language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.TruncationSelectionExchange()
for key, value in self.metric_strategies.items():
msg.metric_name_strategy_map[key] = value
msg.truncation_k = self.truncation_k
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.TruncationSelectionExchange()
for key, value in self.metric_strategies.items():
msg.metric_name_strategy_map[key] = value
msg.truncation_k = self.truncation_k
return msg |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.RegularizedEvolution()
msg.metric_name = self.metric_name
msg.metric_strategy = self.metric_strategy
msg.mutation_strategy.CopyFrom(self.mutation_strategy.export_proto())
msg.sample_size = self.sample_size
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.RegularizedEvolution()
msg.metric_name = self.metric_name
msg.metric_strategy = self.metric_strategy
msg.mutation_strategy.CopyFrom(self.mutation_strategy.export_proto())
msg.sample_size = self.sample_size
return msg |
Python | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.KFAC()
first_order_optimizer_proto = self.first_order_optimizer.export_proto()
first_order_optimizer_proto.parameters.Unpack(params.sgd)
for key, value in self.kfac_args.items():
setattr(params, key, value)
return params | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.KFAC()
first_order_optimizer_proto = self.first_order_optimizer.export_proto()
first_order_optimizer_proto.parameters.Unpack(params.sgd)
for key, value in self.kfac_args.items():
setattr(params, key, value)
return params |
Python | def construct_data_reader():
"""Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
import os.path
import lbann
module_file = os.path.abspath(__file__)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = 'python'
data_reader.role = 'train'
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.python.module = 'dataset'
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = 'get_sample'
data_reader.python.num_samples_function = 'num_samples'
data_reader.python.sample_dims_function = 'sample_dims'
return message | def construct_data_reader():
"""Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
import os.path
import lbann
module_file = os.path.abspath(__file__)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = 'python'
data_reader.role = 'train'
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.python.module = 'dataset'
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = 'get_sample'
data_reader.python.num_samples_function = 'num_samples'
data_reader.python.sample_dims_function = 'sample_dims'
return message |
Python | def message(self,
node_features,
neighbor_features,
edge_features):
"""Update node features and edge features. The Message stage of the
convolution.
Args:
node_features (Layer); A 2D layer of node features of
shape (num_nodes, input_channels)
neighbor_features (Layer): A 3D layer of node features of
shape (num_edges, 1, input_channels)
edge_features (Layer): A 2D layer of edge features of
shape (num_edges, edge_features)
Returns:
(Layer, Layer): Returns the updated node features and the messages
for each node.
"""
## These reshapes do not change the nn output but enables channelwise partitioning
## for distconv channelwiseFC natively
node_features = lbann.Reshape(node_features, dims=str_list([self.num_nodes, 1, self.input_channels]))
edge_features = lbann.Reshape(edge_features, dims=str_list([self.num_edges, 1, self.edge_input_channels]))
updated_node_features = self.node_nn(node_features)
edge_update = None
for layer in self.edge_nn:
if edge_update:
edge_update = layer(edge_update)
else:
edge_update = layer(edge_features)
edge_values = \
lbann.Reshape(edge_update,
dims=str_list([self.num_edges,
self.input_channels,
self.output_channels]),
name=self.name+"_edge_mat_reshape")
edge_values = \
lbann.MatMul(neighbor_features, edge_values)
return updated_node_features, edge_values | def message(self,
node_features,
neighbor_features,
edge_features):
"""Update node features and edge features. The Message stage of the
convolution.
Args:
node_features (Layer); A 2D layer of node features of
shape (num_nodes, input_channels)
neighbor_features (Layer): A 3D layer of node features of
shape (num_edges, 1, input_channels)
edge_features (Layer): A 2D layer of edge features of
shape (num_edges, edge_features)
Returns:
(Layer, Layer): Returns the updated node features and the messages
for each node.
"""
## These reshapes do not change the nn output but enables channelwise partitioning
## for distconv channelwiseFC natively
node_features = lbann.Reshape(node_features, dims=str_list([self.num_nodes, 1, self.input_channels]))
edge_features = lbann.Reshape(edge_features, dims=str_list([self.num_edges, 1, self.edge_input_channels]))
updated_node_features = self.node_nn(node_features)
edge_update = None
for layer in self.edge_nn:
if edge_update:
edge_update = layer(edge_update)
else:
edge_update = layer(edge_features)
edge_values = \
lbann.Reshape(edge_update,
dims=str_list([self.num_edges,
self.input_channels,
self.output_channels]),
name=self.name+"_edge_mat_reshape")
edge_values = \
lbann.MatMul(neighbor_features, edge_values)
return updated_node_features, edge_values |
Python | def aggregate(self,
edge_values,
edge_indices):
"""Aggregate the messages from the neighbors of the nodes
Args:
edge_values (Layer): A layer of edge features of
shape (num_edges, edge_features)
edge_indices (Layer): A 1D layer of node features of
shape (num_edges).
The indices used for reduction
Returns:
(Layer): A 2D layer of updated node features
"""
node_feature_dims = [self.num_nodes , self.output_channels]
edge_feature_dims = [self.num_edges , self.output_channels]
edge_values = lbann.Reshape(edge_values,
dims=str_list(edge_feature_dims),
name=self.name+"_neighbor_features")
edge_reduce = lbann.Scatter(edge_values,
edge_indices,
dims=str_list(node_feature_dims),
axis=0,
name=self.name+"_aggregate")
return edge_reduce | def aggregate(self,
edge_values,
edge_indices):
"""Aggregate the messages from the neighbors of the nodes
Args:
edge_values (Layer): A layer of edge features of
shape (num_edges, edge_features)
edge_indices (Layer): A 1D layer of node features of
shape (num_edges).
The indices used for reduction
Returns:
(Layer): A 2D layer of updated node features
"""
node_feature_dims = [self.num_nodes , self.output_channels]
edge_feature_dims = [self.num_edges , self.output_channels]
edge_values = lbann.Reshape(edge_values,
dims=str_list(edge_feature_dims),
name=self.name+"_neighbor_features")
edge_reduce = lbann.Scatter(edge_values,
edge_indices,
dims=str_list(node_feature_dims),
axis=0,
name=self.name+"_aggregate")
return edge_reduce |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_train_sample',
'num_train_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_val_sample',
'num_val_samples',
'sample_dims',
'validate',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_val_sample',
'num_val_samples',
'sample_dims',
'tournament',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_test_sample',
'num_test_samples',
'sample_dims',
'test',
),
])
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_train_sample',
'num_train_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_val_sample',
'num_val_samples',
'sample_dims',
'validate',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_val_sample',
'num_val_samples',
'sample_dims',
'tournament',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_test_sample',
'num_test_samples',
'sample_dims',
'test',
),
])
return message |
Python | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
vae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
kl, recon = molvae.MolVAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index)(input_)
vae_loss.append(kl)
vae_loss.append(recon)
print("LEN vae loss ", len(vae_loss))
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=5e-4)
obj = lbann.ObjectiveFunction(vae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(kl, name='kl_loss'),
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
if(run_args.dump_weights_interval > 0):
callbacks.append(lbann.CallbackDumpWeights(directory=run_args.dump_weights_dir,
epoch_interval=run_args.dump_weights_interval))
if(run_args.ltfb):
send_name = ('' if run_args.weights_to_send == 'All' else run_args.weights_to_send) #hack for Merlin empty string
weights_to_ex = [w.name for w in weights if send_name in w.name]
print("LTFB Weights to exchange ", weights_to_ex)
callbacks.append(lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,metric='recon',
weights = list2str(weights_to_ex),
low_score_wins=True,exchange_hyperparameters=True))
if(run_args.warmup):
callbacks.append(
lbann.CallbackLinearGrowthLearningRate(
target=run_args.lr / 512 * run_args.batch_size, num_epochs=5))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
vae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
kl, recon = molvae.MolVAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index)(input_)
vae_loss.append(kl)
vae_loss.append(recon)
print("LEN vae loss ", len(vae_loss))
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=5e-4)
obj = lbann.ObjectiveFunction(vae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(kl, name='kl_loss'),
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
if(run_args.dump_weights_interval > 0):
callbacks.append(lbann.CallbackDumpWeights(directory=run_args.dump_weights_dir,
epoch_interval=run_args.dump_weights_interval))
if(run_args.ltfb):
send_name = ('' if run_args.weights_to_send == 'All' else run_args.weights_to_send) #hack for Merlin empty string
weights_to_ex = [w.name for w in weights if send_name in w.name]
print("LTFB Weights to exchange ", weights_to_ex)
callbacks.append(lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,metric='recon',
weights = list2str(weights_to_ex),
low_score_wins=True,exchange_hyperparameters=True))
if(run_args.warmup):
callbacks.append(
lbann.CallbackLinearGrowthLearningRate(
target=run_args.lr / 512 * run_args.batch_size, num_epochs=5))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) |
Python | def make_data_reader(lbann):
"""Make Protobuf message for HRRL data reader.
"""
import lbann.contrib.lc.paths
# Load data readers from prototext
protobuf_file = os.path.join(app_path,'data',
'probies_v2.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(protobuf_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Set paths
return message | def make_data_reader(lbann):
"""Make Protobuf message for HRRL data reader.
"""
import lbann.contrib.lc.paths
# Load data readers from prototext
protobuf_file = os.path.join(app_path,'data',
'probies_v2.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(protobuf_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Set paths
return message |
Python | def numpy_softmax(x):
"""NumPy implementation of softmax.
The computation is performed with 64-bit floats. There is also an
implementation of softmax in SciPy 1.2.0 (scipy.special.softmax).
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
y = np.exp(x - np.max(x))
return y / np.sum(y) | def numpy_softmax(x):
"""NumPy implementation of softmax.
The computation is performed with 64-bit floats. There is also an
implementation of softmax in SciPy 1.2.0 (scipy.special.softmax).
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
y = np.exp(x - np.max(x))
return y / np.sum(y) |
Python | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
print("Dump model dir ", run_args.dump_model_dir)
assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',target_mode="N/A"), name='inp1')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=str(run_args.z_dim))
x = lbann.Slice(input_, slice_points=str_list([0, input_feature_dims]))
x = lbann.Identity(x)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output)
x_emb = lbann.Embedding(
x,
num_embeddings=waemodel.dictionary_size,
embedding_dim=waemodel.embedding_size,
name='emb',
weights=waemodel.emb_weights
)
latentz = waemodel.forward_encoder(x_emb)
fake_loss = lbann.MeanAbsoluteError(latentz,z)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
obj = lbann.ObjectiveFunction(fake_loss)
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
#Dump output (activation) for post processing
conc_out = lbann.Concatenation([input_,latentz], name='conc_out')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
format='npy',
directory=run_args.dump_outputs_dir,
layers=f'{conc_out.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
callbacks=callbacks) | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
print("Dump model dir ", run_args.dump_model_dir)
assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',target_mode="N/A"), name='inp1')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=str(run_args.z_dim))
x = lbann.Slice(input_, slice_points=str_list([0, input_feature_dims]))
x = lbann.Identity(x)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output)
x_emb = lbann.Embedding(
x,
num_embeddings=waemodel.dictionary_size,
embedding_dim=waemodel.embedding_size,
name='emb',
weights=waemodel.emb_weights
)
latentz = waemodel.forward_encoder(x_emb)
fake_loss = lbann.MeanAbsoluteError(latentz,z)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
obj = lbann.ObjectiveFunction(fake_loss)
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
#Dump output (activation) for post processing
conc_out = lbann.Concatenation([input_,latentz], name='conc_out')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
format='npy',
directory=run_args.dump_outputs_dir,
layers=f'{conc_out.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
callbacks=callbacks) |
Python | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message |
Python | def gpus_per_node(system = system()):
"""Number of GPUs per node."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].gpus_per_node | def gpus_per_node(system = system()):
"""Number of GPUs per node."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].gpus_per_node |
Python | def cores_per_node(system = system()):
"""Number of CPU cores per node."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].cores_per_node | def cores_per_node(system = system()):
"""Number of CPU cores per node."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].cores_per_node |
Python | def scheduler(system = system()):
"""Job scheduler for LC system."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].scheduler | def scheduler(system = system()):
"""Job scheduler for LC system."""
if not is_lc_system(system):
raise RuntimeError('unknown system (' + system + ')')
return _system_params[system].scheduler |
Python | def procs_per_node(system = system()):
"""Default number of processes per node."""
if has_gpu(system):
return gpus_per_node(system)
else:
# Catalyst and Quartz have 2 sockets per node
### @todo Think of a smarter heuristic
return 2 | def procs_per_node(system = system()):
"""Default number of processes per node."""
if has_gpu(system):
return gpus_per_node(system)
else:
# Catalyst and Quartz have 2 sockets per node
### @todo Think of a smarter heuristic
return 2 |
Python | def make_data_reader(lbann):
"""Make Protobuf message for HRRL data reader.
"""
import lbann.contrib.lc.paths
# Load data readers from prototext
message = lbann.lbann_pb2.LbannPB()
with open(data_reader_prototext, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Use less training data for the integration test
message.reader[0].percent_of_data_to_use = 0.01
# Set paths
return message | def make_data_reader(lbann):
"""Make Protobuf message for HRRL data reader.
"""
import lbann.contrib.lc.paths
# Load data readers from prototext
message = lbann.lbann_pb2.LbannPB()
with open(data_reader_prototext, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Use less training data for the integration test
message.reader[0].percent_of_data_to_use = 0.01
# Set paths
return message |
Python | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=run_args.g_mean,stdev=run_args.g_std, neuron_dims=str(run_args.z_dim))
recon, d1_real, d1_fake, d_adv, arg_max = molwae.MolWAE(
input_feature_dims,
dictionary_size,
embedding_size,
pad_index,
run_args.z_dim,
run_args.g_mean,
run_args.g_std,
save_output=save_output)(input_,z)
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero')
one = lbann.Constant(value=1.0,num_neurons='1',name='one')
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
#vae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc0" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2
if(l.weights and "disc1" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)
d_adv_bce = lbann.LayerTerm(d_adv_bce,scale=run_args.lamda)
obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce,recon,l2_reg])
# Initialize check metric callback
metrics = [
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
if(run_args.dump_weights_interval > 0):
callbacks.append(lbann.CallbackDumpWeights(directory=run_args.dump_weights_dir,
epoch_interval=run_args.dump_weights_interval))
if(run_args.ltfb):
send_name = ('' if run_args.weights_to_send == 'All' else run_args.weights_to_send) #hack for Merlin empty string
weights_to_ex = [w.name for w in weights if send_name in w.name]
print("LTFB Weights to exchange ", weights_to_ex)
callbacks.append(lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,metric='recon',
weights = list2str(weights_to_ex),
low_score_wins=True,exchange_hyperparameters=True))
callbacks.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
destination_layers=list2str(dst_layers),
batch_interval=2))
#Dump final weight for inference
if(run_args.dump_model_dir):
callbacks.append(lbann.CallbackSaveModel(dir=run_args.dump_model_dir))
#Dump output (activation) for post processing
if(run_args.dump_outputs_dir):
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test', directory=run_args.dump_outputs_dir,layers='inp pred_tensor'))
if(run_args.warmup):
callbacks.append(
lbann.CallbackLinearGrowthLearningRate(
target=run_args.lr / 512 * run_args.batch_size, num_epochs=5))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=run_args.g_mean,stdev=run_args.g_std, neuron_dims=str(run_args.z_dim))
recon, d1_real, d1_fake, d_adv, arg_max = molwae.MolWAE(
input_feature_dims,
dictionary_size,
embedding_size,
pad_index,
run_args.z_dim,
run_args.g_mean,
run_args.g_std,
save_output=save_output)(input_,z)
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero')
one = lbann.Constant(value=1.0,num_neurons='1',name='one')
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
#vae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc0" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2
if(l.weights and "disc1" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)
d_adv_bce = lbann.LayerTerm(d_adv_bce,scale=run_args.lamda)
obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce,recon,l2_reg])
# Initialize check metric callback
metrics = [
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
if(run_args.dump_weights_interval > 0):
callbacks.append(lbann.CallbackDumpWeights(directory=run_args.dump_weights_dir,
epoch_interval=run_args.dump_weights_interval))
if(run_args.ltfb):
send_name = ('' if run_args.weights_to_send == 'All' else run_args.weights_to_send) #hack for Merlin empty string
weights_to_ex = [w.name for w in weights if send_name in w.name]
print("LTFB Weights to exchange ", weights_to_ex)
callbacks.append(lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,metric='recon',
weights = list2str(weights_to_ex),
low_score_wins=True,exchange_hyperparameters=True))
callbacks.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
destination_layers=list2str(dst_layers),
batch_interval=2))
#Dump final weight for inference
if(run_args.dump_model_dir):
callbacks.append(lbann.CallbackSaveModel(dir=run_args.dump_model_dir))
#Dump output (activation) for post processing
if(run_args.dump_outputs_dir):
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test', directory=run_args.dump_outputs_dir,layers='inp pred_tensor'))
if(run_args.warmup):
callbacks.append(
lbann.CallbackLinearGrowthLearningRate(
target=run_args.lr / 512 * run_args.batch_size, num_epochs=5))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
proto = weights_pb2.Weights()
proto.name = self.name
# Set initializer if needed
if self.initializer:
proto.initializer.CopyFrom(self.initializer.export_proto())
proto.initializer.SetInParent()
# Set optimizer if needed
if self.optimizer:
proto.optimizer.CopyFrom(self.optimizer.export_proto())
proto.optimizer.SetInParent()
# Set datatype if needed
if self.datatype:
proto.datatype = self.datatype
return proto | def export_proto(self):
"""Construct and return a protobuf message."""
