language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def runCCBlade(self, Uhub, ptfm_pitch=0, yaw_misalign=0): '''This performs a single CCBlade evaluation at specified conditions. ptfm_pitch mean platform pitch angle to be included in rotor tilt angle [rad] yaw_misalign turbine yaw misalignment angle [deg] ''' # find turbine operating point at the provided wind speed Omega_rpm = np.interp(Uhub, self.Uhub, self.Omega_rpm) # rotor speed [rpm] pitch_deg = np.interp(Uhub, self.Uhub, self.pitch_deg) # blade pitch angle [deg] # adjust rotor angles based on provided info (I think this intervention in CCBlade should work...) self.ccblade.tilt = np.deg2rad(self.shaft_tilt) + ptfm_pitch self.ccblade.yaw = np.deg2rad(yaw_misalign) # evaluate aero loads and derivatives with CCBlade loads, derivs = self.ccblade.evaluate(Uhub, Omega_rpm, pitch_deg, coefficients=True) # organize and save the relevant outputs... self.U_case = Uhub self.Omega_case = Omega_rpm self.aero_torque = loads["Q"][0] self.aero_power = loads["P"][0] self.pitch_case = pitch_deg outputs = {} outputs["P"] = loads["P"] outputs["Mb"] = loads["Mb"] outputs["CP"] = loads["CP"] outputs["CMb"] = loads["CMb"] outputs["Fhub"] = np.array( [loads["T" ][0], loads["Y" ][0], loads["Z" ][0]]) outputs["Mhub"] = np.array( [loads["Q" ][0], loads["My" ][0], loads["Mz" ][0]]) outputs["CFhub"] = np.array([loads["CT"][0], loads["CY" ][0], loads["CZ" ][0]]) outputs["CMhub"] = np.array([loads["CQ"][0], loads["CMy"][0], loads["CMz"][0]]) print(f"Wind speed: {Uhub} m/s, Aerodynamic power coefficient: {loads['CP'][0]:4.3f}") J={} # Jacobian/derivatives dP = derivs["dP"] J["P", "r"] = dP["dr"] # J["P", "chord"] = dP["dchord"] # J["P", "theta"] = dP["dtheta"] # J["P", "Rhub"] = np.squeeze(dP["dRhub"]) # J["P", "Rtip"] = np.squeeze(dP["dRtip"]) # J["P", "hub_height"] = np.squeeze(dP["dhubHt"]) # J["P", "precone"] = np.squeeze(dP["dprecone"]) # J["P", "tilt"] = np.squeeze(dP["dtilt"]) # J["P", "yaw"] = np.squeeze(dP["dyaw"]) # J["P", "shearExp"] = np.squeeze(dP["dshear"]) # J["P", "V_load"] = np.squeeze(dP["dUinf"]) # J["P", "Omega_load"] = np.squeeze(dP["dOmega"]) # J["P", "pitch_load"] = np.squeeze(dP["dpitch"]) # J["P", "precurve"] = dP["dprecurve"] # J["P", "precurveTip"] = dP["dprecurveTip"] # J["P", "presweep"] = dP["dpresweep"] # J["P", "presweepTip"] = dP["dpresweepTip"] dQ = derivs["dQ"] J["Q","Uhub"] = np.atleast_1d(np.diag(dQ["dUinf"])) J["Q","pitch_deg"] = np.atleast_1d(np.diag(dQ["dpitch"])) J["Q","Omega_rpm"] = np.atleast_1d(np.diag(dQ["dOmega"])) dT = derivs["dT"] J["T","Uhub"] = np.atleast_1d(np.diag(dT["dUinf"])) J["T","pitch_deg"] = np.atleast_1d(np.diag(dT["dpitch"])) J["T","Omega_rpm"] = np.atleast_1d(np.diag(dT["dOmega"])) # dT = derivs["dT"] # .J["Fhub", "r"][0,:] = dT["dr"] # 0 is for thrust force, 1 would be y, 2 z # .J["Fhub", "chord"][0,:] = dT["dchord"] # .J["Fhub", "theta"][0,:] = dT["dtheta"] # .J["Fhub", "Rhub"][0,:] = np.squeeze(dT["dRhub"]) # .J["Fhub", "Rtip"][0,:] = np.squeeze(dT["dRtip"]) # .J["Fhub", "hub_height"][0,:] = np.squeeze(dT["dhubHt"]) # .J["Fhub", "precone"][0,:] = np.squeeze(dT["dprecone"]) # .J["Fhub", "tilt"][0,:] = np.squeeze(dT["dtilt"]) # .J["Fhub", "yaw"][0,:] = np.squeeze(dT["dyaw"]) # .J["Fhub", "shearExp"][0,:] = np.squeeze(dT["dshear"]) # .J["Fhub", "V_load"][0,:] = np.squeeze(dT["dUinf"]) # .J["Fhub", "Omega_load"][0,:] = np.squeeze(dT["dOmega"]) # .J["Fhub", "pitch_load"][0,:] = np.squeeze(dT["dpitch"]) # .J["Fhub", "precurve"][0,:] = dT["dprecurve"] # .J["Fhub", "precurveTip"][0,:] = dT["dprecurveTip"] # .J["Fhub", "presweep"][0,:] = dT["dpresweep"] # .J["Fhub", "presweepTip"][0,:] = dT["dpresweepTip"] self.J = J return loads, derivs
def runCCBlade(self, Uhub, ptfm_pitch=0, yaw_misalign=0): '''This performs a single CCBlade evaluation at specified conditions. ptfm_pitch mean platform pitch angle to be included in rotor tilt angle [rad] yaw_misalign turbine yaw misalignment angle [deg] ''' # find turbine operating point at the provided wind speed Omega_rpm = np.interp(Uhub, self.Uhub, self.Omega_rpm) # rotor speed [rpm] pitch_deg = np.interp(Uhub, self.Uhub, self.pitch_deg) # blade pitch angle [deg] # adjust rotor angles based on provided info (I think this intervention in CCBlade should work...) self.ccblade.tilt = np.deg2rad(self.shaft_tilt) + ptfm_pitch self.ccblade.yaw = np.deg2rad(yaw_misalign) # evaluate aero loads and derivatives with CCBlade loads, derivs = self.ccblade.evaluate(Uhub, Omega_rpm, pitch_deg, coefficients=True) # organize and save the relevant outputs... self.U_case = Uhub self.Omega_case = Omega_rpm self.aero_torque = loads["Q"][0] self.aero_power = loads["P"][0] self.pitch_case = pitch_deg outputs = {} outputs["P"] = loads["P"] outputs["Mb"] = loads["Mb"] outputs["CP"] = loads["CP"] outputs["CMb"] = loads["CMb"] outputs["Fhub"] = np.array( [loads["T" ][0], loads["Y" ][0], loads["Z" ][0]]) outputs["Mhub"] = np.array( [loads["Q" ][0], loads["My" ][0], loads["Mz" ][0]]) outputs["CFhub"] = np.array([loads["CT"][0], loads["CY" ][0], loads["CZ" ][0]]) outputs["CMhub"] = np.array([loads["CQ"][0], loads["CMy"][0], loads["CMz"][0]]) print(f"Wind speed: {Uhub} m/s, Aerodynamic power coefficient: {loads['CP'][0]:4.3f}") J={} # Jacobian/derivatives dP = derivs["dP"] J["P", "r"] = dP["dr"] # J["P", "chord"] = dP["dchord"] # J["P", "theta"] = dP["dtheta"] # J["P", "Rhub"] = np.squeeze(dP["dRhub"]) # J["P", "Rtip"] = np.squeeze(dP["dRtip"]) # J["P", "hub_height"] = np.squeeze(dP["dhubHt"]) # J["P", "precone"] = np.squeeze(dP["dprecone"]) # J["P", "tilt"] = np.squeeze(dP["dtilt"]) # J["P", "yaw"] = np.squeeze(dP["dyaw"]) # J["P", "shearExp"] = np.squeeze(dP["dshear"]) # J["P", "V_load"] = np.squeeze(dP["dUinf"]) # J["P", "Omega_load"] = np.squeeze(dP["dOmega"]) # J["P", "pitch_load"] = np.squeeze(dP["dpitch"]) # J["P", "precurve"] = dP["dprecurve"] # J["P", "precurveTip"] = dP["dprecurveTip"] # J["P", "presweep"] = dP["dpresweep"] # J["P", "presweepTip"] = dP["dpresweepTip"] dQ = derivs["dQ"] J["Q","Uhub"] = np.atleast_1d(np.diag(dQ["dUinf"])) J["Q","pitch_deg"] = np.atleast_1d(np.diag(dQ["dpitch"])) J["Q","Omega_rpm"] = np.atleast_1d(np.diag(dQ["dOmega"])) dT = derivs["dT"] J["T","Uhub"] = np.atleast_1d(np.diag(dT["dUinf"])) J["T","pitch_deg"] = np.atleast_1d(np.diag(dT["dpitch"])) J["T","Omega_rpm"] = np.atleast_1d(np.diag(dT["dOmega"])) # dT = derivs["dT"] # .J["Fhub", "r"][0,:] = dT["dr"] # 0 is for thrust force, 1 would be y, 2 z # .J["Fhub", "chord"][0,:] = dT["dchord"] # .J["Fhub", "theta"][0,:] = dT["dtheta"] # .J["Fhub", "Rhub"][0,:] = np.squeeze(dT["dRhub"]) # .J["Fhub", "Rtip"][0,:] = np.squeeze(dT["dRtip"]) # .J["Fhub", "hub_height"][0,:] = np.squeeze(dT["dhubHt"]) # .J["Fhub", "precone"][0,:] = np.squeeze(dT["dprecone"]) # .J["Fhub", "tilt"][0,:] = np.squeeze(dT["dtilt"]) # .J["Fhub", "yaw"][0,:] = np.squeeze(dT["dyaw"]) # .J["Fhub", "shearExp"][0,:] = np.squeeze(dT["dshear"]) # .J["Fhub", "V_load"][0,:] = np.squeeze(dT["dUinf"]) # .J["Fhub", "Omega_load"][0,:] = np.squeeze(dT["dOmega"]) # .J["Fhub", "pitch_load"][0,:] = np.squeeze(dT["dpitch"]) # .J["Fhub", "precurve"][0,:] = dT["dprecurve"] # .J["Fhub", "precurveTip"][0,:] = dT["dprecurveTip"] # .J["Fhub", "presweep"][0,:] = dT["dpresweep"] # .J["Fhub", "presweepTip"][0,:] = dT["dpresweepTip"] self.J = J return loads, derivs
Python
def calcAeroServoContributions(self, case, ptfm_pitch=0, display=0): '''Calculates stiffness, damping, added mass, and excitation coefficients from rotor aerodynamics coupled with turbine controls. Results are w.r.t. nonrotating hub reference frame. Currently returning 6 DOF mean loads, but other terms are just hub fore-aft scalars. ptfm_pitch mean platform pitch angle to be included in rotor tilt angle [rad] ''' loads, derivs = self.runCCBlade(case['wind_speed'], ptfm_pitch=ptfm_pitch, yaw_misalign=case['yaw_misalign']) Uinf = case['wind_speed'] # inflow wind speed (m/s) <<< eventually should be consistent with rest of RAFT # extract derivatives of interest dT_dU = np.atleast_1d(np.diag(derivs["dT"]["dUinf"])) dT_dOm = np.atleast_1d(np.diag(derivs["dT"]["dOmega"])) / rpm2radps dT_dPi = np.atleast_1d(np.diag(derivs["dT"]["dpitch"])) * rad2deg dQ_dU = np.atleast_1d(np.diag(derivs["dQ"]["dUinf"])) dQ_dOm = np.atleast_1d(np.diag(derivs["dQ"]["dOmega"])) / rpm2radps dQ_dPi = np.atleast_1d(np.diag(derivs["dQ"]["dpitch"])) * rad2deg # Pitch control gains at Uinf (Uinf), flip sign to translate ROSCO convention to this one self.kp_beta = -np.interp(Uinf, self.Uhub, self.kp_0) self.ki_beta = -np.interp(Uinf, self.Uhub, self.ki_0) # Torque control gains, need to get these from somewhere kp_tau = self.kp_tau * (self.kp_beta == 0) # -38609162.66552 ! VS_KP - Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Only used in the transitional 2.5 region if VS_ControlMode =/ 2) ki_tau = self.kp_tau * (self.kp_beta == 0) # -4588245.18720 ! VS_KI a_aer = np.zeros_like(self.w) b_aer = np.zeros_like(self.w) C = np.zeros_like(self.w,dtype=np.complex_) C2 = np.zeros_like(self.w,dtype=np.complex_) D = np.zeros_like(self.w,dtype=np.complex_) E = np.zeros_like(self.w,dtype=np.complex_) # Roots of characteristic equation, helps w/ debugging p = np.array([-self.I_drivetrain, (dQ_dOm + self.kp_beta * dQ_dPi - self.Ng * kp_tau), self.ki_beta* dQ_dPi - self.Ng * ki_tau]) r = np.roots(p) for iw, omega in enumerate(self.w): # Denominator of control transfer function D[iw] = self.I_drivetrain * omega**2 + (dQ_dOm + self.kp_beta * dQ_dPi - self.Ng * kp_tau) * 1j * omega + self.ki_beta* dQ_dPi - self.Ng * ki_tau # control transfer function C[iw] = 1j * omega * (dQ_dU - self.k_float * dQ_dPi / self.Zhub) / D[iw] # Thrust transfer function E[iw] = ((dT_dOm + self.kp_beta * dT_dPi) * 1j * omega + self.ki_beta * dT_dPi ) # alternative for debugging C2[iw] = C[iw] / (1j * omega) # Complex aero damping T = 1j * omega * (dT_dU - self.k_float * dT_dPi / self.Zhub) - ( E[iw] * C[iw]) # Aerodynamic coefficients a_aer[iw] = -(1/omega**2) * np.real(T) b_aer[iw] = (1/omega) * np.imag(T) # Save transfer functions required for output self.C = C # calculate steady aero forces and moments F_aero0 = np.array([loads["T" ][0], loads["Y" ][0], loads["Z" ][0], loads["My" ][0], loads["Q" ][0], loads["Mz" ][0] ]) # calculate wind excitation force/moment spectra _,_,_,S_rot = self.IECKaimal(case) self.V_w = np.sqrt(S_rot) # convert from power spectral density to complex amplitudes (FFT) T_0 = loads["T" ][0] T_w1 = dT_dU * self.V_w T_w2 = (E * C * self.V_w) / (1j * self.w) * (-1) # mhall: think this needs the sign reversal T_ext = T_w1 + T_w2 if display > 1: ''' plt.plot(self.w/2/np.pi, self.V_w, label = 'S_rot') plt.yscale('log') plt.xscale('log') plt.xlim([1e-2,10]) plt.grid('True') plt.xlabel('Freq. (Hz)') plt.ylabel('PSD') #plt.plot(thrust_psd.fq_0 * 2 * np.pi,thrust_psd.psd_0) plt.plot(self.w, np.abs(T_ext)) plt.plot(self.w, abs(T_w2)) ''' fig,ax = plt.subplots(4,1,sharex=True) ax[0].plot(self.w/2.0/np.pi, self.V_w); ax[0].set_ylabel('U (m/s)') ax[1].plot(self.w/2.0/np.pi, T_w1 ); ax[1].set_ylabel('T_w1') ax[2].plot(self.w/2.0/np.pi, np.real(T_w2),'k') ax[2].plot(self.w/2.0/np.pi, np.imag(T_w2),'k:'); ax[2].set_ylabel('T_w2') ax[3].plot(self.w/2.0/np.pi, np.real(T_w1+T_w2),'k') ax[3].plot(self.w/2.0/np.pi, np.imag(T_w1+T_w2),'k:'); ax[3].set_ylabel('T_w2+T_w2') ax[3].set_xlabel('f (Hz)') f_aero = T_ext # wind thrust force excitation spectrum return F_aero0, f_aero, a_aer, b_aer
def calcAeroServoContributions(self, case, ptfm_pitch=0, display=0): '''Calculates stiffness, damping, added mass, and excitation coefficients from rotor aerodynamics coupled with turbine controls. Results are w.r.t. nonrotating hub reference frame. Currently returning 6 DOF mean loads, but other terms are just hub fore-aft scalars. ptfm_pitch mean platform pitch angle to be included in rotor tilt angle [rad] ''' loads, derivs = self.runCCBlade(case['wind_speed'], ptfm_pitch=ptfm_pitch, yaw_misalign=case['yaw_misalign']) Uinf = case['wind_speed'] # inflow wind speed (m/s) <<< eventually should be consistent with rest of RAFT # extract derivatives of interest dT_dU = np.atleast_1d(np.diag(derivs["dT"]["dUinf"])) dT_dOm = np.atleast_1d(np.diag(derivs["dT"]["dOmega"])) / rpm2radps dT_dPi = np.atleast_1d(np.diag(derivs["dT"]["dpitch"])) * rad2deg dQ_dU = np.atleast_1d(np.diag(derivs["dQ"]["dUinf"])) dQ_dOm = np.atleast_1d(np.diag(derivs["dQ"]["dOmega"])) / rpm2radps dQ_dPi = np.atleast_1d(np.diag(derivs["dQ"]["dpitch"])) * rad2deg # Pitch control gains at Uinf (Uinf), flip sign to translate ROSCO convention to this one self.kp_beta = -np.interp(Uinf, self.Uhub, self.kp_0) self.ki_beta = -np.interp(Uinf, self.Uhub, self.ki_0) # Torque control gains, need to get these from somewhere kp_tau = self.kp_tau * (self.kp_beta == 0) # -38609162.66552 ! VS_KP - Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Only used in the transitional 2.5 region if VS_ControlMode =/ 2) ki_tau = self.kp_tau * (self.kp_beta == 0) # -4588245.18720 ! VS_KI a_aer = np.zeros_like(self.w) b_aer = np.zeros_like(self.w) C = np.zeros_like(self.w,dtype=np.complex_) C2 = np.zeros_like(self.w,dtype=np.complex_) D = np.zeros_like(self.w,dtype=np.complex_) E = np.zeros_like(self.w,dtype=np.complex_) # Roots of characteristic equation, helps w/ debugging p = np.array([-self.I_drivetrain, (dQ_dOm + self.kp_beta * dQ_dPi - self.Ng * kp_tau), self.ki_beta* dQ_dPi - self.Ng * ki_tau]) r = np.roots(p) for iw, omega in enumerate(self.w): # Denominator of control transfer function D[iw] = self.I_drivetrain * omega**2 + (dQ_dOm + self.kp_beta * dQ_dPi - self.Ng * kp_tau) * 1j * omega + self.ki_beta* dQ_dPi - self.Ng * ki_tau # control transfer function C[iw] = 1j * omega * (dQ_dU - self.k_float * dQ_dPi / self.Zhub) / D[iw] # Thrust transfer function E[iw] = ((dT_dOm + self.kp_beta * dT_dPi) * 1j * omega + self.ki_beta * dT_dPi ) # alternative for debugging C2[iw] = C[iw] / (1j * omega) # Complex aero damping T = 1j * omega * (dT_dU - self.k_float * dT_dPi / self.Zhub) - ( E[iw] * C[iw]) # Aerodynamic coefficients a_aer[iw] = -(1/omega**2) * np.real(T) b_aer[iw] = (1/omega) * np.imag(T) # Save transfer functions required for output self.C = C # calculate steady aero forces and moments F_aero0 = np.array([loads["T" ][0], loads["Y" ][0], loads["Z" ][0], loads["My" ][0], loads["Q" ][0], loads["Mz" ][0] ]) # calculate wind excitation force/moment spectra _,_,_,S_rot = self.IECKaimal(case) self.V_w = np.sqrt(S_rot) # convert from power spectral density to complex amplitudes (FFT) T_0 = loads["T" ][0] T_w1 = dT_dU * self.V_w T_w2 = (E * C * self.V_w) / (1j * self.w) * (-1) # mhall: think this needs the sign reversal T_ext = T_w1 + T_w2 if display > 1: ''' plt.plot(self.w/2/np.pi, self.V_w, label = 'S_rot') plt.yscale('log') plt.xscale('log') plt.xlim([1e-2,10]) plt.grid('True') plt.xlabel('Freq. (Hz)') plt.ylabel('PSD') #plt.plot(thrust_psd.fq_0 * 2 * np.pi,thrust_psd.psd_0) plt.plot(self.w, np.abs(T_ext)) plt.plot(self.w, abs(T_w2)) ''' fig,ax = plt.subplots(4,1,sharex=True) ax[0].plot(self.w/2.0/np.pi, self.V_w); ax[0].set_ylabel('U (m/s)') ax[1].plot(self.w/2.0/np.pi, T_w1 ); ax[1].set_ylabel('T_w1') ax[2].plot(self.w/2.0/np.pi, np.real(T_w2),'k') ax[2].plot(self.w/2.0/np.pi, np.imag(T_w2),'k:'); ax[2].set_ylabel('T_w2') ax[3].plot(self.w/2.0/np.pi, np.real(T_w1+T_w2),'k') ax[3].plot(self.w/2.0/np.pi, np.imag(T_w1+T_w2),'k:'); ax[3].set_ylabel('T_w2+T_w2') ax[3].set_xlabel('f (Hz)') f_aero = T_ext # wind thrust force excitation spectrum return F_aero0, f_aero, a_aer, b_aer
Python
def plot(self, ax, r_ptfm=[0,0,0], R_ptfm=np.eye(3), azimuth=0, color='k'): '''Draws the rotor on the passed axes, considering optional platform offset and rotation matrix, and rotor azimuth angle''' # ----- blade geometry ---------- m = len(self.ccblade.chord) # lists to be filled with coordinates for plotting X = [] Y = [] Z = [] # generic airfoil for now afx = np.array([ 0.0 , -0.16, 0.0 , 0.0 ]) afy = np.array([-0.25, 0. , 0.75, -0.25]) npts = len(afx) # should add real airfoil shapes, and twist for i in range(m): for j in range(npts): X.append(self.ccblade.chord[i]*afx[j]) Y.append(self.ccblade.chord[i]*afy[j]) Z.append(self.ccblade.r[i]) #X.append(self.ccblade.chord[i+1]*afx[j]) #Y.append(self.ccblade.chord[i+1]*afy[j]) #Z.append(self.ccblade.r[i+1]) P = np.array([X, Y, Z]) # ----- rotation matricse ----- # (blade pitch would be a -rotation about local z) R_precone = rotationMatrix(0, -self.ccblade.precone, 0) R_azimuth = [rotationMatrix(azimuth + azi, 0, 0) for azi in 2*np.pi/3.*np.arange(3)] R_tilt = rotationMatrix(0, np.deg2rad(self.shaft_tilt), 0) # # define x as along shaft downwind, y is same as ptfm y # ----- transform coordinates ----- for ib in range(3): P2 = np.matmul(R_precone, P) P2 = np.matmul(R_azimuth[ib], P2) P2 = np.matmul(R_tilt, P2) P2 = P2 + np.array([-self.overhang, 0, self.Zhub])[:,None] # PRP to tower-shaft intersection point P2 = np.matmul(R_ptfm, P2) + np.array(r_ptfm)[:,None] # drawing airfoils #for ii in range(m-1): # ax.plot(P2[0, npts*ii:npts*(ii+1)], P2[1, npts*ii:npts*(ii+1)], P2[2, npts*ii:npts*(ii+1)]) # draw outline ax.plot(P2[0, 0:-1:npts], P2[1, 0:-1:npts], P2[2, 0:-1:npts], color=color) # leading edge ax.plot(P2[0, 2:-1:npts], P2[1, 2:-1:npts], P2[2, 2:-1:npts], color=color)
def plot(self, ax, r_ptfm=[0,0,0], R_ptfm=np.eye(3), azimuth=0, color='k'): '''Draws the rotor on the passed axes, considering optional platform offset and rotation matrix, and rotor azimuth angle''' # ----- blade geometry ---------- m = len(self.ccblade.chord) # lists to be filled with coordinates for plotting X = [] Y = [] Z = [] # generic airfoil for now afx = np.array([ 0.0 , -0.16, 0.0 , 0.0 ]) afy = np.array([-0.25, 0. , 0.75, -0.25]) npts = len(afx) # should add real airfoil shapes, and twist for i in range(m): for j in range(npts): X.append(self.ccblade.chord[i]*afx[j]) Y.append(self.ccblade.chord[i]*afy[j]) Z.append(self.ccblade.r[i]) #X.append(self.ccblade.chord[i+1]*afx[j]) #Y.append(self.ccblade.chord[i+1]*afy[j]) #Z.append(self.ccblade.r[i+1]) P = np.array([X, Y, Z]) # ----- rotation matricse ----- # (blade pitch would be a -rotation about local z) R_precone = rotationMatrix(0, -self.ccblade.precone, 0) R_azimuth = [rotationMatrix(azimuth + azi, 0, 0) for azi in 2*np.pi/3.*np.arange(3)] R_tilt = rotationMatrix(0, np.deg2rad(self.shaft_tilt), 0) # # define x as along shaft downwind, y is same as ptfm y # ----- transform coordinates ----- for ib in range(3): P2 = np.matmul(R_precone, P) P2 = np.matmul(R_azimuth[ib], P2) P2 = np.matmul(R_tilt, P2) P2 = P2 + np.array([-self.overhang, 0, self.Zhub])[:,None] # PRP to tower-shaft intersection point P2 = np.matmul(R_ptfm, P2) + np.array(r_ptfm)[:,None] # drawing airfoils #for ii in range(m-1): # ax.plot(P2[0, npts*ii:npts*(ii+1)], P2[1, npts*ii:npts*(ii+1)], P2[2, npts*ii:npts*(ii+1)]) # draw outline ax.plot(P2[0, 0:-1:npts], P2[1, 0:-1:npts], P2[2, 0:-1:npts], color=color) # leading edge ax.plot(P2[0, 2:-1:npts], P2[1, 2:-1:npts], P2[2, 2:-1:npts], color=color)
Python
def IECKaimal(self, case): # '''Calculates rotor-averaged turbulent wind spectrum based on inputted turbulence intensity or class.''' #TODO: expand commenting, confirm that Rot is power spectrum, skip V,W calcs if not used # Set inputs (f, V_ref, HH, Class, Categ, TurbMod, R) f = self.w / 2 / np.pi # frequency in Hz HH = self.Zhub R = self.R_rot V_ref = case['wind_speed'] ###### Initialize IEC Wind parameters ####### iec_wind = pyIECWind_extreme() iec_wind.z_hub = HH if isinstance(case['turbulence'],str): # If a string, the options are I, II, III, IV Class = '' for char in case['turbulence']: if char == 'I' or char == 'V': Class += char else: break if not Class: raise Exception("Turbulence class must start with I, II, III, or IV, while you wrote " + case['turbulence']) else: Categ = char iec_wind.Turbulence_Class = Categ try: TurbMod = case['turbulence'].split('_')[1] except: raise Exception("Error reading the turbulence model. You wrote " + case['turbulence']) iec_wind.Turbine_Class = Class # set things up (use default values if not specified in the above) iec_wind.setup() # Can set iec_wind.I_ref here if wanted, NTM used then if isinstance(case['turbulence'],int): case['turbulence'] = float(case['turbulence']) if isinstance(case['turbulence'],float): iec_wind.I_ref = case['turbulence'] # this overwrites the value set in setup method TurbMod = 'NTM' # Compute wind turbulence standard deviation (invariant with height) if TurbMod == 'NTM': sigma_1 = iec_wind.NTM(V_ref) elif TurbMod == 'ETM': sigma_1 = iec_wind.ETM(V_ref) elif TurbMod == 'EWM': sigma_1 = iec_wind.EWM(V_ref) else: raise Exception("Wind model must be either NTM, ETM, or EWM. While you wrote " + TurbMod) # Compute turbulence scale parameter Annex C3 of IEC 61400-1-2019 # Longitudinal if HH <= 60: L_1 = .7 * HH else: L_1 = 42. sigma_u = sigma_1 L_u = 8.1 * L_1 # Lateral sigma_v = 0.8 * sigma_1 L_v = 2.7 * L_1 # Upward sigma_w = 0.5 * sigma_1 L_w = 0.66 * L_1 U = (4*L_u/V_ref)*sigma_u**2/((1+6*f*L_u/V_ref)**(5./3.)) V = (4*L_v/V_ref)*sigma_v**2/((1+6*f*L_v/V_ref)**(5./3.)) W = (4*L_w/V_ref)*sigma_w**2/((1+6*f*L_w/V_ref)**(5./3.)) kappa = 12 * np.sqrt((f/V_ref)**2 + (0.12 / L_u)**2) Rot = (2*U / (R * kappa)**3) * \ (modstruve(1,2*R*kappa) - iv(1,2*R*kappa) - 2/np.pi + \ R*kappa * (-2 * modstruve(-2,2*R*kappa) + 2 * iv(2,2*R*kappa) + 1) ) # set NaNs to 0 Rot[np.isnan(Rot)] = 0 # Formulas from Section 6.3 of IEC 61400-1-2019 # S_1_f = 0.05 * sigma_1**2. * (L_1 / V_hub) ** (-2./3.) * f **(-5./3) # S_2_f = S_3_f = 4. / 3. * S_1_f # sigma_k = np.sqrt(np.trapz(S_1_f, f)) # print(sigma_k) # print(sigma_u) return U, V, W, Rot
def IECKaimal(self, case): # '''Calculates rotor-averaged turbulent wind spectrum based on inputted turbulence intensity or class.''' #TODO: expand commenting, confirm that Rot is power spectrum, skip V,W calcs if not used # Set inputs (f, V_ref, HH, Class, Categ, TurbMod, R) f = self.w / 2 / np.pi # frequency in Hz HH = self.Zhub R = self.R_rot V_ref = case['wind_speed'] ###### Initialize IEC Wind parameters ####### iec_wind = pyIECWind_extreme() iec_wind.z_hub = HH if isinstance(case['turbulence'],str): # If a string, the options are I, II, III, IV Class = '' for char in case['turbulence']: if char == 'I' or char == 'V': Class += char else: break if not Class: raise Exception("Turbulence class must start with I, II, III, or IV, while you wrote " + case['turbulence']) else: Categ = char iec_wind.Turbulence_Class = Categ try: TurbMod = case['turbulence'].split('_')[1] except: raise Exception("Error reading the turbulence model. You wrote " + case['turbulence']) iec_wind.Turbine_Class = Class # set things up (use default values if not specified in the above) iec_wind.setup() # Can set iec_wind.I_ref here if wanted, NTM used then if isinstance(case['turbulence'],int): case['turbulence'] = float(case['turbulence']) if isinstance(case['turbulence'],float): iec_wind.I_ref = case['turbulence'] # this overwrites the value set in setup method TurbMod = 'NTM' # Compute wind turbulence standard deviation (invariant with height) if TurbMod == 'NTM': sigma_1 = iec_wind.NTM(V_ref) elif TurbMod == 'ETM': sigma_1 = iec_wind.ETM(V_ref) elif TurbMod == 'EWM': sigma_1 = iec_wind.EWM(V_ref) else: raise Exception("Wind model must be either NTM, ETM, or EWM. While you wrote " + TurbMod) # Compute turbulence scale parameter Annex C3 of IEC 61400-1-2019 # Longitudinal if HH <= 60: L_1 = .7 * HH else: L_1 = 42. sigma_u = sigma_1 L_u = 8.1 * L_1 # Lateral sigma_v = 0.8 * sigma_1 L_v = 2.7 * L_1 # Upward sigma_w = 0.5 * sigma_1 L_w = 0.66 * L_1 U = (4*L_u/V_ref)*sigma_u**2/((1+6*f*L_u/V_ref)**(5./3.)) V = (4*L_v/V_ref)*sigma_v**2/((1+6*f*L_v/V_ref)**(5./3.)) W = (4*L_w/V_ref)*sigma_w**2/((1+6*f*L_w/V_ref)**(5./3.)) kappa = 12 * np.sqrt((f/V_ref)**2 + (0.12 / L_u)**2) Rot = (2*U / (R * kappa)**3) * \ (modstruve(1,2*R*kappa) - iv(1,2*R*kappa) - 2/np.pi + \ R*kappa * (-2 * modstruve(-2,2*R*kappa) + 2 * iv(2,2*R*kappa) + 1) ) # set NaNs to 0 Rot[np.isnan(Rot)] = 0 # Formulas from Section 6.3 of IEC 61400-1-2019 # S_1_f = 0.05 * sigma_1**2. * (L_1 / V_hub) ** (-2./3.) * f **(-5./3) # S_2_f = S_3_f = 4. / 3. * S_1_f # sigma_k = np.sqrt(np.trapz(S_1_f, f)) # print(sigma_k) # print(sigma_u) return U, V, W, Rot
Python
def analyzeUnloaded(self): '''This calculates the system properties under undloaded coonditions: equilibrium positions, natural frequencies, etc.''' # calculate the system's constant properties #self.calcSystemConstantProps() for fowt in self.fowtList: fowt.calcStatics() #fowt.calcBEM() fowt.calcHydroConstants(dict(wave_spectrum='still', wave_heading=0)) # get mooring system characteristics about undisplaced platform position (useful for baseline and verification) try: self.C_moor0 = self.ms.getCoupledStiffness(lines_only=True) # this method accounts for eqiuilibrium of free objects in the system self.F_moor0 = self.ms.getForces(DOFtype="coupled", lines_only=True) except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in undisplaced state: '+e.message) self.results['properties'] = {} # signal this data is available by adding a section to the results dictionary # calculate platform offsets and mooring system equilibrium state self.calcMooringAndOffsets() self.results['properties']['offset_unloaded'] = self.fowtList[0].Xi0 # TODO: add printing of summary info here - mass, stiffnesses, etc
def analyzeUnloaded(self): '''This calculates the system properties under undloaded coonditions: equilibrium positions, natural frequencies, etc.''' # calculate the system's constant properties #self.calcSystemConstantProps() for fowt in self.fowtList: fowt.calcStatics() #fowt.calcBEM() fowt.calcHydroConstants(dict(wave_spectrum='still', wave_heading=0)) # get mooring system characteristics about undisplaced platform position (useful for baseline and verification) try: self.C_moor0 = self.ms.getCoupledStiffness(lines_only=True) # this method accounts for eqiuilibrium of free objects in the system self.F_moor0 = self.ms.getForces(DOFtype="coupled", lines_only=True) except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in undisplaced state: '+e.message) self.results['properties'] = {} # signal this data is available by adding a section to the results dictionary # calculate platform offsets and mooring system equilibrium state self.calcMooringAndOffsets() self.results['properties']['offset_unloaded'] = self.fowtList[0].Xi0 # TODO: add printing of summary info here - mass, stiffnesses, etc
Python
