language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def run(self): """Override the base class run() method""" while True: with self.m_cv: self.m_cv.wait_for(lambda: self.m_command is not None) if self.m_command == Playlist.EXIT: self._stop_playing() return if self.m_command == Playlist.STOP_PLAYING: self._stop_playing() if self.m_command == Playlist.NEW_PLAYLIST: self._play(self.m_args) self.m_command = None self.m_args = None
def run(self): """Override the base class run() method""" while True: with self.m_cv: self.m_cv.wait_for(lambda: self.m_command is not None) if self.m_command == Playlist.EXIT: self._stop_playing() return if self.m_command == Playlist.STOP_PLAYING: self._stop_playing() if self.m_command == Playlist.NEW_PLAYLIST: self._play(self.m_args) self.m_command = None self.m_args = None
Python
def play(self, playlist): """Tell the player to play a new playlist This method can be called from any thread. If the player is already playing something it is interrupted Args: playlist str what to play """ with self.m_cv: self.m_args = playlist self.m_command = Playlist.NEW_PLAYLIST self.m_cv.notify()
def play(self, playlist): """Tell the player to play a new playlist This method can be called from any thread. If the player is already playing something it is interrupted Args: playlist str what to play """ with self.m_cv: self.m_args = playlist self.m_command = Playlist.NEW_PLAYLIST self.m_cv.notify()
Python
def stop_playing(self): """Tell the player to stop playing This method can be called from any thread. If the player is not already playing nothing happens """ with self.m_cv: self.m_command = Playlist.STOP_PLAYING self.m_cv.notify()
def stop_playing(self): """Tell the player to stop playing This method can be called from any thread. If the player is not already playing nothing happens """ with self.m_cv: self.m_command = Playlist.STOP_PLAYING self.m_cv.notify()
Python
def exit(self): """Tell the player to stop playing and exit the controlling thread. This method can be called from any thread. After calling exit no more commands are listened to. """ with self.m_cv: self.m_command = Playlist.EXIT self.m_cv.notify()
def exit(self): """Tell the player to stop playing and exit the controlling thread. This method can be called from any thread. After calling exit no more commands are listened to. """ with self.m_cv: self.m_command = Playlist.EXIT self.m_cv.notify()
Python
def _stop_playing(self): """Implementation of stopping the player process Only called by Playlist.run() """ if self.m_player: self.m_player.send_signal(Playlist.SIG_INT) self.m_player = None
def _stop_playing(self): """Implementation of stopping the player process Only called by Playlist.run() """ if self.m_player: self.m_player.send_signal(Playlist.SIG_INT) self.m_player = None
Python
def _play(self, playlist): """Implementation of making a player process Only called by Playlist.run() Args: playlist the directory name the player uses as a list """ self._stop_playing() argv = [self.m_player_command, '-a', playlist] self.m_player = subprocess.Popen(argv, stderr=subprocess.DEVNULL)
def _play(self, playlist): """Implementation of making a player process Only called by Playlist.run() Args: playlist the directory name the player uses as a list """ self._stop_playing() argv = [self.m_player_command, '-a', playlist] self.m_player = subprocess.Popen(argv, stderr=subprocess.DEVNULL)
Python
def parse_flags(args: object) -> object: """ Parses the input flags for a producer """ parser.add_argument('-in', help='tool results file') parser.add_argument('-out', help='producer output file') return parser.parse_args(args)
def parse_flags(args: object) -> object: """ Parses the input flags for a producer """ parser.add_argument('-in', help='tool results file') parser.add_argument('-out', help='producer output file') return parser.parse_args(args)
Python
def parse_in_file_json(args: object) -> dict: """ A generic method to return a tool's JSON results file as a dict """ results_file = vars(args)['in'] with open(results_file) as f: data = f.read() return json.loads(data)
def parse_in_file_json(args: object) -> dict: """ A generic method to return a tool's JSON results file as a dict """ results_file = vars(args)['in'] with open(results_file) as f: data = f.read() return json.loads(data)
Python
def write_dracon_out(args: object, tool_name: str, issues: [issue_pb2.Issue]): """ A method to write the resulting protobuf to the output file """ out_file = vars(args)['out'] source = __get_meta_source() clean_issues = [] for iss in issues: iss.description = iss.description.replace(__source_dir, ".") iss.title = iss.title.replace(__source_dir, ".") iss.target = iss.target.replace(__source_dir, ".") iss.source = source clean_issues.append(iss) ltr = engine_pb2.LaunchToolResponse( tool_name=tool_name, issues=issues ) with open(out_file, 'ab') as f: f.write(ltr.SerializeToString())
def write_dracon_out(args: object, tool_name: str, issues: [issue_pb2.Issue]): """ A method to write the resulting protobuf to the output file """ out_file = vars(args)['out'] source = __get_meta_source() clean_issues = [] for iss in issues: iss.description = iss.description.replace(__source_dir, ".") iss.title = iss.title.replace(__source_dir, ".") iss.target = iss.target.replace(__source_dir, ".") iss.source = source clean_issues.append(iss) ltr = engine_pb2.LaunchToolResponse( tool_name=tool_name, issues=issues ) with open(out_file, 'ab') as f: f.write(ltr.SerializeToString())
Python
def __get_meta_source() -> str: """ This obtains the source address in the __meta_src_file from the source workspace """ meta_src_path = os.path.join(__source_dir, __meta_src_file) if os.path.exists(meta_src_path): with open(meta_src_path) as f: return f.read().strip() return "unknown"
def __get_meta_source() -> str: """ This obtains the source address in the __meta_src_file from the source workspace """ meta_src_path = os.path.join(__source_dir, __meta_src_file) if os.path.exists(meta_src_path): with open(meta_src_path) as f: return f.read().strip() return "unknown"
Python
def upload_file_to_container(blob_service_client, container_name, file_path): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print('Uploading file {} to container [{}]...'.format(file_path, container_name)) blob_client = blob_service_client.get_blob_client(container_name,blob_name) with open(file_path, "rb") as data: blob_client.upload_blob(data,overwrite=True) #container_client = blob_service_client.get_container_client(container_name) sas_token=generate_blob_sas( account_name=blob_client.account_name, container_name=blob_client.container_name, blob_name=blob_name, permission=BlobSasPermissions(read=True), account_key=config._STORAGE_KEY, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=2) ) sas_url = blob_client.url + '?' + sas_token return batchmodels.ResourceFile(http_url=sas_url, file_path=blob_name)
def upload_file_to_container(blob_service_client, container_name, file_path): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print('Uploading file {} to container [{}]...'.format(file_path, container_name)) blob_client = blob_service_client.get_blob_client(container_name,blob_name) with open(file_path, "rb") as data: blob_client.upload_blob(data,overwrite=True) #container_client = blob_service_client.get_container_client(container_name) sas_token=generate_blob_sas( account_name=blob_client.account_name, container_name=blob_client.container_name, blob_name=blob_name, permission=BlobSasPermissions(read=True), account_key=config._STORAGE_KEY, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=2) ) sas_url = blob_client.url + '?' + sas_token return batchmodels.ResourceFile(http_url=sas_url, file_path=blob_name)
Python
def read_global_config() -> dict[str, Any]: """Read global config and return as JSON.""" with open("config/global_config.json", encoding="UTF-8") as f: config = json.loads(f.read()) return config
def read_global_config() -> dict[str, Any]: """Read global config and return as JSON.""" with open("config/global_config.json", encoding="UTF-8") as f: config = json.loads(f.read()) return config
Python
def draw_gradient(img): ''' Fills the image with a gradient of 16 levels of grayscale. ''' for i in range(16): color = i*0x10 box = ( i*img.width//16, # xmin 0, # ymin (i+1)*img.width//16, # xmax img.height # ymax ) img.paste(color, box=box)
def draw_gradient(img): ''' Fills the image with a gradient of 16 levels of grayscale. ''' for i in range(16): color = i*0x10 box = ( i*img.width//16, # xmin 0, # ymin (i+1)*img.width//16, # xmax img.height # ymax ) img.paste(color, box=box)
Python
def load_img_area(self, buf, rotate_mode=constants.Rotate.NONE, xy=None, dims=None, pixel_format=None): ''' Write the pixel data in buf (an array of bytes, 1 per pixel) to device memory. This function does not actually display the image (see EPD.display_area). Parameters ---------- buf : bytes An array of bytes containing the pixel data rotate_mode : constants.Rotate, optional A rotation mode for the data to be pasted into device memory xy : (int, int), optional The x,y coordinates of the top-left corner of the area being pasted. If omitted, the image is assumed to be the whole display area. dims : (int, int), optional The dimensions of the area being pasted. If xy is omitted (or set to None), the dimensions are assumed to be the dimensions of the display area. ''' endian_type = constants.EndianTypes.BIG if pixel_format is None: pixel_format = constants.PixelModes.M_4BPP if xy is None: self._load_img_start(endian_type, pixel_format, rotate_mode) else: self._load_img_area_start(endian_type, pixel_format, rotate_mode, xy, dims) try: bpp = { PixelModes.M_2BPP : 2, PixelModes.M_4BPP : 4, PixelModes.M_8BPP : 8, }[pixel_format] except KeyError: raise ValueError("invalid pixel format") from None self.spi.pack_and_write_pixels(buf, bpp) self._load_img_end()
def load_img_area(self, buf, rotate_mode=constants.Rotate.NONE, xy=None, dims=None, pixel_format=None): ''' Write the pixel data in buf (an array of bytes, 1 per pixel) to device memory. This function does not actually display the image (see EPD.display_area). Parameters ---------- buf : bytes An array of bytes containing the pixel data rotate_mode : constants.Rotate, optional A rotation mode for the data to be pasted into device memory xy : (int, int), optional The x,y coordinates of the top-left corner of the area being pasted. If omitted, the image is assumed to be the whole display area. dims : (int, int), optional The dimensions of the area being pasted. If xy is omitted (or set to None), the dimensions are assumed to be the dimensions of the display area. ''' endian_type = constants.EndianTypes.BIG if pixel_format is None: pixel_format = constants.PixelModes.M_4BPP if xy is None: self._load_img_start(endian_type, pixel_format, rotate_mode) else: self._load_img_area_start(endian_type, pixel_format, rotate_mode, xy, dims) try: bpp = { PixelModes.M_2BPP : 2, PixelModes.M_4BPP : 4, PixelModes.M_8BPP : 8, }[pixel_format] except KeyError: raise ValueError("invalid pixel format") from None self.spi.pack_and_write_pixels(buf, bpp) self._load_img_end()
Python
def display_area(self, xy, dims, display_mode): ''' Update a portion of the display to whatever is currently stored in device memory for that region. Updated data can be written to device memory using EPD.write_img_area ''' self.spi.write_cmd(Commands.DPY_AREA, xy[0], xy[1], dims[0], dims[1], display_mode)
def display_area(self, xy, dims, display_mode): ''' Update a portion of the display to whatever is currently stored in device memory for that region. Updated data can be written to device memory using EPD.write_img_area ''' self.spi.write_cmd(Commands.DPY_AREA, xy[0], xy[1], dims[0], dims[1], display_mode)
Python
def update_system_info(self): ''' Get information about the system, and store it in class attributes ''' self.spi.write_cmd(Commands.GET_DEV_INFO) data = self.spi.read_data(20) if all(x == 0 for x in data): raise RuntimeError("communication with device failed") self.width = data[0] self.height = data[1] self.img_buf_address = data[3] << 16 | data[2] self.firmware_version = ''.join([chr(x>>8)+chr(x&0xFF) for x in data[4:12]]) self.lut_version = ''.join([chr(x>>8)+chr(x&0xFF) for x in data[12:20]])
def update_system_info(self): ''' Get information about the system, and store it in class attributes ''' self.spi.write_cmd(Commands.GET_DEV_INFO) data = self.spi.read_data(20) if all(x == 0 for x in data): raise RuntimeError("communication with device failed") self.width = data[0] self.height = data[1] self.img_buf_address = data[3] << 16 | data[2] self.firmware_version = ''.join([chr(x>>8)+chr(x&0xFF) for x in data[4:12]]) self.lut_version = ''.join([chr(x>>8)+chr(x&0xFF) for x in data[12:20]])
Python
def place_text(img, text, x, y): ''' Place some text on the image ''' fontsize = 20 draw = ImageDraw.Draw(img) font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf", fontsize) draw.text((x, y), text, font=font)
def place_text(img, text, x, y): ''' Place some text on the image ''' fontsize = 20 draw = ImageDraw.Draw(img) font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf", fontsize) draw.text((x, y), text, font=font)
Python
def _get_frame_buf(self): ''' Return the frame buf, rotated according to flip. Always returns a copy, even when rotate is None. ''' if self._rotate_method is None: return self.frame_buf.copy() return self.frame_buf.transpose(self._rotate_method)
def _get_frame_buf(self): ''' Return the frame buf, rotated according to flip. Always returns a copy, even when rotate is None. ''' if self._rotate_method is None: return self.frame_buf.copy() return self.frame_buf.transpose(self._rotate_method)
Python
def draw_full(self, mode): ''' Write the full image to the device, and display it using mode ''' frame = self._get_frame_buf() self.update(frame.tobytes(), (0,0), self.display_dims, mode) if self.track_gray: if mode == DisplayModes.DU: diff_box = self._compute_diff_box(self.prev_frame, frame, round_to=8) self.gray_change_bbox = self._merge_bbox(self.gray_change_bbox, diff_box) else: self.gray_change_bbox = None self.prev_frame = frame
def draw_full(self, mode): ''' Write the full image to the device, and display it using mode ''' frame = self._get_frame_buf() self.update(frame.tobytes(), (0,0), self.display_dims, mode) if self.track_gray: if mode == DisplayModes.DU: diff_box = self._compute_diff_box(self.prev_frame, frame, round_to=8) self.gray_change_bbox = self._merge_bbox(self.gray_change_bbox, diff_box) else: self.gray_change_bbox = None self.prev_frame = frame
Python
def draw_partial(self, mode): ''' Write only the rectangle bounding the pixels of the image that have changed since the last call to draw_full or draw_partial ''' if self.prev_frame is None: # first call since initialization self.draw_full(mode) if mode in low_bpp_modes: round_box = 8 else: round_box = 4 frame = self._get_frame_buf() # compute diff for this frame diff_box = self._compute_diff_box(self.prev_frame, frame, round_to=round_box) if self.track_gray: self.gray_change_bbox = self._merge_bbox(self.gray_change_bbox, diff_box) # reset grayscale changes to zero if mode != DisplayModes.DU: diff_box = self._round_bbox(self.gray_change_bbox, round_to=round_box) self.gray_change_bbox = None # if it is, nothing to do if diff_box is not None: buf = frame.crop(diff_box) # if we are using a black/white only mode, any pixels that changed should be # converted to black/white if mode == DisplayModes.DU: img_manip.make_changes_bw(frame.crop(diff_box), buf) xy = (diff_box[0], diff_box[1]) dims = (diff_box[2]-diff_box[0], diff_box[3]-diff_box[1]) self.update(buf.tobytes(), xy, dims, mode) self.prev_frame = frame
def draw_partial(self, mode): ''' Write only the rectangle bounding the pixels of the image that have changed since the last call to draw_full or draw_partial ''' if self.prev_frame is None: # first call since initialization self.draw_full(mode) if mode in low_bpp_modes: round_box = 8 else: round_box = 4 frame = self._get_frame_buf() # compute diff for this frame diff_box = self._compute_diff_box(self.prev_frame, frame, round_to=round_box) if self.track_gray: self.gray_change_bbox = self._merge_bbox(self.gray_change_bbox, diff_box) # reset grayscale changes to zero if mode != DisplayModes.DU: diff_box = self._round_bbox(self.gray_change_bbox, round_to=round_box) self.gray_change_bbox = None # if it is, nothing to do if diff_box is not None: buf = frame.crop(diff_box) # if we are using a black/white only mode, any pixels that changed should be # converted to black/white if mode == DisplayModes.DU: img_manip.make_changes_bw(frame.crop(diff_box), buf) xy = (diff_box[0], diff_box[1]) dims = (diff_box[2]-diff_box[0], diff_box[3]-diff_box[1]) self.update(buf.tobytes(), xy, dims, mode) self.prev_frame = frame
Python
def clear(self): ''' Clear display, device image buffer, and frame buffer (e.g. at startup) ''' # set frame buffer to all white self.frame_buf.paste(0xFF, box=(0, 0, self.width, self.height)) self.draw_full(DisplayModes.INIT)
def clear(self): ''' Clear display, device image buffer, and frame buffer (e.g. at startup) ''' # set frame buffer to all white self.frame_buf.paste(0xFF, box=(0, 0, self.width, self.height)) self.draw_full(DisplayModes.INIT)
Python
def _compute_diff_box(cls, a, b, round_to=2): ''' Find the four coordinates giving the bounding box of differences between a and b making sure they are divisible by round_to Parameters ---------- a : PIL.Image The first image b : PIL.Image The second image round_to : int The multiple to align the bbox to ''' box = ImageChops.difference(a, b).getbbox() if box is None: return None return cls._round_bbox(box, round_to)
def _compute_diff_box(cls, a, b, round_to=2): ''' Find the four coordinates giving the bounding box of differences between a and b making sure they are divisible by round_to Parameters ---------- a : PIL.Image The first image b : PIL.Image The second image round_to : int The multiple to align the bbox to ''' box = ImageChops.difference(a, b).getbbox() if box is None: return None return cls._round_bbox(box, round_to)
Python
def _round_bbox(box, round_to=4): ''' Round a bounding box so the edges are divisible by round_to ''' minx, miny, maxx, maxy = box minx -= minx%round_to maxx += round_to-1 - (maxx-1)%round_to miny -= miny%round_to maxy += round_to-1 - (maxy-1)%round_to return (minx, miny, maxx, maxy)
def _round_bbox(box, round_to=4): ''' Round a bounding box so the edges are divisible by round_to ''' minx, miny, maxx, maxy = box minx -= minx%round_to maxx += round_to-1 - (maxx-1)%round_to miny -= miny%round_to maxy += round_to-1 - (maxy-1)%round_to return (minx, miny, maxx, maxy)
Python
def _merge_bbox(a, b): ''' Return a bounding box that contains both bboxes a and b ''' if a is None: return b if b is None: return a minx = min(a[0], b[0]) miny = min(a[1], b[1]) maxx = max(a[2], b[2]) maxy = max(a[3], b[3]) return (minx, miny, maxx, maxy)
def _merge_bbox(a, b): ''' Return a bounding box that contains both bboxes a and b ''' if a is None: return b if b is None: return a minx = min(a[0], b[0]) miny = min(a[1], b[1]) maxx = max(a[2], b[2]) maxy = max(a[3], b[3]) return (minx, miny, maxx, maxy)
Python
def _place_text(img, text, x_offset=0, y_offset=0): ''' Put some centered text at a location on the image. ''' fontsize = 80 draw = ImageDraw.Draw(img) try: font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf', fontsize) except OSError: font = ImageFont.truetype('/usr/share/fonts/TTF/DejaVuSans.ttf', fontsize) img_width, img_height = img.size text_width, _ = font.getsize(text) text_height = fontsize draw_x = (img_width - text_width)//2 + x_offset draw_y = (img_height - text_height)//2 + y_offset draw.text((draw_x, draw_y), text, font=font)
def _place_text(img, text, x_offset=0, y_offset=0): ''' Put some centered text at a location on the image. ''' fontsize = 80 draw = ImageDraw.Draw(img) try: font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf', fontsize) except OSError: font = ImageFont.truetype('/usr/share/fonts/TTF/DejaVuSans.ttf', fontsize) img_width, img_height = img.size text_width, _ = font.getsize(text) text_height = fontsize draw_x = (img_width - text_width)//2 + x_offset draw_y = (img_height - text_height)//2 + y_offset draw.text((draw_x, draw_y), text, font=font)
Python
def find_first_repeated_freq(input_freqs, current_freq=0): """finds which frequency is reached twice first the current frequency is found as the cummulative sum, the input frequencies can be read more than once with the starting frequency being the last cummulative frequency on the previous pass.""" found = False set_of_sums = {current_freq} while not found: for freq in input_freqs: current_freq += freq if current_freq in set_of_sums: found = True break set_of_sums.add(current_freq) return current_freq