proto = weights_pb2.Weights()
proto.name = self.name
# Set initializer if needed
if self.initializer:
proto.initializer.CopyFrom(self.initializer.export_proto())
proto.initializer.SetInParent()
# Set optimizer if needed
if self.optimizer:
proto.optimizer.CopyFrom(self.optimizer.export_proto())
proto.optimizer.SetInParent()
# Set datatype if needed
if self.datatype:
proto.datatype = self.datatype
return proto |
Python | def graph_data_splitter(_input,
NUM_NODES,
NUM_EDGES,
NUM_NODE_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM):
"""Helper function to split the input data into
Args:
NUM_NODES (int): The number of nodes in the largest graph in the dataset (51 for LSC-PPQM4M)
NUM_EDGES (int): The number of edges in the largest graph in the dataset (118 for LSC-PPQM4M)
NUM_NODE_FEATURES (int): The dimensionality of the input node features vector (9 for LSC-PPQM4M)
NUM_EDGE_FEATURES (int): The dimensionality of the input edge feature vectors (3 for LSC-PPQM4M)
EMBEDDING_DIM (int): The embedding dimensionality of the node feature vector
EDGE_EMBEDDING_DIM (int): The embedding dimensionality of the edge feature vector
Returns:
(Layer, Layer, Layer, Layer, Layer): Returns 5 Layers. The embedded node feature matrix, the
neighbord nodes feature tensor, the embedded edge feature matrix,
the source node index vector, and the label
"""
split_indices = []
start_index = 0
split_indices.append(start_index)
node_feature = [NUM_NODES for i in range(1, NUM_NODE_FEATURES + 1)]
split_indices.extend(node_feature)
edge_features = [NUM_EDGES for i in range(1, NUM_EDGE_FEATURES + 1)]
split_indices.extend(edge_features)
edge_indices_sources = NUM_EDGES
split_indices.append(edge_indices_sources)
edge_indices_targets = NUM_EDGES
split_indices.append(edge_indices_targets)
target = 1
split_indices.append(target)
for i in range(1, len(split_indices)):
split_indices[i] = split_indices[i] + split_indices[i - 1]
graph_input = lbann.Slice(_input, axis=0,
slice_points=str_list(split_indices))
neighbor_feature_dims = str_list([NUM_EDGES, 1, EMBEDDING_DIM])
node_feature_columns = [lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_NODES]),
name="node_ft_{}_col".format(x)) for x in range(NUM_NODE_FEATURES)]
edge_feature_columns = [lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="edge_ft_{}_col".format(x)) for x in range(NUM_EDGE_FEATURES)]
source_nodes = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="source_nodes")
target_nodes = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="target_nodes")
label = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([1]),
name="Graph_Label")
embedded_node_features = AtomEncoder(node_feature_columns, EMBEDDING_DIM)
embedded_edge_features = BondEncoder(edge_feature_columns, EDGE_EMBEDDING_DIM)
neighbor_features = lbann.Gather(embedded_node_features,
target_nodes,
axis=0)
neighbor_feature_mat = lbann.Reshape(neighbor_features,
dims=neighbor_feature_dims)
return \
embedded_node_features, neighbor_feature_mat, embedded_edge_features, source_nodes, label | def graph_data_splitter(_input,
NUM_NODES,
NUM_EDGES,
NUM_NODE_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM):
"""Helper function to split the input data into
Args:
NUM_NODES (int): The number of nodes in the largest graph in the dataset (51 for LSC-PPQM4M)
NUM_EDGES (int): The number of edges in the largest graph in the dataset (118 for LSC-PPQM4M)
NUM_NODE_FEATURES (int): The dimensionality of the input node features vector (9 for LSC-PPQM4M)
NUM_EDGE_FEATURES (int): The dimensionality of the input edge feature vectors (3 for LSC-PPQM4M)
EMBEDDING_DIM (int): The embedding dimensionality of the node feature vector
EDGE_EMBEDDING_DIM (int): The embedding dimensionality of the edge feature vector
Returns:
(Layer, Layer, Layer, Layer, Layer): Returns 5 Layers. The embedded node feature matrix, the
neighbord nodes feature tensor, the embedded edge feature matrix,
the source node index vector, and the label
"""
split_indices = []
start_index = 0
split_indices.append(start_index)
node_feature = [NUM_NODES for i in range(1, NUM_NODE_FEATURES + 1)]
split_indices.extend(node_feature)
edge_features = [NUM_EDGES for i in range(1, NUM_EDGE_FEATURES + 1)]
split_indices.extend(edge_features)
edge_indices_sources = NUM_EDGES
split_indices.append(edge_indices_sources)
edge_indices_targets = NUM_EDGES
split_indices.append(edge_indices_targets)
target = 1
split_indices.append(target)
for i in range(1, len(split_indices)):
split_indices[i] = split_indices[i] + split_indices[i - 1]
graph_input = lbann.Slice(_input, axis=0,
slice_points=str_list(split_indices))
neighbor_feature_dims = str_list([NUM_EDGES, 1, EMBEDDING_DIM])
node_feature_columns = [lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_NODES]),
name="node_ft_{}_col".format(x)) for x in range(NUM_NODE_FEATURES)]
edge_feature_columns = [lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="edge_ft_{}_col".format(x)) for x in range(NUM_EDGE_FEATURES)]
source_nodes = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="source_nodes")
target_nodes = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([NUM_EDGES]),
name="target_nodes")
label = lbann.Reshape(lbann.Identity(graph_input),
dims=str_list([1]),
name="Graph_Label")
embedded_node_features = AtomEncoder(node_feature_columns, EMBEDDING_DIM)
embedded_edge_features = BondEncoder(edge_feature_columns, EDGE_EMBEDDING_DIM)
neighbor_features = lbann.Gather(embedded_node_features,
target_nodes,
axis=0)
neighbor_feature_mat = lbann.Reshape(neighbor_features,
dims=neighbor_feature_dims)
return \
embedded_node_features, neighbor_feature_mat, embedded_edge_features, source_nodes, label |
Python | def create_parallel_strategy(num_channel_groups):
"""Helper function to create channelwise fully connected layer distconv
parallel strategy
"""
if (num_channel_groups > 0):
return {"channel_groups": num_channel_groups,
"filter_groups": num_channel_groups}
else:
return {} | def create_parallel_strategy(num_channel_groups):
"""Helper function to create channelwise fully connected layer distconv
parallel strategy
"""
if (num_channel_groups > 0):
return {"channel_groups": num_channel_groups,
"filter_groups": num_channel_groups}
else:
return {} |
Python | def make_model(NUM_NODES,
NUM_EDGES,
NUM_NODES_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM,
NUM_OUT_FEATURES,
NUM_EPOCHS,
NUM_GROUPS=0):
""" Creates an LBANN model for the OGB-LSC PPQM4M Dataset
Args:
NUM_NODES (int): The number of nodes in the largest graph in the dataset (51 for LSC-PPQM4M)
NUM_EDGES (int): The number of edges in the largest graph in the dataset (118 for LSC-PPQM4M)
NUM_NODES_FEATURES (int): The dimensionality of the input node features vector (9 for LSC-PPQM4M)
NUM_EDGE_FEATURES (int): The dimensionality of the input edge feature vectors (3 for LSC-PPQM4M)
EMBEDDING_DIM (int): The embedding dimensionality of the node feature vector
EDGE_EMBEDDING_DIM (int): The embedding dimensionality of the edge feature vector
NUM_OUT_FEATURES (int): The dimensionality of the node feature vectors after graph convolutions
NUM_EPOCHS (int): The number of epochs to train the network
NUM_GROUPS (int): The number of channel groups for distconv channelwise fully connected layer (default : 0)
Returns:
(Model): lbann model object
"""
in_channel = EMBEDDING_DIM
out_channel = NUM_OUT_FEATURES
output_dimension = 1
_input = lbann.Input(data_field='samples')
node_feature_mat, neighbor_feature_mat, edge_feature_mat, edge_indices, target = \
graph_data_splitter(_input,
NUM_NODES,
NUM_EDGES,
NUM_NODES_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM)
x = NNConvLayer(node_feature_mat,
neighbor_feature_mat,
edge_feature_mat,
edge_indices,
in_channel,
out_channel,
EDGE_EMBEDDING_DIM,
NUM_NODES,
NUM_EDGES,
NUM_GROUPS)
for i, num_neurons in enumerate([256, 128, 32, 8], 1):
x = lbann.FullyConnected(x,
num_neurons=num_neurons,
name="hidden_layer_{}".format(i))
x = lbann.Relu(x, name='hidden_layer_{}_activation'.format(i))
x = lbann.FullyConnected(x,
num_neurons=output_dimension,
name="output")
loss = lbann.MeanAbsoluteError(x, target)
layers = lbann.traverse_layer_graph(_input)
training_output = lbann.CallbackPrint(interval=1,
print_global_stat_only=False)
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [training_output, gpu_usage, timer]
model = lbann.Model(NUM_EPOCHS,
layers=layers,
objective_function=loss,
callbacks=callbacks)
return model | def make_model(NUM_NODES,
NUM_EDGES,
NUM_NODES_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM,
NUM_OUT_FEATURES,
NUM_EPOCHS,
NUM_GROUPS=0):
""" Creates an LBANN model for the OGB-LSC PPQM4M Dataset
Args:
NUM_NODES (int): The number of nodes in the largest graph in the dataset (51 for LSC-PPQM4M)
NUM_EDGES (int): The number of edges in the largest graph in the dataset (118 for LSC-PPQM4M)
NUM_NODES_FEATURES (int): The dimensionality of the input node features vector (9 for LSC-PPQM4M)
NUM_EDGE_FEATURES (int): The dimensionality of the input edge feature vectors (3 for LSC-PPQM4M)
EMBEDDING_DIM (int): The embedding dimensionality of the node feature vector
EDGE_EMBEDDING_DIM (int): The embedding dimensionality of the edge feature vector
NUM_OUT_FEATURES (int): The dimensionality of the node feature vectors after graph convolutions
NUM_EPOCHS (int): The number of epochs to train the network
NUM_GROUPS (int): The number of channel groups for distconv channelwise fully connected layer (default : 0)
Returns:
(Model): lbann model object
"""
in_channel = EMBEDDING_DIM
out_channel = NUM_OUT_FEATURES
output_dimension = 1
_input = lbann.Input(data_field='samples')
node_feature_mat, neighbor_feature_mat, edge_feature_mat, edge_indices, target = \
graph_data_splitter(_input,
NUM_NODES,
NUM_EDGES,
NUM_NODES_FEATURES,
NUM_EDGE_FEATURES,
EMBEDDING_DIM,
EDGE_EMBEDDING_DIM)
x = NNConvLayer(node_feature_mat,
neighbor_feature_mat,
edge_feature_mat,
edge_indices,
in_channel,
out_channel,
EDGE_EMBEDDING_DIM,
NUM_NODES,
NUM_EDGES,
NUM_GROUPS)
for i, num_neurons in enumerate([256, 128, 32, 8], 1):
x = lbann.FullyConnected(x,
num_neurons=num_neurons,
name="hidden_layer_{}".format(i))
x = lbann.Relu(x, name='hidden_layer_{}_activation'.format(i))
x = lbann.FullyConnected(x,
num_neurons=output_dimension,
name="output")
loss = lbann.MeanAbsoluteError(x, target)
layers = lbann.traverse_layer_graph(_input)
training_output = lbann.CallbackPrint(interval=1,
print_global_stat_only=False)
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [training_output, gpu_usage, timer]
model = lbann.Model(NUM_EPOCHS,
layers=layers,
objective_function=loss,
callbacks=callbacks)
return model |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
proto = layers_pb2.Layer()
proto.parents = ' '.join([l.name for l in self.parents])
proto.children = ' '.join([l.name for l in self.children])
proto.weights = ' '.join([w.name for w in self.weights])
proto.name = self.name
if self.device:
proto.device_allocation = self.device
if self.data_layout:
proto.data_layout = self.data_layout
if self.datatype:
proto.datatype = self.datatype
if self.hint_layer:
proto.hint_layer = self.hint_layer.name
for k, v in self.parallel_strategy.items():
setattr(proto.parallel_strategy, k, v)
return proto | def export_proto(self):
"""Construct and return a protobuf message."""
proto = layers_pb2.Layer()
proto.parents = ' '.join([l.name for l in self.parents])
proto.children = ' '.join([l.name for l in self.children])
proto.weights = ' '.join([w.name for w in self.weights])
proto.name = self.name
if self.device:
proto.device_allocation = self.device
if self.data_layout:
proto.data_layout = self.data_layout
if self.datatype:
proto.datatype = self.datatype
if self.hint_layer:
proto.hint_layer = self.hint_layer.name
for k, v in self.parallel_strategy.items():
setattr(proto.parallel_strategy, k, v)
return proto |
Python | def add_parent(self, parent):
"""This layer will receive an input tensor from `parent`."""
for p in make_iterable(parent):
self.parents.append(p)
p.children.append(self) | def add_parent(self, parent):
"""This layer will receive an input tensor from `parent`."""
for p in make_iterable(parent):
self.parents.append(p)
p.children.append(self) |
Python | def add_child(self, child):
""""This layer will send an output tensor to `child`."""
for c in make_iterable(child):
self.children.append(c)
c.parents.append(self) | def add_child(self, child):
""""This layer will send an output tensor to `child`."""
for c in make_iterable(child):
self.children.append(c)
c.parents.append(self) |
Python | def traverse_layer_graph(layers):
"""Topologically ordered traversal of layer graph.
All layers that are connected to `layers` will be traversed. The
layer graph is assumed to be acyclic. No checks are made for
cycles and strange things may happen if one exists.
Args:
layers (Layer or Iterator of Layer): Node(s) in layer graph.
Yields:
Layer: Node in layer graph, in a topological order.