def calcMooringAndOffsets(self): '''Calculates mean offsets and linearized mooring properties for the current load case. setEnv and calcSystemProps must be called first. This will ultimately become a method for solving mean operating point. ''' # apply any mean aerodynamic and hydrodynamic loads F_PRP = self.fowtList[0].F_aero0# + self.fowtList[0].F_hydro0 <<< hydro load would be nice here eventually self.ms.bodyList[0].f6Ext = np.array(F_PRP) # Now find static equilibrium offsets of platform and get mooring properties about that point # (This assumes some loads have been applied) #self.ms.display=2 try: self.ms.solveEquilibrium3(DOFtype="both", tol=0.01) #, rmsTol=1.0E-5) # get the system to its equilibrium except Exception as e: #mp.MoorPyError print('An error occured when solving system equilibrium: '+e.message) #raise RuntimeError('An error occured when solving unloaded equilibrium: '+error.message) # ::: a loop could be added here for an array ::: fowt = self.fowtList[0] #print("Equilibrium'3' platform positions/rotations:") #printVec(self.ms.bodyList[0].r6) r6eq = self.ms.bodyList[0].r6 fowt.Xi0 = np.array(r6eq) # save current mean offsets for the FOWT #self.ms.plot() print(f"Found mean offets with with surge = {r6eq[0]:.2f} m and pitch = {r6eq[4]*180/np.pi:.2f} deg.") try: C_moor, J_moor = self.ms.getCoupledStiffness(lines_only=True, tensions=True) # get stiffness matrix and tension jacobian matrix F_moor = self.ms.getForces(DOFtype="coupled", lines_only=True) # get net forces and moments from mooring lines on Body T_moor = self.ms.getTensions() except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in offset state: '+e.message) # add any additional yaw stiffness that isn't included in the MoorPy model (e.g. if a bridle isn't modeled) C_moor[5,5] += fowt.yawstiff self.C_moor = C_moor self.J_moor = J_moor # jacobian of mooring line tensions w.r.t. coupled DOFs self.F_moor = F_moor self.T_moor = T_moor # store results self.results['means'] = {} # signal this data is available by adding a section to the results dictionary self.results['means']['aero force' ] = self.fowtList[0].F_aero0 self.results['means']['platform offset' ] = r6eq self.results['means']['mooring force' ] = F_moor self.results['means']['fairlead tensions'] = np.array([np.linalg.norm(self.ms.pointList[id-1].getForces()) for id in self.ms.bodyList[0].attachedP])
def calcMooringAndOffsets(self): '''Calculates mean offsets and linearized mooring properties for the current load case. setEnv and calcSystemProps must be called first. This will ultimately become a method for solving mean operating point. ''' # apply any mean aerodynamic and hydrodynamic loads F_PRP = self.fowtList[0].F_aero0# + self.fowtList[0].F_hydro0 <<< hydro load would be nice here eventually self.ms.bodyList[0].f6Ext = np.array(F_PRP) # Now find static equilibrium offsets of platform and get mooring properties about that point # (This assumes some loads have been applied) #self.ms.display=2 try: self.ms.solveEquilibrium3(DOFtype="both", tol=0.01) #, rmsTol=1.0E-5) # get the system to its equilibrium except Exception as e: #mp.MoorPyError print('An error occured when solving system equilibrium: '+e.message) #raise RuntimeError('An error occured when solving unloaded equilibrium: '+error.message) # ::: a loop could be added here for an array ::: fowt = self.fowtList[0] #print("Equilibrium'3' platform positions/rotations:") #printVec(self.ms.bodyList[0].r6) r6eq = self.ms.bodyList[0].r6 fowt.Xi0 = np.array(r6eq) # save current mean offsets for the FOWT #self.ms.plot() print(f"Found mean offets with with surge = {r6eq[0]:.2f} m and pitch = {r6eq[4]*180/np.pi:.2f} deg.") try: C_moor, J_moor = self.ms.getCoupledStiffness(lines_only=True, tensions=True) # get stiffness matrix and tension jacobian matrix F_moor = self.ms.getForces(DOFtype="coupled", lines_only=True) # get net forces and moments from mooring lines on Body T_moor = self.ms.getTensions() except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in offset state: '+e.message) # add any additional yaw stiffness that isn't included in the MoorPy model (e.g. if a bridle isn't modeled) C_moor[5,5] += fowt.yawstiff self.C_moor = C_moor self.J_moor = J_moor # jacobian of mooring line tensions w.r.t. coupled DOFs self.F_moor = F_moor self.T_moor = T_moor # store results self.results['means'] = {} # signal this data is available by adding a section to the results dictionary self.results['means']['aero force' ] = self.fowtList[0].F_aero0 self.results['means']['platform offset' ] = r6eq self.results['means']['mooring force' ] = F_moor self.results['means']['fairlead tensions'] = np.array([np.linalg.norm(self.ms.pointList[id-1].getForces()) for id in self.ms.bodyList[0].attachedP])
Python
def calcOutputs(self): '''This is where various output quantities of interest are calculated based on the already-solved system response.''' fowt = self.fowtList[0] # just using a single turbine for now # ----- system properties outputs ----------------------------- # all values about platform reference point (z=0) unless otherwise noted if 'properties' in self.results: self.results['properties']['tower mass'] = fowt.mtower self.results['properties']['tower CG'] = fowt.rCG_tow self.results['properties']['substructure mass'] = fowt.msubstruc self.results['properties']['substructure CG'] = fowt.rCG_sub self.results['properties']['shell mass'] = fowt.mshell self.results['properties']['ballast mass'] = fowt.mballast self.results['properties']['ballast densities'] = fowt.pb self.results['properties']['total mass'] = fowt.M_struc[0,0] self.results['properties']['total CG'] = fowt.rCG_TOT #self.results['properties']['roll inertia at subCG'] = fowt.I44 #self.results['properties']['pitch inertia at subCG'] = fowt.I55 #self.results['properties']['yaw inertia at subCG'] = fowt.I66 self.results['properties']['roll inertia at subCG'] = fowt.M_struc_subCM[3,3] self.results['properties']['pitch inertia at subCG'] = fowt.M_struc_subCM[4,4] self.results['properties']['yaw inertia at subCG'] = fowt.M_struc_subCM[5,5] self.results['properties']['Buoyancy (pgV)'] = fowt.rho_water*fowt.g*fowt.V self.results['properties']['Center of Buoyancy'] = fowt.rCB self.results['properties']['C stiffness matrix'] = fowt.C_hydro # unloaded equilibrium <<< self.results['properties']['F_lines0'] = self.F_moor0 self.results['properties']['C_lines0'] = self.C_moor0 # 6DOF matrices for the support structure (everything but turbine) including mass, hydrostatics, and mooring reactions self.results['properties']['M support structure'] = fowt.M_struc_subCM # mass matrix self.results['properties']['A support structure'] = fowt.A_hydro_morison + fowt.A_BEM[:,:,-1] # hydrodynamic added mass (currently using highest frequency of BEM added mass) self.results['properties']['C support structure'] = fowt.C_struc_sub + fowt.C_hydro + self.C_moor0 # stiffness # ----- response outputs (always in standard units) --------------------------------------- if 'response' in self.results: RAOmag = abs(self.Xi /fowt.zeta) # magnitudes of motion RAO self.results['response']['frequencies'] = self.w/2/np.pi # Hz self.results['response']['wave elevation'] = fowt.zeta self.results['response']['Xi' ] = self.Xi self.results['response']['surge RAO' ] = RAOmag[0,:] self.results['response'][ 'sway RAO' ] = RAOmag[1,:] self.results['response']['heave RAO' ] = RAOmag[2,:] self.results['response']['pitch RAO' ] = RAOmag[3,:] self.results['response'][ 'roll RAO' ] = RAOmag[4,:] self.results['response'][ 'yaw RAO' ] = RAOmag[5,:] # save dynamic derived quantities #self.results['response']['mooring tensions'] = ... self.results['response']['nacelle acceleration'] = self.w**2 * (self.Xi[0] + self.Xi[4]*fowt.hHub) return self.results
def calcOutputs(self): '''This is where various output quantities of interest are calculated based on the already-solved system response.''' fowt = self.fowtList[0] # just using a single turbine for now # ----- system properties outputs ----------------------------- # all values about platform reference point (z=0) unless otherwise noted if 'properties' in self.results: self.results['properties']['tower mass'] = fowt.mtower self.results['properties']['tower CG'] = fowt.rCG_tow self.results['properties']['substructure mass'] = fowt.msubstruc self.results['properties']['substructure CG'] = fowt.rCG_sub self.results['properties']['shell mass'] = fowt.mshell self.results['properties']['ballast mass'] = fowt.mballast self.results['properties']['ballast densities'] = fowt.pb self.results['properties']['total mass'] = fowt.M_struc[0,0] self.results['properties']['total CG'] = fowt.rCG_TOT #self.results['properties']['roll inertia at subCG'] = fowt.I44 #self.results['properties']['pitch inertia at subCG'] = fowt.I55 #self.results['properties']['yaw inertia at subCG'] = fowt.I66 self.results['properties']['roll inertia at subCG'] = fowt.M_struc_subCM[3,3] self.results['properties']['pitch inertia at subCG'] = fowt.M_struc_subCM[4,4] self.results['properties']['yaw inertia at subCG'] = fowt.M_struc_subCM[5,5] self.results['properties']['Buoyancy (pgV)'] = fowt.rho_water*fowt.g*fowt.V self.results['properties']['Center of Buoyancy'] = fowt.rCB self.results['properties']['C stiffness matrix'] = fowt.C_hydro # unloaded equilibrium <<< self.results['properties']['F_lines0'] = self.F_moor0 self.results['properties']['C_lines0'] = self.C_moor0 # 6DOF matrices for the support structure (everything but turbine) including mass, hydrostatics, and mooring reactions self.results['properties']['M support structure'] = fowt.M_struc_subCM # mass matrix self.results['properties']['A support structure'] = fowt.A_hydro_morison + fowt.A_BEM[:,:,-1] # hydrodynamic added mass (currently using highest frequency of BEM added mass) self.results['properties']['C support structure'] = fowt.C_struc_sub + fowt.C_hydro + self.C_moor0 # stiffness # ----- response outputs (always in standard units) --------------------------------------- if 'response' in self.results: RAOmag = abs(self.Xi /fowt.zeta) # magnitudes of motion RAO self.results['response']['frequencies'] = self.w/2/np.pi # Hz self.results['response']['wave elevation'] = fowt.zeta self.results['response']['Xi' ] = self.Xi self.results['response']['surge RAO' ] = RAOmag[0,:] self.results['response'][ 'sway RAO' ] = RAOmag[1,:] self.results['response']['heave RAO' ] = RAOmag[2,:] self.results['response']['pitch RAO' ] = RAOmag[3,:] self.results['response'][ 'roll RAO' ] = RAOmag[4,:] self.results['response'][ 'yaw RAO' ] = RAOmag[5,:] # save dynamic derived quantities #self.results['response']['mooring tensions'] = ... self.results['response']['nacelle acceleration'] = self.w**2 * (self.Xi[0] + self.Xi[4]*fowt.hHub) return self.results
Python
def plotResponses(self): '''Plots the power spectral densities of the available response channels for each case.''' fig, ax = plt.subplots(6, 1, sharex=True) metrics = self.results['case_metrics'] nCases = len(metrics['surge_avg']) for iCase in range(nCases): ax[0].plot(self.w/TwoPi, TwoPi*metrics['surge_PSD'][iCase,:] ) # surge ax[1].plot(self.w/TwoPi, TwoPi*metrics['heave_PSD'][iCase,:] ) # heave ax[2].plot(self.w/TwoPi, TwoPi*metrics['pitch_PSD'][iCase,:] ) # pitch [deg] ax[3].plot(self.w/TwoPi, TwoPi*metrics['AxRNA_PSD'][iCase,:] ) # nacelle acceleration ax[4].plot(self.w/TwoPi, TwoPi*metrics['Mbase_PSD'][iCase,:] ) # tower base bending moment (using FAST's kN-m) ax[5].plot(self.w/TwoPi, TwoPi*metrics['wave_PSD' ][iCase,:], label=f'case {iCase+1}') # wave spectrum # need a variable number of subplots for the mooring lines #ax2[3].plot(model.w/2/np.pi, TwoPi*metrics['Tmoor_PSD'][0,3,:] ) # fairlead tension ax[0].set_ylabel('surge \n'+r'(m$^2$/Hz)') ax[1].set_ylabel('heave \n'+r'(m$^2$/Hz)') ax[2].set_ylabel('pitch \n'+r'(deg$^2$/Hz)') ax[3].set_ylabel('nac. acc. \n'+r'((m/s$^2$)$^2$/Hz)') ax[4].set_ylabel('twr. bend \n'+r'((Nm)$^2$/Hz)') ax[5].set_ylabel('wave elev.\n'+r'(m$^2$/Hz)') #ax[0].set_ylim([0.0, 25]) #ax[1].set_ylim([0.0, 15]) #ax[2].set_ylim([0.0, 4]) #ax[-1].set_xlim([0.03, 0.15]) ax[-1].set_xlabel('frequency (Hz)') #if nCases > 1: ax[-1].legend() fig.suptitle('RAFT power spectral densities')
def plotResponses(self): '''Plots the power spectral densities of the available response channels for each case.''' fig, ax = plt.subplots(6, 1, sharex=True) metrics = self.results['case_metrics'] nCases = len(metrics['surge_avg']) for iCase in range(nCases): ax[0].plot(self.w/TwoPi, TwoPi*metrics['surge_PSD'][iCase,:] ) # surge ax[1].plot(self.w/TwoPi, TwoPi*metrics['heave_PSD'][iCase,:] ) # heave ax[2].plot(self.w/TwoPi, TwoPi*metrics['pitch_PSD'][iCase,:] ) # pitch [deg] ax[3].plot(self.w/TwoPi, TwoPi*metrics['AxRNA_PSD'][iCase,:] ) # nacelle acceleration ax[4].plot(self.w/TwoPi, TwoPi*metrics['Mbase_PSD'][iCase,:] ) # tower base bending moment (using FAST's kN-m) ax[5].plot(self.w/TwoPi, TwoPi*metrics['wave_PSD' ][iCase,:], label=f'case {iCase+1}') # wave spectrum # need a variable number of subplots for the mooring lines #ax2[3].plot(model.w/2/np.pi, TwoPi*metrics['Tmoor_PSD'][0,3,:] ) # fairlead tension ax[0].set_ylabel('surge \n'+r'(m$^2$/Hz)') ax[1].set_ylabel('heave \n'+r'(m$^2$/Hz)') ax[2].set_ylabel('pitch \n'+r'(deg$^2$/Hz)') ax[3].set_ylabel('nac. acc. \n'+r'((m/s$^2$)$^2$/Hz)') ax[4].set_ylabel('twr. bend \n'+r'((Nm)$^2$/Hz)') ax[5].set_ylabel('wave elev.\n'+r'(m$^2$/Hz)') #ax[0].set_ylim([0.0, 25]) #ax[1].set_ylim([0.0, 15]) #ax[2].set_ylim([0.0, 4]) #ax[-1].set_xlim([0.03, 0.15]) ax[-1].set_xlabel('frequency (Hz)') #if nCases > 1: ax[-1].legend() fig.suptitle('RAFT power spectral densities')
Python
def preprocess_HAMS(self, dw=0, wMax=0, dz=0, da=0): '''This generates a mesh for the platform, runs a BEM analysis on it using pyHAMS, and writes .1 and .3 output files for use with OpenFAST. The input parameters are useful for multifidelity applications where different levels have different accuracy demands for the HAMS analysis. The mesh is only made for non-interesecting members flagged with potMod=1. PARAMETERS ---------- dw : float Optional specification of custom frequency increment (rad/s). wMax : float Optional specification of maximum frequency for BEM analysis (rad/s). Will only be used if it is greater than the maximum frequency used in RAFT. dz : float desired longitudinal panel size for potential flow BEM analysis (m) da : float desired azimuthal panel size for potential flow BEM analysis (m) ''' self.fowtList[0].calcBEM(dw=dw, wMax=wMax, dz=dz, da=da)
def preprocess_HAMS(self, dw=0, wMax=0, dz=0, da=0): '''This generates a mesh for the platform, runs a BEM analysis on it using pyHAMS, and writes .1 and .3 output files for use with OpenFAST. The input parameters are useful for multifidelity applications where different levels have different accuracy demands for the HAMS analysis. The mesh is only made for non-interesecting members flagged with potMod=1. PARAMETERS ---------- dw : float Optional specification of custom frequency increment (rad/s). wMax : float Optional specification of maximum frequency for BEM analysis (rad/s). Will only be used if it is greater than the maximum frequency used in RAFT. dz : float desired longitudinal panel size for potential flow BEM analysis (m) da : float desired azimuthal panel size for potential flow BEM analysis (m) ''' self.fowtList[0].calcBEM(dw=dw, wMax=wMax, dz=dz, da=da)
Python
def plot(self, ax=None, hideGrid=False, color='k', nodes=0): '''plots the whole model, including FOWTs and mooring system...''' # for now, start the plot via the mooring system, since MoorPy doesn't yet know how to draw on other codes' plots #self.ms.bodyList[0].setPosition(np.zeros(6)) #self.ms.initialize() #fig = plt.figure(figsize=(20/2.54,12/2.54)) #ax = Axes3D(fig) # if axes not passed in, make a new figure if ax == None: fig, ax = self.ms.plot(color=color) else: fig = ax.get_figure() self.ms.plot(ax=ax, color=color) # plot each FOWT for fowt in self.fowtList: fowt.plot(ax, color=color, nodes=nodes) if hideGrid: ax.set_xticks([]) # Hide axes ticks ax.set_yticks([]) ax.set_zticks([]) ax.grid(False) # Hide grid lines ax.grid(b=None) ax.axis('off') ax.set_frame_on(False) return fig, ax
def plot(self, ax=None, hideGrid=False, color='k', nodes=0): '''plots the whole model, including FOWTs and mooring system...''' # for now, start the plot via the mooring system, since MoorPy doesn't yet know how to draw on other codes' plots #self.ms.bodyList[0].setPosition(np.zeros(6)) #self.ms.initialize() #fig = plt.figure(figsize=(20/2.54,12/2.54)) #ax = Axes3D(fig) # if axes not passed in, make a new figure if ax == None: fig, ax = self.ms.plot(color=color) else: fig = ax.get_figure() self.ms.plot(ax=ax, color=color) # plot each FOWT for fowt in self.fowtList: fowt.plot(ax, color=color, nodes=nodes) if hideGrid: ax.set_xticks([]) # Hide axes ticks ax.set_yticks([]) ax.set_zticks([]) ax.grid(False) # Hide grid lines ax.grid(b=None) ax.axis('off') ax.set_frame_on(False) return fig, ax
Python
def runRAFT(input_file, turbine_file=""): ''' This will set up and run RAFT based on a YAML input file. ''' # open the design YAML file and parse it into a dictionary for passing to raft print("Loading RAFT input file: "+input_file) with open(input_file) as file: design = yaml.load(file, Loader=yaml.FullLoader) print(f"'{design['name']}'") depth = float(design['mooring']['water_depth']) # for now, turn off potMod in the design dictionary to avoid BEM analysis #design['platform']['potModMaster'] = 1 # read in turbine data and combine it in # if len(turbine_file) > 0: # turbine = convertIEAturbineYAML2RAFT(turbine_file) # design['turbine'].update(turbine) # Create and run the model print(" --- making model ---") model = raft.Model(design) print(" --- analyizing unloaded ---") model.analyzeUnloaded() print(" --- analyzing cases ---") model.analyzeCases() model.plot() model.plotResponses() #model.preprocess_HAMS("testHAMSoutput", dw=0.1, wMax=10) plt.show() return model
def runRAFT(input_file, turbine_file=""): ''' This will set up and run RAFT based on a YAML input file. ''' # open the design YAML file and parse it into a dictionary for passing to raft print("Loading RAFT input file: "+input_file) with open(input_file) as file: design = yaml.load(file, Loader=yaml.FullLoader) print(f"'{design['name']}'") depth = float(design['mooring']['water_depth']) # for now, turn off potMod in the design dictionary to avoid BEM analysis #design['platform']['potModMaster'] = 1 # read in turbine data and combine it in # if len(turbine_file) > 0: # turbine = convertIEAturbineYAML2RAFT(turbine_file) # design['turbine'].update(turbine) # Create and run the model print(" --- making model ---") model = raft.Model(design) print(" --- analyizing unloaded ---") model.analyzeUnloaded() print(" --- analyzing cases ---") model.analyzeCases() model.plot() model.plotResponses() #model.preprocess_HAMS("testHAMSoutput", dw=0.1, wMax=10) plt.show() return model
Python
def calcStatics(self): '''Fills in the static quantities of the FOWT and its matrices. Also adds some dynamic parameters that are constant, e.g. BEM coefficients and steady thrust loads.''' rho = self.rho_water g = self.g # structure-related arrays self.M_struc = np.zeros([6,6]) # structure/static mass/inertia matrix [kg, kg-m, kg-m^2] self.B_struc = np.zeros([6,6]) # structure damping matrix [N-s/m, N-s, N-s-m] (may not be used) self.C_struc = np.zeros([6,6]) # structure effective stiffness matrix [N/m, N, N-m] self.W_struc = np.zeros([6]) # static weight vector [N, N-m] self.C_struc_sub = np.zeros([6,6]) # substructure effective stiffness matrix [N/m, N, N-m] # hydrostatic arrays self.C_hydro = np.zeros([6,6]) # hydrostatic stiffness matrix [N/m, N, N-m] self.W_hydro = np.zeros(6) # buoyancy force/moment vector [N, N-m] <<<<< not used yet # --------------- add in linear hydrodynamic coefficients here if applicable -------------------- #[as in load them] <<<<<<<<<<<<<<<<<<<<< # --------------- Get general geometry properties including hydrostatics ------------------------ # initialize some variables for running totals VTOT = 0. # Total underwater volume of all members combined mTOT = 0. # Total mass of all members [kg] AWP_TOT = 0. # Total waterplane area of all members [m^2] IWPx_TOT = 0 # Total waterplane moment of inertia of all members about x axis [m^4] IWPy_TOT = 0 # Total waterplane moment of inertia of all members about y axis [m^4] Sum_V_rCB = np.zeros(3) # product of each member's buoyancy multiplied by center of buoyancy [m^4] Sum_AWP_rWP = np.zeros(2) # product of each member's waterplane area multiplied by the area's center point [m^3] Sum_M_center = np.zeros(3) # product of each member's mass multiplied by its center of mass [kg-m] (Only considers the shell mass right now) self.msubstruc = 0 # total mass of just the members that make up the substructure [kg] self.M_struc_subPRP = np.zeros([6,6]) # total mass matrix of just the substructure about the PRP msubstruc_sum = 0 # product of each substructure member's mass and CG, to be used to find the total substructure CG [kg-m] self.mshell = 0 # total mass of the shells/steel of the members in the substructure [kg] mballast = [] # list to store the mass of the ballast in each of the substructure members [kg] pballast = [] # list to store the density of ballast in each of the substructure members [kg] ''' I44list = [] # list to store the I44 MoI about the PRP of each substructure member I55list = [] # list to store the I55 MoI about the PRP of each substructure member I66list = [] # list to store the I66 MoI about the PRP of each substructure member masslist = [] # list to store the mass of each substructure member ''' # loop through each member for mem in self.memberList: # calculate member's orientation information (needed for later steps) mem.calcOrientation() # ---------------------- get member's mass and inertia properties ------------------------------ mass, center, mshell, mfill, pfill = mem.getInertia() # calls the getInertia method to calcaulte values # Calculate the mass matrix of the FOWT about the PRP self.W_struc += translateForce3to6DOF( np.array([0,0, -g*mass]), center ) # weight vector self.M_struc += mem.M_struc # mass/inertia matrix about the PRP Sum_M_center += center*mass # product sum of the mass and center of mass to find the total center of mass [kg-m] # Tower calculations if mem.type <= 1: # <<<<<<<<<<<< maybe find a better way to do the if condition self.mtower = mass # mass of the tower [kg] self.rCG_tow = center # center of mass of the tower from the PRP [m] # Substructure calculations if mem.type > 1: self.msubstruc += mass # mass of the substructure self.M_struc_subPRP += mem.M_struc # mass matrix of the substructure about the PRP msubstruc_sum += center*mass # product sum of the substructure members and their centers of mass [kg-m] self.mshell += mshell # mass of the substructure shell material [kg] mballast.extend(mfill) # list of ballast masses in each substructure member (list of lists) [kg] pballast.extend(pfill) # list of ballast densities in each substructure member (list of lists) [kg/m^3] ''' # Store substructure moment of inertia terms I44list.append(mem.M_struc[3,3]) I55list.append(mem.M_struc[4,4]) I66list.append(mem.M_struc[5,5]) masslist.append(mass) ''' # -------------------- get each member's buoyancy/hydrostatic properties ----------------------- Fvec, Cmat, V_UW, r_CB, AWP, IWP, xWP, yWP = mem.getHydrostatics(self.rho_water, self.g) # call to Member method for hydrostatic calculations # now convert everything to be about PRP (platform reference point) and add to global vectors/matrices <<<<< needs updating (already about PRP) self.W_hydro += Fvec # translateForce3to6DOF( np.array([0,0, Fz]), mem.rA ) # buoyancy vector self.C_hydro += Cmat # translateMatrix6to6DOF(Cmat, mem.rA) # hydrostatic stiffness matrix VTOT += V_UW # add to total underwater volume of all members combined AWP_TOT += AWP IWPx_TOT += IWP + AWP*yWP**2 IWPy_TOT += IWP + AWP*xWP**2 Sum_V_rCB += r_CB*V_UW Sum_AWP_rWP += np.array([xWP, yWP])*AWP # ------------------------- include RNA properties ----------------------------- # Here we could initialize first versions of the structure matrix components. # These might be iterated on later to deal with mean- or amplitude-dependent terms. #self.M_struc += structural.M_lin(q0, self.turbineParams) # Linear Mass Matrix #self.B_struc += structural.C_lin(q0, qd0, self.turbineParams, u0) # Linear Damping Matrix #self.C_struc += structural.K_lin(q0, qd0, self.turbineParams, u0) # Linear Stifness Matrix #self.W_struc += structural.B_lin(q0, qd0, self.turbineParams, u0) # Linear RHS # below are temporary placeholders # for now, turbine RNA is specified by some simple lumped properties Mmat = np.diag([self.mRNA, self.mRNA, self.mRNA, self.IxRNA, self.IrRNA, self.IrRNA]) # create mass/inertia matrix center = np.array([self.xCG_RNA, 0, self.hHub]) # RNA center of mass location # now convert everything to be about PRP (platform reference point) and add to global vectors/matrices self.W_struc += translateForce3to6DOF(np.array([0,0, -g*self.mRNA]), center ) # weight vector self.M_struc += translateMatrix6to6DOF(Mmat, center) # mass/inertia matrix Sum_M_center += center*self.mRNA # ----------- process inertia-related totals ---------------- mTOT = self.M_struc[0,0] # total mass of all the members rCG_TOT = Sum_M_center/mTOT # total CG of all the members self.rCG_TOT = rCG_TOT self.rCG_sub = msubstruc_sum/self.msubstruc # solve for just the substructure mass and CG self.M_struc_subCM = translateMatrix6to6DOF(self.M_struc_subPRP, -self.rCG_sub) # the mass matrix of the substructure about the substruc's CM # need to make rCG_sub negative here because tM6to6DOF takes a vector that goes from where you want the ref point to be (CM) to the currently ref point (PRP) ''' self.I44 = 0 # moment of inertia in roll due to roll of the substructure about the substruc's CG [kg-m^2] self.I44B = 0 # moment of inertia in roll due to roll of the substructure about the PRP [kg-m^2] self.I55 = 0 # moment of inertia in pitch due to pitch of the substructure about the substruc's CG [kg-m^2] self.I55B = 0 # moment of inertia in pitch due to pitch of the substructure about the PRP [kg-m^2] self.I66 = 0 # moment of inertia in yaw due to yaw of the substructure about the substruc's centerline [kg-m^2] # Use the parallel axis theorem to move each substructure's MoI to the substructure's CG x = np.linalg.norm([self.rCG_sub[1],self.rCG_sub[2]]) # the normalized distance between the x and x' axes y = np.linalg.norm([self.rCG_sub[0],self.rCG_sub[2]]) # the normalized distance between the y and y' axes z = np.linalg.norm([self.rCG_sub[0],self.rCG_sub[1]]) # the normalized distance between the z and z' axes for i in range(len(I44list)): self.I44 += I44list[i] - masslist[i]*x**2 self.I44B += I44list[i] self.I55 += I55list[i] - masslist[i]*y**2 self.I55B += I55list[i] self.I66 += I66list[i] - masslist[i]*z**2 ''' # Solve for the total mass of each type of ballast in the substructure self.pb = [] # empty list to store the unique ballast densities for i in range(len(pballast)): if pballast[i] != 0: # if the value in pballast is not zero if self.pb.count(pballast[i]) == 0: # and if that value is not already in pb self.pb.append(pballast[i]) # store that ballast density value self.mballast = np.zeros(len(self.pb)) # make an empty mballast list with len=len(pb) for i in range(len(self.pb)): # for each ballast density for j in range(len(mballast)): # loop through each ballast mass if np.float(pballast[j]) == np.float(self.pb[i]): # but only if the index of the ballast mass (density) matches the value of pb self.mballast[i] += mballast[j] # add that ballast mass to the correct index of mballast # ----------- process key hydrostatic-related totals for use in static equilibrium solution ------------------ self.V = VTOT # save the total underwater volume rCB_TOT = Sum_V_rCB/VTOT # location of center of buoyancy on platform self.rCB = rCB_TOT if VTOT==0: # if you're only working with members above the platform, like modeling the wind turbine zMeta = 0 else: zMeta = rCB_TOT[2] + IWPx_TOT/VTOT # add center of buoyancy and BM=I/v to get z elevation of metecenter [m] (have to pick one direction for IWP) self.C_struc[3,3] = -mTOT*g*rCG_TOT[2] self.C_struc[4,4] = -mTOT*g*rCG_TOT[2] self.C_struc_sub[3,3] = -self.msubstruc*g*self.rCG_sub[2] self.C_struc_sub[4,4] = -self.msubstruc*g*self.rCG_sub[2] # add relevant properties to this turbine's MoorPy Body # >>> should double check proper handling of mean weight and buoyancy forces throughout model <<< self.body.m = mTOT self.body.v = VTOT self.body.rCG = rCG_TOT self.body.AWP = AWP_TOT self.body.rM = np.array([0,0,zMeta]) # is there any risk of additional moments due to offset CB since MoorPy assumes CB at ref point? <<<
