ME attribute value.
Args:
number_or_name: ME attribute number or name.
value: single value or ``None``.
Returns:
Encoded buffer. If ``None`` was supplied, an empty buffer is
returned.
"""
a = self.attr(number_or_name)
val = self._attr_values[a.number]
buffer = a.data_type.encode(val)
self._attr_encoded[a.number] = True
return buffer |
Python | def merge(self, with_me: 'ME'):
"""Merge this ME with another ME by copying all attributes that are explicitly set
in 'with_me' into self
"""
if self is with_me:
return
assert type(self) is type(with_me)
for i in range(1, len(self.attrs)):
if with_me.attr_is_set(i):
self._attr_values[i] = with_me._attr_values[i]
if with_me.user_name is not None:
self.user_name = with_me.user_name
if with_me._user_data is not None:
self._user_data = self._user_data and {**self._user_data, **with_me._user_data} or with_me._user_data | def merge(self, with_me: 'ME'):
"""Merge this ME with another ME by copying all attributes that are explicitly set
in 'with_me' into self
"""
if self is with_me:
return
assert type(self) is type(with_me)
for i in range(1, len(self.attrs)):
if with_me.attr_is_set(i):
self._attr_values[i] = with_me._attr_values[i]
if with_me.user_name is not None:
self.user_name = with_me.user_name
if with_me._user_data is not None:
self._user_data = self._user_data and {**self._user_data, **with_me._user_data} or with_me._user_data |
Python | def attr_names(self, access: str = '', assigned_only: BoolDatum = False) -> tuple:
"""Return a list of all attribute names,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
(`name1, name2, name3`).
Note:
Attribute 0 is ``me_inst`` (the ME instance number) and is not
returned.
"""
return tuple(
a.name for a in self.attrs
if a.number > 0 and access in a.access and
(not assigned_only or self._attr_values[a.number] is not None)) | def attr_names(self, access: str = '', assigned_only: BoolDatum = False) -> tuple:
"""Return a list of all attribute names,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
(`name1, name2, name3`).
Note:
Attribute 0 is ``me_inst`` (the ME instance number) and is not
returned.
"""
return tuple(
a.name for a in self.attrs
if a.number > 0 and access in a.access and
(not assigned_only or self._attr_values[a.number] is not None)) |
Python | def attr_numbers(self, access: str = '', assigned_only: BoolDatum = False) -> tuple:
"""Return a list of all attribute numbers,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
Tuple in the form of (number1, number2, ..).
Note:
Attribute 0 is ``me_inst`` (the ME instance number) and is not
returned.
"""
return tuple(a.number for a in self.attrs
if a.number > 0 and access in a.access and
(not assigned_only or self._attr_values[a.number] is not None)) | def attr_numbers(self, access: str = '', assigned_only: BoolDatum = False) -> tuple:
"""Return a list of all attribute numbers,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
Tuple in the form of (number1, number2, ..).
Note:
Attribute 0 is ``me_inst`` (the ME instance number) and is not
returned.
"""
return tuple(a.number for a in self.attrs
if a.number > 0 and access in a.access and
(not assigned_only or self._attr_values[a.number] is not None)) |
Python | def attr_mask(self, access: str = '', assigned_only: BoolDatum = False) -> int:
"""Return a mask for all attributes,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
attribute bitmask
"""
attr_numbers = self.attr_numbers(access, assigned_only)
mask = 0
for an in attr_numbers:
mask |= self.attr(an).mask
return mask | def attr_mask(self, access: str = '', assigned_only: BoolDatum = False) -> int:
"""Return a mask for all attributes,
optionally restricted to those with a specified access level.
Args:
access: Desired access level, or ``None`` to return all attributes.
assigned_only: True = return only attributes with explicitly assigned values
Returns:
attribute bitmask
"""
attr_numbers = self.attr_numbers(access, assigned_only)
mask = 0
for an in attr_numbers:
mask |= self.attr(an).mask
return mask |
Python | def OnuAdd(self, onu_name: OnuName, onu_id: OnuSbiId, tci: int = 0) -> OnuDriver:
""" Add ONU to the OLT database.
Args:
onu_name: ONU Name
onu_id: ONU Id
tci: initial TCI value (mainly for debugging)
Returns:
ONU driver or None if already exists
"""
with self._lock:
if onu_id in self._onus:
logger.error("OnuAdd: ONU {} is already in the database".format(onu_id))
return None
onu = OnuDriver(onu_name, onu_id, self, tci)
self._onus[onu_id] = onu
self._onus_by_name[onu_name] = onu
return onu | def OnuAdd(self, onu_name: OnuName, onu_id: OnuSbiId, tci: int = 0) -> OnuDriver:
""" Add ONU to the OLT database.
Args:
onu_name: ONU Name
onu_id: ONU Id
tci: initial TCI value (mainly for debugging)
Returns:
ONU driver or None if already exists
"""
with self._lock:
if onu_id in self._onus:
logger.error("OnuAdd: ONU {} is already in the database".format(onu_id))
return None
onu = OnuDriver(onu_name, onu_id, self, tci)
self._onus[onu_id] = onu
self._onus_by_name[onu_name] = onu
return onu |
Python | def OnuAddUpdate(self, onu_name: OnuName, onu_id: OnuSbiId, tci: int = 0) -> OnuDriver:
""" Add ONU if doesn't exist or update onu_id if it is already in the database
Args:
onu_name: ONU Name
onu_id: ONU SBI Id
tci: initial TCI value (mainly for debugging)
Returns:
ONU driver or None in case of error
"""
with self._lock:
if onu_name not in self._onus_by_name:
return self.OnuAdd(onu_name, onu_id, tci)
# ONU id is already in the database. Re-assign onu_id
onu = self._onus_by_name[onu_name]
if onu.onu_id != onu_id:
if onu_id in self._onus:
logger.error("OnuAddUpdate: Can't assign SBI ID {} to ONU {}. It is ialready assigned to ONU {}".\
format(onu_id, onu_name, self._onus[onu_id].onu_name))
return None
del self._onus[onu.onu_id]
onu.set_onu_id(onu_id)
self._onus[onu_id] = onu
return onu | def OnuAddUpdate(self, onu_name: OnuName, onu_id: OnuSbiId, tci: int = 0) -> OnuDriver:
""" Add ONU if doesn't exist or update onu_id if it is already in the database
Args:
onu_name: ONU Name
onu_id: ONU SBI Id
tci: initial TCI value (mainly for debugging)
Returns:
ONU driver or None in case of error
"""
with self._lock:
if onu_name not in self._onus_by_name:
return self.OnuAdd(onu_name, onu_id, tci)
# ONU id is already in the database. Re-assign onu_id
onu = self._onus_by_name[onu_name]
if onu.onu_id != onu_id:
if onu_id in self._onus:
logger.error("OnuAddUpdate: Can't assign SBI ID {} to ONU {}. It is ialready assigned to ONU {}".\
format(onu_id, onu_name, self._onus[onu_id].onu_name))
return None
del self._onus[onu.onu_id]
onu.set_onu_id(onu_id)
self._onus[onu_id] = onu
return onu |
Python | def OnuDelete(self, onu_name: OnuName):
""" Delete ONU from the database.
Args:
onu_name: ONU Name
"""
with self._lock:
if onu_name not in self._onus_by_name:
logger.error("OnuDelete: ONU {} is not in the database" % onu_name)
return
onu = self._onus_by_name[onu_name]
del self._onus_by_name[onu_name]
del self._onus[onu.onu_id] | def OnuDelete(self, onu_name: OnuName):
""" Delete ONU from the database.
Args:
onu_name: ONU Name
"""
with self._lock:
if onu_name not in self._onus_by_name:
logger.error("OnuDelete: ONU {} is not in the database" % onu_name)
return
onu = self._onus_by_name[onu_name]
del self._onus_by_name[onu_name]
del self._onus[onu.onu_id] |
Python | def send(self, onu: OnuDriver, msg: RawMessage) -> bool:
""" Send raw OMCI message to ONU.
Args:
onu: ONU object
msg: raw OMCI message without CRC/MIC
"""
with self._lock:
if not self._channel:
logger.error("send: can't send message to ONU {}. No active channel".format(onu.onu_id))
return False
return self._channel.send(self.olt_id, onu.onu_id, msg) | def send(self, onu: OnuDriver, msg: RawMessage) -> bool:
""" Send raw OMCI message to ONU.
Args:
onu: ONU object
msg: raw OMCI message without CRC/MIC
"""
with self._lock:
if not self._channel:
logger.error("send: can't send message to ONU {}. No active channel".format(onu.onu_id))
return False
return self._channel.send(self.olt_id, onu.onu_id, msg) |
Python | def recv(self, onu_id: OnuSbiId, msg: RawMessage):
""" Receive an OMCI message.
This function is called by an OmciChannel service when a new OMCI message is received from pOLT.<br>
The function forwards the message to the relevant OnuDriver.
Args:
onu_id: ONU Id
msg: raw OMCI message without CRC/MIC
"""
with self._lock:
if onu_id not in self._onus:
logger.error("Received packet for an unknown ONU {}".format(onu_id))
return
onu = self._onus[onu_id]
onu.recv(msg) | def recv(self, onu_id: OnuSbiId, msg: RawMessage):
""" Receive an OMCI message.
This function is called by an OmciChannel service when a new OMCI message is received from pOLT.<br>
The function forwards the message to the relevant OnuDriver.
Args:
onu_id: ONU Id
msg: raw OMCI message without CRC/MIC
"""
with self._lock:
if onu_id not in self._onus:
logger.error("Received packet for an unknown ONU {}".format(onu_id))
return
onu = self._onus[onu_id]
onu.recv(msg) |
Python | def OltAddUpdate(cls, olt_id: PoltId, channel: 'OltCommChannel') -> Olt:
""" Add OLT to the database or update an existing OLT.
Args:
olt_id: OLT Id
channel: communication channel to pOLT
Returns:
Olt object instance
"""
with cls._lock:
if olt_id in cls._olts:
olt = cls._olts[olt_id]
olt.set_channel(channel)
else:
olt = Olt(olt_id, channel)
cls._olts[olt_id] = olt
return olt | def OltAddUpdate(cls, olt_id: PoltId, channel: 'OltCommChannel') -> Olt:
""" Add OLT to the database or update an existing OLT.
Args:
olt_id: OLT Id
channel: communication channel to pOLT
Returns:
Olt object instance
"""
with cls._lock:
if olt_id in cls._olts:
olt = cls._olts[olt_id]
olt.set_channel(channel)
else:
olt = Olt(olt_id, channel)
cls._olts[olt_id] = olt
return olt |
Python | def OltDelete(cls, olt_id: PoltId):
""" Delete OLT from the database.
Args:
olt_id: OLT Id
"""
with cls._lock:
if olt_id not in cls._olts:
logger.error("OltDelete: OLT {} is not in the database" % olt_id)
return
del cls._olts[olt_id] | def OltDelete(cls, olt_id: PoltId):
""" Delete OLT from the database.
Args:
olt_id: OLT Id
"""
with cls._lock:
if olt_id not in cls._olts:
logger.error("OltDelete: OLT {} is not in the database" % olt_id)
return
del cls._olts[olt_id] |
Python | def OltGetFirst(cls) -> Olt:
"""Get first OLT in the database
Returns:
Olt if successful, None if there are no Olts in the database
"""
with cls._lock:
all_olts = list(cls._olts.values())
if len(all_olts) == 0:
return None
return all_olts[0] | def OltGetFirst(cls) -> Olt:
"""Get first OLT in the database
Returns:
Olt if successful, None if there are no Olts in the database
"""
with cls._lock:
all_olts = list(cls._olts.values())
if len(all_olts) == 0:
return None
return all_olts[0] |
Python | def commandline():
"""
Configures the Argument Parser and returns the parsed commandline args.
"""
description = 'Cool Command-line Cheatsheets'
help_general = 'The cheatsheet you want to see'
help_list = 'List all available cheatsheets'
help_colors = 'Print output without colors'
help_inline = 'One cheat per line, this is the default'
help_breakline = 'Break lines'
argumentparser = ArgumentParser(description=description)
printertype = argumentparser.add_mutually_exclusive_group()
argumentparser.add_argument('--list', dest='listcheats', action="store_true", required=False, help=help_list)
argumentparser.add_argument('--nc', dest='nocolor', action="store_false", required=False, help=help_colors)
argumentparser.add_argument('cheatsheet', nargs='?', help=help_general)
printertype.set_defaults(printer='InlinePrinter')
printertype.add_argument('-l', help=help_inline, action='store_const', dest='printer', const='InlinePrinter')
printertype.add_argument('-b', help=help_breakline, action='store_const', dest='printer', const='BreaklinePrinter')
return argumentparser | def commandline():
"""
Configures the Argument Parser and returns the parsed commandline args.
"""
description = 'Cool Command-line Cheatsheets'
help_general = 'The cheatsheet you want to see'
help_list = 'List all available cheatsheets'
help_colors = 'Print output without colors'
help_inline = 'One cheat per line, this is the default'
help_breakline = 'Break lines'
argumentparser = ArgumentParser(description=description)
printertype = argumentparser.add_mutually_exclusive_group()
argumentparser.add_argument('--list', dest='listcheats', action="store_true", required=False, help=help_list)
argumentparser.add_argument('--nc', dest='nocolor', action="store_false", required=False, help=help_colors)
argumentparser.add_argument('cheatsheet', nargs='?', help=help_general)
printertype.set_defaults(printer='InlinePrinter')
printertype.add_argument('-l', help=help_inline, action='store_const', dest='printer', const='InlinePrinter')
printertype.add_argument('-b', help=help_breakline, action='store_const', dest='printer', const='BreaklinePrinter')
return argumentparser |
Python | def add_color(self, string):
"""
Adds color to the console output.
:param string: The string to add color to.
"""
default_color = self.colors.DEFAULT
param_color = self.colors.PARAM
reset_color = self.colors.RESET
string = string.replace('<', param_color + '<')
string = string.replace('>', '>' + reset_color)
colored = default_color + string + reset_color
return colored | def add_color(self, string):
"""
Adds color to the console output.
:param string: The string to add color to.
"""
default_color = self.colors.DEFAULT
param_color = self.colors.PARAM
reset_color = self.colors.RESET
string = string.replace('<', param_color + '<')
string = string.replace('>', '>' + reset_color)
colored = default_color + string + reset_color
return colored |
Python | def printcheats(self, template):
"""
Loops over the entries in the ConfigParser and prints them with a specific template.
:param template: Template to use with the format() function.
"""
sections = self.configparser.sections()
sections.remove('main')
for section in sections:
print(section.upper())
for description in self.configparser[section]:
value = self.configparser[section][description]
value = self.add_color(value) if self.print_colored else value
output = template.format(description.capitalize(), value)
print(output) | def printcheats(self, template):
"""
Loops over the entries in the ConfigParser and prints them with a specific template.
:param template: Template to use with the format() function.
"""
sections = self.configparser.sections()
sections.remove('main')
for section in sections:
print(section.upper())
for description in self.configparser[section]:
value = self.configparser[section][description]
value = self.add_color(value) if self.print_colored else value
output = template.format(description.capitalize(), value)
print(output) |
Python | def width(self):
"""
Width of the longest ConfigParser entry.