def find_first_repeated_freq(input_freqs, current_freq=0): """finds which frequency is reached twice first the current frequency is found as the cummulative sum, the input frequencies can be read more than once with the starting frequency being the last cummulative frequency on the previous pass.""" found = False set_of_sums = {current_freq} while not found: for freq in input_freqs: current_freq += freq if current_freq in set_of_sums: found = True break set_of_sums.add(current_freq) return current_freq
Python
def values_generator(min_value: int = -32767, max_value: int = 32767): """Function to generate values for tests""" for op in ops: mkdir(op) for elements_quantity in (500, 10**3, 10**4, 10**5, 5 * (10**5)): with open(f'{op}/data({elements_quantity}).txt', "a") as inp: for i in range(elements_quantity): value = randint(min_value, max_value) inp.write(str(value) + " ") inp.write("\n")
def values_generator(min_value: int = -32767, max_value: int = 32767): """Function to generate values for tests""" for op in ops: mkdir(op) for elements_quantity in (500, 10**3, 10**4, 10**5, 5 * (10**5)): with open(f'{op}/data({elements_quantity}).txt', "a") as inp: for i in range(elements_quantity): value = randint(min_value, max_value) inp.write(str(value) + " ") inp.write("\n")
Python
def PixelsToRaster(self, px, py, zoom): "Move the origin of pixel coordinates to top-left corner" mapSize = self.tileSize << zoom return px, mapSize - py
def PixelsToRaster(self, px, py, zoom): "Move the origin of pixel coordinates to top-left corner" mapSize = self.tileSize << zoom return px, mapSize - py
Python
def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile in EPSG:3857 coordinates" minx, miny = self.PixelsToMeters(tx * self.tileSize, ty * self.tileSize, zoom) maxx, maxy = self.PixelsToMeters((tx + 1) * self.tileSize, (ty + 1) * self.tileSize, zoom) return (minx, miny, maxx, maxy)
def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile in EPSG:3857 coordinates" minx, miny = self.PixelsToMeters(tx * self.tileSize, ty * self.tileSize, zoom) maxx, maxy = self.PixelsToMeters((tx + 1) * self.tileSize, (ty + 1) * self.tileSize, zoom) return (minx, miny, maxx, maxy)
Python
def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in latitude/longitude using WGS84 datum" bounds = self.TileBounds(tx, ty, zoom) minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) return (minLat, minLon, maxLat, maxLon)
def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in latitude/longitude using WGS84 datum" bounds = self.TileBounds(tx, ty, zoom) minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) return (minLat, minLon, maxLat, maxLon)
Python
def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): if i != -1: return i - 1 else: return 0
def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): if i != -1: return i - 1 else: return 0
Python
def QuadTree(self, tx, ty, zoom): "Converts TMS tile coordinates to Microsoft QuadTree" quadKey = "" ty = (2**zoom - 1) - ty for i in range(zoom, 0, -1): digit = 0 mask = 1 << (i - 1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: digit += 2 quadKey += str(digit) return quadKey
def QuadTree(self, tx, ty, zoom): "Converts TMS tile coordinates to Microsoft QuadTree" quadKey = "" ty = (2**zoom - 1) - ty for i in range(zoom, 0, -1): digit = 0 mask = 1 << (i - 1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: digit += 2 quadKey += str(digit) return quadKey
Python
def LonLatToPixels(self, lon, lat, zoom): "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" res = self.resFact / 2**zoom px = (180 + lon) / res py = (90 + lat) / res return px, py
def LonLatToPixels(self, lon, lat, zoom): "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" res = self.resFact / 2**zoom px = (180 + lon) / res py = (90 + lat) / res return px, py
Python
def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile" res = self.resFact / 2**zoom return ( tx * self.tileSize * res - 180, ty * self.tileSize * res - 90, (tx + 1) * self.tileSize * res - 180, (ty + 1) * self.tileSize * res - 90 )
def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile" res = self.resFact / 2**zoom return ( tx * self.tileSize * res - 180, ty * self.tileSize * res - 90, (tx + 1) * self.tileSize * res - 180, (ty + 1) * self.tileSize * res - 90 )
Python
def tilefilename(self, x, y, z): """Returns filename for tile with given coordinates""" tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] return os.path.join("TileGroup%.0f" % math.floor(tileIndex / self.tilesize), "%s-%s-%s.%s" % (z, x, y, self.tileformat))
def tilefilename(self, x, y, z): """Returns filename for tile with given coordinates""" tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] return os.path.join("TileGroup%.0f" % math.floor(tileIndex / self.tilesize), "%s-%s-%s.%s" % (z, x, y, self.tileformat))
Python
def generate_kml(tx, ty, tz, tileext, tilesize, tileswne, options, children=None, **args): """ Template for the KML. Returns filled string. """ if not children: children = [] args['tx'], args['ty'], args['tz'] = tx, ty, tz args['tileformat'] = tileext if 'tilesize' not in args: args['tilesize'] = tilesize if 'minlodpixels' not in args: args['minlodpixels'] = int(args['tilesize'] / 2) if 'maxlodpixels' not in args: args['maxlodpixels'] = int(args['tilesize'] * 8) if children == []: args['maxlodpixels'] = -1 if tx is None: tilekml = False args['title'] = options.title else: tilekml = True args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) args['south'], args['west'], args['north'], args['east'] = tileswne(tx, ty, tz) if tx == 0: args['drawOrder'] = 2 * tz + 1 elif tx is not None: args['drawOrder'] = 2 * tz else: args['drawOrder'] = 0 url = options.url if not url: if tilekml: url = "../../" else: url = "" s = """<?xml version="1.0" encoding="utf-8"?> <kml xmlns="http://www.opengis.net/kml/2.2"> <Document> <name>%(title)s</name> <description></description> <Style> <ListStyle id="hideChildren"> <listItemType>checkHideChildren</listItemType> </ListStyle> </Style>""" % args if tilekml: s += """ <Region> <LatLonAltBox> <north>%(north).14f</north> <south>%(south).14f</south> <east>%(east).14f</east> <west>%(west).14f</west> </LatLonAltBox> <Lod> <minLodPixels>%(minlodpixels)d</minLodPixels> <maxLodPixels>%(maxlodpixels)d</maxLodPixels> </Lod> </Region> <GroundOverlay> <drawOrder>%(drawOrder)d</drawOrder> <Icon> <href>%(ty)d.%(tileformat)s</href> </Icon> <LatLonBox> <north>%(north).14f</north> <south>%(south).14f</south> <east>%(east).14f</east> <west>%(west).14f</west> </LatLonBox> </GroundOverlay> """ % args for cx, cy, cz in children: csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) s += """ <NetworkLink> <name>%d/%d/%d.%s</name> <Region> <LatLonAltBox> <north>%.14f</north> <south>%.14f</south> <east>%.14f</east> <west>%.14f</west> </LatLonAltBox> <Lod> <minLodPixels>%d</minLodPixels> <maxLodPixels>-1</maxLodPixels> </Lod> </Region> <Link> <href>%s%d/%d/%d.kml</href> <viewRefreshMode>onRegion</viewRefreshMode> <viewFormat/> </Link> </NetworkLink> """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, args['minlodpixels'], url, cz, cx, cy) s += """ </Document> </kml> """ return s
def generate_kml(tx, ty, tz, tileext, tilesize, tileswne, options, children=None, **args): """ Template for the KML. Returns filled string. """ if not children: children = [] args['tx'], args['ty'], args['tz'] = tx, ty, tz args['tileformat'] = tileext if 'tilesize' not in args: args['tilesize'] = tilesize if 'minlodpixels' not in args: args['minlodpixels'] = int(args['tilesize'] / 2) if 'maxlodpixels' not in args: args['maxlodpixels'] = int(args['tilesize'] * 8) if children == []: args['maxlodpixels'] = -1 if tx is None: tilekml = False args['title'] = options.title else: tilekml = True args['title'] = "%d/%d/%d.kml" % (tz, tx, ty) args['south'], args['west'], args['north'], args['east'] = tileswne(tx, ty, tz) if tx == 0: args['drawOrder'] = 2 * tz + 1 elif tx is not None: args['drawOrder'] = 2 * tz else: args['drawOrder'] = 0 url = options.url if not url: if tilekml: url = "../../" else: url = "" s = """<?xml version="1.0" encoding="utf-8"?> <kml xmlns="http://www.opengis.net/kml/2.2"> <Document> <name>%(title)s</name> <description></description> <Style> <ListStyle id="hideChildren"> <listItemType>checkHideChildren</listItemType> </ListStyle> </Style>""" % args if tilekml: s += """ <Region> <LatLonAltBox> <north>%(north).14f</north> <south>%(south).14f</south> <east>%(east).14f</east> <west>%(west).14f</west> </LatLonAltBox> <Lod> <minLodPixels>%(minlodpixels)d</minLodPixels> <maxLodPixels>%(maxlodpixels)d</maxLodPixels> </Lod> </Region> <GroundOverlay> <drawOrder>%(drawOrder)d</drawOrder> <Icon> <href>%(ty)d.%(tileformat)s</href> </Icon> <LatLonBox> <north>%(north).14f</north> <south>%(south).14f</south> <east>%(east).14f</east> <west>%(west).14f</west> </LatLonBox> </GroundOverlay> """ % args for cx, cy, cz in children: csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) s += """ <NetworkLink> <name>%d/%d/%d.%s</name> <Region> <LatLonAltBox> <north>%.14f</north> <south>%.14f</south> <east>%.14f</east> <west>%.14f</west> </LatLonAltBox> <Lod> <minLodPixels>%d</minLodPixels> <maxLodPixels>-1</maxLodPixels> </Lod> </Region> <Link> <href>%s%d/%d/%d.kml</href> <viewRefreshMode>onRegion</viewRefreshMode> <viewFormat/> </Link> </NetworkLink> """ % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest, args['minlodpixels'], url, cz, cx, cy) s += """ </Document> </kml> """ return s
Python
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tilesize = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands + 1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias': # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tilesize = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands + 1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias': # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))
Python
def reproject_dataset(from_dataset, from_srs, to_srs, options=None): """ Returns the input dataset in the expected "destination" SRS. If the dataset is already in the correct SRS, returns it unmodified """ if not from_srs or not to_srs: raise GDALError("from and to SRS must be defined to reproject the dataset") if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or (from_dataset.GetGCPCount() != 0): to_dataset = gdal.AutoCreateWarpedVRT(from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt()) if options and options.verbose: print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')") to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) return to_dataset else: return from_dataset
def reproject_dataset(from_dataset, from_srs, to_srs, options=None): """ Returns the input dataset in the expected "destination" SRS. If the dataset is already in the correct SRS, returns it unmodified """ if not from_srs or not to_srs: raise GDALError("from and to SRS must be defined to reproject the dataset") if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or (from_dataset.GetGCPCount() != 0): to_dataset = gdal.AutoCreateWarpedVRT(from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt()) if options and options.verbose: print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')") to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) return to_dataset else: return from_dataset
Python
def update_no_data_values(warped_vrt_dataset, nodata_values, options=None): """ Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed """ # TODO: gbataille - Seems that I forgot tests there if nodata_values != []: temp_file = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(temp_file, warped_vrt_dataset) with open(temp_file, 'r') as f: vrt_string = f.read() vrt_string = add_gdal_warp_options_to_string( vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"}) # TODO: gbataille - check the need for this replacement. Seems to work without # # replace BandMapping tag for NODATA bands.... # for i in range(len(nodata_values)): # s = s.replace( # '<BandMapping src="%i" dst="%i"/>' % ((i+1), (i+1)), # """ # <BandMapping src="%i" dst="%i"> # <SrcNoDataReal>%i</SrcNoDataReal> # <SrcNoDataImag>0</SrcNoDataImag> # <DstNoDataReal>%i</DstNoDataReal> # <DstNoDataImag>0</DstNoDataImag> # </BandMapping> # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) # save the corrected VRT with open(temp_file, 'w') as f: f.write(vrt_string) corrected_dataset = gdal.Open(temp_file) os.unlink(temp_file) # set NODATA_VALUE metadata corrected_dataset.SetMetadataItem( 'NODATA_VALUES', ' '.join([str(i) for i in nodata_values])) if options and options.verbose: print("Modified warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(vrt_string) return corrected_dataset
def update_no_data_values(warped_vrt_dataset, nodata_values, options=None): """ Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed """ # TODO: gbataille - Seems that I forgot tests there if nodata_values != []: temp_file = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(temp_file, warped_vrt_dataset) with open(temp_file, 'r') as f: vrt_string = f.read() vrt_string = add_gdal_warp_options_to_string( vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"}) # TODO: gbataille - check the need for this replacement. Seems to work without # # replace BandMapping tag for NODATA bands.... # for i in range(len(nodata_values)): # s = s.replace( # '<BandMapping src="%i" dst="%i"/>' % ((i+1), (i+1)), # """ # <BandMapping src="%i" dst="%i"> # <SrcNoDataReal>%i</SrcNoDataReal> # <SrcNoDataImag>0</SrcNoDataImag> # <DstNoDataReal>%i</DstNoDataReal> # <DstNoDataImag>0</DstNoDataImag> # </BandMapping> # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) # save the corrected VRT with open(temp_file, 'w') as f: f.write(vrt_string) corrected_dataset = gdal.Open(temp_file) os.unlink(temp_file) # set NODATA_VALUE metadata corrected_dataset.SetMetadataItem( 'NODATA_VALUES', ' '.join([str(i) for i in nodata_values])) if options and options.verbose: print("Modified warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(vrt_string) return corrected_dataset
Python
def update_alpha_value_for_non_alpha_inputs(warped_vrt_dataset, options=None): """ Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has not been forced by options """ if warped_vrt_dataset.RasterCount in [1, 3]: tempfilename = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(tempfilename, warped_vrt_dataset) with open(tempfilename) as f: orig_data = f.read() alpha_data = add_alpha_band_to_string_vrt(orig_data) with open(tempfilename, 'w') as f: f.write(alpha_data) warped_vrt_dataset = gdal.Open(tempfilename) os.unlink(tempfilename) if options and options.verbose: print("Modified -dstalpha warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(alpha_data) return warped_vrt_dataset
def update_alpha_value_for_non_alpha_inputs(warped_vrt_dataset, options=None): """ Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has not been forced by options """ if warped_vrt_dataset.RasterCount in [1, 3]: tempfilename = gettempfilename('-gdal2tiles.vrt') warped_vrt_dataset.GetDriver().CreateCopy(tempfilename, warped_vrt_dataset) with open(tempfilename) as f: orig_data = f.read() alpha_data = add_alpha_band_to_string_vrt(orig_data) with open(tempfilename, 'w') as f: f.write(alpha_data) warped_vrt_dataset = gdal.Open(tempfilename) os.unlink(tempfilename) if options and options.verbose: print("Modified -dstalpha warping result saved into 'tiles1.vrt'") # TODO: gbataille - test replacing that with a gdal write of the dataset (more # accurately what's used, even if should be the same with open("tiles1.vrt", "w") as f: f.write(alpha_data) return warped_vrt_dataset
Python
def nb_data_bands(dataset): """ Return the number of data (non-alpha) bands of a gdal dataset """ alphaband = dataset.GetRasterBand(1).GetMaskBand() if ((alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or dataset.RasterCount == 4 or dataset.RasterCount == 2): return dataset.RasterCount - 1 else: return dataset.RasterCount
def nb_data_bands(dataset): """ Return the number of data (non-alpha) bands of a gdal dataset """ alphaband = dataset.GetRasterBand(1).GetMaskBand() if ((alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or dataset.RasterCount == 4 or dataset.RasterCount == 2): return dataset.RasterCount - 1 else: return dataset.RasterCount
Python
def create_overview_tiles(tile_job_info, output_folder, options): """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" mem_driver = gdal.GetDriverByName('MEM') tile_driver = tile_job_info.tile_driver out_driver = gdal.GetDriverByName(tile_driver) tilebands = tile_job_info.nb_data_bands + 1 # Usage of existing tiles: from 4 underlying tiles generate one as overview. tcount = 0 for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] tcount += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 if tcount == 0: return if not options.quiet: print("Generating Overview Tiles:") progress_bar = ProgressBar(tcount) progress_bar.start() for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 tilefilename = os.path.join(output_folder, str(tz), str(tx), "%s.%s" % (ty, tile_job_info.tile_extension)) if options.verbose: print(ti, '/', tcount, tilefilename) if options.resume and os.path.exists(tilefilename): if options.verbose: print("Tile generation skipped because of --resume") else: progress_bar.log_progress() continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) dsquery = mem_driver.Create('', 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands) # TODO: fill the null value dstile = mem_driver.Create('', tile_job_info.tile_size, tile_job_info.tile_size, tilebands) # TODO: Implement more clever walking on the tiles with cache functionality # probably walk should start with reading of four tiles from top left corner # Hilbert curve children = [] # Read the tiles and write them to query window for y in range(2 * ty, 2 * ty + 2): for x in range(2 * tx, 2 * tx + 2): minx, miny, maxx, maxy = tile_job_info.tminmax[tz + 1] if x >= minx and x <= maxx and y >= miny and y <= maxy: dsquerytile = gdal.Open( os.path.join(output_folder, str(tz + 1), str(x), "%s.%s" % (y, tile_job_info.tile_extension)), gdal.GA_ReadOnly) if (ty == 0 and y == 1) or (ty != 0 and (y % (2 * ty)) != 0): tileposy = 0 else: tileposy = tile_job_info.tile_size if tx: tileposx = x % (2 * tx) * tile_job_info.tile_size elif tx == 0 and x == 1: tileposx = tile_job_info.tile_size else: tileposx = 0 dsquery.WriteRaster( tileposx, tileposy, tile_job_info.tile_size, tile_job_info.tile_size, dsquerytile.ReadRaster(0, 0, tile_job_info.tile_size, tile_job_info.tile_size), band_list=list(range(1, tilebands + 1))) children.append([x, y, tz + 1]) scale_query_to_tile(dsquery, dstile, tile_driver, options, tilefilename=tilefilename) # Write a copy of tile to png/jpg if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_driver.CreateCopy(tilefilename, dstile, strict=0) if options.verbose: print("\tbuild from zoom", tz + 1, " tiles:", (2 * tx, 2 * ty), (2 * tx + 1, 2 * ty), (2 * tx, 2 * ty + 1), (2 * tx + 1, 2 * ty + 1)) # Create a KML file for this tile. if tile_job_info.kml: with open(os.path.join( output_folder, '%d/%d/%d.kml' % (tz, tx, ty) ), 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, get_tile_swne(tile_job_info, options), options, children ).encode('utf-8')) if not options.verbose and not options.quiet: progress_bar.log_progress()
def create_overview_tiles(tile_job_info, output_folder, options): """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" mem_driver = gdal.GetDriverByName('MEM') tile_driver = tile_job_info.tile_driver out_driver = gdal.GetDriverByName(tile_driver) tilebands = tile_job_info.nb_data_bands + 1 # Usage of existing tiles: from 4 underlying tiles generate one as overview. tcount = 0 for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] tcount += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 if tcount == 0: return if not options.quiet: print("Generating Overview Tiles:") progress_bar = ProgressBar(tcount) progress_bar.start() for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 tilefilename = os.path.join(output_folder, str(tz), str(tx), "%s.%s" % (ty, tile_job_info.tile_extension)) if options.verbose: print(ti, '/', tcount, tilefilename) if options.resume and os.path.exists(tilefilename): if options.verbose: print("Tile generation skipped because of --resume") else: progress_bar.log_progress() continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) dsquery = mem_driver.Create('', 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands) # TODO: fill the null value dstile = mem_driver.Create('', tile_job_info.tile_size, tile_job_info.tile_size, tilebands) # TODO: Implement more clever walking on the tiles with cache functionality # probably walk should start with reading of four tiles from top left corner # Hilbert curve children = [] # Read the tiles and write them to query window for y in range(2 * ty, 2 * ty + 2): for x in range(2 * tx, 2 * tx + 2): minx, miny, maxx, maxy = tile_job_info.tminmax[tz + 1] if x >= minx and x <= maxx and y >= miny and y <= maxy: dsquerytile = gdal.Open( os.path.join(output_folder, str(tz + 1), str(x), "%s.%s" % (y, tile_job_info.tile_extension)), gdal.GA_ReadOnly) if (ty == 0 and y == 1) or (ty != 0 and (y % (2 * ty)) != 0): tileposy = 0 else: tileposy = tile_job_info.tile_size if tx: tileposx = x % (2 * tx) * tile_job_info.tile_size elif tx == 0 and x == 1: tileposx = tile_job_info.tile_size else: tileposx = 0 dsquery.WriteRaster( tileposx, tileposy, tile_job_info.tile_size, tile_job_info.tile_size, dsquerytile.ReadRaster(0, 0, tile_job_info.tile_size, tile_job_info.tile_size), band_list=list(range(1, tilebands + 1))) children.append([x, y, tz + 1]) scale_query_to_tile(dsquery, dstile, tile_driver, options, tilefilename=tilefilename) # Write a copy of tile to png/jpg if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_driver.CreateCopy(tilefilename, dstile, strict=0) if options.verbose: print("\tbuild from zoom", tz + 1, " tiles:", (2 * tx, 2 * ty), (2 * tx + 1, 2 * ty), (2 * tx, 2 * ty + 1), (2 * tx + 1, 2 * ty + 1)) # Create a KML file for this tile. if tile_job_info.kml: with open(os.path.join( output_folder, '%d/%d/%d.kml' % (tz, tx, ty) ), 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, get_tile_swne(tile_job_info, options), options, children ).encode('utf-8')) if not options.verbose and not options.quiet: progress_bar.log_progress()