"""
# DFS to find root nodes in layer graph
roots = []
visited = set()
stack = list(make_iterable(layers))
while stack:
l = stack.pop()
if l not in visited:
visited.add(l)
stack.extend(l.parents)
stack.extend(l.children)
if not l.parents:
roots.append(l)
# DFS to traverse layer graph in topological order
visited = set()
stack = roots
while stack:
l = stack.pop()
if (l not in visited
and all([(p in visited) for p in l.parents])):
visited.add(l)
stack.extend(l.children)
yield l | def traverse_layer_graph(layers):
"""Topologically ordered traversal of layer graph.
All layers that are connected to `layers` will be traversed. The
layer graph is assumed to be acyclic. No checks are made for
cycles and strange things may happen if one exists.
Args:
layers (Layer or Iterator of Layer): Node(s) in layer graph.
Yields:
Layer: Node in layer graph, in a topological order.
"""
# DFS to find root nodes in layer graph
roots = []
visited = set()
stack = list(make_iterable(layers))
while stack:
l = stack.pop()
if l not in visited:
visited.add(l)
stack.extend(l.parents)
stack.extend(l.children)
if not l.parents:
roots.append(l)
# DFS to traverse layer graph in topological order
visited = set()
stack = roots
while stack:
l = stack.pop()
if (l not in visited
and all([(p in visited) for p in l.parents])):
visited.add(l)
stack.extend(l.children)
yield l |
Python | def Graph_Data_Parser(_lbann_input_,
num_nodes,
node_feature_size,
max_edges,
num_classes = 1):
""" A parser for graph structured data with node
features, source and target node indices (COO)
format, and a target
Args:
_lbann_input_ (Layer): The input layer of the LBANN model
num_nodes (int): The maximum number of nodes in the dataset
node_features_size (int): The dimensionality of the node features matrix
max_edges (int): The maximum number of edges in the dataset
num_classes (int): The number of classes in the target or 1 for
regression (default : 1)
Returns:
(dictionary) Returns a dictionary with the keys: node_features, source_indices,
target_indices, and targets
"""
slice_points = [0, num_nodes*node_feature_size, max_edges, max_edges, num_classes]
shifted_slice_points = list(accumulate(slice_points))
sliced_input = lbann.Slice(_lbann_input_,
slice_points=str_list(shifted_slice_points),
name="Sliced_Graph_Input")
node_features = lbann.Reshape(lbann.Identity(sliced_input),
dims=str_list([num_nodes, node_feature_size]),
name="Node_Feature_Matrix")
source_indices = lbann.Identity(sliced_input)
target_indices = lbann.Identity(sliced_input)
targets = lbann.Identity(sliced_input)
graph_data = {"node_features":node_features,
"source_indices":source_indices,
"target_indices":target_indices,
"target":targets}
return graph_data | def Graph_Data_Parser(_lbann_input_,
num_nodes,
node_feature_size,
max_edges,
num_classes = 1):
""" A parser for graph structured data with node
features, source and target node indices (COO)
format, and a target
Args:
_lbann_input_ (Layer): The input layer of the LBANN model
num_nodes (int): The maximum number of nodes in the dataset
node_features_size (int): The dimensionality of the node features matrix
max_edges (int): The maximum number of edges in the dataset
num_classes (int): The number of classes in the target or 1 for
regression (default : 1)
Returns:
(dictionary) Returns a dictionary with the keys: node_features, source_indices,
target_indices, and targets
"""
slice_points = [0, num_nodes*node_feature_size, max_edges, max_edges, num_classes]
shifted_slice_points = list(accumulate(slice_points))
sliced_input = lbann.Slice(_lbann_input_,
slice_points=str_list(shifted_slice_points),
name="Sliced_Graph_Input")
node_features = lbann.Reshape(lbann.Identity(sliced_input),
dims=str_list([num_nodes, node_feature_size]),
name="Node_Feature_Matrix")
source_indices = lbann.Identity(sliced_input)
target_indices = lbann.Identity(sliced_input)
targets = lbann.Identity(sliced_input)
graph_data = {"node_features":node_features,
"source_indices":source_indices,
"target_indices":target_indices,
"target":targets}
return graph_data |
Python | def GINConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example GIN kernel with 4 layer deep sequential nn.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(GraphVertexData): Returns the new embedding of the node features
"""
FC = lbann.modules.ChannelwiseFullyConnectedModule
sequential_nn = \
[FC(128),
lbann.Relu,
FC(64),
lbann.Relu,
FC(32),
lbann.Relu,
FC(output_channels),
lbann.Relu]
gin = GINConv(sequential_nn,
input_channels = input_channels,
output_channels = output_channels,
num_nodes = num_nodes,
num_edges = num_edges)
return gin(node_features, source_indices, target_indices) | def GINConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example GIN kernel with 4 layer deep sequential nn.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(GraphVertexData): Returns the new embedding of the node features
"""
FC = lbann.modules.ChannelwiseFullyConnectedModule
sequential_nn = \
[FC(128),
lbann.Relu,
FC(64),
lbann.Relu,
FC(32),
lbann.Relu,
FC(output_channels),
lbann.Relu]
gin = GINConv(sequential_nn,
input_channels = input_channels,
output_channels = output_channels,
num_nodes = num_nodes,
num_edges = num_edges)
return gin(node_features, source_indices, target_indices) |
Python | def GCNConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example 2-layer GCN kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
input_channels_1 = input_channels
out_channels_1 = 8
input_channels_2 = out_channels_1
out_channels_2 = output_channels
gcn_1 = GCNConv(input_channels_1,out_channels_1,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'GCN_1')
gcn_2 = GCNConv(input_channels_2,out_channels_2,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'GCN_2')
X = gcn_1(node_features,source_indices, target_indices)
return gcn_2(X,source_indices, target_indices) | def GCNConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example 2-layer GCN kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
input_channels_1 = input_channels
out_channels_1 = 8
input_channels_2 = out_channels_1
out_channels_2 = output_channels
gcn_1 = GCNConv(input_channels_1,out_channels_1,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'GCN_1')
gcn_2 = GCNConv(input_channels_2,out_channels_2,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'GCN_2')
X = gcn_1(node_features,source_indices, target_indices)
return gcn_2(X,source_indices, target_indices) |
Python | def GraphConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example 2-layer Graph kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
input_channels_1 = input_channels
out_channels_1 = 8
input_channels_2 = out_channels_1
out_channels_2 = output_channels
graph_1 = GraphConv(input_channels_1, out_channels_1,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'Graph_kernel_1')
graph_2 = GraphConv(input_channels_2, out_channels_2,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'Graph_Kernel_2')
X = graph_1(node_features,source_indices, target_indices)
return graph_2(X,source_indices, target_indices) | def GraphConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example 2-layer Graph kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
input_channels_1 = input_channels
out_channels_1 = 8
input_channels_2 = out_channels_1
out_channels_2 = output_channels
graph_1 = GraphConv(input_channels_1, out_channels_1,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'Graph_kernel_1')
graph_2 = GraphConv(input_channels_2, out_channels_2,
num_nodes,
bias = True,
activation = lbann.Relu,
name = 'Graph_Kernel_2')
X = graph_1(node_features,source_indices, target_indices)
return graph_2(X,source_indices, target_indices) |
Python | def GATConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example single layer GatedGraph kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
num_layers = 3
name = 'GatedGraph'
data_layout = 'data_parallel'
graph_kernel = GatedGraphConv(input_channels, output_channels,
num_nodes,
num_layers = num_layers,
name = name)
return graph_kernel(node_features,source_indices, target_indices) | def GATConvLayer(node_features,
source_indices,
target_indices,
num_nodes,
num_edges,
input_channels,
output_channels):
"""An example single layer GatedGraph kernel.
Args:
node_feature (Layer): Node feature matrix with the shape of (num_nodes,input_channels)
source_indices (Layer): Source node indices of the edges with shape (num_nodes)
target_indices (Layer): Target node indices of the edges with shape (num_nodes)
num_nodes (int): Number of vertices in the graph
input_channels (int): The size of the input node features
output_channels (int): The number of output channels of the node features
Returns:
(Layer) : The resultant node features after message passing kernel ops
"""
num_layers = 3
name = 'GatedGraph'
data_layout = 'data_parallel'
graph_kernel = GatedGraphConv(input_channels, output_channels,
num_nodes,
num_layers = num_layers,
name = name)
return graph_kernel(node_features,source_indices, target_indices) |
Python | def make_model(num_vertices = None,
node_features = None,
num_classes = None,
kernel_type = 'GCN',
callbacks = None,
num_epochs = 1):
'''Construct a model DAG using one of the Graph Kernels
Args:
num_vertices (int): Number of vertices of each graph (default: None)
node_features (int): Number of features per noded (default: None)
num_classes (int): Number of classes as targets (default: None)
kernel_type (str): Graph Kernel to use in model. Expected one of
GCN, GIN, Graph, or GatedGraph (deafult: GCN)
callbacks (list): Callbacks for the model. If set to None the model description,
GPU usage, training_output, and timer is reported.
(default: None)
num_epochs (int): Number of epochs to run (default: 1)
Returns:
(lbann.Model) : A model object with the supplied callbacks, dataset
presets, and graph kernels.
'''
num_vertices = 100
num_classes = 2
node_feature_size = 3
max_edges = 415
#----------------------------------
# Reshape and Slice Input Tensor
#----------------------------------
input_ = lbann.Input(data_field='samples')
# Input dimensions should be (num_vertices * node_features + num_vertices^2 + num_classes )
data = Graph_Data_Parser(input_,
num_vertices,
node_feature_size,
max_edges,
num_classes)
feature_matrix = data['node_features']
source_indices = data['source_indices']
target_indices = data['target_indices']
target = data['target']
#----------------------------------
# Select Graph Convolution
#----------------------------------
output_channels = 16
graph_kernel_op = None
if kernel_type == 'GIN':
graph_kernel_op = GINConvLayer
elif kernel_type == 'GCN':
graph_kernel_op = GCNConvLayer
elif kernel_type == 'Graph':
graph_kernel_op = GraphConvLayer
elif kernel_type == 'GatedGraph':
graph_kernel_op = GATConvLayer
else:
raise ValueError('Invalid Graph kernel specifier "{}" recieved. Expected one of:\
GIN,GCN,Graph or GatedGraph'.format(kernel_type))
#----------------------------------
# Perform Graph Convolution
#----------------------------------
x = graph_kernel_op(feature_matrix,
source_indices,
target_indices,
num_vertices,
max_edges,
node_feature_size,
output_channels)
#----------------------------------
# Apply Reduction on Node Features
#----------------------------------
average_vector = lbann.Constant(value = 1/num_vertices,
num_neurons = str_list([1,num_vertices]),
name="Average_Vector")
x = lbann.MatMul(average_vector,x, name="Node_Feature_Reduction")
# X is now a vector with output_channel dimensions
x = lbann.Reshape(x, dims = str_list([output_channels]), name = "Squeeze")
x = lbann.FullyConnected(x, num_neurons = 64, name = "hidden_layer_1")
x = lbann.Relu(x, name = "hidden_layer_1_activation")
x = lbann.FullyConnected(x, num_neurons = num_classes,
name="Output_Fully_Connected")
#----------------------------------
# Loss Function and Accuracy s
#----------------------------------
probs = lbann.Softmax(x, name="Softmax")
loss = lbann.CrossEntropy(probs, target, name="Cross_Entropy_Loss")
accuracy = lbann.CategoricalAccuracy(probs, target, name="Accuracy")
layers = lbann.traverse_layer_graph(input_)
if callbacks is None:
print_model = lbann.CallbackPrintModelDescription() #Prints initial Model after Setup
training_output = lbann.CallbackPrint( interval = 1,
print_global_stat_only = False) #Prints training progress
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [print_model, training_output, gpu_usage, timer]
else:
if isinstance (callbacks, list):
callbacks = callbacks
metrics = [lbann.Metric(accuracy, name='accuracy', unit="%")]
model = lbann.Model(num_epochs,
layers = layers,
objective_function = loss,
metrics = metrics,
callbacks = callbacks
)
return model | def make_model(num_vertices = None,
node_features = None,
num_classes = None,
kernel_type = 'GCN',
callbacks = None,
num_epochs = 1):
'''Construct a model DAG using one of the Graph Kernels
Args:
num_vertices (int): Number of vertices of each graph (default: None)
node_features (int): Number of features per noded (default: None)
num_classes (int): Number of classes as targets (default: None)
kernel_type (str): Graph Kernel to use in model. Expected one of
GCN, GIN, Graph, or GatedGraph (deafult: GCN)
callbacks (list): Callbacks for the model. If set to None the model description,
GPU usage, training_output, and timer is reported.
(default: None)
num_epochs (int): Number of epochs to run (default: 1)
Returns:
(lbann.Model) : A model object with the supplied callbacks, dataset
presets, and graph kernels.
'''
num_vertices = 100
num_classes = 2
node_feature_size = 3
max_edges = 415
#----------------------------------
# Reshape and Slice Input Tensor
#----------------------------------
input_ = lbann.Input(data_field='samples')
# Input dimensions should be (num_vertices * node_features + num_vertices^2 + num_classes )
data = Graph_Data_Parser(input_,
num_vertices,
node_feature_size,
max_edges,
num_classes)
feature_matrix = data['node_features']
source_indices = data['source_indices']
target_indices = data['target_indices']
target = data['target']
#----------------------------------
# Select Graph Convolution
#----------------------------------
output_channels = 16
graph_kernel_op = None
if kernel_type == 'GIN':
graph_kernel_op = GINConvLayer
elif kernel_type == 'GCN':
graph_kernel_op = GCNConvLayer
elif kernel_type == 'Graph':
graph_kernel_op = GraphConvLayer
elif kernel_type == 'GatedGraph':
graph_kernel_op = GATConvLayer
else:
raise ValueError('Invalid Graph kernel specifier "{}" recieved. Expected one of:\
GIN,GCN,Graph or GatedGraph'.format(kernel_type))
#----------------------------------
# Perform Graph Convolution
#----------------------------------
x = graph_kernel_op(feature_matrix,
source_indices,
target_indices,
num_vertices,
max_edges,
node_feature_size,
output_channels)
#----------------------------------
# Apply Reduction on Node Features
#----------------------------------
average_vector = lbann.Constant(value = 1/num_vertices,
num_neurons = str_list([1,num_vertices]),
name="Average_Vector")
x = lbann.MatMul(average_vector,x, name="Node_Feature_Reduction")
# X is now a vector with output_channel dimensions
x = lbann.Reshape(x, dims = str_list([output_channels]), name = "Squeeze")
x = lbann.FullyConnected(x, num_neurons = 64, name = "hidden_layer_1")
x = lbann.Relu(x, name = "hidden_layer_1_activation")
x = lbann.FullyConnected(x, num_neurons = num_classes,
name="Output_Fully_Connected")
#----------------------------------
# Loss Function and Accuracy s
#----------------------------------
probs = lbann.Softmax(x, name="Softmax")
loss = lbann.CrossEntropy(probs, target, name="Cross_Entropy_Loss")
accuracy = lbann.CategoricalAccuracy(probs, target, name="Accuracy")
layers = lbann.traverse_layer_graph(input_)
if callbacks is None:
print_model = lbann.CallbackPrintModelDescription() #Prints initial Model after Setup
training_output = lbann.CallbackPrint( interval = 1,
print_global_stat_only = False) #Prints training progress
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [print_model, training_output, gpu_usage, timer]
else:
if isinstance (callbacks, list):
callbacks = callbacks
metrics = [lbann.Metric(accuracy, name='accuracy', unit="%")]
model = lbann.Model(num_epochs,
layers = layers,
objective_function = loss,
metrics = metrics,
callbacks = callbacks
)
return model |
Python | def addState(self, state, stateName):
"""
Adds a state to the state machine object
"""
self.States[stateName] = state | def addState(self, state, stateName):
"""
Adds a state to the state machine object
"""
self.States[stateName] = state |
Python | def num_node(self, node_type: EntityType) -> int:
"""
Count number of node of a type
Args:
node_type: The type of the node
Returns:
The count
"""
return sum(
map(lambda node: 1 if node.type == node_type else 0, self._nodes)) | def num_node(self, node_type: EntityType) -> int:
"""
Count number of node of a type
Args:
node_type: The type of the node
Returns:
The count
"""
return sum(
map(lambda node: 1 if node.type == node_type else 0, self._nodes)) |
Python | def check_node_exist(self, url: Url) -> bool:
"""
Check whether a node is already there
Args:
url: The url of the node
Returns:
True or false
"""
return url in self._url_to_node | def check_node_exist(self, url: Url) -> bool:
"""
Check whether a node is already there
Args:
url: The url of the node
Returns:
True or false
"""
return url in self._url_to_node |
Python | def add_node(self, node: NodeBase, set_id: bool = True) -> bool:
"""
Add a node to the graph. True if successful, false otherwise.
