language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def add_features(df):
""" Create normalized values for even display """
assert set(["query", "value", "keyword", "ranking", "query_timestamp", "geo"]).issubset(df.columns), "Add features failed. \
Missing one of [query, value, keyword, ranking, query_timestamp, geo]"
# feature engineering: totals and normalize
grouped = df.groupby(['ranking']).value # group values by ranking
df['value_total'] = grouped.transform('sum') # total sum
df['value_normalized'] = ((df.value - grouped.transform('min')) / (
grouped.transform('max') - grouped.transform('min'))).astype(float)
df['value_normalized_total'] = df.groupby(
['ranking']).value_normalized.transform('sum') # total sum of normalized values
df['date'] = pd.to_datetime(df.query_timestamp).dt.strftime("%d. %B %Y")
return df | def add_features(df):
""" Create normalized values for even display """
assert set(["query", "value", "keyword", "ranking", "query_timestamp", "geo"]).issubset(df.columns), "Add features failed. \
Missing one of [query, value, keyword, ranking, query_timestamp, geo]"
# feature engineering: totals and normalize
grouped = df.groupby(['ranking']).value # group values by ranking
df['value_total'] = grouped.transform('sum') # total sum
df['value_normalized'] = ((df.value - grouped.transform('min')) / (
grouped.transform('max') - grouped.transform('min'))).astype(float)
df['value_normalized_total'] = df.groupby(
['ranking']).value_normalized.transform('sum') # total sum of normalized values
df['date'] = pd.to_datetime(df.query_timestamp).dt.strftime("%d. %B %Y")
return df |
Python | def select_topn(df, top_n):
""" Select top-n keywords for each ranking ordered by value """
assert df.columns.str.contains("ranking").any(
), "select_topn failed. Missing 'ranking' column."
df = df.reset_index(drop=True)
df.value = pd.to_numeric(df.value, errors='coerce') # avoid object dtype
topn_idx = df.groupby("ranking")['value'].nlargest(
top_n).droplevel(0).index
return df.loc[topn_idx, :] | def select_topn(df, top_n):
""" Select top-n keywords for each ranking ordered by value """
assert df.columns.str.contains("ranking").any(
), "select_topn failed. Missing 'ranking' column."
df = df.reset_index(drop=True)
df.value = pd.to_numeric(df.value, errors='coerce') # avoid object dtype
topn_idx = df.groupby("ranking")['value'].nlargest(
top_n).droplevel(0).index
return df.loc[topn_idx, :] |
Python | def add_features(df):
""" Create normalized values for even display """
assert df.columns.str.contains("query|value|keyword|ranking|timestamp|geo").all(), "Add features failed. \
Missing one of [query, value, keyword, ranking, timestamp, geo]"
# feature engineering: totals and normalize
grouped = df.groupby(['ranking']).value # group values by ranking
df['value_total'] = grouped.transform('sum') # total sum
df['value_normalized'] = (df.value-grouped.transform('min'))/(grouped.transform('max')-grouped.transform('min')) # normalize
df['value_normalized_total'] = df.groupby(['ranking']).value_normalized.transform('sum') # total sum of normalized values
df['date'] = pd.to_datetime(df.query_timestamp).dtd
return df | def add_features(df):
""" Create normalized values for even display """
assert df.columns.str.contains("query|value|keyword|ranking|timestamp|geo").all(), "Add features failed. \
Missing one of [query, value, keyword, ranking, timestamp, geo]"
# feature engineering: totals and normalize
grouped = df.groupby(['ranking']).value # group values by ranking
df['value_total'] = grouped.transform('sum') # total sum
df['value_normalized'] = (df.value-grouped.transform('min'))/(grouped.transform('max')-grouped.transform('min')) # normalize
df['value_normalized_total'] = df.groupby(['ranking']).value_normalized.transform('sum') # total sum of normalized values
df['date'] = pd.to_datetime(df.query_timestamp).dtd
return df |
Python | def select_topn(df, top_n=25):
""" Select top-n keywords for each ranking and value_normalized """
assert df.columns.str.contains("ranking").any(), "select_topn failed. Missing 'ranking' column."
# top-n by ranking
topn_idx = df.groupby("ranking").value_normalized.nlargest(top_n).droplevel(0).index
return df.loc[topn_idx, : ] | def select_topn(df, top_n=25):
""" Select top-n keywords for each ranking and value_normalized """
assert df.columns.str.contains("ranking").any(), "select_topn failed. Missing 'ranking' column."
# top-n by ranking
topn_idx = df.groupby("ranking").value_normalized.nlargest(top_n).droplevel(0).index
return df.loc[topn_idx, : ] |
Python | def load_config(filepath):
"""Return dictionary with settings and final CSV path"""
with open(filepath) as file:
config = yaml.full_load(file)
root_dir = config['dir']['root'] # project root
final_dir = config['dir']['final_data'] # final data dir from root
filename = config['project']['analysis_file'] # filename to store
path_analysis_file = os.path.join(root_dir, final_dir, filename+'.csv')
return config, path_analysis_file | def load_config(filepath):
"""Return dictionary with settings and final CSV path"""
with open(filepath) as file:
config = yaml.full_load(file)
root_dir = config['dir']['root'] # project root
final_dir = config['dir']['final_data'] # final data dir from root
filename = config['project']['analysis_file'] # filename to store
path_analysis_file = os.path.join(root_dir, final_dir, filename+'.csv')
return config, path_analysis_file |
Python | def load_data(filepath):
"""Read csv-only file from data_dir/filename"""
logging.info(f"Load data from {filepath}")
df = pd.read_csv(filepath)
df = set_dtypes(df)
df = df.sort_values(by='query_date')
return df | def load_data(filepath):
"""Read csv-only file from data_dir/filename"""
logging.info(f"Load data from {filepath}")
df = pd.read_csv(filepath)
df = set_dtypes(df)
df = df.sort_values(by='query_date')
return df |
Python | def trends_statistics(df):
"""Generate relevant statistics for a ranking category of Google trends (rising or top)"""
# time series indicator: t
df['t'] = df.groupby('query_date').ngroup()
# most recent period
t_max = df.t.max()
logging.debug(f"df dtypes after adding time series: {df.dtypes}")
# ranking
# absolute
df['rank_t'] = df.groupby('t').value.rank(method='first', ascending=False)
# rank in previous period (t-1)
df['rank_t-1'] = df.groupby('query').rank_t.shift()
# rank change from previous, t-1, to current period, t
df['rank_absolute_change'] = df.rank_t - df['rank_t-1']
# winners and loosers (ranking of absoulte changes)
df['rank_absoulte_change_ranking'] = df.groupby(
't').rank_absolute_change.rank(method='first', ascending=False)
# percentile
df['rank_pct_t'] = df.groupby('t').value.rank(
method='first', ascending=False, pct=True)
df['rank_pct_t-1'] = df.groupby('query').rank_pct_t.shift()
df['rank_pct_change'] = df.rank_pct_t - df['rank_pct_t-1']
# new entries at time t
df['new_entry_t'] = (pd.isna(df['rank_t-1']) & pd.notnull(df.rank_t)) * 1
# dropouts at time t+1
# keywords for each period to compare sets
queries_dict = df.groupby('t')['query'].apply(list).to_dict()
# compare query responses sets across last two periods
dropouts = list(
set(queries_dict[(t_max - 1)]).difference(set(queries_dict[t_max])))
df['dropout_t+1'] = ((df.t == t_max - 1) & df['query'].isin(dropouts)) * 1
# fill missings
df = df.fillna(0)
return df | def trends_statistics(df):
"""Generate relevant statistics for a ranking category of Google trends (rising or top)"""
# time series indicator: t
df['t'] = df.groupby('query_date').ngroup()
# most recent period
t_max = df.t.max()
logging.debug(f"df dtypes after adding time series: {df.dtypes}")
# ranking
# absolute
df['rank_t'] = df.groupby('t').value.rank(method='first', ascending=False)
# rank in previous period (t-1)
df['rank_t-1'] = df.groupby('query').rank_t.shift()
# rank change from previous, t-1, to current period, t
df['rank_absolute_change'] = df.rank_t - df['rank_t-1']
# winners and loosers (ranking of absoulte changes)
df['rank_absoulte_change_ranking'] = df.groupby(
't').rank_absolute_change.rank(method='first', ascending=False)
# percentile
df['rank_pct_t'] = df.groupby('t').value.rank(
method='first', ascending=False, pct=True)
df['rank_pct_t-1'] = df.groupby('query').rank_pct_t.shift()
df['rank_pct_change'] = df.rank_pct_t - df['rank_pct_t-1']
# new entries at time t
df['new_entry_t'] = (pd.isna(df['rank_t-1']) & pd.notnull(df.rank_t)) * 1
# dropouts at time t+1
# keywords for each period to compare sets
queries_dict = df.groupby('t')['query'].apply(list).to_dict()
# compare query responses sets across last two periods
dropouts = list(
set(queries_dict[(t_max - 1)]).difference(set(queries_dict[t_max])))
df['dropout_t+1'] = ((df.t == t_max - 1) & df['query'].isin(dropouts)) * 1
# fill missings
df = df.fillna(0)
return df |
Python | def dashboard_data(df):
"""Create statistics for a rank category (rising as default) """
df_list = []
for rank_category in df.ranking.unique().tolist():
logging.info(f"dashboard_data(): rank category: {rank_category}")
df = df.loc[df.ranking == rank_category].reset_index(drop=True)
df_trends = (df.pipe(create_query_date)
.pipe(drop_duplicates)
.pipe(trends_statistics))
df_list.append(df_trends)
return pd.concat(df_list) | def dashboard_data(df):
"""Create statistics for a rank category (rising as default) """
df_list = []
for rank_category in df.ranking.unique().tolist():
logging.info(f"dashboard_data(): rank category: {rank_category}")
df = df.loc[df.ranking == rank_category].reset_index(drop=True)
df_trends = (df.pipe(create_query_date)
.pipe(drop_duplicates)
.pipe(trends_statistics))
df_list.append(df_trends)
return pd.concat(df_list) |
Python | def gallery_conf(tmpdir):
"""Sets up a test sphinx-gallery configuration"""
gallery_conf = _complete_gallery_conf({}, str(tmpdir), True, False)
gallery_conf.update(examples_dir=_TempDir(), gallery_dir=str(tmpdir))
return gallery_conf | def gallery_conf(tmpdir):
"""Sets up a test sphinx-gallery configuration"""
gallery_conf = _complete_gallery_conf({}, str(tmpdir), True, False)
gallery_conf.update(examples_dir=_TempDir(), gallery_dir=str(tmpdir))
return gallery_conf |
Python | def scale_image(in_fname, out_fname, max_width, max_height):
"""Scales an image with the same aspect ratio centered in an
image box with the given max_width and max_height
if in_fname == out_fname the image can only be scaled down
"""
# local import to avoid testing dependency on PIL:
try:
from PIL import Image
except ImportError:
import Image
img = Image.open(in_fname)
width_in, height_in = img.size
scale_w = max_width / float(width_in)
scale_h = max_height / float(height_in)
if height_in * scale_w <= max_height:
scale = scale_w
else:
scale = scale_h
if scale >= 1.0 and in_fname == out_fname:
return
width_sc = int(round(scale * width_in))
height_sc = int(round(scale * height_in))