"""
width = 1
# Calculate new width
for section in self.configparser.sections():
longest_width = len(max(self.configparser[section], key=len))
if longest_width > width:
width = longest_width
return str(width) | def width(self):
"""
Width of the longest ConfigParser entry.
"""
width = 1
# Calculate new width
for section in self.configparser.sections():
longest_width = len(max(self.configparser[section], key=len))
if longest_width > width:
width = longest_width
return str(width) |
Python | def printsheet(self):
"""
Sets the printer template to print inline and calls the Printer.printsheet().
"""
print_format = "{0:<" + self.width + "} {1}"
super().printcheats(print_format) | def printsheet(self):
"""
Sets the printer template to print inline and calls the Printer.printsheet().
"""
print_format = "{0:<" + self.width + "} {1}"
super().printcheats(print_format) |
Python | def printsheet(self):
"""
Sets the printer template to print with newlines and calls the Printer.printsheet().
"""
print_format = "{0} \n {1}"
super().printcheats(print_format) | def printsheet(self):
"""
Sets the printer template to print with newlines and calls the Printer.printsheet().
"""
print_format = "{0} \n {1}"
super().printcheats(print_format) |
Python | def create_printer(name):
"""
Returns a specific Printer Object.
:param name: Printer Object to return.
"""
return PrinterFactory.printer_classes[name] | def create_printer(name):
"""
Returns a specific Printer Object.
:param name: Printer Object to return.
"""
return PrinterFactory.printer_classes[name] |
Python | def print_available_sheets(directory):
"""
Prints all available cheatsheets in the sheet folder to the stdout.
:param directory: The directory where the cheatsheets are located.
"""
parser = ConfigParser()
files = listdir(directory)
for name in sorted(files):
try:
parser.read(path.join(directory, name))
print('{0}'.format(parser['main']['name']))
except ConfigParserError:
# TOOD: What to do here?
pass | def print_available_sheets(directory):
"""
Prints all available cheatsheets in the sheet folder to the stdout.
:param directory: The directory where the cheatsheets are located.
"""
parser = ConfigParser()
files = listdir(directory)
for name in sorted(files):
try:
parser.read(path.join(directory, name))
print('{0}'.format(parser['main']['name']))
except ConfigParserError:
# TOOD: What to do here?
pass |
Python | async def avatar_(self, ctx: commands.context, member: discord.Member=None):
"""View your's or someone's avatar"""
member = member if member else ctx.author
em = discord.Embed(color=member.color)
em.set_image(url=member.avatar.url)
em.set_author(name=f"{member.name}'s avatar!", icon_url=member.avatar.url)
em.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await ctx.send(embed=em) | async def avatar_(self, ctx: commands.context, member: discord.Member=None):
"""View your's or someone's avatar"""
member = member if member else ctx.author
em = discord.Embed(color=member.color)
em.set_image(url=member.avatar.url)
em.set_author(name=f"{member.name}'s avatar!", icon_url=member.avatar.url)
em.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await ctx.send(embed=em) |
Python | async def emojiadd(self, ctx: commands.Context, emoji: str, *, name: str):
"""Creates an emoji in the server using a url"""
async with aiohttp.ClientSession() as session:
async with session.get(emoji) as r:
try:
imgOrGIF = BytesIO(await r.read())
bValue = imgOrGIF.getvalue()
if r.status in range(200, 299):
emojiCreate = await ctx.guild.create_custom_emoji(image=bValue, name=name)
await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emojiCreate} with name: `{name}`**", color=discord.Color.green()))
else:
await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> An error occured while creating the emoji | {r.status}", color=discord.Color.red()))
except discord.HTTPException:
await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> The file size is too big!", color=discord.Color.red()))
except Exception as e:
print(e) | async def emojiadd(self, ctx: commands.Context, emoji: str, *, name: str):
"""Creates an emoji in the server using a url"""
async with aiohttp.ClientSession() as session:
async with session.get(emoji) as r:
try:
imgOrGIF = BytesIO(await r.read())
bValue = imgOrGIF.getvalue()
if r.status in range(200, 299):
emojiCreate = await ctx.guild.create_custom_emoji(image=bValue, name=name)
await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emojiCreate} with name: `{name}`**", color=discord.Color.green()))
else:
await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> An error occured while creating the emoji | {r.status}", color=discord.Color.red()))
except discord.HTTPException:
await ctx.send(embed=discord.Embed(description=f"<:error:897382665781669908> The file size is too big!", color=discord.Color.red()))
except Exception as e:
print(e) |
Python | async def stealemoji(self, ctx: commands.Context, emoji: Union[discord.Emoji, discord.PartialEmoji], *, name: str):
"""Steal an emoji for another server.... The bot adds the emoji to this server"""
try:
emoji_bytes = await emoji.read()
emoji_create = await ctx.guild.create_custom_emoji(image=emoji_bytes, name=name)
await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emoji_create} with name: `{name}`**", color=discord.Color.green()))
except Exception as e:
error = str(e).capitalize()
return await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> An error occurred while creating the emoji\n`{error}`**", color=discord.Color.red())) | async def stealemoji(self, ctx: commands.Context, emoji: Union[discord.Emoji, discord.PartialEmoji], *, name: str):
"""Steal an emoji for another server.... The bot adds the emoji to this server"""
try:
emoji_bytes = await emoji.read()
emoji_create = await ctx.guild.create_custom_emoji(image=emoji_bytes, name=name)
await ctx.send(embed=discord.Embed(description=f"**<:tick:897382645321850920> Successfully created emoji - {emoji_create} with name: `{name}`**", color=discord.Color.green()))
except Exception as e:
error = str(e).capitalize()
return await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> An error occurred while creating the emoji\n`{error}`**", color=discord.Color.red())) |
Python | async def whois(self, ctx: commands.Context, user: Union[discord.Member, discord.User]=None):
"""Get information about a user or yourself"""
user = user or ctx.author
accType = "Bot" if user.bot else "Human"
badge_emojis = {
"bug_hunter": str(self.bot.get_emoji(928298721916112916)),
"bug_hunter_level_2": str(self.bot.get_emoji(928298721303736361)),
"discord_certified_moderator": str(self.bot.get_emoji(928298721475698708)),
"early_supporter": str(self.bot.get_emoji(928298721496686692)),
"verified_bot_developer": str(self.bot.get_emoji(928299192428953660)),
"hypesquad": str(self.bot.get_emoji(930418236678340668)),
"hypesquad_balance": str(self.bot.get_emoji(928299452446412821)),
"hypesquad_bravery": str(self.bot.get_emoji(928299808974843984)),
"hypesquad_brilliance": str(self.bot.get_emoji(928299672840327208)),
"partner": str(self.bot.get_emoji(928502472891330622)),
"staff": str(self.bot.get_emoji(928502668224262195))
}
def get_badges(user: Union[discord.User, discord.Member]):
badges = []
for badge, value in iter(user.public_flags):
if value and badge in badge_emojis.keys():
badges.append(badge_emojis[badge])
return badges
if not user in ctx.guild.members:
em = discord.Embed(
description=f"""**• Username: `{user}`
• UserID: `{user.id}`
• Account Type: `{accType}`
• Created at: {discord.utils.format_dt(user.created_at)}
• Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""",
color=discord.Color.green()
).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url).set_footer(text="Note: This user is not from this server", icon_url=user.avatar.url)
user_for_banner = await self.bot.fetch_user(user.id)
if user_for_banner.banner:
em.set_image(url=user_for_banner.banner.url)
return await ctx.send(embed=em)
member: discord.Member = ctx.guild.get_member(user.id)
def timedOut(member: discord.Member):
"""Gets a string type of `member.timed_out` rather than a boolean type"""
if member.timed_out:
return "Yes"
else:
return "No"
def getRoles(member: discord.Member):
"""Gets the user roles"""
if len(list(member.roles)) == 0:
return "-"
else:
sorted_roles = sorted(
[role for role in member.roles[1:]], key=lambda x: x.position, reverse=True
)
roles = " ".join(role.mention for role in sorted_roles)
return roles
nick = user.nick if user.nick else "-"
embed = discord.Embed(
description=f"""**• Username: `{user}`
• UserID: `{user.id}`
• Nickname: `{nick}`
• Account Type: `{accType}`
• Created at: {discord.utils.format_dt(user.created_at)}
• Joined at: {discord.utils.format_dt(member.joined_at)}
• Timed Out: `{timedOut(member)}`
• Roles: {getRoles(member)}
• Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""",
color=user.color
).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url)
userForBanner = await self.bot.fetch_user(user.id)
if userForBanner.banner:
embed.set_image(url=userForBanner.banner.url)
return await ctx.send(embed=embed) | async def whois(self, ctx: commands.Context, user: Union[discord.Member, discord.User]=None):
"""Get information about a user or yourself"""
user = user or ctx.author
accType = "Bot" if user.bot else "Human"
badge_emojis = {
"bug_hunter": str(self.bot.get_emoji(928298721916112916)),
"bug_hunter_level_2": str(self.bot.get_emoji(928298721303736361)),
"discord_certified_moderator": str(self.bot.get_emoji(928298721475698708)),
"early_supporter": str(self.bot.get_emoji(928298721496686692)),
"verified_bot_developer": str(self.bot.get_emoji(928299192428953660)),
"hypesquad": str(self.bot.get_emoji(930418236678340668)),
"hypesquad_balance": str(self.bot.get_emoji(928299452446412821)),
"hypesquad_bravery": str(self.bot.get_emoji(928299808974843984)),
"hypesquad_brilliance": str(self.bot.get_emoji(928299672840327208)),
"partner": str(self.bot.get_emoji(928502472891330622)),
"staff": str(self.bot.get_emoji(928502668224262195))
}
def get_badges(user: Union[discord.User, discord.Member]):
badges = []
for badge, value in iter(user.public_flags):
if value and badge in badge_emojis.keys():
badges.append(badge_emojis[badge])
return badges
if not user in ctx.guild.members:
em = discord.Embed(
description=f"""**• Username: `{user}`
• UserID: `{user.id}`
• Account Type: `{accType}`
• Created at: {discord.utils.format_dt(user.created_at)}
• Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""",
color=discord.Color.green()
).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url).set_footer(text="Note: This user is not from this server", icon_url=user.avatar.url)
user_for_banner = await self.bot.fetch_user(user.id)
if user_for_banner.banner:
em.set_image(url=user_for_banner.banner.url)
return await ctx.send(embed=em)
member: discord.Member = ctx.guild.get_member(user.id)
def timedOut(member: discord.Member):
"""Gets a string type of `member.timed_out` rather than a boolean type"""
if member.timed_out:
return "Yes"
else:
return "No"
def getRoles(member: discord.Member):
"""Gets the user roles"""
if len(list(member.roles)) == 0:
return "-"
else:
sorted_roles = sorted(
[role for role in member.roles[1:]], key=lambda x: x.position, reverse=True
)
roles = " ".join(role.mention for role in sorted_roles)
return roles
nick = user.nick if user.nick else "-"
embed = discord.Embed(
description=f"""**• Username: `{user}`
• UserID: `{user.id}`
• Nickname: `{nick}`
• Account Type: `{accType}`
• Created at: {discord.utils.format_dt(user.created_at)}
• Joined at: {discord.utils.format_dt(member.joined_at)}
• Timed Out: `{timedOut(member)}`
• Roles: {getRoles(member)}
• Badges: {" ".join(get_badges(user)) if len(get_badges(user)) > 0 else "`-`"}**""",
color=user.color
).set_author(name=user.name, icon_url=user.avatar.url).set_thumbnail(url=user.avatar.url)
userForBanner = await self.bot.fetch_user(user.id)
if userForBanner.banner:
embed.set_image(url=userForBanner.banner.url)
return await ctx.send(embed=embed) |
Python | def timedOut(member: discord.Member):
"""Gets a string type of `member.timed_out` rather than a boolean type"""
if member.timed_out:
return "Yes"
else:
return "No" | def timedOut(member: discord.Member):
"""Gets a string type of `member.timed_out` rather than a boolean type"""
if member.timed_out:
return "Yes"
else:
return "No" |
Python | async def nuke_(self, ctx, *, channel: discord.TextChannel=None):
"""Delete all messages in a channel\nExample: `nuke [channel]\nIf channel is None then it will nuke the channel the command is used in`"""
channel = channel if channel else ctx.channel
if not ctx.author.guild_permissions.manage_channels:
em = discord.Embed(description="<:error:897382665781669908> You can't do that!", color=discord.Color.red())
return await ctx.send(embed=em)
embed1 = discord.Embed(description=f"Are you sure you want to **NUKE** {channel.mention}?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange())
message = await ctx.send(embed=embed1)
await message.edit(embed=embed1, view=NukeView(ctx, channel, message)) | async def nuke_(self, ctx, *, channel: discord.TextChannel=None):
"""Delete all messages in a channel\nExample: `nuke [channel]\nIf channel is None then it will nuke the channel the command is used in`"""
channel = channel if channel else ctx.channel
if not ctx.author.guild_permissions.manage_channels:
em = discord.Embed(description="<:error:897382665781669908> You can't do that!", color=discord.Color.red())
return await ctx.send(embed=em)
embed1 = discord.Embed(description=f"Are you sure you want to **NUKE** {channel.mention}?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange())
message = await ctx.send(embed=embed1)
await message.edit(embed=embed1, view=NukeView(ctx, channel, message)) |
Python | async def user(self, ctx: commands.Context, user: discord.Member, amount):
"""Delete message of a user in the channel"""
def is_user(m):
"""Checks the user's messages in the channel"""
return m.author == user
channel: discord.TextChannel = ctx.channel
deleted = await channel.purge(limit=amount, check=is_user)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Deleted {len(deleted)} messages of {user.mention}**", color=discord.Color.green())
await ctx.send(embed=embed) | async def user(self, ctx: commands.Context, user: discord.Member, amount):
"""Delete message of a user in the channel"""
def is_user(m):
"""Checks the user's messages in the channel"""
return m.author == user
channel: discord.TextChannel = ctx.channel
deleted = await channel.purge(limit=amount, check=is_user)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Deleted {len(deleted)} messages of {user.mention}**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def timeout(self, ctx: commands.Context, user: discord.Member, time, *, reason: str = "No reason provided"):
"""Timeout/Mute a user in the server"""
if user == ctx.author:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't timeout yourself!**", color=discord.Color.red()))
try:
timeConvert = humanfriendly.parse_timespan(time)
await user.timeout(discord.utils.utcnow()+datetime.timedelta(seconds=timeConvert), reason=reason)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully muted {user.mention} for {time} | Reason: {reason}**", color=discord.Color.green())
await ctx.send(embed=embed)
await user.send(embed=discord.Embed(description=f"**<:error:897382665781669908> You were muted in {ctx.guild.name} | Reason: {reason}**", color=discord.Color.red()))
except discord.Forbidden:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> This user has a higher or equal role to me. **", color=discord.Color.red())) | async def timeout(self, ctx: commands.Context, user: discord.Member, time, *, reason: str = "No reason provided"):
"""Timeout/Mute a user in the server"""
if user == ctx.author:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't timeout yourself!**", color=discord.Color.red()))
try:
timeConvert = humanfriendly.parse_timespan(time)
await user.timeout(discord.utils.utcnow()+datetime.timedelta(seconds=timeConvert), reason=reason)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully muted {user.mention} for {time} | Reason: {reason}**", color=discord.Color.green())
await ctx.send(embed=embed)
await user.send(embed=discord.Embed(description=f"**<:error:897382665781669908> You were muted in {ctx.guild.name} | Reason: {reason}**", color=discord.Color.red()))
except discord.Forbidden:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> This user has a higher or equal role to me. **", color=discord.Color.red())) |
Python | async def unmute(self, ctx: commands.Context, user: discord.Member, *, reason: str = "No reason provided"):
"""Unmutes a user from the server"""
if user == ctx.author:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't unmute yourself!**", color=discord.Color.red()))
if not user.timed_out:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user isn't muted!**", color=discord.Color.red()))
await user.timeout(None, reason=reason)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully unmuted {user.mention} | Reason: {reason}**", color=discord.Color.green())
await ctx.send(embed=embed) | async def unmute(self, ctx: commands.Context, user: discord.Member, *, reason: str = "No reason provided"):
"""Unmutes a user from the server"""
if user == ctx.author:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't unmute yourself!**", color=discord.Color.red()))
if not user.timed_out:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user isn't muted!**", color=discord.Color.red()))
await user.timeout(None, reason=reason)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully unmuted {user.mention} | Reason: {reason}**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def create_(self, ctx: commands.Context, channel: discord.TextChannel, *, name = None):
"""Creates a panel in a channel through which users can interact and open tickets"""
if not channel:
embed = discord.Embed(
description="**<:error:897382665781669908> Please enter a channel to make the panel in!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if not name:
embed = discord.Embed(
description="**<:error:897382665781669908> Please enter a name!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if not ctx.author.guild_permissions.manage_channels:
embed = discord.Embed(
description="**<:error:897382665781669908> You can't do that!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if channel == ctx.channel:
panel = discord.Embed(
title=name,
description="To create a ticket react with 📩",
color=discord.Color.green(),
)
panel.set_footer(text=f"{self.bot.user.name} - Ticket Panel", icon_url=self.bot.user.avatar.url)
message = await channel.send(embed=panel, view=TicketPanelView(self.bot))
try:
await ctx.author.send(embed=discord.Embed(description=f"**Panel id** of the panel you just created in <#{channel.id}>: `{message.id}`", color=discord.Color.green()))
except discord.Forbidden:
print("Couldn't DM that user!")