def calcStatics(self): '''Fills in the static quantities of the FOWT and its matrices. Also adds some dynamic parameters that are constant, e.g. BEM coefficients and steady thrust loads.''' rho = self.rho_water g = self.g # structure-related arrays self.M_struc = np.zeros([6,6]) # structure/static mass/inertia matrix [kg, kg-m, kg-m^2] self.B_struc = np.zeros([6,6]) # structure damping matrix [N-s/m, N-s, N-s-m] (may not be used) self.C_struc = np.zeros([6,6]) # structure effective stiffness matrix [N/m, N, N-m] self.W_struc = np.zeros([6]) # static weight vector [N, N-m] self.C_struc_sub = np.zeros([6,6]) # substructure effective stiffness matrix [N/m, N, N-m] # hydrostatic arrays self.C_hydro = np.zeros([6,6]) # hydrostatic stiffness matrix [N/m, N, N-m] self.W_hydro = np.zeros(6) # buoyancy force/moment vector [N, N-m] <<<<< not used yet # --------------- add in linear hydrodynamic coefficients here if applicable -------------------- #[as in load them] <<<<<<<<<<<<<<<<<<<<< # --------------- Get general geometry properties including hydrostatics ------------------------ # initialize some variables for running totals VTOT = 0. # Total underwater volume of all members combined mTOT = 0. # Total mass of all members [kg] AWP_TOT = 0. # Total waterplane area of all members [m^2] IWPx_TOT = 0 # Total waterplane moment of inertia of all members about x axis [m^4] IWPy_TOT = 0 # Total waterplane moment of inertia of all members about y axis [m^4] Sum_V_rCB = np.zeros(3) # product of each member's buoyancy multiplied by center of buoyancy [m^4] Sum_AWP_rWP = np.zeros(2) # product of each member's waterplane area multiplied by the area's center point [m^3] Sum_M_center = np.zeros(3) # product of each member's mass multiplied by its center of mass [kg-m] (Only considers the shell mass right now) self.msubstruc = 0 # total mass of just the members that make up the substructure [kg] self.M_struc_subPRP = np.zeros([6,6]) # total mass matrix of just the substructure about the PRP msubstruc_sum = 0 # product of each substructure member's mass and CG, to be used to find the total substructure CG [kg-m] self.mshell = 0 # total mass of the shells/steel of the members in the substructure [kg] mballast = [] # list to store the mass of the ballast in each of the substructure members [kg] pballast = [] # list to store the density of ballast in each of the substructure members [kg] ''' I44list = [] # list to store the I44 MoI about the PRP of each substructure member I55list = [] # list to store the I55 MoI about the PRP of each substructure member I66list = [] # list to store the I66 MoI about the PRP of each substructure member masslist = [] # list to store the mass of each substructure member ''' # loop through each member for mem in self.memberList: # calculate member's orientation information (needed for later steps) mem.calcOrientation() # ---------------------- get member's mass and inertia properties ------------------------------ mass, center, mshell, mfill, pfill = mem.getInertia() # calls the getInertia method to calcaulte values # Calculate the mass matrix of the FOWT about the PRP self.W_struc += translateForce3to6DOF( np.array([0,0, -g*mass]), center ) # weight vector self.M_struc += mem.M_struc # mass/inertia matrix about the PRP Sum_M_center += center*mass # product sum of the mass and center of mass to find the total center of mass [kg-m] # Tower calculations if mem.type <= 1: # <<<<<<<<<<<< maybe find a better way to do the if condition self.mtower = mass # mass of the tower [kg] self.rCG_tow = center # center of mass of the tower from the PRP [m] # Substructure calculations if mem.type > 1: self.msubstruc += mass # mass of the substructure self.M_struc_subPRP += mem.M_struc # mass matrix of the substructure about the PRP msubstruc_sum += center*mass # product sum of the substructure members and their centers of mass [kg-m] self.mshell += mshell # mass of the substructure shell material [kg] mballast.extend(mfill) # list of ballast masses in each substructure member (list of lists) [kg] pballast.extend(pfill) # list of ballast densities in each substructure member (list of lists) [kg/m^3] ''' # Store substructure moment of inertia terms I44list.append(mem.M_struc[3,3]) I55list.append(mem.M_struc[4,4]) I66list.append(mem.M_struc[5,5]) masslist.append(mass) ''' # -------------------- get each member's buoyancy/hydrostatic properties ----------------------- Fvec, Cmat, V_UW, r_CB, AWP, IWP, xWP, yWP = mem.getHydrostatics(self.rho_water, self.g) # call to Member method for hydrostatic calculations # now convert everything to be about PRP (platform reference point) and add to global vectors/matrices <<<<< needs updating (already about PRP) self.W_hydro += Fvec # translateForce3to6DOF( np.array([0,0, Fz]), mem.rA ) # buoyancy vector self.C_hydro += Cmat # translateMatrix6to6DOF(Cmat, mem.rA) # hydrostatic stiffness matrix VTOT += V_UW # add to total underwater volume of all members combined AWP_TOT += AWP IWPx_TOT += IWP + AWP*yWP**2 IWPy_TOT += IWP + AWP*xWP**2 Sum_V_rCB += r_CB*V_UW Sum_AWP_rWP += np.array([xWP, yWP])*AWP # ------------------------- include RNA properties ----------------------------- # Here we could initialize first versions of the structure matrix components. # These might be iterated on later to deal with mean- or amplitude-dependent terms. #self.M_struc += structural.M_lin(q0, self.turbineParams) # Linear Mass Matrix #self.B_struc += structural.C_lin(q0, qd0, self.turbineParams, u0) # Linear Damping Matrix #self.C_struc += structural.K_lin(q0, qd0, self.turbineParams, u0) # Linear Stifness Matrix #self.W_struc += structural.B_lin(q0, qd0, self.turbineParams, u0) # Linear RHS # below are temporary placeholders # for now, turbine RNA is specified by some simple lumped properties Mmat = np.diag([self.mRNA, self.mRNA, self.mRNA, self.IxRNA, self.IrRNA, self.IrRNA]) # create mass/inertia matrix center = np.array([self.xCG_RNA, 0, self.hHub]) # RNA center of mass location # now convert everything to be about PRP (platform reference point) and add to global vectors/matrices self.W_struc += translateForce3to6DOF(np.array([0,0, -g*self.mRNA]), center ) # weight vector self.M_struc += translateMatrix6to6DOF(Mmat, center) # mass/inertia matrix Sum_M_center += center*self.mRNA # ----------- process inertia-related totals ---------------- mTOT = self.M_struc[0,0] # total mass of all the members rCG_TOT = Sum_M_center/mTOT # total CG of all the members self.rCG_TOT = rCG_TOT self.rCG_sub = msubstruc_sum/self.msubstruc # solve for just the substructure mass and CG self.M_struc_subCM = translateMatrix6to6DOF(self.M_struc_subPRP, -self.rCG_sub) # the mass matrix of the substructure about the substruc's CM # need to make rCG_sub negative here because tM6to6DOF takes a vector that goes from where you want the ref point to be (CM) to the currently ref point (PRP) ''' self.I44 = 0 # moment of inertia in roll due to roll of the substructure about the substruc's CG [kg-m^2] self.I44B = 0 # moment of inertia in roll due to roll of the substructure about the PRP [kg-m^2] self.I55 = 0 # moment of inertia in pitch due to pitch of the substructure about the substruc's CG [kg-m^2] self.I55B = 0 # moment of inertia in pitch due to pitch of the substructure about the PRP [kg-m^2] self.I66 = 0 # moment of inertia in yaw due to yaw of the substructure about the substruc's centerline [kg-m^2] # Use the parallel axis theorem to move each substructure's MoI to the substructure's CG x = np.linalg.norm([self.rCG_sub[1],self.rCG_sub[2]]) # the normalized distance between the x and x' axes y = np.linalg.norm([self.rCG_sub[0],self.rCG_sub[2]]) # the normalized distance between the y and y' axes z = np.linalg.norm([self.rCG_sub[0],self.rCG_sub[1]]) # the normalized distance between the z and z' axes for i in range(len(I44list)): self.I44 += I44list[i] - masslist[i]*x**2 self.I44B += I44list[i] self.I55 += I55list[i] - masslist[i]*y**2 self.I55B += I55list[i] self.I66 += I66list[i] - masslist[i]*z**2 ''' # Solve for the total mass of each type of ballast in the substructure self.pb = [] # empty list to store the unique ballast densities for i in range(len(pballast)): if pballast[i] != 0: # if the value in pballast is not zero if self.pb.count(pballast[i]) == 0: # and if that value is not already in pb self.pb.append(pballast[i]) # store that ballast density value self.mballast = np.zeros(len(self.pb)) # make an empty mballast list with len=len(pb) for i in range(len(self.pb)): # for each ballast density for j in range(len(mballast)): # loop through each ballast mass if np.float(pballast[j]) == np.float(self.pb[i]): # but only if the index of the ballast mass (density) matches the value of pb self.mballast[i] += mballast[j] # add that ballast mass to the correct index of mballast # ----------- process key hydrostatic-related totals for use in static equilibrium solution ------------------ self.V = VTOT # save the total underwater volume rCB_TOT = Sum_V_rCB/VTOT # location of center of buoyancy on platform self.rCB = rCB_TOT if VTOT==0: # if you're only working with members above the platform, like modeling the wind turbine zMeta = 0 else: zMeta = rCB_TOT[2] + IWPx_TOT/VTOT # add center of buoyancy and BM=I/v to get z elevation of metecenter [m] (have to pick one direction for IWP) self.C_struc[3,3] = -mTOT*g*rCG_TOT[2] self.C_struc[4,4] = -mTOT*g*rCG_TOT[2] self.C_struc_sub[3,3] = -self.msubstruc*g*self.rCG_sub[2] self.C_struc_sub[4,4] = -self.msubstruc*g*self.rCG_sub[2] # add relevant properties to this turbine's MoorPy Body # >>> should double check proper handling of mean weight and buoyancy forces throughout model <<< self.body.m = mTOT self.body.v = VTOT self.body.rCG = rCG_TOT self.body.AWP = AWP_TOT self.body.rM = np.array([0,0,zMeta]) # is there any risk of additional moments due to offset CB since MoorPy assumes CB at ref point? <<<
Python
def calcBEM(self, dw=0, wMax=0, wInf=10.0, dz=0, da=0): '''This generates a mesh for the platform and runs a BEM analysis on it using pyHAMS. It can also write adjusted .1 and .3 output files suitable for use with OpenFAST. The mesh is only made for non-interesecting members flagged with potMod=1. PARAMETERS ---------- dw : float Optional specification of custom frequency increment (rad/s). wMax : float Optional specification of maximum frequency for BEM analysis (rad/s). Will only be used if it is greater than the maximum frequency used in RAFT. wInf : float Optional specification of large frequency to use as approximation for infinite frequency in pyHAMS analysis (rad/s). dz : float desired longitudinal panel size for potential flow BEM analysis (m) da : float desired azimuthal panel size for potential flow BEM analysis (m) ''' # go through members to be modeled with BEM and calculated their nodes and panels lists nodes = [] panels = [] vertices = np.zeros([0,3]) # for GDF output dz = self.dz_BEM if dz==0 else dz # allow override if provided da = self.da_BEM if da==0 else da for mem in self.memberList: if mem.potMod==True: pnl.meshMember(mem.stations, mem.d, mem.rA, mem.rB, dz_max=dz, da_max=da, savedNodes=nodes, savedPanels=panels) # for GDF output vertices_i = pnl.meshMemberForGDF(mem.stations, mem.d, mem.rA, mem.rB, dz_max=dz, da_max=da) vertices = np.vstack([vertices, vertices_i]) # append the member's vertices to the master list # only try to save a mesh and run HAMS if some members DO have potMod=True if len(panels) > 0: meshDir = os.path.join(os.getcwd(), 'BEM') pnl.writeMesh(nodes, panels, oDir=os.path.join(meshDir,'Input')) # generate a mesh file in the HAMS .pnl format #pnl.writeMeshToGDF(vertices) # also a GDF for visualization ph.create_hams_dirs(meshDir) # ph.write_hydrostatic_file(meshDir) # HAMS needs a hydrostatics file, but it's unused for .1 and .3, so write a blank one # prepare frequency settings for HAMS dw_HAMS = self.dw_BEM if dw==0 else dw # frequency increment - allow override if provided wMax_HAMS = max(wMax, max(self.w)) # make sure the HAMS runs includes both RAFT and export frequency extents nw_HAMS = int(np.ceil(wMax_HAMS/dw_HAMS)) # ensure the upper frequency of the HAMS analysis is large enough ph.write_control_file(meshDir, waterDepth=self.depth, incFLim=1, iFType=3, oFType=4, # inputs are in rad/s, outputs in s numFreqs=-nw_HAMS, minFreq=dw_HAMS, dFreq=dw_HAMS) # Note about zero/infinite frequencies from WAMIT-formatted output files (as per WAMIT v7 manual): # The limiting values of the added-mass coefficients may be evaluated for zero or infinite # period by specifying the values PER= 0:0 and PER< 0:0, respectively. These special values are always # associated with the wave period, irrespective of the value of IPERIN and the corresponding # interpretation of the positive elements of the array PER # execute the HAMS analysis ph.run_hams(meshDir) # read the HAMS WAMIT-style output files addedMass, damping, w1 = ph.read_wamit1(os.path.join(meshDir,'Output','Wamit_format','Buoy.1'), TFlag=True) # first two entries in frequency dimension are expected to be zero-frequency then infinite frequency M, P, R, I, w3, heads = ph.read_wamit3(os.path.join(meshDir,'Output','Wamit_format','Buoy.3'), TFlag=True) # interpole to the frequencies RAFT is using addedMassInterp = interp1d(np.hstack([w1[2:], 0.0]), np.dstack([addedMass[:,:,2:], addedMass[:,:,0]]), assume_sorted=False, axis=2)(self.w) dampingInterp = interp1d(np.hstack([w1[2:], 0.0]), np.dstack([ damping[:,:,2:], np.zeros([6,6]) ]), assume_sorted=False, axis=2)(self.w) fExRealInterp = interp1d(w3, R , assume_sorted=False )(self.w) fExImagInterp = interp1d(w3, I , assume_sorted=False )(self.w) # copy results over to the FOWT's coefficient arrays self.A_BEM = self.rho_water * addedMassInterp self.B_BEM = self.rho_water * dampingInterp self.X_BEM = self.rho_water * self.g * (fExRealInterp + 1j*fExImagInterp) # HAMS results error checks >>> any more we should have? <<< if np.isnan(self.A_BEM).any(): #print("NaN values detected in HAMS calculations for added mass. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for added mass. Check the geometry.") if np.isnan(self.B_BEM).any(): #print("NaN values detected in HAMS calculations for damping. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for damping. Check the geometry.") if np.isnan(self.X_BEM).any(): #print("NaN values detected in HAMS calculations for excitation. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for excitation. Check the geometry.") # TODO: add support for multiple wave headings <<< # note: RAFT will only be using finite-frequency potential flow coefficients
def calcBEM(self, dw=0, wMax=0, wInf=10.0, dz=0, da=0): '''This generates a mesh for the platform and runs a BEM analysis on it using pyHAMS. It can also write adjusted .1 and .3 output files suitable for use with OpenFAST. The mesh is only made for non-interesecting members flagged with potMod=1. PARAMETERS ---------- dw : float Optional specification of custom frequency increment (rad/s). wMax : float Optional specification of maximum frequency for BEM analysis (rad/s). Will only be used if it is greater than the maximum frequency used in RAFT. wInf : float Optional specification of large frequency to use as approximation for infinite frequency in pyHAMS analysis (rad/s). dz : float desired longitudinal panel size for potential flow BEM analysis (m) da : float desired azimuthal panel size for potential flow BEM analysis (m) ''' # go through members to be modeled with BEM and calculated their nodes and panels lists nodes = [] panels = [] vertices = np.zeros([0,3]) # for GDF output dz = self.dz_BEM if dz==0 else dz # allow override if provided da = self.da_BEM if da==0 else da for mem in self.memberList: if mem.potMod==True: pnl.meshMember(mem.stations, mem.d, mem.rA, mem.rB, dz_max=dz, da_max=da, savedNodes=nodes, savedPanels=panels) # for GDF output vertices_i = pnl.meshMemberForGDF(mem.stations, mem.d, mem.rA, mem.rB, dz_max=dz, da_max=da) vertices = np.vstack([vertices, vertices_i]) # append the member's vertices to the master list # only try to save a mesh and run HAMS if some members DO have potMod=True if len(panels) > 0: meshDir = os.path.join(os.getcwd(), 'BEM') pnl.writeMesh(nodes, panels, oDir=os.path.join(meshDir,'Input')) # generate a mesh file in the HAMS .pnl format #pnl.writeMeshToGDF(vertices) # also a GDF for visualization ph.create_hams_dirs(meshDir) # ph.write_hydrostatic_file(meshDir) # HAMS needs a hydrostatics file, but it's unused for .1 and .3, so write a blank one # prepare frequency settings for HAMS dw_HAMS = self.dw_BEM if dw==0 else dw # frequency increment - allow override if provided wMax_HAMS = max(wMax, max(self.w)) # make sure the HAMS runs includes both RAFT and export frequency extents nw_HAMS = int(np.ceil(wMax_HAMS/dw_HAMS)) # ensure the upper frequency of the HAMS analysis is large enough ph.write_control_file(meshDir, waterDepth=self.depth, incFLim=1, iFType=3, oFType=4, # inputs are in rad/s, outputs in s numFreqs=-nw_HAMS, minFreq=dw_HAMS, dFreq=dw_HAMS) # Note about zero/infinite frequencies from WAMIT-formatted output files (as per WAMIT v7 manual): # The limiting values of the added-mass coefficients may be evaluated for zero or infinite # period by specifying the values PER= 0:0 and PER< 0:0, respectively. These special values are always # associated with the wave period, irrespective of the value of IPERIN and the corresponding # interpretation of the positive elements of the array PER # execute the HAMS analysis ph.run_hams(meshDir) # read the HAMS WAMIT-style output files addedMass, damping, w1 = ph.read_wamit1(os.path.join(meshDir,'Output','Wamit_format','Buoy.1'), TFlag=True) # first two entries in frequency dimension are expected to be zero-frequency then infinite frequency M, P, R, I, w3, heads = ph.read_wamit3(os.path.join(meshDir,'Output','Wamit_format','Buoy.3'), TFlag=True) # interpole to the frequencies RAFT is using addedMassInterp = interp1d(np.hstack([w1[2:], 0.0]), np.dstack([addedMass[:,:,2:], addedMass[:,:,0]]), assume_sorted=False, axis=2)(self.w) dampingInterp = interp1d(np.hstack([w1[2:], 0.0]), np.dstack([ damping[:,:,2:], np.zeros([6,6]) ]), assume_sorted=False, axis=2)(self.w) fExRealInterp = interp1d(w3, R , assume_sorted=False )(self.w) fExImagInterp = interp1d(w3, I , assume_sorted=False )(self.w) # copy results over to the FOWT's coefficient arrays self.A_BEM = self.rho_water * addedMassInterp self.B_BEM = self.rho_water * dampingInterp self.X_BEM = self.rho_water * self.g * (fExRealInterp + 1j*fExImagInterp) # HAMS results error checks >>> any more we should have? <<< if np.isnan(self.A_BEM).any(): #print("NaN values detected in HAMS calculations for added mass. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for added mass. Check the geometry.") if np.isnan(self.B_BEM).any(): #print("NaN values detected in HAMS calculations for damping. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for damping. Check the geometry.") if np.isnan(self.X_BEM).any(): #print("NaN values detected in HAMS calculations for excitation. Check the geometry.") #breakpoint() raise Exception("NaN values detected in HAMS calculations for excitation. Check the geometry.") # TODO: add support for multiple wave headings <<< # note: RAFT will only be using finite-frequency potential flow coefficients
Python
def calcTurbineConstants(self, case, ptfm_pitch=0): '''This computes turbine linear terms case dictionary of case information ptfm_pitch mean pitch angle of the platform [rad] ''' #self.rotor.runCCBlade(case['wind_speed'], ptfm_pitch=ptfm_pitch, yaw_misalign=case['yaw_misalign']) # initialize arrays (can remain zero if aerodynamics are disabled) self.A_aero = np.zeros([6,6,self.nw]) # frequency-dependent aero-servo added mass matrix self.B_aero = np.zeros([6,6,self.nw]) # frequency-dependent aero-servo damping matrix self.F_aero = np.zeros([6, self.nw], dtype=complex) # dynamice excitation force and moment amplitude spectra self.F_aero0 = np.zeros([6]) # mean aerodynamic forces and moments # only compute the aerodynamics if enabled and windspeed is nonzero if self.aeroMod > 0 and case['wind_speed'] > 0.0: F_aero0, f_aero, a_aero, b_aero = self.rotor.calcAeroServoContributions(case, ptfm_pitch=ptfm_pitch) # get values about hub # hub reference frame relative to PRP <<<<<<<<<<<<<<<<< rHub = np.array([0, 0, self.hHub]) #rotMatHub = rotationMatrix(0, 0.01, 0) # convert coefficients to platform reference frame for i in range(self.nw): self.A_aero[:,:,i] = translateMatrix3to6DOF( np.diag([a_aero[i], 0, 0]), rHub) self.B_aero[:,:,i] = translateMatrix3to6DOF( np.diag([b_aero[i], 0, 0]), rHub) #self.C_aero = translateMatrix6to6DOF( rotateMatrix6(C_aero, rotMatHub), rHub) # convert forces to platform reference frame self.F_aero0 = transformForce(F_aero0, offset=rHub) # mean forces and moments for iw in range(self.nw): #self.F_aero[:,iw] = transformForce(F_aero[:,iw], offset=rHub, orientation=rotMatHub) self.F_aero[:,iw] = translateForce3to6DOF(np.array([f_aero[iw], 0, 0]), rHub)
def calcTurbineConstants(self, case, ptfm_pitch=0): '''This computes turbine linear terms case dictionary of case information ptfm_pitch mean pitch angle of the platform [rad] ''' #self.rotor.runCCBlade(case['wind_speed'], ptfm_pitch=ptfm_pitch, yaw_misalign=case['yaw_misalign']) # initialize arrays (can remain zero if aerodynamics are disabled) self.A_aero = np.zeros([6,6,self.nw]) # frequency-dependent aero-servo added mass matrix self.B_aero = np.zeros([6,6,self.nw]) # frequency-dependent aero-servo damping matrix self.F_aero = np.zeros([6, self.nw], dtype=complex) # dynamice excitation force and moment amplitude spectra self.F_aero0 = np.zeros([6]) # mean aerodynamic forces and moments # only compute the aerodynamics if enabled and windspeed is nonzero if self.aeroMod > 0 and case['wind_speed'] > 0.0: F_aero0, f_aero, a_aero, b_aero = self.rotor.calcAeroServoContributions(case, ptfm_pitch=ptfm_pitch) # get values about hub # hub reference frame relative to PRP <<<<<<<<<<<<<<<<< rHub = np.array([0, 0, self.hHub]) #rotMatHub = rotationMatrix(0, 0.01, 0) # convert coefficients to platform reference frame for i in range(self.nw): self.A_aero[:,:,i] = translateMatrix3to6DOF( np.diag([a_aero[i], 0, 0]), rHub) self.B_aero[:,:,i] = translateMatrix3to6DOF( np.diag([b_aero[i], 0, 0]), rHub) #self.C_aero = translateMatrix6to6DOF( rotateMatrix6(C_aero, rotMatHub), rHub) # convert forces to platform reference frame self.F_aero0 = transformForce(F_aero0, offset=rHub) # mean forces and moments for iw in range(self.nw): #self.F_aero[:,iw] = transformForce(F_aero[:,iw], offset=rHub, orientation=rotMatHub) self.F_aero[:,iw] = translateForce3to6DOF(np.array([f_aero[iw], 0, 0]), rHub)
Python
def calcHydroConstants(self, case): '''This computes the linear strip-theory-hydrodynamics terms, including wave excitation for a specific case.''' # set up sea state self.beta = case['wave_heading'] # make wave spectrum if case['wave_spectrum'] == 'unit': self.zeta = np.tile(1, self.nw) S = np.tile(1, self.nw) elif case['wave_spectrum'] == 'JONSWAP': S = JONSWAP(self.w, case['wave_height'], case['wave_period']) self.zeta = np.sqrt(S) # wave elevation amplitudes (these are easiest to use) elif case['wave_spectrum'] in ['none','still']: self.zeta = np.zeros(self.nw) S = np.zeros(self.nw) else: raise ValueError(f"Wave spectrum input '{case['wave_spectrum']}' not recognized.") rho = self.rho_water g = self.g #print(f"significant wave height: {4*np.sqrt(np.sum(S)*self.dw):5.2f} = {4*getRMS(self.zeta, self.dw):5.2f}") # << temporary <<< # TODO: consider current and viscous drift # ----- calculate potential-flow wave excitation force ----- self.F_BEM = self.X_BEM * self.zeta # wave excitation force (will be zero if HAMS wasn't run) # --------------------- get constant hydrodynamic values along each member ----------------------------- self.A_hydro_morison = np.zeros([6,6]) # hydrodynamic added mass matrix, from only Morison equation [kg, kg-m, kg-m^2] self.F_hydro_iner = np.zeros([6,self.nw],dtype=complex) # inertia excitation force/moment complex amplitudes vector [N, N-m] # loop through each member for mem in self.memberList: circ = mem.shape=='circular' # convenience boolian for circular vs. rectangular cross sections # print(mem.name) # loop through each node of the member for il in range(mem.ns): # print(il) # only process hydrodynamics if this node is submerged if mem.r[il,2] < 0: # print("underwater") # get wave kinematics spectra given a certain wave spectrum and location mem.u[il,:,:], mem.ud[il,:,:], mem.pDyn[il,:] = getWaveKin(self.zeta, self.beta, self.w, self.k, self.depth, mem.r[il,:], self.nw) # only compute inertial loads and added mass for members that aren't modeled with potential flow if mem.potMod==False: # interpolate coefficients for the current strip Ca_q = np.interp( mem.ls[il], mem.stations, mem.Ca_q ) Ca_p1 = np.interp( mem.ls[il], mem.stations, mem.Ca_p1 ) Ca_p2 = np.interp( mem.ls[il], mem.stations, mem.Ca_p2 ) Ca_End = np.interp( mem.ls[il], mem.stations, mem.Ca_End) # ----- compute side effects --------------------------------------------------------- if circ: v_i = 0.25*np.pi*mem.ds[il]**2*mem.dls[il] else: v_i = mem.ds[il,0]*mem.ds[il,1]*mem.dls[il] # member volume assigned to this node if mem.r[il,2] + 0.5*mem.dls[il] > 0: # if member extends out of water # <<< may want a better appraoch for this... v_i = v_i * (0.5*mem.dls[il] - mem.r[il,2]) / mem.dls[il] # scale volume by the portion that is under water # added mass Amat = rho*v_i *( Ca_q*mem.qMat + Ca_p1*mem.p1Mat + Ca_p2*mem.p2Mat ) # local added mass matrix # print(f"Member side added mass diagonals are {Amat[0,0]:6.2e} {Amat[1,1]:6.2e} {Amat[2,2]:6.2e}") self.A_hydro_morison += translateMatrix3to6DOF(Amat, mem.r[il,:]) # add to global added mass matrix for Morison members # inertial excitation - Froude-Krylov (axial term explicitly excluded here - we aren't dealing with chains) Imat = rho*v_i *( (1.+Ca_p1)*mem.p1Mat + (1.+Ca_p2)*mem.p2Mat ) # local inertial excitation matrix (note: the 1 is the Cp, dynamic pressure, term) #Imat = rho*v_i *( (1.+Ca_q)*mem.qMat + (1.+Ca_p1)*mem.p1Mat + (1.+Ca_p2)*mem.p2Mat ) # local inertial excitation matrix for i in range(self.nw): # for each wave frequency... mem.F_exc_iner[il,:,i] = np.matmul(Imat, mem.ud[il,:,i]) # add to global excitation vector (frequency dependent) self.F_hydro_iner[:,i] += translateForce3to6DOF(mem.F_exc_iner[il,:,i], mem.r[il,:]) # add to global excitation vector (frequency dependent) # ----- add axial/end effects for added mass, and excitation including dynamic pressure ------ # note : v_a and a_i work out to zero for non-tapered sections or non-end sections if circ: v_i = np.pi/12.0 * abs((mem.ds[il]+mem.drs[il])**3 - (mem.ds[il]-mem.drs[il])**3) # volume assigned to this end surface a_i = np.pi*mem.ds[il] * mem.drs[il] # signed end area (positive facing down) = mean diameter of strip * radius change of strip else: v_i = np.pi/12.0 * ((np.mean(mem.ds[il]+mem.drs[il]))**3 - (np.mean(mem.ds[il]-mem.drs[il]))**3) # so far just using sphere eqn and taking mean of side lengths as d a_i = (mem.ds[il,0]+mem.drs[il,0])*(mem.ds[il,1]+mem.drs[il,1]) - (mem.ds[il,0]-mem.drs[il,0])*(mem.ds[il,1]-mem.drs[il,1]) # >>> should support different coefficients or reference volumes for rectangular cross sections <<< # added mass AmatE = rho*v_i * Ca_End*mem.qMat # local added mass matrix # print(f"Member END added mass diagonals are {AmatE[0,0]:6.2e} {AmatE[1,1]:6.2e} {AmatE[2,2]:6.2e}") self.A_hydro_morison += translateMatrix3to6DOF(AmatE, mem.r[il,:]) # add to global added mass matrix for Morison members # inertial excitation ImatE = rho*v_i * Ca_End*mem.qMat # local inertial excitation matrix (note, there is no 1 added to Ca_End because dynamic pressure is handled separately) #ImatE = rho*v_i * (1+Ca_End)*mem.qMat # local inertial excitation matrix for i in range(self.nw): # for each wave frequency... #F_exc_iner_temp = np.matmul(ImatE, mem.ud[il,:,i]) # local inertial excitation force complex amplitude in x,y,z mem.F_exc_a[il,:,i] = np.matmul(ImatE, mem.ud[il,:,i]) # local inertial excitation force complex amplitude in x,y,z # >>> may want to add a separate dynamic pressure input <<< mem.F_exc_p[il,:,i] = mem.pDyn[il,i]*a_i *mem.q # add dynamic pressure - positive with q if end A - determined by sign of a_i #F_exc_iner_temp += mem.pDyn[il,i]*a_i *mem.q # add dynamic pressure - positive with q if end A - determined by sign of a_i F_exc_iner_temp = mem.F_exc_a[il,:,i] + mem.F_exc_p[il,:,i] mem.F_exc_iner[il,:,i] += F_exc_iner_temp # add to stored member force vector self.F_hydro_iner[:,i] += translateForce3to6DOF(F_exc_iner_temp, mem.r[il,:])