Python
def generate_metadata(self): """ Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing). """ if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if self.options.profile == 'mercator': south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) south, west = max(-85.05112878, south), max(-180.0, west) north, east = min(85.05112878, north), min(180.0, east) self.swne = (south, west, north, east) # Generate googlemaps.html if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'googlemaps.html'))): with open(os.path.join(self.output_folder, 'googlemaps.html'), 'wb') as f: f.write(self.generate_googlemaps().encode('utf-8')) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate leaflet.html if self.options.webviewer in ('all', 'leaflet'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'leaflet.html'))): with open(os.path.join(self.output_folder, 'leaflet.html'), 'wb') as f: f.write(self.generate_leaflet().encode('utf-8')) elif self.options.profile == 'geodetic': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy south, west = max(-90.0, south), max(-180.0, west) north, east = min(90.0, north), min(180.0, east) self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) elif self.options.profile == 'raster': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate tilemapresource.xml. if not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'tilemapresource.xml')): with open(os.path.join(self.output_folder, 'tilemapresource.xml'), 'wb') as f: f.write(self.generate_tilemapresource().encode('utf-8')) if self.kml: # TODO: Maybe problem for not automatically generated tminz # The root KML should contain links to all tiles in the tminz level children = [] xmin, ymin, xmax, ymax = self.tminmax[self.tminz] for x in range(xmin, xmax + 1): for y in range(ymin, ymax + 1): children.append([x, y, self.tminz]) # Generate Root KML if self.kml: if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'doc.kml'))): with open(os.path.join(self.output_folder, 'doc.kml'), 'wb') as f: f.write(generate_kml( None, None, None, self.tileext, self.tilesize, self.tileswne, self.options, children ).encode('utf-8'))
def generate_metadata(self): """ Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing). """ if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if self.options.profile == 'mercator': south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) south, west = max(-85.05112878, south), max(-180.0, west) north, east = min(85.05112878, north), min(180.0, east) self.swne = (south, west, north, east) # Generate googlemaps.html if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'googlemaps.html'))): with open(os.path.join(self.output_folder, 'googlemaps.html'), 'wb') as f: f.write(self.generate_googlemaps().encode('utf-8')) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate leaflet.html if self.options.webviewer in ('all', 'leaflet'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'leaflet.html'))): with open(os.path.join(self.output_folder, 'leaflet.html'), 'wb') as f: f.write(self.generate_leaflet().encode('utf-8')) elif self.options.profile == 'geodetic': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy south, west = max(-90.0, south), max(-180.0, west) north, east = min(90.0, north), min(180.0, east) self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) elif self.options.profile == 'raster': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy self.swne = (south, west, north, east) # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate tilemapresource.xml. if not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'tilemapresource.xml')): with open(os.path.join(self.output_folder, 'tilemapresource.xml'), 'wb') as f: f.write(self.generate_tilemapresource().encode('utf-8')) if self.kml: # TODO: Maybe problem for not automatically generated tminz # The root KML should contain links to all tiles in the tminz level children = [] xmin, ymin, xmax, ymax = self.tminmax[self.tminz] for x in range(xmin, xmax + 1): for y in range(ymin, ymax + 1): children.append([x, y, self.tminz]) # Generate Root KML if self.kml: if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'doc.kml'))): with open(os.path.join(self.output_folder, 'doc.kml'), 'wb') as f: f.write(generate_kml( None, None, None, self.tileext, self.tilesize, self.tileswne, self.options, children ).encode('utf-8'))
Python
def generate_base_tiles(self): """ Generation of the base tiles (the lowest in the pyramid) directly from the input raster """ if not self.options.quiet: print("Generating Base Tiles:") if self.options.verbose: print('') print("Tiles generated from the max zoom level:") print("----------------------------------------") print('') # Set the bounds tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] ds = self.warped_input_dataset tilebands = self.dataBandsCount + 1 querysize = self.querysize if self.options.verbose: print("dataBandsCount: ", self.dataBandsCount) print("tilebands: ", tilebands) tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 tile_details = [] tz = self.tmaxz for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 tilefilename = os.path.join( self.output_folder, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) if self.options.verbose: print(ti, '/', tcount, tilefilename) if self.options.resume and os.path.exists(tilefilename): if self.options.verbose: print("Tile generation skipped because of --resume") continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) if self.options.profile == 'mercator': # Tile bounds in EPSG:3857 b = self.mercator.TileBounds(tx, ty, tz) elif self.options.profile == 'geodetic': b = self.geodetic.TileBounds(tx, ty, tz) # Don't scale up by nearest neighbour, better change the querysize # to the native resolution (and return smaller query tile) for scaling if self.options.profile in ('mercator', 'geodetic'): rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) # Pixel size in the raster covering query geo extent nativesize = wb[0] + wb[2] if self.options.verbose: print("\tNative Extent (querysize", nativesize, "): ", rb, wb) # Tile bounds in raster coordinates for ReadRaster query rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1], querysize=querysize) rx, ry, rxsize, rysize = rb wx, wy, wxsize, wysize = wb else: # 'raster' profile: tsize = int(self.tsize[tz]) # tilesize in raster coordinates for actual zoom xsize = self.warped_input_dataset.RasterXSize # size of the raster in pixels ysize = self.warped_input_dataset.RasterYSize if tz >= self.nativezoom: querysize = self.tilesize rx = (tx) * tsize rxsize = 0 if tx == tmaxx: rxsize = xsize % tsize if rxsize == 0: rxsize = tsize rysize = 0 if ty == tmaxy: rysize = ysize % tsize if rysize == 0: rysize = tsize ry = ysize - (ty * tsize) - rysize wx, wy = 0, 0 wxsize = int(rxsize / float(tsize) * self.tilesize) wysize = int(rysize / float(tsize) * self.tilesize) if wysize != self.tilesize: wy = self.tilesize - wysize # Read the source raster if anything is going inside the tile as per the computed # geo_query tile_details.append( TileDetail( tx=tx, ty=ty, tz=tz, rx=rx, ry=ry, rxsize=rxsize, rysize=rysize, wx=wx, wy=wy, wxsize=wxsize, wysize=wysize, querysize=querysize, ) ) conf = TileJobInfo( src_file=self.tmp_vrt_filename, nb_data_bands=self.dataBandsCount, output_file_path=self.output_folder, tile_extension=self.tileext, tile_driver=self.tiledriver, tile_size=self.tilesize, kml=self.kml, tminmax=self.tminmax, tminz=self.tminz, tmaxz=self.tmaxz, in_srs_wkt=self.in_srs_wkt, out_geo_trans=self.out_gt, ominy=self.ominy, is_epsg_4326=self.isepsg4326, options=self.options, ) return conf, tile_details
def generate_base_tiles(self): """ Generation of the base tiles (the lowest in the pyramid) directly from the input raster """ if not self.options.quiet: print("Generating Base Tiles:") if self.options.verbose: print('') print("Tiles generated from the max zoom level:") print("----------------------------------------") print('') # Set the bounds tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] ds = self.warped_input_dataset tilebands = self.dataBandsCount + 1 querysize = self.querysize if self.options.verbose: print("dataBandsCount: ", self.dataBandsCount) print("tilebands: ", tilebands) tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 tile_details = [] tz = self.tmaxz for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 tilefilename = os.path.join( self.output_folder, str(tz), str(tx), "%s.%s" % (ty, self.tileext)) if self.options.verbose: print(ti, '/', tcount, tilefilename) if self.options.resume and os.path.exists(tilefilename): if self.options.verbose: print("Tile generation skipped because of --resume") continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) if self.options.profile == 'mercator': # Tile bounds in EPSG:3857 b = self.mercator.TileBounds(tx, ty, tz) elif self.options.profile == 'geodetic': b = self.geodetic.TileBounds(tx, ty, tz) # Don't scale up by nearest neighbour, better change the querysize # to the native resolution (and return smaller query tile) for scaling if self.options.profile in ('mercator', 'geodetic'): rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) # Pixel size in the raster covering query geo extent nativesize = wb[0] + wb[2] if self.options.verbose: print("\tNative Extent (querysize", nativesize, "): ", rb, wb) # Tile bounds in raster coordinates for ReadRaster query rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1], querysize=querysize) rx, ry, rxsize, rysize = rb wx, wy, wxsize, wysize = wb else: # 'raster' profile: tsize = int(self.tsize[tz]) # tilesize in raster coordinates for actual zoom xsize = self.warped_input_dataset.RasterXSize # size of the raster in pixels ysize = self.warped_input_dataset.RasterYSize if tz >= self.nativezoom: querysize = self.tilesize rx = (tx) * tsize rxsize = 0 if tx == tmaxx: rxsize = xsize % tsize if rxsize == 0: rxsize = tsize rysize = 0 if ty == tmaxy: rysize = ysize % tsize if rysize == 0: rysize = tsize ry = ysize - (ty * tsize) - rysize wx, wy = 0, 0 wxsize = int(rxsize / float(tsize) * self.tilesize) wysize = int(rysize / float(tsize) * self.tilesize) if wysize != self.tilesize: wy = self.tilesize - wysize # Read the source raster if anything is going inside the tile as per the computed # geo_query tile_details.append( TileDetail( tx=tx, ty=ty, tz=tz, rx=rx, ry=ry, rxsize=rxsize, rysize=rysize, wx=wx, wy=wy, wxsize=wxsize, wysize=wysize, querysize=querysize, ) ) conf = TileJobInfo( src_file=self.tmp_vrt_filename, nb_data_bands=self.dataBandsCount, output_file_path=self.output_folder, tile_extension=self.tileext, tile_driver=self.tiledriver, tile_size=self.tilesize, kml=self.kml, tminmax=self.tminmax, tminz=self.tminz, tmaxz=self.tmaxz, in_srs_wkt=self.in_srs_wkt, out_geo_trans=self.out_gt, ominy=self.ominy, is_epsg_4326=self.isepsg4326, options=self.options, ) return conf, tile_details
Python
def generate_googlemaps(self): """ Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['googlemapskey'] = self.options.googlekey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml"> <head> <title>%(title)s</title> <meta http-equiv="content-type" content="text/html; charset=utf-8"/> <meta http-equiv='imagetoolbar' content='no'/> <style type="text/css"> v\:* {behavior:url(#default#VML);} html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; } body { margin: 10px; background: #fff; } h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; } #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; } #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;} #map { height: 95%%; border: 1px solid #888; } </style> <script src='http://maps.google.com/maps?file=api&amp;v=2&amp;key=%(googlemapskey)s'></script> <script> //<![CDATA[ /* * Constants for given map * TODO: read it from tilemapresource.xml */ var mapBounds = new GLatLngBounds(new GLatLng(%(south)s, %(west)s), new GLatLng(%(north)s, %(east)s)); var mapMinZoom = %(minzoom)s; var mapMaxZoom = %(maxzoom)s; var opacity = 0.75; var map; var hybridOverlay; /* * Create a Custom Opacity GControl * http://www.maptiler.org/google-maps-overlay-opacity-control/ */ var CTransparencyLENGTH = 58; // maximum width that the knob can move (slide width minus knob width) function CTransparencyControl( overlay ) { this.overlay = overlay; this.opacity = overlay.getTileLayer().getOpacity(); } CTransparencyControl.prototype = new GControl(); // This function positions the slider to match the specified opacity CTransparencyControl.prototype.setSlider = function(pos) { var left = Math.round((CTransparencyLENGTH*pos)); this.slide.left = left; this.knob.style.left = left+"px"; this.knob.style.top = "0px"; } // This function reads the slider and sets the overlay opacity level CTransparencyControl.prototype.setOpacity = function() { // set the global variable opacity = this.slide.left/CTransparencyLENGTH; this.map.clearOverlays(); this.map.addOverlay(this.overlay, { zPriority: 0 }); if (this.map.getCurrentMapType() == G_HYBRID_MAP) { this.map.addOverlay(hybridOverlay); } } // This gets called by the API when addControl(new CTransparencyControl()) CTransparencyControl.prototype.initialize = function(map) { var that=this; this.map = map; // Is this MSIE, if so we need to use AlphaImageLoader var agent = navigator.userAgent.toLowerCase(); if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true} else {this.ie = false} // create the background graphic as a <div> containing an image var container = document.createElement("div"); container.style.width="70px"; container.style.height="21px"; // Handle transparent PNG files in MSIE if (this.ie) { var loader = "filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');"; container.innerHTML = '<div style="height:21px; width:70px; ' +loader+ '" ></div>'; } else { container.innerHTML = '<div style="height:21px; width:70px; background-image: url(http://www.maptiler.org/img/opacity-slider.png)" ></div>'; } // create the knob as a GDraggableObject // Handle transparent PNG files in MSIE if (this.ie) { var loader = "progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');"; this.knob = document.createElement("div"); this.knob.style.height="21px"; this.knob.style.width="13px"; this.knob.style.overflow="hidden"; this.knob_img = document.createElement("div"); this.knob_img.style.height="21px"; this.knob_img.style.width="83px"; this.knob_img.style.filter=loader; this.knob_img.style.position="relative"; this.knob_img.style.left="-70px"; this.knob.appendChild(this.knob_img); } else { this.knob = document.createElement("div"); this.knob.style.height="21px"; this.knob.style.width="13px"; this.knob.style.backgroundImage="url(http://www.maptiler.org/img/opacity-slider.png)"; this.knob.style.backgroundPosition="-70px 0px"; } container.appendChild(this.knob); this.slide=new GDraggableObject(this.knob, {container:container}); this.slide.setDraggableCursor('pointer'); this.slide.setDraggingCursor('pointer'); this.container = container; // attach the control to the map map.getContainer().appendChild(container); // init slider this.setSlider(this.opacity); // Listen for the slider being moved and set the opacity GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()}); //GEvent.addListener(this.container, "click", function( x, y ) { alert(x, y) }); return container; } // Set the default position for the control CTransparencyControl.prototype.getDefaultPosition = function() { return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47)); } /* * Full-screen Window Resize */ function getWindowHeight() { if (self.innerHeight) return self.innerHeight; if (document.documentElement && document.documentElement.clientHeight) return document.documentElement.clientHeight; if (document.body) return document.body.clientHeight; return 0; } function getWindowWidth() { if (self.innerWidth) return self.innerWidth; if (document.documentElement && document.documentElement.clientWidth) return document.documentElement.clientWidth; if (document.body) return document.body.clientWidth; return 0; } function resize() { var map = document.getElementById("map"); var header = document.getElementById("header"); var subheader = document.getElementById("subheader"); map.style.height = (getWindowHeight()-80) + "px"; map.style.width = (getWindowWidth()-20) + "px"; header.style.width = (getWindowWidth()-20) + "px"; subheader.style.width = (getWindowWidth()-20) + "px"; // map.checkResize(); } /* * Main load function: */ function load() { if (GBrowserIsCompatible()) { // Bug in the Google Maps: Copyright for Overlay is not correctly displayed var gcr = GMapType.prototype.getCopyrights; GMapType.prototype.getCopyrights = function(bounds,zoom) { return ["%(copyright)s"].concat(gcr.call(this,bounds,zoom)); } map = new GMap2( document.getElementById("map"), { backgroundColor: '#fff' } ); map.addMapType(G_PHYSICAL_MAP); map.setMapType(G_PHYSICAL_MAP); map.setCenter( mapBounds.getCenter(), map.getBoundsZoomLevel( mapBounds )); hybridOverlay = new GTileLayerOverlay( G_HYBRID_MAP.getTileLayers()[1] ); GEvent.addListener(map, "maptypechanged", function() { if (map.getCurrentMapType() == G_HYBRID_MAP) { map.addOverlay(hybridOverlay); } else { map.removeOverlay(hybridOverlay); } } ); var tilelayer = new GTileLayer(GCopyrightCollection(''), mapMinZoom, mapMaxZoom); var mercator = new GMercatorProjection(mapMaxZoom+1); tilelayer.getTileUrl = function(tile,zoom) { if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) { return "http://www.maptiler.org/img/none.png"; } var ymax = 1 << zoom; var y = ymax - tile.y -1; var tileBounds = new GLatLngBounds( mercator.fromPixelToLatLng( new GPoint( (tile.x)*256, (tile.y+1)*256 ) , zoom ), mercator.fromPixelToLatLng( new GPoint( (tile.x+1)*256, (tile.y)*256 ) , zoom ) ); if (mapBounds.intersects(tileBounds)) { return zoom+"/"+tile.x+"/"+y+".png"; } else { return "http://www.maptiler.org/img/none.png"; } } // IE 7-: support for PNG alpha channel // Unfortunately, the opacity for whole overlay is then not changeable, either or... tilelayer.isPng = function() { return true;}; tilelayer.getOpacity = function() { return opacity; } overlay = new GTileLayerOverlay( tilelayer ); map.addOverlay(overlay); map.addControl(new GLargeMapControl()); map.addControl(new GHierarchicalMapTypeControl()); map.addControl(new CTransparencyControl( overlay )); """ % args # noqa if self.kml: s += """ map.addMapType(G_SATELLITE_3D_MAP); map.getEarthInstance(getEarthInstanceCB); """ s += """ map.enableContinuousZoom(); map.enableScrollWheelZoom(); map.setMapType(G_HYBRID_MAP); } resize(); } """ if self.kml: s += """ function getEarthInstanceCB(object) { var ge = object; if (ge) { var url = document.location.toString(); url = url.substr(0,url.lastIndexOf('/'))+'/doc.kml'; var link = ge.createLink(""); if ("%(publishurl)s") { link.setHref("%(publishurl)s/doc.kml") } else { link.setHref(url) }; var networkLink = ge.createNetworkLink(""); networkLink.setName("TMS Map Overlay"); networkLink.setFlyToView(true); networkLink.setLink(link); ge.getFeatures().appendChild(networkLink); } else { // alert("You should open a KML in Google Earth"); // add div with the link to generated KML... - maybe JavaScript redirect to the URL of KML? } } """ % args # noqa s += """ onresize=function(){ resize(); }; //]]> </script> </head> <body onload="load()"> <div id="header"><h1>%(title)s</h1></div> <div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a> <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU --> </div> <div id="map"></div> </body> </html> """ % args # noqa return s