"""
url = node.url
if self.check_node_exist(url):
return False
if set_id:
node.node_id = len(self._nodes)
self._nodes.append(node)
self._url_to_node[url] = node
return True | def add_node(self, node: NodeBase, set_id: bool = True) -> bool:
"""
Add a node to the graph. True if successful, false otherwise.
"""
url = node.url
if self.check_node_exist(url):
return False
if set_id:
node.node_id = len(self._nodes)
self._nodes.append(node)
self._url_to_node[url] = node
return True |
Python | def parse_staring(self, infobox: Dict[str, Tag]) -> List[Url]:
"""
Parse the list of staring actors
Args:
infobox: The infobox
Returns:
A list of actors
"""
urls = []
if 'Starring' in infobox:
for link in infobox['Starring'].find_all(
'a', href=re.compile('/wiki/')):
urls.append(link.attrs['href'])
else:
logger.log(logging.WARN, 'Starring not found for %s' % self.url)
return urls | def parse_staring(self, infobox: Dict[str, Tag]) -> List[Url]:
"""
Parse the list of staring actors
Args:
infobox: The infobox
Returns:
A list of actors
"""
urls = []
if 'Starring' in infobox:
for link in infobox['Starring'].find_all(
'a', href=re.compile('/wiki/')):
urls.append(link.attrs['href'])
else:
logger.log(logging.WARN, 'Starring not found for %s' % self.url)
return urls |
Python | def parse_cast(self, html: Tag) -> List[Url]:
"""
Parse the list of casting actors
Args:
html: The page
Returns:
A list of actors
"""
urls: List[Url] = []
cast_h2 = html.find_all(
lambda tag: tag.name == 'h2' and tag.find_all('span', id='Cast'))
if len(cast_h2) != 1:
logger.log(logging.WARN,
'%d cast section found for %s' % (
len(cast_h2), self.url))
return urls
cast_list = None
for sibling in cast_h2[0].next_siblings:
if hasattr(sibling, 'name') and sibling.name == 'ul':
cast_list = sibling
break
elif (hasattr(sibling, 'name') and sibling.name == 'div'
and sibling.ul is not None):
cast_list = sibling.ul
break
if cast_list:
for li in cast_list.find_all('li'):
link = li.find('a', href=re.compile('/wiki/'))
if link:
urls.append(link.attrs['href'])
else:
logger.log(logging.WARN, 'No cast list for %s' % self.url)
return urls | def parse_cast(self, html: Tag) -> List[Url]:
"""
Parse the list of casting actors
Args:
html: The page
Returns:
A list of actors
"""
urls: List[Url] = []
cast_h2 = html.find_all(
lambda tag: tag.name == 'h2' and tag.find_all('span', id='Cast'))
if len(cast_h2) != 1:
logger.log(logging.WARN,
'%d cast section found for %s' % (
len(cast_h2), self.url))
return urls
cast_list = None
for sibling in cast_h2[0].next_siblings:
if hasattr(sibling, 'name') and sibling.name == 'ul':
cast_list = sibling
break
elif (hasattr(sibling, 'name') and sibling.name == 'div'
and sibling.ul is not None):
cast_list = sibling.ul
break
if cast_list:
for li in cast_list.find_all('li'):
link = li.find('a', href=re.compile('/wiki/'))
if link:
urls.append(link.attrs['href'])
else:
logger.log(logging.WARN, 'No cast list for %s' % self.url)
return urls |
Python | def grossing(self) -> float:
"""
Get the total grossing for the actor
Returns:
the grossing
"""
total = 0.0
for edge in self.get_edges():
for node in edge.ends:
if node != self and isinstance(node, Movie):
total += node.total_grossing * edge.weight
return total | def grossing(self) -> float:
"""
Get the total grossing for the actor
Returns:
the grossing
"""
total = 0.0
for edge in self.get_edges():
for node in edge.ends:
if node != self and isinstance(node, Movie):
total += node.total_grossing * edge.weight
return total |
Python | def parse_page_type_get_infobox(
html: Tag) -> Tuple[PageType, Optional[Dict[str, Tag]]]:
"""
Find the type of page (MOVIE vs ACTOR vs OTHER)
Args:
html: The page
Returns:
The type of the page
"""
infoboxes = html.find_all('table', class_='infobox')
if len(infoboxes) == 1:
infobox_dict = parse_infobox(infoboxes[0])
# Check if movie
image_caption = infobox_dict.get('_image_caption', '')
if 'theatrical release poster' in image_caption.lower():
return PageType.MOVIE, infobox_dict
# Check if actor
if 'Occupation' in infobox_dict:
occupation = infobox_dict['Occupation']
if occupation(text=re.compile('(Actor|actor|Actress|actress)')):
return PageType.ACTOR, infobox_dict
return PageType.OTHER, None | def parse_page_type_get_infobox(
html: Tag) -> Tuple[PageType, Optional[Dict[str, Tag]]]:
"""
Find the type of page (MOVIE vs ACTOR vs OTHER)
Args:
html: The page
Returns:
The type of the page
"""
infoboxes = html.find_all('table', class_='infobox')
if len(infoboxes) == 1:
infobox_dict = parse_infobox(infoboxes[0])
# Check if movie
image_caption = infobox_dict.get('_image_caption', '')
if 'theatrical release poster' in image_caption.lower():
return PageType.MOVIE, infobox_dict
# Check if actor
if 'Occupation' in infobox_dict:
occupation = infobox_dict['Occupation']
if occupation(text=re.compile('(Actor|actor|Actress|actress)')):
return PageType.ACTOR, infobox_dict
return PageType.OTHER, None |
Python | def prerelease_local_scheme(version):
"""Return local scheme version unless building on master in CircleCI.
This function returns the local scheme version number
(e.g. 0.0.0.dev<N>+g<HASH>) unless building on CircleCI for a
pre-release in which case it ignores the hash and produces a
PEP440 compliant pre-release version number (e.g. 0.0.0.dev<N>).
"""
from setuptools_scm.version import get_local_node_and_date
if 'CIRCLE_BRANCH' in os.environ and \
os.environ['CIRCLE_BRANCH'] == 'master':
return ''
else:
return get_local_node_and_date(version) | def prerelease_local_scheme(version):
"""Return local scheme version unless building on master in CircleCI.
This function returns the local scheme version number
(e.g. 0.0.0.dev<N>+g<HASH>) unless building on CircleCI for a
pre-release in which case it ignores the hash and produces a
PEP440 compliant pre-release version number (e.g. 0.0.0.dev<N>).
"""
from setuptools_scm.version import get_local_node_and_date
if 'CIRCLE_BRANCH' in os.environ and \
os.environ['CIRCLE_BRANCH'] == 'master':
return ''
else:
return get_local_node_and_date(version) |
Python | def validTransitions(event):
"""Allow our custom job transitions."""
states = None
if event.info['job']['handler'] == 'worker_handler':
states = CustomJobStatus.validTransitionsWorker(event.info['status'])
elif event.info['job']['handler'] == 'celery_handler':
states = CustomJobStatus.validTransitionsCelery(event.info['status'])
if states is not None:
event.preventDefault().addResponse(states) | def validTransitions(event):
"""Allow our custom job transitions."""
states = None
if event.info['job']['handler'] == 'worker_handler':
states = CustomJobStatus.validTransitionsWorker(event.info['status'])
elif event.info['job']['handler'] == 'celery_handler':
states = CustomJobStatus.validTransitionsCelery(event.info['status'])
if states is not None:
event.preventDefault().addResponse(states) |
Python | def schedule(event):
"""
This is bound to the "jobs.schedule" event, and will be triggered any time
a job is scheduled. This handler will process any job that has the
handler field set to "worker_handler".
"""
job = event.info
if job['handler'] == 'worker_handler':
task = job.get('celeryTaskName', 'girder_worker.run')
# Set the job status to queued
Job().updateJob(job, status=JobStatus.QUEUED)
# Send the task to celery
asyncResult = getCeleryApp().send_task(
task, job['args'], job['kwargs'], queue=job.get('celeryQueue'), headers={
'jobInfoSpec': jobInfoSpec(job, job.get('token', None)),
'apiUrl': getWorkerApiUrl()
})
# Record the task ID from celery.
Job().updateJob(job, otherFields={
'celeryTaskId': asyncResult.task_id
})
# Stop event propagation since we have taken care of scheduling.
event.stopPropagation() | def schedule(event):
"""
This is bound to the "jobs.schedule" event, and will be triggered any time
a job is scheduled. This handler will process any job that has the
handler field set to "worker_handler".
"""
job = event.info
if job['handler'] == 'worker_handler':
task = job.get('celeryTaskName', 'girder_worker.run')
# Set the job status to queued
Job().updateJob(job, status=JobStatus.QUEUED)
# Send the task to celery
asyncResult = getCeleryApp().send_task(
task, job['args'], job['kwargs'], queue=job.get('celeryQueue'), headers={
'jobInfoSpec': jobInfoSpec(job, job.get('token', None)),
'apiUrl': getWorkerApiUrl()
})
# Record the task ID from celery.
Job().updateJob(job, otherFields={
'celeryTaskId': asyncResult.task_id
})
# Stop event propagation since we have taken care of scheduling.
event.stopPropagation() |
Python | def cancel(event):
"""
This is bound to the "jobs.cancel" event, and will be triggered any time
a job is canceled. This handler will process any job that has the
handler field set to "worker_handler".
"""
job = event.info
if job['handler'] in ['worker_handler', 'celery_handler']:
# Stop event propagation and prevent default, we are using a custom state
event.stopPropagation().preventDefault()
celeryTaskId = job.get('celeryTaskId')
if celeryTaskId is None:
msg = ("Unable to cancel Celery task. Job '%s' doesn't have a Celery task id."
% job['_id'])
logger.warn(msg)
return
should_revoke = False
if job['status'] == JobStatus.INACTIVE:
# Move inactive jobs directly to canceled state
Job().updateJob(job, status=JobStatus.CANCELED)
should_revoke = True
elif job['status'] not in [CustomJobStatus.CANCELING, JobStatus.CANCELED,
JobStatus.SUCCESS, JobStatus.ERROR]:
# Give active jobs a chance to be canceled by their runner
Job().updateJob(job, status=CustomJobStatus.CANCELING)
should_revoke = True
if should_revoke:
# Send the revoke request.
asyncResult = AsyncResult(celeryTaskId, app=getCeleryApp())
asyncResult.revoke() | def cancel(event):
"""
This is bound to the "jobs.cancel" event, and will be triggered any time
a job is canceled. This handler will process any job that has the
handler field set to "worker_handler".
"""
job = event.info
if job['handler'] in ['worker_handler', 'celery_handler']:
# Stop event propagation and prevent default, we are using a custom state
event.stopPropagation().preventDefault()
celeryTaskId = job.get('celeryTaskId')
if celeryTaskId is None:
msg = ("Unable to cancel Celery task. Job '%s' doesn't have a Celery task id."
% job['_id'])
logger.warn(msg)
return
should_revoke = False
if job['status'] == JobStatus.INACTIVE:
# Move inactive jobs directly to canceled state
Job().updateJob(job, status=JobStatus.CANCELED)
should_revoke = True
elif job['status'] not in [CustomJobStatus.CANCELING, JobStatus.CANCELED,
JobStatus.SUCCESS, JobStatus.ERROR]:
# Give active jobs a chance to be canceled by their runner
Job().updateJob(job, status=CustomJobStatus.CANCELING)
should_revoke = True
if should_revoke:
# Send the revoke request.
asyncResult = AsyncResult(celeryTaskId, app=getCeleryApp())
asyncResult.revoke() |
Python | def attachParentJob(event):
"""Attach parentJob before a model is saved."""
job = event.info
if job.get('celeryParentTaskId'):
celeryParentTaskId = job['celeryParentTaskId']
parentJob = Job().findOne({'celeryTaskId': celeryParentTaskId})
event.info['parentId'] = parentJob['_id'] | def attachParentJob(event):
"""Attach parentJob before a model is saved."""
job = event.info
if job.get('celeryParentTaskId'):
celeryParentTaskId = job['celeryParentTaskId']
parentJob = Job().findOne({'celeryTaskId': celeryParentTaskId})
event.info['parentId'] = parentJob['_id'] |
Python | def attachJobInfoSpec(event):
"""Attach jobInfoSpec after a model is saved."""
job = event.info
# Local jobs have a module key
if not job.get('module'):
Job().updateJob(job, otherFields={'jobInfoSpec': jobInfoSpec(job)}) | def attachJobInfoSpec(event):
"""Attach jobInfoSpec after a model is saved."""
job = event.info
# Local jobs have a module key
if not job.get('module'):
Job().updateJob(job, otherFields={'jobInfoSpec': jobInfoSpec(job)}) |
Python | def canceled(self):
"""
A property to indicate if a task has been canceled.
:return: True is this task has been canceled, False otherwise.
:rtype: bool
"""
return is_revoked(self) | def canceled(self):
"""
A property to indicate if a task has been canceled.
:return: True is this task has been canceled, False otherwise.
:rtype: bool
"""
return is_revoked(self) |
Python | def deepset(mapping, path, value):
"""Define deep entry in dict."""
if ':' not in path:
mapping[path] = value
else:
key, sub = path.split(':', 1)
submapping = mapping.setdefault(key, {})
deepset(submapping, sub, value) | def deepset(mapping, path, value):
"""Define deep entry in dict."""
if ':' not in path:
mapping[path] = value
else:
key, sub = path.split(':', 1)
submapping = mapping.setdefault(key, {})
deepset(submapping, sub, value) |
Python | def fields(self):
"""Gather all reference fields in all formats."""
return [
field
for spec in self
for field in spec.fields
] | def fields(self):
"""Gather all reference fields in all formats."""
return [
field
for spec in self
for field in spec.fields
] |
Python | def poverty_scale_get_income_limit(household_size:int=1, multiplier:float=1.0, state=None)->Union[int, None]:
"""
Return the income limit matching the given household size.
"""
ps_data = get_poverty_scale_data()
if not ps_data:
return None
if state and state.lower() == 'hi':
poverty_base = int(ps_data.get("poverty_base_hi"))
poverty_increment = int(ps_data.get("poverty_increment_hi"))
elif state and state.lower() == 'ak':
poverty_base = int(ps_data.get("poverty_base_ak"))
poverty_increment = int(ps_data.get("poverty_increment_ak"))
else:
poverty_base = int(ps_data.get("poverty_base"))
poverty_increment = int(ps_data.get("poverty_increment"))
additional_income_allowed = household_size * poverty_increment
household_income_limit = (poverty_base + additional_income_allowed) * multiplier
return int(household_income_limit) | def poverty_scale_get_income_limit(household_size:int=1, multiplier:float=1.0, state=None)->Union[int, None]:
"""
Return the income limit matching the given household size.