def calcHydroConstants(self, case): '''This computes the linear strip-theory-hydrodynamics terms, including wave excitation for a specific case.''' # set up sea state self.beta = case['wave_heading'] # make wave spectrum if case['wave_spectrum'] == 'unit': self.zeta = np.tile(1, self.nw) S = np.tile(1, self.nw) elif case['wave_spectrum'] == 'JONSWAP': S = JONSWAP(self.w, case['wave_height'], case['wave_period']) self.zeta = np.sqrt(S) # wave elevation amplitudes (these are easiest to use) elif case['wave_spectrum'] in ['none','still']: self.zeta = np.zeros(self.nw) S = np.zeros(self.nw) else: raise ValueError(f"Wave spectrum input '{case['wave_spectrum']}' not recognized.") rho = self.rho_water g = self.g #print(f"significant wave height: {4*np.sqrt(np.sum(S)*self.dw):5.2f} = {4*getRMS(self.zeta, self.dw):5.2f}") # << temporary <<< # TODO: consider current and viscous drift # ----- calculate potential-flow wave excitation force ----- self.F_BEM = self.X_BEM * self.zeta # wave excitation force (will be zero if HAMS wasn't run) # --------------------- get constant hydrodynamic values along each member ----------------------------- self.A_hydro_morison = np.zeros([6,6]) # hydrodynamic added mass matrix, from only Morison equation [kg, kg-m, kg-m^2] self.F_hydro_iner = np.zeros([6,self.nw],dtype=complex) # inertia excitation force/moment complex amplitudes vector [N, N-m] # loop through each member for mem in self.memberList: circ = mem.shape=='circular' # convenience boolian for circular vs. rectangular cross sections # print(mem.name) # loop through each node of the member for il in range(mem.ns): # print(il) # only process hydrodynamics if this node is submerged if mem.r[il,2] < 0: # print("underwater") # get wave kinematics spectra given a certain wave spectrum and location mem.u[il,:,:], mem.ud[il,:,:], mem.pDyn[il,:] = getWaveKin(self.zeta, self.beta, self.w, self.k, self.depth, mem.r[il,:], self.nw) # only compute inertial loads and added mass for members that aren't modeled with potential flow if mem.potMod==False: # interpolate coefficients for the current strip Ca_q = np.interp( mem.ls[il], mem.stations, mem.Ca_q ) Ca_p1 = np.interp( mem.ls[il], mem.stations, mem.Ca_p1 ) Ca_p2 = np.interp( mem.ls[il], mem.stations, mem.Ca_p2 ) Ca_End = np.interp( mem.ls[il], mem.stations, mem.Ca_End) # ----- compute side effects --------------------------------------------------------- if circ: v_i = 0.25*np.pi*mem.ds[il]**2*mem.dls[il] else: v_i = mem.ds[il,0]*mem.ds[il,1]*mem.dls[il] # member volume assigned to this node if mem.r[il,2] + 0.5*mem.dls[il] > 0: # if member extends out of water # <<< may want a better appraoch for this... v_i = v_i * (0.5*mem.dls[il] - mem.r[il,2]) / mem.dls[il] # scale volume by the portion that is under water # added mass Amat = rho*v_i *( Ca_q*mem.qMat + Ca_p1*mem.p1Mat + Ca_p2*mem.p2Mat ) # local added mass matrix # print(f"Member side added mass diagonals are {Amat[0,0]:6.2e} {Amat[1,1]:6.2e} {Amat[2,2]:6.2e}") self.A_hydro_morison += translateMatrix3to6DOF(Amat, mem.r[il,:]) # add to global added mass matrix for Morison members # inertial excitation - Froude-Krylov (axial term explicitly excluded here - we aren't dealing with chains) Imat = rho*v_i *( (1.+Ca_p1)*mem.p1Mat + (1.+Ca_p2)*mem.p2Mat ) # local inertial excitation matrix (note: the 1 is the Cp, dynamic pressure, term) #Imat = rho*v_i *( (1.+Ca_q)*mem.qMat + (1.+Ca_p1)*mem.p1Mat + (1.+Ca_p2)*mem.p2Mat ) # local inertial excitation matrix for i in range(self.nw): # for each wave frequency... mem.F_exc_iner[il,:,i] = np.matmul(Imat, mem.ud[il,:,i]) # add to global excitation vector (frequency dependent) self.F_hydro_iner[:,i] += translateForce3to6DOF(mem.F_exc_iner[il,:,i], mem.r[il,:]) # add to global excitation vector (frequency dependent) # ----- add axial/end effects for added mass, and excitation including dynamic pressure ------ # note : v_a and a_i work out to zero for non-tapered sections or non-end sections if circ: v_i = np.pi/12.0 * abs((mem.ds[il]+mem.drs[il])**3 - (mem.ds[il]-mem.drs[il])**3) # volume assigned to this end surface a_i = np.pi*mem.ds[il] * mem.drs[il] # signed end area (positive facing down) = mean diameter of strip * radius change of strip else: v_i = np.pi/12.0 * ((np.mean(mem.ds[il]+mem.drs[il]))**3 - (np.mean(mem.ds[il]-mem.drs[il]))**3) # so far just using sphere eqn and taking mean of side lengths as d a_i = (mem.ds[il,0]+mem.drs[il,0])*(mem.ds[il,1]+mem.drs[il,1]) - (mem.ds[il,0]-mem.drs[il,0])*(mem.ds[il,1]-mem.drs[il,1]) # >>> should support different coefficients or reference volumes for rectangular cross sections <<< # added mass AmatE = rho*v_i * Ca_End*mem.qMat # local added mass matrix # print(f"Member END added mass diagonals are {AmatE[0,0]:6.2e} {AmatE[1,1]:6.2e} {AmatE[2,2]:6.2e}") self.A_hydro_morison += translateMatrix3to6DOF(AmatE, mem.r[il,:]) # add to global added mass matrix for Morison members # inertial excitation ImatE = rho*v_i * Ca_End*mem.qMat # local inertial excitation matrix (note, there is no 1 added to Ca_End because dynamic pressure is handled separately) #ImatE = rho*v_i * (1+Ca_End)*mem.qMat # local inertial excitation matrix for i in range(self.nw): # for each wave frequency... #F_exc_iner_temp = np.matmul(ImatE, mem.ud[il,:,i]) # local inertial excitation force complex amplitude in x,y,z mem.F_exc_a[il,:,i] = np.matmul(ImatE, mem.ud[il,:,i]) # local inertial excitation force complex amplitude in x,y,z # >>> may want to add a separate dynamic pressure input <<< mem.F_exc_p[il,:,i] = mem.pDyn[il,i]*a_i *mem.q # add dynamic pressure - positive with q if end A - determined by sign of a_i #F_exc_iner_temp += mem.pDyn[il,i]*a_i *mem.q # add dynamic pressure - positive with q if end A - determined by sign of a_i F_exc_iner_temp = mem.F_exc_a[il,:,i] + mem.F_exc_p[il,:,i] mem.F_exc_iner[il,:,i] += F_exc_iner_temp # add to stored member force vector self.F_hydro_iner[:,i] += translateForce3to6DOF(F_exc_iner_temp, mem.r[il,:])
Python
def calcLinearizedTerms(self, Xi): '''The FOWT's dynamics solve iteration method. This calculates the amplitude-dependent linearized coefficients. Xi : complex array system response (just for this FOWT) - displacement and rotation complex amplitudes [m, rad] ''' rho = self.rho_water g = self.g # The linearized coefficients to be calculated B_hydro_drag = np.zeros([6,6]) # hydrodynamic damping matrix (just linearized viscous drag for now) [N-s/m, N-s, N-s-m] F_hydro_drag = np.zeros([6,self.nw],dtype=complex) # excitation force/moment complex amplitudes vector [N, N-m] # loop through each member for mem in self.memberList: circ = mem.shape=='circular' # convenience boolian for circular vs. rectangular cross sections # loop through each node of the member for il in range(mem.ns): # node displacement, velocity, and acceleration (each [3 x nw]) drnode, vnode, anode = getVelocity(mem.r[il,:], Xi, self.w) # get node complex velocity spectrum based on platform motion's and relative position from PRP # only process hydrodynamics if this node is submerged if mem.r[il,2] < 0: # interpolate coefficients for the current strip Cd_q = np.interp( mem.ls[il], mem.stations, mem.Cd_q ) Cd_p1 = np.interp( mem.ls[il], mem.stations, mem.Cd_p1 ) Cd_p2 = np.interp( mem.ls[il], mem.stations, mem.Cd_p2 ) Cd_End = np.interp( mem.ls[il], mem.stations, mem.Cd_End) # ----- compute side effects ------------------------ # member acting area assigned to this node in each direction a_i_q = np.pi*mem.ds[il]*mem.dls[il] if circ else 2*(mem.ds[il,0]+mem.ds[il,0])*mem.dls[il] a_i_p1 = mem.ds[il]*mem.dls[il] if circ else mem.ds[il,0] *mem.dls[il] a_i_p2 = mem.ds[il]*mem.dls[il] if circ else mem.ds[il,1] *mem.dls[il] # water relative velocity over node (complex amplitude spectrum) [3 x nw] vrel = mem.u[il,:] - vnode # break out velocity components in each direction relative to member orientation [nw] vrel_q = vrel*mem.q[ :,None] # (the ,None is for broadcasting q across all frequencies in vrel) vrel_p1 = vrel*mem.p1[:,None] vrel_p2 = vrel*mem.p2[:,None] # get RMS of relative velocity component magnitudes (real-valued) vRMS_q = getRMS(vrel_q , self.dw) vRMS_p1 = getRMS(vrel_p1, self.dw) vRMS_p2 = getRMS(vrel_p2, self.dw) #print(f" {vRMS_q:5.2f} {vRMS_p1:5.2f} {vRMS_p2:5.2f}") # linearized damping coefficients in each direction relative to member orientation [not explicitly frequency dependent...] (this goes into damping matrix) Bprime_q = np.sqrt(8/np.pi) * vRMS_q * 0.5*rho * a_i_q * Cd_q Bprime_p1 = np.sqrt(8/np.pi) * vRMS_p1 * 0.5*rho * a_i_p1 * Cd_p1 Bprime_p2 = np.sqrt(8/np.pi) * vRMS_p2 * 0.5*rho * a_i_p2 * Cd_p2 Bmat = Bprime_q*mem.qMat + Bprime_p1*mem.p1Mat + Bprime_p2*mem.p2Mat # damping matrix for the node based on linearized drag coefficients B_hydro_drag += translateMatrix3to6DOF(Bmat, mem.r[il,:]) # add to global damping matrix for Morison members for i in range(self.nw): mem.F_exc_drag[il,:,i] = np.matmul(Bmat, mem.u[il,:,i]) # get local 3d drag excitation force complex amplitude for each frequency [3 x nw] F_hydro_drag[:,i] += translateForce3to6DOF(mem.F_exc_drag[il,:,i], mem.r[il,:]) # add to global excitation vector (frequency dependent) # ----- add end/axial effects for added mass, and excitation including dynamic pressure ------ # note : v_a and a_i work out to zero for non-tapered sections or non-end sections # end/axial area (removing sign for use as drag) if circ: a_i = np.abs(np.pi*mem.ds[il]*mem.drs[il]) else: a_i = np.abs((mem.ds[il,0]+mem.drs[il,0])*(mem.ds[il,1]+mem.drs[il,1]) - (mem.ds[il,0]-mem.drs[il,0])*(mem.ds[il,1]-mem.drs[il,1])) Bprime_End = np.sqrt(8/np.pi)*vRMS_q*0.5*rho*a_i*Cd_End #print(f" {a_i:5.2f} {vRMS_q:5.2f} {Bprime_End:5.2f}") Bmat = Bprime_End*mem.qMat # B_hydro_drag += translateMatrix3to6DOF(Bmat, mem.r[il,:]) # add to global damping matrix for Morison members for i in range(self.nw): # for each wave frequency... F_exc_drag_temp = np.matmul(Bmat, mem.u[il,:,i]) # local drag excitation force complex amplitude in x,y,z mem.F_exc_drag[il,:,i] += F_exc_drag_temp # add to stored member force vector F_hydro_drag[:,i] += translateForce3to6DOF(F_exc_drag_temp, mem.r[il,:]) # add to global excitation vector (frequency dependent) # save the arrays internally in case there's ever a need for the FOWT to solve it's own latest dynamics self.B_hydro_drag = B_hydro_drag self.F_hydro_drag = F_hydro_drag # return the linearized coefficients return B_hydro_drag, F_hydro_drag
def calcLinearizedTerms(self, Xi): '''The FOWT's dynamics solve iteration method. This calculates the amplitude-dependent linearized coefficients. Xi : complex array system response (just for this FOWT) - displacement and rotation complex amplitudes [m, rad] ''' rho = self.rho_water g = self.g # The linearized coefficients to be calculated B_hydro_drag = np.zeros([6,6]) # hydrodynamic damping matrix (just linearized viscous drag for now) [N-s/m, N-s, N-s-m] F_hydro_drag = np.zeros([6,self.nw],dtype=complex) # excitation force/moment complex amplitudes vector [N, N-m] # loop through each member for mem in self.memberList: circ = mem.shape=='circular' # convenience boolian for circular vs. rectangular cross sections # loop through each node of the member for il in range(mem.ns): # node displacement, velocity, and acceleration (each [3 x nw]) drnode, vnode, anode = getVelocity(mem.r[il,:], Xi, self.w) # get node complex velocity spectrum based on platform motion's and relative position from PRP # only process hydrodynamics if this node is submerged if mem.r[il,2] < 0: # interpolate coefficients for the current strip Cd_q = np.interp( mem.ls[il], mem.stations, mem.Cd_q ) Cd_p1 = np.interp( mem.ls[il], mem.stations, mem.Cd_p1 ) Cd_p2 = np.interp( mem.ls[il], mem.stations, mem.Cd_p2 ) Cd_End = np.interp( mem.ls[il], mem.stations, mem.Cd_End) # ----- compute side effects ------------------------ # member acting area assigned to this node in each direction a_i_q = np.pi*mem.ds[il]*mem.dls[il] if circ else 2*(mem.ds[il,0]+mem.ds[il,0])*mem.dls[il] a_i_p1 = mem.ds[il]*mem.dls[il] if circ else mem.ds[il,0] *mem.dls[il] a_i_p2 = mem.ds[il]*mem.dls[il] if circ else mem.ds[il,1] *mem.dls[il] # water relative velocity over node (complex amplitude spectrum) [3 x nw] vrel = mem.u[il,:] - vnode # break out velocity components in each direction relative to member orientation [nw] vrel_q = vrel*mem.q[ :,None] # (the ,None is for broadcasting q across all frequencies in vrel) vrel_p1 = vrel*mem.p1[:,None] vrel_p2 = vrel*mem.p2[:,None] # get RMS of relative velocity component magnitudes (real-valued) vRMS_q = getRMS(vrel_q , self.dw) vRMS_p1 = getRMS(vrel_p1, self.dw) vRMS_p2 = getRMS(vrel_p2, self.dw) #print(f" {vRMS_q:5.2f} {vRMS_p1:5.2f} {vRMS_p2:5.2f}") # linearized damping coefficients in each direction relative to member orientation [not explicitly frequency dependent...] (this goes into damping matrix) Bprime_q = np.sqrt(8/np.pi) * vRMS_q * 0.5*rho * a_i_q * Cd_q Bprime_p1 = np.sqrt(8/np.pi) * vRMS_p1 * 0.5*rho * a_i_p1 * Cd_p1 Bprime_p2 = np.sqrt(8/np.pi) * vRMS_p2 * 0.5*rho * a_i_p2 * Cd_p2 Bmat = Bprime_q*mem.qMat + Bprime_p1*mem.p1Mat + Bprime_p2*mem.p2Mat # damping matrix for the node based on linearized drag coefficients B_hydro_drag += translateMatrix3to6DOF(Bmat, mem.r[il,:]) # add to global damping matrix for Morison members for i in range(self.nw): mem.F_exc_drag[il,:,i] = np.matmul(Bmat, mem.u[il,:,i]) # get local 3d drag excitation force complex amplitude for each frequency [3 x nw] F_hydro_drag[:,i] += translateForce3to6DOF(mem.F_exc_drag[il,:,i], mem.r[il,:]) # add to global excitation vector (frequency dependent) # ----- add end/axial effects for added mass, and excitation including dynamic pressure ------ # note : v_a and a_i work out to zero for non-tapered sections or non-end sections # end/axial area (removing sign for use as drag) if circ: a_i = np.abs(np.pi*mem.ds[il]*mem.drs[il]) else: a_i = np.abs((mem.ds[il,0]+mem.drs[il,0])*(mem.ds[il,1]+mem.drs[il,1]) - (mem.ds[il,0]-mem.drs[il,0])*(mem.ds[il,1]-mem.drs[il,1])) Bprime_End = np.sqrt(8/np.pi)*vRMS_q*0.5*rho*a_i*Cd_End #print(f" {a_i:5.2f} {vRMS_q:5.2f} {Bprime_End:5.2f}") Bmat = Bprime_End*mem.qMat # B_hydro_drag += translateMatrix3to6DOF(Bmat, mem.r[il,:]) # add to global damping matrix for Morison members for i in range(self.nw): # for each wave frequency... F_exc_drag_temp = np.matmul(Bmat, mem.u[il,:,i]) # local drag excitation force complex amplitude in x,y,z mem.F_exc_drag[il,:,i] += F_exc_drag_temp # add to stored member force vector F_hydro_drag[:,i] += translateForce3to6DOF(F_exc_drag_temp, mem.r[il,:]) # add to global excitation vector (frequency dependent) # save the arrays internally in case there's ever a need for the FOWT to solve it's own latest dynamics self.B_hydro_drag = B_hydro_drag self.F_hydro_drag = F_hydro_drag # return the linearized coefficients return B_hydro_drag, F_hydro_drag
Python
def is_valid_path(path: str) -> Path: """ Returns a Path object if a file or directory exists at the specified path. Raises exception otherwise. """ path = Path(path).resolve() if not path.exists(): raise FileNotFoundError(path, "is not a valid file or directory") return path
def is_valid_path(path: str) -> Path: """ Returns a Path object if a file or directory exists at the specified path. Raises exception otherwise. """ path = Path(path).resolve() if not path.exists(): raise FileNotFoundError(path, "is not a valid file or directory") return path
Python
def timestamp_zip(string: str) -> str: """ Adds the current date and a .zip ending to the given string. Example: > timestamp("foo") "foo-1997-09-14-1253.zip" """ timestamp = datetime.today().strftime("%Y-%m-%d-%H%M") return f"{string}-{timestamp}.zip"
def timestamp_zip(string: str) -> str: """ Adds the current date and a .zip ending to the given string. Example: > timestamp("foo") "foo-1997-09-14-1253.zip" """ timestamp = datetime.today().strftime("%Y-%m-%d-%H%M") return f"{string}-{timestamp}.zip"
Python
def backup_file(path: Path, save_dir: Path) -> None: """ Given the path to a file or directory, creates a zip backup to the given location. """ archive = zipfile.ZipFile(save_dir, "w", zipfile.ZIP_DEFLATED) restore_path = str(path.parent.absolute()) archive.writestr("restore_path.txt", restore_path) # handle files and directories; strip paths of files from names if path.is_file(): archive.write(path, str(path)[len(restore_path):]) else: for p in path.rglob("*"): archive.write(p, str(p)[len(restore_path):]) archive.close()
def backup_file(path: Path, save_dir: Path) -> None: """ Given the path to a file or directory, creates a zip backup to the given location. """ archive = zipfile.ZipFile(save_dir, "w", zipfile.ZIP_DEFLATED) restore_path = str(path.parent.absolute()) archive.writestr("restore_path.txt", restore_path) # handle files and directories; strip paths of files from names if path.is_file(): archive.write(path, str(path)[len(restore_path):]) else: for p in path.rglob("*"): archive.write(p, str(p)[len(restore_path):]) archive.close()
Python
def backup_files(paths: list, save_dir: Path) -> None: """ Given the list of file paths, creates zip backups to the given location. """ for f in paths: save_path = save_dir / timestamp_zip(f.name) backup_file(f, save_path)
def backup_files(paths: list, save_dir: Path) -> None: """ Given the list of file paths, creates zip backups to the given location. """ for f in paths: save_path = save_dir / timestamp_zip(f.name) backup_file(f, save_path)
Python
def restore_file(path: Path) -> None: """ Restores the file at the given path to its original location based on restore_path.txt. """ archive = zipfile.ZipFile(path, "r", zipfile.ZIP_DEFLATED) restore_path = str(archive.read("restore_path.txt"))[2:-1] for p in archive.namelist(): if p != "restore_path.txt": archive.extract(p, restore_path) archive.close()
def restore_file(path: Path) -> None: """ Restores the file at the given path to its original location based on restore_path.txt. """ archive = zipfile.ZipFile(path, "r", zipfile.ZIP_DEFLATED) restore_path = str(archive.read("restore_path.txt"))[2:-1] for p in archive.namelist(): if p != "restore_path.txt": archive.extract(p, restore_path) archive.close()
Python
def restore_files(paths: list) -> None: """ Restores the files at the given paths to their original locations based on restore_path.txt. """ if not paths: print("No files selected. Are you sure there are files at the given time?") for p in paths: restore_file(p)
def restore_files(paths: list) -> None: """ Restores the files at the given paths to their original locations based on restore_path.txt. """ if not paths: print("No files selected. Are you sure there are files at the given time?") for p in paths: restore_file(p)
Python
def is_valid_date(string: str) -> bool: """ Returns whether the date is valid or not. """ return re.compile(r"^(\d{4}|\d{4}-\d{2}|\d{4}-\d{2}-\d{2}|\d{4}-\d{2}-\d{2}-\d{2}|\d{4}-\d{2}-\d{2}-\d{4})$").match(string)
def is_valid_date(string: str) -> bool: """ Returns whether the date is valid or not. """ return re.compile(r"^(\d{4}|\d{4}-\d{2}|\d{4}-\d{2}-\d{2}|\d{4}-\d{2}-\d{2}-\d{2}|\d{4}-\d{2}-\d{2}-\d{4})$").match(string)
Python
def filter_by_date(date: str, save_dir: Path) -> list: """ Returns list of paths that match the given date range, only including the latest entries per file. """ # remove ambiguity between year and time; I assure you, dear reader, this was the lesser evil if len(date) == 4: date += "-" # iterate through all files which match the date requirement # since alphabetical happens to be chronological when list is sorted, grab the last backup from each file filtered_paths = [] last = None for curr in sorted([p for p in save_dir.glob("*") if date in str(p.stem)[-15:]]): if last and str(last.stem)[:-15] != str(curr.stem)[:-15]: filtered_paths.append(last) last = curr if last: filtered_paths.append(last) return filtered_paths
def filter_by_date(date: str, save_dir: Path) -> list: """ Returns list of paths that match the given date range, only including the latest entries per file. """ # remove ambiguity between year and time; I assure you, dear reader, this was the lesser evil if len(date) == 4: date += "-" # iterate through all files which match the date requirement # since alphabetical happens to be chronological when list is sorted, grab the last backup from each file filtered_paths = [] last = None for curr in sorted([p for p in save_dir.glob("*") if date in str(p.stem)[-15:]]): if last and str(last.stem)[:-15] != str(curr.stem)[:-15]: filtered_paths.append(last) last = curr if last: filtered_paths.append(last) return filtered_paths
Python
def find_world_zips(paths: list) -> list: """ Returns input list with only world zips """ world_zips = [] world_checker = re.compile(r"^[^\/]+/level.dat$") for p in paths: archive = zipfile.ZipFile(p, "r", zipfile.ZIP_DEFLATED) for z in archive.namelist(): if world_checker.match(z): world_zips.append(p) break archive.close() return world_zips
def find_world_zips(paths: list) -> list: """ Returns input list with only world zips """ world_zips = [] world_checker = re.compile(r"^[^\/]+/level.dat$") for p in paths: archive = zipfile.ZipFile(p, "r", zipfile.ZIP_DEFLATED) for z in archive.namelist(): if world_checker.match(z): world_zips.append(p) break archive.close() return world_zips
Python
def find_setting_zips(paths: list) -> list: """ Returns input list with only setting zips """ return list(set(paths) - set(find_world_zips(paths)))
def find_setting_zips(paths: list) -> list: """ Returns input list with only setting zips """ return list(set(paths) - set(find_world_zips(paths)))
Python
def create_folder(self, name, parent_folder_id=0): """Create a folder If the folder exists, a BoxError will be raised. Args: folder_id (int): Name of the folder. parent_folder_id (int): ID of the folder where to create the new one. Returns: dict. Response from Box. Raises: BoxError: An error response is returned from Box (status_code >= 400). BoxHttpResponseError: Response from Box is malformed. requests.exceptions.*: Any connection related problem. """ return self.__request("POST", "folders", data={ "name": name, "parent": {"id": str(parent_folder_id)} })
def create_folder(self, name, parent_folder_id=0): """Create a folder If the folder exists, a BoxError will be raised. Args: folder_id (int): Name of the folder. parent_folder_id (int): ID of the folder where to create the new one. Returns: dict. Response from Box. Raises: BoxError: An error response is returned from Box (status_code >= 400). BoxHttpResponseError: Response from Box is malformed. requests.exceptions.*: Any connection related problem. """ return self.__request("POST", "folders", data={ "name": name, "parent": {"id": str(parent_folder_id)} })
Python
def obj_ref(obj): """Returns a tuple identifying a category/event/contrib/subcontrib""" from indico_livesync.models.queue import EntryType if isinstance(obj, Category): ref = {'type': EntryType.category, 'category_id': obj.id} elif isinstance(obj, Event): ref = {'type': EntryType.event, 'event_id': obj.id} elif isinstance(obj, Session): ref = {'type': EntryType.session, 'session_id': obj.id} elif isinstance(obj, Contribution): ref = {'type': EntryType.contribution, 'contrib_id': obj.id} elif isinstance(obj, SubContribution): ref = {'type': EntryType.subcontribution, 'subcontrib_id': obj.id} else: raise ValueError('Unexpected object: {}'.format(obj.__class__.__name__)) return ImmutableDict(ref)
def obj_ref(obj): """Returns a tuple identifying a category/event/contrib/subcontrib""" from indico_livesync.models.queue import EntryType if isinstance(obj, Category): ref = {'type': EntryType.category, 'category_id': obj.id} elif isinstance(obj, Event): ref = {'type': EntryType.event, 'event_id': obj.id} elif isinstance(obj, Session): ref = {'type': EntryType.session, 'session_id': obj.id} elif isinstance(obj, Contribution): ref = {'type': EntryType.contribution, 'contrib_id': obj.id} elif isinstance(obj, SubContribution): ref = {'type': EntryType.subcontribution, 'subcontrib_id': obj.id} else: raise ValueError('Unexpected object: {}'.format(obj.__class__.__name__)) return ImmutableDict(ref)
Python
def obj_deref(ref): """Returns the object identified by `ref`""" from indico_livesync.models.queue import EntryType if ref['type'] == EntryType.category: return Category.get_or_404(ref['category_id']) elif ref['type'] == EntryType.event: return Event.get_or_404(ref['event_id']) elif ref['type'] == EntryType.session: return Session.get_or_404(ref['session_id']) elif ref['type'] == EntryType.contribution: return Contribution.get_or_404(ref['contrib_id']) elif ref['type'] == EntryType.subcontribution: return SubContribution.get_or_404(ref['subcontrib_id']) else: raise ValueError('Unexpected object type: {}'.format(ref['type']))