# resize the image using resize; if using .thumbnail and the image is
# already smaller than max_width, max_height, then this won't scale up
# at all (maybe could be an option someday...)
img = img.resize((width_sc, height_sc), Image.BICUBIC)
# img.thumbnail((width_sc, height_sc), Image.BICUBIC)
# width_sc, height_sc = img.size # necessary if using thumbnail
# insert centered
thumb = Image.new('RGBA', (max_width, max_height), (255, 255, 255, 255))
pos_insert = ((max_width - width_sc) // 2, (max_height - height_sc) // 2)
thumb.paste(img, pos_insert)
thumb.save(out_fname) | def scale_image(in_fname, out_fname, max_width, max_height):
"""Scales an image with the same aspect ratio centered in an
image box with the given max_width and max_height
if in_fname == out_fname the image can only be scaled down
"""
# local import to avoid testing dependency on PIL:
try:
from PIL import Image
except ImportError:
import Image
img = Image.open(in_fname)
width_in, height_in = img.size
scale_w = max_width / float(width_in)
scale_h = max_height / float(height_in)
if height_in * scale_w <= max_height:
scale = scale_w
else:
scale = scale_h
if scale >= 1.0 and in_fname == out_fname:
return
width_sc = int(round(scale * width_in))
height_sc = int(round(scale * height_in))
# resize the image using resize; if using .thumbnail and the image is
# already smaller than max_width, max_height, then this won't scale up
# at all (maybe could be an option someday...)
img = img.resize((width_sc, height_sc), Image.BICUBIC)
# img.thumbnail((width_sc, height_sc), Image.BICUBIC)
# width_sc, height_sc = img.size # necessary if using thumbnail
# insert centered
thumb = Image.new('RGBA', (max_width, max_height), (255, 255, 255, 255))
pos_insert = ((max_width - width_sc) // 2, (max_height - height_sc) // 2)
thumb.paste(img, pos_insert)
thumb.save(out_fname) |
Python | def replace_py_ipynb(fname):
"""Replace .py extension in filename by .ipynb"""
fname_prefix, extension = os.path.splitext(fname)
allowed_extension = '.py'
if extension != allowed_extension:
raise ValueError(
"Unrecognized file extension, expected %s, got %s"
% (allowed_extension, extension))
new_extension = '.ipynb'
return '{}{}'.format(fname_prefix, new_extension) | def replace_py_ipynb(fname):
"""Replace .py extension in filename by .ipynb"""
fname_prefix, extension = os.path.splitext(fname)
allowed_extension = '.py'
if extension != allowed_extension:
raise ValueError(
"Unrecognized file extension, expected %s, got %s"
% (allowed_extension, extension))
new_extension = '.ipynb'
return '{}{}'.format(fname_prefix, new_extension) |
Python | def extract_intro_and_title(filename, docstring):
""" Extract the first paragraph of module-level docstring. max:95 char"""
# lstrip is just in case docstring has a '\n\n' at the beginning
paragraphs = docstring.lstrip().split('\n\n')
# remove comments and other syntax like `.. _link:`
paragraphs = [p for p in paragraphs
if not p.startswith('.. ') and len(p) > 0]
if len(paragraphs) == 0:
raise ValueError(
"Example docstring should have a header for the example title. "
"Please check the example file:\n {}\n".format(filename))
# Title is the first paragraph with any ReSTructuredText title chars
# removed, i.e. lines that consist of (all the same) 7-bit non-ASCII chars.
# This conditional is not perfect but should hopefully be good enough.
title_paragraph = paragraphs[0]
match = re.search(r'([\w ]+)', title_paragraph)
if match is None:
raise ValueError(
'Could not find a title in first paragraph:\n{}'.format(
title_paragraph))
title = match.group(1).strip()
# Use the title if no other paragraphs are provided
intro_paragraph = title if len(paragraphs) < 2 else paragraphs[1]
# Concatenate all lines of the first paragraph and truncate at 95 chars
intro = re.sub('\n', ' ', intro_paragraph)
if len(intro) > 95:
intro = intro[:95] + '...'
return intro, title | def extract_intro_and_title(filename, docstring):
""" Extract the first paragraph of module-level docstring. max:95 char"""
# lstrip is just in case docstring has a '\n\n' at the beginning
paragraphs = docstring.lstrip().split('\n\n')
# remove comments and other syntax like `.. _link:`
paragraphs = [p for p in paragraphs
if not p.startswith('.. ') and len(p) > 0]
if len(paragraphs) == 0:
raise ValueError(
"Example docstring should have a header for the example title. "
"Please check the example file:\n {}\n".format(filename))
# Title is the first paragraph with any ReSTructuredText title chars
# removed, i.e. lines that consist of (all the same) 7-bit non-ASCII chars.
# This conditional is not perfect but should hopefully be good enough.
title_paragraph = paragraphs[0]
match = re.search(r'([\w ]+)', title_paragraph)
if match is None:
raise ValueError(
'Could not find a title in first paragraph:\n{}'.format(
title_paragraph))
title = match.group(1).strip()
# Use the title if no other paragraphs are provided
intro_paragraph = title if len(paragraphs) < 2 else paragraphs[1]
# Concatenate all lines of the first paragraph and truncate at 95 chars
intro = re.sub('\n', ' ', intro_paragraph)
if len(intro) > 95:
intro = intro[:95] + '...'
return intro, title |
Python | def save_thumbnail(image_path_template, src_file, file_conf, gallery_conf):
"""Generate and Save the thumbnail image
Parameters
----------
image_path_template : str
holds the template where to save and how to name the image
src_file : str
path to source python file
gallery_conf : dict
Sphinx-Gallery configuration dictionary
"""
# read specification of the figure to display as thumbnail from main text
thumbnail_number = file_conf.get('thumbnail_number', 1)
if not isinstance(thumbnail_number, int):
raise TypeError(
'sphinx_gallery_thumbnail_number setting is not a number, '
'got %r' % (thumbnail_number,))
thumbnail_image_path = image_path_template.format(thumbnail_number)
thumb_dir = os.path.join(os.path.dirname(thumbnail_image_path), 'thumb')
if not os.path.exists(thumb_dir):
os.makedirs(thumb_dir)
base_image_name = os.path.splitext(os.path.basename(src_file))[0]
thumb_file = os.path.join(thumb_dir,
'sphx_glr_%s_thumb.png' % base_image_name)
if src_file in gallery_conf['failing_examples']:
img = os.path.join(glr_path_static(), 'broken_example.png')
elif os.path.exists(thumbnail_image_path):
img = thumbnail_image_path
elif not os.path.exists(thumb_file):
# create something to replace the thumbnail
img = os.path.join(glr_path_static(), 'no_image.png')
img = gallery_conf.get("default_thumb_file", img)
else:
return
scale_image(img, thumb_file, *gallery_conf["thumbnail_size"]) | def save_thumbnail(image_path_template, src_file, file_conf, gallery_conf):
"""Generate and Save the thumbnail image
Parameters
----------
image_path_template : str
holds the template where to save and how to name the image
src_file : str
path to source python file
gallery_conf : dict
Sphinx-Gallery configuration dictionary
"""
# read specification of the figure to display as thumbnail from main text
thumbnail_number = file_conf.get('thumbnail_number', 1)
if not isinstance(thumbnail_number, int):
raise TypeError(
'sphinx_gallery_thumbnail_number setting is not a number, '
'got %r' % (thumbnail_number,))
thumbnail_image_path = image_path_template.format(thumbnail_number)
thumb_dir = os.path.join(os.path.dirname(thumbnail_image_path), 'thumb')
if not os.path.exists(thumb_dir):
os.makedirs(thumb_dir)
base_image_name = os.path.splitext(os.path.basename(src_file))[0]
thumb_file = os.path.join(thumb_dir,
'sphx_glr_%s_thumb.png' % base_image_name)
if src_file in gallery_conf['failing_examples']:
img = os.path.join(glr_path_static(), 'broken_example.png')
elif os.path.exists(thumbnail_image_path):
img = thumbnail_image_path
elif not os.path.exists(thumb_file):
# create something to replace the thumbnail
img = os.path.join(glr_path_static(), 'no_image.png')
img = gallery_conf.get("default_thumb_file", img)
else:
return
scale_image(img, thumb_file, *gallery_conf["thumbnail_size"]) |
Python | def generate_dir_rst(src_dir, target_dir, gallery_conf, seen_backrefs):
"""Generate the gallery reStructuredText for an example directory"""
head_ref = os.path.relpath(target_dir, gallery_conf['src_dir'])
fhindex = """\n\n.. _sphx_glr_{0}:\n\n""".format(
head_ref.replace(os.path.sep, '_'))
with codecs.open(os.path.join(src_dir, 'README.txt'), 'r',
encoding='utf-8') as fid:
fhindex += fid.read()
# Add empty lines to avoid bug in issue #165
fhindex += "\n\n"
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# get filenames
listdir = [fname for fname in os.listdir(src_dir)
if fname.endswith('.py')]
# limit which to look at based on regex (similar to filename_pattern)
listdir = [fname for fname in listdir
if re.search(gallery_conf['ignore_pattern'],
os.path.normpath(os.path.join(src_dir, fname)))
is None]
# sort them
sorted_listdir = sorted(
listdir, key=gallery_conf['within_subsection_order'](src_dir))
entries_text = []
computation_times = []
build_target_dir = os.path.relpath(target_dir, gallery_conf['src_dir'])
iterator = sphinx_compatibility.status_iterator(
sorted_listdir,
'generating gallery for %s... ' % build_target_dir,
length=len(sorted_listdir))
clean_modules(gallery_conf, src_dir) # fix gh-316
for fname in iterator:
intro, time_elapsed = generate_file_rst(
fname, target_dir, src_dir, gallery_conf)
clean_modules(gallery_conf, fname)
computation_times.append((time_elapsed, fname))
this_entry = _thumbnail_div(build_target_dir, fname, intro) + """
.. toctree::
:hidden:
/%s\n""" % os.path.join(build_target_dir, fname[:-3]).replace(os.sep, '/')
entries_text.append(this_entry)
if gallery_conf['backreferences_dir']:
write_backreferences(seen_backrefs, gallery_conf,
target_dir, fname, intro)
for entry_text in entries_text:
fhindex += entry_text
# clear at the end of the section
fhindex += """.. raw:: html\n
<div style='clear:both'></div>\n\n"""
return fhindex, computation_times | def generate_dir_rst(src_dir, target_dir, gallery_conf, seen_backrefs):
"""Generate the gallery reStructuredText for an example directory"""
head_ref = os.path.relpath(target_dir, gallery_conf['src_dir'])
fhindex = """\n\n.. _sphx_glr_{0}:\n\n""".format(
head_ref.replace(os.path.sep, '_'))
with codecs.open(os.path.join(src_dir, 'README.txt'), 'r',
encoding='utf-8') as fid:
fhindex += fid.read()
# Add empty lines to avoid bug in issue #165
fhindex += "\n\n"
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# get filenames
listdir = [fname for fname in os.listdir(src_dir)
if fname.endswith('.py')]
# limit which to look at based on regex (similar to filename_pattern)
listdir = [fname for fname in listdir
if re.search(gallery_conf['ignore_pattern'],
os.path.normpath(os.path.join(src_dir, fname)))
is None]
# sort them
sorted_listdir = sorted(
listdir, key=gallery_conf['within_subsection_order'](src_dir))
entries_text = []
computation_times = []
build_target_dir = os.path.relpath(target_dir, gallery_conf['src_dir'])
iterator = sphinx_compatibility.status_iterator(
sorted_listdir,
'generating gallery for %s... ' % build_target_dir,
length=len(sorted_listdir))
clean_modules(gallery_conf, src_dir) # fix gh-316
for fname in iterator:
intro, time_elapsed = generate_file_rst(
fname, target_dir, src_dir, gallery_conf)
clean_modules(gallery_conf, fname)
computation_times.append((time_elapsed, fname))
this_entry = _thumbnail_div(build_target_dir, fname, intro) + """
.. toctree::
:hidden:
/%s\n""" % os.path.join(build_target_dir, fname[:-3]).replace(os.sep, '/')
entries_text.append(this_entry)
if gallery_conf['backreferences_dir']:
write_backreferences(seen_backrefs, gallery_conf,
target_dir, fname, intro)
for entry_text in entries_text:
fhindex += entry_text
# clear at the end of the section
fhindex += """.. raw:: html\n
<div style='clear:both'></div>\n\n"""
return fhindex, computation_times |
Python | def _memory_usage(func, gallery_conf):
"""Get memory usage of a function call."""