"""
ps_data = get_poverty_scale_data()
if not ps_data:
return None
if state and state.lower() == 'hi':
poverty_base = int(ps_data.get("poverty_base_hi"))
poverty_increment = int(ps_data.get("poverty_increment_hi"))
elif state and state.lower() == 'ak':
poverty_base = int(ps_data.get("poverty_base_ak"))
poverty_increment = int(ps_data.get("poverty_increment_ak"))
else:
poverty_base = int(ps_data.get("poverty_base"))
poverty_increment = int(ps_data.get("poverty_increment"))
additional_income_allowed = household_size * poverty_increment
household_income_limit = (poverty_base + additional_income_allowed) * multiplier
return int(household_income_limit) |
Python | def poverty_scale_income_qualifies(total_monthly_income:float, household_size:int=1, multiplier:float=1.0, state=None)->Union[bool,None]:
"""
Given monthly income, household size, and an optional multiplier, return whether an individual
is at or below the federal poverty level.
Returns None if the poverty level data JSON could not be loaded.
"""
# Globals: poverty_increment and poverty_base
household_income_limit = poverty_scale_get_income_limit(household_size=household_size, multiplier=multiplier, state=state)
if not household_income_limit:
return None
return int((household_income_limit)/12) >= int(total_monthly_income) | def poverty_scale_income_qualifies(total_monthly_income:float, household_size:int=1, multiplier:float=1.0, state=None)->Union[bool,None]:
"""
Given monthly income, household size, and an optional multiplier, return whether an individual
is at or below the federal poverty level.
Returns None if the poverty level data JSON could not be loaded.
"""
# Globals: poverty_increment and poverty_base
household_income_limit = poverty_scale_get_income_limit(household_size=household_size, multiplier=multiplier, state=state)
if not household_income_limit:
return None
return int((household_income_limit)/12) >= int(total_monthly_income) |
Python | def input_fn_builder(examples, window_size, stride, tokenizer):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
d = tf.data.Dataset.from_generator(
functools.partial(convert_examples_to_features,
examples=examples,
window_size=window_size,
stride=stride,
tokenizer=tokenizer),
dict(unique_ids=tf.int32,
input_ids=tf.int32,
input_mask=tf.int32,
input_type_ids=tf.int32,
extract_indices=tf.int32),
dict(unique_ids=tf.TensorShape([]),
input_ids=tf.TensorShape([window_size]),
input_mask=tf.TensorShape([window_size]),
input_type_ids=tf.TensorShape([window_size]),
extract_indices=tf.TensorShape([window_size])))
d = d.batch(batch_size=batch_size, drop_remainder=False)
return d
return input_fn | def input_fn_builder(examples, window_size, stride, tokenizer):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
d = tf.data.Dataset.from_generator(
functools.partial(convert_examples_to_features,
examples=examples,
window_size=window_size,
stride=stride,
tokenizer=tokenizer),
dict(unique_ids=tf.int32,
input_ids=tf.int32,
input_mask=tf.int32,
input_type_ids=tf.int32,
extract_indices=tf.int32),
dict(unique_ids=tf.TensorShape([]),
input_ids=tf.TensorShape([window_size]),
input_mask=tf.TensorShape([window_size]),
input_type_ids=tf.TensorShape([window_size]),
extract_indices=tf.TensorShape([window_size])))
d = d.batch(batch_size=batch_size, drop_remainder=False)
return d
return input_fn |
Python | def count_rating(self):
"""
Returns number of likes minus dislikes
"""
likes = 0
dislikes = 0
try:
likes = self.comment_like.users.count()
except Comment.comment_like.RelatedObjectDoesNotExist as identifier:
CommentLike.objects.create(comment=self)
try:
dislikes = self.comment_dislike.users.count()
except Comment.comment_dislike.RelatedObjectDoesNotExist as identifier:
CommentDislike.objects.create(comment=self)
return likes - dislikes | def count_rating(self):
"""
Returns number of likes minus dislikes
"""
likes = 0
dislikes = 0
try:
likes = self.comment_like.users.count()
except Comment.comment_like.RelatedObjectDoesNotExist as identifier:
CommentLike.objects.create(comment=self)
try:
dislikes = self.comment_dislike.users.count()
except Comment.comment_dislike.RelatedObjectDoesNotExist as identifier:
CommentDislike.objects.create(comment=self)
return likes - dislikes |
Python | def HandleCoaPacket(self, pkt):
"""Accounting packet handler.
Function that is called when a valid
accounting packet has been received.
:param pkt: packet to process
:type pkt: Packet class instance
"""
print("Received a coa request %d" % pkt.code)
print(" Attributes: ")
for attr in pkt.keys():
print(" %s: %s" % (attr, pkt[attr]))
reply = self.CreateReplyPacket(pkt)
# try ACK or NACK
# reply.code = packet.CoANAK
if "Framed-IP-Netmask" in pkt.keys():
reply.code = packet.CoANAK
else:
reply.code = packet.CoAACK
self.SendReplyPacket(pkt.fd, reply) | def HandleCoaPacket(self, pkt):
"""Accounting packet handler.
Function that is called when a valid
accounting packet has been received.
:param pkt: packet to process
:type pkt: Packet class instance
"""
print("Received a coa request %d" % pkt.code)
print(" Attributes: ")
for attr in pkt.keys():
print(" %s: %s" % (attr, pkt[attr]))
reply = self.CreateReplyPacket(pkt)
# try ACK or NACK
# reply.code = packet.CoANAK
if "Framed-IP-Netmask" in pkt.keys():
reply.code = packet.CoANAK
else:
reply.code = packet.CoAACK
self.SendReplyPacket(pkt.fd, reply) |
Python | def skewt(p, T, Td, u, v):
"""
Adapted from the Metpy advanced sounding example
(https://unidata.github.io/MetPy/latest/examples/Advanced_Sounding.html#sphx-glr-examples-advanced-sounding-py)
"""
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot.
skew.plot(p, T, "r")
skew.plot(p, Td, "g")
# Calculate LCL height and plot as black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
# should be selected.
# lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
# skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
# Calculate full parcel profile and add to plot as black line
# prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
# skew.plot(p, prof, 'k', linewidth=2)
# Shade areas of CAPE and CIN
# skew.shade_cin(p, T, prof, Td)
# skew.shade_cape(p, T, prof)
# An example of a slanted line at constant T -- in this case the 0
# isotherm
# skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
skew.ax.set_ylim(1050, p.min())
skew.ax.set_xlim(-10, 30)
return fig | def skewt(p, T, Td, u, v):
"""
Adapted from the Metpy advanced sounding example
(https://unidata.github.io/MetPy/latest/examples/Advanced_Sounding.html#sphx-glr-examples-advanced-sounding-py)
"""
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot.
skew.plot(p, T, "r")
skew.plot(p, Td, "g")
# Calculate LCL height and plot as black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
# should be selected.
# lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
# skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
# Calculate full parcel profile and add to plot as black line
# prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
# skew.plot(p, prof, 'k', linewidth=2)
# Shade areas of CAPE and CIN
# skew.shade_cin(p, T, prof, Td)
# skew.shade_cape(p, T, prof)
# An example of a slanted line at constant T -- in this case the 0
# isotherm
# skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
skew.ax.set_ylim(1050, p.min())
skew.ax.set_xlim(-10, 30)
return fig |
Python | def load_csv(fn, n_header_lines=3):
"""
Load CCN datafile with filename `fn` and return as xarray.Dataset
"""
meta = _load_meta(fn, nlines=n_header_lines)
df = pd.read_csv(fn, skiprows=n_header_lines)
# cleanup column names
df.columns = [s.strip().lower().replace(" ", "_") for s in df.columns]
# make times into datetimes
df["time"] = meta["date"] + "T" + df["time"] + "Z"
df["time"] = pd.to_datetime(df["time"], format="%m/%d/%yT%H:%M:%SZ", utc=True)
ds = xr.Dataset.from_dataframe(df)
ds = ds.swap_dims(dict(index="time"))
ds.attrs.update(meta)
return ds | def load_csv(fn, n_header_lines=3):
"""
Load CCN datafile with filename `fn` and return as xarray.Dataset
"""
meta = _load_meta(fn, nlines=n_header_lines)
df = pd.read_csv(fn, skiprows=n_header_lines)
# cleanup column names
df.columns = [s.strip().lower().replace(" ", "_") for s in df.columns]
# make times into datetimes
df["time"] = meta["date"] + "T" + df["time"] + "Z"
df["time"] = pd.to_datetime(df["time"], format="%m/%d/%yT%H:%M:%SZ", utc=True)
ds = xr.Dataset.from_dataframe(df)
ds = ds.swap_dims(dict(index="time"))
ds.attrs.update(meta)
return ds |
Python | def load_all(data_path):
"""
Load all CCN files in `data_path` and combine into single xarray.Dataset
"""
all_ds = [load_csv(fn=fn) for fn in Path(data_path).glob("*.csv")]
if len(all_ds) == 0:
raise Exception("No CCN data found in `{}`".format(data_path))
else:
return xr.concat(all_ds, dim="time") | def load_all(data_path):
"""
Load all CCN files in `data_path` and combine into single xarray.Dataset
"""
all_ds = [load_csv(fn=fn) for fn in Path(data_path).glob("*.csv")]
if len(all_ds) == 0:
raise Exception("No CCN data found in `{}`".format(data_path))
else:
return xr.concat(all_ds, dim="time") |
Python | def load_nc(path, time):
"""Load the netCDF dataset corresponding to the given time
This function finds files matching the AERIS :data:`nc_filename` formatted for the
given time
Args:
path (str): The directory containing GOES netCDF files
time (datetime.datetime): The time of the file to load
Returns:
xarray.dataset: The loaded netCDF file with values filtered where the
coordinates are NaN
Raises:
FileNotFoundError: If the netCDF is not present
FileExistsError: If multiple matching netCDF files are found with the same name
"""
filename = nc_filename.format(
year=time.year,
day=time.timetuple().tm_yday,
hour=time.hour,
minute=time.minute,
something="*",
)
# Find matching filenames in the GOES folder
file_path = list(pathlib.Path(path).rglob(filename))
if len(file_path) == 0:
raise FileNotFoundError("No GOES data found in {} for {}".format(path, time))
elif len(file_path) > 1:
raise FileExistsError(
"More than one file found in {} for {}".format(path, time)
)
dataset = xr.load_dataset(str(file_path[0]))
# Remove values where the coordinates are NaNs
dataset = dataset.where(~dataset.longitude.isnull(), drop=True)
return dataset | def load_nc(path, time):
"""Load the netCDF dataset corresponding to the given time
This function finds files matching the AERIS :data:`nc_filename` formatted for the
given time
Args:
path (str): The directory containing GOES netCDF files
time (datetime.datetime): The time of the file to load
Returns:
xarray.dataset: The loaded netCDF file with values filtered where the
coordinates are NaN
Raises:
FileNotFoundError: If the netCDF is not present
FileExistsError: If multiple matching netCDF files are found with the same name
"""
filename = nc_filename.format(
year=time.year,
day=time.timetuple().tm_yday,
hour=time.hour,
minute=time.minute,
something="*",
)
# Find matching filenames in the GOES folder
file_path = list(pathlib.Path(path).rglob(filename))
if len(file_path) == 0:
raise FileNotFoundError("No GOES data found in {} for {}".format(path, time))
elif len(file_path) > 1:
raise FileExistsError(
"More than one file found in {} for {}".format(path, time)
)
dataset = xr.load_dataset(str(file_path[0]))
# Remove values where the coordinates are NaNs
dataset = dataset.where(~dataset.longitude.isnull(), drop=True)
return dataset |
Python | def colored_line_plot(
ax, x, y, color, vmin=None, vmax=None, cmap="gray", cmap_steps=0, **kwargs
):
"""Add a multicolored line to an existing plot
Args:
x (np.array): The x points of the plot
y (np.array): The y points of the plot
color (np.array): The color of the line at the xy points
vmin (scalar, optional): The minimum of the colorscale. Defaults to the
minimum of the color array.
vmax (scalar, optional): The maximum of the colorscale. Defaults to the
maximum of the color array.
cmap (str, optional): Colormap to plot. Default is grey.
cmap_steps (int, optional): Number of discrete steps in the colorscale.
Defaults is zero for a continuous colorscale.
kwargs: Other keyword arguments to pass to LineCollection
returns:
matplotlib.collections.LineCollection:
The plotted LineCollection. Required as argument to
:py:func:`matplotlib.pyplot.colorbar`
"""
# Set the color scalings
if vmin is None:
vmin = color.min()
if vmax is None:
vmax = color.max()
# Break the xy points up in to line segments
segments = np.array([(x[:-1].values, x[1:].values), (y[:-1].values, y[1:].values)])
segments = np.transpose(segments, axes=(2, 1, 0))
# Create discretised colourmap
cmap = plt.get_cmap(cmap)
if cmap_steps != 0:
cmap = mpl.colors.ListedColormap(
[cmap(n / (cmap_steps - 1)) for n in range(cmap_steps)]
)
# Collect the line segments
lc = LineCollection(segments, cmap=cmap, norm=plt.Normalize(vmin, vmax), **kwargs)
# Set the line color to the specified array
lc.set_array(color)
# Add the colored line to the existing plot
ax.add_collection(lc)
# autoscale if limits haven't already been set so that the linecollection
# is visible
if ax.get_xlim() == (0, 1) and ax.get_ylim() == (0, 1):
ax.autoscale()
return lc | def colored_line_plot(
ax, x, y, color, vmin=None, vmax=None, cmap="gray", cmap_steps=0, **kwargs
):
"""Add a multicolored line to an existing plot
Args:
x (np.array): The x points of the plot
y (np.array): The y points of the plot
color (np.array): The color of the line at the xy points
vmin (scalar, optional): The minimum of the colorscale. Defaults to the
minimum of the color array.
vmax (scalar, optional): The maximum of the colorscale. Defaults to the
maximum of the color array.
cmap (str, optional): Colormap to plot. Default is grey.
cmap_steps (int, optional): Number of discrete steps in the colorscale.
Defaults is zero for a continuous colorscale.
kwargs: Other keyword arguments to pass to LineCollection
returns:
matplotlib.collections.LineCollection:
The plotted LineCollection. Required as argument to
:py:func:`matplotlib.pyplot.colorbar`
"""
# Set the color scalings
if vmin is None:
vmin = color.min()
if vmax is None:
vmax = color.max()
# Break the xy points up in to line segments
segments = np.array([(x[:-1].values, x[1:].values), (y[:-1].values, y[1:].values)])
segments = np.transpose(segments, axes=(2, 1, 0))
# Create discretised colourmap
cmap = plt.get_cmap(cmap)
if cmap_steps != 0:
cmap = mpl.colors.ListedColormap(
[cmap(n / (cmap_steps - 1)) for n in range(cmap_steps)]
)
# Collect the line segments
lc = LineCollection(segments, cmap=cmap, norm=plt.Normalize(vmin, vmax), **kwargs)
# Set the line color to the specified array
lc.set_array(color)
# Add the colored line to the existing plot
ax.add_collection(lc)
# autoscale if limits haven't already been set so that the linecollection
# is visible
if ax.get_xlim() == (0, 1) and ax.get_ylim() == (0, 1):
ax.autoscale()
return lc |
Python | def load_segments(filename):
"""Read a segments yaml file created with twinotter.plots.interactive_flight_track
Args:
filename (str):
Returns:
dict:
"""
with open(filename, "r") as data:
segments = yaml.load(data, yaml.CLoader)
return segments | def load_segments(filename):
"""Read a segments yaml file created with twinotter.plots.interactive_flight_track
Args:
filename (str):
Returns:
dict:
"""
with open(filename, "r") as data:
segments = yaml.load(data, yaml.CLoader)
return segments |
Python | def count_segments(segments, segment_type):
"""Return the number of flight segments of the requested segment_type
Args:
segments (dict): Flight segments description from load_segments
segment_type (str): The label of a segment type
Returns:
int:
"""
return len(_matching_segments(segments, segment_type)) | def count_segments(segments, segment_type):
"""Return the number of flight segments of the requested segment_type
Args:
segments (dict): Flight segments description from load_segments
segment_type (str): The label of a segment type
Returns:
int:
"""
return len(_matching_segments(segments, segment_type)) |
Python | def extract_segments(ds, segments, segment_type, segment_idx=None):
"""Extract a subset of the given dataset with the segments requested
Args:
ds (xarray.DataSet): Flight dataset
segments (dict): Flight segments description from load_segments
segment_type (str): The label of a segment type
segment_idx (int): The index of the segment within the flight (starts at zero)
If the default of None is given then the returned dataset will contain all
matching segments concatenated.