def obj_deref(ref): """Returns the object identified by `ref`""" from indico_livesync.models.queue import EntryType if ref['type'] == EntryType.category: return Category.get_or_404(ref['category_id']) elif ref['type'] == EntryType.event: return Event.get_or_404(ref['event_id']) elif ref['type'] == EntryType.session: return Session.get_or_404(ref['session_id']) elif ref['type'] == EntryType.contribution: return Contribution.get_or_404(ref['contrib_id']) elif ref['type'] == EntryType.subcontribution: return SubContribution.get_or_404(ref['subcontrib_id']) else: raise ValueError('Unexpected object type: {}'.format(ref['type']))
Python
def clean_old_entries(): """Deletes obsolete entries from the queues""" from indico_livesync.plugin import LiveSyncPlugin from indico_livesync.models.queue import LiveSyncQueueEntry queue_entry_ttl = LiveSyncPlugin.settings.get('queue_entry_ttl') if not queue_entry_ttl: return expire_threshold = now_utc() - timedelta(days=queue_entry_ttl) LiveSyncQueueEntry.find(LiveSyncQueueEntry.processed, LiveSyncQueueEntry.timestamp < expire_threshold).delete(synchronize_session='fetch')
def clean_old_entries(): """Deletes obsolete entries from the queues""" from indico_livesync.plugin import LiveSyncPlugin from indico_livesync.models.queue import LiveSyncQueueEntry queue_entry_ttl = LiveSyncPlugin.settings.get('queue_entry_ttl') if not queue_entry_ttl: return expire_threshold = now_utc() - timedelta(days=queue_entry_ttl) LiveSyncQueueEntry.find(LiveSyncQueueEntry.processed, LiveSyncQueueEntry.timestamp < expire_threshold).delete(synchronize_session='fetch')
Python
def compound_id(obj): """Generate a hierarchical compound ID, separated by dots.""" if isinstance(obj, (Category, Session)): raise TypeError('Compound IDs are not supported for this entry type') elif isinstance(obj, Event): return unicode(obj.id) elif isinstance(obj, Contribution): return '{}.{}'.format(obj.event_id, obj.id) elif isinstance(obj, SubContribution): return '{}.{}.{}'.format(obj.contribution.event_id, obj.contribution_id, obj.id)
def compound_id(obj): """Generate a hierarchical compound ID, separated by dots.""" if isinstance(obj, (Category, Session)): raise TypeError('Compound IDs are not supported for this entry type') elif isinstance(obj, Event): return unicode(obj.id) elif isinstance(obj, Contribution): return '{}.{}'.format(obj.event_id, obj.id) elif isinstance(obj, SubContribution): return '{}.{}.{}'.format(obj.contribution.event_id, obj.contribution_id, obj.id)
Python
def distance(point_x, point_y): ''' To caculate the distance between point_x and point_y ''' x2 = (point_x.x-point_y.x)**2 y2 = (point_x.y-point_y.y)**2 z2 = (point_x.z-point_y.z)**2 return math.sqrt(x2+y2+z2)
def distance(point_x, point_y): ''' To caculate the distance between point_x and point_y ''' x2 = (point_x.x-point_y.x)**2 y2 = (point_x.y-point_y.y)**2 z2 = (point_x.z-point_y.z)**2 return math.sqrt(x2+y2+z2)
Python
def unit(point_z): ''' To caculate the unit vector of point_z ''' # print (point_z) magnitude = math.sqrt(point_z.x**2 + point_z.y**2 + point_z.z**2) if magnitude: point_z.x = point_z.x/magnitude point_z.y = point_z.y/magnitude point_z.z = point_z.z/magnitude return point_z,magnitude else: return point_z,magnitude
def unit(point_z): ''' To caculate the unit vector of point_z ''' # print (point_z) magnitude = math.sqrt(point_z.x**2 + point_z.y**2 + point_z.z**2) if magnitude: point_z.x = point_z.x/magnitude point_z.y = point_z.y/magnitude point_z.z = point_z.z/magnitude return point_z,magnitude else: return point_z,magnitude
Python
def check_distance(r,point_x,point_y,check_T_points=0): ''' return the distance between point_x and point_y ''' distance = math.sqrt((point_x.x-point_y.x)**2+(point_x.y-point_y.y)**2+(point_x.z-point_y.z)**2) #print (distance)# 52.076992648 52.0769926525 if distance >= (r-0.001): if check_T_points: if distance < 52.1 and (point_y.index-1)//2 != point_x.index: global T_points_file T_points_file.write(str(point_y)+"\n") T_points_file.write(str(point_x)+"\n") global T_y_points_array T_y_points_array.append(point_y) global T_x_points_array T_x_points_array.append(point_x) global T_points_count T_points_count += 1 else: return True else: return False
def check_distance(r,point_x,point_y,check_T_points=0): ''' return the distance between point_x and point_y ''' distance = math.sqrt((point_x.x-point_y.x)**2+(point_x.y-point_y.y)**2+(point_x.z-point_y.z)**2) #print (distance)# 52.076992648 52.0769926525 if distance >= (r-0.001): if check_T_points: if distance < 52.1 and (point_y.index-1)//2 != point_x.index: global T_points_file T_points_file.write(str(point_y)+"\n") T_points_file.write(str(point_x)+"\n") global T_y_points_array T_y_points_array.append(point_y) global T_x_points_array T_x_points_array.append(point_x) global T_points_count T_points_count += 1 else: return True else: return False
Python
def check_overlap(r,point_x,point_y): ''' Check the distance between two center of trimer is less than the r prime. r prime = 71.4 ''' distance = math.sqrt((point_x.x-point_y.x)**2+(point_x.y-point_y.y)**2+(point_x.z-point_y.z)**2) if distance <= 71.4: return 1 else: return 0
def check_overlap(r,point_x,point_y): ''' Check the distance between two center of trimer is less than the r prime. r prime = 71.4 ''' distance = math.sqrt((point_x.x-point_y.x)**2+(point_x.y-point_y.y)**2+(point_x.z-point_y.z)**2) if distance <= 71.4: return 1 else: return 0
Python
def check_everydistance(r,point_x,K_keepers): ''' check the distances between each points in K_keepers and point_x ''' for i in K_keepers: if not check_distance(r,i,point_x): return False for i in K_keepers: check_distance(r,i, point_x, check_T_points=1) count = 0 for i in K_keepers: count += check_overlap(r,i, point_x) if count != 1: return False return True
def check_everydistance(r,point_x,K_keepers): ''' check the distances between each points in K_keepers and point_x ''' for i in K_keepers: if not check_distance(r,i,point_x): return False for i in K_keepers: check_distance(r,i, point_x, check_T_points=1) count = 0 for i in K_keepers: count += check_overlap(r,i, point_x) if count != 1: return False return True
Python
def plot_eigs(eigs, **kwargs): """ Plot the provided eigenvalues (of the dynamics operator A). Args: eigs (:obj:`ndarray` of complex): **kwargs: kwargs of matplotlib.pyplot.subplots Returns: (tuple): Tuple containing: fig: figure object ax: axes object """ xlim = kwargs.pop('xlim', [-1.1, 1.1]) ylim = kwargs.pop('xlim', [-1.1, 1.1]) fig, ax = plt.subplots(1, **kwargs) ax.set_aspect('equal'), ax.set_xlim(xlim), ax.set_ylim(ylim) ax.scatter(eigs.real, eigs.imag) ax.add_artist(plt.Circle((0, 0), 1, color='k', linestyle='--', fill=False)) return fig, ax
def plot_eigs(eigs, **kwargs): """ Plot the provided eigenvalues (of the dynamics operator A). Args: eigs (:obj:`ndarray` of complex): **kwargs: kwargs of matplotlib.pyplot.subplots Returns: (tuple): Tuple containing: fig: figure object ax: axes object """ xlim = kwargs.pop('xlim', [-1.1, 1.1]) ylim = kwargs.pop('xlim', [-1.1, 1.1]) fig, ax = plt.subplots(1, **kwargs) ax.set_aspect('equal'), ax.set_xlim(xlim), ax.set_ylim(ylim) ax.scatter(eigs.real, eigs.imag) ax.add_artist(plt.Circle((0, 0), 1, color='k', linestyle='--', fill=False)) return fig, ax
Python
def delay_embed(X, shift): """Delay-embed the matrix X with measurements from future times. Args: X (:obj:`ndarray` of float): Data matrix with columns storing states at sequential time measurements. shift (int): Number of future times copies to augment to the current time state. Returns: (:obj:`ndarray` of float): The function maps (d, t) to (shift+1, d, t-shft) which is then stacked into ((shift+1)*d, t-shift). """ if X.ndim != 2: raise ValueError('In delay_embed, invalid X matrix shape of ' + str(X.shape)) _, T = X.shape return np.vstack([X[:, i:(T - shift) + i] for i in range(shift + 1)])
def delay_embed(X, shift): """Delay-embed the matrix X with measurements from future times. Args: X (:obj:`ndarray` of float): Data matrix with columns storing states at sequential time measurements. shift (int): Number of future times copies to augment to the current time state. Returns: (:obj:`ndarray` of float): The function maps (d, t) to (shift+1, d, t-shft) which is then stacked into ((shift+1)*d, t-shift). """ if X.ndim != 2: raise ValueError('In delay_embed, invalid X matrix shape of ' + str(X.shape)) _, T = X.shape return np.vstack([X[:, i:(T - shift) + i] for i in range(shift + 1)])
Python
def dst_from_cts(cA, cB, dt): """ Convert constant continuous state space matrices to discrete matrices with time step dt using: exp(dt*[[cA, cB], = [[dA, dB], [0, 0 ]]) [0, 1 ]] Require cA in R^(na x na) and cB in R^(na x nb). The zero and identity components make the matrix square. Args: cA (:obj:`ndarray` of float): Continuous A. cB (:obj:`ndarray` of float): Continuous B. dt (float): Time step. Returns: (tuple): tuple containing: (:obj:`ndarray` of float): discrete A. (:obj:`ndarray` of float): discrete B. """ na, _ = cA.shape _, nb = cB.shape cM = np.block([[cA, cB], [np.zeros([nb, na]), np.zeros([nb, nb])]]) dM = expm(cM * dt) return dM[:na, :na], dM[:na, na:]
def dst_from_cts(cA, cB, dt): """ Convert constant continuous state space matrices to discrete matrices with time step dt using: exp(dt*[[cA, cB], = [[dA, dB], [0, 0 ]]) [0, 1 ]] Require cA in R^(na x na) and cB in R^(na x nb). The zero and identity components make the matrix square. Args: cA (:obj:`ndarray` of float): Continuous A. cB (:obj:`ndarray` of float): Continuous B. dt (float): Time step. Returns: (tuple): tuple containing: (:obj:`ndarray` of float): discrete A. (:obj:`ndarray` of float): discrete B. """ na, _ = cA.shape _, nb = cB.shape cM = np.block([[cA, cB], [np.zeros([nb, na]), np.zeros([nb, nb])]]) dM = expm(cM * dt) return dM[:na, :na], dM[:na, na:]
Python
def cts_from_dst(dA, dB, dt): """ Convert discrete state space matrices with time step dt to continuous matrices by inverting exp(dt*[[cA, cB], = [[dA, dB], [0, 0 ]]) [0, 1 ]] Require dA in R^(na x na) and dB in R^(na x nb). The zero and identity components make the matrix square. Args: dA (:obj:`ndarray` of float): discrete A. dB (:obj:`ndarray` of float): discrete B. dt (float): Time step. Returns: (tuple): tuple containing: (:obj:`ndarray` of float): Continuous A. (:obj:`ndarray` of float): Continuous B. """ na, _ = dA.shape _, nb = dB.shape dM = np.block([[dA, dB], [np.zeros([nb, na]), np.identity(nb)]]) cM = logm(dM)/dt return cM[:na, :na], cM[:na, na:]
def cts_from_dst(dA, dB, dt): """ Convert discrete state space matrices with time step dt to continuous matrices by inverting exp(dt*[[cA, cB], = [[dA, dB], [0, 0 ]]) [0, 1 ]] Require dA in R^(na x na) and dB in R^(na x nb). The zero and identity components make the matrix square. Args: dA (:obj:`ndarray` of float): discrete A. dB (:obj:`ndarray` of float): discrete B. dt (float): Time step. Returns: (tuple): tuple containing: (:obj:`ndarray` of float): Continuous A. (:obj:`ndarray` of float): Continuous B. """ na, _ = dA.shape _, nb = dB.shape dM = np.block([[dA, dB], [np.zeros([nb, na]), np.identity(nb)]]) cM = logm(dM)/dt return cM[:na, :na], cM[:na, na:]
Python
def time_spectrum(self, ts, system='discrete'): """Returns a continuous approximation to the time dynamics of A. Note that A_dst = e^(A_cts dt). Suppose (operator, eigs) pairs are denoted (A_dst, Y) for the discrete case and (A_cts, Omega) for the continuous case. The eigenvalue correspondence is e^log(Y)/dt = Omega. Args: ts (:obj:`ndarray` of float): Times. system ({'continuous', 'discrete'}): default 'discrete'. Returns: :obj:`ndarray` of float: Evaluations of modes at ts. """ if np.isscalar(ts): # Cast eigs to complex numbers for logarithm if system == 'discrete': omega = np.log(self.eigs + 0j) / self.dt elif system == 'continuous': omega = self.eigs + 0j else: raise ValueError('In time_spectrum, invalid system value.') return np.exp(omega * (ts - self.t0)) else: return np.array([self.time_spectrum(it, system=system) for it in ts]).T
def time_spectrum(self, ts, system='discrete'): """Returns a continuous approximation to the time dynamics of A. Note that A_dst = e^(A_cts dt). Suppose (operator, eigs) pairs are denoted (A_dst, Y) for the discrete case and (A_cts, Omega) for the continuous case. The eigenvalue correspondence is e^log(Y)/dt = Omega. Args: ts (:obj:`ndarray` of float): Times. system ({'continuous', 'discrete'}): default 'discrete'. Returns: :obj:`ndarray` of float: Evaluations of modes at ts. """ if np.isscalar(ts): # Cast eigs to complex numbers for logarithm if system == 'discrete': omega = np.log(self.eigs + 0j) / self.dt elif system == 'continuous': omega = self.eigs + 0j else: raise ValueError('In time_spectrum, invalid system value.') return np.exp(omega * (ts - self.t0)) else: return np.array([self.time_spectrum(it, system=system) for it in ts]).T
Python
def predict_dst(self, ts=None, x0=None): """Predict the future state using continuous approximation to the discrete A. Args: ts (:obj:`ndarray` of float): Array of time-steps to predict. default self.orig_timesteps. x0 (:obj:`ndarray` of float): The initial value. default self.x0. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ x0 = self.X1[:, 0] if x0 is None else x0 ts = self.orig_timesteps if ts is None else ts return self._predict(ts, x0, 'discrete')
def predict_dst(self, ts=None, x0=None): """Predict the future state using continuous approximation to the discrete A. Args: ts (:obj:`ndarray` of float): Array of time-steps to predict. default self.orig_timesteps. x0 (:obj:`ndarray` of float): The initial value. default self.x0. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ x0 = self.X1[:, 0] if x0 is None else x0 ts = self.orig_timesteps if ts is None else ts return self._predict(ts, x0, 'discrete')
Python
def predict_cts(self, ts=None, x0=None): """Predict the future state using the continuous operator A. Args: ts (:obj:`ndarray` of float): Array of time-steps to predict. default self.orig_timesteps. x0 (:obj:`ndarray` of float): The initial value. default self.x0. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ x0 = self.X1[:, 0] if x0 is None else x0 ts = self.orig_timesteps if ts is None else ts return self._predict(ts, x0, 'continuous')
def predict_cts(self, ts=None, x0=None): """Predict the future state using the continuous operator A. Args: ts (:obj:`ndarray` of float): Array of time-steps to predict. default self.orig_timesteps. x0 (:obj:`ndarray` of float): The initial value. default self.x0. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ x0 = self.X1[:, 0] if x0 is None else x0 ts = self.orig_timesteps if ts is None else ts return self._predict(ts, x0, 'continuous')
Python
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution X_2 = A X_1 + B u_1. Default behavior (control=None) is to use the original control. (If the underlying A is desired, format zeros_like u that runs for the desired time.) Args: control (:obj:`ndarray` of float): The control signal. x0 (:obj:`ndarray` of float): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ U = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 res = [xt] for ut in U[:, :-1].T: xt_1 = self.A @ xt + self.B @ ut xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution X_2 = A X_1 + B u_1. Default behavior (control=None) is to use the original control. (If the underlying A is desired, format zeros_like u that runs for the desired time.) Args: control (:obj:`ndarray` of float): The control signal. x0 (:obj:`ndarray` of float): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ U = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 res = [xt] for ut in U[:, :-1].T: xt_1 = self.A @ xt + self.B @ ut xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, X_dot = A X + B u x(t+dt) = e^{dt A}(x(t) + dt B u(t)) Default behavior (control=None) is to use the original control. (If the underlying A is desired, format zeros_like u that runs for the desired time.) Be sure that dt matches the train dt if using delay embeddings. Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ U = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 res = [xt] for ut in U[:, :-1].T: xt_1 = expm(dt * self.A) @ (xt + dt * self.B @ ut) xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, X_dot = A X + B u x(t+dt) = e^{dt A}(x(t) + dt B u(t)) Default behavior (control=None) is to use the original control. (If the underlying A is desired, format zeros_like u that runs for the desired time.) Be sure that dt matches the train dt if using delay embeddings. Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ U = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 res = [xt] for ut in U[:, :-1].T: xt_1 = expm(dt * self.A) @ (xt + dt * self.B @ ut) xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution: x_1 = A x_0 + B (u.x_0) = [A B] [x_0, u.x_0]^T Args: control (:obj:`ndarray` of float): The control signal. x0 (): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 # Flat array res = [xt] for t in range(control.shape[1] - 1): # Outer product then flatten to correctly combine the different # times present due to time-delays. That is, make sure that # u(t)'s multiply x(t)'s # _ct => (time-delays + 1) x (number of controls) # _xt => (time-delays + 1) x (measured dimensions) # _ups_t => (time-delays + 1) x (controls) x (measurements) # Flatten to get the desired vector. _ct = control[:, t].reshape(self.shift + 1, -1) _xt = xt.reshape(self.shift + 1, -1) ups_t = np.einsum('sc,sm->scm', _ct, _xt).flatten() xt_1 = self.A @ xt + self.B @ ups_t xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution: x_1 = A x_0 + B (u.x_0) = [A B] [x_0, u.x_0]^T Args: control (:obj:`ndarray` of float): The control signal. x0 (): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 # Flat array res = [xt] for t in range(control.shape[1] - 1): # Outer product then flatten to correctly combine the different # times present due to time-delays. That is, make sure that # u(t)'s multiply x(t)'s # _ct => (time-delays + 1) x (number of controls) # _xt => (time-delays + 1) x (measured dimensions) # _ups_t => (time-delays + 1) x (controls) x (measurements) # Flatten to get the desired vector. _ct = control[:, t].reshape(self.shift + 1, -1) _xt = xt.reshape(self.shift + 1, -1) ups_t = np.einsum('sc,sm->scm', _ct, _xt).flatten() xt_1 = self.A @ xt + self.B @ ups_t xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, x_{t+1} = e^{A dt + u B dt } x_t Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 # Flat array # store useful dimensions delay_dim = self.shift + 1 control_dim = self.U.shape[0] // delay_dim measure_1_dim = self.X1.shape[0] // delay_dim to_dim = self.X2.shape[0] res = [xt] for t in range(control.shape[1] - 1): # Correctly combine u(t) and B(t) # Initial: # B <= (time-delays+1 x measurements_2) x (time-delays+1 x controls x measurements_1) # Reshape: # B => (time-delays+1 x measurements_2) x (time-delays+1) x (controls) x (measurements_1) # _ct => (time-delays+1) x (controls) # _uBt => (time-delays+1 x measurements_2) x (time-delays+1) x (measurements_1) # => (time-delays+1 x measurements_2) x (time-delays+1 x measurements_1) # Notice that _uBt is formed by a sum over all controls in order to act on the # state xt which has dimensions of (delays x measurements_1). _uBt = np.einsum('ascm,sc->asm', self.B.reshape(to_dim, delay_dim, control_dim, measure_1_dim), control[:, t].reshape(delay_dim, control_dim) ).reshape(to_dim, delay_dim * measure_1_dim) xt_1 = expm((self.A + _uBt) * dt) @ xt xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, x_{t+1} = e^{A dt + u B dt } x_t Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 # Flat array # store useful dimensions delay_dim = self.shift + 1 control_dim = self.U.shape[0] // delay_dim measure_1_dim = self.X1.shape[0] // delay_dim to_dim = self.X2.shape[0] res = [xt] for t in range(control.shape[1] - 1): # Correctly combine u(t) and B(t) # Initial: # B <= (time-delays+1 x measurements_2) x (time-delays+1 x controls x measurements_1) # Reshape: # B => (time-delays+1 x measurements_2) x (time-delays+1) x (controls) x (measurements_1) # _ct => (time-delays+1) x (controls) # _uBt => (time-delays+1 x measurements_2) x (time-delays+1) x (measurements_1) # => (time-delays+1 x measurements_2) x (time-delays+1 x measurements_1) # Notice that _uBt is formed by a sum over all controls in order to act on the # state xt which has dimensions of (delays x measurements_1). _uBt = np.einsum('ascm,sc->asm', self.B.reshape(to_dim, delay_dim, control_dim, measure_1_dim), control[:, t].reshape(delay_dim, control_dim) ).reshape(to_dim, delay_dim * measure_1_dim) xt_1 = expm((self.A + _uBt) * dt) @ xt xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution, x_1 = A x_0 + B (u*x_0) + D u = [A B D] [x_0, u*x_0, u ]^T Args: control (:obj:`ndarray` of float): The control signal. x0 (): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 # Flat array res = [xt] for t in range(control.shape[1] - 1): # Outer product then flatten to correctly combine the different # times present due to time-delays. That is, make sure that # u(t)'s multiply x(t)'s # _ct => (time-delays + 1) x (number of controls) # _xt => (time-delays + 1) x (measured dimensions) # _ups_t => (time-delays + 1) x (controls) x (measurements) # Flatten to get the desired vector. _ct = control[:, t].reshape(self.shift + 1, -1) _xt = xt.reshape(self.shift + 1, -1) ups_t = np.einsum('sc,sm->scm', _ct, _xt).flatten() xt_1 = self.A @ xt + self.B @ ups_t + self.D @ control[:, t] xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_dst(self, control=None, x0=None): """ Predict the future state using discrete evolution. Evolve the system from X0 as long as control is available, using the discrete evolution, x_1 = A x_0 + B (u*x_0) + D u = [A B D] [x_0, u*x_0, u ]^T Args: control (:obj:`ndarray` of float): The control signal. x0 (): The initial value. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control xt = self.X1[:, 0] if x0 is None else x0 # Flat array res = [xt] for t in range(control.shape[1] - 1): # Outer product then flatten to correctly combine the different # times present due to time-delays. That is, make sure that # u(t)'s multiply x(t)'s # _ct => (time-delays + 1) x (number of controls) # _xt => (time-delays + 1) x (measured dimensions) # _ups_t => (time-delays + 1) x (controls) x (measurements) # Flatten to get the desired vector. _ct = control[:, t].reshape(self.shift + 1, -1) _xt = xt.reshape(self.shift + 1, -1) ups_t = np.einsum('sc,sm->scm', _ct, _xt).flatten() xt_1 = self.A @ xt + self.B @ ups_t + self.D @ control[:, t] xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, x_{t+1} = e^{A dt + u B dt } (x_t + dt * D u_t} Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 # Flat array # store useful dimensions delay_dim = self.shift + 1 control_dim = self.U.shape[0] // delay_dim measure_1_dim = self.X1.shape[0] // delay_dim to_dim = self.X2.shape[0] res = [xt] for t in range(control.shape[1] - 1): # Correctly combine u(t) and B(t) # Initial: # B <= (time-delays+1 x measurements_2) x (time-delays+1 x controls x measurements_1) # Reshape: # B => (time-delays+1 x measurements_2) x (time-delays+1) x (controls) x (measurements_1) # _ct => (time-delays+1) x (controls) # _uBt => (time-delays+1 x measurements_2) x (time-delays+1) x (measurements_1) # => (time-delays+1 x measurements_2) x (time-delays+1 x measurements_1) # Notice that _uBt is formed by a sum over all controls in order to act on the # state xt which has dimensions of (delays x measurements_1). _uBt = np.einsum('ascm,sc->asm', self.B.reshape(to_dim, delay_dim, control_dim, measure_1_dim), control[:, t].reshape(delay_dim, control_dim) ).reshape(to_dim, delay_dim * measure_1_dim) xt_1 = expm(dt * (self.A + _uBt)) @ (xt + dt * self.D @ control[:, t]) xt = xt_1 res.append(xt_1) return np.array(res).T
def predict_cts(self, control=None, x0=None, dt=None): """ Predict the future state using continuous evolution. Evolve the system from X0 as long as control is available, using the continuous evolution while u is constant, x_{t+1} = e^{A dt + u B dt } (x_t + dt * D u_t} Args: control (:obj:`ndarray` of float): The control signal. A zero-order hold is assumed between time steps. The dt must match the training data if time-delays are used. x0 (:obj:`ndarray` of float): The initial value. dt (float): The time-step between control inputs. Returns: :obj:`ndarray` of float: Predicted state for each control input. """ control = self.U if control is None else control dt = self.dt if dt is None else dt xt = self.X1[:, 0] if x0 is None else x0 # Flat array # store useful dimensions delay_dim = self.shift + 1 control_dim = self.U.shape[0] // delay_dim measure_1_dim = self.X1.shape[0] // delay_dim to_dim = self.X2.shape[0] res = [xt] for t in range(control.shape[1] - 1): # Correctly combine u(t) and B(t) # Initial: # B <= (time-delays+1 x measurements_2) x (time-delays+1 x controls x measurements_1) # Reshape: # B => (time-delays+1 x measurements_2) x (time-delays+1) x (controls) x (measurements_1) # _ct => (time-delays+1) x (controls) # _uBt => (time-delays+1 x measurements_2) x (time-delays+1) x (measurements_1) # => (time-delays+1 x measurements_2) x (time-delays+1 x measurements_1) # Notice that _uBt is formed by a sum over all controls in order to act on the # state xt which has dimensions of (delays x measurements_1). _uBt = np.einsum('ascm,sc->asm', self.B.reshape(to_dim, delay_dim, control_dim, measure_1_dim), control[:, t].reshape(delay_dim, control_dim) ).reshape(to_dim, delay_dim * measure_1_dim) xt_1 = expm(dt * (self.A + _uBt)) @ (xt + dt * self.D @ control[:, t]) xt = xt_1 res.append(xt_1) return np.array(res).T
Python
def evaluate_network_multiple(self,inputs): ''' Evaluate network using multiple sets of inputs Args: inputs (numpy array of floats): Array of network inputs to be evaluated. Returns: (numpy array of floats): Network outputs for each set of inputs ''' numLayers = self.numLayers inputSize = self.inputSize outputSize = self.outputSize biases = self.biases weights = self.weights inputs = np.array(inputs).T # Prepare the inputs to the neural network numInputs = inputs.shape[1] inputsNorm = np.zeros((inputSize,numInputs)) for i in range(inputSize): for j in range(numInputs): if inputs[i,j]<self.mins[i]: inputsNorm[i,j] = (self.mins[i]-self.means[i])/self.ranges[i] elif inputs[i,j] > self.maxes[i]: inputsNorm[i,j] = (self.maxes[i]-self.means[i])/self.ranges[i] else: inputsNorm[i,j] = (inputs[i,j]-self.means[i])/self.ranges[i] # Evaluate the neural network for layer in range(numLayers-1): inputsNorm = np.maximum(np.dot(weights[layer],inputsNorm)+biases[layer].reshape((len(biases[layer]),1)),0) outputs = np.dot(weights[-1],inputsNorm)+biases[-1].reshape((len(biases[-1]),1)) # Undo output normalization for i in range(outputSize): for j in range(numInputs): outputs[i,j] = outputs[i,j]*self.ranges[-1]+self.means[-1] return outputs.T