if channel != ctx.channel:
panel1 = discord.Embed(
title=name,
description="To create a ticket react with 📩",
color=discord.Color.green(),
)
panel1.set_footer(text=f"{self.bot.user.name} - Ticket Panel", icon_url=self.bot.user.avatar.url)
message = await channel.send(embed=panel1, view=TicketPanelView(self.bot))
embed2 = discord.Embed(description=f"**<:tick:897382645321850920> Successfully posted the panel in {channel.mention}\n\nPanel ID: `{message.id}`**", color=discord.Color.green())
await ctx.send(embed=embed2) | async def create_(self, ctx: commands.Context, channel: discord.TextChannel, *, name = None):
"""Creates a panel in a channel through which users can interact and open tickets"""
if not channel:
embed = discord.Embed(
description="**<:error:897382665781669908> Please enter a channel to make the panel in!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if not name:
embed = discord.Embed(
description="**<:error:897382665781669908> Please enter a name!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if not ctx.author.guild_permissions.manage_channels:
embed = discord.Embed(
description="**<:error:897382665781669908> You can't do that!**",
color=discord.Color.red()
)
return await ctx.send(embed=embed)
if channel == ctx.channel:
panel = discord.Embed(
title=name,
description="To create a ticket react with 📩",
color=discord.Color.green(),
)
panel.set_footer(text=f"{self.bot.user.name} - Ticket Panel", icon_url=self.bot.user.avatar.url)
message = await channel.send(embed=panel, view=TicketPanelView(self.bot))
try:
await ctx.author.send(embed=discord.Embed(description=f"**Panel id** of the panel you just created in <#{channel.id}>: `{message.id}`", color=discord.Color.green()))
except discord.Forbidden:
print("Couldn't DM that user!")
if channel != ctx.channel:
panel1 = discord.Embed(
title=name,
description="To create a ticket react with 📩",
color=discord.Color.green(),
)
panel1.set_footer(text=f"{self.bot.user.name} - Ticket Panel", icon_url=self.bot.user.avatar.url)
message = await channel.send(embed=panel1, view=TicketPanelView(self.bot))
embed2 = discord.Embed(description=f"**<:tick:897382645321850920> Successfully posted the panel in {channel.mention}\n\nPanel ID: `{message.id}`**", color=discord.Color.green())
await ctx.send(embed=embed2) |
Python | async def delete_(self, ctx: commands.Context, channel: discord.TextChannel, panel_id: int):
"""Deletes a previously built panel in the server. Requires the `panel_id` which is provided at the time of the creation of the panel"""
message = await channel.fetch_message(panel_id)
try:
await message.delete()
embed = discord.Embed(description="**<:tick:897382645321850920> Successfully deleted the panel!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.Forbidden:
embed = discord.Embed(description="**<:error:897382665781669908> I couldn't do that!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.NotFound:
embed = discord.Embed(description=f"**<:error:897382665781669908> I couldn't find a panel with id `{panel_id}`! Please try again after checking the id!**")
await ctx.send(embed=embed) | async def delete_(self, ctx: commands.Context, channel: discord.TextChannel, panel_id: int):
"""Deletes a previously built panel in the server. Requires the `panel_id` which is provided at the time of the creation of the panel"""
message = await channel.fetch_message(panel_id)
try:
await message.delete()
embed = discord.Embed(description="**<:tick:897382645321850920> Successfully deleted the panel!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.Forbidden:
embed = discord.Embed(description="**<:error:897382665781669908> I couldn't do that!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.NotFound:
embed = discord.Embed(description=f"**<:error:897382665781669908> I couldn't find a panel with id `{panel_id}`! Please try again after checking the id!**")
await ctx.send(embed=embed) |
Python | async def edit_(self, ctx: commands.Context, channel: discord.TextChannel, panel_id: int, *, name: str):
"""Edits a previously built panel in the server. Requires the `panel_id` which is provided at the time of the creation of the panel"""
message = await channel.fetch_message(panel_id)
try:
embed1 = discord.Embed(title=name, description="To create a ticket react with 📩", color=discord.Color.green())
await message.edit(embed=embed1)
embed = discord.Embed(description="**<:tick:897382645321850920> Successfully edited the panel!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.Forbidden:
embed = discord.Embed(description="**<:error:897382665781669908> I couldn't do that!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.NotFound:
embed = discord.Embed(description=f"**<:error:897382665781669908> I couldn't find a panel with id `{panel_id}`! Please try again after checking the id!**")
await ctx.send(embed=embed) | async def edit_(self, ctx: commands.Context, channel: discord.TextChannel, panel_id: int, *, name: str):
"""Edits a previously built panel in the server. Requires the `panel_id` which is provided at the time of the creation of the panel"""
message = await channel.fetch_message(panel_id)
try:
embed1 = discord.Embed(title=name, description="To create a ticket react with 📩", color=discord.Color.green())
await message.edit(embed=embed1)
embed = discord.Embed(description="**<:tick:897382645321850920> Successfully edited the panel!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.Forbidden:
embed = discord.Embed(description="**<:error:897382665781669908> I couldn't do that!**", color=discord.Color.green())
await ctx.send(embed=embed)
except discord.NotFound:
embed = discord.Embed(description=f"**<:error:897382665781669908> I couldn't find a panel with id `{panel_id}`! Please try again after checking the id!**")
await ctx.send(embed=embed) |
Python | async def reset_(self, ctx: commands.Context):
"""Resets the ticket count set of the server"""
embed = discord.Embed(description=f"Are you sure you want to reset the **Ticket Count**?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange())
message = await ctx.send(embed=embed)
await message.edit(embed=embed, view=TicketResetView(ctx, message, self.bot)) | async def reset_(self, ctx: commands.Context):
"""Resets the ticket count set of the server"""
embed = discord.Embed(description=f"Are you sure you want to reset the **Ticket Count**?\n------------------------------------------------\nRespond Within **15** seconds!", color=discord.Color.orange())
message = await ctx.send(embed=embed)
await message.edit(embed=embed, view=TicketResetView(ctx, message, self.bot)) |
Python | async def category_(self, ctx: commands.Context, categoryID: int=None):
"""Sets the category for tickets. Highly reccomended."""
try:
if categoryID is None:
self.bot.dbcursor.execute(f'SELECT category FROM ticket WHERE guild_id=?', (ctx.guild.id,))
dataCheck = self.bot.dbcursor.fetchone()
if not dataCheck:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You have not assigned a category to tickets yet**", color=discord.Color.red()))
self.bot.dbcursor.execute(f'SELECT * FROM ticket WHERE guild_id=?', (ctx.guild.id,))
categoryFind = self.bot.dbcursor.fetchone()
cat = categoryFind[2]
return await ctx.send(embed=discord.Embed(description=f"**The category_id set for this server is {cat}**", color=discord.Color.green()))
self.bot.dbcursor.execute(f'SELECT category FROM ticket WHERE guild_id=?', (ctx.guild.id,))
data = self.bot.dbcursor.fetchone()
if not data:
self.bot.dbcursor.execute(f'SELECT * FROM ticket WHERE guild_id=?', (ctx.guild.id,))
dataCheck2 = self.bot.dbcursor.fetchone()
if not dataCheck2[0]:
self.bot.dbcursor.execute(f'INSERT INTO ticket (guild_id, category) VALUES(?,?)', (ctx.guild.id, categoryID))
else:
self.bot.dbcursor.execute(f'INSERT INTO ticket (category) VALUES(?) WHERE guild_id=?', (categoryID, ctx.guild.id))
if data:
self.bot.dbcursor.execute(f'UPDATE ticket SET category = ? WHERE guild_id=?', (categoryID, ctx.guild.id))
self.bot.db.commit()
category = discord.utils.get(ctx.guild.categories, id=categoryID)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added `{category}` as the ticket category!\n\nIf you want to keep ticket view permissions, make sure to change the category permissions.**", color=discord.Color.green())
await ctx.send(embed=embed)
except Exception as e:
print(e) | async def category_(self, ctx: commands.Context, categoryID: int=None):
"""Sets the category for tickets. Highly reccomended."""
try:
if categoryID is None:
self.bot.dbcursor.execute(f'SELECT category FROM ticket WHERE guild_id=?', (ctx.guild.id,))
dataCheck = self.bot.dbcursor.fetchone()
if not dataCheck:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You have not assigned a category to tickets yet**", color=discord.Color.red()))
self.bot.dbcursor.execute(f'SELECT * FROM ticket WHERE guild_id=?', (ctx.guild.id,))
categoryFind = self.bot.dbcursor.fetchone()
cat = categoryFind[2]
return await ctx.send(embed=discord.Embed(description=f"**The category_id set for this server is {cat}**", color=discord.Color.green()))
self.bot.dbcursor.execute(f'SELECT category FROM ticket WHERE guild_id=?', (ctx.guild.id,))
data = self.bot.dbcursor.fetchone()
if not data:
self.bot.dbcursor.execute(f'SELECT * FROM ticket WHERE guild_id=?', (ctx.guild.id,))
dataCheck2 = self.bot.dbcursor.fetchone()
if not dataCheck2[0]:
self.bot.dbcursor.execute(f'INSERT INTO ticket (guild_id, category) VALUES(?,?)', (ctx.guild.id, categoryID))
else:
self.bot.dbcursor.execute(f'INSERT INTO ticket (category) VALUES(?) WHERE guild_id=?', (categoryID, ctx.guild.id))
if data:
self.bot.dbcursor.execute(f'UPDATE ticket SET category = ? WHERE guild_id=?', (categoryID, ctx.guild.id))
self.bot.db.commit()
category = discord.utils.get(ctx.guild.categories, id=categoryID)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added `{category}` as the ticket category!\n\nIf you want to keep ticket view permissions, make sure to change the category permissions.**", color=discord.Color.green())
await ctx.send(embed=embed)
except Exception as e:
print(e) |
Python | async def add(self, ctx: commands.Context, user: discord.Member):
"""Adds a user in the ticket"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if user in ctx.channel.members:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is already in the ticket**", color=discord.Color.red))
channel: discord.TextChannel = ctx.channel
perms = channel.overwrites_for(user)
perms.view_channel = True
perms.send_messages = True
perms.read_message_history = True
await channel.set_permissions(user, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {user.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) | async def add(self, ctx: commands.Context, user: discord.Member):
"""Adds a user in the ticket"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if user in ctx.channel.members:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is already in the ticket**", color=discord.Color.red))
channel: discord.TextChannel = ctx.channel
perms = channel.overwrites_for(user)
perms.view_channel = True
perms.send_messages = True
perms.read_message_history = True
await channel.set_permissions(user, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {user.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def remove(self, ctx: commands.Context, user: discord.Member):
"""Removes a user from a ticket. Note: It can't be the user who created the ticket or a person with admin"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if user.id == data[2]:
embed2 = discord.Embed(description=f"**<:error:897382665781669908> {user.mention} is the one who opened a ticket\nYou can't remove them from the ticket!**", color=discord.Color.red())
await ctx.send(embed=embed2)
if user.guild_permissions.administrator or user.guild_permissions.manage_channels:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is a *MOD/ADMIN*.**", color=discord.Color.red()))
if not user in ctx.channel.members:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is already not in the ticket**", color=discord.Color.red))
channel: discord.TextChannel = ctx.channel
perms = channel.overwrites_for(user)
perms.view_channel = False
perms.send_messages = False
perms.read_message_history = False
await channel.set_permissions(user, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully removed {user.mention} from the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) | async def remove(self, ctx: commands.Context, user: discord.Member):
"""Removes a user from a ticket. Note: It can't be the user who created the ticket or a person with admin"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if user.id == data[2]:
embed2 = discord.Embed(description=f"**<:error:897382665781669908> {user.mention} is the one who opened a ticket\nYou can't remove them from the ticket!**", color=discord.Color.red())
await ctx.send(embed=embed2)
if user.guild_permissions.administrator or user.guild_permissions.manage_channels:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is a *MOD/ADMIN*.**", color=discord.Color.red()))
if not user in ctx.channel.members:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> That user is already not in the ticket**", color=discord.Color.red))
channel: discord.TextChannel = ctx.channel
perms = channel.overwrites_for(user)
perms.view_channel = False
perms.send_messages = False
perms.read_message_history = False
await channel.set_permissions(user, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully removed {user.mention} from the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def role(self, ctx: commands.Context, switch: str, *, role: discord.Role):
"""Adds a role or removes the role from a server.\nExample: `ticket role add @SOMEROLE` `ticket role remove remove @SOMEROLE`"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if switch.lower() == "add":
channel: discord.Channel = ctx.channel
perms = channel.overwrites_for(role)
perms.view_channel = True
perms.send_messages = True
perms.read_message_history = True
await channel.set_permissions(role, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {role.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed)
if switch.lower() == "remove":
channel: discord.Channel = ctx.channel
perms = channel.overwrites_for(role)
perms.view_channel = False
perms.send_messages = False
perms.read_message_history = False
await channel.set_permissions(role, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {role.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) | async def role(self, ctx: commands.Context, switch: str, *, role: discord.Role):
"""Adds a role or removes the role from a server.\nExample: `ticket role add @SOMEROLE` `ticket role remove remove @SOMEROLE`"""
self.bot.dbcursor.execute(f'SELECT * FROM tickets WHERE guild_id=? AND channel_id=?', (ctx.guild.id, ctx.channel.id))
data = self.bot.dbcursor.fetchone()
if ctx.channel.id != data[1]:
await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> Looks like either this channel is not a ticket channel or you aren't in the same channel**", color=discord.Color.red()))
if switch.lower() == "add":
channel: discord.Channel = ctx.channel
perms = channel.overwrites_for(role)
perms.view_channel = True
perms.send_messages = True
perms.read_message_history = True
await channel.set_permissions(role, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {role.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed)
if switch.lower() == "remove":
channel: discord.Channel = ctx.channel
perms = channel.overwrites_for(role)
perms.view_channel = False
perms.send_messages = False
perms.read_message_history = False
await channel.set_permissions(role, overwrite=perms)