def generate_googlemaps(self): """ Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['googlemapskey'] = self.options.googlekey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml"> <head> <title>%(title)s</title> <meta http-equiv="content-type" content="text/html; charset=utf-8"/> <meta http-equiv='imagetoolbar' content='no'/> <style type="text/css"> v\:* {behavior:url(#default#VML);} html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; } body { margin: 10px; background: #fff; } h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; } #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; } #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;} #map { height: 95%%; border: 1px solid #888; } </style> <script src='http://maps.google.com/maps?file=api&amp;v=2&amp;key=%(googlemapskey)s'></script> <script> //<![CDATA[ /* * Constants for given map * TODO: read it from tilemapresource.xml */ var mapBounds = new GLatLngBounds(new GLatLng(%(south)s, %(west)s), new GLatLng(%(north)s, %(east)s)); var mapMinZoom = %(minzoom)s; var mapMaxZoom = %(maxzoom)s; var opacity = 0.75; var map; var hybridOverlay; /* * Create a Custom Opacity GControl * http://www.maptiler.org/google-maps-overlay-opacity-control/ */ var CTransparencyLENGTH = 58; // maximum width that the knob can move (slide width minus knob width) function CTransparencyControl( overlay ) { this.overlay = overlay; this.opacity = overlay.getTileLayer().getOpacity(); } CTransparencyControl.prototype = new GControl(); // This function positions the slider to match the specified opacity CTransparencyControl.prototype.setSlider = function(pos) { var left = Math.round((CTransparencyLENGTH*pos)); this.slide.left = left; this.knob.style.left = left+"px"; this.knob.style.top = "0px"; } // This function reads the slider and sets the overlay opacity level CTransparencyControl.prototype.setOpacity = function() { // set the global variable opacity = this.slide.left/CTransparencyLENGTH; this.map.clearOverlays(); this.map.addOverlay(this.overlay, { zPriority: 0 }); if (this.map.getCurrentMapType() == G_HYBRID_MAP) { this.map.addOverlay(hybridOverlay); } } // This gets called by the API when addControl(new CTransparencyControl()) CTransparencyControl.prototype.initialize = function(map) { var that=this; this.map = map; // Is this MSIE, if so we need to use AlphaImageLoader var agent = navigator.userAgent.toLowerCase(); if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true} else {this.ie = false} // create the background graphic as a <div> containing an image var container = document.createElement("div"); container.style.width="70px"; container.style.height="21px"; // Handle transparent PNG files in MSIE if (this.ie) { var loader = "filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');"; container.innerHTML = '<div style="height:21px; width:70px; ' +loader+ '" ></div>'; } else { container.innerHTML = '<div style="height:21px; width:70px; background-image: url(http://www.maptiler.org/img/opacity-slider.png)" ></div>'; } // create the knob as a GDraggableObject // Handle transparent PNG files in MSIE if (this.ie) { var loader = "progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');"; this.knob = document.createElement("div"); this.knob.style.height="21px"; this.knob.style.width="13px"; this.knob.style.overflow="hidden"; this.knob_img = document.createElement("div"); this.knob_img.style.height="21px"; this.knob_img.style.width="83px"; this.knob_img.style.filter=loader; this.knob_img.style.position="relative"; this.knob_img.style.left="-70px"; this.knob.appendChild(this.knob_img); } else { this.knob = document.createElement("div"); this.knob.style.height="21px"; this.knob.style.width="13px"; this.knob.style.backgroundImage="url(http://www.maptiler.org/img/opacity-slider.png)"; this.knob.style.backgroundPosition="-70px 0px"; } container.appendChild(this.knob); this.slide=new GDraggableObject(this.knob, {container:container}); this.slide.setDraggableCursor('pointer'); this.slide.setDraggingCursor('pointer'); this.container = container; // attach the control to the map map.getContainer().appendChild(container); // init slider this.setSlider(this.opacity); // Listen for the slider being moved and set the opacity GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()}); //GEvent.addListener(this.container, "click", function( x, y ) { alert(x, y) }); return container; } // Set the default position for the control CTransparencyControl.prototype.getDefaultPosition = function() { return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47)); } /* * Full-screen Window Resize */ function getWindowHeight() { if (self.innerHeight) return self.innerHeight; if (document.documentElement && document.documentElement.clientHeight) return document.documentElement.clientHeight; if (document.body) return document.body.clientHeight; return 0; } function getWindowWidth() { if (self.innerWidth) return self.innerWidth; if (document.documentElement && document.documentElement.clientWidth) return document.documentElement.clientWidth; if (document.body) return document.body.clientWidth; return 0; } function resize() { var map = document.getElementById("map"); var header = document.getElementById("header"); var subheader = document.getElementById("subheader"); map.style.height = (getWindowHeight()-80) + "px"; map.style.width = (getWindowWidth()-20) + "px"; header.style.width = (getWindowWidth()-20) + "px"; subheader.style.width = (getWindowWidth()-20) + "px"; // map.checkResize(); } /* * Main load function: */ function load() { if (GBrowserIsCompatible()) { // Bug in the Google Maps: Copyright for Overlay is not correctly displayed var gcr = GMapType.prototype.getCopyrights; GMapType.prototype.getCopyrights = function(bounds,zoom) { return ["%(copyright)s"].concat(gcr.call(this,bounds,zoom)); } map = new GMap2( document.getElementById("map"), { backgroundColor: '#fff' } ); map.addMapType(G_PHYSICAL_MAP); map.setMapType(G_PHYSICAL_MAP); map.setCenter( mapBounds.getCenter(), map.getBoundsZoomLevel( mapBounds )); hybridOverlay = new GTileLayerOverlay( G_HYBRID_MAP.getTileLayers()[1] ); GEvent.addListener(map, "maptypechanged", function() { if (map.getCurrentMapType() == G_HYBRID_MAP) { map.addOverlay(hybridOverlay); } else { map.removeOverlay(hybridOverlay); } } ); var tilelayer = new GTileLayer(GCopyrightCollection(''), mapMinZoom, mapMaxZoom); var mercator = new GMercatorProjection(mapMaxZoom+1); tilelayer.getTileUrl = function(tile,zoom) { if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) { return "http://www.maptiler.org/img/none.png"; } var ymax = 1 << zoom; var y = ymax - tile.y -1; var tileBounds = new GLatLngBounds( mercator.fromPixelToLatLng( new GPoint( (tile.x)*256, (tile.y+1)*256 ) , zoom ), mercator.fromPixelToLatLng( new GPoint( (tile.x+1)*256, (tile.y)*256 ) , zoom ) ); if (mapBounds.intersects(tileBounds)) { return zoom+"/"+tile.x+"/"+y+".png"; } else { return "http://www.maptiler.org/img/none.png"; } } // IE 7-: support for PNG alpha channel // Unfortunately, the opacity for whole overlay is then not changeable, either or... tilelayer.isPng = function() { return true;}; tilelayer.getOpacity = function() { return opacity; } overlay = new GTileLayerOverlay( tilelayer ); map.addOverlay(overlay); map.addControl(new GLargeMapControl()); map.addControl(new GHierarchicalMapTypeControl()); map.addControl(new CTransparencyControl( overlay )); """ % args # noqa if self.kml: s += """ map.addMapType(G_SATELLITE_3D_MAP); map.getEarthInstance(getEarthInstanceCB); """ s += """ map.enableContinuousZoom(); map.enableScrollWheelZoom(); map.setMapType(G_HYBRID_MAP); } resize(); } """ if self.kml: s += """ function getEarthInstanceCB(object) { var ge = object; if (ge) { var url = document.location.toString(); url = url.substr(0,url.lastIndexOf('/'))+'/doc.kml'; var link = ge.createLink(""); if ("%(publishurl)s") { link.setHref("%(publishurl)s/doc.kml") } else { link.setHref(url) }; var networkLink = ge.createNetworkLink(""); networkLink.setName("TMS Map Overlay"); networkLink.setFlyToView(true); networkLink.setLink(link); ge.getFeatures().appendChild(networkLink); } else { // alert("You should open a KML in Google Earth"); // add div with the link to generated KML... - maybe JavaScript redirect to the URL of KML? } } """ % args # noqa s += """ onresize=function(){ resize(); }; //]]> </script> </head> <body onload="load()"> <div id="header"><h1>%(title)s</h1></div> <div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a> <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU --> </div> <div id="map"></div> </body> </html> """ % args # noqa return s
Python
def generate_leaflet(self): """ Template for leaflet.html implementing overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title.replace('"', '\\"') args['htmltitle'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['centerlon'] = (args['north'] + args['south']) / 2. args['centerlat'] = (args['west'] + args['east']) / 2. args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['beginzoom'] = self.tmaxz args['tilesize'] = self.tilesize # not used args['tileformat'] = self.tileext args['publishurl'] = self.options.url # not used args['copyright'] = self.options.copyright.replace('"', '\\"') s = """<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name='viewport' content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no' /> <title>%(htmltitle)s</title> <!-- Leaflet --> <link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.css" /> <script src="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.js"></script> <style> body { margin:0; padding:0; } body, table, tr, td, th, div, h1, h2, input { font-family: "Calibri", "Trebuchet MS", "Ubuntu", Serif; font-size: 11pt; } #map { position:absolute; top:0; bottom:0; width:100%%; } /* full size */ .ctl { padding: 2px 10px 2px 10px; background: white; background: rgba(255,255,255,0.9); box-shadow: 0 0 15px rgba(0,0,0,0.2); border-radius: 5px; text-align: right; } .title { font-size: 18pt; font-weight: bold; } .src { font-size: 10pt; } </style> </head> <body> <div id="map"></div> <script> /* **** Leaflet **** */ // Base layers // .. OpenStreetMap var osm = L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors'}); // .. CartoDB Positron var cartodb = L.tileLayer('http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors, &copy; <a href="http://cartodb.com/attributions">CartoDB</a>'}); // .. OSM Toner var toner = L.tileLayer('http://{s}.tile.stamen.com/toner/{z}/{x}/{y}.png', {attribution: 'Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'}); // .. White background var white = L.tileLayer(""); // Overlay layers (TMS) var lyr = L.tileLayer('./{z}/{x}/{y}.%(tileformat)s', {tms: true, opacity: 0.7, attribution: "%(copyright)s"}); // Map var map = L.map('map', { center: [%(centerlon)s, %(centerlat)s], zoom: %(beginzoom)s, minZoom: %(minzoom)s, maxZoom: %(maxzoom)s, layers: [osm] }); var basemaps = {"OpenStreetMap": osm, "CartoDB Positron": cartodb, "Stamen Toner": toner, "Without background": white} var overlaymaps = {"Layer": lyr} // Title var title = L.control(); title.onAdd = function(map) { this._div = L.DomUtil.create('div', 'ctl title'); this.update(); return this._div; }; title.update = function(props) { this._div.innerHTML = "%(title)s"; }; title.addTo(map); // Note var src = 'Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>'; var title = L.control({position: 'bottomleft'}); title.onAdd = function(map) { this._div = L.DomUtil.create('div', 'ctl src'); this.update(); return this._div; }; title.update = function(props) { this._div.innerHTML = src; }; title.addTo(map); // Add base layers L.control.layers(basemaps, overlaymaps, {collapsed: false}).addTo(map); // Fit to overlay bounds (SW and NE points with (lat, lon)) map.fitBounds([[%(south)s, %(east)s], [%(north)s, %(west)s]]); </script> </body> </html> """ % args # noqa return s
def generate_leaflet(self): """ Template for leaflet.html implementing overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title.replace('"', '\\"') args['htmltitle'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['centerlon'] = (args['north'] + args['south']) / 2. args['centerlat'] = (args['west'] + args['east']) / 2. args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['beginzoom'] = self.tmaxz args['tilesize'] = self.tilesize # not used args['tileformat'] = self.tileext args['publishurl'] = self.options.url # not used args['copyright'] = self.options.copyright.replace('"', '\\"') s = """<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name='viewport' content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no' /> <title>%(htmltitle)s</title> <!-- Leaflet --> <link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.css" /> <script src="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.js"></script> <style> body { margin:0; padding:0; } body, table, tr, td, th, div, h1, h2, input { font-family: "Calibri", "Trebuchet MS", "Ubuntu", Serif; font-size: 11pt; } #map { position:absolute; top:0; bottom:0; width:100%%; } /* full size */ .ctl { padding: 2px 10px 2px 10px; background: white; background: rgba(255,255,255,0.9); box-shadow: 0 0 15px rgba(0,0,0,0.2); border-radius: 5px; text-align: right; } .title { font-size: 18pt; font-weight: bold; } .src { font-size: 10pt; } </style> </head> <body> <div id="map"></div> <script> /* **** Leaflet **** */ // Base layers // .. OpenStreetMap var osm = L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors'}); // .. CartoDB Positron var cartodb = L.tileLayer('http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors, &copy; <a href="http://cartodb.com/attributions">CartoDB</a>'}); // .. OSM Toner var toner = L.tileLayer('http://{s}.tile.stamen.com/toner/{z}/{x}/{y}.png', {attribution: 'Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'}); // .. White background var white = L.tileLayer(""); // Overlay layers (TMS) var lyr = L.tileLayer('./{z}/{x}/{y}.%(tileformat)s', {tms: true, opacity: 0.7, attribution: "%(copyright)s"}); // Map var map = L.map('map', { center: [%(centerlon)s, %(centerlat)s], zoom: %(beginzoom)s, minZoom: %(minzoom)s, maxZoom: %(maxzoom)s, layers: [osm] }); var basemaps = {"OpenStreetMap": osm, "CartoDB Positron": cartodb, "Stamen Toner": toner, "Without background": white} var overlaymaps = {"Layer": lyr} // Title var title = L.control(); title.onAdd = function(map) { this._div = L.DomUtil.create('div', 'ctl title'); this.update(); return this._div; }; title.update = function(props) { this._div.innerHTML = "%(title)s"; }; title.addTo(map); // Note var src = 'Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>'; var title = L.control({position: 'bottomleft'}); title.onAdd = function(map) { this._div = L.DomUtil.create('div', 'ctl src'); this.update(); return this._div; }; title.update = function(props) { this._div.innerHTML = src; }; title.addTo(map); // Add base layers L.control.layers(basemaps, overlaymaps, {collapsed: false}).addTo(map); // Fit to overlay bounds (SW and NE points with (lat, lon)) map.fitBounds([[%(south)s, %(east)s], [%(north)s, %(west)s]]); </script> </body> </html> """ % args # noqa return s
Python
def generate_openlayers(self): """ Template for openlayers.html implementing overlay of available Spherical Mercator layers. It returns filled string. Expected variables: title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['bingkey'] = self.options.bingkey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright if self.options.tmscompatible: args['tmsoffset'] = "-1" else: args['tmsoffset'] = "" if self.options.profile == 'raster': args['rasterzoomlevels'] = self.tmaxz + 1 args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" <head> <title>%(title)s</title> <meta http-equiv='imagetoolbar' content='no'/> <style type="text/css"> v\:* {behavior:url(#default#VML);} html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; } body { margin: 10px; background: #fff; } h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; } #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; } #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;} #map { height: 95%%; border: 1px solid #888; } .olImageLoadError { display: none; } .olControlLayerSwitcher .layersDiv { border-radius: 10px 0 0 10px; } </style>""" % args # noqa if self.options.profile == 'mercator': s += """ <script src='http://maps.google.com/maps/api/js?sensor=false&v=3.7'></script> """ % args s += """ <script src="http://www.openlayers.org/api/2.12/OpenLayers.js"></script> <script> var map; var mapBounds = new OpenLayers.Bounds( %(west)s, %(south)s, %(east)s, %(north)s); var mapMinZoom = %(minzoom)s; var mapMaxZoom = %(maxzoom)s; var emptyTileURL = "http://www.maptiler.org/img/none.png"; OpenLayers.IMAGE_RELOAD_ATTEMPTS = 3; function init(){""" % args if self.options.profile == 'mercator': s += """ var options = { div: "map", controls: [], projection: "EPSG:3857", displayProjection: new OpenLayers.Projection("EPSG:4326"), numZoomLevels: 20 }; map = new OpenLayers.Map(options); // Create Google Mercator layers var gmap = new OpenLayers.Layer.Google("Google Streets", { type: google.maps.MapTypeId.ROADMAP, sphericalMercator: true }); var gsat = new OpenLayers.Layer.Google("Google Satellite", { type: google.maps.MapTypeId.SATELLITE, sphericalMercator: true }); var ghyb = new OpenLayers.Layer.Google("Google Hybrid", { type: google.maps.MapTypeId.HYBRID, sphericalMercator: true }); var gter = new OpenLayers.Layer.Google("Google Terrain", { type: google.maps.MapTypeId.TERRAIN, sphericalMercator: true }); // Create Bing layers var broad = new OpenLayers.Layer.Bing({ name: "Bing Roads", key: "%(bingkey)s", type: "Road", sphericalMercator: true }); var baer = new OpenLayers.Layer.Bing({ name: "Bing Aerial", key: "%(bingkey)s", type: "Aerial", sphericalMercator: true }); var bhyb = new OpenLayers.Layer.Bing({ name: "Bing Hybrid", key: "%(bingkey)s", type: "AerialWithLabels", sphericalMercator: true }); // Create OSM layer var osm = new OpenLayers.Layer.OSM("OpenStreetMap"); // create TMS Overlay layer var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', isBaseLayer: false, getURL: getURL }); if (OpenLayers.Util.alphaHack() == false) { tmsoverlay.setOpacity(0.7); } map.addLayers([gmap, gsat, ghyb, gter, broad, baer, bhyb, osm, tmsoverlay]); var switcherControl = new OpenLayers.Control.LayerSwitcher(); map.addControl(switcherControl); switcherControl.maximizeControl(); map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection)); """ % args # noqa elif self.options.profile == 'geodetic': s += """ var options = { div: "map", controls: [], projection: "EPSG:4326" }; map = new OpenLayers.Map(options); var wms = new OpenLayers.Layer.WMS("VMap0", "http://tilecache.osgeo.org/wms-c/Basic.py?", { layers: 'basic', format: 'image/png' } ); var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', isBaseLayer: false, getURL: getURL }); if (OpenLayers.Util.alphaHack() == false) { tmsoverlay.setOpacity(0.7); } map.addLayers([wms,tmsoverlay]); var switcherControl = new OpenLayers.Control.LayerSwitcher(); map.addControl(switcherControl); switcherControl.maximizeControl(); map.zoomToExtent(mapBounds); """ % args # noqa elif self.options.profile == 'raster': s += """ var options = { div: "map", controls: [], maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s), maxResolution: %(rastermaxresolution)f, numZoomLevels: %(rasterzoomlevels)d }; map = new OpenLayers.Map(options); var layer = new OpenLayers.Layer.TMS("TMS Layer", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', getURL: getURL }); map.addLayer(layer); map.zoomToExtent(mapBounds); """ % args # noqa s += """ map.addControls([new OpenLayers.Control.PanZoomBar(), new OpenLayers.Control.Navigation(), new OpenLayers.Control.MousePosition(), new OpenLayers.Control.ArgParser(), new OpenLayers.Control.Attribution()]); } """ % args if self.options.profile == 'mercator': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom(); if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') { z+=1; } var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa elif self.options.profile == 'geodetic': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom()%(tmsoffset)s; var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa elif self.options.profile == 'raster': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom(); var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa s += """ function getWindowHeight() { if (self.innerHeight) return self.innerHeight; if (document.documentElement && document.documentElement.clientHeight) return document.documentElement.clientHeight; if (document.body) return document.body.clientHeight; return 0; } function getWindowWidth() { if (self.innerWidth) return self.innerWidth; if (document.documentElement && document.documentElement.clientWidth) return document.documentElement.clientWidth; if (document.body) return document.body.clientWidth; return 0; } function resize() { var map = document.getElementById("map"); var header = document.getElementById("header"); var subheader = document.getElementById("subheader"); map.style.height = (getWindowHeight()-80) + "px"; map.style.width = (getWindowWidth()-20) + "px"; header.style.width = (getWindowWidth()-20) + "px"; subheader.style.width = (getWindowWidth()-20) + "px"; if (map.updateSize) { map.updateSize(); }; } onresize=function(){ resize(); }; </script> </head> <body onload="init()"> <div id="header"><h1>%(title)s</h1></div> <div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a> <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU --> </div> <div id="map"></div> <script type="text/javascript" >resize()</script> </body> </html>""" % args # noqa return s