def evaluate_network_multiple(self,inputs): ''' Evaluate network using multiple sets of inputs Args: inputs (numpy array of floats): Array of network inputs to be evaluated. Returns: (numpy array of floats): Network outputs for each set of inputs ''' numLayers = self.numLayers inputSize = self.inputSize outputSize = self.outputSize biases = self.biases weights = self.weights inputs = np.array(inputs).T # Prepare the inputs to the neural network numInputs = inputs.shape[1] inputsNorm = np.zeros((inputSize,numInputs)) for i in range(inputSize): for j in range(numInputs): if inputs[i,j]<self.mins[i]: inputsNorm[i,j] = (self.mins[i]-self.means[i])/self.ranges[i] elif inputs[i,j] > self.maxes[i]: inputsNorm[i,j] = (self.maxes[i]-self.means[i])/self.ranges[i] else: inputsNorm[i,j] = (inputs[i,j]-self.means[i])/self.ranges[i] # Evaluate the neural network for layer in range(numLayers-1): inputsNorm = np.maximum(np.dot(weights[layer],inputsNorm)+biases[layer].reshape((len(biases[layer]),1)),0) outputs = np.dot(weights[-1],inputsNorm)+biases[-1].reshape((len(biases[-1]),1)) # Undo output normalization for i in range(outputSize): for j in range(numInputs): outputs[i,j] = outputs[i,j]*self.ranges[-1]+self.means[-1] return outputs.T
Python
def is_word(w): '''Return False if a word should be excluded''' if w.isdigit(): return False if all([match(r"\p{P}|`", l) for l in w]): return False if len(w) < 3 and w not in short_words: return False return True
def is_word(w): '''Return False if a word should be excluded''' if w.isdigit(): return False if all([match(r"\p{P}|`", l) for l in w]): return False if len(w) < 3 and w not in short_words: return False return True
Python
def mad(x): """Calculate Mean Absolute Deviation Not to be confused with commonly found 'Median' Absolute Deviation. Parameters ---------- x : array_like Input array or object that can be converted to an array. Returns ------- mad : scalar Mean Absolute Deviation of x """ mean = np.mean(x) deviation = x-mean absolute_deviation = np.abs(deviation) mad = np.mean(absolute_deviation) return mad
def mad(x): """Calculate Mean Absolute Deviation Not to be confused with commonly found 'Median' Absolute Deviation. Parameters ---------- x : array_like Input array or object that can be converted to an array. Returns ------- mad : scalar Mean Absolute Deviation of x """ mean = np.mean(x) deviation = x-mean absolute_deviation = np.abs(deviation) mad = np.mean(absolute_deviation) return mad
Python
def object_to_byte_tensor(obj, max_size=4094): """ Encode Python objects to PyTorch byte tensors """ assert max_size <= MAX_SIZE_LIMIT byte_tensor = torch.zeros(max_size, dtype=torch.uint8) obj_enc = pickle.dumps(obj) obj_size = len(obj_enc) if obj_size > max_size: raise Exception( f"objects too large: object size {obj_size}, max size {max_size}" ) byte_tensor[0] = obj_size // 256 byte_tensor[1] = obj_size % 256 byte_tensor[2 : 2 + obj_size] = torch.ByteTensor(list(obj_enc)) return byte_tensor
def object_to_byte_tensor(obj, max_size=4094): """ Encode Python objects to PyTorch byte tensors """ assert max_size <= MAX_SIZE_LIMIT byte_tensor = torch.zeros(max_size, dtype=torch.uint8) obj_enc = pickle.dumps(obj) obj_size = len(obj_enc) if obj_size > max_size: raise Exception( f"objects too large: object size {obj_size}, max size {max_size}" ) byte_tensor[0] = obj_size // 256 byte_tensor[1] = obj_size % 256 byte_tensor[2 : 2 + obj_size] = torch.ByteTensor(list(obj_enc)) return byte_tensor
Python
def byte_tensor_to_object(byte_tensor, max_size=MAX_SIZE_LIMIT): """ Decode PyTorch byte tensors to Python objects """ assert max_size <= MAX_SIZE_LIMIT obj_size = byte_tensor[0].item() * 256 + byte_tensor[1].item() obj_enc = bytes(byte_tensor[2 : 2 + obj_size].tolist()) obj = pickle.loads(obj_enc) return obj
def byte_tensor_to_object(byte_tensor, max_size=MAX_SIZE_LIMIT): """ Decode PyTorch byte tensors to Python objects """ assert max_size <= MAX_SIZE_LIMIT obj_size = byte_tensor[0].item() * 256 + byte_tensor[1].item() obj_enc = bytes(byte_tensor[2 : 2 + obj_size].tolist()) obj = pickle.loads(obj_enc) return obj
Python
def suppress_output(is_master): """Suppress printing on the current device. Force printing with `force=True`.""" import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print import warnings builtin_warn = warnings.warn def warn(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_warn(*args, **kwargs) # Log warnings only once warnings.warn = warn warnings.simplefilter("once", UserWarning)
def suppress_output(is_master): """Suppress printing on the current device. Force printing with `force=True`.""" import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print import warnings builtin_warn = warnings.warn def warn(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_warn(*args, **kwargs) # Log warnings only once warnings.warn = warn warnings.simplefilter("once", UserWarning)
Python
def classify(image_file, top_matches: int): """ Uses the neural net to classify the given image :param image_file: the path to the image file :param top_matches: the number of predictions to return :return: a dict containing lists of class names, class ids and probabilities """ # Use network to get top predictions category_name_list, class_id_list, probabilities_list = nw.predict(image_file, top_matches) return { 'class_names': category_name_list, 'class_ids': class_id_list, 'probabilities': probabilities_list }
def classify(image_file, top_matches: int): """ Uses the neural net to classify the given image :param image_file: the path to the image file :param top_matches: the number of predictions to return :return: a dict containing lists of class names, class ids and probabilities """ # Use network to get top predictions category_name_list, class_id_list, probabilities_list = nw.predict(image_file, top_matches) return { 'class_names': category_name_list, 'class_ids': class_id_list, 'probabilities': probabilities_list }
Python
def convert_file_path_to_url(file): """ Gets a file url given a path to an image file. :param file: the path to the image file :return: a URL friendly string that Flask can use to link to the image """ # Remove static prefix and update file path separators to URL style file = file[len('static/'):].replace('\\', '/') return file
def convert_file_path_to_url(file): """ Gets a file url given a path to an image file. :param file: the path to the image file :return: a URL friendly string that Flask can use to link to the image """ # Remove static prefix and update file path separators to URL style file = file[len('static/'):].replace('\\', '/') return file
Python
def predict(self, image_path, topk=5): """ Predict the class (or classes) of an image using a trained deep learning model. :param image_path: :param topk: the number of classes to return :return: tuple containing [0]class_name_list, [1]class_id_list, [2]probabilities_list """ # Setup Cuda device = torch.device("cuda:0" if self.gpu and torch.cuda.is_available() else "cpu") self.model.to(device) # Make sure model is in eval mode self.model.eval() # Process image into numpy image, then convert to torch tensor np_image = self.process_image(image_path) torch_image = torch.from_numpy(np_image) torch_image = torch_image.to(device) with torch.no_grad(): output = self.model(torch_image.unsqueeze_(0)) probabilities = torch.exp(output) kprobs, kindex = probabilities.topk(topk) probabilities_list = kprobs[0].cpu().numpy().tolist() indexes_list = kindex[0].cpu().numpy().tolist() # For every kindex value, look up the class and return it instead of the index idx_to_class = {v: k for k, v in self.class_to_idx_items} class_id_list = [idx_to_class[idx] for idx in indexes_list] class_name_list = [self.cat_to_name[image_class].title() for image_class in class_id_list] return class_name_list, class_id_list, probabilities_list
def predict(self, image_path, topk=5): """ Predict the class (or classes) of an image using a trained deep learning model. :param image_path: :param topk: the number of classes to return :return: tuple containing [0]class_name_list, [1]class_id_list, [2]probabilities_list """ # Setup Cuda device = torch.device("cuda:0" if self.gpu and torch.cuda.is_available() else "cpu") self.model.to(device) # Make sure model is in eval mode self.model.eval() # Process image into numpy image, then convert to torch tensor np_image = self.process_image(image_path) torch_image = torch.from_numpy(np_image) torch_image = torch_image.to(device) with torch.no_grad(): output = self.model(torch_image.unsqueeze_(0)) probabilities = torch.exp(output) kprobs, kindex = probabilities.topk(topk) probabilities_list = kprobs[0].cpu().numpy().tolist() indexes_list = kindex[0].cpu().numpy().tolist() # For every kindex value, look up the class and return it instead of the index idx_to_class = {v: k for k, v in self.class_to_idx_items} class_id_list = [idx_to_class[idx] for idx in indexes_list] class_name_list = [self.cat_to_name[image_class].title() for image_class in class_id_list] return class_name_list, class_id_list, probabilities_list
Python
def process_image(image_path): """ Given a path to a file, pre-process that image in preparation for making a prediction. :param image_path: the path to the image file :return: the image represented by a flattened numpy array """ im_transforms = TRANSFORM_TEST_VALIDATION # Open image im = Image.open(image_path) # Transform it: creates pytorch tensor im_transformed_tensor = im_transforms(im) # Return np array np_image = np.array(im_transformed_tensor) return np_image
def process_image(image_path): """ Given a path to a file, pre-process that image in preparation for making a prediction. :param image_path: the path to the image file :return: the image represented by a flattened numpy array """ im_transforms = TRANSFORM_TEST_VALIDATION # Open image im = Image.open(image_path) # Transform it: creates pytorch tensor im_transformed_tensor = im_transforms(im) # Return np array np_image = np.array(im_transformed_tensor) return np_image
Python
def match_brackets(self, string) -> str: """Automatically closes bracket at the end Note that the expected order of operations may change because the bracket is added only at the end Useful when user forgets to close all brackets""" characters = [char for char in string] num_of_open_brackets = characters.count("(") num_of_closed_brackets = characters.count(")") difference = num_of_open_brackets - num_of_closed_brackets return string + ")" * difference
def match_brackets(self, string) -> str: """Automatically closes bracket at the end Note that the expected order of operations may change because the bracket is added only at the end Useful when user forgets to close all brackets""" characters = [char for char in string] num_of_open_brackets = characters.count("(") num_of_closed_brackets = characters.count(")") difference = num_of_open_brackets - num_of_closed_brackets return string + ")" * difference
Python
def resolve_transition(self, tr, data): """Return the label, the start and the end states of a transition""" start_conn = data['connectors'][tr['start']] end_conn = data['connectors'][tr['end']] start_state = start_conn['parent'] end_state = end_conn['parent'] event = tr['label'] return start_state, end_state, event
def resolve_transition(self, tr, data): """Return the label, the start and the end states of a transition""" start_conn = data['connectors'][tr['start']] end_conn = data['connectors'][tr['end']] start_state = start_conn['parent'] end_state = end_conn['parent'] event = tr['label'] return start_state, end_state, event
Python
def add_transitions_to_states(self, states, data): """Go through the transitions in the state machine, and add them to the start states""" for tr in data['transitions'].values(): start, target, label = self.resolve_transition(tr, data) if states[start]['type'] == 'initial': start = states[start]['parent'] states[start]['initial'] = target signal = self.str_to_signal(label, target=target, target_title=states[target]['title'], initial=True) else: signal = self.str_to_signal(label, target, target_title=states[target]['title'], initial=False) self.add_signal_to_state(states[start], signal)
def add_transitions_to_states(self, states, data): """Go through the transitions in the state machine, and add them to the start states""" for tr in data['transitions'].values(): start, target, label = self.resolve_transition(tr, data) if states[start]['type'] == 'initial': start = states[start]['parent'] states[start]['initial'] = target signal = self.str_to_signal(label, target=target, target_title=states[target]['title'], initial=True) else: signal = self.str_to_signal(label, target, target_title=states[target]['title'], initial=False) self.add_signal_to_state(states[start], signal)
Python
def subject_questions(self): """ Returns a Queryset of all questions added to the participant/demographic data form. """ if self.pk: return Question.objects.filter(experiment=self.pk).order_by('position') else: return None
def subject_questions(self): """ Returns a Queryset of all questions added to the participant/demographic data form. """ if self.pk: return Question.objects.filter(experiment=self.pk).order_by('position') else: return None
Python
def consent_questions(self): """ Returns a Queryset of all questions added to the consent form. """ if self.pk: return ConsentQuestion.objects.filter(experiment=self.pk).order_by('position') else: return None
def consent_questions(self): """ Returns a Queryset of all questions added to the consent form. """ if self.pk: return ConsentQuestion.objects.filter(experiment=self.pk).order_by('position') else: return None
Python
def filename(self): """ Returns webcam/audio file name """ return os.path.basename(self.webcam_file.name)
def filename(self): """ Returns webcam/audio file name """ return os.path.basename(self.webcam_file.name)
Python
def delete_file(sender, instance, *args, **kwargs): """ Deletes webcam file on `post_delete` """ if instance.webcam_file.name: _delete_file(os.path.join(settings.WEBCAM_ROOT, instance.webcam_file.name))
def delete_file(sender, instance, *args, **kwargs): """ Deletes webcam file on `post_delete` """ if instance.webcam_file.name: _delete_file(os.path.join(settings.WEBCAM_ROOT, instance.webcam_file.name))
Python
def validate_list(value): """ Takes a text value and verifies that there is at least 1 comma. """ # split by comma and remove empty strings values = list(filter(None, [x.strip() for x in value.split(',')])) if len(values) < 2: raise ValidationError({'choices':('The selected question type requires an associated list of choices. Choices must contain more than one item.')})
def validate_list(value): """ Takes a text value and verifies that there is at least 1 comma. """ # split by comma and remove empty strings values = list(filter(None, [x.strip() for x in value.split(',')])) if len(values) < 2: raise ValidationError({'choices':('The selected question type requires an associated list of choices. Choices must contain more than one item.')})
Python
def validate_range(value): """ Takes a text value and verifies that the min and max values are valid. """ try: # split by comma and remove empty strings values = list(filter(None, [x.strip() for x in value.split(',')])) if len(values) != 2: raise ValidationError({'choices':('The selected question type requires a minimum and a maximum value.')}) # convert list to integers min_max = list(map(int, values)) if min_max[0] >= min_max[1]: raise ValidationError({'choices':('The minimum value must be greater than the maximum value.')}) except ValueError: raise ValidationError({'choices':('The values can only be integers.')})
def validate_range(value): """ Takes a text value and verifies that the min and max values are valid. """ try: # split by comma and remove empty strings values = list(filter(None, [x.strip() for x in value.split(',')])) if len(values) != 2: raise ValidationError({'choices':('The selected question type requires a minimum and a maximum value.')}) # convert list to integers min_max = list(map(int, values)) if min_max[0] >= min_max[1]: raise ValidationError({'choices':('The minimum value must be greater than the maximum value.')}) except ValueError: raise ValidationError({'choices':('The values can only be integers.')})
Python
def login_required(function=None, next=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None): """ Decorator for views that checks that the user is logged in, redirecting to the log-in page if necessary. """ actual_decorator = user_passes_test( lambda u: u.is_authenticated, next=next, login_url=login_url, redirect_field_name=redirect_field_name, ) if function: return actual_decorator(function) return actual_decorator
def login_required(function=None, next=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None): """ Decorator for views that checks that the user is logged in, redirecting to the log-in page if necessary. """ actual_decorator = user_passes_test( lambda u: u.is_authenticated, next=next, login_url=login_url, redirect_field_name=redirect_field_name, ) if function: return actual_decorator(function) return actual_decorator
Python
def write_trial_columns(self, worksheet): """ Writes column headers to worksheet. """ for index, column in enumerate(self.trial_columns): worksheet.write(0, index, column)
def write_trial_columns(self, worksheet): """ Writes column headers to worksheet. """ for index, column in enumerate(self.trial_columns): worksheet.write(0, index, column)
Python
def calc_trial_duration(self, t1, t2): """ Calculates trial duration based on the start and end times. """ if t1 and t2: return str(t2 - t1) return ''
def calc_trial_duration(self, t1, t2): """ Calculates trial duration based on the start and end times. """ if t1 and t2: return str(t2 - t1) return ''
Python
def calc_area_clicked(self, result): """ Determines row and col clicked based on grid size defined for the trial. """ if 'mouse' in result.key_pressed and (result.trialitem.grid_row != 1 or result.trialitem.grid_col != 1): width = result.resolution_w height = result.resolution_h boundaries_r = list(range(0, height, int(height/result.trialitem.grid_row))) boundaries_r.append(height) boundaries_c = list(range(0, width, int(width/result.trialitem.grid_col))) boundaries_c.append(width) coords = list(map(int, re.findall(r'\d+', result.key_pressed))) if len(coords) == 2: col_num = next(i for i,c in enumerate(boundaries_c) if c > coords[0]) row_num = next(i for i,r in enumerate(boundaries_r) if r > coords[1]) return '({row_num},{col_num})'.format(row_num=row_num, col_num=col_num) return ''
def calc_area_clicked(self, result): """ Determines row and col clicked based on grid size defined for the trial. """ if 'mouse' in result.key_pressed and (result.trialitem.grid_row != 1 or result.trialitem.grid_col != 1): width = result.resolution_w height = result.resolution_h boundaries_r = list(range(0, height, int(height/result.trialitem.grid_row))) boundaries_r.append(height) boundaries_c = list(range(0, width, int(width/result.trialitem.grid_col))) boundaries_c.append(width) coords = list(map(int, re.findall(r'\d+', result.key_pressed))) if len(coords) == 2: col_num = next(i for i,c in enumerate(boundaries_c) if c > coords[0]) row_num = next(i for i,r in enumerate(boundaries_r) if r > coords[1]) return '({row_num},{col_num})'.format(row_num=row_num, col_num=col_num) return ''
Python
def create_subject_worksheet(self, worksheet, subject): """ Creates a worksheet for each participant containing the data obtained from the consent form and the demographic/participant data form. """ gcd = self.gcd(subject.resolution_w, subject.resolution_h) if gcd == 0: gcd = 1 try: subject_data = { 'Report Date': datetime.datetime.now().strftime("%d.%m.%Y %H:%M:%S"), 'Experiment Name': subject.experiment.exp_name, 'Global Timeout': subject.listitem.global_timeout if subject.listitem else '', 'List': subject.listitem.list_name if subject.listitem else '', 'Participant Number': subject.participant_id, 'Participant UUID': subject.id, 'Participation Date': subject.created.strftime("%d.%m.%Y %H:%M:%S"), 'Aspect Ratio': '{}:{}'.format(int(subject.resolution_h / gcd), int(subject.resolution_w / gcd)), 'Resolution': '{}x{}'.format(subject.resolution_w, subject.resolution_h), 'Consent Questions': '', } consent_questions = ConsentQuestion.objects.filter(experiment_id=subject.experiment.id) for consent_question in consent_questions: subject_data[consent_question.text] = 'Y' answer_bases = AnswerBase.objects.filter(subject_data_id=subject.id) subject_data['Participant Form Responses'] = '' for answer_base in answer_bases: value = '' if answer_base.question.question_type == Question.TEXT: value = str(AnswerText.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.INTEGER or answer_base.question.question_type == Question.NUM_RANGE or answer_base.question.question_type == Question.AGE: value = str(AnswerInteger.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.RADIO or answer_base.question.question_type == Question.SEX: value = str(AnswerRadio.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.SELECT: value = str(AnswerSelect.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.SELECT_MULTIPLE: value = str(AnswerSelectMultiple.objects.get(pk=answer_base.pk).body) subject_data[answer_base.question.text] = value cdi_results = CdiResult.objects.filter(subject=subject.id) subject_data['CDI estimate'] = subject.cdi_estimate subject_data['CDI'] = subject.experiment.instrument.instr_name if subject.experiment.instrument else '' for cdi_result in cdi_results: subject_data[cdi_result.given_label] = cdi_result.response except ObjectDoesNotExist as e: logger.exception('Object does not exist: ' + str(e)) finally: current_row = 0 for key in subject_data: worksheet.write(current_row, 0, key) worksheet.write(current_row, 1, subject_data[key]) current_row += 1
def create_subject_worksheet(self, worksheet, subject): """ Creates a worksheet for each participant containing the data obtained from the consent form and the demographic/participant data form. """ gcd = self.gcd(subject.resolution_w, subject.resolution_h) if gcd == 0: gcd = 1 try: subject_data = { 'Report Date': datetime.datetime.now().strftime("%d.%m.%Y %H:%M:%S"), 'Experiment Name': subject.experiment.exp_name, 'Global Timeout': subject.listitem.global_timeout if subject.listitem else '', 'List': subject.listitem.list_name if subject.listitem else '', 'Participant Number': subject.participant_id, 'Participant UUID': subject.id, 'Participation Date': subject.created.strftime("%d.%m.%Y %H:%M:%S"), 'Aspect Ratio': '{}:{}'.format(int(subject.resolution_h / gcd), int(subject.resolution_w / gcd)), 'Resolution': '{}x{}'.format(subject.resolution_w, subject.resolution_h), 'Consent Questions': '', } consent_questions = ConsentQuestion.objects.filter(experiment_id=subject.experiment.id) for consent_question in consent_questions: subject_data[consent_question.text] = 'Y' answer_bases = AnswerBase.objects.filter(subject_data_id=subject.id) subject_data['Participant Form Responses'] = '' for answer_base in answer_bases: value = '' if answer_base.question.question_type == Question.TEXT: value = str(AnswerText.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.INTEGER or answer_base.question.question_type == Question.NUM_RANGE or answer_base.question.question_type == Question.AGE: value = str(AnswerInteger.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.RADIO or answer_base.question.question_type == Question.SEX: value = str(AnswerRadio.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.SELECT: value = str(AnswerSelect.objects.get(pk=answer_base.pk).body) elif answer_base.question.question_type == Question.SELECT_MULTIPLE: value = str(AnswerSelectMultiple.objects.get(pk=answer_base.pk).body) subject_data[answer_base.question.text] = value cdi_results = CdiResult.objects.filter(subject=subject.id) subject_data['CDI estimate'] = subject.cdi_estimate subject_data['CDI'] = subject.experiment.instrument.instr_name if subject.experiment.instrument else '' for cdi_result in cdi_results: subject_data[cdi_result.given_label] = cdi_result.response except ObjectDoesNotExist as e: logger.exception('Object does not exist: ' + str(e)) finally: current_row = 0 for key in subject_data: worksheet.write(current_row, 0, key) worksheet.write(current_row, 1, subject_data[key]) current_row += 1
Python
def create_trial_worksheet(self, worksheet, subject): """ Creates a worksheet per participant containing the trial results and adds the corresponding webcam/audio files to the final zip file. """ self.write_trial_columns(worksheet) current_row = 1 outer_blocks_pk = list(OuterBlockItem.objects.filter(listitem__pk=subject.listitem.pk).values_list('id',flat=True)) blocks = BlockItem.objects.filter(outerblockitem__pk__in=outer_blocks_pk) for block in blocks: trial_results = TrialResult.objects.filter(trialitem__blockitem__pk=block.pk, subject_id=subject.id).order_by('trial_number', 'pk') for result in trial_results: worksheet.write(current_row, 0, block.outerblockitem.outer_block_name) worksheet.write(current_row, 1, block.label) worksheet.write(current_row, 2, block.randomise_trials) worksheet.write(current_row, 3, result.trial_number) worksheet.write(current_row, 4, result.trialitem.label) worksheet.write(current_row, 5, result.trialitem.code) worksheet.write(current_row, 6, result.trialitem.visual_onset) worksheet.write(current_row, 7, result.trialitem.audio_onset) worksheet.write(current_row, 8, result.start_time.strftime("%H:%M:%S") if result.start_time else '') worksheet.write(current_row, 9, result.end_time.strftime("%H:%M:%S") if result.end_time else '') worksheet.write(current_row, 10, result.trialitem.visual_file.filename) audio_file = result.trialitem.audio_file worksheet.write(current_row, 11, audio_file.filename if audio_file else '') worksheet.write(current_row, 12, result.trialitem.max_duration) worksheet.write(current_row, 13, result.trialitem.user_input) worksheet.write(current_row, 14, result.key_pressed) worksheet.write(current_row, 15, self.calc_area_clicked(result)) worksheet.write(current_row, 16, self.calc_trial_duration(result.start_time, result.end_time)) worksheet.write(current_row, 17, block.outerblockitem.listitem.experiment.recording_option != 'NON' and result.trialitem.record_media) worksheet.write(current_row, 18, result.webcam_file.name) worksheet.write(current_row, 19, result.resolution_w) worksheet.write(current_row, 20, result.resolution_h) # Add webcam file to zip self.zip_file.write(os.path.join("webcam", result.webcam_file.name), result.webcam_file.name) current_row += 1
def create_trial_worksheet(self, worksheet, subject): """ Creates a worksheet per participant containing the trial results and adds the corresponding webcam/audio files to the final zip file. """ self.write_trial_columns(worksheet) current_row = 1 outer_blocks_pk = list(OuterBlockItem.objects.filter(listitem__pk=subject.listitem.pk).values_list('id',flat=True)) blocks = BlockItem.objects.filter(outerblockitem__pk__in=outer_blocks_pk) for block in blocks: trial_results = TrialResult.objects.filter(trialitem__blockitem__pk=block.pk, subject_id=subject.id).order_by('trial_number', 'pk') for result in trial_results: worksheet.write(current_row, 0, block.outerblockitem.outer_block_name) worksheet.write(current_row, 1, block.label) worksheet.write(current_row, 2, block.randomise_trials) worksheet.write(current_row, 3, result.trial_number) worksheet.write(current_row, 4, result.trialitem.label) worksheet.write(current_row, 5, result.trialitem.code) worksheet.write(current_row, 6, result.trialitem.visual_onset) worksheet.write(current_row, 7, result.trialitem.audio_onset) worksheet.write(current_row, 8, result.start_time.strftime("%H:%M:%S") if result.start_time else '') worksheet.write(current_row, 9, result.end_time.strftime("%H:%M:%S") if result.end_time else '') worksheet.write(current_row, 10, result.trialitem.visual_file.filename) audio_file = result.trialitem.audio_file worksheet.write(current_row, 11, audio_file.filename if audio_file else '') worksheet.write(current_row, 12, result.trialitem.max_duration) worksheet.write(current_row, 13, result.trialitem.user_input) worksheet.write(current_row, 14, result.key_pressed) worksheet.write(current_row, 15, self.calc_area_clicked(result)) worksheet.write(current_row, 16, self.calc_trial_duration(result.start_time, result.end_time)) worksheet.write(current_row, 17, block.outerblockitem.listitem.experiment.recording_option != 'NON' and result.trialitem.record_media) worksheet.write(current_row, 18, result.webcam_file.name) worksheet.write(current_row, 19, result.resolution_w) worksheet.write(current_row, 20, result.resolution_h) # Add webcam file to zip self.zip_file.write(os.path.join("webcam", result.webcam_file.name), result.webcam_file.name) current_row += 1