Returns:
xarray.DataSet:
"""
# All segments of the requested type
matching_segments = _matching_segments(segments, segment_type)
# If a single index is requested return that index of legs with the requested type
if segment_idx is not None:
segment = matching_segments[segment_idx]
return ds.sel(Time=slice(segment["start"], segment["end"]))
# Otherwise merge all legs with the requested type
else:
ds_matching = []
for segment in matching_segments:
ds_matching.append(ds.sel(Time=slice(segment["start"], segment["end"])))
return xr.concat(ds_matching, dim="Time") | def extract_segments(ds, segments, segment_type, segment_idx=None):
"""Extract a subset of the given dataset with the segments requested
Args:
ds (xarray.DataSet): Flight dataset
segments (dict): Flight segments description from load_segments
segment_type (str): The label of a segment type
segment_idx (int): The index of the segment within the flight (starts at zero)
If the default of None is given then the returned dataset will contain all
matching segments concatenated.
Returns:
xarray.DataSet:
"""
# All segments of the requested type
matching_segments = _matching_segments(segments, segment_type)
# If a single index is requested return that index of legs with the requested type
if segment_idx is not None:
segment = matching_segments[segment_idx]
return ds.sel(Time=slice(segment["start"], segment["end"]))
# Otherwise merge all legs with the requested type
else:
ds_matching = []
for segment in matching_segments:
ds_matching.append(ds.sel(Time=slice(segment["start"], segment["end"])))
return xr.concat(ds_matching, dim="Time") |
Python | def geocolor(ax, ds, projection):
"""
Follows
https://unidata.github.io/python-gallery/examples/mapping_GOES16_TrueColor.html
Use origin="lower" for imshow because we are using an interpolated grid of data not
the native layout for data used in the link.
"""
maxval = 120
gamma = 2.2
red = (ds.refl_0_65um_nom / maxval) ** (1 / gamma)
green = (ds.refl_0_86um_nom / maxval) ** (1 / gamma)
blue = (ds.refl_0_47um_nom / maxval) ** (1 / gamma)
true_green = 0.45 * red + 0.1 * green + 0.45 * blue
color_array = np.dstack([red, true_green, blue])
x = ds.longitude
y = ds.latitude
return ax.imshow(
color_array,
origin="lower",
extent=[x.min(), x.max(), y.min(), y.max()],
transform=projection,
) | def geocolor(ax, ds, projection):
"""
Follows
https://unidata.github.io/python-gallery/examples/mapping_GOES16_TrueColor.html
Use origin="lower" for imshow because we are using an interpolated grid of data not
the native layout for data used in the link.
"""
maxval = 120
gamma = 2.2
red = (ds.refl_0_65um_nom / maxval) ** (1 / gamma)
green = (ds.refl_0_86um_nom / maxval) ** (1 / gamma)
blue = (ds.refl_0_47um_nom / maxval) ** (1 / gamma)
true_green = 0.45 * red + 0.1 * green + 0.45 * blue
color_array = np.dstack([red, true_green, blue])
x = ds.longitude
y = ds.latitude
return ax.imshow(
color_array,
origin="lower",
extent=[x.min(), x.max(), y.min(), y.max()],
transform=projection,
) |
Python | def new_child(self, pid, pipe):
"""Invoked when a new child is spawned.
Associates an event manager with this child, maintains
the map. Manages the process. If this process is killed,
the event_manager is assigned to new process.
:param process: Context of new process.
:param pipe: Pipe to communicate with this child.
"""
ev_manager = NfpEventManager(
self._conf, self._controller,
self._event_sequencer,
pipe=pipe, pid=pid)
self._resource_map.update(dict({pid: ev_manager}))
super(NfpResourceManager, self).new_child(pid, pipe) | def new_child(self, pid, pipe):
"""Invoked when a new child is spawned.
Associates an event manager with this child, maintains
the map. Manages the process. If this process is killed,
the event_manager is assigned to new process.
:param process: Context of new process.
:param pipe: Pipe to communicate with this child.
"""
ev_manager = NfpEventManager(
self._conf, self._controller,
self._event_sequencer,
pipe=pipe, pid=pid)
self._resource_map.update(dict({pid: ev_manager}))
super(NfpResourceManager, self).new_child(pid, pipe) |
Python | def manager_run(self):
"""Invoked periodically to check on resources.
a) Checks if childrens are active or any killed.
b) Checks if there are messages from any of workers.
c) Dispatches the events ready to be handled to workers.
"""
self._child_watcher()
self._event_watcher() | def manager_run(self):
"""Invoked periodically to check on resources.
a) Checks if childrens are active or any killed.
b) Checks if there are messages from any of workers.
c) Dispatches the events ready to be handled to workers.
"""
self._child_watcher()
self._event_watcher() |
Python | def _event_acked(self, event):
"""Post handling after event is dispatched to worker. """
if event.lifetime:
message = "(event - %s) - dispatched, polling for expiry" % (
event.identify())
LOG.debug(message)
self._controller.poll_add(
event, event.lifetime, self._event_life_timedout) | def _event_acked(self, event):
"""Post handling after event is dispatched to worker. """
if event.lifetime:
message = "(event - %s) - dispatched, polling for expiry" % (
event.identify())
LOG.debug(message)
self._controller.poll_add(
event, event.lifetime, self._event_life_timedout) |
Python | def _dispatch_event(self, event):
"""Dispatch event to a worker. """
load_info = self._load_init()
event_manager, load_info = self._get_min_loaded_em(load_info)
event_manager.dispatch_event(event) | def _dispatch_event(self, event):
"""Dispatch event to a worker. """
load_info = self._load_init()
event_manager, load_info = self._get_min_loaded_em(load_info)
event_manager.dispatch_event(event) |
Python | def process_events(self, events):
"""Process the consumed event.
Based on the event type, new event will
be added to cache, completed event is
removed from cache, poll event is added
to pollq.
"""
for event in events:
message = "%s - processing event" % (event.identify())
LOG.debug(message)
if IS_EVENT_GRAPH(event):
self._execute_event_graph(event)
elif IS_SCHEDULED_EVENT_GRAPHEVENT(event):
self._scheduled_event_graph(event)
elif IS_SCHEDULED_EVENT_ACK(event):
self._scheduled_event_ack(event)
elif IS_SCHEDULED_NEW_EVENT(event):
self._scheduled_new_event(event)
elif IS_EVENT_COMPLETE(event):
self._scheduled_event_complete(event)
else:
self._non_schedule_event(event) | def process_events(self, events):
"""Process the consumed event.
Based on the event type, new event will
be added to cache, completed event is
removed from cache, poll event is added
to pollq.
"""
for event in events:
message = "%s - processing event" % (event.identify())
LOG.debug(message)
if IS_EVENT_GRAPH(event):
self._execute_event_graph(event)
elif IS_SCHEDULED_EVENT_GRAPHEVENT(event):
self._scheduled_event_graph(event)
elif IS_SCHEDULED_EVENT_ACK(event):
self._scheduled_event_ack(event)
elif IS_SCHEDULED_NEW_EVENT(event):
self._scheduled_new_event(event)
elif IS_EVENT_COMPLETE(event):
self._scheduled_event_complete(event)
else:
self._non_schedule_event(event) |
Python | def _event_watcher(self):
"""Watches for events for each event manager.
Invokes each event manager to get events from workers.
Also checks parent process event manager.
"""
events = []
# Get events from sequencer
events = self._event_sequencer.run()
for pid, event_manager in self._resource_map.iteritems():
events += event_manager.event_watcher(timeout=0.01)
# Process the type of events received, dispatch only the
# required ones.
self.process_events(events) | def _event_watcher(self):
"""Watches for events for each event manager.
Invokes each event manager to get events from workers.
Also checks parent process event manager.
"""
events = []
# Get events from sequencer
events = self._event_sequencer.run()
for pid, event_manager in self._resource_map.iteritems():
events += event_manager.event_watcher(timeout=0.01)
# Process the type of events received, dispatch only the
# required ones.
self.process_events(events) |
Python | def _load_init(self):
"""Intializes load with current information. """
load_info = []
for pid, event_manager in self._resource_map.iteritems():
load = event_manager.get_load()
load_info.append([event_manager, load, pid])
return load_info | def _load_init(self):
"""Intializes load with current information. """
load_info = []
for pid, event_manager in self._resource_map.iteritems():
load = event_manager.get_load()
load_info.append([event_manager, load, pid])
return load_info |
Python | def _get_min_loaded_em(self, load_info):
"""Returns the min loaded event_manager. """
minloaded = min(load_info, key=lambda x: x[1])
load = minloaded[1] + 1
load_info[load_info.index(minloaded)][1] = load
return minloaded[0], load_info | def _get_min_loaded_em(self, load_info):
"""Returns the min loaded event_manager. """
minloaded = min(load_info, key=lambda x: x[1])
load = minloaded[1] + 1
load_info[load_info.index(minloaded)][1] = load
return minloaded[0], load_info |
Python | def _get_event_manager(self, pid):
"""Returns event manager of a process. """
if pid == self._distributor_process_id:
return self
else:
return self._resource_map.get(pid) | def _get_event_manager(self, pid):
"""Returns event manager of a process. """
if pid == self._distributor_process_id:
return self
else:
return self._resource_map.get(pid) |
Python | def _event_life_timedout(self, event):
"""Callback for poller when event expires. """
message = "(event - %s) - expired" % (event.identify())
LOG.debug(message)
self._scheduled_event_complete(event, expired=True) | def _event_life_timedout(self, event):
"""Callback for poller when event expires. """
message = "(event - %s) - expired" % (event.identify())
LOG.debug(message)
self._scheduled_event_complete(event, expired=True) |
Python | def _event_timedout(self, event):
"""Callback for poller when event timesout. """
message = "(event - %s) - timedout" % (event.identify())
LOG.debug(message)
try:
ref_event = self._event_cache[event.desc.poll_desc.ref]
evmanager = self._get_event_manager(ref_event.desc.worker)
assert evmanager
evmanager.dispatch_event(
event, event_type=nfp_event.POLL_EVENT,
inc_load=False, cache=False)
except KeyError as err:
err = err
message = "(event - %s) - timedout, not in cache" % (
event.identify())
LOG.error(message)
except AssertionError as aerr:
aerr = aerr
# Process associated with event could be killed.
# Ignore.
pass | def _event_timedout(self, event):
"""Callback for poller when event timesout. """
message = "(event - %s) - timedout" % (event.identify())
LOG.debug(message)
try:
ref_event = self._event_cache[event.desc.poll_desc.ref]
evmanager = self._get_event_manager(ref_event.desc.worker)
assert evmanager
evmanager.dispatch_event(
event, event_type=nfp_event.POLL_EVENT,
inc_load=False, cache=False)
except KeyError as err:
err = err
message = "(event - %s) - timedout, not in cache" % (
event.identify())
LOG.error(message)
except AssertionError as aerr:
aerr = aerr
# Process associated with event could be killed.
# Ignore.
pass |
Python | def _stitch_proxy_ptg_to_l3p(self, context, ptg, l3p, subnet_ids):
"""Attach the Proxy PTG properly.
When a proxy PTG is set, the proxied PTG needs to be detached from
the current L3P. The proxied PTG will be attached instead on the proper
subnets. This will completely isolate the proxied PTG, therefore the
expectation is for a third entity (eg. service chain driver) to create
a bridging service across the proxy and the proxied PTG.
This will guarantee that all the traffic goes through the proxy PTG
before reaching the destination.
"""
proxied = context._plugin.get_policy_target_group(
context._plugin_context, ptg['proxied_group_id'])
try:
# If the detached PTG is a proxy itself and has a proxy
# gateway, then the routes should be removed from the L3P and
# added to the current proxy subnet instead.
gateway_pt = None
if proxied.get('proxied_group_id'):
# Verify if a gateway PT exists
gateway_pt = context._plugin.get_policy_targets(
context._plugin_context.elevated(),
{'policy_target_group_id': [proxied['id']],
'proxy_gateway': [True]})
if gateway_pt:
self._unset_proxy_gateway_routes(context, gateway_pt[0])
# Detach Proxied PTG
for subnet_id in proxied['subnets']:
self._remove_router_interface(
context._plugin_context, l3p['routers'][0],
{'subnet_id': subnet_id})
# Attach Proxy PTG
for subnet_id in subnet_ids:
self._plug_router_to_subnet(
context._plugin_context, subnet_id, l3p['routers'][0])
# Reset the proxy gateway PT routes
if gateway_pt:
self._set_proxy_gateway_routes(context, gateway_pt[0])
except n_exc.InvalidInput:
# This exception is not expected.
# TODO(ivar): find a better way to rollback
LOG.exception(_LE("adding subnet to router failed"))
for subnet_id in subnet_ids:
self._delete_subnet(context._plugin_context, subnet_id)
raise exc.GroupPolicyInternalError() | def _stitch_proxy_ptg_to_l3p(self, context, ptg, l3p, subnet_ids):
"""Attach the Proxy PTG properly.
When a proxy PTG is set, the proxied PTG needs to be detached from
the current L3P. The proxied PTG will be attached instead on the proper
subnets. This will completely isolate the proxied PTG, therefore the
expectation is for a third entity (eg. service chain driver) to create
a bridging service across the proxy and the proxied PTG.
This will guarantee that all the traffic goes through the proxy PTG
before reaching the destination.
"""
proxied = context._plugin.get_policy_target_group(
context._plugin_context, ptg['proxied_group_id'])
try:
# If the detached PTG is a proxy itself and has a proxy
# gateway, then the routes should be removed from the L3P and
# added to the current proxy subnet instead.
gateway_pt = None
if proxied.get('proxied_group_id'):
# Verify if a gateway PT exists
gateway_pt = context._plugin.get_policy_targets(
context._plugin_context.elevated(),
{'policy_target_group_id': [proxied['id']],
'proxy_gateway': [True]})
if gateway_pt:
self._unset_proxy_gateway_routes(context, gateway_pt[0])
# Detach Proxied PTG
for subnet_id in proxied['subnets']:
self._remove_router_interface(
context._plugin_context, l3p['routers'][0],
{'subnet_id': subnet_id})
# Attach Proxy PTG
for subnet_id in subnet_ids:
self._plug_router_to_subnet(
context._plugin_context, subnet_id, l3p['routers'][0])
# Reset the proxy gateway PT routes
if gateway_pt:
self._set_proxy_gateway_routes(context, gateway_pt[0])
except n_exc.InvalidInput:
# This exception is not expected.
# TODO(ivar): find a better way to rollback
LOG.exception(_LE("adding subnet to router failed"))
for subnet_id in subnet_ids:
self._delete_subnet(context._plugin_context, subnet_id)
raise exc.GroupPolicyInternalError() |
Python | def create_policy_rule_set_postcommit(self, context):
"""Each Policy Rule Set is mapped to a contract, with a single clause
Each included Policy Rule will be mapped to one subject, which includes
one rule.