embed = discord.Embed(description=f"**<:tick:897382645321850920> Successfully added {role.mention} in the ticket!**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def covid_(self, ctx: commands.Context):
"""Command group to get covid stats use `covid` for more info"""
if ctx.invoked_subcommand is None:
embed = discord.Embed(title="Covid Info", description="**__Commands__:** \n-->`global`:\nGets Global covid info\naliases: `world` `all`\n\n-->`country` \nDirectly type the country you want.\nExample: \n`+covid country India`\n`+covid country USA`", color=discord.Color.green())
await ctx.send(embed=embed) | async def covid_(self, ctx: commands.Context):
"""Command group to get covid stats use `covid` for more info"""
if ctx.invoked_subcommand is None:
embed = discord.Embed(title="Covid Info", description="**__Commands__:** \n-->`global`:\nGets Global covid info\naliases: `world` `all`\n\n-->`country` \nDirectly type the country you want.\nExample: \n`+covid country India`\n`+covid country USA`", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def country_(self, ctx, *, country: str):
"""Get covid stats of a country\nExample: `covid country India` and `covid country USA`"""
em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green())
message = await ctx.send(embed=em)
url = f"https://coronavirus-19-api.herokuapp.com/countries/{country}"
stats = await self.bot.session.get(url)
json_stats = await stats.json()
country = json_stats["country"]
totalCases = json_stats["cases"]
todayCases = json_stats["todayCases"]
totalDeaths = json_stats["deaths"]
todayDeaths = json_stats["todayDeaths"]
recovered = json_stats["recovered"]
active = json_stats["active"]
critical = json_stats["critical"]
casesPerOneMillion = json_stats["casesPerOneMillion"]
deathsPerOneMillion = json_stats["deathsPerOneMillion"]
totalTests = json_stats["totalTests"]
testsPerOneMillion = json_stats["testsPerOneMillion"]
embed = discord.Embed(title=f"**COVID-19 Status Of {country}**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random())
embed.add_field(name="**Total Cases**", value=totalCases, inline=True)
embed.add_field(name="**Today Cases**", value=todayCases, inline=True)
embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True)
embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True)
embed.add_field(name="**Recovered**", value=recovered, inline=True)
embed.add_field(name="**Active**", value=active, inline=True)
embed.add_field(name="**Critical**", value=critical, inline=True)
embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True)
embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True)
embed.add_field(name="**Total Tests**", value=totalTests, inline=True)
embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True)
embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png")
embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await message.edit(embed=embed) | async def country_(self, ctx, *, country: str):
"""Get covid stats of a country\nExample: `covid country India` and `covid country USA`"""
em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green())
message = await ctx.send(embed=em)
url = f"https://coronavirus-19-api.herokuapp.com/countries/{country}"
stats = await self.bot.session.get(url)
json_stats = await stats.json()
country = json_stats["country"]
totalCases = json_stats["cases"]
todayCases = json_stats["todayCases"]
totalDeaths = json_stats["deaths"]
todayDeaths = json_stats["todayDeaths"]
recovered = json_stats["recovered"]
active = json_stats["active"]
critical = json_stats["critical"]
casesPerOneMillion = json_stats["casesPerOneMillion"]
deathsPerOneMillion = json_stats["deathsPerOneMillion"]
totalTests = json_stats["totalTests"]
testsPerOneMillion = json_stats["testsPerOneMillion"]
embed = discord.Embed(title=f"**COVID-19 Status Of {country}**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random())
embed.add_field(name="**Total Cases**", value=totalCases, inline=True)
embed.add_field(name="**Today Cases**", value=todayCases, inline=True)
embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True)
embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True)
embed.add_field(name="**Recovered**", value=recovered, inline=True)
embed.add_field(name="**Active**", value=active, inline=True)
embed.add_field(name="**Critical**", value=critical, inline=True)
embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True)
embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True)
embed.add_field(name="**Total Tests**", value=totalTests, inline=True)
embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True)
embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png")
embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await message.edit(embed=embed) |
Python | async def global_(self, ctx):
"""Gets the global Covid-19 INFO"""
em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green())
message = await ctx.send(embed=em)
url = f"https://coronavirus-19-api.herokuapp.com/countries/world"
stats = await self.bot.session.get(url)
json_stats = await stats.json()
totalCases = json_stats["cases"]
todayCases = json_stats["todayCases"]
totalDeaths = json_stats["deaths"]
todayDeaths = json_stats["todayDeaths"]
recovered = json_stats["recovered"]
active = json_stats["active"]
critical = json_stats["critical"]
casesPerOneMillion = json_stats["casesPerOneMillion"]
deathsPerOneMillion = json_stats["deathsPerOneMillion"]
totalTests = json_stats["totalTests"]
testsPerOneMillion = json_stats["testsPerOneMillion"]
embed = discord.Embed(title=f"**Global Covid 19 Info**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random())
embed.add_field(name="**Total Cases**", value=totalCases, inline=True)
embed.add_field(name="**Today Cases**", value=todayCases, inline=True)
embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True)
embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True)
embed.add_field(name="**Recovered**", value=recovered, inline=True)
embed.add_field(name="**Active**", value=active, inline=True)
embed.add_field(name="**Critical**", value=critical, inline=True)
embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True)
embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True)
embed.add_field(name="**Total Tests**", value=totalTests, inline=True)
embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True)
embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png")
embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await message.edit(embed=embed) | async def global_(self, ctx):
"""Gets the global Covid-19 INFO"""
em = discord.Embed(description="**Fetching information <a:loading:911568431315292211>**", color=discord.Color.green())
message = await ctx.send(embed=em)
url = f"https://coronavirus-19-api.herokuapp.com/countries/world"
stats = await self.bot.session.get(url)
json_stats = await stats.json()
totalCases = json_stats["cases"]
todayCases = json_stats["todayCases"]
totalDeaths = json_stats["deaths"]
todayDeaths = json_stats["todayDeaths"]
recovered = json_stats["recovered"]
active = json_stats["active"]
critical = json_stats["critical"]
casesPerOneMillion = json_stats["casesPerOneMillion"]
deathsPerOneMillion = json_stats["deathsPerOneMillion"]
totalTests = json_stats["totalTests"]
testsPerOneMillion = json_stats["testsPerOneMillion"]
embed = discord.Embed(title=f"**Global Covid 19 Info**!", description="This Information Isn't Live Always, Hence It May Not Be Accurate!", colour=discord.Color.random())
embed.add_field(name="**Total Cases**", value=totalCases, inline=True)
embed.add_field(name="**Today Cases**", value=todayCases, inline=True)
embed.add_field(name="**Total Deaths**", value=totalDeaths, inline=True)
embed.add_field(name="**Today Deaths**", value=todayDeaths, inline=True)
embed.add_field(name="**Recovered**", value=recovered, inline=True)
embed.add_field(name="**Active**", value=active, inline=True)
embed.add_field(name="**Critical**", value=critical, inline=True)
embed.add_field(name="**Cases Per One Million**", value=casesPerOneMillion, inline=True)
embed.add_field(name="**Deaths Per One Million**", value=deathsPerOneMillion, inline=True)
embed.add_field(name="**Total Tests**", value=totalTests, inline=True)
embed.add_field(name="**Tests Per One Million**", value=testsPerOneMillion, inline=True)
embed.set_thumbnail(url="https://cdn.discordapp.com/attachments/564520348821749766/701422183217365052/2Q.png")
embed.set_footer(text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url)
await message.edit(embed=embed) |
Python | async def bump_(self, ctx: commands.Context, switch: str):
"""Turns Bump reminder on in the server"""
self.bot.dbcursor.execute(f'SELECT bump FROM settings WHERE guild_id=?', (ctx.guild.id,))
data = self.bot.dbcursor.fetchone()
if not data:
self.bot.dbcursor.execute('INSERT INTO settings (guild_id, bump) VALUES(?,?)', (ctx.guild.id, "off"))
if switch.lower() == "on" or switch.lower() == "enable" or switch.lower() == "yes":
self.bot.dbcursor.execute(f'UPDATE settings SET bump = "on" WHERE guild_id=?', (ctx.guild.id,))
if switch.lower() == "off" or switch.lower() == "disable" or switch.lower() == "no":
self.bot.dbcursor.execute(f'UPDATE settings SET bump = "off" WHERE guild_id=?', (ctx.guild.id,))
if switch.lower() == "on" or switch.lower() == "enable" or switch.lower() == "yes":
embed = discord.Embed(description="**<:tick:897382645321850920> Enabled `bump reminding` service!**", color=discord.Color.green())
await ctx.send(embed=embed)
if switch.lower() == "off" or switch.lower() == "disable" or switch.lower() == "no":
embed = discord.Embed(description="**<:tick:897382645321850920> Disabled `bump reminding` service!**", color=discord.Color.green())
await ctx.send(embed=embed) | async def bump_(self, ctx: commands.Context, switch: str):
"""Turns Bump reminder on in the server"""
self.bot.dbcursor.execute(f'SELECT bump FROM settings WHERE guild_id=?', (ctx.guild.id,))
data = self.bot.dbcursor.fetchone()
if not data:
self.bot.dbcursor.execute('INSERT INTO settings (guild_id, bump) VALUES(?,?)', (ctx.guild.id, "off"))
if switch.lower() == "on" or switch.lower() == "enable" or switch.lower() == "yes":
self.bot.dbcursor.execute(f'UPDATE settings SET bump = "on" WHERE guild_id=?', (ctx.guild.id,))
if switch.lower() == "off" or switch.lower() == "disable" or switch.lower() == "no":
self.bot.dbcursor.execute(f'UPDATE settings SET bump = "off" WHERE guild_id=?', (ctx.guild.id,))
if switch.lower() == "on" or switch.lower() == "enable" or switch.lower() == "yes":
embed = discord.Embed(description="**<:tick:897382645321850920> Enabled `bump reminding` service!**", color=discord.Color.green())
await ctx.send(embed=embed)
if switch.lower() == "off" or switch.lower() == "disable" or switch.lower() == "no":
embed = discord.Embed(description="**<:tick:897382645321850920> Disabled `bump reminding` service!**", color=discord.Color.green())
await ctx.send(embed=embed) |
Python | async def memberCheck(guild: discord.Guild) -> List[int]:
"""Returns the memberList which contains memberIDs of all members combined"""
memberList = []
for member in guild.members:
memberList.append(member.id)
return memberList | async def memberCheck(guild: discord.Guild) -> List[int]:
"""Returns the memberList which contains memberIDs of all members combined"""
memberList = []
for member in guild.members:
memberList.append(member.id)
return memberList |
Python | async def help(ctx: discord.ApplicationContext):
"""Get help about the most feature packed bot!!"""
await ctx.respond(embed=Help_Embed(), view=HelpOptions())
message = await ctx.interaction.original_message()
await asyncio.sleep(120)
try:
await message.edit("This help session expired", embed=None, view=None)
except:
pass | async def help(ctx: discord.ApplicationContext):
"""Get help about the most feature packed bot!!"""
await ctx.respond(embed=Help_Embed(), view=HelpOptions())
message = await ctx.interaction.original_message()
await asyncio.sleep(120)
try:
await message.edit("This help session expired", embed=None, view=None)
except:
pass |
Python | async def tictactoe_(self, ctx: commands.Context, user: discord.Member):
"""Play a tic-tac-toe Game with someone online"""
if user is None:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908? You can't play tic-tac-toe alone!**", color=discord.Color.red()))
if user.bot:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't play with a bot!**", color=discord.Color.red()))
players = {
str(ctx.author.id): str(user.id),
str(user.id): str(ctx.author.id)
}
player1 = random.choice(list(players.keys()))
player2 = players[player1]
msg = await ctx.send(f"{ctx.guild.get_member(int(player1)).mention}\'s turn (X)")
await msg.edit(view=TicTacToe(
player1=ctx.guild.get_member(int(player1)),
player2=ctx.guild.get_member(int(player2)),
message=msg
)) | async def tictactoe_(self, ctx: commands.Context, user: discord.Member):
"""Play a tic-tac-toe Game with someone online"""
if user is None:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908? You can't play tic-tac-toe alone!**", color=discord.Color.red()))
if user.bot:
return await ctx.send(embed=discord.Embed(description="**<:error:897382665781669908> You can't play with a bot!**", color=discord.Color.red()))
players = {
str(ctx.author.id): str(user.id),
str(user.id): str(ctx.author.id)
}
player1 = random.choice(list(players.keys()))
player2 = players[player1]
msg = await ctx.send(f"{ctx.guild.get_member(int(player1)).mention}\'s turn (X)")
await msg.edit(view=TicTacToe(
player1=ctx.guild.get_member(int(player1)),
player2=ctx.guild.get_member(int(player2)),
message=msg
)) |
Python | async def beer_(self, ctx: commands.Context, user: discord.Member=None):
"""Have a beer with yourself or someone else\nExample: `beer` for having a drink and `beer [user]` to have a drink with someone"""
user = user if user else ctx.author
if user.bot:
embed = discord.Embed(description=f"**Hey {ctx.author.mention},\nbots don't have beer!\n--------------------------\nTry having it with a human!**", color=discord.Color.red())
await ctx.send(embed=embed)
return
if user == ctx.author:
embed = discord.Embed(description=f"**{ctx.author.mention} is having a great time drinking lonely! :beer:**", color=discord.Color.green())
await ctx.send(embed=embed)
else:
embed = discord.Embed(description=f"**{ctx.author.mention} has invited {user.mention} for having a drink together :beers:!\n------------------------------------\nWould you like to join {user.mention}?**", color=discord.Color.orange())
message = await ctx.send(content=f"{user.mention}", embed=embed)
await message.edit(embed=embed, view=BeerView(user, ctx, message)) | async def beer_(self, ctx: commands.Context, user: discord.Member=None):
"""Have a beer with yourself or someone else\nExample: `beer` for having a drink and `beer [user]` to have a drink with someone"""
user = user if user else ctx.author
if user.bot:
embed = discord.Embed(description=f"**Hey {ctx.author.mention},\nbots don't have beer!\n--------------------------\nTry having it with a human!**", color=discord.Color.red())
await ctx.send(embed=embed)
return
if user == ctx.author:
embed = discord.Embed(description=f"**{ctx.author.mention} is having a great time drinking lonely! :beer:**", color=discord.Color.green())
await ctx.send(embed=embed)
else:
embed = discord.Embed(description=f"**{ctx.author.mention} has invited {user.mention} for having a drink together :beers:!\n------------------------------------\nWould you like to join {user.mention}?**", color=discord.Color.orange())
message = await ctx.send(content=f"{user.mention}", embed=embed)
await message.edit(embed=embed, view=BeerView(user, ctx, message)) |
Python | async def beerparty_(self, ctx: commands.Context):
"""Have a beerparty in the server. Invite your friends!"""