Python
def create_report(self): """ Creates a zip file containing all participants' results and webcam/audio files for an experiment. """ # For each subject subjects = SubjectData.objects.filter(experiment__pk=self.experiment.pk) for subject in subjects: # Create excel report workbook_file = str(subject.participant_id) + '_' + \ self.experiment.exp_name + '_' + subject.created.strftime('%Y%m%d') + \ '_' + subject.id + '.xlsx' workbook_file = get_valid_filename(workbook_file) workbook = xlsxwriter.Workbook(os.path.join(self.output_folder, self.tmp_folder, workbook_file)) # Create subject data worksheet subject_worksheet = workbook.add_worksheet('Participant') self.create_subject_worksheet(subject_worksheet, subject) if subject.listitem: # Create trial data worksheet trials_worksheet = workbook.add_worksheet('Trials') self.create_trial_worksheet(trials_worksheet, subject) # Close and store excel report workbook.close() self.zip_file.write(os.path.join(self.output_folder, self.tmp_folder, workbook_file), workbook_file) # Close zip self.zip_file.close() # Remove tmp folder shutil.rmtree(os.path.join(self.output_folder, self.tmp_folder)) return os.path.join(self.output_folder, self.output_file)
def create_report(self): """ Creates a zip file containing all participants' results and webcam/audio files for an experiment. """ # For each subject subjects = SubjectData.objects.filter(experiment__pk=self.experiment.pk) for subject in subjects: # Create excel report workbook_file = str(subject.participant_id) + '_' + \ self.experiment.exp_name + '_' + subject.created.strftime('%Y%m%d') + \ '_' + subject.id + '.xlsx' workbook_file = get_valid_filename(workbook_file) workbook = xlsxwriter.Workbook(os.path.join(self.output_folder, self.tmp_folder, workbook_file)) # Create subject data worksheet subject_worksheet = workbook.add_worksheet('Participant') self.create_subject_worksheet(subject_worksheet, subject) if subject.listitem: # Create trial data worksheet trials_worksheet = workbook.add_worksheet('Trials') self.create_trial_worksheet(trials_worksheet, subject) # Close and store excel report workbook.close() self.zip_file.write(os.path.join(self.output_folder, self.tmp_folder, workbook_file), workbook_file) # Close zip self.zip_file.close() # Remove tmp folder shutil.rmtree(os.path.join(self.output_folder, self.tmp_folder)) return os.path.join(self.output_folder, self.output_file)
Python
def clean_sharing_groups(self): """ Checks that at least one group is selected when experiment is to be shared with groups. """ sharing_option = self.cleaned_data.get('sharing_option') groups = self.cleaned_data.get('sharing_groups') if sharing_option == 'GRP': if not groups: raise ValidationError('Please select at least one group.') return groups
def clean_sharing_groups(self): """ Checks that at least one group is selected when experiment is to be shared with groups. """ sharing_option = self.cleaned_data.get('sharing_option') groups = self.cleaned_data.get('sharing_groups') if sharing_option == 'GRP': if not groups: raise ValidationError('Please select at least one group.') return groups
Python
def has_change_permission(self, request, obj=None): """ Checks if user has permission to change an experiment. """ user_groups = request.user.groups.values_list('id') if not obj: return True elif obj.sharing_option == 'PUB' or obj.sharing_option == 'GRP' and user_groups.intersection( obj.sharing_groups.values_list('id')): return True else: return obj.user == request.user or request.user.is_superuser
def has_change_permission(self, request, obj=None): """ Checks if user has permission to change an experiment. """ user_groups = request.user.groups.values_list('id') if not obj: return True elif obj.sharing_option == 'PUB' or obj.sharing_option == 'GRP' and user_groups.intersection( obj.sharing_groups.values_list('id')): return True else: return obj.user == request.user or request.user.is_superuser
Python
def experiment_buttons(self, obj): """ Displays action buttons for the Experiment admin interface. """ return format_html( '<a class="grp-button" href="{url_exp}">Go to Experiment</a>&nbsp;' + '<a class="grp-button" href="{url_report}">Download Results</a>&nbsp;' + '<a class="grp-button" href="{url_export}">Export Experiment</a>', url_exp=reverse('experiments:informationPage', args=[obj.id]), url_report=reverse('experiments:experimentReport', args=[obj.id]), url_export=reverse('experiments:experimentExport', args=[obj.id]))
def experiment_buttons(self, obj): """ Displays action buttons for the Experiment admin interface. """ return format_html( '<a class="grp-button" href="{url_exp}">Go to Experiment</a>&nbsp;' + '<a class="grp-button" href="{url_report}">Download Results</a>&nbsp;' + '<a class="grp-button" href="{url_export}">Export Experiment</a>', url_exp=reverse('experiments:informationPage', args=[obj.id]), url_report=reverse('experiments:experimentReport', args=[obj.id]), url_export=reverse('experiments:experimentExport', args=[obj.id]))
Python
def exportToJSON(experiment_id): """ Creates a JSON object of the experiment to be exported. """ # Get all data experiment = Experiment.objects.filter(pk=experiment_id) lists = ListItem.objects.filter(experiment=experiment_id) outerblocks = OuterBlockItem.objects.filter(listitem__experiment=experiment_id) innerblocks = BlockItem.objects.filter(outerblockitem__listitem__experiment=experiment_id) trials = TrialItem.objects.filter(blockitem__outerblockitem__listitem__experiment=experiment_id) questions = Question.objects.filter(experiment=experiment_id) consentquestions = ConsentQuestion.objects.filter(experiment=experiment_id) # Serialize into JSON object json_data = {} json_data['experiment'] = json.loads(serializers.serialize("json", experiment)) json_data['lists'] = json.loads(serializers.serialize("json", lists)) json_data['outerblocks'] = json.loads(serializers.serialize("json", outerblocks)) json_data['innerblocks'] = json.loads(serializers.serialize("json", innerblocks)) json_data['trials'] = json.loads(serializers.serialize("json", trials)) json_data['questions'] = json.loads(serializers.serialize("json", questions)) json_data['consentquestions'] = json.loads(serializers.serialize("json", consentquestions)) return json_data
def exportToJSON(experiment_id): """ Creates a JSON object of the experiment to be exported. """ # Get all data experiment = Experiment.objects.filter(pk=experiment_id) lists = ListItem.objects.filter(experiment=experiment_id) outerblocks = OuterBlockItem.objects.filter(listitem__experiment=experiment_id) innerblocks = BlockItem.objects.filter(outerblockitem__listitem__experiment=experiment_id) trials = TrialItem.objects.filter(blockitem__outerblockitem__listitem__experiment=experiment_id) questions = Question.objects.filter(experiment=experiment_id) consentquestions = ConsentQuestion.objects.filter(experiment=experiment_id) # Serialize into JSON object json_data = {} json_data['experiment'] = json.loads(serializers.serialize("json", experiment)) json_data['lists'] = json.loads(serializers.serialize("json", lists)) json_data['outerblocks'] = json.loads(serializers.serialize("json", outerblocks)) json_data['innerblocks'] = json.loads(serializers.serialize("json", innerblocks)) json_data['trials'] = json.loads(serializers.serialize("json", trials)) json_data['questions'] = json.loads(serializers.serialize("json", questions)) json_data['consentquestions'] = json.loads(serializers.serialize("json", consentquestions)) return json_data
Python
def importFromJSON(request, data): """ Imports an experiment from JSON file data. """ json_data = data.decode("utf-8") # Import experiment for experiment in serializers.deserialize("json", json.dumps(json.loads(json_data)['experiment'])): old_primary_key = str(experiment.object.id) experiment.object.created_on = datetime.now() experiment.object.user = request.user experiment.object.id = None # Save as new experiment experiment.save() new_primary_key = str(experiment.object.id) # Replace all experiment ids json_data = json_data.replace(old_primary_key, new_primary_key) # Import lists for listItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['lists'])): old_primary_key = str(listItem.object.id) listItem.object.id = None # Save as new list listItem.save() new_primary_key = str(listItem.object.id) # Replace all list ids json_data = json_data.replace('"listitem": {},'.format(old_primary_key), '"listitem": {},'.format(new_primary_key)) # Import outer blocks for outerBlockItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['outerblocks'])): old_primary_key = str(outerBlockItem.object.id) outerBlockItem.object.id = None # Save as new outer block outerBlockItem.save() new_primary_key = str(outerBlockItem.object.id) # Replace all outer block ids json_data = json_data.replace('"outerblockitem": {},'.format(old_primary_key), '"outerblockitem": {},'.format(new_primary_key)) # Import inner blocks for innerBlockItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['innerblocks'])): old_primary_key = str(innerBlockItem.object.id) innerBlockItem.object.id = None # Save as new inner block innerBlockItem.save() new_primary_key = str(innerBlockItem.object.id) # Replace all inner block ids json_data = json_data.replace('"blockitem": {},'.format(old_primary_key), '"blockitem": {},'.format(new_primary_key)) # Import trials for trialItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['trials'])): old_primary_key = str(trialItem.object.id) trialItem.object.id = None # Save as new trial trialItem.save() new_primary_key = str(trialItem.object.id) # Import questions for question in serializers.deserialize("json", json.dumps(json.loads(json_data)['questions'])): old_primary_key = str(question.object.id) question.object.id = None # Save as new question question.save() new_primary_key = str(question.object.id) # Import consent questions for consentQuestion in serializers.deserialize("json", json.dumps(json.loads(json_data)['consentquestions'])): old_primary_key = str(consentQuestion.object.id) consentQuestion.object.id = None # Save as new consent question consentQuestion.save() new_primary_key = str(consentQuestion.object.id)
def importFromJSON(request, data): """ Imports an experiment from JSON file data. """ json_data = data.decode("utf-8") # Import experiment for experiment in serializers.deserialize("json", json.dumps(json.loads(json_data)['experiment'])): old_primary_key = str(experiment.object.id) experiment.object.created_on = datetime.now() experiment.object.user = request.user experiment.object.id = None # Save as new experiment experiment.save() new_primary_key = str(experiment.object.id) # Replace all experiment ids json_data = json_data.replace(old_primary_key, new_primary_key) # Import lists for listItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['lists'])): old_primary_key = str(listItem.object.id) listItem.object.id = None # Save as new list listItem.save() new_primary_key = str(listItem.object.id) # Replace all list ids json_data = json_data.replace('"listitem": {},'.format(old_primary_key), '"listitem": {},'.format(new_primary_key)) # Import outer blocks for outerBlockItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['outerblocks'])): old_primary_key = str(outerBlockItem.object.id) outerBlockItem.object.id = None # Save as new outer block outerBlockItem.save() new_primary_key = str(outerBlockItem.object.id) # Replace all outer block ids json_data = json_data.replace('"outerblockitem": {},'.format(old_primary_key), '"outerblockitem": {},'.format(new_primary_key)) # Import inner blocks for innerBlockItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['innerblocks'])): old_primary_key = str(innerBlockItem.object.id) innerBlockItem.object.id = None # Save as new inner block innerBlockItem.save() new_primary_key = str(innerBlockItem.object.id) # Replace all inner block ids json_data = json_data.replace('"blockitem": {},'.format(old_primary_key), '"blockitem": {},'.format(new_primary_key)) # Import trials for trialItem in serializers.deserialize("json", json.dumps(json.loads(json_data)['trials'])): old_primary_key = str(trialItem.object.id) trialItem.object.id = None # Save as new trial trialItem.save() new_primary_key = str(trialItem.object.id) # Import questions for question in serializers.deserialize("json", json.dumps(json.loads(json_data)['questions'])): old_primary_key = str(question.object.id) question.object.id = None # Save as new question question.save() new_primary_key = str(question.object.id) # Import consent questions for consentQuestion in serializers.deserialize("json", json.dumps(json.loads(json_data)['consentquestions'])): old_primary_key = str(consentQuestion.object.id) consentQuestion.object.id = None # Save as new consent question consentQuestion.save() new_primary_key = str(consentQuestion.object.id)
Python
def has_change_permission(self, request, obj=None): """ Checks if user has permission to change subject data. """ user_groups = request.user.groups.values_list('id') if not obj: return True elif obj.experiment.sharing_option == 'PUB' or obj.experiment.sharing_option == 'GRP' and user_groups.intersection( obj.experiment.sharing_groups.values_list('id')): return True else: return obj.experiment.user == request.user or request.user.is_superuser
def has_change_permission(self, request, obj=None): """ Checks if user has permission to change subject data. """ user_groups = request.user.groups.values_list('id') if not obj: return True elif obj.experiment.sharing_option == 'PUB' or obj.experiment.sharing_option == 'GRP' and user_groups.intersection( obj.experiment.sharing_groups.values_list('id')): return True else: return obj.experiment.user == request.user or request.user.is_superuser
Python
def sort_items(item_params): """ Returns ndarray of indices of items sorted by maximum item information. """ return (-inf_hpc(max_info_hpc(item_params), item_params)).argsort()
def sort_items(item_params): """ Returns ndarray of indices of items sorted by maximum item information. """ return (-inf_hpc(max_info_hpc(item_params), item_params)).argsort()
Python
def estimateCDI(run_uuid): """ Computes CDI estimates based on Mayor and Mani (2019) """ subject_data = get_object_or_404(SubjectData, pk=run_uuid) experiment = get_object_or_404(Experiment, pk=subject_data.experiment.pk) instrument = get_object_or_404(Instrument, pk=experiment.instrument.pk) estimate = 0 # get the latest response for duplicate (i.e., modified) responses cdi_results = CdiResult.objects.filter(subject=run_uuid).order_by('given_label', '-id').distinct('given_label') try: words_list = instrument.words_list # parse instrument word list all_words_reader = csv.DictReader(open(os.path.join(settings.MEDIA_ROOT, instrument.words_list.path), mode='r', encoding='utf-8-sig'), delimiter = ',') all_words = {} for row in all_words_reader: all_words[row['word']] = int(row['word_id']) # get child's age and sex age = (AnswerInteger.objects.filter(subject_data=subject_data, question__question_type='age').first()).body sex = (AnswerRadio.objects.filter(subject_data=subject_data, question__question_type='sex').first()).body choices = (Question.objects.filter(experiment=experiment, question_type='sex').first()).choices choices = list(filter(None, [x.strip() for x in choices.split(',')])) # get lookup files for child's sex if sex.strip().lower() == choices[0].lower(): # choices0 = female lm_np_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_np_mean.path)) lm_np_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_np_sd.path)) lm_p_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_p_mean.path)) lm_p_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_p_sd.path)) bmin = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_bmin.path)) slope = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_slope.path)) else: # choices1 = male lm_np_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_np_mean.path)) lm_np_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_np_sd.path)) lm_p_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_p_mean.path)) lm_p_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_p_sd.path)) bmin = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_bmin.path)) slope = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_slope.path)) instr_num_words = len(lm_np_mean.index) basis = np.ones(instr_num_words+1) min_score = np.ones(instr_num_words+1) max_score = np.ones(instr_num_words+1) x_values = np.arange(instr_num_words+1) for cr in cdi_results: # retrieve row number via word_id, assuming row numbers are the same across all data files word_idx = lm_np_mean[lm_np_mean['word_id'] == all_words.get(cr.given_label)].index[0] if cr.response: # if can produce/comprehend word basis = basis + np.log(norm.pdf(x_values, loc=lm_p_mean.at[word_idx,str(age)], scale=lm_p_sd.at[word_idx,str(age)])) else: # cannot produce/comprehend word basis = basis + np.log(norm.pdf(x_values, loc=lm_np_mean.at[word_idx,str(age)], scale=lm_np_sd.at[word_idx,str(age)])) min_score = min_score + np.log(norm.pdf(x_values, loc=lm_np_mean.at[word_idx,str(age)], scale=lm_np_sd.at[word_idx,str(age)])) max_score = max_score + np.log(norm.pdf(x_values, loc=lm_p_mean.at[word_idx,str(age)], scale=lm_p_sd.at[word_idx,str(age)])) # get index of max value in basis B = np.where(basis == np.amax(basis)) B = int(B[0][0]) estimate = (B-bmin.at[0,str(age)])/slope.at[0,str(age)] # store CDI estimate in subject_data subject_data.cdi_estimate = estimate subject_data.save() except KeyError as e: logger.exception('Failed to estimate CDI score: ' + str(e)) return HttpResponseRedirect(reverse('experiments:experimentError', args=(run_uuid,))) else: logger.info('CDI estimate: ' + str(estimate)) return estimate
def estimateCDI(run_uuid): """ Computes CDI estimates based on Mayor and Mani (2019) """ subject_data = get_object_or_404(SubjectData, pk=run_uuid) experiment = get_object_or_404(Experiment, pk=subject_data.experiment.pk) instrument = get_object_or_404(Instrument, pk=experiment.instrument.pk) estimate = 0 # get the latest response for duplicate (i.e., modified) responses cdi_results = CdiResult.objects.filter(subject=run_uuid).order_by('given_label', '-id').distinct('given_label') try: words_list = instrument.words_list # parse instrument word list all_words_reader = csv.DictReader(open(os.path.join(settings.MEDIA_ROOT, instrument.words_list.path), mode='r', encoding='utf-8-sig'), delimiter = ',') all_words = {} for row in all_words_reader: all_words[row['word']] = int(row['word_id']) # get child's age and sex age = (AnswerInteger.objects.filter(subject_data=subject_data, question__question_type='age').first()).body sex = (AnswerRadio.objects.filter(subject_data=subject_data, question__question_type='sex').first()).body choices = (Question.objects.filter(experiment=experiment, question_type='sex').first()).choices choices = list(filter(None, [x.strip() for x in choices.split(',')])) # get lookup files for child's sex if sex.strip().lower() == choices[0].lower(): # choices0 = female lm_np_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_np_mean.path)) lm_np_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_np_sd.path)) lm_p_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_p_mean.path)) lm_p_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_lm_p_sd.path)) bmin = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_bmin.path)) slope = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.f_slope.path)) else: # choices1 = male lm_np_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_np_mean.path)) lm_np_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_np_sd.path)) lm_p_mean = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_p_mean.path)) lm_p_sd = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_lm_p_sd.path)) bmin = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_bmin.path)) slope = pd.read_csv(os.path.join(settings.MEDIA_ROOT, instrument.m_slope.path)) instr_num_words = len(lm_np_mean.index) basis = np.ones(instr_num_words+1) min_score = np.ones(instr_num_words+1) max_score = np.ones(instr_num_words+1) x_values = np.arange(instr_num_words+1) for cr in cdi_results: # retrieve row number via word_id, assuming row numbers are the same across all data files word_idx = lm_np_mean[lm_np_mean['word_id'] == all_words.get(cr.given_label)].index[0] if cr.response: # if can produce/comprehend word basis = basis + np.log(norm.pdf(x_values, loc=lm_p_mean.at[word_idx,str(age)], scale=lm_p_sd.at[word_idx,str(age)])) else: # cannot produce/comprehend word basis = basis + np.log(norm.pdf(x_values, loc=lm_np_mean.at[word_idx,str(age)], scale=lm_np_sd.at[word_idx,str(age)])) min_score = min_score + np.log(norm.pdf(x_values, loc=lm_np_mean.at[word_idx,str(age)], scale=lm_np_sd.at[word_idx,str(age)])) max_score = max_score + np.log(norm.pdf(x_values, loc=lm_p_mean.at[word_idx,str(age)], scale=lm_p_sd.at[word_idx,str(age)])) # get index of max value in basis B = np.where(basis == np.amax(basis)) B = int(B[0][0]) estimate = (B-bmin.at[0,str(age)])/slope.at[0,str(age)] # store CDI estimate in subject_data subject_data.cdi_estimate = estimate subject_data.save() except KeyError as e: logger.exception('Failed to estimate CDI score: ' + str(e)) return HttpResponseRedirect(reverse('experiments:experimentError', args=(run_uuid,))) else: logger.info('CDI estimate: ' + str(estimate)) return estimate
Python
def cdiSubmit(request, run_uuid): """ Stores item response as CdiResult. """ subject_data = get_object_or_404(SubjectData, pk=run_uuid) experiment = get_object_or_404(Experiment, pk=subject_data.experiment.pk) form = VocabularyChecklistForm(request.POST, cdi_form=experiment) # store current response as CdiResult and add to request.responses if form.is_valid(): responses = request.session.get('responses') for key, value in request.POST.items(): if key.startswith('word_'): cdiresult = CdiResult() cdiresult.subject = subject_data cdiresult.given_label = key[5:] if value.lower() == 'on': cdiresult.response = True responses.append(bool(1)) else: cdiresult.response = False responses.append(bool(0)) cdiresult.save() request.session['responses'] = responses irt_run = request.session.get('irt_run') # count unique items count_unique = CdiResult.objects.filter(subject=run_uuid).order_by('given_label').distinct('given_label').count() logger.info('unique count: ' + str(count_unique)) if count_unique < experiment.num_words: request.session['irt_run'] = irt_run + 1 # generate subsequent item return cdiGenerateNextItem(request, run_uuid) else: # proceed to experiment or end page estimateCDI(run_uuid) if ListItem.objects.filter(experiment=experiment): return proceedToExperiment(experiment, run_uuid) else: return HttpResponseRedirect(reverse('experiments:experimentEnd', args=(run_uuid,))) t = Template(experiment.cdi_page_tpl) c = RequestContext(request, {'subject_data': subject_data, 'cdi_form':form, 'experiment': experiment,}) return HttpResponse(t.render(c))
def cdiSubmit(request, run_uuid): """ Stores item response as CdiResult. """ subject_data = get_object_or_404(SubjectData, pk=run_uuid) experiment = get_object_or_404(Experiment, pk=subject_data.experiment.pk) form = VocabularyChecklistForm(request.POST, cdi_form=experiment) # store current response as CdiResult and add to request.responses if form.is_valid(): responses = request.session.get('responses') for key, value in request.POST.items(): if key.startswith('word_'): cdiresult = CdiResult() cdiresult.subject = subject_data cdiresult.given_label = key[5:] if value.lower() == 'on': cdiresult.response = True responses.append(bool(1)) else: cdiresult.response = False responses.append(bool(0)) cdiresult.save() request.session['responses'] = responses irt_run = request.session.get('irt_run') # count unique items count_unique = CdiResult.objects.filter(subject=run_uuid).order_by('given_label').distinct('given_label').count() logger.info('unique count: ' + str(count_unique)) if count_unique < experiment.num_words: request.session['irt_run'] = irt_run + 1 # generate subsequent item return cdiGenerateNextItem(request, run_uuid) else: # proceed to experiment or end page estimateCDI(run_uuid) if ListItem.objects.filter(experiment=experiment): return proceedToExperiment(experiment, run_uuid) else: return HttpResponseRedirect(reverse('experiments:experimentEnd', args=(run_uuid,))) t = Template(experiment.cdi_page_tpl) c = RequestContext(request, {'subject_data': subject_data, 'cdi_form':form, 'experiment': experiment,}) return HttpResponse(t.render(c))
Python
def webcam_upload(request, run_uuid): """ Receives upload requests for video/audio chunks during the experiment and merges these chunks into a file. """ fs = FileSystemStorage(location=settings.WEBCAM_ROOT) # Upload request if request.method == 'POST' and request.FILES.get('file'): webcam_file = request.FILES.get('file') # webcam_file_type = request.POST.get('type') # Delete existing file if fs.exists(webcam_file.name): fs.delete(webcam_file.name) fs.save(get_valid_filename(webcam_file.name), webcam_file) logger.info('Received upload request of %s.' % webcam_file.name) return HttpResponse(status=204) # Merge request elif request.method == 'POST' and request.POST.get('trialResultId'): # Get base filename, by removing chunk number at the end base_filename = request.POST.get('filename') base_filename = get_valid_filename(base_filename) logger.info('Received last file of %s, merge files.' % base_filename) # Find and merge individual chunks webcam_files = find_files(base_filename) merge_files(base_filename + '.webm', webcam_files) # Delete chunks for webcam_file in webcam_files: fs.delete(webcam_file) # Add filename to trial result trial_result_id = 0 try: trial_result_id = int(request.POST.get('trialResultId')) except ValueError as e: logger.exception('Failed to retrieve trial result ID: ' + str(e)) raise Http404('Invalid trialResultId.') trial_result = get_object_or_404(TrialResult, pk=trial_result_id, subject=run_uuid) trial_result.webcam_file = base_filename + '.webm' trial_result.save() logger.info('Successfully saved webcam file to trial result.') return HttpResponse(status=204) else: logger.error('Failed to upload webcam file.') raise Http404('Page not found.')