def generate_openlayers(self): """ Template for openlayers.html implementing overlay of available Spherical Mercator layers. It returns filled string. Expected variables: title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl """ args = {} args['title'] = self.options.title args['bingkey'] = self.options.bingkey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tilesize'] = self.tilesize args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright if self.options.tmscompatible: args['tmsoffset'] = "-1" else: args['tmsoffset'] = "" if self.options.profile == 'raster': args['rasterzoomlevels'] = self.tmaxz + 1 args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1] s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" <head> <title>%(title)s</title> <meta http-equiv='imagetoolbar' content='no'/> <style type="text/css"> v\:* {behavior:url(#default#VML);} html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; } body { margin: 10px; background: #fff; } h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; } #header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; } #subheader { height: 12px; text-align: right; font-size: 10px; color: #555;} #map { height: 95%%; border: 1px solid #888; } .olImageLoadError { display: none; } .olControlLayerSwitcher .layersDiv { border-radius: 10px 0 0 10px; } </style>""" % args # noqa if self.options.profile == 'mercator': s += """ <script src='http://maps.google.com/maps/api/js?sensor=false&v=3.7'></script> """ % args s += """ <script src="http://www.openlayers.org/api/2.12/OpenLayers.js"></script> <script> var map; var mapBounds = new OpenLayers.Bounds( %(west)s, %(south)s, %(east)s, %(north)s); var mapMinZoom = %(minzoom)s; var mapMaxZoom = %(maxzoom)s; var emptyTileURL = "http://www.maptiler.org/img/none.png"; OpenLayers.IMAGE_RELOAD_ATTEMPTS = 3; function init(){""" % args if self.options.profile == 'mercator': s += """ var options = { div: "map", controls: [], projection: "EPSG:3857", displayProjection: new OpenLayers.Projection("EPSG:4326"), numZoomLevels: 20 }; map = new OpenLayers.Map(options); // Create Google Mercator layers var gmap = new OpenLayers.Layer.Google("Google Streets", { type: google.maps.MapTypeId.ROADMAP, sphericalMercator: true }); var gsat = new OpenLayers.Layer.Google("Google Satellite", { type: google.maps.MapTypeId.SATELLITE, sphericalMercator: true }); var ghyb = new OpenLayers.Layer.Google("Google Hybrid", { type: google.maps.MapTypeId.HYBRID, sphericalMercator: true }); var gter = new OpenLayers.Layer.Google("Google Terrain", { type: google.maps.MapTypeId.TERRAIN, sphericalMercator: true }); // Create Bing layers var broad = new OpenLayers.Layer.Bing({ name: "Bing Roads", key: "%(bingkey)s", type: "Road", sphericalMercator: true }); var baer = new OpenLayers.Layer.Bing({ name: "Bing Aerial", key: "%(bingkey)s", type: "Aerial", sphericalMercator: true }); var bhyb = new OpenLayers.Layer.Bing({ name: "Bing Hybrid", key: "%(bingkey)s", type: "AerialWithLabels", sphericalMercator: true }); // Create OSM layer var osm = new OpenLayers.Layer.OSM("OpenStreetMap"); // create TMS Overlay layer var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', isBaseLayer: false, getURL: getURL }); if (OpenLayers.Util.alphaHack() == false) { tmsoverlay.setOpacity(0.7); } map.addLayers([gmap, gsat, ghyb, gter, broad, baer, bhyb, osm, tmsoverlay]); var switcherControl = new OpenLayers.Control.LayerSwitcher(); map.addControl(switcherControl); switcherControl.maximizeControl(); map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection)); """ % args # noqa elif self.options.profile == 'geodetic': s += """ var options = { div: "map", controls: [], projection: "EPSG:4326" }; map = new OpenLayers.Map(options); var wms = new OpenLayers.Layer.WMS("VMap0", "http://tilecache.osgeo.org/wms-c/Basic.py?", { layers: 'basic', format: 'image/png' } ); var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', isBaseLayer: false, getURL: getURL }); if (OpenLayers.Util.alphaHack() == false) { tmsoverlay.setOpacity(0.7); } map.addLayers([wms,tmsoverlay]); var switcherControl = new OpenLayers.Control.LayerSwitcher(); map.addControl(switcherControl); switcherControl.maximizeControl(); map.zoomToExtent(mapBounds); """ % args # noqa elif self.options.profile == 'raster': s += """ var options = { div: "map", controls: [], maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s), maxResolution: %(rastermaxresolution)f, numZoomLevels: %(rasterzoomlevels)d }; map = new OpenLayers.Map(options); var layer = new OpenLayers.Layer.TMS("TMS Layer", "", { serviceVersion: '.', layername: '.', alpha: true, type: '%(tileformat)s', getURL: getURL }); map.addLayer(layer); map.zoomToExtent(mapBounds); """ % args # noqa s += """ map.addControls([new OpenLayers.Control.PanZoomBar(), new OpenLayers.Control.Navigation(), new OpenLayers.Control.MousePosition(), new OpenLayers.Control.ArgParser(), new OpenLayers.Control.Attribution()]); } """ % args if self.options.profile == 'mercator': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom(); if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') { z+=1; } var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa elif self.options.profile == 'geodetic': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom()%(tmsoffset)s; var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa elif self.options.profile == 'raster': s += """ function getURL(bounds) { bounds = this.adjustBounds(bounds); var res = this.getServerResolution(); var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w)); var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h)); var z = this.getServerZoom(); var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type; var url = this.url; if (OpenLayers.Util.isArray(url)) { url = this.selectUrl(path, url); } if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) { return url + path; } else { return emptyTileURL; } } """ % args # noqa s += """ function getWindowHeight() { if (self.innerHeight) return self.innerHeight; if (document.documentElement && document.documentElement.clientHeight) return document.documentElement.clientHeight; if (document.body) return document.body.clientHeight; return 0; } function getWindowWidth() { if (self.innerWidth) return self.innerWidth; if (document.documentElement && document.documentElement.clientWidth) return document.documentElement.clientWidth; if (document.body) return document.body.clientWidth; return 0; } function resize() { var map = document.getElementById("map"); var header = document.getElementById("header"); var subheader = document.getElementById("subheader"); map.style.height = (getWindowHeight()-80) + "px"; map.style.width = (getWindowWidth()-20) + "px"; header.style.width = (getWindowWidth()-20) + "px"; subheader.style.width = (getWindowWidth()-20) + "px"; if (map.updateSize) { map.updateSize(); }; } onresize=function(){ resize(); }; </script> </head> <body onload="init()"> <div id="header"><h1>%(title)s</h1></div> <div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a> <!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU --> </div> <div id="map"></div> <script type="text/javascript" >resize()</script> </body> </html>""" % args # noqa return s
Python
def single_threaded_tiling(input_file, output_folder, **options): """Generate tiles using single process. Keep a single threaded version that stays clear of multiprocessing, for platforms that would not support it """ options = process_options(input_file, output_folder, options) if options.verbose: print("Begin tiles details calc") conf, tile_details = worker_tile_details(input_file, output_folder, options) if options.verbose: print("Tiles details calc complete.") if not options.verbose and not options.quiet: progress_bar = ProgressBar(len(tile_details)) progress_bar.start() for tile_detail in tile_details: create_base_tile(conf, tile_detail) if not options.verbose and not options.quiet: progress_bar.log_progress() create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file))
def single_threaded_tiling(input_file, output_folder, **options): """Generate tiles using single process. Keep a single threaded version that stays clear of multiprocessing, for platforms that would not support it """ options = process_options(input_file, output_folder, options) if options.verbose: print("Begin tiles details calc") conf, tile_details = worker_tile_details(input_file, output_folder, options) if options.verbose: print("Tiles details calc complete.") if not options.verbose and not options.quiet: progress_bar = ProgressBar(len(tile_details)) progress_bar.start() for tile_detail in tile_details: create_base_tile(conf, tile_detail) if not options.verbose and not options.quiet: progress_bar.log_progress() create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file))
Python
def multi_threaded_tiling(input_file, output_folder, **options): """Generate tiles with multi processing.""" options = process_options(input_file, output_folder, options) nb_processes = options.nb_processes or 1 (conf_receiver, conf_sender) = Pipe(False) if options.verbose: print("Begin tiles details calc") p = Process(target=worker_tile_details, args=[input_file, output_folder, options], kwargs={"send_pipe": conf_sender}) p.start() # Make sure to consume the queue before joining. If the payload is too big, it won't be put in # one go in the queue and therefore the sending process will never finish, waiting for space in # the queue to send data conf, tile_details = conf_receiver.recv() p.join() if options.verbose: print("Tiles details calc complete.") # Have to create the Queue through a multiprocessing.Manager to get a Queue Proxy, # otherwise you can't pass it as a param in the method invoked by the pool... manager = Manager() queue = manager.Queue() pool = Pool(processes=nb_processes) # TODO: gbataille - check the confs for which each element is an array... one useless level? # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." # TODO: gbataille - check memory footprint and time on big image. are they opened x times for tile_detail in tile_details: pool.apply_async(create_base_tile, (conf, tile_detail), {"queue": queue}) if not options.verbose and not options.quiet: p = Process(target=progress_printer_thread, args=[queue, len(tile_details)]) p.start() pool.close() pool.join() # Jobs finished if not options.verbose and not options.quiet: p.join() # Traces done create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file))
def multi_threaded_tiling(input_file, output_folder, **options): """Generate tiles with multi processing.""" options = process_options(input_file, output_folder, options) nb_processes = options.nb_processes or 1 (conf_receiver, conf_sender) = Pipe(False) if options.verbose: print("Begin tiles details calc") p = Process(target=worker_tile_details, args=[input_file, output_folder, options], kwargs={"send_pipe": conf_sender}) p.start() # Make sure to consume the queue before joining. If the payload is too big, it won't be put in # one go in the queue and therefore the sending process will never finish, waiting for space in # the queue to send data conf, tile_details = conf_receiver.recv() p.join() if options.verbose: print("Tiles details calc complete.") # Have to create the Queue through a multiprocessing.Manager to get a Queue Proxy, # otherwise you can't pass it as a param in the method invoked by the pool... manager = Manager() queue = manager.Queue() pool = Pool(processes=nb_processes) # TODO: gbataille - check the confs for which each element is an array... one useless level? # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." # TODO: gbataille - check memory footprint and time on big image. are they opened x times for tile_detail in tile_details: pool.apply_async(create_base_tile, (conf, tile_detail), {"queue": queue}) if not options.verbose and not options.quiet: p = Process(target=progress_printer_thread, args=[queue, len(tile_details)]) p.start() pool.close() pool.join() # Jobs finished if not options.verbose and not options.quiet: p.join() # Traces done create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file))
Python
def generate_tiles(input_file, output_folder, **options): """Generate tiles from input file. Arguments: ``input_file`` (str): Path to input file. ``output_folder`` (str): Path to output folder. ``options``: Tile generation options. Options: ``profile`` (str): Tile cutting profile (mercator,geodetic,raster) - default 'mercator' (Google Maps compatible) ``resampling`` (str): Resampling method (average,near,bilinear,cubic,cubicsp line,lanczos,antialias) - default 'average' ``s_srs``: The spatial reference system used for the source input data ``zoom``: Zoom levels to render; format: `[int min, int max]`, `'min-max'` or `int/str zoomlevel`. ``tile_size`` (int): Size of tiles to render - default 256 ``resume`` (bool): Resume mode. Generate only missing files. ``srcnodata``: NODATA transparency value to assign to the input data ``tmscompatible`` (bool): When using the geodetic profile, specifies the base resolution as 0.703125 or 2 tiles at zoom level 0. ``verbose`` (bool): Print status messages to stdout ``kml`` (bool): Generate KML for Google Earth - default for 'geodetic' profile and 'raster' in EPSG:4326. For a dataset with different projection use with caution! ``url`` (str): URL address where the generated tiles are going to be published ``webviewer`` (str): Web viewer to generate (all,google,openlayers,none) - default 'all' ``title`` (str): Title of the map ``copyright`` (str): Copyright for the map ``googlekey`` (str): Google Maps API key from http://code.google.com/apis/maps/signup.html ``bingkey`` (str): Bing Maps API key from https://www.bingmapsportal.com/ ``nb_processes``: Number of processes to use for tiling. """ if options: nb_processes = options.get('nb_processes') or 1 else: nb_processes = 1 if nb_processes == 1: single_threaded_tiling(input_file, output_folder, **options) else: multi_threaded_tiling(input_file, output_folder, **options)
def generate_tiles(input_file, output_folder, **options): """Generate tiles from input file. Arguments: ``input_file`` (str): Path to input file. ``output_folder`` (str): Path to output folder. ``options``: Tile generation options. Options: ``profile`` (str): Tile cutting profile (mercator,geodetic,raster) - default 'mercator' (Google Maps compatible) ``resampling`` (str): Resampling method (average,near,bilinear,cubic,cubicsp line,lanczos,antialias) - default 'average' ``s_srs``: The spatial reference system used for the source input data ``zoom``: Zoom levels to render; format: `[int min, int max]`, `'min-max'` or `int/str zoomlevel`. ``tile_size`` (int): Size of tiles to render - default 256 ``resume`` (bool): Resume mode. Generate only missing files. ``srcnodata``: NODATA transparency value to assign to the input data ``tmscompatible`` (bool): When using the geodetic profile, specifies the base resolution as 0.703125 or 2 tiles at zoom level 0. ``verbose`` (bool): Print status messages to stdout ``kml`` (bool): Generate KML for Google Earth - default for 'geodetic' profile and 'raster' in EPSG:4326. For a dataset with different projection use with caution! ``url`` (str): URL address where the generated tiles are going to be published ``webviewer`` (str): Web viewer to generate (all,google,openlayers,none) - default 'all' ``title`` (str): Title of the map ``copyright`` (str): Copyright for the map ``googlekey`` (str): Google Maps API key from http://code.google.com/apis/maps/signup.html ``bingkey`` (str): Bing Maps API key from https://www.bingmapsportal.com/ ``nb_processes``: Number of processes to use for tiling. """ if options: nb_processes = options.get('nb_processes') or 1 else: nb_processes = 1 if nb_processes == 1: single_threaded_tiling(input_file, output_folder, **options) else: multi_threaded_tiling(input_file, output_folder, **options)
Python
def withcode(): """ demo for JSON with status code """ return jsonify('code'), 203
def withcode(): """ demo for JSON with status code """ return jsonify('code'), 203
Python
def withheader(): """ demo for JSON with status code and header """ return jsonify('header'), 203, {'X': 233}
def withheader(): """ demo for JSON with status code and header """ return jsonify('header'), 203, {'X': 233}
Python
def update_config(self, **kwargs): """ Manually update config. This function will be triggered when you register this library to Flask instance, and configs in Flask.config['OPENAPI'] will be used to update. """ for key, value in kwargs.items(): setattr(self.config, key, value)
def update_config(self, **kwargs): """ Manually update config. This function will be triggered when you register this library to Flask instance, and configs in Flask.config['OPENAPI'] will be used to update. """ for key, value in kwargs.items(): setattr(self.config, key, value)
Python
def _register_route(self): """ register doc blueprint to Flask app """ blueprint = Blueprint( self.config.name, __name__, url_prefix=self.config.url_prefix, template_folder=self.config.template_folder, ) # docs blueprint.add_url_rule( self.config.endpoint, self.config.name, view_func=APIview().as_view( self.config.name, view_args=dict(config=self.config), ) ) # docs/openapi.json @blueprint.route(f'{self.config.endpoint}<filename>') def jsonfile(filename): if filename == self.config.filename: return jsonify(self.spec) abort(404) self.app.register_blueprint(blueprint)
def _register_route(self): """ register doc blueprint to Flask app """ blueprint = Blueprint( self.config.name, __name__, url_prefix=self.config.url_prefix, template_folder=self.config.template_folder, ) # docs blueprint.add_url_rule( self.config.endpoint, self.config.name, view_func=APIview().as_view( self.config.name, view_args=dict(config=self.config), ) ) # docs/openapi.json @blueprint.route(f'{self.config.endpoint}<filename>') def jsonfile(filename): if filename == self.config.filename: return jsonify(self.spec) abort(404) self.app.register_blueprint(blueprint)
Python
def spec(self): """ Get OpenAPI spec for this Flask app. """ if self.config._spec is None: self._generate_spec() return self.config._spec
def spec(self): """ Get OpenAPI spec for this Flask app. """ if self.config._spec is None: self._generate_spec() return self.config._spec
Python
def convert_any(*args, **kwargs): """ Handle converter type "any" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'array', 'items': { 'type': 'string', 'enum': args, } } return schema
def convert_any(*args, **kwargs): """ Handle converter type "any" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'array', 'items': { 'type': 'string', 'enum': args, } } return schema
Python
def convert_int(*args, **kwargs): """ Handle converter type "int" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'integer', 'format': 'int32', } if 'max' in kwargs: schema['maximum'] = kwargs['max'] if 'min' in kwargs: schema['minimum'] = kwargs['min'] return schema
def convert_int(*args, **kwargs): """ Handle converter type "int" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'integer', 'format': 'int32', } if 'max' in kwargs: schema['maximum'] = kwargs['max'] if 'min' in kwargs: schema['minimum'] = kwargs['min'] return schema
Python
def convert_float(*args, **kwargs): """ Handle converter type "float" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'number', 'format': 'float', } return schema
def convert_float(*args, **kwargs): """ Handle converter type "float" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'number', 'format': 'float', } return schema
Python
def convert_uuid(*args, **kwargs): """ Handle converter type "uuid" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', 'format': 'uuid', } return schema
def convert_uuid(*args, **kwargs): """ Handle converter type "uuid" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', 'format': 'uuid', } return schema
Python
def convert_path(*args, **kwargs): """ Handle converter type "path" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', 'format': 'path', } return schema
def convert_path(*args, **kwargs): """ Handle converter type "path" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', 'format': 'path', } return schema
Python
def convert_string(*args, **kwargs): """ Handle converter type "string" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', } for prop in ['length', 'maxLength', 'minLength']: if prop in kwargs: schema[prop] = kwargs[prop] return schema