if gallery_conf['show_memory']:
from memory_profiler import memory_usage
assert callable(func)
mem, out = memory_usage(func, max_usage=True, retval=True,
multiprocess=True)
mem = mem[0]
else:
out = func()
mem = 0
return out, mem | def _memory_usage(func, gallery_conf):
"""Get memory usage of a function call."""
if gallery_conf['show_memory']:
from memory_profiler import memory_usage
assert callable(func)
mem, out = memory_usage(func, max_usage=True, retval=True,
multiprocess=True)
mem = mem[0]
else:
out = func()
mem = 0
return out, mem |
Python | def _get_memory_base(gallery_conf):
"""Get the base amount of memory used by running a Python process."""
if not gallery_conf['show_memory']:
memory_base = 0
else:
# There might be a cleaner way to do this at some point
from memory_profiler import memory_usage
proc = subprocess.Popen([sys.executable, '-c',
'import time; time.sleep(1.0)'])
memory_base = max(memory_usage(proc, interval=1e-3, timeout=0.1))
return memory_base | def _get_memory_base(gallery_conf):
"""Get the base amount of memory used by running a Python process."""
if not gallery_conf['show_memory']:
memory_base = 0
else:
# There might be a cleaner way to do this at some point
from memory_profiler import memory_usage
proc = subprocess.Popen([sys.executable, '-c',
'import time; time.sleep(1.0)'])
memory_base = max(memory_usage(proc, interval=1e-3, timeout=0.1))
return memory_base |
Python | def execute_code_block(compiler, block, example_globals,
script_vars, gallery_conf):
"""Executes the code block of the example file"""
blabel, bcontent, lineno = block
# If example is not suitable to run, skip executing its blocks
if not script_vars['execute_script'] or blabel == 'text':
script_vars['memory_delta'].append(0)
return ''
cwd = os.getcwd()
# Redirect output to stdout and
orig_stdout = sys.stdout
src_file = script_vars['src_file']
# First cd in the original example dir, so that any file
# created by the example get created in this directory
my_stdout = MixedEncodingStringIO()
os.chdir(os.path.dirname(src_file))
sys.stdout = LoggingTee(my_stdout, logger, src_file)
try:
dont_inherit = 1
code_ast = compile(bcontent, src_file, 'exec',
ast.PyCF_ONLY_AST | compiler.flags, dont_inherit)
ast.increment_lineno(code_ast, lineno - 1)
# don't use unicode_literals at the top of this file or you get
# nasty errors here on Py2.7
_, mem = _memory_usage(_exec_once(
compiler(code_ast, src_file, 'exec'), example_globals),
gallery_conf)
except Exception:
sys.stdout.flush()
sys.stdout = orig_stdout
except_rst = handle_exception(sys.exc_info(), src_file, script_vars,
gallery_conf)
# python2.7: Code was read in bytes needs decoding to utf-8
# unless future unicode_literals is imported in source which
# make ast output unicode strings
if hasattr(except_rst, 'decode') and not \
isinstance(except_rst, unicode):
except_rst = except_rst.decode('utf-8')
code_output = u"\n{0}\n\n\n\n".format(except_rst)
# still call this even though we won't use the images so that
# figures are closed
save_figures(block, script_vars, gallery_conf)
mem = 0
else:
sys.stdout.flush()
sys.stdout = orig_stdout
os.chdir(cwd)
my_stdout = my_stdout.getvalue().strip().expandtabs()
if my_stdout:
stdout = CODE_OUTPUT.format(indent(my_stdout, u' ' * 4))
else:
stdout = ''
images_rst = save_figures(block, script_vars, gallery_conf)
code_output = u"\n{0}\n\n{1}\n\n".format(images_rst, stdout)
finally:
os.chdir(cwd)
sys.stdout = orig_stdout
script_vars['memory_delta'].append(mem)
return code_output | def execute_code_block(compiler, block, example_globals,
script_vars, gallery_conf):
"""Executes the code block of the example file"""
blabel, bcontent, lineno = block
# If example is not suitable to run, skip executing its blocks
if not script_vars['execute_script'] or blabel == 'text':
script_vars['memory_delta'].append(0)
return ''
cwd = os.getcwd()
# Redirect output to stdout and
orig_stdout = sys.stdout
src_file = script_vars['src_file']
# First cd in the original example dir, so that any file
# created by the example get created in this directory
my_stdout = MixedEncodingStringIO()
os.chdir(os.path.dirname(src_file))
sys.stdout = LoggingTee(my_stdout, logger, src_file)
try:
dont_inherit = 1
code_ast = compile(bcontent, src_file, 'exec',
ast.PyCF_ONLY_AST | compiler.flags, dont_inherit)
ast.increment_lineno(code_ast, lineno - 1)
# don't use unicode_literals at the top of this file or you get
# nasty errors here on Py2.7
_, mem = _memory_usage(_exec_once(
compiler(code_ast, src_file, 'exec'), example_globals),
gallery_conf)
except Exception:
sys.stdout.flush()
sys.stdout = orig_stdout
except_rst = handle_exception(sys.exc_info(), src_file, script_vars,
gallery_conf)
# python2.7: Code was read in bytes needs decoding to utf-8
# unless future unicode_literals is imported in source which
# make ast output unicode strings
if hasattr(except_rst, 'decode') and not \
isinstance(except_rst, unicode):
except_rst = except_rst.decode('utf-8')
code_output = u"\n{0}\n\n\n\n".format(except_rst)
# still call this even though we won't use the images so that
# figures are closed
save_figures(block, script_vars, gallery_conf)
mem = 0
else:
sys.stdout.flush()
sys.stdout = orig_stdout
os.chdir(cwd)
my_stdout = my_stdout.getvalue().strip().expandtabs()
if my_stdout:
stdout = CODE_OUTPUT.format(indent(my_stdout, u' ' * 4))
else:
stdout = ''
images_rst = save_figures(block, script_vars, gallery_conf)
code_output = u"\n{0}\n\n{1}\n\n".format(images_rst, stdout)
finally:
os.chdir(cwd)
sys.stdout = orig_stdout
script_vars['memory_delta'].append(mem)
return code_output |
Python | def execute_script(script_blocks, script_vars, gallery_conf):
"""Execute and capture output from python script already in block structure
Parameters
----------
script_blocks : list
(label, content, line_number)
List where each element is a tuple with the label ('text' or 'code'),
the corresponding content string of block and the leading line number
script_vars : dict
Configuration and run time variables
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
output_blocks : list
List of strings where each element is the restructured text
representation of the output of each block
time_elapsed : float
Time elapsed during execution
"""
example_globals = {
# A lot of examples contains 'print(__doc__)' for example in
# scikit-learn so that running the example prints some useful
# information. Because the docstring has been separated from
# the code blocks in sphinx-gallery, __doc__ is actually
# __builtin__.__doc__ in the execution context and we do not
# want to print it
'__doc__': '',
# Examples may contain if __name__ == '__main__' guards
# for in example scikit-learn if the example uses multiprocessing
'__name__': '__main__',
# Don't ever support __file__: Issues #166 #212
}
argv_orig = sys.argv[:]
if script_vars['execute_script']:
# We want to run the example without arguments. See
# https://github.com/sphinx-gallery/sphinx-gallery/pull/252
# for more details.
sys.argv[0] = script_vars['src_file']
sys.argv[1:] = []
t_start = time()
gc.collect()
_, memory_start = _memory_usage(lambda: None, gallery_conf)
compiler = codeop.Compile()
# include at least one entry to avoid max() ever failing
script_vars['memory_delta'] = [memory_start]
output_blocks = [execute_code_block(compiler, block,
example_globals,
script_vars, gallery_conf)
for block in script_blocks]
time_elapsed = time() - t_start
script_vars['memory_delta'] = ( # actually turn it into a delta now
max(script_vars['memory_delta']) - memory_start)
sys.argv = argv_orig
# Write md5 checksum if the example was meant to run (no-plot
# shall not cache md5sum) and has build correctly
if script_vars['execute_script']:
with open(script_vars['target_file'] + '.md5', 'w') as file_checksum:
file_checksum.write(get_md5sum(script_vars['target_file']))
return output_blocks, time_elapsed | def execute_script(script_blocks, script_vars, gallery_conf):
"""Execute and capture output from python script already in block structure
Parameters
----------
script_blocks : list
(label, content, line_number)
List where each element is a tuple with the label ('text' or 'code'),
the corresponding content string of block and the leading line number
script_vars : dict
Configuration and run time variables
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
output_blocks : list
List of strings where each element is the restructured text
representation of the output of each block
time_elapsed : float
Time elapsed during execution
"""
example_globals = {
# A lot of examples contains 'print(__doc__)' for example in
# scikit-learn so that running the example prints some useful
# information. Because the docstring has been separated from
# the code blocks in sphinx-gallery, __doc__ is actually
# __builtin__.__doc__ in the execution context and we do not
# want to print it
'__doc__': '',
# Examples may contain if __name__ == '__main__' guards
# for in example scikit-learn if the example uses multiprocessing
'__name__': '__main__',
# Don't ever support __file__: Issues #166 #212
}
argv_orig = sys.argv[:]
if script_vars['execute_script']:
# We want to run the example without arguments. See
# https://github.com/sphinx-gallery/sphinx-gallery/pull/252
# for more details.
sys.argv[0] = script_vars['src_file']
sys.argv[1:] = []
t_start = time()
gc.collect()
_, memory_start = _memory_usage(lambda: None, gallery_conf)
compiler = codeop.Compile()
# include at least one entry to avoid max() ever failing
script_vars['memory_delta'] = [memory_start]
output_blocks = [execute_code_block(compiler, block,
example_globals,
script_vars, gallery_conf)
for block in script_blocks]
time_elapsed = time() - t_start
script_vars['memory_delta'] = ( # actually turn it into a delta now
max(script_vars['memory_delta']) - memory_start)
sys.argv = argv_orig
# Write md5 checksum if the example was meant to run (no-plot
# shall not cache md5sum) and has build correctly
if script_vars['execute_script']:
with open(script_vars['target_file'] + '.md5', 'w') as file_checksum:
file_checksum.write(get_md5sum(script_vars['target_file']))
return output_blocks, time_elapsed |
Python | def generate_file_rst(fname, target_dir, src_dir, gallery_conf):
"""Generate the rst file for a given example.