def webcam_upload(request, run_uuid): """ Receives upload requests for video/audio chunks during the experiment and merges these chunks into a file. """ fs = FileSystemStorage(location=settings.WEBCAM_ROOT) # Upload request if request.method == 'POST' and request.FILES.get('file'): webcam_file = request.FILES.get('file') # webcam_file_type = request.POST.get('type') # Delete existing file if fs.exists(webcam_file.name): fs.delete(webcam_file.name) fs.save(get_valid_filename(webcam_file.name), webcam_file) logger.info('Received upload request of %s.' % webcam_file.name) return HttpResponse(status=204) # Merge request elif request.method == 'POST' and request.POST.get('trialResultId'): # Get base filename, by removing chunk number at the end base_filename = request.POST.get('filename') base_filename = get_valid_filename(base_filename) logger.info('Received last file of %s, merge files.' % base_filename) # Find and merge individual chunks webcam_files = find_files(base_filename) merge_files(base_filename + '.webm', webcam_files) # Delete chunks for webcam_file in webcam_files: fs.delete(webcam_file) # Add filename to trial result trial_result_id = 0 try: trial_result_id = int(request.POST.get('trialResultId')) except ValueError as e: logger.exception('Failed to retrieve trial result ID: ' + str(e)) raise Http404('Invalid trialResultId.') trial_result = get_object_or_404(TrialResult, pk=trial_result_id, subject=run_uuid) trial_result.webcam_file = base_filename + '.webm' trial_result.save() logger.info('Successfully saved webcam file to trial result.') return HttpResponse(status=204) else: logger.error('Failed to upload webcam file.') raise Http404('Page not found.')
Python
def merge_files(target, files): """ Merges chunks into a file. """ fs = FileSystemStorage(location=settings.WEBCAM_ROOT) destination_file = os.path.join( settings.WEBCAM_ROOT, target) # Delete any existing file if fs.exists(target): fs.delete(target) # Merge with open(destination_file, 'wb') as outfile: for fname in files: with open(os.path.join(settings.WEBCAM_ROOT, fname), 'rb') as infile: while True: data = infile.read(65536) if not data: break outfile.write(data)
def merge_files(target, files): """ Merges chunks into a file. """ fs = FileSystemStorage(location=settings.WEBCAM_ROOT) destination_file = os.path.join( settings.WEBCAM_ROOT, target) # Delete any existing file if fs.exists(target): fs.delete(target) # Merge with open(destination_file, 'wb') as outfile: for fname in files: with open(os.path.join(settings.WEBCAM_ROOT, fname), 'rb') as infile: while True: data = infile.read(65536) if not data: break outfile.write(data)
Python
def all_episodes(): """ contains playable podcasts listed as just-in """ soup = thisislove.get_soup(URL) playable_podcast = thisislove.get_playable_podcast(soup) items = thisislove.compile_playable_podcast(playable_podcast) return items
def all_episodes(): """ contains playable podcasts listed as just-in """ soup = thisislove.get_soup(URL) playable_podcast = thisislove.get_playable_podcast(soup) items = thisislove.compile_playable_podcast(playable_podcast) return items
Python
def all_episodes1(): """ contains playable podcasts listed as just-in """ soup = thisislove.get_soup(URL) playable_podcast1 = thisislove.get_playable_podcast1(soup) items = thisislove.compile_playable_podcast1(playable_podcast1) return items
def all_episodes1(): """ contains playable podcasts listed as just-in """ soup = thisislove.get_soup(URL) playable_podcast1 = thisislove.get_playable_podcast1(soup) items = thisislove.compile_playable_podcast1(playable_podcast1) return items
Python
async def approvepm(apprvpm): """ For .approve command, give someone the permissions to PM you. """ try: from userbot.modules.sql_helper.pm_permit_sql import approve except AttributeError: return await apprvpm.edit("`Running on Non-SQL mode!`") if apprvpm.reply_to_msg_id: reply = await apprvpm.get_reply_message() replied_user = await apprvpm.client.get_entity(reply.from_id) aname = replied_user.id name0 = str(replied_user.first_name) uid = replied_user.id else: aname = await apprvpm.client.get_entity(apprvpm.chat_id) name0 = str(aname.first_name) uid = apprvpm.chat_id try: approve(uid) except IntegrityError: return await apprvpm.edit("`User ini mungkin sudah di tag dalam transaksi.`") await apprvpm.edit(f"`#SenturyBot: ...!`\n\n" f"`Sedang Melakukan Transaksi Dengan `[{name0}](tg://user?id={uid})") async for message in apprvpm.client.iter_messages(apprvpm.chat_id, from_user='me', search=UNAPPROVED_MSG): await message.delete() if BOTLOG: await apprvpm.client.send_message( BOTLOG_CHATID, "#SedangTransaksi\n" + "Dengan User: " + f"[{name0}](tg://user?id={uid})", )
async def approvepm(apprvpm): """ For .approve command, give someone the permissions to PM you. """ try: from userbot.modules.sql_helper.pm_permit_sql import approve except AttributeError: return await apprvpm.edit("`Running on Non-SQL mode!`") if apprvpm.reply_to_msg_id: reply = await apprvpm.get_reply_message() replied_user = await apprvpm.client.get_entity(reply.from_id) aname = replied_user.id name0 = str(replied_user.first_name) uid = replied_user.id else: aname = await apprvpm.client.get_entity(apprvpm.chat_id) name0 = str(aname.first_name) uid = apprvpm.chat_id try: approve(uid) except IntegrityError: return await apprvpm.edit("`User ini mungkin sudah di tag dalam transaksi.`") await apprvpm.edit(f"`#SenturyBot: ...!`\n\n" f"`Sedang Melakukan Transaksi Dengan `[{name0}](tg://user?id={uid})") async for message in apprvpm.client.iter_messages(apprvpm.chat_id, from_user='me', search=UNAPPROVED_MSG): await message.delete() if BOTLOG: await apprvpm.client.send_message( BOTLOG_CHATID, "#SedangTransaksi\n" + "Dengan User: " + f"[{name0}](tg://user?id={uid})", )
Python
def target_distributionDouble(model,target_network, next_states, rewards, terminals, cumulative_gamma): """Builds the Quantile target distribution as per Dabney et al. (2017). Args: target_network: Jax Module used for the target network. next_states: numpy array of batched next states. rewards: numpy array of batched rewards. terminals: numpy array of batched terminals. cumulative_gamma: float, cumulative gamma to use (static_argnum). Returns: The target distribution from the replay. """ is_terminal_multiplier = 1. - terminals.astype(jnp.float32) # Incorporate terminal state to discount factor. gamma_with_terminal = cumulative_gamma * is_terminal_multiplier next_state_target_outputs = model(next_states) q_values = jnp.squeeze(next_state_target_outputs.q_values) next_qt_argmax = jnp.argmax(q_values) next_dist = target_network(next_states) logits = jnp.squeeze(next_dist.logits) next_logits = logits[next_qt_argmax] return jax.lax.stop_gradient(rewards + gamma_with_terminal * next_logits)
def target_distributionDouble(model,target_network, next_states, rewards, terminals, cumulative_gamma): """Builds the Quantile target distribution as per Dabney et al. (2017). Args: target_network: Jax Module used for the target network. next_states: numpy array of batched next states. rewards: numpy array of batched rewards. terminals: numpy array of batched terminals. cumulative_gamma: float, cumulative gamma to use (static_argnum). Returns: The target distribution from the replay. """ is_terminal_multiplier = 1. - terminals.astype(jnp.float32) # Incorporate terminal state to discount factor. gamma_with_terminal = cumulative_gamma * is_terminal_multiplier next_state_target_outputs = model(next_states) q_values = jnp.squeeze(next_state_target_outputs.q_values) next_qt_argmax = jnp.argmax(q_values) next_dist = target_network(next_states) logits = jnp.squeeze(next_dist.logits) next_logits = logits[next_qt_argmax] return jax.lax.stop_gradient(rewards + gamma_with_terminal * next_logits)
Python
def target_distribution(target_network, next_states, rewards, terminals, cumulative_gamma): """Builds the Quantile target distribution as per Dabney et al. (2017). Args: target_network: Jax Module used for the target network. next_states: numpy array of batched next states. rewards: numpy array of batched rewards. terminals: numpy array of batched terminals. cumulative_gamma: float, cumulative gamma to use (static_argnum). Returns: The target distribution from the replay. """ is_terminal_multiplier = 1. - terminals.astype(jnp.float32) # Incorporate terminal state to discount factor. gamma_with_terminal = cumulative_gamma * is_terminal_multiplier next_state_target_outputs = target_network(next_states) q_values = jnp.squeeze(next_state_target_outputs.q_values) next_qt_argmax = jnp.argmax(q_values) logits = jnp.squeeze(next_state_target_outputs.logits) next_logits = logits[next_qt_argmax] return jax.lax.stop_gradient(rewards + gamma_with_terminal * next_logits)
def target_distribution(target_network, next_states, rewards, terminals, cumulative_gamma): """Builds the Quantile target distribution as per Dabney et al. (2017). Args: target_network: Jax Module used for the target network. next_states: numpy array of batched next states. rewards: numpy array of batched rewards. terminals: numpy array of batched terminals. cumulative_gamma: float, cumulative gamma to use (static_argnum). Returns: The target distribution from the replay. """ is_terminal_multiplier = 1. - terminals.astype(jnp.float32) # Incorporate terminal state to discount factor. gamma_with_terminal = cumulative_gamma * is_terminal_multiplier next_state_target_outputs = target_network(next_states) q_values = jnp.squeeze(next_state_target_outputs.q_values) next_qt_argmax = jnp.argmax(q_values) logits = jnp.squeeze(next_state_target_outputs.logits) next_logits = logits[next_qt_argmax] return jax.lax.stop_gradient(rewards + gamma_with_terminal * next_logits)
Python
def _build_replay_buffer(self): """Creates the replay buffer used by the agent.""" if self._replay_scheme not in ['uniform', 'prioritized']: raise ValueError('Invalid replay scheme: {}'.format(self._replay_scheme)) # Both replay schemes use the same data structure, but the 'uniform' scheme # sets all priorities to the same value (which yields uniform sampling). return prioritized_replay_buffer.OutOfGraphPrioritizedReplayBuffer( observation_shape=self.observation_shape, stack_size=self.stack_size, update_horizon=self.update_horizon, gamma=self.gamma, observation_dtype=self.observation_dtype)
def _build_replay_buffer(self): """Creates the replay buffer used by the agent.""" if self._replay_scheme not in ['uniform', 'prioritized']: raise ValueError('Invalid replay scheme: {}'.format(self._replay_scheme)) # Both replay schemes use the same data structure, but the 'uniform' scheme # sets all priorities to the same value (which yields uniform sampling). return prioritized_replay_buffer.OutOfGraphPrioritizedReplayBuffer( observation_shape=self.observation_shape, stack_size=self.stack_size, update_horizon=self.update_horizon, gamma=self.gamma, observation_dtype=self.observation_dtype)
Python
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self.optimizer, loss, mean_loss = train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._kappa, self._num_atoms, self.cumulative_gamma, self._double_dqn, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if self.summary_writer is not None: summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='QuantileLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self.optimizer, loss, mean_loss = train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._kappa, self._num_atoms, self.cumulative_gamma, self._double_dqn, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if self.summary_writer is not None: summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='QuantileLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
Python
def _store_transition(self, last_observation, action, reward, is_terminal, priority=None): """Stores a transition when in training mode. Stores the following tuple in the replay buffer (last_observation, action, reward, is_terminal, priority). Args: last_observation: Last observation, type determined via observation_type parameter in the replay_memory constructor. action: An integer, the action taken. reward: A float, the reward. is_terminal: Boolean indicating if the current state is a terminal state. priority: Float. Priority of sampling the transition. If None, the default priority will be used. If replay scheme is uniform, the default priority is 1. If the replay scheme is prioritized, the default priority is the maximum ever seen [Schaul et al., 2015]. """ if priority is None: if self._replay_scheme == 'uniform': priority = 1. else: priority = self._replay.sum_tree.max_recorded_priority if not self.eval_mode: self._replay.add(last_observation, action, reward, is_terminal, priority)
def _store_transition(self, last_observation, action, reward, is_terminal, priority=None): """Stores a transition when in training mode. Stores the following tuple in the replay buffer (last_observation, action, reward, is_terminal, priority). Args: last_observation: Last observation, type determined via observation_type parameter in the replay_memory constructor. action: An integer, the action taken. reward: A float, the reward. is_terminal: Boolean indicating if the current state is a terminal state. priority: Float. Priority of sampling the transition. If None, the default priority will be used. If replay scheme is uniform, the default priority is 1. If the replay scheme is prioritized, the default priority is the maximum ever seen [Schaul et al., 2015]. """ if priority is None: if self._replay_scheme == 'uniform': priority = 1. else: priority = self._replay.sum_tree.max_recorded_priority if not self.eval_mode: self._replay.add(last_observation, action, reward, is_terminal, priority)
Python
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] # Weight the loss by the inverse priorities. loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self.optimizer, loss, mean_loss = train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._support, self.cumulative_gamma, self._double_dqn, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if self.summary_writer is not None: summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='CrossEntropyLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] # Weight the loss by the inverse priorities. loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self.optimizer, loss, mean_loss = train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._support, self.cumulative_gamma, self._double_dqn, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if self.summary_writer is not None: summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='CrossEntropyLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
Python
def begin_episode(self, observation): """Returns the agent's first action for this episode. Args: observation: numpy array, the environment's initial observation. Returns: int, the selected action. """ self._reset_state() self._record_observation(observation) if not self.eval_mode: self._train_step() self._rng, self.action = select_action(self.network_def, self.online_params, self.state, self._rng, self.num_quantile_samples, self.num_actions, self.eval_mode, self.epsilon_eval, self.epsilon_train, self.epsilon_decay_period, self.training_steps, self.min_replay_history, self.epsilon_fn, self._tau, self.optimizer) self.action = onp.asarray(self.action) return self.action
def begin_episode(self, observation): """Returns the agent's first action for this episode. Args: observation: numpy array, the environment's initial observation. Returns: int, the selected action. """ self._reset_state() self._record_observation(observation) if not self.eval_mode: self._train_step() self._rng, self.action = select_action(self.network_def, self.online_params, self.state, self._rng, self.num_quantile_samples, self.num_actions, self.eval_mode, self.epsilon_eval, self.epsilon_train, self.epsilon_decay_period, self.training_steps, self.min_replay_history, self.epsilon_fn, self._tau, self.optimizer) self.action = onp.asarray(self.action) return self.action
Python
def step(self, reward, observation): """Records the most recent transition and returns the agent's next action. We store the observation of the last time step since we want to store it with the reward. Args: reward: float, the reward received from the agent's most recent action. observation: numpy array, the most recent observation. Returns: int, the selected action. """ self._last_observation = self._observation self._record_observation(observation) if not self.eval_mode: self._store_transition(self._last_observation, self.action, reward, False) self._train_step() self._rng, self.action = select_action(self.network_def, self.online_params, self.state, self._rng, self.num_quantile_samples, self.num_actions, self.eval_mode, self.epsilon_eval, self.epsilon_train, self.epsilon_decay_period, self.training_steps, self.min_replay_history, self.epsilon_fn, self._tau, self.optimizer) self.action = onp.asarray(self.action) return self.action
def step(self, reward, observation): """Records the most recent transition and returns the agent's next action. We store the observation of the last time step since we want to store it with the reward. Args: reward: float, the reward received from the agent's most recent action. observation: numpy array, the most recent observation. Returns: int, the selected action. """ self._last_observation = self._observation self._record_observation(observation) if not self.eval_mode: self._store_transition(self._last_observation, self.action, reward, False) self._train_step() self._rng, self.action = select_action(self.network_def, self.online_params, self.state, self._rng, self.num_quantile_samples, self.num_actions, self.eval_mode, self.epsilon_eval, self.epsilon_train, self.epsilon_decay_period, self.training_steps, self.min_replay_history, self.epsilon_fn, self._tau, self.optimizer) self.action = onp.asarray(self.action) return self.action
Python
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self._rng, self.optimizer, loss, mean_loss= train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._target_opt, self.num_tau_samples, self.num_tau_prime_samples, self.num_quantile_samples, self.cumulative_gamma, self.double_dqn, self.kappa, self._tau, self._alpha, self._clip_value_min, self._num_actions, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if (self.summary_writer is not None and self.training_steps > 0 and self.training_steps % self.summary_writing_frequency == 0): summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='ImplicitLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
def _train_step(self): """Runs a single training step. Runs training if both: (1) A minimum number of frames have been added to the replay buffer. (2) `training_steps` is a multiple of `update_period`. Also, syncs weights from online_network to target_network if training steps is a multiple of target update period. """ if self._replay.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sample_from_replay_buffer() if self._replay_scheme == 'prioritized': # The original prioritized experience replay uses a linear exponent # schedule 0.4 -> 1.0. Comparing the schedule to a fixed exponent of # 0.5 on 5 games (Asterix, Pong, Q*Bert, Seaquest, Space Invaders) # suggested a fixed exponent actually performs better, except on Pong. probs = self.replay_elements['sampling_probabilities'] loss_weights = 1.0 / jnp.sqrt(probs + 1e-10) loss_weights /= jnp.max(loss_weights) else: loss_weights = jnp.ones(self.replay_elements['state'].shape[0]) self._rng, self.optimizer, loss, mean_loss= train( self.network_def, self.target_network_params, self.optimizer, self.replay_elements['state'], self.replay_elements['action'], self.replay_elements['next_state'], self.replay_elements['reward'], self.replay_elements['terminal'], loss_weights, self._target_opt, self.num_tau_samples, self.num_tau_prime_samples, self.num_quantile_samples, self.cumulative_gamma, self.double_dqn, self.kappa, self._tau, self._alpha, self._clip_value_min, self._num_actions, self._rng) if self._replay_scheme == 'prioritized': # Rainbow and prioritized replay are parametrized by an exponent # alpha, but in both cases it is set to 0.5 - for simplicity's sake we # leave it as is here, using the more direct sqrt(). Taking the square # root "makes sense", as we are dealing with a squared loss. Add a # small nonzero value to the loss to avoid 0 priority items. While # technically this may be okay, setting all items to 0 priority will # cause troubles, and also result in 1.0 / 0.0 = NaN correction terms. self._replay.set_priority(self.replay_elements['indices'], jnp.sqrt(loss + 1e-10)) if (self.summary_writer is not None and self.training_steps > 0 and self.training_steps % self.summary_writing_frequency == 0): summary = tf.compat.v1.Summary(value=[ tf.compat.v1.Summary.Value(tag='ImplicitLoss', simple_value=mean_loss)]) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sync_weights() self.training_steps += 1
Python
def trello_model_id_put(model, id): # noqa: E501 """Updates the models currently in db. # noqa: E501 :param model: :type model: str :param id: :type id: str :rtype: UniversalResource """ return 'do some magic!'
def trello_model_id_put(model, id): # noqa: E501 """Updates the models currently in db. # noqa: E501 :param model: :type model: str :param id: :type id: str :rtype: UniversalResource """ return 'do some magic!'
Python
def trello_model_id_put(self, model, id, **kwargs): # noqa: E501 """Updates the models currently in db. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.trello_model_id_put(model, id, async=True) >>> result = thread.get() :param async bool :param str model: (required) :param str id: (required) :return: UniversalResource If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.trello_model_id_put_with_http_info(model, id, **kwargs) # noqa: E501 else: (data) = self.trello_model_id_put_with_http_info(model, id, **kwargs) # noqa: E501 return data
def trello_model_id_put(self, model, id, **kwargs): # noqa: E501 """Updates the models currently in db. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.trello_model_id_put(model, id, async=True) >>> result = thread.get() :param async bool :param str model: (required) :param str id: (required) :return: UniversalResource If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.trello_model_id_put_with_http_info(model, id, **kwargs) # noqa: E501 else: (data) = self.trello_model_id_put_with_http_info(model, id, **kwargs) # noqa: E501 return data