embed = discord.Embed(title="Beer Party 🍻", description=f"{ctx.author.mention} had invited everyone to join up this beer party :beers:!", color=discord.Color.green())
message = await ctx.send(embed=embed)
await message.edit(embed=embed, view=BeerPartyView(message, ctx)) | async def beerparty_(self, ctx: commands.Context):
"""Have a beerparty in the server. Invite your friends!"""
embed = discord.Embed(title="Beer Party 🍻", description=f"{ctx.author.mention} had invited everyone to join up this beer party :beers:!", color=discord.Color.green())
message = await ctx.send(embed=embed)
await message.edit(embed=embed, view=BeerPartyView(message, ctx)) |
Python | async def akinator_(self, ctx: commands.Context):
"""Play a game of akinator\nHow to play: Think of a character it can either be a fictional or non-fictional character.\nThe bot will ask questions, just give them the right answer!"""
await ctx.send(embed=discord.Embed(description="**Yukinator is here to guess!\n--------------------------------\nOptions: y: `yes\n`no: `n`\nidk: `Don't know`\np: `probably`\npn: `probably not`\nb: `previous question`\nq: `quit the game`**", color=discord.Color.green()).set_image(url="https://static.wikia.nocookie.net/video-game-character-database/images/9/9f/Akinator.png/revision/latest?cb=20200817020737"))
def check(msg):
return (
msg.author == ctx.author
and msg.channel == ctx.channel
and msg.content.lower() in ["y", "n", "idk", "p", "pn", "b", "q"]
)
try:
aki = ak.Akinator()
q = aki.start_game()
while aki.progression <= 80:
await ctx.send(embed=discord.Embed(description=f"**{q}\n\n[`y` | `n` | `idk` | `p` | `pn` | `b` | `q`]**", color=discord.Color.embed_background(theme="dark")))
try:
msg = await self.bot.wait_for("message", check=check, timeout=60)
if msg.content.lower() == "q":
await ctx.send(embed=discord.Embed(description="**You have quit the game!**", color=discord.Color.red()))
break
if msg.content.lower() == "b":
try:
q = aki.back()
except ak.CantGoBackAnyFurther:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> {e}**"))
continue
else:
try:
q = aki.answer(msg.content.lower())
except ak.InvalidAnswerError as e:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> {e}**"))
continue
except asyncio.TimeoutError:
return await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> The game timed-out.. try plsying a new one**"))
except Exception as e:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> An error occured\n`{str(e).capitalize()}`**"))
aki.win()
await ctx.send(
embed=discord.Embed(description=f"**Is it {aki.first_guess['name']}\n({aki.first_guess['description']})!\nWas I correct?(y/n)\n\t**", color=discord.Color.orange()).set_image(url=aki.first_guess['absolute_picture_path'])
)
correct = await self.bot.wait_for("message", check=check)
if correct.content.lower() == "y":
await ctx.send(embed=discord.Embed(description="**Yay!**", color=discord.Color.green()))
else:
await ctx.send(embed=discord.Embed(description="**Oof!**", color=discord.Color.red()))
except Exception as e:
await ctx.send(e) | async def akinator_(self, ctx: commands.Context):
"""Play a game of akinator\nHow to play: Think of a character it can either be a fictional or non-fictional character.\nThe bot will ask questions, just give them the right answer!"""
await ctx.send(embed=discord.Embed(description="**Yukinator is here to guess!\n--------------------------------\nOptions: y: `yes\n`no: `n`\nidk: `Don't know`\np: `probably`\npn: `probably not`\nb: `previous question`\nq: `quit the game`**", color=discord.Color.green()).set_image(url="https://static.wikia.nocookie.net/video-game-character-database/images/9/9f/Akinator.png/revision/latest?cb=20200817020737"))
def check(msg):
return (
msg.author == ctx.author
and msg.channel == ctx.channel
and msg.content.lower() in ["y", "n", "idk", "p", "pn", "b", "q"]
)
try:
aki = ak.Akinator()
q = aki.start_game()
while aki.progression <= 80:
await ctx.send(embed=discord.Embed(description=f"**{q}\n\n[`y` | `n` | `idk` | `p` | `pn` | `b` | `q`]**", color=discord.Color.embed_background(theme="dark")))
try:
msg = await self.bot.wait_for("message", check=check, timeout=60)
if msg.content.lower() == "q":
await ctx.send(embed=discord.Embed(description="**You have quit the game!**", color=discord.Color.red()))
break
if msg.content.lower() == "b":
try:
q = aki.back()
except ak.CantGoBackAnyFurther:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> {e}**"))
continue
else:
try:
q = aki.answer(msg.content.lower())
except ak.InvalidAnswerError as e:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> {e}**"))
continue
except asyncio.TimeoutError:
return await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> The game timed-out.. try plsying a new one**"))
except Exception as e:
await ctx.send(embed=discord.Embed(description=f"**<:error:897382665781669908> An error occured\n`{str(e).capitalize()}`**"))
aki.win()
await ctx.send(
embed=discord.Embed(description=f"**Is it {aki.first_guess['name']}\n({aki.first_guess['description']})!\nWas I correct?(y/n)\n\t**", color=discord.Color.orange()).set_image(url=aki.first_guess['absolute_picture_path'])
)
correct = await self.bot.wait_for("message", check=check)
if correct.content.lower() == "y":
await ctx.send(embed=discord.Embed(description="**Yay!**", color=discord.Color.green()))
else:
await ctx.send(embed=discord.Embed(description="**Oof!**", color=discord.Color.red()))
except Exception as e:
await ctx.send(e) |
Python | async def gayrate(self, ctx, user: discord.Member=None):
"""View your's or someone's gayrate"""
user = user if user else ctx.author
if user.bot:
embed = discord.Embed(description="**<:error:897382665781669908> How lame of you! | This machine is for humans!\nNot for bots, You fool.**", color=discord.Color.red())
return await ctx.send(embed=embed)
gayrate = random.randint(1, 100)
if gayrate >= 90:
embed = discord.Embed(title="Yuki's Gayr8 Machine!", description=f"**The MACHINE Broke :slot_machine:!\n\n{user.mention}**'s gayr8: **{gayrate}**%", color=discord.Color.embed_background(theme="dark"))
embed.set_image(url="https://media.giphy.com/media/j2es27Xohj5EMK6G8c/giphy.gif")
return await ctx.send(embed=embed)
else:
embed = discord.Embed(title="Yuki's Gayr8 Machine!", description=f"**{user.mention}**'s gayr8: **{gayrate}**%", color=discord.Color.dark_purple())
return await ctx.send(embed=embed) | async def gayrate(self, ctx, user: discord.Member=None):
"""View your's or someone's gayrate"""
user = user if user else ctx.author
if user.bot:
embed = discord.Embed(description="**<:error:897382665781669908> How lame of you! | This machine is for humans!\nNot for bots, You fool.**", color=discord.Color.red())
return await ctx.send(embed=embed)
gayrate = random.randint(1, 100)
if gayrate >= 90:
embed = discord.Embed(title="Yuki's Gayr8 Machine!", description=f"**The MACHINE Broke :slot_machine:!\n\n{user.mention}**'s gayr8: **{gayrate}**%", color=discord.Color.embed_background(theme="dark"))
embed.set_image(url="https://media.giphy.com/media/j2es27Xohj5EMK6G8c/giphy.gif")
return await ctx.send(embed=embed)
else:
embed = discord.Embed(title="Yuki's Gayr8 Machine!", description=f"**{user.mention}**'s gayr8: **{gayrate}**%", color=discord.Color.dark_purple())
return await ctx.send(embed=embed) |
Python | async def send_command_help(self, command):
"""triggers when a `<prefix>help <command>` is called"""
try:
ctx = self.context
signature = self.get_command_signature(
command
)
embed = HelpEmbed(
title=signature, description=command.help or "No help found..."
)
if cog := command.cog:
embed.add_field(name="Category", value=cog.qualified_name)
if command._buckets and (cooldown := command._buckets._cooldown):
embed.add_field(
name="Cooldown",
value=f"{cooldown.rate} per {cooldown.per:.0f} seconds",
)
await ctx.send(embed=embed)
except Exception as e:
print(e) | async def send_command_help(self, command):
"""triggers when a `<prefix>help <command>` is called"""
try:
ctx = self.context
signature = self.get_command_signature(
command
)
embed = HelpEmbed(
title=signature, description=command.help or "No help found..."
)
if cog := command.cog:
embed.add_field(name="Category", value=cog.qualified_name)
if command._buckets and (cooldown := command._buckets._cooldown):
embed.add_field(
name="Cooldown",
value=f"{cooldown.rate} per {cooldown.per:.0f} seconds",
)
await ctx.send(embed=embed)
except Exception as e:
print(e) |
Python | async def botinfo_(self, ctx: commands.Context):
"""View the bot's info"""
memory = "{:.4} MB".format(psutil.Process().memory_info().rss / 1024 ** 2)
py_ver = ".".join([str(v) for v in sys.version_info[:3]])
uptime = str(datetime.timedelta(seconds=int(round(time.time()-startTime))))
embed = discord.Embed(title="Bot Info!", description=f"**Servers**\n{len(list(self.bot.guilds))}\n\n**Users**\n{members(self.bot)}\n\n**System**\n{platform.release()}\n\n**Memory**\n{memory}\n\n**Python Version**\n{py_ver}\n\n**Uptime**\n{uptime}\n\n**Owner/Creator**\n27Saumya", color=discord.Color.green())
embed.set_thumbnail(url=self.bot.user.avatar.url)
await ctx.send(embed=embed) | async def botinfo_(self, ctx: commands.Context):
"""View the bot's info"""
memory = "{:.4} MB".format(psutil.Process().memory_info().rss / 1024 ** 2)
py_ver = ".".join([str(v) for v in sys.version_info[:3]])
uptime = str(datetime.timedelta(seconds=int(round(time.time()-startTime))))
embed = discord.Embed(title="Bot Info!", description=f"**Servers**\n{len(list(self.bot.guilds))}\n\n**Users**\n{members(self.bot)}\n\n**System**\n{platform.release()}\n\n**Memory**\n{memory}\n\n**Python Version**\n{py_ver}\n\n**Uptime**\n{uptime}\n\n**Owner/Creator**\n27Saumya", color=discord.Color.green())
embed.set_thumbnail(url=self.bot.user.avatar.url)
await ctx.send(embed=embed) |
Python | async def ping_(self, ctx: commands.Context):
"""View the bot's latency (Edit Latency)"""
before = time.monotonic()
embed = discord.Embed(title=":ping_pong:", color=discord.Color.green())
message = await ctx.send(embed=embed)
ping = (time.monotonic() - before) * 1000
embed2 = discord.Embed(title=":ping_pong: Pong!", description=f"**Bot latency: `{round(self.bot.latency * 1000)}` ms\n------------------------------\nDiscord Latency: `{int(ping)}` ms**", color=discord.Color.green())
await message.edit(embed=embed2) | async def ping_(self, ctx: commands.Context):
"""View the bot's latency (Edit Latency)"""
before = time.monotonic()
embed = discord.Embed(title=":ping_pong:", color=discord.Color.green())
message = await ctx.send(embed=embed)
ping = (time.monotonic() - before) * 1000
embed2 = discord.Embed(title=":ping_pong: Pong!", description=f"**Bot latency: `{round(self.bot.latency * 1000)}` ms\n------------------------------\nDiscord Latency: `{int(ping)}` ms**", color=discord.Color.green())
await message.edit(embed=embed2) |
Python | def sum_then_finalize(
metric_finalizers: model_lib.MetricFinalizersType,
local_unfinalized_metrics_type: computation_types.StructWithPythonType
) -> computation_base.Computation:
"""Creates a TFF computation that aggregates metrics via `sum_then_finalize`.
The returned federated TFF computation has the following type signature:
`local_unfinalized_metrics@CLIENTS -> aggregated_metrics@SERVER`, where the
input is given by `tff.learning.Model.report_local_unfinalized_metrics()` at
`CLIENTS`, and the output is computed by first summing the unfinalized metrics
from `CLIENTS`, followed by applying the finalizers at `SERVER`.
Args:
metric_finalizers: An `OrderedDict` of `string` metric names to finalizer
functions returned by `tff.learning.Model.metric_finalizers()`. It should
have the same keys (i.e., metric names) as the `OrderedDict` returned by
`tff.learning.Model.report_local_unfinalized_metrics()`. A finalizer is a
callable (typically `tf.function` or `tff.tf_computation` decoreated
function) that takes in a metric's unfinalized values, and returns the
finalized values.
local_unfinalized_metrics_type: A `tff.types.StructWithPythonType` (with
`OrderedDict` as the Python container) of a client's local unfinalized
metrics. Let `local_unfinalized_metrics` be the output of
`tff.learning.Model.report_local_unfinalized_metrics()`. Its type can be
obtained by `tff.framework.type_from_tensors(local_unfinalized_metrics)`.
Returns:
A federated TFF computation that sums the unfinalized metrics from CLIENTS,
and applies the correponding finalizers at SERVER.
Raises:
TypeError: If the inputs are of the wrong types.
ValueError: If the keys (i.e., metric names) in `metric_finalizers` are not
the same as those expected by `local_unfinalized_metrics_type`.
"""
py_typecheck.check_type(metric_finalizers, collections.OrderedDict,
'metric_finalizers')
for key, value in metric_finalizers.items():
py_typecheck.check_type(key, str, f'metric_finalizers key {key}')
py_typecheck.check_callable(value, f'metric_finalizers value {value}')
# Directly check the type (instead of using `py_typecheck`) here so that the
# the error message has a better format (specifically, the expected type is
# shown as `tff.types.StructWithPythonType` in the error message).
if not isinstance(local_unfinalized_metrics_type,
computation_types.StructWithPythonType):
raise TypeError(
'Expected the input `local_unfinalized_metrics_type` to be a '
'`tff.types.StructWithPythonType`, found '
f'{py_typecheck.type_string(type(local_unfinalized_metrics_type))}.')
local_metrics_container = local_unfinalized_metrics_type.python_container
if local_metrics_container is not collections.OrderedDict:
raise TypeError(
'Expected the input `local_unfinalized_metrics_type` to be a '
'`tff.types.StructWithPythonType` with `collections.OrderedDict` as '
'the Python container, found a `tff.types.StructWithPythonType` with '
f'Python container {py_typecheck.type_string(local_metrics_container)}.'