def convert_string(*args, **kwargs): """ Handle converter type "string" :param args: :param kwargs: :return: return schema dict """ schema = { 'type': 'string', } for prop in ['length', 'maxLength', 'minLength']: if prop in kwargs: schema[prop] = kwargs[prop] return schema
Python
def convert_default(*args, **kwargs): """ Handle converter type "default" :param args: :param kwargs: :return: return schema dict """ schema = {'type': 'string'} return schema
def convert_default(*args, **kwargs): """ Handle converter type "default" :param args: :param kwargs: :return: return schema dict """ schema = {'type': 'string'} return schema
Python
def fn2dict(params: str) -> Tuple[Dict, bool, Optional[str], Optional[str]]: """ Roughly the inverse function of "dict2fn". :param params: string, filename to split up :return: """ param_name_pattern = re.compile(r'(?:[a-zA-Z0-9]+_?)+=') # Debugging outputs do have an additional prefix which we need to remove if params.startswith("debug__"): params = params.removeprefix("debug__") is_debug = True pref = "debug" else: # FIXME: we only support "debug" as prefix, here is_debug = False pref = None # Get the file extension (assume that there is no "." in the filename that does NOT separate the extension) _ext_idx = params.find(os.extsep) if _ext_idx >= 0: ext = params[(_ext_idx + 1):] else: ext = None # Split the filename and extract the (key, value)-pairs ks = [m.removesuffix("=") for m in param_name_pattern.findall(params)] vs = [v.removesuffix("__") for v in param_name_pattern.split(params) if len(v) > 0] assert len(ks) == len(vs) # Construct the output dictionary out = {} for k, v in zip(ks, vs): if is_bool(v): out[k] = bool(v) elif is_integer(v): out[k] = int(v) elif is_float(v): out[k] = int(v) else: assert isinstance(v, str) out[k] = v return out, is_debug, pref, ext
def fn2dict(params: str) -> Tuple[Dict, bool, Optional[str], Optional[str]]: """ Roughly the inverse function of "dict2fn". :param params: string, filename to split up :return: """ param_name_pattern = re.compile(r'(?:[a-zA-Z0-9]+_?)+=') # Debugging outputs do have an additional prefix which we need to remove if params.startswith("debug__"): params = params.removeprefix("debug__") is_debug = True pref = "debug" else: # FIXME: we only support "debug" as prefix, here is_debug = False pref = None # Get the file extension (assume that there is no "." in the filename that does NOT separate the extension) _ext_idx = params.find(os.extsep) if _ext_idx >= 0: ext = params[(_ext_idx + 1):] else: ext = None # Split the filename and extract the (key, value)-pairs ks = [m.removesuffix("=") for m in param_name_pattern.findall(params)] vs = [v.removesuffix("__") for v in param_name_pattern.split(params) if len(v) > 0] assert len(ks) == len(vs) # Construct the output dictionary out = {} for k, v in zip(ks, vs): if is_bool(v): out[k] = bool(v) elif is_integer(v): out[k] = int(v) elif is_float(v): out[k] = int(v) else: assert isinstance(v, str) out[k] = v return out, is_debug, pref, ext
Python
def load_topk__cand_set_info(setting: Dict, basedir: str = ".") -> pd.DataFrame: """ Load the Top-k accuracies in the "comparison" folder. These are the results for the comparison methods, i.e. RT filtering, LogP scoring and RO score integration approaches. """ df = [] for ifn in sorted(glob.glob( os.path.join(basedir, dict2fn(setting), dict2fn({"spl": "*"}, pref="cand_set_info", ext="tsv")) )): # Parse the actual parameters from the basename (the setting might contain wildcards) params, _, _, _ = fn2dict(ifn.split(os.sep)[-2]) # /path/to/PARAMS/file.tsv --> PARAMS # Read the top-k performance results _df = pd.read_csv(ifn, sep="\t") # Add the parameters to the dataframe for k, v in params.items(): if k not in _df.columns: _df[k] = v # Add the evaluation split index _df["eval_indx"] = int( os.path.basename(ifn).removesuffix(os.extsep + "tsv").removeprefix("top_k__").split("=")[1] ) df.append(_df) df = pd.concat(df, ignore_index=True) return df
def load_topk__cand_set_info(setting: Dict, basedir: str = ".") -> pd.DataFrame: """ Load the Top-k accuracies in the "comparison" folder. These are the results for the comparison methods, i.e. RT filtering, LogP scoring and RO score integration approaches. """ df = [] for ifn in sorted(glob.glob( os.path.join(basedir, dict2fn(setting), dict2fn({"spl": "*"}, pref="cand_set_info", ext="tsv")) )): # Parse the actual parameters from the basename (the setting might contain wildcards) params, _, _, _ = fn2dict(ifn.split(os.sep)[-2]) # /path/to/PARAMS/file.tsv --> PARAMS # Read the top-k performance results _df = pd.read_csv(ifn, sep="\t") # Add the parameters to the dataframe for k, v in params.items(): if k not in _df.columns: _df[k] = v # Add the evaluation split index _df["eval_indx"] = int( os.path.basename(ifn).removesuffix(os.extsep + "tsv").removeprefix("top_k__").split("=")[1] ) df.append(_df) df = pd.concat(df, ignore_index=True) return df
Python
def _get_topk(x, k, method): """ Task: Pandas aggregation function to compute the top-k acc. """ out = 0.0 if method == "average": for xi in x: out += (np.mean(xi) <= k) elif method == "csi": for xi in x: y = np.arange(xi[0], xi[1] + 1) for yi in y: if yi <= k: out += (1.0 / len(y)) else: raise ValueError("Invalid method: '%s'" % method) # Get accuracy as percentages out /= len(x) out *= 100 return out
def _get_topk(x, k, method): """ Task: Pandas aggregation function to compute the top-k acc. """ out = 0.0 if method == "average": for xi in x: out += (np.mean(xi) <= k) elif method == "csi": for xi in x: y = np.arange(xi[0], xi[1] + 1) for yi in y: if yi <= k: out += (1.0 / len(y)) else: raise ValueError("Invalid method: '%s'" % method) # Get accuracy as percentages out /= len(x) out *= 100 return out
Python
def _aggregate_and_filter_classyfire_classes(df, min_class_support, cf_level): """ Task: Group and aggregate the results by the ClassyFire class-level and determine the support for each class. Then, remove all classes with too little support. Purpose is to get the "relevant" class and superclass relationships to determine the colors and orders for the plotting. """ # We consider only unique molecular structures to compute the CF class support tmp = df.drop_duplicates("correct_structure") # Group by the ClassyFire level tmp = tmp.groupby("classyfire_%s" % cf_level) if cf_level == "class": tmp = tmp.aggregate({ "molecule_identifier": lambda x: len(x), "classyfire_superclass": lambda x: x.iloc[0] }) elif cf_level == "superclass": tmp = tmp.aggregate({ "molecule_identifier": lambda x: len(x), "classyfire_class": lambda x: ",".join([xi for xi in x if not pd.isna(xi)]) }) else: raise ValueError("Invalid ClassyFire level: '%s'" % cf_level) tmp = tmp \ .rename({"molecule_identifier": "n_class_support"}, axis=1) \ .reset_index() \ .sort_values(by="classyfire_superclass") return tmp[tmp["n_class_support"] >= min_class_support]
def _aggregate_and_filter_classyfire_classes(df, min_class_support, cf_level): """ Task: Group and aggregate the results by the ClassyFire class-level and determine the support for each class. Then, remove all classes with too little support. Purpose is to get the "relevant" class and superclass relationships to determine the colors and orders for the plotting. """ # We consider only unique molecular structures to compute the CF class support tmp = df.drop_duplicates("correct_structure") # Group by the ClassyFire level tmp = tmp.groupby("classyfire_%s" % cf_level) if cf_level == "class": tmp = tmp.aggregate({ "molecule_identifier": lambda x: len(x), "classyfire_superclass": lambda x: x.iloc[0] }) elif cf_level == "superclass": tmp = tmp.aggregate({ "molecule_identifier": lambda x: len(x), "classyfire_class": lambda x: ",".join([xi for xi in x if not pd.isna(xi)]) }) else: raise ValueError("Invalid ClassyFire level: '%s'" % cf_level) tmp = tmp \ .rename({"molecule_identifier": "n_class_support"}, axis=1) \ .reset_index() \ .sort_values(by="classyfire_superclass") return tmp[tmp["n_class_support"] >= min_class_support]
Python
def table__top_k_acc_per_dataset_with_significance( results: pd.DataFrame, p_level: float = 0.05, ks: Optional[List[int]] = None, top_k_method: str = "csi", test: str = "ttest", decimals: int = 1 ) -> pd.DataFrame: """ Function to generate the table comparing "Only MS" with "MS + RT". Test for significance is performed and indicated, if "MS + RT" significantly outperforms "Only MS". :param results: pd.DataFrame, results :param p_level: :param ks: :param top_k_method: :param test: :return: """ if ks is None: ks = [1, 5, 10, 20] # Check that all needed columns are provide for column in ["k", "top_k_method", "scoring_method", "dataset", "eval_indx", "top_k_acc"]: if column not in results.columns: raise ValueError("Column {} is missing from the data-frame {}".format(column, results.columns)) # Collect all "MS + RT" settings, e.g., "MS + RT" or ["MS + RT (global)", "MS + RT (local)"], ... ms_p_rt_labels = results[results["scoring_method"] != "Only MS"]["scoring_method"].unique().tolist() if len(ms_p_rt_labels) < 1: raise ValueError( "There must be at least one other scoring method other than 'Only MS': {}".format( results["scoring_method"].unique().tolist() ) ) # Subset results for the specified top-ks and the top-k determination method (casmi or csi) _results = results[(results["k"].isin(ks)) & (results["top_k_method"] == top_k_method)] results_out = pd.DataFrame() for (k, ds), res in _results.groupby(["k", "dataset"]): # Separate the "Only MS" setting _only_ms = res[res["scoring_method"] == "Only MS"].sort_values(by="eval_indx") # New row(s) for the output data-frame _df = { "k": k, "dataset": ds, "n_samples": len(_only_ms), "scoring_method": ["Only MS"], "top_k_acc": [np.mean(_only_ms["top_k_acc"]).item()], "p_value": [1.0] } # Load the "MS + RT" for each label for l in ms_p_rt_labels: _ms_p_rt = res[res["scoring_method"] == l].sort_values(by="eval_indx") _df["scoring_method"].append(l) _df["top_k_acc"].append(np.mean(_ms_p_rt["top_k_acc"]).item()) if len(_ms_p_rt) <= 1: # We need to have more than one value to perform a significance test _p = np.nan else: # Perform the significance test if test == "wilcoxon": _p = wilcoxon(_only_ms["top_k_acc"], _ms_p_rt["top_k_acc"], alternative="less")[1] elif test == "ttest": _p = ttest_rel(_only_ms["top_k_acc"], _ms_p_rt["top_k_acc"], alternative="less")[1] else: raise ValueError("Invalid significance test: %s" % test) _df["p_value"].append(_p) # Convert to accuracy strings _df["top_k_acc__as_labels"] = [] for idx, s in enumerate(_df["top_k_acc"]): _is_best = ( np.round(_df["top_k_acc"][idx], decimals=decimals) == np.max(np.round(_df["top_k_acc"], decimals=decimals)) ) _is_sign = False if np.isnan(_df["p_value"][idx]) else (_df["p_value"][idx] <= p_level) _lab = "{}".format(np.round(_df["top_k_acc"][idx], decimals=decimals)) if _is_best: _lab = "| " + _lab if _is_sign: _lab = _lab + " *" _df["top_k_acc__as_labels"].append(_lab) results_out = pd.concat((results_out, pd.DataFrame(_df)), ignore_index=True) return results_out
def table__top_k_acc_per_dataset_with_significance( results: pd.DataFrame, p_level: float = 0.05, ks: Optional[List[int]] = None, top_k_method: str = "csi", test: str = "ttest", decimals: int = 1 ) -> pd.DataFrame: """ Function to generate the table comparing "Only MS" with "MS + RT". Test for significance is performed and indicated, if "MS + RT" significantly outperforms "Only MS". :param results: pd.DataFrame, results :param p_level: :param ks: :param top_k_method: :param test: :return: """ if ks is None: ks = [1, 5, 10, 20] # Check that all needed columns are provide for column in ["k", "top_k_method", "scoring_method", "dataset", "eval_indx", "top_k_acc"]: if column not in results.columns: raise ValueError("Column {} is missing from the data-frame {}".format(column, results.columns)) # Collect all "MS + RT" settings, e.g., "MS + RT" or ["MS + RT (global)", "MS + RT (local)"], ... ms_p_rt_labels = results[results["scoring_method"] != "Only MS"]["scoring_method"].unique().tolist() if len(ms_p_rt_labels) < 1: raise ValueError( "There must be at least one other scoring method other than 'Only MS': {}".format( results["scoring_method"].unique().tolist() ) ) # Subset results for the specified top-ks and the top-k determination method (casmi or csi) _results = results[(results["k"].isin(ks)) & (results["top_k_method"] == top_k_method)] results_out = pd.DataFrame() for (k, ds), res in _results.groupby(["k", "dataset"]): # Separate the "Only MS" setting _only_ms = res[res["scoring_method"] == "Only MS"].sort_values(by="eval_indx") # New row(s) for the output data-frame _df = { "k": k, "dataset": ds, "n_samples": len(_only_ms), "scoring_method": ["Only MS"], "top_k_acc": [np.mean(_only_ms["top_k_acc"]).item()], "p_value": [1.0] } # Load the "MS + RT" for each label for l in ms_p_rt_labels: _ms_p_rt = res[res["scoring_method"] == l].sort_values(by="eval_indx") _df["scoring_method"].append(l) _df["top_k_acc"].append(np.mean(_ms_p_rt["top_k_acc"]).item()) if len(_ms_p_rt) <= 1: # We need to have more than one value to perform a significance test _p = np.nan else: # Perform the significance test if test == "wilcoxon": _p = wilcoxon(_only_ms["top_k_acc"], _ms_p_rt["top_k_acc"], alternative="less")[1] elif test == "ttest": _p = ttest_rel(_only_ms["top_k_acc"], _ms_p_rt["top_k_acc"], alternative="less")[1] else: raise ValueError("Invalid significance test: %s" % test) _df["p_value"].append(_p) # Convert to accuracy strings _df["top_k_acc__as_labels"] = [] for idx, s in enumerate(_df["top_k_acc"]): _is_best = ( np.round(_df["top_k_acc"][idx], decimals=decimals) == np.max(np.round(_df["top_k_acc"], decimals=decimals)) ) _is_sign = False if np.isnan(_df["p_value"][idx]) else (_df["p_value"][idx] <= p_level) _lab = "{}".format(np.round(_df["top_k_acc"][idx], decimals=decimals)) if _is_best: _lab = "| " + _lab if _is_sign: _lab = _lab + " *" _df["top_k_acc__as_labels"].append(_lab) results_out = pd.concat((results_out, pd.DataFrame(_df)), ignore_index=True) return results_out
Python
def fit(self, X, y=None): """ Fit the Bouwmeester feature selection based on the feature correlation """ # Find highly correlated features and keep only one feature R = np.abs(np.corrcoef(X.T)) # Absolute correlation between features G = nx.from_numpy_array(R > self.corr_threshold) # Graph connecting the highly correlated features self.support_mask_ = np.zeros(X.shape[1], dtype=bool) for cc in nx.connected_components(G): # Keep one node / feature per group of correlated features self.support_mask_[cc.pop()] = True return self
def fit(self, X, y=None): """ Fit the Bouwmeester feature selection based on the feature correlation """ # Find highly correlated features and keep only one feature R = np.abs(np.corrcoef(X.T)) # Absolute correlation between features G = nx.from_numpy_array(R > self.corr_threshold) # Graph connecting the highly correlated features self.support_mask_ = np.zeros(X.shape[1], dtype=bool) for cc in nx.connected_components(G): # Keep one node / feature per group of correlated features self.support_mask_[cc.pop()] = True return self
Python
def _max_margin_wrapper(candidates, make_order_prob, D, random_state): """ Wrapper to compute the max-marginals in parallel """ return RandomTreeFactorGraph( candidates, make_order_probs=make_order_prob, random_state=random_state, D=D, remove_edges_with_zero_rt_diff=True ).max_product().get_max_marginals(normalize=True)
def _max_margin_wrapper(candidates, make_order_prob, D, random_state): """ Wrapper to compute the max-marginals in parallel """ return RandomTreeFactorGraph( candidates, make_order_probs=make_order_prob, random_state=random_state, D=D, remove_edges_with_zero_rt_diff=True ).max_product().get_max_marginals(normalize=True)
Python
def relative_error(y_true: np.ndarray, y_pred: np.ndarray) -> np.ndarray: """ Function to compute the relative RT prediction error. :param y_true: array-like, shape = (n_samples, ), true RTs :param y_pred: array-like, shape = (n_samples, ), predicted RTs :return: scalar, relative prediction error """ epsilon = np.finfo(np.float64).eps return np.abs(y_pred - y_true) / np.maximum(np.abs(y_true), epsilon)
def relative_error(y_true: np.ndarray, y_pred: np.ndarray) -> np.ndarray: """ Function to compute the relative RT prediction error. :param y_true: array-like, shape = (n_samples, ), true RTs :param y_pred: array-like, shape = (n_samples, ), predicted RTs :return: scalar, relative prediction error """ epsilon = np.finfo(np.float64).eps return np.abs(y_pred - y_true) / np.maximum(np.abs(y_true), epsilon)
Python
def filter_descriptors(l_rdkit_desc) -> List[Tuple[str, Callable]]: """ Only keep the descriptors used by Bouwmeester et al. (2019) """ return [(dname, dfun) for dname, dfun in l_rdkit_desc if dname in BOUWMEESTER_DESCRIPTOR_SET]
def filter_descriptors(l_rdkit_desc) -> List[Tuple[str, Callable]]: """ Only keep the descriptors used by Bouwmeester et al. (2019) """ return [(dname, dfun) for dname, dfun in l_rdkit_desc if dname in BOUWMEESTER_DESCRIPTOR_SET]
Python
def combine_margins_and_get_top_k(ssvm_model_result_dirs: List[str], dataset: str, sample_idx: int, output_dir: str): """ Function to combine the marginals scores (mu) of the candidates predicted by different SSVM models. :param ssvm_model_result_dirs: list of strings, directories containing the results for the different SSVM models. :param dataset: string, identifier of the dataset :param sample_idx: scalar, index of the random evaluation sample (MS-feature sequence) for which the margins should be combined. :param output_dir: string, output directory for the aggregated marginals and top-k accuracies. :return: """ marginals_out__msplrt = None marginals_out__onlyms = None # Top-k accuracy performance df_top_k = pd.DataFrame() df_top_k_max_models = pd.DataFrame() # We load the marginals associated with the different SSVM models in a random order for i, idir in enumerate(np.random.RandomState(sample_idx).permutation(ssvm_model_result_dirs)): ifn = os.path.join(idir, dict2fn({"spl": sample_idx}, pref="marginals", ext="pkl.gz")) with gzip.open(ifn, "rb") as ifile: # Load the marginals (dictionary also contains the Only MS scores) _marginals__msplrt = pickle.load(ifile) # type: dict # Extract the Only MS scores _marginals__onlyms = extract_ms_score(_marginals__msplrt) # type: dict assert _marginals__onlyms.keys() == _marginals__msplrt.keys() # Aggregate the Only-MS scores (MS2 scorers) by their candidate aggregation identifier. For example, if the # identifier is "inchikey1", than for all candidates with the same inchikey1 the highest MS2 score is chosen. # The output candidate set only contains a unique set of candidate identifiers. _marginals__onlyms = aggregate_candidates( _marginals__onlyms, args.candidate_aggregation_identifier ) # type: dict if i == 0: # We use the first SSVM-model as reference marginals_out__msplrt = _marginals__msplrt marginals_out__onlyms = _marginals__onlyms # For the marginals we need to construct a matrix with marginals scores in the row and columns corresponding # to the SSVM-models for s in marginals_out__msplrt: marginals_out__msplrt[s]["score"] = marginals_out__msplrt[s]["score"][:, np.newaxis] else: # Combine the marginals assert marginals_out__msplrt.keys() == _marginals__msplrt.keys() assert marginals_out__onlyms.keys() == _marginals__onlyms.keys() for s in _marginals__msplrt: assert marginals_out__msplrt[s].keys() == _marginals__msplrt[s].keys() assert marginals_out__onlyms[s].keys() == _marginals__onlyms[s].keys() # Perform some sanity checks for k in [ "spectrum_id", "correct_structure", "index_of_correct_structure", "label", "n_cand", "score" ]: if k == "spectrum_id": # Spectrum ID (=accession) needs to match assert marginals_out__msplrt[s][k].get("spectrum_id") == _marginals__msplrt[s][k].get("spectrum_id") assert marginals_out__onlyms[s][k].get("spectrum_id") == _marginals__onlyms[s][k].get("spectrum_id") assert _marginals__msplrt[s][k].get("spectrum_id") == _marginals__onlyms[s][k].get("spectrum_id") elif k == "score": # Score should only be equal for Only-MS assert np.all(marginals_out__onlyms[s][k] == _marginals__onlyms[s][k]) else: assert np.all(marginals_out__msplrt[s][k] == _marginals__msplrt[s][k]) assert np.all(marginals_out__onlyms[s][k] == _marginals__onlyms[s][k]) # Add up the normalized marginals assert np.allclose(1.0, np.max(_marginals__msplrt[s]["score"])) assert np.allclose(1.0, np.max(_marginals__onlyms[s]["score"])) marginals_out__msplrt[s]["score"] = np.hstack((marginals_out__msplrt[s]["score"], _marginals__msplrt[s]["score"][:, np.newaxis])) assert marginals_out__msplrt[s]["score"].shape == (marginals_out__msplrt[s]["n_cand"], i + 1) # Calculate the ranking performance for km in ["csi"]: # could also use "casmi" # Aggregated marginals _marginals__msplrt = aggregate_candidates(aggregate_scores(marginals_out__msplrt), args.candidate_aggregation_identifier) for s in _marginals__msplrt: assert np.all(_marginals__msplrt[s]["label"] == marginals_out__onlyms[s]["label"]) # LC-MS2Struct performance _tmp = get_topk_score_df(None, _marginals__msplrt, topk_method=km, scoring_method="MS + RT") \ .assign(n_models=(i + 1), eval_indx=sample_idx, dataset=dataset) _tmp["top_k_acc"] = (_tmp["correct_leq_k"] / _tmp["seq_length"]) * 100 # Only-MS performance _tmp_baseline = get_topk_score_df(None, marginals_out__onlyms, topk_method=km, scoring_method="Only MS") \ .assign(n_models=(i + 1), eval_indx=sample_idx, dataset=dataset) _tmp_baseline["top_k_acc"] = (_tmp_baseline["correct_leq_k"] / _tmp_baseline["seq_length"]) * 100 df_top_k = pd.concat((df_top_k, _tmp, _tmp_baseline), ignore_index=True) if i == (len(ssvm_model_result_dirs) - 1): df_top_k_max_models = pd.concat((df_top_k_max_models, _tmp, _tmp_baseline), ignore_index=True) # Write out the aggregated marginals if requested if args.write_out_averaged_margins: with gzip.open( os.path.join(output_dir, dict2fn({"spl": sample_idx}, pref="marginals", ext="pkl.gz")), "wb" ) as ofile: marginals_out__msplrt = aggregate_candidates( aggregate_scores(marginals_out__msplrt), args.candidate_aggregation_identifier ) # Aggregate the max-marginal scores if the different SSVM models # Add the Only MS scores again for s in marginals_out__msplrt: assert np.all(marginals_out__msplrt[s]["label"] == marginals_out__onlyms[s]["label"]) marginals_out__msplrt[s]["ms_score"] = marginals_out__onlyms[s]["score"] # Write out the dictionary pickle.dump(marginals_out__msplrt, ofile) return df_top_k, df_top_k_max_models