The clause has no matcher, but refers to all the subjects
"""
subjects = []
subject_names = []
for rule_id in context.current['policy_rules']:
subject = self._make_odl_subject(context, rule_id)
subjects.append(subject)
subject_names.append(subject['name'])
clauses = [
{
"name": context.current['name'],
"subject-refs": subject_names
}
]
contract_id = context.current['id']
contract_desc = context.current['name']
contract = {
"id": contract_id,
"description": contract_desc,
"clause": clauses,
"subject": subjects
}
tenant_id = uuid.UUID(context.current['tenant_id']).urn[9:]
self.odl_manager.create_update_contract(tenant_id, contract) | def create_policy_rule_set_postcommit(self, context):
"""Each Policy Rule Set is mapped to a contract, with a single clause
Each included Policy Rule will be mapped to one subject, which includes
one rule.
The clause has no matcher, but refers to all the subjects
"""
subjects = []
subject_names = []
for rule_id in context.current['policy_rules']:
subject = self._make_odl_subject(context, rule_id)
subjects.append(subject)
subject_names.append(subject['name'])
clauses = [
{
"name": context.current['name'],
"subject-refs": subject_names
}
]
contract_id = context.current['id']
contract_desc = context.current['name']
contract = {
"id": contract_id,
"description": contract_desc,
"clause": clauses,
"subject": subjects
}
tenant_id = uuid.UUID(context.current['tenant_id']).urn[9:]
self.odl_manager.create_update_contract(tenant_id, contract) |
Python | def _get_v2_keystone_admin_client(self):
""" Returns keystone v2 client with admin credentials
Using this client one can perform CRUD operations over
keystone resources.
"""
keystone_conf = self.config.keystone_authtoken
v2client = identity_client.Client(
username=keystone_conf.admin_user,
password=keystone_conf.admin_password,
tenant_name=keystone_conf.admin_tenant_name,
tenant_id=None,
auth_url=self.identity_service)
return v2client | def _get_v2_keystone_admin_client(self):
""" Returns keystone v2 client with admin credentials
Using this client one can perform CRUD operations over
keystone resources.
"""
keystone_conf = self.config.keystone_authtoken
v2client = identity_client.Client(
username=keystone_conf.admin_user,
password=keystone_conf.admin_password,
tenant_name=keystone_conf.admin_tenant_name,
tenant_id=None,
auth_url=self.identity_service)
return v2client |
Python | def _get_v3_keystone_admin_client(self):
""" Returns keystone v3 client with admin credentials
Using this client one can perform CRUD operations over
keystone resources.
"""
keystone_conf = self.config.keystone_authtoken
v3_auth_url = ('%s://%s:%s/%s/' % (
keystone_conf.auth_protocol, keystone_conf.auth_host,
keystone_conf.auth_port, self.config.heat_driver.keystone_version))
v3client = keyclientv3.Client(
username=keystone_conf.admin_user,
password=keystone_conf.admin_password,
domain_name="default",
auth_url=v3_auth_url)
return v3client | def _get_v3_keystone_admin_client(self):
""" Returns keystone v3 client with admin credentials
Using this client one can perform CRUD operations over
keystone resources.
"""
keystone_conf = self.config.keystone_authtoken
v3_auth_url = ('%s://%s:%s/%s/' % (
keystone_conf.auth_protocol, keystone_conf.auth_host,
keystone_conf.auth_port, self.config.heat_driver.keystone_version))
v3client = keyclientv3.Client(
username=keystone_conf.admin_user,
password=keystone_conf.admin_password,
domain_name="default",
auth_url=v3_auth_url)
return v3client |
Python | def attach_interface(self, token, tenant_id, instance_id, port_id):
""" Attaches a port to already created instance
:param token: A scoped token
:param tenant_id: Tenant UUID
:param instance_id: UUID of the instance
:param port_id: Port UUID
"""
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
instance = nova.servers.interface_attach(instance_id, port_id,
None, None)
return instance
except Exception as ex:
err = ("Failed to attach interface %s to instance"
" %s %s" % (port_id, instance_id, ex))
LOG.error(err)
raise Exception(err) | def attach_interface(self, token, tenant_id, instance_id, port_id):
""" Attaches a port to already created instance
:param token: A scoped token
:param tenant_id: Tenant UUID
:param instance_id: UUID of the instance
:param port_id: Port UUID
"""
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
instance = nova.servers.interface_attach(instance_id, port_id,
None, None)
return instance
except Exception as ex:
err = ("Failed to attach interface %s to instance"
" %s %s" % (port_id, instance_id, ex))
LOG.error(err)
raise Exception(err) |
Python | def detach_interface(self, token, tenant_id, instance_id, port_id):
""" Detaches a port to already created instance
:param token: A scoped token
:param tenant_id: Tenant UUID
:param instance_id: UUID of the instance
:param port_id: Port UUID
"""
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
instance = nova.servers.interface_detach(instance_id, port_id)
return instance
except Exception as ex:
err = ("Failed to detach interface %s from instance"
" %s %s" % (port_id, instance_id, ex))
LOG.error(err)
raise Exception(err) | def detach_interface(self, token, tenant_id, instance_id, port_id):
""" Detaches a port to already created instance
:param token: A scoped token
:param tenant_id: Tenant UUID
:param instance_id: UUID of the instance
:param port_id: Port UUID
"""
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
instance = nova.servers.interface_detach(instance_id, port_id)
return instance
except Exception as ex:
err = ("Failed to detach interface %s from instance"
" %s %s" % (port_id, instance_id, ex))
LOG.error(err)
raise Exception(err) |
Python | def create_instance(self, token, tenant_id, image_id, flavor,
nw_port_id_list, name, secgroup_name=None,
metadata=None, files=None, config_drive=False,
userdata=None, key_name='', different_hosts=None,
volume_support=False, volume_size="2"):
""" Launch a VM with given details
:param token: A scoped token
:param tenant_id: Tenant UUID
:param image_id: Image UUID
:param flavor: Flavor name
:param nw_port_id_list: Network UUID and port UUID list
:param name: Service istance name
:param secgroup_name: Nova security group name
:param metadata: metadata key-value pairs
:param files: List of files to be copied.
:example files: [{"dst": <detination_path_string>,
"src": <file_contents>}]
:param userdata: user data file name
:param key_name: Nova keypair name
:param different_hosts: Different host filter (List)
:param volume_support: volume support to launch instance
:param volume_size: cinder volume size in GB
:return: VM instance UUID
"""
kwargs = dict()
if volume_support:
block_device_mapping_v2 = [
{
"boot_index": "1",
"uuid": image_id,
"source_type": "image",
"volume_size": volume_size,
"destination_type": "volume",
"delete_on_termination": True
}
]
kwargs.update(block_device_mapping_v2=block_device_mapping_v2)
if different_hosts:
kwargs.update(scheduler_hints={"different_host": different_hosts})
if key_name != '':
kwargs.update(key_name=key_name)
if config_drive is True:
kwargs.update(config_drive=True)
if userdata is not None and type(userdata) is str:
kwargs.update(userdata=userdata)
if metadata is not None and type(metadata) is dict and metadata != {}:
kwargs.update(meta=metadata)
if files is not None and type(files) is list and files != []:
kwargs.update(files=files)
if nw_port_id_list:
nics = [{"port-id": entry.get("port"), "net-id": entry.get("uuid"),
"v4-fixed-ip": entry.get("fixed_ip")}
for entry in nw_port_id_list]
kwargs.update(nics=nics)
if secgroup_name:
kwargs.update(security_groups=[secgroup_name])
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
flavor = nova.flavors.find(name=flavor)
instance = nova.servers.create(name, nova.images.get(image_id),
flavor, **kwargs)
data = instance.to_dict()
return data['id']
except Exception as ex:
err = ("Failed to create instance under tenant"
" %s %s" % (tenant_id, ex))
LOG.error(err)
raise Exception(err) | def create_instance(self, token, tenant_id, image_id, flavor,
nw_port_id_list, name, secgroup_name=None,
metadata=None, files=None, config_drive=False,
userdata=None, key_name='', different_hosts=None,
volume_support=False, volume_size="2"):
""" Launch a VM with given details
:param token: A scoped token
:param tenant_id: Tenant UUID
:param image_id: Image UUID
:param flavor: Flavor name
:param nw_port_id_list: Network UUID and port UUID list
:param name: Service istance name
:param secgroup_name: Nova security group name
:param metadata: metadata key-value pairs
:param files: List of files to be copied.
:example files: [{"dst": <detination_path_string>,
"src": <file_contents>}]
:param userdata: user data file name
:param key_name: Nova keypair name
:param different_hosts: Different host filter (List)
:param volume_support: volume support to launch instance
:param volume_size: cinder volume size in GB
:return: VM instance UUID
"""
kwargs = dict()
if volume_support:
block_device_mapping_v2 = [
{
"boot_index": "1",
"uuid": image_id,
"source_type": "image",
"volume_size": volume_size,
"destination_type": "volume",
"delete_on_termination": True
}
]
kwargs.update(block_device_mapping_v2=block_device_mapping_v2)
if different_hosts:
kwargs.update(scheduler_hints={"different_host": different_hosts})
if key_name != '':
kwargs.update(key_name=key_name)
if config_drive is True:
kwargs.update(config_drive=True)
if userdata is not None and type(userdata) is str:
kwargs.update(userdata=userdata)
if metadata is not None and type(metadata) is dict and metadata != {}:
kwargs.update(meta=metadata)
if files is not None and type(files) is list and files != []:
kwargs.update(files=files)
if nw_port_id_list:
nics = [{"port-id": entry.get("port"), "net-id": entry.get("uuid"),
"v4-fixed-ip": entry.get("fixed_ip")}
for entry in nw_port_id_list]
kwargs.update(nics=nics)
if secgroup_name:
kwargs.update(security_groups=[secgroup_name])
try:
nova = nova_client.Client(self.nova_version, auth_token=token,
tenant_id=tenant_id,
auth_url=self.identity_service)
flavor = nova.flavors.find(name=flavor)
instance = nova.servers.create(name, nova.images.get(image_id),
flavor, **kwargs)
data = instance.to_dict()
return data['id']
except Exception as ex:
err = ("Failed to create instance under tenant"
" %s %s" % (tenant_id, ex))
LOG.error(err)
raise Exception(err) |
Python | def update_policy_target_group(self, token, ptg_id,
policy_target_group_info):
""" Updates a GBP Policy Target Group
:param token: A scoped token
:param ptg_id: PTG UUID
:param policy_target_group_info: PTG info dict
:return: PTG dict
"""
try:
gbp = gbp_client.Client(token=token,
endpoint_url=self.network_service)
return gbp.update_policy_target_group(
ptg_id,
body=policy_target_group_info)['policy_target_group']
except Exception as ex:
err = ("Failed to update policy target group. Error :: %s" % (ex))
LOG.error(err)
raise Exception(err) | def update_policy_target_group(self, token, ptg_id,
policy_target_group_info):
""" Updates a GBP Policy Target Group
:param token: A scoped token
:param ptg_id: PTG UUID
:param policy_target_group_info: PTG info dict
:return: PTG dict
"""
try:
gbp = gbp_client.Client(token=token,
endpoint_url=self.network_service)
return gbp.update_policy_target_group(
ptg_id,
body=policy_target_group_info)['policy_target_group']
except Exception as ex:
err = ("Failed to update policy target group. Error :: %s" % (ex))
LOG.error(err)
raise Exception(err) |
Python | def create_policy_target_group(self, token, tenant_id, name,
l2_policy_id=None):
""" Creates a GBP Policy Target Group
:param token: A scoped token
:param tenant_id: Tenant UUID
:param name: PTG name
:return: PTG dict
"""
policy_target_group_info = {
"policy_target_group": {
"tenant_id": tenant_id,
"name": name,
}
}
if l2_policy_id:
policy_target_group_info["policy_target_group"].update(
{"l2_policy_id": l2_policy_id})
try:
gbp = gbp_client.Client(token=token,
endpoint_url=self.network_service)
return gbp.create_policy_target_group(
body=policy_target_group_info)['policy_target_group']
except Exception as ex:
err = ("Failed to create policy target group. %s"
" Error :: %s" % (policy_target_group_info, ex))
LOG.error(err)
raise Exception(err) | def create_policy_target_group(self, token, tenant_id, name,
l2_policy_id=None):
""" Creates a GBP Policy Target Group
:param token: A scoped token
:param tenant_id: Tenant UUID
:param name: PTG name
:return: PTG dict
"""
policy_target_group_info = {
"policy_target_group": {
"tenant_id": tenant_id,
"name": name,
}
}
if l2_policy_id:
policy_target_group_info["policy_target_group"].update(
{"l2_policy_id": l2_policy_id})
try:
gbp = gbp_client.Client(token=token,
endpoint_url=self.network_service)
return gbp.create_policy_target_group(
body=policy_target_group_info)['policy_target_group']
except Exception as ex:
err = ("Failed to create policy target group. %s"
" Error :: %s" % (policy_target_group_info, ex))
LOG.error(err)
raise Exception(err) |
Python | def create_network_function_device(self, event):
""" Returns device instance for a new service
This method either returns existing device which could be reused for a
new service or it creates new device instance
"""
device = None
nfp_context = event.data
nfd_request = self._prepare_failure_case_device_data(nfp_context)
service_details = nfp_context['service_details']
LOG.info(_LI("Device Orchestrator received create network service "
"device request with data %(data)s"),
{'data': nfd_request})
orchestration_driver = self._get_orchestration_driver(
service_details['service_vendor'])
device_data = self._prepare_device_data_from_nfp_context(nfp_context)
LOG.info(_LI("Creating new device,"
"device request: %(device)s"), {'device': nfd_request})
driver_device_info = (
orchestration_driver.create_network_function_device(
device_data))
if not driver_device_info:
LOG.info(_LI("Device creation failed"))
self._create_event(event_id='DEVICE_ERROR',
event_data=nfd_request,
is_internal_event=True)
return None
management = nfp_context['management']
management['port'] = driver_device_info[
'mgmt_neutron_port_info']['neutron_port']
management['port']['ip_address'] = management[
'port']['fixed_ips'][0]['ip_address']
management['subnet'] = driver_device_info[
'mgmt_neutron_port_info']['neutron_subnet']
# Update newly created device with required params
device = self._update_device_data(driver_device_info, device_data)
device['network_function_device_id'] = device['id']
# Create DB entry with status as DEVICE_SPAWNING
network_function_device = (
self._create_network_function_device_db(device,
'DEVICE_SPAWNING'))
# REVISIT(mak) Wrong but nfp_db method needs in this format
network_function_device['mgmt_port_id'] = device['mgmt_port_id']
nfp_context['network_function_device'] = network_function_device
# Create an event to NSO, to give device_id
device_created_data = {
'network_function_instance_id': (
nfp_context['network_function_instance']['id']),
'network_function_device_id': device['id']
}
self._create_event(event_id='DEVICE_SPAWNING',
event_data=nfp_context,
is_poll_event=True,
original_event=event)
self._create_event(event_id='DEVICE_CREATED',
event_data=device_created_data) | def create_network_function_device(self, event):
""" Returns device instance for a new service
This method either returns existing device which could be reused for a
new service or it creates new device instance
"""
device = None
nfp_context = event.data
nfd_request = self._prepare_failure_case_device_data(nfp_context)
service_details = nfp_context['service_details']
LOG.info(_LI("Device Orchestrator received create network service "
"device request with data %(data)s"),
{'data': nfd_request})
orchestration_driver = self._get_orchestration_driver(
service_details['service_vendor'])
device_data = self._prepare_device_data_from_nfp_context(nfp_context)
LOG.info(_LI("Creating new device,"
"device request: %(device)s"), {'device': nfd_request})
driver_device_info = (
orchestration_driver.create_network_function_device(
device_data))
if not driver_device_info:
LOG.info(_LI("Device creation failed"))
self._create_event(event_id='DEVICE_ERROR',
event_data=nfd_request,
is_internal_event=True)
return None
management = nfp_context['management']
management['port'] = driver_device_info[
'mgmt_neutron_port_info']['neutron_port']
management['port']['ip_address'] = management[
'port']['fixed_ips'][0]['ip_address']
management['subnet'] = driver_device_info[
'mgmt_neutron_port_info']['neutron_subnet']
# Update newly created device with required params
device = self._update_device_data(driver_device_info, device_data)
device['network_function_device_id'] = device['id']
# Create DB entry with status as DEVICE_SPAWNING
network_function_device = (
self._create_network_function_device_db(device,
'DEVICE_SPAWNING'))
# REVISIT(mak) Wrong but nfp_db method needs in this format
network_function_device['mgmt_port_id'] = device['mgmt_port_id']
nfp_context['network_function_device'] = network_function_device
# Create an event to NSO, to give device_id
device_created_data = {
'network_function_instance_id': (
nfp_context['network_function_instance']['id']),
'network_function_device_id': device['id']
}
self._create_event(event_id='DEVICE_SPAWNING',
event_data=nfp_context,
is_poll_event=True,
original_event=event)
self._create_event(event_id='DEVICE_CREATED',
event_data=device_created_data) |
Python | def relevant_specs(self):
"""Get specs on the SCI containing this particular Node."""
if not self._relevant_specs:
self._relevant_specs = [x for x in self._service_chain_specs if
self.current_node['id'] in x['nodes']]
return self._relevant_specs | def relevant_specs(self):
"""Get specs on the SCI containing this particular Node."""
if not self._relevant_specs:
self._relevant_specs = [x for x in self._service_chain_specs if
self.current_node['id'] in x['nodes']]
return self._relevant_specs |
Python | def check_in_use(f):
"""Check if instance of task executor is already
fired and executing jobs.