Parameters
----------
fname : str
Filename of python script
target_dir : str
Absolute path to directory in documentation where examples are saved
src_dir : str
Absolute path to directory where source examples are stored
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
intro: str
The introduction of the example
time_elapsed : float
seconds required to run the script
"""
src_file = os.path.normpath(os.path.join(src_dir, fname))
target_file = os.path.join(target_dir, fname)
shutil.copyfile(src_file, target_file)
intro, _ = extract_intro_and_title(fname,
get_docstring_and_rest(src_file)[0])
if md5sum_is_current(target_file):
return intro, 0
image_dir = os.path.join(target_dir, 'images')
if not os.path.exists(image_dir):
os.makedirs(image_dir)
base_image_name = os.path.splitext(fname)[0]
image_fname = 'sphx_glr_' + base_image_name + '_{0:03}.png'
image_path_template = os.path.join(image_dir, image_fname)
script_vars = {
'execute_script': executable_script(src_file, gallery_conf),
'image_path_iterator': ImagePathIterator(image_path_template),
'src_file': src_file,
'target_file': target_file}
file_conf, script_blocks = split_code_and_text_blocks(src_file)
output_blocks, time_elapsed = execute_script(script_blocks,
script_vars,
gallery_conf)
logger.debug("%s ran in : %.2g seconds\n", src_file, time_elapsed)
example_rst = rst_blocks(script_blocks, output_blocks,
file_conf, gallery_conf)
memory_used = gallery_conf['memory_base'] + script_vars['memory_delta']
save_rst_example(example_rst, target_file, time_elapsed, memory_used,
gallery_conf)
save_thumbnail(image_path_template, src_file, file_conf, gallery_conf)
example_nb = jupyter_notebook(script_blocks, gallery_conf)
save_notebook(example_nb, replace_py_ipynb(target_file))
return intro, time_elapsed | def generate_file_rst(fname, target_dir, src_dir, gallery_conf):
"""Generate the rst file for a given example.
Parameters
----------
fname : str
Filename of python script
target_dir : str
Absolute path to directory in documentation where examples are saved
src_dir : str
Absolute path to directory where source examples are stored
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
intro: str
The introduction of the example
time_elapsed : float
seconds required to run the script
"""
src_file = os.path.normpath(os.path.join(src_dir, fname))
target_file = os.path.join(target_dir, fname)
shutil.copyfile(src_file, target_file)
intro, _ = extract_intro_and_title(fname,
get_docstring_and_rest(src_file)[0])
if md5sum_is_current(target_file):
return intro, 0
image_dir = os.path.join(target_dir, 'images')
if not os.path.exists(image_dir):
os.makedirs(image_dir)
base_image_name = os.path.splitext(fname)[0]
image_fname = 'sphx_glr_' + base_image_name + '_{0:03}.png'
image_path_template = os.path.join(image_dir, image_fname)
script_vars = {
'execute_script': executable_script(src_file, gallery_conf),
'image_path_iterator': ImagePathIterator(image_path_template),
'src_file': src_file,
'target_file': target_file}
file_conf, script_blocks = split_code_and_text_blocks(src_file)
output_blocks, time_elapsed = execute_script(script_blocks,
script_vars,
gallery_conf)
logger.debug("%s ran in : %.2g seconds\n", src_file, time_elapsed)
example_rst = rst_blocks(script_blocks, output_blocks,
file_conf, gallery_conf)
memory_used = gallery_conf['memory_base'] + script_vars['memory_delta']
save_rst_example(example_rst, target_file, time_elapsed, memory_used,
gallery_conf)
save_thumbnail(image_path_template, src_file, file_conf, gallery_conf)
example_nb = jupyter_notebook(script_blocks, gallery_conf)
save_notebook(example_nb, replace_py_ipynb(target_file))
return intro, time_elapsed |
Python | def rst_blocks(script_blocks, output_blocks, file_conf, gallery_conf):
"""Generates the rst string containing the script prose, code and output
Parameters
----------
script_blocks : list
(label, content, line_number)
List where each element is a tuple with the label ('text' or 'code'),
the corresponding content string of block and the leading line number
output_blocks : list
List of strings where each element is the restructured text
representation of the output of each block
file_conf : dict
File-specific settings given in source file comments as:
``# sphinx_gallery_<name> = <value>``
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
out : str
rst notebook
"""
# A simple example has two blocks: one for the
# example introduction/explanation and one for the code
is_example_notebook_like = len(script_blocks) > 2
example_rst = u"" # there can be unicode content
for (blabel, bcontent, lineno), code_output in \
zip(script_blocks, output_blocks):
if blabel == 'code':
if not file_conf.get('line_numbers',
gallery_conf.get('line_numbers', False)):
lineno = None
code_rst = codestr2rst(bcontent, lineno=lineno) + '\n'
if is_example_notebook_like:
example_rst += code_rst
example_rst += code_output
else:
example_rst += code_output
if 'sphx-glr-script-out' in code_output:
# Add some vertical space after output
example_rst += "\n\n|\n\n"
example_rst += code_rst
else:
example_rst += bcontent + '\n'
return example_rst | def rst_blocks(script_blocks, output_blocks, file_conf, gallery_conf):
"""Generates the rst string containing the script prose, code and output
Parameters
----------
script_blocks : list
(label, content, line_number)
List where each element is a tuple with the label ('text' or 'code'),
the corresponding content string of block and the leading line number
output_blocks : list
List of strings where each element is the restructured text
representation of the output of each block
file_conf : dict
File-specific settings given in source file comments as:
``# sphinx_gallery_<name> = <value>``
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
out : str
rst notebook
"""
# A simple example has two blocks: one for the
# example introduction/explanation and one for the code
is_example_notebook_like = len(script_blocks) > 2
example_rst = u"" # there can be unicode content
for (blabel, bcontent, lineno), code_output in \
zip(script_blocks, output_blocks):
if blabel == 'code':
if not file_conf.get('line_numbers',
gallery_conf.get('line_numbers', False)):
lineno = None
code_rst = codestr2rst(bcontent, lineno=lineno) + '\n'
if is_example_notebook_like:
example_rst += code_rst
example_rst += code_output
else:
example_rst += code_output
if 'sphx-glr-script-out' in code_output:
# Add some vertical space after output
example_rst += "\n\n|\n\n"
example_rst += code_rst
else:
example_rst += bcontent + '\n'
return example_rst |
Python | def save_rst_example(example_rst, example_file, time_elapsed,
memory_used, gallery_conf):
"""Saves the rst notebook to example_file including necessary header & footer
Parameters
----------
example_rst : str
rst containing the executed file content
example_file : str
Filename with full path of python example file in documentation folder
time_elapsed : float
Time elapsed in seconds while executing file
memory_used : float
Additional memory used during the run.
gallery_conf : dict
Sphinx-Gallery configuration dictionary
"""
ref_fname = os.path.relpath(example_file, gallery_conf['src_dir'])
ref_fname = ref_fname.replace(os.path.sep, "_")
binder_conf = check_binder_conf(gallery_conf.get('binder'))
binder_text = (" or run this example in your browser via Binder"
if len(binder_conf) else "")
example_rst = (".. note::\n"
" :class: sphx-glr-download-link-note\n\n"
" Click :ref:`here <sphx_glr_download_{0}>` "
"to download the full example code{1}\n"
".. rst-class:: sphx-glr-example-title\n\n"
".. _sphx_glr_{0}:\n\n"
).format(ref_fname, binder_text) + example_rst
if time_elapsed >= gallery_conf["min_reported_time"]:
time_m, time_s = divmod(time_elapsed, 60)
example_rst += ("**Total running time of the script:**"
" ({0: .0f} minutes {1: .3f} seconds)\n\n"
.format(time_m, time_s))
if gallery_conf['show_memory']:
example_rst += ("**Estimated memory usage:** {0: .0f} MB\n\n"
.format(memory_used))
# Generate a binder URL if specified
binder_badge_rst = ''
if len(binder_conf) > 0:
binder_badge_rst += gen_binder_rst(example_file, binder_conf,
gallery_conf)
fname = os.path.basename(example_file)
example_rst += CODE_DOWNLOAD.format(fname,
replace_py_ipynb(fname),
binder_badge_rst,
ref_fname)
example_rst += SPHX_GLR_SIG
write_file = re.sub(r'\.py$', '.rst', example_file)
with codecs.open(write_file, 'w', encoding="utf-8") as f:
f.write(example_rst) | def save_rst_example(example_rst, example_file, time_elapsed,
memory_used, gallery_conf):
"""Saves the rst notebook to example_file including necessary header & footer
Parameters
----------
example_rst : str
rst containing the executed file content
example_file : str
Filename with full path of python example file in documentation folder
time_elapsed : float
Time elapsed in seconds while executing file
memory_used : float
Additional memory used during the run.
gallery_conf : dict
Sphinx-Gallery configuration dictionary
"""
ref_fname = os.path.relpath(example_file, gallery_conf['src_dir'])
ref_fname = ref_fname.replace(os.path.sep, "_")
binder_conf = check_binder_conf(gallery_conf.get('binder'))
binder_text = (" or run this example in your browser via Binder"
if len(binder_conf) else "")
example_rst = (".. note::\n"
" :class: sphx-glr-download-link-note\n\n"
" Click :ref:`here <sphx_glr_download_{0}>` "
"to download the full example code{1}\n"
".. rst-class:: sphx-glr-example-title\n\n"
".. _sphx_glr_{0}:\n\n"
).format(ref_fname, binder_text) + example_rst
if time_elapsed >= gallery_conf["min_reported_time"]:
time_m, time_s = divmod(time_elapsed, 60)
example_rst += ("**Total running time of the script:**"
" ({0: .0f} minutes {1: .3f} seconds)\n\n"
.format(time_m, time_s))
if gallery_conf['show_memory']:
example_rst += ("**Estimated memory usage:** {0: .0f} MB\n\n"
.format(memory_used))
# Generate a binder URL if specified
binder_badge_rst = ''
if len(binder_conf) > 0:
binder_badge_rst += gen_binder_rst(example_file, binder_conf,
gallery_conf)
fname = os.path.basename(example_file)
example_rst += CODE_DOWNLOAD.format(fname,
replace_py_ipynb(fname),
binder_badge_rst,
ref_fname)
example_rst += SPHX_GLR_SIG
write_file = re.sub(r'\.py$', '.rst', example_file)
with codecs.open(write_file, 'w', encoding="utf-8") as f:
f.write(example_rst) |
Python | def _import_from(mod, path, mod_dir=None):
"""
Imports a module from a specific path
:param mod:
A unicode string of the module name
:param path:
A unicode string to the directory containing the module
:param mod_dir:
If the sub directory of "path" is different than the "mod" name,
pass the sub directory as a unicode string
:return:
None if not loaded, otherwise the module
"""
if mod_dir is None:
mod_dir = mod
if not os.path.exists(path):
return None
if not os.path.exists(os.path.join(path, mod_dir)):
return None
try:
mod_info = imp.find_module(mod_dir, [path])
return imp.load_module(mod, *mod_info)
except ImportError:
return None | def _import_from(mod, path, mod_dir=None):
"""
Imports a module from a specific path
:param mod:
A unicode string of the module name
:param path:
A unicode string to the directory containing the module
:param mod_dir:
If the sub directory of "path" is different than the "mod" name,
pass the sub directory as a unicode string
:return:
None if not loaded, otherwise the module
"""
if mod_dir is None:
mod_dir = mod
if not os.path.exists(path):
return None
if not os.path.exists(os.path.join(path, mod_dir)):
return None
try:
mod_info = imp.find_module(mod_dir, [path])
return imp.load_module(mod, *mod_info)
except ImportError:
return None |
Python | def make_suite():
"""
Constructs a unittest.TestSuite() of all tests for the package. For use
with setuptools.
:return:
A unittest.TestSuite() object
"""
loader = unittest.TestLoader()
suite = unittest.TestSuite()
for test_class in test_classes():
tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)
return suite | def make_suite():
"""
Constructs a unittest.TestSuite() of all tests for the package. For use
with setuptools.