def combine_margins_and_get_top_k(ssvm_model_result_dirs: List[str], dataset: str, sample_idx: int, output_dir: str): """ Function to combine the marginals scores (mu) of the candidates predicted by different SSVM models. :param ssvm_model_result_dirs: list of strings, directories containing the results for the different SSVM models. :param dataset: string, identifier of the dataset :param sample_idx: scalar, index of the random evaluation sample (MS-feature sequence) for which the margins should be combined. :param output_dir: string, output directory for the aggregated marginals and top-k accuracies. :return: """ marginals_out__msplrt = None marginals_out__onlyms = None # Top-k accuracy performance df_top_k = pd.DataFrame() df_top_k_max_models = pd.DataFrame() # We load the marginals associated with the different SSVM models in a random order for i, idir in enumerate(np.random.RandomState(sample_idx).permutation(ssvm_model_result_dirs)): ifn = os.path.join(idir, dict2fn({"spl": sample_idx}, pref="marginals", ext="pkl.gz")) with gzip.open(ifn, "rb") as ifile: # Load the marginals (dictionary also contains the Only MS scores) _marginals__msplrt = pickle.load(ifile) # type: dict # Extract the Only MS scores _marginals__onlyms = extract_ms_score(_marginals__msplrt) # type: dict assert _marginals__onlyms.keys() == _marginals__msplrt.keys() # Aggregate the Only-MS scores (MS2 scorers) by their candidate aggregation identifier. For example, if the # identifier is "inchikey1", than for all candidates with the same inchikey1 the highest MS2 score is chosen. # The output candidate set only contains a unique set of candidate identifiers. _marginals__onlyms = aggregate_candidates( _marginals__onlyms, args.candidate_aggregation_identifier ) # type: dict if i == 0: # We use the first SSVM-model as reference marginals_out__msplrt = _marginals__msplrt marginals_out__onlyms = _marginals__onlyms # For the marginals we need to construct a matrix with marginals scores in the row and columns corresponding # to the SSVM-models for s in marginals_out__msplrt: marginals_out__msplrt[s]["score"] = marginals_out__msplrt[s]["score"][:, np.newaxis] else: # Combine the marginals assert marginals_out__msplrt.keys() == _marginals__msplrt.keys() assert marginals_out__onlyms.keys() == _marginals__onlyms.keys() for s in _marginals__msplrt: assert marginals_out__msplrt[s].keys() == _marginals__msplrt[s].keys() assert marginals_out__onlyms[s].keys() == _marginals__onlyms[s].keys() # Perform some sanity checks for k in [ "spectrum_id", "correct_structure", "index_of_correct_structure", "label", "n_cand", "score" ]: if k == "spectrum_id": # Spectrum ID (=accession) needs to match assert marginals_out__msplrt[s][k].get("spectrum_id") == _marginals__msplrt[s][k].get("spectrum_id") assert marginals_out__onlyms[s][k].get("spectrum_id") == _marginals__onlyms[s][k].get("spectrum_id") assert _marginals__msplrt[s][k].get("spectrum_id") == _marginals__onlyms[s][k].get("spectrum_id") elif k == "score": # Score should only be equal for Only-MS assert np.all(marginals_out__onlyms[s][k] == _marginals__onlyms[s][k]) else: assert np.all(marginals_out__msplrt[s][k] == _marginals__msplrt[s][k]) assert np.all(marginals_out__onlyms[s][k] == _marginals__onlyms[s][k]) # Add up the normalized marginals assert np.allclose(1.0, np.max(_marginals__msplrt[s]["score"])) assert np.allclose(1.0, np.max(_marginals__onlyms[s]["score"])) marginals_out__msplrt[s]["score"] = np.hstack((marginals_out__msplrt[s]["score"], _marginals__msplrt[s]["score"][:, np.newaxis])) assert marginals_out__msplrt[s]["score"].shape == (marginals_out__msplrt[s]["n_cand"], i + 1) # Calculate the ranking performance for km in ["csi"]: # could also use "casmi" # Aggregated marginals _marginals__msplrt = aggregate_candidates(aggregate_scores(marginals_out__msplrt), args.candidate_aggregation_identifier) for s in _marginals__msplrt: assert np.all(_marginals__msplrt[s]["label"] == marginals_out__onlyms[s]["label"]) # LC-MS2Struct performance _tmp = get_topk_score_df(None, _marginals__msplrt, topk_method=km, scoring_method="MS + RT") \ .assign(n_models=(i + 1), eval_indx=sample_idx, dataset=dataset) _tmp["top_k_acc"] = (_tmp["correct_leq_k"] / _tmp["seq_length"]) * 100 # Only-MS performance _tmp_baseline = get_topk_score_df(None, marginals_out__onlyms, topk_method=km, scoring_method="Only MS") \ .assign(n_models=(i + 1), eval_indx=sample_idx, dataset=dataset) _tmp_baseline["top_k_acc"] = (_tmp_baseline["correct_leq_k"] / _tmp_baseline["seq_length"]) * 100 df_top_k = pd.concat((df_top_k, _tmp, _tmp_baseline), ignore_index=True) if i == (len(ssvm_model_result_dirs) - 1): df_top_k_max_models = pd.concat((df_top_k_max_models, _tmp, _tmp_baseline), ignore_index=True) # Write out the aggregated marginals if requested if args.write_out_averaged_margins: with gzip.open( os.path.join(output_dir, dict2fn({"spl": sample_idx}, pref="marginals", ext="pkl.gz")), "wb" ) as ofile: marginals_out__msplrt = aggregate_candidates( aggregate_scores(marginals_out__msplrt), args.candidate_aggregation_identifier ) # Aggregate the max-marginal scores if the different SSVM models # Add the Only MS scores again for s in marginals_out__msplrt: assert np.all(marginals_out__msplrt[s]["label"] == marginals_out__onlyms[s]["label"]) marginals_out__msplrt[s]["ms_score"] = marginals_out__onlyms[s]["score"] # Write out the dictionary pickle.dump(marginals_out__msplrt, ofile) return df_top_k, df_top_k_max_models
Python
def load_data(data_dir): """ Load image data from directory `data_dir`. Assume `data_dir` has one directory named after each category, numbered 0 through NUM_CATEGORIES - 1. Inside each category directory will be some number of image files. Return tuple `(images, labels)`. `images` should be a list of all of the images in the data directory, where each image is formatted as a numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should be a list of integer labels, representing the categories for each of the corresponding `images`. """ raise NotImplementedError
def load_data(data_dir): """ Load image data from directory `data_dir`. Assume `data_dir` has one directory named after each category, numbered 0 through NUM_CATEGORIES - 1. Inside each category directory will be some number of image files. Return tuple `(images, labels)`. `images` should be a list of all of the images in the data directory, where each image is formatted as a numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should be a list of integer labels, representing the categories for each of the corresponding `images`. """ raise NotImplementedError
Python
def echo(callback, *args, **kwargs): """Echo args back to callback For testing purposes only. """ callback(*args, **kwargs)
def echo(callback, *args, **kwargs): """Echo args back to callback For testing purposes only. """ callback(*args, **kwargs)
Python
def server_info(callback: collections.Callable) -> None: """Return information about the current running version of the server""" from backend.server import RUN_DATE, VERSION callback(start_date=RUN_DATE, version=VERSION)
def server_info(callback: collections.Callable) -> None: """Return information about the current running version of the server""" from backend.server import RUN_DATE, VERSION callback(start_date=RUN_DATE, version=VERSION)
Python
def schedule_events(self, events: list, location='last'): """Schedule events in the queue at `location`. Note the handler might not be currently processing. location = 'immediately' | 'next up' | 'last' """ # hack event_queue_was_empty = not self._event_queue if location == 'immediately': for event in events: self._push_event(event) elif location == 'next up': self._event_queue = events + self._event_queue elif location == 'last': self._event_queue += events # hack: this gets checked every time an event is scheduled if self.processing and event_queue_was_empty and (location == 'next up' or location == 'last'): self._push_next_event()
def schedule_events(self, events: list, location='last'): """Schedule events in the queue at `location`. Note the handler might not be currently processing. location = 'immediately' | 'next up' | 'last' """ # hack event_queue_was_empty = not self._event_queue if location == 'immediately': for event in events: self._push_event(event) elif location == 'next up': self._event_queue = events + self._event_queue elif location == 'last': self._event_queue += events # hack: this gets checked every time an event is scheduled if self.processing and event_queue_was_empty and (location == 'next up' or location == 'last'): self._push_next_event()
Python
def _push_next_event(self): """Push the next event in the queue into the stack""" if self._event_queue: # retrieve next event on queue and push into stack self._push_event(self._event_queue.pop(0)) else: self.delegate.event_queue_did_empty(self)
def _push_next_event(self): """Push the next event in the queue into the stack""" if self._event_queue: # retrieve next event on queue and push into stack self._push_event(self._event_queue.pop(0)) else: self.delegate.event_queue_did_empty(self)
Python
def _push_event(self, event): """Push event into stack and evoke it""" self._event_stack.append(event) event.evoke()
def _push_event(self, event): """Push event into stack and evoke it""" self._event_stack.append(event) event.evoke()
Python
def describe(condition: float) -> str: """Describes a number between 0 and 1 using some funny words A big number is interpreted as a good thing, and small bad. """ assert 0 <= condition <= 1 if condition == 1: condition = .999 small_adverbs = ['a little bit', 'fairly', 'somewhat', 'mildly'] big_adverbs = ['very', 'extremely', 'horrifyingly'] good_adjectives = ['shiny', 'amazing', 'clean', 'well-kept', 'normal'] medium_adjectives = ['bad', 'broken', 'smelly', 'rusty', 'windy'] bad_adjectives = ['dilapidated', 'gross', 'infected', 'dangerous', 'terrible'] adverbs = [small_adverbs, big_adverbs] adjectives = [bad_adjectives, medium_adjectives, good_adjectives] # It has six levels of detail, so we need to get the value from 0-5: number = int(math.floor(condition * 6.0)) if number > 4: return random.choice(adverbs[number % 2]) + ' ' + random.choice(good_adjectives) else: return random.choice(adverbs[1 - (number % 2)]) + ' ' + random.choice( adjectives[int(math.floor(number / 3.0))])
def describe(condition: float) -> str: """Describes a number between 0 and 1 using some funny words A big number is interpreted as a good thing, and small bad. """ assert 0 <= condition <= 1 if condition == 1: condition = .999 small_adverbs = ['a little bit', 'fairly', 'somewhat', 'mildly'] big_adverbs = ['very', 'extremely', 'horrifyingly'] good_adjectives = ['shiny', 'amazing', 'clean', 'well-kept', 'normal'] medium_adjectives = ['bad', 'broken', 'smelly', 'rusty', 'windy'] bad_adjectives = ['dilapidated', 'gross', 'infected', 'dangerous', 'terrible'] adverbs = [small_adverbs, big_adverbs] adjectives = [bad_adjectives, medium_adjectives, good_adjectives] # It has six levels of detail, so we need to get the value from 0-5: number = int(math.floor(condition * 6.0)) if number > 4: return random.choice(adverbs[number % 2]) + ' ' + random.choice(good_adjectives) else: return random.choice(adverbs[1 - (number % 2)]) + ' ' + random.choice( adjectives[int(math.floor(number / 3.0))])
Python
def _register_callback(self, callback): """Register a new callback object and return the `callback_id`""" # generate callback id new_callback_id = self._generate_callback_id() self._callback_with_id[new_callback_id] = callback return new_callback_id
def _register_callback(self, callback): """Register a new callback object and return the `callback_id`""" # generate callback id new_callback_id = self._generate_callback_id() self._callback_with_id[new_callback_id] = callback return new_callback_id
Python
def _retrieve_callback(self, callback_id): """Return registered callback object with matching `callback_id` An exception is raised if the callback cannot be found. """ try: return self._callback_with_id.pop(callback_id) except KeyError: # todo: is there a more fitting type of error? raise InvalidArgumentError( "Cannot find callback object using callback_id", method='handle_callback', args=(callback_id,) )
def _retrieve_callback(self, callback_id): """Return registered callback object with matching `callback_id` An exception is raised if the callback cannot be found. """ try: return self._callback_with_id.pop(callback_id) except KeyError: # todo: is there a more fitting type of error? raise InvalidArgumentError( "Cannot find callback object using callback_id", method='handle_callback', args=(callback_id,) )
Python
def _generate_callback(self, callback_id): """Create a wrapper object that, when called, will send a `handle_callback` message over the socket. The kwargs passed to the wrapper object, along with the `callback_id` when creating the object, will be passed as arguments to the `handle_callback` message. """ def callback(**callback_args): # create message msg = { 'method': 'handle_callback', 'args': { 'callback_id': callback_id, } } if callback_args: msg['args']['callback_args'] = callback_args # send message to client # problem: what if delegate disconnects before callback? self.write_message(json.dumps(msg)) return callback
def _generate_callback(self, callback_id): """Create a wrapper object that, when called, will send a `handle_callback` message over the socket. The kwargs passed to the wrapper object, along with the `callback_id` when creating the object, will be passed as arguments to the `handle_callback` message. """ def callback(**callback_args): # create message msg = { 'method': 'handle_callback', 'args': { 'callback_id': callback_id, } } if callback_args: msg['args']['callback_args'] = callback_args # send message to client # problem: what if delegate disconnects before callback? self.write_message(json.dumps(msg)) return callback
Python
def sending(method): """A decorator that calls the method on the client by sending a message over websocket""" # noinspection PyProtectedMember @functools.wraps(method) def wrapper(self, *args, **kwargs): # self should be the `delegate` object here # call local (server-side) method first method(self, *args, **kwargs) # prepare dictionary of args callargs = inspect.getcallargs(method, self, *args, **kwargs) callargs.pop('self') # if our method takes in a callback if 'callback' in callargs: # store callback object on server-side (and remove from message) callback_id = self._message_handler._register_callback(callargs.pop('callback')) # attach callback id to message callargs['callback_id'] = callback_id # create message msg = {'method': method.__name__, 'args': callargs} # send message to client msg = json.dumps(msg) self._message_handler.write_message(msg) return wrapper
def sending(method): """A decorator that calls the method on the client by sending a message over websocket""" # noinspection PyProtectedMember @functools.wraps(method) def wrapper(self, *args, **kwargs): # self should be the `delegate` object here # call local (server-side) method first method(self, *args, **kwargs) # prepare dictionary of args callargs = inspect.getcallargs(method, self, *args, **kwargs) callargs.pop('self') # if our method takes in a callback if 'callback' in callargs: # store callback object on server-side (and remove from message) callback_id = self._message_handler._register_callback(callargs.pop('callback')) # attach callback id to message callargs['callback_id'] = callback_id # create message msg = {'method': method.__name__, 'args': callargs} # send message to client msg = json.dumps(msg) self._message_handler.write_message(msg) return wrapper
Python
def forward(recipient): """Return a decorator that attempts to call a method with the same name on the recipient The recipient can either be an object or the path to the object in string, in which case the object will be searched for each time the decorated method is called. """ # the decorator def decorator(method): @functools.wraps(method) def wrapper(*args, **kwargs): # if recipient is a path, attempt to get actual object if isinstance(recipient, str): path = recipient.split('.') # retrieve recipient object try: # object will be looked for in the scope of `method` r = inspect.getcallargs(method, *args, **kwargs)[path.pop(0)] for attr in path: r = getattr(r, attr) except (NameError, AttributeError): # re-raise for now raise else: r = recipient # call method on recipient call_on(r, method.__name__, *args, **kwargs) return wrapper return decorator
def forward(recipient): """Return a decorator that attempts to call a method with the same name on the recipient The recipient can either be an object or the path to the object in string, in which case the object will be searched for each time the decorated method is called. """ # the decorator def decorator(method): @functools.wraps(method) def wrapper(*args, **kwargs): # if recipient is a path, attempt to get actual object if isinstance(recipient, str): path = recipient.split('.') # retrieve recipient object try: # object will be looked for in the scope of `method` r = inspect.getcallargs(method, *args, **kwargs)[path.pop(0)] for attr in path: r = getattr(r, attr) except (NameError, AttributeError): # re-raise for now raise else: r = recipient # call method on recipient call_on(r, method.__name__, *args, **kwargs) return wrapper return decorator
Python
def call(method, *args, check_error=True, **kwargs): """Attempt to call the method If a matching method cannot be found, an InvalidMethodError is raised. If the arguments are invalid, an InvalidArgumentError is raised. Setting the `check_error` option to False will suppress these errors. """ try: if method and isinstance(method, collections.Callable): try: inspect.getcallargs(method, *args, **kwargs) except TypeError as err: raise InvalidArgumentError( "Attempt to invoke %s resulted in a TypeError %s" % (method, err), method=method, args=args, kwargs=kwargs.copy() ) else: return method(*args, **kwargs) else: raise InvalidMethodError(method=method) except (InvalidMethodError, InvalidArgumentError): if check_error: raise
def call(method, *args, check_error=True, **kwargs): """Attempt to call the method If a matching method cannot be found, an InvalidMethodError is raised. If the arguments are invalid, an InvalidArgumentError is raised. Setting the `check_error` option to False will suppress these errors. """ try: if method and isinstance(method, collections.Callable): try: inspect.getcallargs(method, *args, **kwargs) except TypeError as err: raise InvalidArgumentError( "Attempt to invoke %s resulted in a TypeError %s" % (method, err), method=method, args=args, kwargs=kwargs.copy() ) else: return method(*args, **kwargs) else: raise InvalidMethodError(method=method) except (InvalidMethodError, InvalidArgumentError): if check_error: raise
Python
def call_on(recipient, method_name, *args, check_error=True, **kwargs): """Attempt to call a method with the same name on the recipient If a matching method cannot be found, an InvalidMethodError is raised. If the arguments are invalid, an InvalidArgumentError is raised. Setting the `check_error` option to False will suppress these errors. """ method = getattr(recipient, method_name, None) call(method, *args, check_error=check_error, **kwargs)