"""
def wrapped(self, *args, **kwargs):
if self.fired:
raise InUse("Executor in use")
return f(self, *args, **kwargs)
return wrapped | def check_in_use(f):
"""Check if instance of task executor is already
fired and executing jobs.
"""
def wrapped(self, *args, **kwargs):
if self.fired:
raise InUse("Executor in use")
return f(self, *args, **kwargs)
return wrapped |
Python | def register(self, event_id, event_handler):
"""Registers a handler for event_id.
Also fetches the decorated poll handlers if any
for the event and caches it.
"""
if not isinstance(event_handler, nfp_api.NfpEventHandler):
message = "%s - Handler is not instance of NfpEventHandler" % (
self._log_meta(event_id, event_handler))
LOG.error(message)
return
try:
poll_desc_table = event_handler.get_poll_desc_table()
poll_handler = poll_desc_table[event_id]
spacing = poll_handler._spacing
except KeyError:
# Default the poll handler and spacing values
poll_handler = event_handler.handle_poll_event
spacing = 0
try:
self._event_desc_table[event_id].append(
(event_handler, poll_handler, spacing))
except KeyError:
self._event_desc_table[event_id] = [
(event_handler, poll_handler, spacing)]
message = "%s - Registered handler" % (
self._log_meta(event_id, event_handler))
LOG.debug(message) | def register(self, event_id, event_handler):
"""Registers a handler for event_id.
Also fetches the decorated poll handlers if any
for the event and caches it.
"""
if not isinstance(event_handler, nfp_api.NfpEventHandler):
message = "%s - Handler is not instance of NfpEventHandler" % (
self._log_meta(event_id, event_handler))
LOG.error(message)
return
try:
poll_desc_table = event_handler.get_poll_desc_table()
poll_handler = poll_desc_table[event_id]
spacing = poll_handler._spacing
except KeyError:
# Default the poll handler and spacing values
poll_handler = event_handler.handle_poll_event
spacing = 0
try:
self._event_desc_table[event_id].append(
(event_handler, poll_handler, spacing))
except KeyError:
self._event_desc_table[event_id] = [
(event_handler, poll_handler, spacing)]
message = "%s - Registered handler" % (
self._log_meta(event_id, event_handler))
LOG.debug(message) |
Python | def _wait_for_events(self, pipe, timeout=0.01):
"""Wait & pull event from the pipe.
Wait till timeout for the first event and then
pull as many as available.
Returns: Events[] pulled from pipe.
"""
events = []
try:
while pipe.poll(timeout):
timeout = 0
event = self._controller.pipe_recv(pipe)
events.append(event)
except multiprocessing.TimeoutError as err:
message = "%s" % (err)
LOG.exception(message)
return events | def _wait_for_events(self, pipe, timeout=0.01):
"""Wait & pull event from the pipe.
Wait till timeout for the first event and then
pull as many as available.
Returns: Events[] pulled from pipe.
"""
events = []
try:
while pipe.poll(timeout):
timeout = 0
event = self._controller.pipe_recv(pipe)
events.append(event)
except multiprocessing.TimeoutError as err:
message = "%s" % (err)
LOG.exception(message)
return events |
Python | def init_from_event_manager(self, em):
"""Initialize from existing event manager.
Invoked when an event manager has to take over
existing event manager.
Whole cache is replaced and events are replayed.
This is used in case where a worker dies, dead
workers event manager is assigned to new worker.
"""
# Replay all the events from cache.
self._cache = em._cache | def init_from_event_manager(self, em):
"""Initialize from existing event manager.
Invoked when an event manager has to take over
existing event manager.
Whole cache is replaced and events are replayed.
This is used in case where a worker dies, dead
workers event manager is assigned to new worker.
"""
# Replay all the events from cache.
self._cache = em._cache |
Python | def pop_event(self, event):
"""Pop the passed event from cache.
Is called when an event is complete/cancelled.
If the event was sequenced, then sequencer is
released to schedule next event.
Removes event from cache.
"""
message = "%s - pop event" % (self._log_meta(event))
LOG.debug(message)
try:
self._cache.remove(event.desc.uuid)
self._load -= 1
except ValueError as verr:
verr = verr
message = "%s - event not in cache" % (
self._log_meta(event))
LOG.warn(message) | def pop_event(self, event):
"""Pop the passed event from cache.
Is called when an event is complete/cancelled.
If the event was sequenced, then sequencer is
released to schedule next event.
Removes event from cache.
"""
message = "%s - pop event" % (self._log_meta(event))
LOG.debug(message)
try:
self._cache.remove(event.desc.uuid)
self._load -= 1
except ValueError as verr:
verr = verr
message = "%s - event not in cache" % (
self._log_meta(event))
LOG.warn(message) |
Python | def dispatch_event(self, event, event_type=None,
inc_load=True, cache=True):
"""Dispatch event to the worker.
Sends the event to worker through pipe.
Increments load if event_type is SCHEDULED event,
poll_event does not contribute to load.
"""
message = "%s - Dispatching to worker %d" % (
self._log_meta(event), self._pid)
LOG.debug(message)
# Update the worker information in the event.
event.desc.worker = self._pid
# Update the event with passed type
if event_type:
event.desc.type = event_type
# Send to the worker
self._controller.pipe_send(self._pipe, event)
self._load = (self._load + 1) if inc_load else self._load
# Add to the cache
if cache:
self._cache.append(event.desc.uuid) | def dispatch_event(self, event, event_type=None,
inc_load=True, cache=True):
"""Dispatch event to the worker.
Sends the event to worker through pipe.
Increments load if event_type is SCHEDULED event,
poll_event does not contribute to load.
"""
message = "%s - Dispatching to worker %d" % (
self._log_meta(event), self._pid)
LOG.debug(message)
# Update the worker information in the event.
event.desc.worker = self._pid
# Update the event with passed type
if event_type:
event.desc.type = event_type
# Send to the worker
self._controller.pipe_send(self._pipe, event)
self._load = (self._load + 1) if inc_load else self._load
# Add to the cache
if cache:
self._cache.append(event.desc.uuid) |
Python | def register_events(self, event_descs):
"""Register event handlers with core. """
# REVISIT (mak): change name to register_event_handlers() ?
for event_desc in event_descs:
self._event_handlers.register(event_desc.id, event_desc.handler) | def register_events(self, event_descs):
"""Register event handlers with core. """
# REVISIT (mak): change name to register_event_handlers() ?
for event_desc in event_descs:
self._event_handlers.register(event_desc.id, event_desc.handler) |
Python | def create_event(self, **kwargs):
"""To create a new event. """
event = None
try:
event = nfp_event.Event(**kwargs)
# Get the logging context stored in thread
logging_context = nfp_logging.get_logging_context()
# Log metadata for event handling code
event.context = logging_context
except AssertionError as aerr:
message = "%s" % (aerr)
LOG.exception(message)
return event | def create_event(self, **kwargs):
"""To create a new event. """
event = None
try:
event = nfp_event.Event(**kwargs)
# Get the logging context stored in thread
logging_context = nfp_logging.get_logging_context()
# Log metadata for event handling code
event.context = logging_context
except AssertionError as aerr:
message = "%s" % (aerr)
LOG.exception(message)
return event |
Python | def post_event_graph(self, event):
"""Post a event graph.
As base class, set only the required
attributes of event.
"""
event.desc.type = nfp_event.EVENT_GRAPH
event.desc.flag = ''
event.desc.pid = os.getpid()
return event | def post_event_graph(self, event):
"""Post a event graph.
As base class, set only the required
attributes of event.
"""
event.desc.type = nfp_event.EVENT_GRAPH
event.desc.flag = ''
event.desc.pid = os.getpid()
return event |
Python | def post_event(self, event):
"""Post an event.
As a base class, it only does the descriptor preparation.
NfpController class implements the required functionality.
"""
handler = self._event_handlers.get_event_handler(event.id)
assert handler, "No handler registered for event %s" % (event.id)
event.desc.type = nfp_event.SCHEDULE_EVENT
event.desc.flag = nfp_event.EVENT_NEW
event.desc.pid = os.getpid()
return event | def post_event(self, event):
"""Post an event.
As a base class, it only does the descriptor preparation.
NfpController class implements the required functionality.
"""
handler = self._event_handlers.get_event_handler(event.id)
assert handler, "No handler registered for event %s" % (event.id)
event.desc.type = nfp_event.SCHEDULE_EVENT
event.desc.flag = nfp_event.EVENT_NEW
event.desc.pid = os.getpid()
return event |
Python | def poll_event(self, event, spacing=2, max_times=sys.maxint):
"""To poll for an event.
As a base class, it only does the polling
descriptor preparation.
NfpController class implements the required functionality.
"""
ev_spacing = self._event_handlers.get_poll_spacing(event.id)
assert spacing or ev_spacing, "No spacing specified for polling"
if ev_spacing:
spacing = ev_spacing
handler = self._event_handlers.get_poll_handler(event.id)
assert handler, "No poll handler found for event %s" % (event.id)
refuuid = event.desc.uuid
event = self._make_new_event(event)
event.lifetime = 0
event.desc.type = nfp_event.POLL_EVENT
kwargs = {'spacing': spacing,
'max_times': max_times,
'ref': refuuid}
poll_desc = nfp_event.PollDesc(**kwargs)
setattr(event.desc, 'poll_desc', poll_desc)
return event | def poll_event(self, event, spacing=2, max_times=sys.maxint):
"""To poll for an event.
As a base class, it only does the polling
descriptor preparation.
NfpController class implements the required functionality.
"""
ev_spacing = self._event_handlers.get_poll_spacing(event.id)
assert spacing or ev_spacing, "No spacing specified for polling"
if ev_spacing:
spacing = ev_spacing
handler = self._event_handlers.get_poll_handler(event.id)
assert handler, "No poll handler found for event %s" % (event.id)
refuuid = event.desc.uuid
event = self._make_new_event(event)
event.lifetime = 0
event.desc.type = nfp_event.POLL_EVENT
kwargs = {'spacing': spacing,
'max_times': max_times,
'ref': refuuid}
poll_desc = nfp_event.PollDesc(**kwargs)
setattr(event.desc, 'poll_desc', poll_desc)
return event |
Python | def event_complete(self, event, result=None):
"""To declare and event complete. """
try:
pickle.dumps(result)
event.sequence = False
event.desc.flag = nfp_event.EVENT_COMPLETE
event.result = result
return event
except Exception as e:
raise e | def event_complete(self, event, result=None):
"""To declare and event complete. """
try:
pickle.dumps(result)
event.sequence = False
event.desc.flag = nfp_event.EVENT_COMPLETE
event.result = result
return event
except Exception as e:
raise e |
Python | def fork_child(self, wrap):
"""Forks a child.
Creates a full duplex pipe for child & parent
to communicate.
Returns: Multiprocess object.
"""
parent_pipe, child_pipe = PIPE(duplex=True)
# Registered event handlers of nfp module.
# Workers need copy of this data to dispatch an
# event to module.
proc = self._fork(args=(wrap.service, parent_pipe, child_pipe, self))
message = ("Forked a new child: %d"
"Parent Pipe: % s, Child Pipe: % s") % (
proc.pid, str(parent_pipe), str(child_pipe))
LOG.info(message)
try:
wrap.child_pipe_map[proc.pid] = parent_pipe
except AttributeError:
setattr(wrap, 'child_pipe_map', {})
wrap.child_pipe_map[proc.pid] = parent_pipe
self._worker_process[proc.pid] = proc
return proc.pid | def fork_child(self, wrap):
"""Forks a child.
Creates a full duplex pipe for child & parent
to communicate.
Returns: Multiprocess object.
"""
parent_pipe, child_pipe = PIPE(duplex=True)
# Registered event handlers of nfp module.
# Workers need copy of this data to dispatch an
# event to module.
proc = self._fork(args=(wrap.service, parent_pipe, child_pipe, self))
message = ("Forked a new child: %d"
"Parent Pipe: % s, Child Pipe: % s") % (
proc.pid, str(parent_pipe), str(child_pipe))
LOG.info(message)
try:
wrap.child_pipe_map[proc.pid] = parent_pipe
except AttributeError:
setattr(wrap, 'child_pipe_map', {})
wrap.child_pipe_map[proc.pid] = parent_pipe
self._worker_process[proc.pid] = proc
return proc.pid |
Python | def post_launch(self):
"""Post processing after workers launch.
Tasks which needs to run only on distributor
process and any other resources which are not
expected to be forked are initialized here.
"""
self._update_manager()
# Launch rpc_agents
for index, rpc_agent in enumerate(self._rpc_agents):
# Use threads for launching service
launcher = oslo_service.launch(
self._conf, rpc_agent[0], workers=None)
self._rpc_agents[index] = rpc_agent + (launcher,)
# One task to manage the resources - workers & events.
eventlet.spawn_n(self._manager_task)
# Oslo periodic task to poll for timer events
nfp_poll.PollingTask(self._conf, self)
# Oslo periodic task for state reporting
nfp_rpc.ReportStateTask(self._conf, self) | def post_launch(self):
"""Post processing after workers launch.
Tasks which needs to run only on distributor
process and any other resources which are not
expected to be forked are initialized here.
"""
self._update_manager()
# Launch rpc_agents
for index, rpc_agent in enumerate(self._rpc_agents):
# Use threads for launching service
launcher = oslo_service.launch(
self._conf, rpc_agent[0], workers=None)
self._rpc_agents[index] = rpc_agent + (launcher,)
# One task to manage the resources - workers & events.
eventlet.spawn_n(self._manager_task)
# Oslo periodic task to poll for timer events
nfp_poll.PollingTask(self._conf, self)
# Oslo periodic task for state reporting
nfp_rpc.ReportStateTask(self._conf, self) |
Python | def report_state(self):
"""Invoked by report_task to report states of all agents. """
for agent in self._rpc_agents:
rpc_agent = operator.itemgetter(0)(agent)
rpc_agent.report_state() | def report_state(self):
"""Invoked by report_task to report states of all agents. """
for agent in self._rpc_agents:
rpc_agent = operator.itemgetter(0)(agent)
rpc_agent.report_state() |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.