:return:
A unittest.TestSuite() object
"""
loader = unittest.TestLoader()
suite = unittest.TestSuite()
for test_class in test_classes():
tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)
return suite |
Python | def certificate(self, value):
"""
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate object
of the certificate to create the request for.
"""
is_oscrypto = isinstance(value, asymmetric.Certificate)
if not is_oscrypto and not isinstance(value, x509.Certificate):
raise TypeError(_pretty_message(
'''
certificate must be an instance of asn1crypto.x509.Certificate
or oscrypto.asymmetric.Certificate, not %s
''',
_type_name(value)
))
if is_oscrypto:
value = value.asn1
self._certificate = value | def certificate(self, value):
"""
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate object
of the certificate to create the request for.
"""
is_oscrypto = isinstance(value, asymmetric.Certificate)
if not is_oscrypto and not isinstance(value, x509.Certificate):
raise TypeError(_pretty_message(
'''
certificate must be an instance of asn1crypto.x509.Certificate
or oscrypto.asymmetric.Certificate, not %s
''',
_type_name(value)
))
if is_oscrypto:
value = value.asn1
self._certificate = value |
Python | def key_hash_algo(self, value):
"""
A unicode string of the hash algorithm to use when creating the
certificate identifier - "sha1" (default), or "sha256".
"""
if value not in set(['sha1', 'sha256']):
raise ValueError(_pretty_message(
'''
hash_algo must be one of "sha1", "sha256", not %s
''',
repr(value)
))
self._key_hash_algo = value | def key_hash_algo(self, value):
"""
A unicode string of the hash algorithm to use when creating the
certificate identifier - "sha1" (default), or "sha256".
"""
if value not in set(['sha1', 'sha256']):
raise ValueError(_pretty_message(
'''
hash_algo must be one of "sha1", "sha256", not %s
''',
repr(value)
))
self._key_hash_algo = value |
Python | def nonce(self, value):
"""
A bool - if the nonce extension should be used to prevent replay
attacks.
"""
if not isinstance(value, bool):
raise TypeError(_pretty_message(
'''
nonce must be a boolean, not %s
''',
_type_name(value)
))
self._nonce = value | def nonce(self, value):
"""
A bool - if the nonce extension should be used to prevent replay
attacks.
"""
if not isinstance(value, bool):
raise TypeError(_pretty_message(
'''
nonce must be a boolean, not %s
''',
_type_name(value)
))
self._nonce = value |
Python | def build(self, requestor_private_key=None, requestor_certificate=None, other_certificates=None):
"""
Validates the request information, constructs the ASN.1 structure and
then optionally signs it.
The requestor_private_key, requestor_certificate and other_certificates
params are all optional and only necessary if the request needs to be
signed. Signing a request is uncommon for OCSP requests related to web
TLS connections.
:param requestor_private_key:
An asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey
object for the private key to sign the request with
:param requestor_certificate:
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate
object of the certificate associated with the private key
:param other_certificates:
A list of asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate objects that may be useful for the
OCSP server to verify the request signature. Intermediate
certificates would be specified here.
:return:
An asn1crypto.ocsp.OCSPRequest object of the request
"""
def _make_extension(name, value):
return {
'extn_id': name,
'critical': False,
'extn_value': value
}
tbs_request_extensions = []
request_extensions = []
has_nonce = False
for name, value in self._tbs_request_extensions.items():
if name == 'nonce':
has_nonce = True
tbs_request_extensions.append(_make_extension(name, value))
if self._nonce and not has_nonce:
tbs_request_extensions.append(
_make_extension('nonce', util.rand_bytes(16))
)
if not tbs_request_extensions:
tbs_request_extensions = None
for name, value in self._request_extensions.items():
request_extensions.append(_make_extension(name, value))
if not request_extensions:
request_extensions = None
tbs_request = ocsp.TBSRequest({
'request_list': [
{
'req_cert': {
'hash_algorithm': {
'algorithm': self._key_hash_algo
},
'issuer_name_hash': getattr(self._certificate.issuer, self._key_hash_algo),
'issuer_key_hash': getattr(self._issuer.public_key, self._key_hash_algo),
'serial_number': self._certificate.serial_number,
},
'single_request_extensions': request_extensions
}
],
'request_extensions': tbs_request_extensions
})
signature = None
if requestor_private_key or requestor_certificate or other_certificates:
is_oscrypto = isinstance(requestor_private_key, asymmetric.PrivateKey)
if not isinstance(requestor_private_key, keys.PrivateKeyInfo) and not is_oscrypto:
raise TypeError(_pretty_message(
'''
requestor_private_key must be an instance of
asn1crypto.keys.PrivateKeyInfo or
oscrypto.asymmetric.PrivateKey, not %s
''',
_type_name(requestor_private_key)
))
cert_is_oscrypto = isinstance(requestor_certificate, asymmetric.Certificate)
if not isinstance(requestor_certificate, x509.Certificate) and not cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
requestor_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(requestor_certificate)
))
if other_certificates is not None and not isinstance(other_certificates, list):
raise TypeError(_pretty_message(
'''
other_certificates must be a list of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate objects, not %s
''',
_type_name(other_certificates)
))
if cert_is_oscrypto:
requestor_certificate = requestor_certificate.asn1
tbs_request['requestor_name'] = x509.GeneralName(
name='directory_name',
value=requestor_certificate.subject
)
certificates = [requestor_certificate]
for other_certificate in other_certificates:
other_cert_is_oscrypto = isinstance(other_certificate, asymmetric.Certificate)
if not isinstance(other_certificate, x509.Certificate) and not other_cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
other_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(other_certificate)
))
if other_cert_is_oscrypto:
other_certificate = other_certificate.asn1
certificates.append(other_certificate)
signature_algo = requestor_private_key.algorithm
if signature_algo == 'ec':
signature_algo = 'ecdsa'
signature_algorithm_id = '%s_%s' % (self._hash_algo, signature_algo)
if requestor_private_key.algorithm == 'rsa':
sign_func = asymmetric.rsa_pkcs1v15_sign
elif requestor_private_key.algorithm == 'dsa':
sign_func = asymmetric.dsa_sign
elif requestor_private_key.algorithm == 'ec':
sign_func = asymmetric.ecdsa_sign
if not is_oscrypto:
requestor_private_key = asymmetric.load_private_key(requestor_private_key)
signature_bytes = sign_func(requestor_private_key, tbs_request.dump(), self._hash_algo)
signature = ocsp.Signature({
'signature_algorithm': {'algorithm': signature_algorithm_id},
'signature': signature_bytes,
'certs': certificates
})
return ocsp.OCSPRequest({
'tbs_request': tbs_request,
'optional_signature': signature
}) | def build(self, requestor_private_key=None, requestor_certificate=None, other_certificates=None):
"""
Validates the request information, constructs the ASN.1 structure and
then optionally signs it.
The requestor_private_key, requestor_certificate and other_certificates
params are all optional and only necessary if the request needs to be
signed. Signing a request is uncommon for OCSP requests related to web
TLS connections.
:param requestor_private_key:
An asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey
object for the private key to sign the request with
:param requestor_certificate:
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate
object of the certificate associated with the private key
:param other_certificates:
A list of asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate objects that may be useful for the
OCSP server to verify the request signature. Intermediate
certificates would be specified here.
:return:
An asn1crypto.ocsp.OCSPRequest object of the request
"""
def _make_extension(name, value):
return {
'extn_id': name,
'critical': False,
'extn_value': value
}
tbs_request_extensions = []
request_extensions = []
has_nonce = False
for name, value in self._tbs_request_extensions.items():
if name == 'nonce':
has_nonce = True
tbs_request_extensions.append(_make_extension(name, value))
if self._nonce and not has_nonce:
tbs_request_extensions.append(
_make_extension('nonce', util.rand_bytes(16))
)
if not tbs_request_extensions:
tbs_request_extensions = None
for name, value in self._request_extensions.items():
request_extensions.append(_make_extension(name, value))
if not request_extensions:
request_extensions = None
tbs_request = ocsp.TBSRequest({
'request_list': [
{
'req_cert': {
'hash_algorithm': {
'algorithm': self._key_hash_algo
},
'issuer_name_hash': getattr(self._certificate.issuer, self._key_hash_algo),
'issuer_key_hash': getattr(self._issuer.public_key, self._key_hash_algo),
'serial_number': self._certificate.serial_number,
},
'single_request_extensions': request_extensions
}
],
'request_extensions': tbs_request_extensions
})
signature = None
if requestor_private_key or requestor_certificate or other_certificates:
is_oscrypto = isinstance(requestor_private_key, asymmetric.PrivateKey)
if not isinstance(requestor_private_key, keys.PrivateKeyInfo) and not is_oscrypto:
raise TypeError(_pretty_message(
'''
requestor_private_key must be an instance of
asn1crypto.keys.PrivateKeyInfo or
oscrypto.asymmetric.PrivateKey, not %s
''',
_type_name(requestor_private_key)
))
cert_is_oscrypto = isinstance(requestor_certificate, asymmetric.Certificate)
if not isinstance(requestor_certificate, x509.Certificate) and not cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
requestor_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(requestor_certificate)
))
if other_certificates is not None and not isinstance(other_certificates, list):
raise TypeError(_pretty_message(
'''
other_certificates must be a list of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate objects, not %s
''',
_type_name(other_certificates)
))
if cert_is_oscrypto:
requestor_certificate = requestor_certificate.asn1
tbs_request['requestor_name'] = x509.GeneralName(
name='directory_name',
value=requestor_certificate.subject
)
certificates = [requestor_certificate]
for other_certificate in other_certificates:
other_cert_is_oscrypto = isinstance(other_certificate, asymmetric.Certificate)
if not isinstance(other_certificate, x509.Certificate) and not other_cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
other_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(other_certificate)
))
if other_cert_is_oscrypto:
other_certificate = other_certificate.asn1
certificates.append(other_certificate)
signature_algo = requestor_private_key.algorithm
if signature_algo == 'ec':
signature_algo = 'ecdsa'
signature_algorithm_id = '%s_%s' % (self._hash_algo, signature_algo)
if requestor_private_key.algorithm == 'rsa':
sign_func = asymmetric.rsa_pkcs1v15_sign
elif requestor_private_key.algorithm == 'dsa':
sign_func = asymmetric.dsa_sign
elif requestor_private_key.algorithm == 'ec':
sign_func = asymmetric.ecdsa_sign
if not is_oscrypto:
requestor_private_key = asymmetric.load_private_key(requestor_private_key)
signature_bytes = sign_func(requestor_private_key, tbs_request.dump(), self._hash_algo)
signature = ocsp.Signature({
'signature_algorithm': {'algorithm': signature_algorithm_id},
'signature': signature_bytes,
'certs': certificates
})
return ocsp.OCSPRequest({
'tbs_request': tbs_request,
'optional_signature': signature
}) |
Python | def response_status(self, value):
"""
The overall status of the response. Only a "successful" response will
include information about the certificate. Other response types are for
signaling info about the OCSP responder. Valid values include:
- "successful" - when the response includes information about the certificate
- "malformed_request" - when the request could not be understood
- "internal_error" - when an internal error occured with the OCSP responder
- "try_later" - when the OCSP responder is temporarily unavailable
- "sign_required" - when the OCSP request must be signed
- "unauthorized" - when the responder is not the correct responder for the certificate
"""
if not isinstance(value, str_cls):
raise TypeError(_pretty_message(
'''
response_status must be a unicode string, not %s
''',
_type_name(value)
))
valid_response_statuses = set([
'successful',
'malformed_request',
'internal_error',
'try_later',
'sign_required',
'unauthorized'
])
if value not in valid_response_statuses:
raise ValueError(_pretty_message(
'''
response_status must be one of "successful",
"malformed_request", "internal_error", "try_later",
"sign_required", "unauthorized", not %s
''',
repr(value)
))
self._response_status = value | def response_status(self, value):
"""
The overall status of the response. Only a "successful" response will
include information about the certificate. Other response types are for
signaling info about the OCSP responder. Valid values include:
- "successful" - when the response includes information about the certificate
- "malformed_request" - when the request could not be understood
- "internal_error" - when an internal error occured with the OCSP responder
- "try_later" - when the OCSP responder is temporarily unavailable
- "sign_required" - when the OCSP request must be signed
- "unauthorized" - when the responder is not the correct responder for the certificate
"""
if not isinstance(value, str_cls):
raise TypeError(_pretty_message(
'''
response_status must be a unicode string, not %s
''',
_type_name(value)
))
valid_response_statuses = set([
'successful',
'malformed_request',
'internal_error',
'try_later',
'sign_required',
'unauthorized'
])
if value not in valid_response_statuses:
raise ValueError(_pretty_message(
'''
response_status must be one of "successful",
"malformed_request", "internal_error", "try_later",
"sign_required", "unauthorized", not %s
''',
repr(value)
))
self._response_status = value |
Python | def certificate(self, value):
"""
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate object
of the certificate the response is about.