def call_on(recipient, method_name, *args, check_error=True, **kwargs): """Attempt to call a method with the same name on the recipient If a matching method cannot be found, an InvalidMethodError is raised. If the arguments are invalid, an InvalidArgumentError is raised. Setting the `check_error` option to False will suppress these errors. """ method = getattr(recipient, method_name, None) call(method, *args, check_error=check_error, **kwargs)
Python
def _get_top_ranking_propoals(probs): """Get top ranking proposals by k-means""" dev = probs.device kmeans = KMeans(n_clusters=5).fit(probs.cpu().numpy()) high_score_label = np.argmax(kmeans.cluster_centers_) index = np.where(kmeans.labels_ == high_score_label)[0] if len(index) == 0: index = np.array([np.argmax(probs)]) return torch.from_numpy(index).to(dev)
def _get_top_ranking_propoals(probs): """Get top ranking proposals by k-means""" dev = probs.device kmeans = KMeans(n_clusters=5).fit(probs.cpu().numpy()) high_score_label = np.argmax(kmeans.cluster_centers_) index = np.where(kmeans.labels_ == high_score_label)[0] if len(index) == 0: index = np.array([np.argmax(probs)]) return torch.from_numpy(index).to(dev)
Python
def _get_proposal_clusters(all_rois, proposals, im_labels, cls_prob): """Generate a random sample of RoIs comprising foreground and background examples. """ num_images, num_classes = im_labels.shape assert num_images == 1, 'batch size shoud be equal to 1' # overlaps: (rois x gt_boxes) gt_boxes = proposals['gt_boxes'] gt_labels = proposals['gt_classes'] gt_scores = proposals['gt_scores'] overlaps = ops.box_iou(all_rois.to(gt_boxes.device), gt_boxes) max_overlaps, gt_assignment = overlaps.max(dim=1) labels = gt_labels[gt_assignment, 0] cls_loss_weights = gt_scores[gt_assignment, 0] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = (max_overlaps >= 0.5).nonzero()[:,0] # Select background RoIs as those with < FG_THRESH overlap bg_inds = (max_overlaps < 0.5).nonzero()[:,0] ig_inds = (max_overlaps < 0.1).nonzero()[:,0] cls_loss_weights[ig_inds] = 0.0 labels[bg_inds] = 0 gt_assignment[bg_inds] = -1 img_cls_loss_weights = torch.zeros(gt_boxes.shape[0], dtype=cls_prob.dtype, device=cls_prob.device) pc_probs = torch.zeros(gt_boxes.shape[0], dtype=cls_prob.dtype, device=cls_prob.device) pc_labels = torch.zeros(gt_boxes.shape[0], dtype=torch.long, device=cls_prob.device) pc_count = torch.zeros(gt_boxes.shape[0], dtype=torch.long, device=cls_prob.device) for i in range(gt_boxes.shape[0]): po_index = (gt_assignment == i).nonzero()[:,0] img_cls_loss_weights[i] = torch.sum(cls_loss_weights[po_index]) pc_labels[i] = gt_labels[i, 0] pc_count[i] = len(po_index) pc_probs[i] = (cls_prob[po_index, pc_labels[i]]).mean() return labels, cls_loss_weights, gt_assignment, pc_labels, pc_probs, pc_count, img_cls_loss_weights
def _get_proposal_clusters(all_rois, proposals, im_labels, cls_prob): """Generate a random sample of RoIs comprising foreground and background examples. """ num_images, num_classes = im_labels.shape assert num_images == 1, 'batch size shoud be equal to 1' # overlaps: (rois x gt_boxes) gt_boxes = proposals['gt_boxes'] gt_labels = proposals['gt_classes'] gt_scores = proposals['gt_scores'] overlaps = ops.box_iou(all_rois.to(gt_boxes.device), gt_boxes) max_overlaps, gt_assignment = overlaps.max(dim=1) labels = gt_labels[gt_assignment, 0] cls_loss_weights = gt_scores[gt_assignment, 0] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = (max_overlaps >= 0.5).nonzero()[:,0] # Select background RoIs as those with < FG_THRESH overlap bg_inds = (max_overlaps < 0.5).nonzero()[:,0] ig_inds = (max_overlaps < 0.1).nonzero()[:,0] cls_loss_weights[ig_inds] = 0.0 labels[bg_inds] = 0 gt_assignment[bg_inds] = -1 img_cls_loss_weights = torch.zeros(gt_boxes.shape[0], dtype=cls_prob.dtype, device=cls_prob.device) pc_probs = torch.zeros(gt_boxes.shape[0], dtype=cls_prob.dtype, device=cls_prob.device) pc_labels = torch.zeros(gt_boxes.shape[0], dtype=torch.long, device=cls_prob.device) pc_count = torch.zeros(gt_boxes.shape[0], dtype=torch.long, device=cls_prob.device) for i in range(gt_boxes.shape[0]): po_index = (gt_assignment == i).nonzero()[:,0] img_cls_loss_weights[i] = torch.sum(cls_loss_weights[po_index]) pc_labels[i] = gt_labels[i, 0] pc_count[i] = len(po_index) pc_probs[i] = (cls_prob[po_index, pc_labels[i]]).mean() return labels, cls_loss_weights, gt_assignment, pc_labels, pc_probs, pc_count, img_cls_loss_weights
Python
def build_optimizer(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params: List[Dict[str, Any]] = [] for key, value in model.named_parameters(): if not value.requires_grad: print(f'{key} requires no grad') continue lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if key.endswith("norm.weight") or key.endswith("norm.bias"): weight_decay = cfg.SOLVER.WEIGHT_DECAY_NORM elif key.endswith(".bias"): # NOTE: unlike Detectron v1, we now default BIAS_LR_FACTOR to 1.0 # and WEIGHT_DECAY_BIAS to WEIGHT_DECAY so that bias optimizer # hyperparameters are by default exactly the same as for regular # weights. lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS if 'refinement' in key: lr = lr * cfg.SOLVER.REFINEMENT_LR_FACTOR params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] print(f'{key} | lr: {lr:6.04f}, weight_decay: {weight_decay:6.04f}') solver_type = cfg.SOLVER.TYPE.lower() if solver_type == 'sgd': optimizer = torch.optim.SGD(params, lr, momentum=cfg.SOLVER.MOMENTUM) elif solver_type == 'caffesgd': from optim.caffesgd import CaffeSGD optimizer = CaffeSGD(params, lr, momentum=cfg.SOLVER.MOMENTUM) return optimizer
def build_optimizer(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params: List[Dict[str, Any]] = [] for key, value in model.named_parameters(): if not value.requires_grad: print(f'{key} requires no grad') continue lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if key.endswith("norm.weight") or key.endswith("norm.bias"): weight_decay = cfg.SOLVER.WEIGHT_DECAY_NORM elif key.endswith(".bias"): # NOTE: unlike Detectron v1, we now default BIAS_LR_FACTOR to 1.0 # and WEIGHT_DECAY_BIAS to WEIGHT_DECAY so that bias optimizer # hyperparameters are by default exactly the same as for regular # weights. lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS if 'refinement' in key: lr = lr * cfg.SOLVER.REFINEMENT_LR_FACTOR params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] print(f'{key} | lr: {lr:6.04f}, weight_decay: {weight_decay:6.04f}') solver_type = cfg.SOLVER.TYPE.lower() if solver_type == 'sgd': optimizer = torch.optim.SGD(params, lr, momentum=cfg.SOLVER.MOMENTUM) elif solver_type == 'caffesgd': from optim.caffesgd import CaffeSGD optimizer = CaffeSGD(params, lr, momentum=cfg.SOLVER.MOMENTUM) return optimizer
Python
def build_lr_scheduler(cfg, optimizer): """ Build a LR scheduler from config. """ name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupCosineLR": return WarmupCosineLR( optimizer, cfg.SOLVER.MAX_ITER, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "CaffeLRScheduler": from optim.caffesgd import CaffeLRScheduler return CaffeLRScheduler( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) else: raise ValueError("Unknown LR scheduler: {}".format(name))
def build_lr_scheduler(cfg, optimizer): """ Build a LR scheduler from config. """ name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupCosineLR": return WarmupCosineLR( optimizer, cfg.SOLVER.MAX_ITER, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "CaffeLRScheduler": from optim.caffesgd import CaffeLRScheduler return CaffeLRScheduler( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) else: raise ValueError("Unknown LR scheduler: {}".format(name))
Python
def initialize_parser(): """For running from command line, initialize argparse with common args""" ftypes = [ "png", "jpg", "jpeg", "pdf", "ps", "eps", "rgba", "svg", "tiff", "tif", "pgf", "svgz", "raw", ] parser = argparse.ArgumentParser() parser.add_argument( "-s", "--savefig", action="store", default=False, choices=ftypes, help="Save figure to a file", ) parser.add_argument( "-w", "--waverange", choices=["all", "nir", "mir"], default="all", help="Wavelength range to display", ) return parser
def initialize_parser(): """For running from command line, initialize argparse with common args""" ftypes = [ "png", "jpg", "jpeg", "pdf", "ps", "eps", "rgba", "svg", "tiff", "tif", "pgf", "svgz", "raw", ] parser = argparse.ArgumentParser() parser.add_argument( "-s", "--savefig", action="store", default=False, choices=ftypes, help="Save figure to a file", ) parser.add_argument( "-w", "--waverange", choices=["all", "nir", "mir"], default="all", help="Wavelength range to display", ) return parser
Python
def create_npm_package_archive_build_file(): """Creates the contents of a `BUILD.bazel` file for exposing NPM package tarballs for the integration test packages configured in the constant. The `BUILD.bazel` file contents are supposed to be placed into the `@npm//` workspace top-level BUILD file. This is necessary because all files of a NPM package are not accessible outside from the `@npm//` workspace. """ result = """load("@rules_pkg//:pkg.bzl", "pkg_tar")""" for pkg in INTEGRATION_TEST_PACKAGES: label_name = _get_archive_label_of_package(pkg) last_segment = pkg.split("/")[-1] result += """ pkg_tar( name = "{label_name}", srcs = ["//{name}:{last_segment}__all_files"], extension = "tar.gz", package_dir = "package/", strip_prefix = "/external/npm/node_modules/{name}", tags = ["manual"], )""".format(name = pkg, label_name = label_name, last_segment = last_segment) return result
def create_npm_package_archive_build_file(): """Creates the contents of a `BUILD.bazel` file for exposing NPM package tarballs for the integration test packages configured in the constant. The `BUILD.bazel` file contents are supposed to be placed into the `@npm//` workspace top-level BUILD file. This is necessary because all files of a NPM package are not accessible outside from the `@npm//` workspace. """ result = """load("@rules_pkg//:pkg.bzl", "pkg_tar")""" for pkg in INTEGRATION_TEST_PACKAGES: label_name = _get_archive_label_of_package(pkg) last_segment = pkg.split("/")[-1] result += """ pkg_tar( name = "{label_name}", srcs = ["//{name}:{last_segment}__all_files"], extension = "tar.gz", package_dir = "package/", strip_prefix = "/external/npm/node_modules/{name}", tags = ["manual"], )""".format(name = pkg, label_name = label_name, last_segment = last_segment) return result
Python
def run(self): """ .run() function is used to store returns to fetch from a join implementation """ if self._target is not None: self._return = self._target(*self._args, **self._kwargs)
def run(self): """ .run() function is used to store returns to fetch from a join implementation """ if self._target is not None: self._return = self._target(*self._args, **self._kwargs)
Python
def join(self, *args): """ .join() function can be used to get returns from a join implementation """ threading.Thread.join(self, *args, timeout=-1) return self._return
def join(self, *args): """ .join() function can be used to get returns from a join implementation """ threading.Thread.join(self, *args, timeout=-1) return self._return
Python
def join(self, *args): """ .join() function can be used to get returns from a join implementation """ multiprocessing.Process.join(self, *args, timeout=-1) return self._return
def join(self, *args): """ .join() function can be used to get returns from a join implementation """ multiprocessing.Process.join(self, *args, timeout=-1) return self._return
Python
def runRAFT(fname_design, fname_turbine, fname_env): ''' This the main function for running the raft model in standalone form, where inputs are contained in the specified input files. ''' # open the design YAML file and parse it into a dictionary for passing to raft with open(fname_design) as file: design = yaml.load(file, Loader=yaml.FullLoader) print("Loading file: "+fname_design) print(f"'{design['name']}'") depth = float(design['mooring']['water_depth']) # now off potMod in the design dictionary to avoid BEM analysis for mi in design['platform']['members']: mi['potMod'] = False # set up frequency range w = np.arange(0.05, 5, 0.05) # frequency range (to be set by modeling options yaml) # read in turbine data and combine it in # turbine = loadTurbineYAML(fname_turbine) # design['turbine'].update(turbine) # --- Create and run the model --- model = raft.Model(design, w=w, depth=depth) # set up model model.setEnv(Hs=8, Tp=12, V=10, Fthrust=float(design['turbine']['Fthrust'])) # set basic wave and wind info model.calcSystemProps() # get all the setup calculations done within the model model.solveEigen() model.calcMooringAndOffsets() # calculate the offsets for the given loading model.solveDynamics() # put everything together and iteratively solve the dynamic response model.plot() plt.show() return model
def runRAFT(fname_design, fname_turbine, fname_env): ''' This the main function for running the raft model in standalone form, where inputs are contained in the specified input files. ''' # open the design YAML file and parse it into a dictionary for passing to raft with open(fname_design) as file: design = yaml.load(file, Loader=yaml.FullLoader) print("Loading file: "+fname_design) print(f"'{design['name']}'") depth = float(design['mooring']['water_depth']) # now off potMod in the design dictionary to avoid BEM analysis for mi in design['platform']['members']: mi['potMod'] = False # set up frequency range w = np.arange(0.05, 5, 0.05) # frequency range (to be set by modeling options yaml) # read in turbine data and combine it in # turbine = loadTurbineYAML(fname_turbine) # design['turbine'].update(turbine) # --- Create and run the model --- model = raft.Model(design, w=w, depth=depth) # set up model model.setEnv(Hs=8, Tp=12, V=10, Fthrust=float(design['turbine']['Fthrust'])) # set basic wave and wind info model.calcSystemProps() # get all the setup calculations done within the model model.solveEigen() model.calcMooringAndOffsets() # calculate the offsets for the given loading model.solveDynamics() # put everything together and iteratively solve the dynamic response model.plot() plt.show() return model
Python
def translateForce3to6DOF(Fin, r): '''Takes in a position vector and a force vector (applied at the positon), and calculates the resulting 6-DOF force and moment vector. :param array r: x,y,z coordinates at which force is acting [m] :param array Fin: x,y,z components of force [N] :return: the resulting force and moment vector :rtype: array ''' Fout = np.zeros(6, dtype=Fin.dtype) # initialize output vector as same dtype as input vector (to support both real and complex inputs) Fout[:3] = Fin Fout[3:] = np.cross(r, Fin) return Fout
def translateForce3to6DOF(Fin, r): '''Takes in a position vector and a force vector (applied at the positon), and calculates the resulting 6-DOF force and moment vector. :param array r: x,y,z coordinates at which force is acting [m] :param array Fin: x,y,z components of force [N] :return: the resulting force and moment vector :rtype: array ''' Fout = np.zeros(6, dtype=Fin.dtype) # initialize output vector as same dtype as input vector (to support both real and complex inputs) Fout[:3] = Fin Fout[3:] = np.cross(r, Fin) return Fout
Python
def transformForce(f_in, offset=[], orientation=[]): '''Transform a size-3 or size-6 force from one reference frame to another Parameters ---------- f_in : size 3 or 6 array the input force vector or force and moment vector offset : size-3 array the x,y,z coordinates at which f_in is acting, relative to the reference frame at which the force and moment should be returned orientation : size-3 array The orientation of f_in relative to the reference frame of the results. If size 3: x,y,z Euler angles describing the rotations around each axis (applied in order z, y, x). If 3-by-3, the rotation matrix. ''' # input size checks if not len(f_in) in [3,6]: raise ValueError("f_in input must be size 3 or 6") if not len(offset) in [0,3]: raise ValueError("offset input if provided must be size 3") # prep output if len(f_in) == 6: f = np.array(f_in) elif len(f_in) == 3: f = np.hstack([f_in, [0,0,0]]) # prep rotation matrix if len(orientation) > 0: rot = np.array(orientation) if rot.shape == (3,): rotMat = rotationMatrix(*rot) elif rot.shape == (3,3): rotMat = rot else: raise ValueError("orientation input if provided must be size 3 or 3-by-3") # rotation f_in2 = np.array(f_in) if len(orientation) > 0: f[:3] = np.matmul(rotMat, f_in2[:3]) if len(f_in) == 6: f[3:] = np.matmul(rotMat, f_in2[3:]) # translation if len(offset) > 0: f[3:] += np.cross(offset, f[:3]) # add moment created by offsetting forces return f
def transformForce(f_in, offset=[], orientation=[]): '''Transform a size-3 or size-6 force from one reference frame to another Parameters ---------- f_in : size 3 or 6 array the input force vector or force and moment vector offset : size-3 array the x,y,z coordinates at which f_in is acting, relative to the reference frame at which the force and moment should be returned orientation : size-3 array The orientation of f_in relative to the reference frame of the results. If size 3: x,y,z Euler angles describing the rotations around each axis (applied in order z, y, x). If 3-by-3, the rotation matrix. ''' # input size checks if not len(f_in) in [3,6]: raise ValueError("f_in input must be size 3 or 6") if not len(offset) in [0,3]: raise ValueError("offset input if provided must be size 3") # prep output if len(f_in) == 6: f = np.array(f_in) elif len(f_in) == 3: f = np.hstack([f_in, [0,0,0]]) # prep rotation matrix if len(orientation) > 0: rot = np.array(orientation) if rot.shape == (3,): rotMat = rotationMatrix(*rot) elif rot.shape == (3,3): rotMat = rot else: raise ValueError("orientation input if provided must be size 3 or 3-by-3") # rotation f_in2 = np.array(f_in) if len(orientation) > 0: f[:3] = np.matmul(rotMat, f_in2[:3]) if len(f_in) == 6: f[3:] = np.matmul(rotMat, f_in2[3:]) # translation if len(offset) > 0: f[3:] += np.cross(offset, f[:3]) # add moment created by offsetting forces return f
Python
def translateMatrix3to6DOF(Min, r): '''Transforms a 3x3 matrix to be about a translated reference point, resulting in a 6x6 matrix.''' # sub-matrix definitions are accordint to | m J | # | J^T I | # note that the J term and I terms are zero in this case because the input is just a mass matrix (assumed to be about CG) H = getH(r) # "anti-symmetric tensor components" from Sadeghi and Incecik Mout = np.zeros([6,6]) #, dtype=complex) # mass matrix [m'] = [m] Mout[:3,:3] = Min # product of inertia matrix [J'] = [m][H] + [J] Mout[:3,3:] = np.matmul(Min, H) Mout[3:,:3] = Mout[:3,3:].T # moment of inertia matrix [I'] = [H][m][H]^T + [J]^T [H] + [H]^T [J] + [I] Mout[3:,3:] = np.matmul(np.matmul(H,Min), H.T) return Mout
def translateMatrix3to6DOF(Min, r): '''Transforms a 3x3 matrix to be about a translated reference point, resulting in a 6x6 matrix.''' # sub-matrix definitions are accordint to | m J | # | J^T I | # note that the J term and I terms are zero in this case because the input is just a mass matrix (assumed to be about CG) H = getH(r) # "anti-symmetric tensor components" from Sadeghi and Incecik Mout = np.zeros([6,6]) #, dtype=complex) # mass matrix [m'] = [m] Mout[:3,:3] = Min # product of inertia matrix [J'] = [m][H] + [J] Mout[:3,3:] = np.matmul(Min, H) Mout[3:,:3] = Mout[:3,3:].T # moment of inertia matrix [I'] = [H][m][H]^T + [J]^T [H] + [H]^T [J] + [I] Mout[3:,3:] = np.matmul(np.matmul(H,Min), H.T) return Mout
Python
def translateMatrix6to6DOF(Min, r): '''Transforms a 6x6 matrix to be about a translated reference point. r is a vector that goes from where you want the reference point to be to where the reference point currently is''' # sub-matrix definitions are accordint to | m J | # | J^T I | H = getH(r) # "anti-symmetric tensor components" from Sadeghi and Incecik Mout = np.zeros([6,6]) #, dtype=complex) # mass matrix [m'] = [m] Mout[:3,:3] = Min[:3,:3] # product of inertia matrix [J'] = [m][H] + [J] Mout[:3,3:] = np.matmul(Min[:3,:3], H) + Min[:3,3:] Mout[3:,:3] = Mout[:3,3:].T # moment of inertia matrix [I'] = [H][m][H]^T + [J]^T [H] + [H]^T [J] + [I] Mout[3:,3:] = np.matmul(np.matmul(H,Min[:3,:3]), H.T) + np.matmul(Min[3:,:3], H) + np.matmul(H.T, Min[:3,3:]) + Min[3:,3:] return Mout
def translateMatrix6to6DOF(Min, r): '''Transforms a 6x6 matrix to be about a translated reference point. r is a vector that goes from where you want the reference point to be to where the reference point currently is''' # sub-matrix definitions are accordint to | m J | # | J^T I | H = getH(r) # "anti-symmetric tensor components" from Sadeghi and Incecik Mout = np.zeros([6,6]) #, dtype=complex) # mass matrix [m'] = [m] Mout[:3,:3] = Min[:3,:3] # product of inertia matrix [J'] = [m][H] + [J] Mout[:3,3:] = np.matmul(Min[:3,:3], H) + Min[:3,3:] Mout[3:,:3] = Mout[:3,3:].T # moment of inertia matrix [I'] = [H][m][H]^T + [J]^T [H] + [H]^T [J] + [I] Mout[3:,3:] = np.matmul(np.matmul(H,Min[:3,:3]), H.T) + np.matmul(Min[3:,:3], H) + np.matmul(H.T, Min[:3,3:]) + Min[3:,3:] return Mout