)
metric_names_in_metric_finalizers = set(metric_finalizers.keys())
metric_names_in_local_unfinalized_metrics = set(
structure.name_list(local_unfinalized_metrics_type))
if (metric_names_in_metric_finalizers !=
metric_names_in_local_unfinalized_metrics):
difference_1 = (
metric_names_in_metric_finalizers -
metric_names_in_local_unfinalized_metrics)
difference_2 = (
metric_names_in_local_unfinalized_metrics -
metric_names_in_metric_finalizers)
raise ValueError(
'The metric names in `metric_finalizers` do not match those in the '
'`local_unfinalized_metrics`. Metric names in the `metric_finalizers`'
f'but not the `local_unfinalized_metrics`: {difference_1}. '
'Metric names in the `local_unfinalized_metrics` but not the '
f'`metric_finalizers`: {difference_2}.\n'
'Metrics names in the `metric_finalizers`: '
f'{metric_names_in_metric_finalizers}. Metric names in the '
'`local_unfinalized_metrics`: '
f'{metric_names_in_local_unfinalized_metrics}.')
@computations.federated_computation(
computation_types.at_clients(local_unfinalized_metrics_type))
def aggregator_computation(client_local_unfinalized_metrics):
unfinalized_metrics_sum = intrinsics.federated_sum(
client_local_unfinalized_metrics)
@computations.tf_computation(local_unfinalized_metrics_type)
def finalizer_computation(unfinalized_metrics):
finalized_metrics = collections.OrderedDict()
for metric_name, metric_finalizer in metric_finalizers.items():
finalized_metrics[metric_name] = metric_finalizer(
unfinalized_metrics[metric_name])
return finalized_metrics
return intrinsics.federated_map(finalizer_computation,
unfinalized_metrics_sum)
return aggregator_computation | def sum_then_finalize(
metric_finalizers: model_lib.MetricFinalizersType,
local_unfinalized_metrics_type: computation_types.StructWithPythonType
) -> computation_base.Computation:
"""Creates a TFF computation that aggregates metrics via `sum_then_finalize`.
The returned federated TFF computation has the following type signature:
`local_unfinalized_metrics@CLIENTS -> aggregated_metrics@SERVER`, where the
input is given by `tff.learning.Model.report_local_unfinalized_metrics()` at
`CLIENTS`, and the output is computed by first summing the unfinalized metrics
from `CLIENTS`, followed by applying the finalizers at `SERVER`.
Args:
metric_finalizers: An `OrderedDict` of `string` metric names to finalizer
functions returned by `tff.learning.Model.metric_finalizers()`. It should
have the same keys (i.e., metric names) as the `OrderedDict` returned by
`tff.learning.Model.report_local_unfinalized_metrics()`. A finalizer is a
callable (typically `tf.function` or `tff.tf_computation` decoreated
function) that takes in a metric's unfinalized values, and returns the
finalized values.
local_unfinalized_metrics_type: A `tff.types.StructWithPythonType` (with
`OrderedDict` as the Python container) of a client's local unfinalized
metrics. Let `local_unfinalized_metrics` be the output of
`tff.learning.Model.report_local_unfinalized_metrics()`. Its type can be
obtained by `tff.framework.type_from_tensors(local_unfinalized_metrics)`.
Returns:
A federated TFF computation that sums the unfinalized metrics from CLIENTS,
and applies the correponding finalizers at SERVER.
Raises:
TypeError: If the inputs are of the wrong types.
ValueError: If the keys (i.e., metric names) in `metric_finalizers` are not
the same as those expected by `local_unfinalized_metrics_type`.
"""
py_typecheck.check_type(metric_finalizers, collections.OrderedDict,
'metric_finalizers')
for key, value in metric_finalizers.items():
py_typecheck.check_type(key, str, f'metric_finalizers key {key}')
py_typecheck.check_callable(value, f'metric_finalizers value {value}')
# Directly check the type (instead of using `py_typecheck`) here so that the
# the error message has a better format (specifically, the expected type is
# shown as `tff.types.StructWithPythonType` in the error message).
if not isinstance(local_unfinalized_metrics_type,
computation_types.StructWithPythonType):
raise TypeError(
'Expected the input `local_unfinalized_metrics_type` to be a '
'`tff.types.StructWithPythonType`, found '
f'{py_typecheck.type_string(type(local_unfinalized_metrics_type))}.')
local_metrics_container = local_unfinalized_metrics_type.python_container
if local_metrics_container is not collections.OrderedDict:
raise TypeError(
'Expected the input `local_unfinalized_metrics_type` to be a '
'`tff.types.StructWithPythonType` with `collections.OrderedDict` as '
'the Python container, found a `tff.types.StructWithPythonType` with '
f'Python container {py_typecheck.type_string(local_metrics_container)}.'
)
metric_names_in_metric_finalizers = set(metric_finalizers.keys())
metric_names_in_local_unfinalized_metrics = set(
structure.name_list(local_unfinalized_metrics_type))
if (metric_names_in_metric_finalizers !=
metric_names_in_local_unfinalized_metrics):
difference_1 = (
metric_names_in_metric_finalizers -
metric_names_in_local_unfinalized_metrics)
difference_2 = (
metric_names_in_local_unfinalized_metrics -
metric_names_in_metric_finalizers)
raise ValueError(
'The metric names in `metric_finalizers` do not match those in the '
'`local_unfinalized_metrics`. Metric names in the `metric_finalizers`'
f'but not the `local_unfinalized_metrics`: {difference_1}. '
'Metric names in the `local_unfinalized_metrics` but not the '
f'`metric_finalizers`: {difference_2}.\n'
'Metrics names in the `metric_finalizers`: '
f'{metric_names_in_metric_finalizers}. Metric names in the '
'`local_unfinalized_metrics`: '
f'{metric_names_in_local_unfinalized_metrics}.')
@computations.federated_computation(
computation_types.at_clients(local_unfinalized_metrics_type))
def aggregator_computation(client_local_unfinalized_metrics):
unfinalized_metrics_sum = intrinsics.federated_sum(
client_local_unfinalized_metrics)
@computations.tf_computation(local_unfinalized_metrics_type)
def finalizer_computation(unfinalized_metrics):
finalized_metrics = collections.OrderedDict()
for metric_name, metric_finalizer in metric_finalizers.items():
finalized_metrics[metric_name] = metric_finalizer(
unfinalized_metrics[metric_name])
return finalized_metrics
return intrinsics.federated_map(finalizer_computation,
unfinalized_metrics_sum)
return aggregator_computation |
Python | def build_proximal_client_update_with_tff_optimizer(
model_fn,
proximal_strength: float,
use_experimental_simulation_loop: bool = False):
"""Creates client update logic in FedProx using a TFF optimizer.
In contrast to using a `tf.keras.optimizers.Optimizer`, we avoid creating
`tf.Variable`s associated with the optimizer state within the scope of the
client work, as they are not necessary. This also means that the client's
model weights are updated by computing `optimizer.next` and then assigning
the result to the model weights (while a `tf.keras.optimizers.Optimizer` will
modify the model weight in place using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg callable returning a `tff.learning.Model`.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the client update reduces
to that of FedAvg. Higher values prevent clients from moving too far from
the server model during local training.
use_experimental_simulation_loop: Controls the reduce loop function for the
input dataset. An experimental reduce loop is used for simulation.
Returns:
A `tf.function`.
"""
model = model_fn()
dataset_reduce_fn = dataset_reduce.build_dataset_reduce_fn(
use_experimental_simulation_loop)
@tf.function
def client_update(optimizer, initial_weights, data):
model_weights = model_utils.ModelWeights.from_model(model)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights,
initial_weights)
def reduce_fn(state, batch):
"""Trains a `tff.learning.Model` on a batch of data."""
num_examples_sum, optimizer_state = state
with tf.GradientTape() as tape:
output = model.forward_pass(batch, training=True)
gradients = tape.gradient(output.loss, model_weights.trainable)
proximal_delta = tf.nest.map_structure(tf.subtract,
model_weights.trainable,
initial_weights.trainable)
proximal_term = tf.nest.map_structure(lambda x: proximal_strength * x,
proximal_delta)
gradients = tf.nest.map_structure(tf.add, gradients, proximal_term)
optimizer_state, updated_weights = optimizer.next(optimizer_state,
model_weights.trainable,
gradients)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights.trainable,
updated_weights)
if output.num_examples is None:
num_examples_sum += tf.shape(output.predictions, out_type=tf.int64)[0]
else:
num_examples_sum += tf.cast(output.num_examples, tf.int64)
return num_examples_sum, optimizer_state
def initial_state_for_reduce_fn():
trainable_tensor_specs = tf.nest.map_structure(
lambda v: tf.TensorSpec(v.shape, v.dtype), model_weights.trainable)
return tf.zeros(
shape=[],
dtype=tf.int64), optimizer.initialize(trainable_tensor_specs)
num_examples, _ = dataset_reduce_fn(
reduce_fn, data, initial_state_fn=initial_state_for_reduce_fn)
client_update = tf.nest.map_structure(tf.subtract,
initial_weights.trainable,
model_weights.trainable)
model_output = model.report_local_outputs()
stat_output = collections.OrderedDict(num_examples=num_examples)
# TODO(b/122071074): Consider moving this functionality into
# tff.federated_mean?
client_update, has_non_finite_delta = (
tensor_utils.zero_all_if_any_non_finite(client_update))
# Zero out the weight if there are any non-finite values.
if has_non_finite_delta > 0:
client_weight = tf.constant(0.0)
else:
client_weight = tf.cast(num_examples, tf.float32)
return client_works.ClientResult(
update=client_update,
update_weight=client_weight), model_output, stat_output
return client_update | def build_proximal_client_update_with_tff_optimizer(
model_fn,
proximal_strength: float,
use_experimental_simulation_loop: bool = False):
"""Creates client update logic in FedProx using a TFF optimizer.
In contrast to using a `tf.keras.optimizers.Optimizer`, we avoid creating
`tf.Variable`s associated with the optimizer state within the scope of the
client work, as they are not necessary. This also means that the client's
model weights are updated by computing `optimizer.next` and then assigning
the result to the model weights (while a `tf.keras.optimizers.Optimizer` will
modify the model weight in place using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg callable returning a `tff.learning.Model`.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the client update reduces
to that of FedAvg. Higher values prevent clients from moving too far from
the server model during local training.
use_experimental_simulation_loop: Controls the reduce loop function for the
input dataset. An experimental reduce loop is used for simulation.
Returns:
A `tf.function`.
"""
model = model_fn()
dataset_reduce_fn = dataset_reduce.build_dataset_reduce_fn(
use_experimental_simulation_loop)
@tf.function
def client_update(optimizer, initial_weights, data):
model_weights = model_utils.ModelWeights.from_model(model)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights,
initial_weights)
def reduce_fn(state, batch):
"""Trains a `tff.learning.Model` on a batch of data."""
num_examples_sum, optimizer_state = state
with tf.GradientTape() as tape:
output = model.forward_pass(batch, training=True)
gradients = tape.gradient(output.loss, model_weights.trainable)
proximal_delta = tf.nest.map_structure(tf.subtract,
model_weights.trainable,
initial_weights.trainable)
proximal_term = tf.nest.map_structure(lambda x: proximal_strength * x,
proximal_delta)
gradients = tf.nest.map_structure(tf.add, gradients, proximal_term)
optimizer_state, updated_weights = optimizer.next(optimizer_state,
model_weights.trainable,
gradients)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights.trainable,
updated_weights)
if output.num_examples is None:
num_examples_sum += tf.shape(output.predictions, out_type=tf.int64)[0]
else:
num_examples_sum += tf.cast(output.num_examples, tf.int64)
return num_examples_sum, optimizer_state
def initial_state_for_reduce_fn():
trainable_tensor_specs = tf.nest.map_structure(
lambda v: tf.TensorSpec(v.shape, v.dtype), model_weights.trainable)
return tf.zeros(
shape=[],
dtype=tf.int64), optimizer.initialize(trainable_tensor_specs)
num_examples, _ = dataset_reduce_fn(
reduce_fn, data, initial_state_fn=initial_state_for_reduce_fn)
client_update = tf.nest.map_structure(tf.subtract,
initial_weights.trainable,
model_weights.trainable)
model_output = model.report_local_outputs()
stat_output = collections.OrderedDict(num_examples=num_examples)
# TODO(b/122071074): Consider moving this functionality into
# tff.federated_mean?
client_update, has_non_finite_delta = (
tensor_utils.zero_all_if_any_non_finite(client_update))
# Zero out the weight if there are any non-finite values.
if has_non_finite_delta > 0:
client_weight = tf.constant(0.0)
else:
client_weight = tf.cast(num_examples, tf.float32)
return client_works.ClientResult(
update=client_update,
update_weight=client_weight), model_output, stat_output
return client_update |
Python | def build_proximal_client_update_with_keras_optimizer(
model_fn,
proximal_strength: float,
use_experimental_simulation_loop: bool = False):
"""Creates client update logic in FedProx using a `tf.keras` optimizer.
In contrast to using a `tff.learning.optimizers.Optimizer`, we have to
maintain `tf.Variable`s associated with the optimizer state within the scope
of the client work. Additionally, the client model weights are modified in
place by using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg callable returning a `tff.learning.Model`.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the client update reduces
to that of FedAvg. Higher values prevent clients from moving too far from
the server model during local training.
use_experimental_simulation_loop: Controls the reduce loop function for the
input dataset. An experimental reduce loop is used for simulation.
Returns:
A `tf.function`.
"""
model = model_fn()
dataset_reduce_fn = dataset_reduce.build_dataset_reduce_fn(
use_experimental_simulation_loop)
@tf.function
def client_update(optimizer, initial_weights, data):
model_weights = model_utils.ModelWeights.from_model(model)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights,
initial_weights)
def reduce_fn(num_examples_sum, batch):
"""Trains a `tff.learning.Model` on a batch of data."""
with tf.GradientTape() as tape:
output = model.forward_pass(batch, training=True)
gradients = tape.gradient(output.loss, model_weights.trainable)
proximal_delta = tf.nest.map_structure(tf.subtract,
model_weights.trainable,
initial_weights.trainable)
proximal_term = tf.nest.map_structure(lambda x: proximal_strength * x,
proximal_delta)
gradients = tf.nest.map_structure(tf.add, gradients, proximal_term)
grads_and_vars = zip(gradients, model_weights.trainable)
optimizer.apply_gradients(grads_and_vars)
# TODO(b/199782787): Add a unit test for a model that does not compute
# `num_examples` in its forward pass.
if output.num_examples is None:
num_examples_sum += tf.shape(output.predictions, out_type=tf.int64)[0]
else:
num_examples_sum += tf.cast(output.num_examples, tf.int64)
return num_examples_sum
def initial_state_for_reduce_fn():
return tf.zeros(shape=[], dtype=tf.int64)
num_examples = dataset_reduce_fn(
reduce_fn, data, initial_state_fn=initial_state_for_reduce_fn)
client_update = tf.nest.map_structure(tf.subtract,
initial_weights.trainable,
model_weights.trainable)
model_output = model.report_local_outputs()
stat_output = collections.OrderedDict(num_examples=num_examples)
# TODO(b/122071074): Consider moving this functionality into
# tff.federated_mean?
client_update, has_non_finite_delta = (
tensor_utils.zero_all_if_any_non_finite(client_update))
# Zero out the weight if there are any non-finite values.
if has_non_finite_delta > 0:
client_weight = tf.constant(0.0)
else:
client_weight = tf.cast(num_examples, tf.float32)
return client_works.ClientResult(
update=client_update,
update_weight=client_weight), model_output, stat_output
return client_update | def build_proximal_client_update_with_keras_optimizer(
model_fn,
proximal_strength: float,
use_experimental_simulation_loop: bool = False):
"""Creates client update logic in FedProx using a `tf.keras` optimizer.