"""
if value is not None:
is_oscrypto = isinstance(value, asymmetric.Certificate)
if not is_oscrypto and not isinstance(value, x509.Certificate):
raise TypeError(_pretty_message(
'''
certificate must be an instance of asn1crypto.x509.Certificate
or oscrypto.asymmetric.Certificate, not %s
''',
_type_name(value)
))
if is_oscrypto:
value = value.asn1
self._certificate = value | def certificate(self, value):
"""
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate object
of the certificate the response is about.
"""
if value is not None:
is_oscrypto = isinstance(value, asymmetric.Certificate)
if not is_oscrypto and not isinstance(value, x509.Certificate):
raise TypeError(_pretty_message(
'''
certificate must be an instance of asn1crypto.x509.Certificate
or oscrypto.asymmetric.Certificate, not %s
''',
_type_name(value)
))
if is_oscrypto:
value = value.asn1
self._certificate = value |
Python | def certificate_status(self, value):
"""
A unicode string of the status of the certificate. Valid values include:
- "good" - when the certificate is in good standing
- "revoked" - when the certificate is revoked without a reason code
- "key_compromise" - when a private key is compromised
- "ca_compromise" - when the CA issuing the certificate is compromised
- "affiliation_changed" - when the certificate subject name changed
- "superseded" - when the certificate was replaced with a new one
- "cessation_of_operation" - when the certificate is no longer needed
- "certificate_hold" - when the certificate is temporarily invalid
- "remove_from_crl" - only delta CRLs - when temporary hold is removed
- "privilege_withdrawn" - one of the usages for a certificate was removed
- "unknown" - when the responder doesn't know about the certificate being requested
"""
if value is not None:
if not isinstance(value, str_cls):
raise TypeError(_pretty_message(
'''
certificate_status must be a unicode string, not %s
''',
_type_name(value)
))
valid_certificate_statuses = set([
'good',
'revoked',
'key_compromise',
'ca_compromise',
'affiliation_changed',
'superseded',
'cessation_of_operation',
'certificate_hold',
'remove_from_crl',
'privilege_withdrawn',
'unknown',
])
if value not in valid_certificate_statuses:
raise ValueError(_pretty_message(
'''
certificate_status must be one of "good", "revoked", "key_compromise",
"ca_compromise", "affiliation_changed", "superseded",
"cessation_of_operation", "certificate_hold", "remove_from_crl",
"privilege_withdrawn", "unknown" not %s
''',
repr(value)
))
self._certificate_status = value | def certificate_status(self, value):
"""
A unicode string of the status of the certificate. Valid values include:
- "good" - when the certificate is in good standing
- "revoked" - when the certificate is revoked without a reason code
- "key_compromise" - when a private key is compromised
- "ca_compromise" - when the CA issuing the certificate is compromised
- "affiliation_changed" - when the certificate subject name changed
- "superseded" - when the certificate was replaced with a new one
- "cessation_of_operation" - when the certificate is no longer needed
- "certificate_hold" - when the certificate is temporarily invalid
- "remove_from_crl" - only delta CRLs - when temporary hold is removed
- "privilege_withdrawn" - one of the usages for a certificate was removed
- "unknown" - when the responder doesn't know about the certificate being requested
"""
if value is not None:
if not isinstance(value, str_cls):
raise TypeError(_pretty_message(
'''
certificate_status must be a unicode string, not %s
''',
_type_name(value)
))
valid_certificate_statuses = set([
'good',
'revoked',
'key_compromise',
'ca_compromise',
'affiliation_changed',
'superseded',
'cessation_of_operation',
'certificate_hold',
'remove_from_crl',
'privilege_withdrawn',
'unknown',
])
if value not in valid_certificate_statuses:
raise ValueError(_pretty_message(
'''
certificate_status must be one of "good", "revoked", "key_compromise",
"ca_compromise", "affiliation_changed", "superseded",
"cessation_of_operation", "certificate_hold", "remove_from_crl",
"privilege_withdrawn", "unknown" not %s
''',
repr(value)
))
self._certificate_status = value |
Python | def revocation_date(self, value):
"""
A datetime.datetime object of when the certificate was revoked, if the
status is not "good" or "unknown".
"""
if value is not None and not isinstance(value, datetime):
raise TypeError(_pretty_message(
'''
revocation_date must be an instance of datetime.datetime, not %s
''',
_type_name(value)
))
self._revocation_date = value | def revocation_date(self, value):
"""
A datetime.datetime object of when the certificate was revoked, if the
status is not "good" or "unknown".
"""
if value is not None and not isinstance(value, datetime):
raise TypeError(_pretty_message(
'''
revocation_date must be an instance of datetime.datetime, not %s
''',
_type_name(value)
))
self._revocation_date = value |
Python | def build(self, responder_private_key=None, responder_certificate=None):
"""
Validates the request information, constructs the ASN.1 structure and
signs it.
The responder_private_key and responder_certificate parameters are only
required if the response_status is "successful".
:param responder_private_key:
An asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey
object for the private key to sign the response with
:param responder_certificate:
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate
object of the certificate associated with the private key
:return:
An asn1crypto.ocsp.OCSPResponse object of the response
"""
if self._response_status != 'successful':
return ocsp.OCSPResponse({
'response_status': self._response_status
})
is_oscrypto = isinstance(responder_private_key, asymmetric.PrivateKey)
if not isinstance(responder_private_key, keys.PrivateKeyInfo) and not is_oscrypto:
raise TypeError(_pretty_message(
'''
responder_private_key must be an instance of
asn1crypto.keys.PrivateKeyInfo or
oscrypto.asymmetric.PrivateKey, not %s
''',
_type_name(responder_private_key)
))
cert_is_oscrypto = isinstance(responder_certificate, asymmetric.Certificate)
if not isinstance(responder_certificate, x509.Certificate) and not cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
responder_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(responder_certificate)
))
if cert_is_oscrypto:
responder_certificate = responder_certificate.asn1
if self._certificate is None:
raise ValueError(_pretty_message(
'''
certificate must be set if the response_status is
"successful"
'''
))
if self._certificate_status is None:
raise ValueError(_pretty_message(
'''
certificate_status must be set if the response_status is
"successful"
'''
))
def _make_extension(name, value):
return {
'extn_id': name,
'critical': False,
'extn_value': value
}
response_data_extensions = []
single_response_extensions = []
for name, value in self._response_data_extensions.items():
response_data_extensions.append(_make_extension(name, value))
if self._nonce:
response_data_extensions.append(
_make_extension('nonce', self._nonce)
)
if not response_data_extensions:
response_data_extensions = None
for name, value in self._single_response_extensions.items():
single_response_extensions.append(_make_extension(name, value))
if self._certificate_issuer:
single_response_extensions.append(
_make_extension(
'certificate_issuer',
[
x509.GeneralName(
name='directory_name',
value=self._certificate_issuer.subject
)
]
)
)
if not single_response_extensions:
single_response_extensions = None
responder_key_hash = getattr(responder_certificate.public_key, self._key_hash_algo)
if self._certificate_status == 'good':
cert_status = ocsp.CertStatus(
name='good',
value=core.Null()
)
elif self._certificate_status == 'unknown':
cert_status = ocsp.CertStatus(
name='unknown',
value=core.Null()
)
else:
status = self._certificate_status
reason = status if status != 'revoked' else 'unspecified'
cert_status = ocsp.CertStatus(
name='revoked',
value={
'revocation_time': self._revocation_date,
'revocation_reason': reason,
}
)
issuer = self._certificate_issuer if self._certificate_issuer else responder_certificate
if issuer.subject != self._certificate.issuer:
raise ValueError(_pretty_message(
'''
responder_certificate does not appear to be the issuer for
the certificate. Perhaps set the .certificate_issuer attribute?
'''
))
produced_at = datetime.now(timezone.utc)
if self._this_update is None:
self._this_update = produced_at
if self._next_update is None:
self._next_update = self._this_update + timedelta(days=7)
response_data = ocsp.ResponseData({
'responder_id': ocsp.ResponderId(name='by_key', value=responder_key_hash),
'produced_at': produced_at,
'responses': [
{
'cert_id': {
'hash_algorithm': {
'algorithm': self._key_hash_algo
},
'issuer_name_hash': getattr(self._certificate.issuer, self._key_hash_algo),
'issuer_key_hash': getattr(issuer.public_key, self._key_hash_algo),
'serial_number': self._certificate.serial_number,
},
'cert_status': cert_status,
'this_update': self._this_update,
'next_update': self._next_update,
'single_extensions': single_response_extensions
}
],
'response_extensions': response_data_extensions
})
signature_algo = responder_private_key.algorithm
if signature_algo == 'ec':
signature_algo = 'ecdsa'
signature_algorithm_id = '%s_%s' % (self._hash_algo, signature_algo)
if responder_private_key.algorithm == 'rsa':
sign_func = asymmetric.rsa_pkcs1v15_sign
elif responder_private_key.algorithm == 'dsa':
sign_func = asymmetric.dsa_sign
elif responder_private_key.algorithm == 'ec':
sign_func = asymmetric.ecdsa_sign
if not is_oscrypto:
responder_private_key = asymmetric.load_private_key(responder_private_key)
signature_bytes = sign_func(responder_private_key, response_data.dump(), self._hash_algo)
certs = None
if self._certificate_issuer:
certs = [responder_certificate]
return ocsp.OCSPResponse({
'response_status': self._response_status,
'response_bytes': {
'response_type': 'basic_ocsp_response',
'response': {
'tbs_response_data': response_data,
'signature_algorithm': {'algorithm': signature_algorithm_id},
'signature': signature_bytes,
'certs': certs
}
}
}) | def build(self, responder_private_key=None, responder_certificate=None):
"""
Validates the request information, constructs the ASN.1 structure and
signs it.
The responder_private_key and responder_certificate parameters are only
required if the response_status is "successful".
:param responder_private_key:
An asn1crypto.keys.PrivateKeyInfo or oscrypto.asymmetric.PrivateKey
object for the private key to sign the response with
:param responder_certificate:
An asn1crypto.x509.Certificate or oscrypto.asymmetric.Certificate
object of the certificate associated with the private key
:return:
An asn1crypto.ocsp.OCSPResponse object of the response
"""
if self._response_status != 'successful':
return ocsp.OCSPResponse({
'response_status': self._response_status
})
is_oscrypto = isinstance(responder_private_key, asymmetric.PrivateKey)
if not isinstance(responder_private_key, keys.PrivateKeyInfo) and not is_oscrypto:
raise TypeError(_pretty_message(
'''
responder_private_key must be an instance of
asn1crypto.keys.PrivateKeyInfo or
oscrypto.asymmetric.PrivateKey, not %s
''',
_type_name(responder_private_key)
))
cert_is_oscrypto = isinstance(responder_certificate, asymmetric.Certificate)
if not isinstance(responder_certificate, x509.Certificate) and not cert_is_oscrypto:
raise TypeError(_pretty_message(
'''
responder_certificate must be an instance of
asn1crypto.x509.Certificate or
oscrypto.asymmetric.Certificate, not %s
''',
_type_name(responder_certificate)
))
if cert_is_oscrypto:
responder_certificate = responder_certificate.asn1
if self._certificate is None:
raise ValueError(_pretty_message(
'''
certificate must be set if the response_status is
"successful"
'''
))
if self._certificate_status is None:
raise ValueError(_pretty_message(
'''
certificate_status must be set if the response_status is
"successful"
'''
))
def _make_extension(name, value):
return {
'extn_id': name,
'critical': False,
'extn_value': value
}
response_data_extensions = []
single_response_extensions = []
for name, value in self._response_data_extensions.items():
response_data_extensions.append(_make_extension(name, value))
if self._nonce:
response_data_extensions.append(
_make_extension('nonce', self._nonce)
)
if not response_data_extensions:
response_data_extensions = None
for name, value in self._single_response_extensions.items():
single_response_extensions.append(_make_extension(name, value))
if self._certificate_issuer:
single_response_extensions.append(
_make_extension(
'certificate_issuer',
[
x509.GeneralName(
name='directory_name',
value=self._certificate_issuer.subject
)
]
)
)
if not single_response_extensions:
single_response_extensions = None
responder_key_hash = getattr(responder_certificate.public_key, self._key_hash_algo)
if self._certificate_status == 'good':
cert_status = ocsp.CertStatus(
name='good',
value=core.Null()
)
elif self._certificate_status == 'unknown':
cert_status = ocsp.CertStatus(
name='unknown',
value=core.Null()
)
else:
status = self._certificate_status
reason = status if status != 'revoked' else 'unspecified'
cert_status = ocsp.CertStatus(
name='revoked',
value={
'revocation_time': self._revocation_date,
'revocation_reason': reason,
}
)
issuer = self._certificate_issuer if self._certificate_issuer else responder_certificate
if issuer.subject != self._certificate.issuer:
raise ValueError(_pretty_message(
'''
responder_certificate does not appear to be the issuer for
the certificate. Perhaps set the .certificate_issuer attribute?
'''
))
produced_at = datetime.now(timezone.utc)
if self._this_update is None:
self._this_update = produced_at
if self._next_update is None:
self._next_update = self._this_update + timedelta(days=7)
response_data = ocsp.ResponseData({
'responder_id': ocsp.ResponderId(name='by_key', value=responder_key_hash),
'produced_at': produced_at,
'responses': [
{
'cert_id': {
'hash_algorithm': {
'algorithm': self._key_hash_algo
},
'issuer_name_hash': getattr(self._certificate.issuer, self._key_hash_algo),
'issuer_key_hash': getattr(issuer.public_key, self._key_hash_algo),
'serial_number': self._certificate.serial_number,
},
'cert_status': cert_status,
'this_update': self._this_update,
'next_update': self._next_update,
'single_extensions': single_response_extensions
}
],
'response_extensions': response_data_extensions
})
signature_algo = responder_private_key.algorithm
if signature_algo == 'ec':
signature_algo = 'ecdsa'
signature_algorithm_id = '%s_%s' % (self._hash_algo, signature_algo)
if responder_private_key.algorithm == 'rsa':
sign_func = asymmetric.rsa_pkcs1v15_sign
elif responder_private_key.algorithm == 'dsa':
sign_func = asymmetric.dsa_sign
elif responder_private_key.algorithm == 'ec':
sign_func = asymmetric.ecdsa_sign
if not is_oscrypto:
responder_private_key = asymmetric.load_private_key(responder_private_key)
signature_bytes = sign_func(responder_private_key, response_data.dump(), self._hash_algo)
certs = None
if self._certificate_issuer:
certs = [responder_certificate]
return ocsp.OCSPResponse({
'response_status': self._response_status,
'response_bytes': {
'response_type': 'basic_ocsp_response',
'response': {
'tbs_response_data': response_data,
'signature_algorithm': {'algorithm': signature_algorithm_id},
'signature': signature_bytes,
'certs': certs
}
}
}) |
Python | def read_config():
"""
Reads config.json to get configuration settings
"""
with open('config.json') as config_file:
d = json.loads(config_file.read())
global application_host, application_port, application_debug
application_host = d["application"]["host"]
application_port = d["application"]["port"]
application_debug = d["application"]["debug"]
global use_project_to_channel_map, use_project_bugs_to_channel_map
global use_project_to_channel_pattern, project_to_channel_pattern
global use_bug_specific_channel, bug_channel_postfix
global use_attachments
use_project_to_channel_map = d["features"]["use_project_to_channel_map"]
use_project_bugs_to_channel_map = d["features"]["use_project_bugs_to_channel_map"]
use_project_to_channel_pattern = d["features"]["use_project_to_channel_pattern"]
project_to_channel_pattern = d["features"]["project_to_channel_pattern"]
use_bug_specific_channel = d["features"]["use_bug_specific_channel"]
bug_channel_postfix = d["features"]["bug_channel_postfix"]
use_attachments = d["features"]["use_attachments"]
global attachment_color
attachment_color = d["colors"]["attachment"]
global webhook_url, mattermost_user, mattermost_icon
webhook_url = d["mattermost"]["webhook"]
mattermost_user = d["mattermost"]["post_user_name"]
mattermost_icon = d["mattermost"]["post_user_icon"]
global jira_url
jira_url = d["jira"]["url"] | def read_config():
"""
Reads config.json to get configuration settings
"""
with open('config.json') as config_file:
d = json.loads(config_file.read())
global application_host, application_port, application_debug
application_host = d["application"]["host"]
application_port = d["application"]["port"]
application_debug = d["application"]["debug"]
global use_project_to_channel_map, use_project_bugs_to_channel_map
global use_project_to_channel_pattern, project_to_channel_pattern
global use_bug_specific_channel, bug_channel_postfix
global use_attachments
use_project_to_channel_map = d["features"]["use_project_to_channel_map"]
use_project_bugs_to_channel_map = d["features"]["use_project_bugs_to_channel_map"]
use_project_to_channel_pattern = d["features"]["use_project_to_channel_pattern"]
project_to_channel_pattern = d["features"]["project_to_channel_pattern"]
use_bug_specific_channel = d["features"]["use_bug_specific_channel"]
bug_channel_postfix = d["features"]["bug_channel_postfix"]
use_attachments = d["features"]["use_attachments"]
global attachment_color
attachment_color = d["colors"]["attachment"]
global webhook_url, mattermost_user, mattermost_icon
webhook_url = d["mattermost"]["webhook"]
mattermost_user = d["mattermost"]["post_user_name"]
mattermost_icon = d["mattermost"]["post_user_icon"]
global jira_url
jira_url = d["jira"]["url"] |
Python | def send_webhook(project_key, issue_type, text):
"""
Sends the formatted message to the configured
Mattermost webhook URL
"""
if len(project_key) > 0:
channel = get_channel(project_key, issue_type)
data = {
"channel": channel,
"username": mattermost_user,
"icon_url": mattermost_icon
}
if use_attachments:
data["attachments"] = [{
"color": attachment_color,
"text": text
}]
else:
data["text"] = text
response = requests.post(
webhook_url,
data=json.dumps(data),
headers={'Content-Type': 'application/json'}
)
return response | def send_webhook(project_key, issue_type, text):
"""
Sends the formatted message to the configured
Mattermost webhook URL
"""
if len(project_key) > 0:
channel = get_channel(project_key, issue_type)
data = {
"channel": channel,
"username": mattermost_user,
"icon_url": mattermost_icon
}
if use_attachments:
data["attachments"] = [{
"color": attachment_color,
"text": text
}]
else:
data["text"] = text
response = requests.post(
webhook_url,
data=json.dumps(data),
headers={'Content-Type': 'application/json'}
)
return response |
Python | def format_changelog(changelog_items):
"""
The changelog can record 1+ changes to an issue
"""
output = ""
if len(changelog_items) > 1:
output = "\n"
for item in changelog_items:
output += "Field **" + item["field"] + "** updated from _" + \
item["fromString"].encode('ascii','ignore').strip() + "_ to _" + \
item["toString"].encode('ascii','ignore').strip() + "_\n"
return output | def format_changelog(changelog_items):
"""
The changelog can record 1+ changes to an issue
"""
output = ""
if len(changelog_items) > 1:
output = "\n"
for item in changelog_items:
output += "Field **" + item["field"] + "** updated from _" + \
item["fromString"].encode('ascii','ignore').strip() + "_ to _" + \
item["toString"].encode('ascii','ignore').strip() + "_\n"
return output |
Python | def _stream_container_logs(base_url: str, timeout: int, container_id: str) -> None:
"""
Stream container logs back to stdout
Args:
- base_url (str): URL for a Docker daemon server
- timeout (int): timeout for docker api requests
- container_id (str): ID of a container to stream logs
"""
import docker
client = docker.APIClient(base_url=base_url, timeout=timeout, version="auto")
for log in client.logs(container=container_id, stream=True, follow=True):
print(str(log, "utf-8").rstrip()) | def _stream_container_logs(base_url: str, timeout: int, container_id: str) -> None:
"""
Stream container logs back to stdout
Args:
- base_url (str): URL for a Docker daemon server
- timeout (int): timeout for docker api requests
- container_id (str): ID of a container to stream logs
"""
import docker
client = docker.APIClient(base_url=base_url, timeout=timeout, version="auto")
for log in client.logs(container=container_id, stream=True, follow=True):
print(str(log, "utf-8").rstrip()) |
Python | def deploy_flow(self, flow_run: GraphQLResult) -> str:
"""
Deploy flow runs on your local machine as Docker containers
Args:
- flow_run (GraphQLResult): A GraphQLResult flow run object
Returns:
- str: Information about the deployment
"""
# 'import docker' is expensive time-wise, we should do this just-in-time to keep
# the 'import prefect' time low
import docker
run_config = self._get_run_config(flow_run, DockerRun)
assert run_config is None or isinstance(run_config, DockerRun) # mypy
image = get_flow_image(flow_run=flow_run)
env_vars = self.populate_env_vars(flow_run, image, run_config=run_config)
if not self.no_pull and len(image.split("/")) > 1:
self.logger.info("Pulling image {}...".format(image))
registry = image.split("/")[0]
if self.reg_allow_list and registry not in self.reg_allow_list:
self.logger.error(
"Trying to pull image from a Docker registry '{}' which"
" is not in the reg_allow_list".format(registry)
)
raise ValueError(
"Trying to pull image from a Docker registry '{}' which"
" is not in the reg_allow_list".format(registry)
)
else:
pull_output = self.docker_client.pull(image, stream=True, decode=True)
for line in pull_output:
self.logger.debug(line)
self.logger.info("Successfully pulled image {}".format(image))
# Create any named volumes (if they do not already exist)
for named_volume_name in self.named_volumes:
try:
self.docker_client.inspect_volume(name=named_volume_name)
except docker.errors.APIError:
self.logger.debug("Creating named volume {}".format(named_volume_name))
self.docker_client.create_volume(
name=named_volume_name,
driver="local",
labels={"prefect_created": "true"},
)
# Create a container
self.logger.debug("Creating Docker container {}".format(image))
host_config = {
"auto_remove": True,
# Compatibility for linux -- https://github.com/docker/cli/issues/2290
"extra_hosts": {"host.docker.internal": "host-gateway"},
} # type: dict
container_mount_paths = self.container_mount_paths
if container_mount_paths:
host_config.update(binds=self.host_spec)
if run_config is not None and run_config.host_config:
# The host_config passed from the run_config will overwrite defaults
host_config.update(run_config.host_config)