In contrast to using a `tff.learning.optimizers.Optimizer`, we have to
maintain `tf.Variable`s associated with the optimizer state within the scope
of the client work. Additionally, the client model weights are modified in
place by using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg callable returning a `tff.learning.Model`.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the client update reduces
to that of FedAvg. Higher values prevent clients from moving too far from
the server model during local training.
use_experimental_simulation_loop: Controls the reduce loop function for the
input dataset. An experimental reduce loop is used for simulation.
Returns:
A `tf.function`.
"""
model = model_fn()
dataset_reduce_fn = dataset_reduce.build_dataset_reduce_fn(
use_experimental_simulation_loop)
@tf.function
def client_update(optimizer, initial_weights, data):
model_weights = model_utils.ModelWeights.from_model(model)
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights,
initial_weights)
def reduce_fn(num_examples_sum, batch):
"""Trains a `tff.learning.Model` on a batch of data."""
with tf.GradientTape() as tape:
output = model.forward_pass(batch, training=True)
gradients = tape.gradient(output.loss, model_weights.trainable)
proximal_delta = tf.nest.map_structure(tf.subtract,
model_weights.trainable,
initial_weights.trainable)
proximal_term = tf.nest.map_structure(lambda x: proximal_strength * x,
proximal_delta)
gradients = tf.nest.map_structure(tf.add, gradients, proximal_term)
grads_and_vars = zip(gradients, model_weights.trainable)
optimizer.apply_gradients(grads_and_vars)
# TODO(b/199782787): Add a unit test for a model that does not compute
# `num_examples` in its forward pass.
if output.num_examples is None:
num_examples_sum += tf.shape(output.predictions, out_type=tf.int64)[0]
else:
num_examples_sum += tf.cast(output.num_examples, tf.int64)
return num_examples_sum
def initial_state_for_reduce_fn():
return tf.zeros(shape=[], dtype=tf.int64)
num_examples = dataset_reduce_fn(
reduce_fn, data, initial_state_fn=initial_state_for_reduce_fn)
client_update = tf.nest.map_structure(tf.subtract,
initial_weights.trainable,
model_weights.trainable)
model_output = model.report_local_outputs()
stat_output = collections.OrderedDict(num_examples=num_examples)
# TODO(b/122071074): Consider moving this functionality into
# tff.federated_mean?
client_update, has_non_finite_delta = (
tensor_utils.zero_all_if_any_non_finite(client_update))
# Zero out the weight if there are any non-finite values.
if has_non_finite_delta > 0:
client_weight = tf.constant(0.0)
else:
client_weight = tf.cast(num_examples, tf.float32)
return client_works.ClientResult(
update=client_update,
update_weight=client_weight), model_output, stat_output
return client_update |
Python | def build_fed_prox_client_work(
model_fn: Callable[[], model_lib.Model],
proximal_strength: float,
optimizer_fn: Union[optimizer_base.Optimizer,
Callable[[], tf.keras.optimizers.Optimizer]],
use_experimental_simulation_loop: bool = False
) -> client_works.ClientWorkProcess:
"""Creates a `ClientWorkProcess` for federated averaging.
This client work is constructed in slightly different manners depending on
whether `optimizer_fn` is a `tff.learning.optimizers.Optimizer`, or a no-arg
callable returning a `tf.keras.optimizers.Optimizer`.
If it is a `tff.learning.optimizers.Optimizer`, we avoid creating
`tf.Variable`s associated with the optimizer state within the scope of the
client work, as they are not necessary. This also means that the client's
model weights are updated by computing `optimizer.next` and then assigning
the result to the model weights (while a `tf.keras.optimizers.Optimizer` will
modify the model weight in place using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg function that returns a `tff.learning.Model`. This method
must *not* capture TensorFlow tensors or variables and use them. The model
must be constructed entirely from scratch on each invocation, returning
the same pre-constructed model each call will result in an error.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the algorithm reduces to
FedAvg. Higher values prevent clients from moving too far from the server
model during local training.
optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg callable
that returns a `tf.keras.Optimizer`.
use_experimental_simulation_loop: Controls the reduce loop function for
input dataset. An experimental reduce loop is used for simulation. It is
currently necessary to set this flag to True for performant GPU
simulations.
Returns:
A `ClientWorkProcess`.
"""
with tf.Graph().as_default():
# Wrap model construction in a graph to avoid polluting the global context
# with variables created for this model.
model = model_fn()
data_type = computation_types.SequenceType(model.input_spec)
weights_type = model_utils.weights_type_from_model(model)
if isinstance(optimizer_fn, optimizer_base.Optimizer):
@computations.tf_computation(weights_type, data_type)
def client_update_computation(initial_model_weights, dataset):
client_update = build_proximal_client_update_with_tff_optimizer(
model_fn, proximal_strength, use_experimental_simulation_loop)
return client_update(optimizer_fn, initial_model_weights, dataset)
else:
@computations.tf_computation(weights_type, data_type)
def client_update_computation(initial_model_weights, dataset):
optimizer = optimizer_fn()
client_update = build_proximal_client_update_with_keras_optimizer(
model_fn, proximal_strength, use_experimental_simulation_loop)
return client_update(optimizer, initial_model_weights, dataset)
@computations.federated_computation
def init_fn():
return intrinsics.federated_value((), placements.SERVER)
@computations.federated_computation(
init_fn.type_signature.result, computation_types.at_clients(weights_type),
computation_types.at_clients(data_type))
def next_fn(state, weights, client_data):
client_result, model_outputs, stat_output = intrinsics.federated_map(
client_update_computation, (weights, client_data))
train_metrics = model.federated_output_computation(model_outputs)
stat_metrics = intrinsics.federated_sum(stat_output)
measurements = intrinsics.federated_zip(
collections.OrderedDict(train=train_metrics, stat=stat_metrics))
return measured_process.MeasuredProcessOutput(state, client_result,
measurements)
return client_works.ClientWorkProcess(init_fn, next_fn) | def build_fed_prox_client_work(
model_fn: Callable[[], model_lib.Model],
proximal_strength: float,
optimizer_fn: Union[optimizer_base.Optimizer,
Callable[[], tf.keras.optimizers.Optimizer]],
use_experimental_simulation_loop: bool = False
) -> client_works.ClientWorkProcess:
"""Creates a `ClientWorkProcess` for federated averaging.
This client work is constructed in slightly different manners depending on
whether `optimizer_fn` is a `tff.learning.optimizers.Optimizer`, or a no-arg
callable returning a `tf.keras.optimizers.Optimizer`.
If it is a `tff.learning.optimizers.Optimizer`, we avoid creating
`tf.Variable`s associated with the optimizer state within the scope of the
client work, as they are not necessary. This also means that the client's
model weights are updated by computing `optimizer.next` and then assigning
the result to the model weights (while a `tf.keras.optimizers.Optimizer` will
modify the model weight in place using `optimizer.apply_gradients`).
Args:
model_fn: A no-arg function that returns a `tff.learning.Model`. This method
must *not* capture TensorFlow tensors or variables and use them. The model
must be constructed entirely from scratch on each invocation, returning
the same pre-constructed model each call will result in an error.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the algorithm reduces to
FedAvg. Higher values prevent clients from moving too far from the server
model during local training.
optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg callable
that returns a `tf.keras.Optimizer`.
use_experimental_simulation_loop: Controls the reduce loop function for
input dataset. An experimental reduce loop is used for simulation. It is
currently necessary to set this flag to True for performant GPU
simulations.
Returns:
A `ClientWorkProcess`.
"""
with tf.Graph().as_default():
# Wrap model construction in a graph to avoid polluting the global context
# with variables created for this model.
model = model_fn()
data_type = computation_types.SequenceType(model.input_spec)
weights_type = model_utils.weights_type_from_model(model)
if isinstance(optimizer_fn, optimizer_base.Optimizer):
@computations.tf_computation(weights_type, data_type)
def client_update_computation(initial_model_weights, dataset):
client_update = build_proximal_client_update_with_tff_optimizer(
model_fn, proximal_strength, use_experimental_simulation_loop)
return client_update(optimizer_fn, initial_model_weights, dataset)
else:
@computations.tf_computation(weights_type, data_type)
def client_update_computation(initial_model_weights, dataset):
optimizer = optimizer_fn()
client_update = build_proximal_client_update_with_keras_optimizer(
model_fn, proximal_strength, use_experimental_simulation_loop)
return client_update(optimizer, initial_model_weights, dataset)
@computations.federated_computation
def init_fn():
return intrinsics.federated_value((), placements.SERVER)
@computations.federated_computation(
init_fn.type_signature.result, computation_types.at_clients(weights_type),
computation_types.at_clients(data_type))
def next_fn(state, weights, client_data):
client_result, model_outputs, stat_output = intrinsics.federated_map(
client_update_computation, (weights, client_data))
train_metrics = model.federated_output_computation(model_outputs)
stat_metrics = intrinsics.federated_sum(stat_output)
measurements = intrinsics.federated_zip(
collections.OrderedDict(train=train_metrics, stat=stat_metrics))
return measured_process.MeasuredProcessOutput(state, client_result,
measurements)
return client_works.ClientWorkProcess(init_fn, next_fn) |
Python | def build_example_weighted_fed_prox_process(
model_fn: Callable[[], model_lib.Model],
proximal_strength: float,
client_optimizer_fn: Union[optimizer_base.Optimizer,
Callable[[], tf.keras.optimizers.Optimizer]],
server_optimizer_fn: Union[optimizer_base.Optimizer, Callable[
[], tf.keras.optimizers.Optimizer]] = DEFAULT_SERVER_OPTIMIZER_FN,
distributor: Optional[distributors.DistributionProcess] = None,
model_update_aggregation_factory: Optional[
factory.WeightedAggregationFactory] = None,
use_experimental_simulation_loop: bool = False
) -> learning_process.LearningProcess:
"""Builds a learning process that performs the FedProx algorithm.
This function creates a `LearningProcess` that performs example-weighted
FedProx on client models. This algorithm behaves the same as federated
averaging, except that it uses a proximal regularization term that encourages
clients to not drift too far from the server model.
The iterative process has the following methods inherited from
`tff.learning.templates.LearningProcess`:
* `initialize`: A `tff.Computation` with the functional type signature
`( -> S@SERVER)`, where `S` is a `LearningAlgorithmState` representing the
initial state of the server.
* `next`: A `tff.Computation` with the functional type signature
`(<S@SERVER, {B*}@CLIENTS> -> <L@SERVER>)` where `S` is a
`LearningAlgorithmState` whose type matches the output of `initialize`
and `{B*}@CLIENTS` represents the client datasets. The output `L`
contains the updated server state, as well as metrics that are the result
of `tff.learning.Model.federated_output_computation` during client
training, and any other metrics from broadcast and aggregation processes.
* `report`: A `tff.Computation` with type signature `( -> M@SERVER)`, where
`M` represents the type of the model weights used during training.
Each time the `next` method is called, the server model is broadcast to each
client using a broadcast function. For each client, local training is
performed using `client_optimizer_fn`. Each client computes the difference
between the client model after training and the initial broadcast model.
These model deltas are then aggregated at the server using a weighted
aggregation function. Clients weighted by the number of examples they see
thoughout local training. The aggregate model delta is applied at the server
using a server optimizer, as in the FedOpt framework proposed in
[Reddi et al., 2021](https://arxiv.org/abs/2003.00295).
Note: The default server optimizer function is `tf.keras.optimizers.SGD`
with a learning rate of 1.0, which corresponds to adding the model delta to
the current server model. This recovers the original FedProx algorithm in
[Li et al., 2020](https://arxiv.org/abs/1812.06127). More
sophisticated federated averaging procedures may use different learning rates
or server optimizers.
Args:
model_fn: A no-arg function that returns a `tff.learning.Model`. This method
must *not* capture TensorFlow tensors or variables and use them. The model
must be constructed entirely from scratch on each invocation, returning
the same pre-constructed model each call will result in an error.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the algorithm reduces to
FedAvg. Higher values prevent clients from moving too far from the server
model during local training.
client_optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg
callable that returns a `tf.keras.Optimizer`.
server_optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg
callable that returns a `tf.keras.Optimizer`. By default, this uses
`tf.keras.optimizers.SGD` with a learning rate of 1.0.
distributor: An optional `DistributionProcess` that broadcasts the model
weights on the server to the clients. If set to `None`, the distributor is
constructed via `distributors.build_broadcast_process`.
model_update_aggregation_factory: An optional
`tff.aggregators.WeightedAggregationFactory` used to aggregate client
updates on the server. If `None`, this is set to
`tff.aggregators.MeanFactory`.
use_experimental_simulation_loop: Controls the reduce loop function for
input dataset. An experimental reduce loop is used for simulation. It is
currently necessary to set this flag to True for performant GPU
simulations.
Returns:
A `LearningProcess`.
Raises:
ValueError: If `proximal_parameter` is not a nonnegative float.
"""
if not isinstance(proximal_strength, float) or proximal_strength < 0.0:
raise ValueError(
'proximal_strength must be a nonnegative float, found {}'.format(
proximal_strength))
py_typecheck.check_callable(model_fn)
@computations.tf_computation()
def initial_model_weights_fn():
return model_utils.ModelWeights.from_model(model_fn())
model_weights_type = initial_model_weights_fn.type_signature.result
if distributor is None:
distributor = distributors.build_broadcast_process(model_weights_type)
if model_update_aggregation_factory is None:
model_update_aggregation_factory = mean.MeanFactory()
py_typecheck.check_type(model_update_aggregation_factory,
factory.WeightedAggregationFactory)
aggregator = model_update_aggregation_factory.create(
model_weights_type.trainable, computation_types.TensorType(tf.float32))
process_signature = aggregator.next.type_signature
input_client_value_type = process_signature.parameter[1]
result_server_value_type = process_signature.result[1]
if input_client_value_type.member != result_server_value_type.member:
raise TypeError('`model_update_aggregation_factory` does not produce a '
'compatible `AggregationProcess`. The processes must '
'retain the type structure of the inputs on the '
f'server, but got {input_client_value_type.member} != '
f'{result_server_value_type.member}.')
client_work = build_fed_prox_client_work(model_fn, proximal_strength,
client_optimizer_fn,
use_experimental_simulation_loop)
finalizer = finalizers.build_apply_optimizer_finalizer(
server_optimizer_fn, model_weights_type)
return composers.compose_learning_process(initial_model_weights_fn,
distributor, client_work,
aggregator, finalizer) | def build_example_weighted_fed_prox_process(
model_fn: Callable[[], model_lib.Model],
proximal_strength: float,
client_optimizer_fn: Union[optimizer_base.Optimizer,
Callable[[], tf.keras.optimizers.Optimizer]],
server_optimizer_fn: Union[optimizer_base.Optimizer, Callable[
[], tf.keras.optimizers.Optimizer]] = DEFAULT_SERVER_OPTIMIZER_FN,
distributor: Optional[distributors.DistributionProcess] = None,
model_update_aggregation_factory: Optional[
factory.WeightedAggregationFactory] = None,
use_experimental_simulation_loop: bool = False
) -> learning_process.LearningProcess:
"""Builds a learning process that performs the FedProx algorithm.
This function creates a `LearningProcess` that performs example-weighted
FedProx on client models. This algorithm behaves the same as federated
averaging, except that it uses a proximal regularization term that encourages
clients to not drift too far from the server model.
The iterative process has the following methods inherited from
`tff.learning.templates.LearningProcess`:
* `initialize`: A `tff.Computation` with the functional type signature
`( -> S@SERVER)`, where `S` is a `LearningAlgorithmState` representing the
initial state of the server.
* `next`: A `tff.Computation` with the functional type signature
`(<S@SERVER, {B*}@CLIENTS> -> <L@SERVER>)` where `S` is a
`LearningAlgorithmState` whose type matches the output of `initialize`
and `{B*}@CLIENTS` represents the client datasets. The output `L`
contains the updated server state, as well as metrics that are the result
of `tff.learning.Model.federated_output_computation` during client
training, and any other metrics from broadcast and aggregation processes.
* `report`: A `tff.Computation` with type signature `( -> M@SERVER)`, where
`M` represents the type of the model weights used during training.
Each time the `next` method is called, the server model is broadcast to each
client using a broadcast function. For each client, local training is
performed using `client_optimizer_fn`. Each client computes the difference
between the client model after training and the initial broadcast model.
These model deltas are then aggregated at the server using a weighted
aggregation function. Clients weighted by the number of examples they see
thoughout local training. The aggregate model delta is applied at the server
using a server optimizer, as in the FedOpt framework proposed in
[Reddi et al., 2021](https://arxiv.org/abs/2003.00295).
Note: The default server optimizer function is `tf.keras.optimizers.SGD`
with a learning rate of 1.0, which corresponds to adding the model delta to
the current server model. This recovers the original FedProx algorithm in
[Li et al., 2020](https://arxiv.org/abs/1812.06127). More
sophisticated federated averaging procedures may use different learning rates
or server optimizers.
Args:
model_fn: A no-arg function that returns a `tff.learning.Model`. This method
must *not* capture TensorFlow tensors or variables and use them. The model
must be constructed entirely from scratch on each invocation, returning
the same pre-constructed model each call will result in an error.
proximal_strength: A nonnegative float representing the parameter of
FedProx's regularization term. When set to `0`, the algorithm reduces to
FedAvg. Higher values prevent clients from moving too far from the server
model during local training.
client_optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg
callable that returns a `tf.keras.Optimizer`.
server_optimizer_fn: A `tff.learning.optimizers.Optimizer`, or a no-arg
callable that returns a `tf.keras.Optimizer`. By default, this uses
`tf.keras.optimizers.SGD` with a learning rate of 1.0.
distributor: An optional `DistributionProcess` that broadcasts the model
weights on the server to the clients. If set to `None`, the distributor is
constructed via `distributors.build_broadcast_process`.
model_update_aggregation_factory: An optional
`tff.aggregators.WeightedAggregationFactory` used to aggregate client
updates on the server. If `None`, this is set to
`tff.aggregators.MeanFactory`.
use_experimental_simulation_loop: Controls the reduce loop function for
input dataset. An experimental reduce loop is used for simulation. It is
currently necessary to set this flag to True for performant GPU
simulations.
Returns:
A `LearningProcess`.
Raises:
ValueError: If `proximal_parameter` is not a nonnegative float.
"""
if not isinstance(proximal_strength, float) or proximal_strength < 0.0:
raise ValueError(
'proximal_strength must be a nonnegative float, found {}'.format(
proximal_strength))
py_typecheck.check_callable(model_fn)
@computations.tf_computation()
def initial_model_weights_fn():
return model_utils.ModelWeights.from_model(model_fn())
model_weights_type = initial_model_weights_fn.type_signature.result
if distributor is None:
distributor = distributors.build_broadcast_process(model_weights_type)
if model_update_aggregation_factory is None:
model_update_aggregation_factory = mean.MeanFactory()
py_typecheck.check_type(model_update_aggregation_factory,
factory.WeightedAggregationFactory)
aggregator = model_update_aggregation_factory.create(
model_weights_type.trainable, computation_types.TensorType(tf.float32))
process_signature = aggregator.next.type_signature
input_client_value_type = process_signature.parameter[1]
result_server_value_type = process_signature.result[1]
if input_client_value_type.member != result_server_value_type.member:
raise TypeError('`model_update_aggregation_factory` does not produce a '
'compatible `AggregationProcess`. The processes must '
'retain the type structure of the inputs on the '
f'server, but got {input_client_value_type.member} != '
f'{result_server_value_type.member}.')
client_work = build_fed_prox_client_work(model_fn, proximal_strength,
client_optimizer_fn,
use_experimental_simulation_loop)
finalizer = finalizers.build_apply_optimizer_finalizer(
server_optimizer_fn, model_weights_type)
return composers.compose_learning_process(initial_model_weights_fn,
distributor, client_work,
aggregator, finalizer) |
Python | def _is_non_shopping_product(self, product_field: str) -> bool:
"""Determines if a product's field contains text indicating it is not intended for Shopping.
Args:
product_field: A field of a product to check for existence Shopping
exclusion terms.
Returns:
True if the given field was detected to have Shopping exclusion terms,
otherwise false.
"""
if any(shopping_exclusion_pattern in product_field
for shopping_exclusion_pattern in
self.shopping_removal_patterns_exact_match):
return True
else:
return False | def _is_non_shopping_product(self, product_field: str) -> bool:
"""Determines if a product's field contains text indicating it is not intended for Shopping.
Args:
product_field: A field of a product to check for existence Shopping
exclusion terms.
Returns:
True if the given field was detected to have Shopping exclusion terms,
otherwise false.
"""
if any(shopping_exclusion_pattern in product_field
for shopping_exclusion_pattern in
self.shopping_removal_patterns_exact_match):
return True
else:
return False |
Python | def _optimize(self, product_batch: Dict[str, Any], language: str,
country: str, currency: str) -> int:
"""Runs the optimization.
This is called by process() in the base class.
Args:
product_batch: A batch of product data.
language: The language to use for this optimizer.
country: The country to use for this optimizer.
currency: The currency to use for this optimizer.
Returns:
The number of products affected by this optimization.
"""
gpc_string_to_id_mapping = current_app.config.get('CONFIGS', {}).get(
_GCP_STRING_TO_ID_MAPPING_CONFIG_FILE_NAME.format(language), {})
title_word_order_config = current_app.config.get('CONFIGS', {}).get(
_TITLE_WORD_ORDER_CONFIG_FILE_NAME.format(language), {})
blocklist_config = current_app.config.get('CONFIGS', {}).get(
_TITLE_WORD_ORDER_BLOCKLIST_FILE_NAME.format(language), {})
keyword_blocklist = [keyword.lower() for keyword in blocklist_config]
self._title_word_order_options = current_app.config.get(
'CONFIGS', {}).get(_TITLE_WORD_ORDER_OPTIONS_FILE_NAME)
optimization_includes_description = (
self._optimization_includes_description())
optimization_includes_product_types = (
self._optimization_includes_product_types())
promo_text_remover = promo_text_remover_lib.PromoTextRemover(
language=language)
optimization_level = self._get_optimization_level()
num_of_products_optimized = 0
for entry in product_batch['entries']:
product = entry['product']
original_title = product.get('title', None)
description = product.get('description', None)
product_types = product.get('productTypes', [])
gpc = product.get('googleProductCategory', '')
if not original_title:
continue
# Get the string version of the GPC if it was provided as a number ID.
if isinstance(gpc, int) or gpc.isdigit():
gpc_string = get_gpc_as_string(gpc, gpc_string_to_id_mapping)
if not gpc_string:
continue
else:
gpc_string = gpc
if _should_skip_optimization(gpc_string, optimization_level):
continue
gpc_id = _get_level_3_gpc_id(gpc_string, gpc_string_to_id_mapping)
if not gpc_id:
continue
keywords_for_gpc = title_word_order_config.get(str(gpc_id), [])
allowed_keywords_for_gpc = _remove_keywords_in_blocklist(
keywords_for_gpc, keyword_blocklist)
allowed_keywords_for_gpc = _remove_keywords_with_promo(
promo_text_remover, allowed_keywords_for_gpc)
sorted_keywords_for_gpc = _sort_keywords_for_gpc_by_descending_weight(
allowed_keywords_for_gpc)
title_to_process = original_title
title_words = _tokenize_text(title_to_process, language)
description_words = _tokenize_text(
description, language) if optimization_includes_description else []
joined_product_types = ' '.join(product_types)
product_types_words = _tokenize_text(
joined_product_types,
language) if optimization_includes_product_types else []
(keywords_visible_to_user, keywords_not_visible_to_user,
title_without_keywords) = (
_generate_front_and_back_keyword_lists(sorted_keywords_for_gpc,
title_to_process, title_words,
description_words,
product_types_words,
language))
keywords_to_prepend = _generate_list_of_keywords_to_prepend(
keywords_visible_to_user, keywords_not_visible_to_user,
title_to_process, language)
ordered_keywords_to_prepend = _reorder_keywords_by_weight(
keywords_to_prepend, sorted_keywords_for_gpc)
optimized_title = _generate_prepended_title(ordered_keywords_to_prepend,
title_to_process)
if len(optimized_title) > _MAX_TITLE_LENGTH:
optimized_title = _generate_prepended_title(ordered_keywords_to_prepend,
title_without_keywords)
product['title'] = optimized_title
if product.get('title', '') != original_title:
logging.info(
'Modified item %s: Moved high-performing keywords to front of title: %s',
product['offerId'], product['title'])
num_of_products_optimized += 1
base_optimizer.set_optimization_tracking(product,
base_optimizer.OPTIMIZED)
return num_of_products_optimized | def _optimize(self, product_batch: Dict[str, Any], language: str,
country: str, currency: str) -> int:
"""Runs the optimization.
This is called by process() in the base class.
Args:
product_batch: A batch of product data.
language: The language to use for this optimizer.
country: The country to use for this optimizer.
currency: The currency to use for this optimizer.
Returns:
The number of products affected by this optimization.
"""
gpc_string_to_id_mapping = current_app.config.get('CONFIGS', {}).get(
_GCP_STRING_TO_ID_MAPPING_CONFIG_FILE_NAME.format(language), {})
title_word_order_config = current_app.config.get('CONFIGS', {}).get(
_TITLE_WORD_ORDER_CONFIG_FILE_NAME.format(language), {})
blocklist_config = current_app.config.get('CONFIGS', {}).get(
_TITLE_WORD_ORDER_BLOCKLIST_FILE_NAME.format(language), {})
keyword_blocklist = [keyword.lower() for keyword in blocklist_config]
self._title_word_order_options = current_app.config.get(
'CONFIGS', {}).get(_TITLE_WORD_ORDER_OPTIONS_FILE_NAME)
optimization_includes_description = (
self._optimization_includes_description())
optimization_includes_product_types = (
self._optimization_includes_product_types())
promo_text_remover = promo_text_remover_lib.PromoTextRemover(
language=language)
optimization_level = self._get_optimization_level()
num_of_products_optimized = 0
for entry in product_batch['entries']:
product = entry['product']
original_title = product.get('title', None)
description = product.get('description', None)
product_types = product.get('productTypes', [])
gpc = product.get('googleProductCategory', '')
if not original_title:
continue
# Get the string version of the GPC if it was provided as a number ID.
if isinstance(gpc, int) or gpc.isdigit():
gpc_string = get_gpc_as_string(gpc, gpc_string_to_id_mapping)
if not gpc_string:
continue
else:
gpc_string = gpc
if _should_skip_optimization(gpc_string, optimization_level):
continue
gpc_id = _get_level_3_gpc_id(gpc_string, gpc_string_to_id_mapping)
if not gpc_id:
continue
keywords_for_gpc = title_word_order_config.get(str(gpc_id), [])
allowed_keywords_for_gpc = _remove_keywords_in_blocklist(
keywords_for_gpc, keyword_blocklist)
allowed_keywords_for_gpc = _remove_keywords_with_promo(
promo_text_remover, allowed_keywords_for_gpc)
sorted_keywords_for_gpc = _sort_keywords_for_gpc_by_descending_weight(
allowed_keywords_for_gpc)
title_to_process = original_title
title_words = _tokenize_text(title_to_process, language)
description_words = _tokenize_text(
description, language) if optimization_includes_description else []
joined_product_types = ' '.join(product_types)
product_types_words = _tokenize_text(
joined_product_types,
language) if optimization_includes_product_types else []
(keywords_visible_to_user, keywords_not_visible_to_user,
title_without_keywords) = (
_generate_front_and_back_keyword_lists(sorted_keywords_for_gpc,
title_to_process, title_words,
description_words,
product_types_words,
language))
keywords_to_prepend = _generate_list_of_keywords_to_prepend(
keywords_visible_to_user, keywords_not_visible_to_user,
title_to_process, language)
ordered_keywords_to_prepend = _reorder_keywords_by_weight(
keywords_to_prepend, sorted_keywords_for_gpc)
optimized_title = _generate_prepended_title(ordered_keywords_to_prepend,
title_to_process)
if len(optimized_title) > _MAX_TITLE_LENGTH:
optimized_title = _generate_prepended_title(ordered_keywords_to_prepend,
title_without_keywords)
product['title'] = optimized_title
if product.get('title', '') != original_title:
logging.info(
'Modified item %s: Moved high-performing keywords to front of title: %s',
product['offerId'], product['title'])
num_of_products_optimized += 1
base_optimizer.set_optimization_tracking(product,
base_optimizer.OPTIMIZED)
return num_of_products_optimized |
Python | def _tokenize_text(text: str, language: str) -> List[str]:
"""Splits text into individual words using the correct method for the given language.
Args:
text: Text to be split.
language: The configured language code.
Returns:
The text tokenized into a list of words.
"""
if language == constants.LANGUAGE_CODE_JA:
return _split_words_in_japanese(text)
else:
return text.split() | def _tokenize_text(text: str, language: str) -> List[str]:
"""Splits text into individual words using the correct method for the given language.
Args:
text: Text to be split.
language: The configured language code.
Returns:
The text tokenized into a list of words.
"""
if language == constants.LANGUAGE_CODE_JA:
return _split_words_in_japanese(text)
else:
return text.split() |
Python | def _split_words_in_japanese(text: str) -> List[str]:
"""Splits Japanese text into words by using MeCab.
Args:
text: Text to be split.
Returns:
The text tokenized into a list of semantically delineated words.
"""
mecab_tagger = current_app.config.get('MECAB')
if not mecab_tagger:
logging.warning('Did not parse title because MeCab was not set up.')
return []
node = mecab_tagger.parseToNode(text)
split_words = []
while node:
split_words.append(node.surface)
node = node.next
return split_words | def _split_words_in_japanese(text: str) -> List[str]:
"""Splits Japanese text into words by using MeCab.
Args:
text: Text to be split.
Returns:
The text tokenized into a list of semantically delineated words.
"""
mecab_tagger = current_app.config.get('MECAB')
if not mecab_tagger:
logging.warning('Did not parse title because MeCab was not set up.')
return []
node = mecab_tagger.parseToNode(text)
split_words = []
while node:
split_words.append(node.surface)
node = node.next
return split_words |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.