networking_config = None
# At the time of creation, you can only connect a container to a single network,
# however you can create more connections after creation.
# Connect first network in the creation step. If no network is connected here the container
# is connected to the default `bridge` network.
# The rest of the networks are connected after creation.
if self.networks:
networking_config = self.docker_client.create_networking_config(
{self.networks[0]: self.docker_client.create_endpoint_config()}
)
labels = {
"io.prefect.flow-name": flow_run.flow.name,
"io.prefect.flow-id": flow_run.flow.id,
"io.prefect.flow-run-id": flow_run.id,
}
# Generate a container name to match the flow run name, ensuring it is docker
# compatible and unique. Must match `[a-zA-Z0-9][a-zA-Z0-9_.-]+` in the end
container_name = slugified_name = (
slugify(
flow_run.name,
lowercase=False,
# Docker does not limit length but URL limits apply eventually so
# limit the length for safety
max_length=250,
# Docker allows these characters for container names
regex_pattern=r"[^a-zA-Z0-9_.-]+",
).lstrip(
# Docker does not allow leading underscore, dash, or period
"_-."
)
# Docker does not allow 0 character names so use the flow run id if name
# would be empty after cleaning
or flow_run.id
)
# Create the container with retries on name conflicts
index = 0 # will be bumped on name colissions
while True:
try:
container = self.docker_client.create_container(
image,
command=get_flow_run_command(flow_run),
environment=env_vars,
name=container_name,
volumes=container_mount_paths,
host_config=self.docker_client.create_host_config(**host_config),
networking_config=networking_config,
labels=labels,
)
except docker.errors.APIError as exc:
if "Conflict" in str(exc) and "container name" in str(exc):
index += 1
container_name = f"{slugified_name}-{index}"
else:
raise
else:
break
# Connect the rest of the networks
if self.networks:
for network in self.networks[1:]:
self.docker_client.connect_container_to_network(
container=container, net_id=network
)
# Start the container
self.logger.debug(
f"Starting Docker container with ID {container.get('Id')} and "
f"name {container_name!r}"
)
if self.networks:
self.logger.debug(
"Adding container with ID {} to docker networks: {}.".format(
container.get("Id"), self.networks
)
)
self.docker_client.start(container=container.get("Id"))
if self.show_flow_logs:
self.stream_flow_logs(container.get("Id"))
self.logger.debug("Docker container {} started".format(container.get("Id")))
return "Container ID: {}".format(container.get("Id")) | def deploy_flow(self, flow_run: GraphQLResult) -> str:
"""
Deploy flow runs on your local machine as Docker containers
Args:
- flow_run (GraphQLResult): A GraphQLResult flow run object
Returns:
- str: Information about the deployment
"""
# 'import docker' is expensive time-wise, we should do this just-in-time to keep
# the 'import prefect' time low
import docker
run_config = self._get_run_config(flow_run, DockerRun)
assert run_config is None or isinstance(run_config, DockerRun) # mypy
image = get_flow_image(flow_run=flow_run)
env_vars = self.populate_env_vars(flow_run, image, run_config=run_config)
if not self.no_pull and len(image.split("/")) > 1:
self.logger.info("Pulling image {}...".format(image))
registry = image.split("/")[0]
if self.reg_allow_list and registry not in self.reg_allow_list:
self.logger.error(
"Trying to pull image from a Docker registry '{}' which"
" is not in the reg_allow_list".format(registry)
)
raise ValueError(
"Trying to pull image from a Docker registry '{}' which"
" is not in the reg_allow_list".format(registry)
)
else:
pull_output = self.docker_client.pull(image, stream=True, decode=True)
for line in pull_output:
self.logger.debug(line)
self.logger.info("Successfully pulled image {}".format(image))
# Create any named volumes (if they do not already exist)
for named_volume_name in self.named_volumes:
try:
self.docker_client.inspect_volume(name=named_volume_name)
except docker.errors.APIError:
self.logger.debug("Creating named volume {}".format(named_volume_name))
self.docker_client.create_volume(
name=named_volume_name,
driver="local",
labels={"prefect_created": "true"},
)
# Create a container
self.logger.debug("Creating Docker container {}".format(image))
host_config = {
"auto_remove": True,
# Compatibility for linux -- https://github.com/docker/cli/issues/2290
"extra_hosts": {"host.docker.internal": "host-gateway"},
} # type: dict
container_mount_paths = self.container_mount_paths
if container_mount_paths:
host_config.update(binds=self.host_spec)
if run_config is not None and run_config.host_config:
# The host_config passed from the run_config will overwrite defaults
host_config.update(run_config.host_config)
networking_config = None
# At the time of creation, you can only connect a container to a single network,
# however you can create more connections after creation.
# Connect first network in the creation step. If no network is connected here the container
# is connected to the default `bridge` network.
# The rest of the networks are connected after creation.
if self.networks:
networking_config = self.docker_client.create_networking_config(
{self.networks[0]: self.docker_client.create_endpoint_config()}
)
labels = {
"io.prefect.flow-name": flow_run.flow.name,
"io.prefect.flow-id": flow_run.flow.id,
"io.prefect.flow-run-id": flow_run.id,
}
# Generate a container name to match the flow run name, ensuring it is docker
# compatible and unique. Must match `[a-zA-Z0-9][a-zA-Z0-9_.-]+` in the end
container_name = slugified_name = (
slugify(
flow_run.name,
lowercase=False,
# Docker does not limit length but URL limits apply eventually so
# limit the length for safety
max_length=250,
# Docker allows these characters for container names
regex_pattern=r"[^a-zA-Z0-9_.-]+",
).lstrip(
# Docker does not allow leading underscore, dash, or period
"_-."
)
# Docker does not allow 0 character names so use the flow run id if name
# would be empty after cleaning
or flow_run.id
)
# Create the container with retries on name conflicts
index = 0 # will be bumped on name colissions
while True:
try:
container = self.docker_client.create_container(
image,
command=get_flow_run_command(flow_run),
environment=env_vars,
name=container_name,
volumes=container_mount_paths,
host_config=self.docker_client.create_host_config(**host_config),
networking_config=networking_config,
labels=labels,
)
except docker.errors.APIError as exc:
if "Conflict" in str(exc) and "container name" in str(exc):
index += 1
container_name = f"{slugified_name}-{index}"
else:
raise
else:
break
# Connect the rest of the networks
if self.networks:
for network in self.networks[1:]:
self.docker_client.connect_container_to_network(
container=container, net_id=network
)
# Start the container
self.logger.debug(
f"Starting Docker container with ID {container.get('Id')} and "
f"name {container_name!r}"
)
if self.networks:
self.logger.debug(
"Adding container with ID {} to docker networks: {}.".format(
container.get("Id"), self.networks
)
)
self.docker_client.start(container=container.get("Id"))
if self.show_flow_logs:
self.stream_flow_logs(container.get("Id"))
self.logger.debug("Docker container {} started".format(container.get("Id")))
return "Container ID: {}".format(container.get("Id")) |
Python | def stream_flow_logs(self, container_id: str) -> None:
"""Stream container logs back to stdout.
Args:
- container_id (str): ID of container
"""
# All arguments to multiprocessing.Process need to be pickleable
proc = multiprocessing.Process(
target=_stream_container_logs,
kwargs={
"base_url": self.base_url,
"timeout": self.docker_client_timeout,
"container_id": container_id,
},
)
proc.start()
self.processes.append(proc) | def stream_flow_logs(self, container_id: str) -> None:
"""Stream container logs back to stdout.
Args:
- container_id (str): ID of container
"""
# All arguments to multiprocessing.Process need to be pickleable
proc = multiprocessing.Process(
target=_stream_container_logs,
kwargs={
"base_url": self.base_url,
"timeout": self.docker_client_timeout,
"container_id": container_id,
},
)
proc.start()
self.processes.append(proc) |
Python | def populate_env_vars(
self, flow_run: GraphQLResult, image: str, run_config: DockerRun = None
) -> dict:
"""
Populate metadata and variables in the environment variables for a flow run
Args:
- flow_run (GraphQLResult): A flow run object
- image (str): The image for this flow
- run_config (DockerRun, optional): The `run_config` for the flow, if any.
Returns:
- dict: a dictionary representing the populated environment variables
"""
if "localhost" in config.cloud.api:
api = "http://host.docker.internal:{}".format(config.server.port)
else:
api = config.cloud.api
env = {}
# Populate environment variables, later sources overriding
# 1. Logging level from config
# Default to the config logging level, allowing it to be overriden
# by later config soruces
env.update({"PREFECT__LOGGING__LEVEL": config.logging.level})
# 2. Values set on the agent via `--env`
env.update(self.env_vars)
# 3. Values set on a DockerRun RunConfig (if present)
if run_config is not None and run_config.env is not None:
env.update(run_config.env)
# 4. Non-overrideable required env vars
env.update(
{
"PREFECT__BACKEND": config.backend,
"PREFECT__CLOUD__API": api,
"PREFECT__CLOUD__AUTH_TOKEN": (
# Pull an auth token if it exists but fall back to an API key so
# flows in pre-0.15.0 containers still authenticate correctly
config.cloud.agent.get("auth_token")
or self.flow_run_api_key
or ""
),
"PREFECT__CLOUD__API_KEY": self.flow_run_api_key or "",
"PREFECT__CLOUD__TENANT_ID": (
# Providing a tenant id is only necessary for API keys (not tokens)
self.client.tenant_id
if self.flow_run_api_key
else ""
),
"PREFECT__CLOUD__AGENT__LABELS": str(self.labels),
"PREFECT__CLOUD__SEND_FLOW_RUN_LOGS": str(self.log_to_cloud).lower(),
"PREFECT__CONTEXT__FLOW_RUN_ID": flow_run.id, # type: ignore
"PREFECT__CONTEXT__FLOW_ID": flow_run.flow.id, # type: ignore
"PREFECT__CONTEXT__IMAGE": image,
"PREFECT__CLOUD__USE_LOCAL_SECRETS": "false",
"PREFECT__ENGINE__FLOW_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudFlowRunner",
"PREFECT__ENGINE__TASK_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudTaskRunner",
# Backwards compatibility variable for containers on Prefect <0.15.0
"PREFECT__LOGGING__LOG_TO_CLOUD": str(self.log_to_cloud).lower(),
}
)
return env | def populate_env_vars(
self, flow_run: GraphQLResult, image: str, run_config: DockerRun = None
) -> dict:
"""
Populate metadata and variables in the environment variables for a flow run
Args:
- flow_run (GraphQLResult): A flow run object
- image (str): The image for this flow
- run_config (DockerRun, optional): The `run_config` for the flow, if any.
Returns:
- dict: a dictionary representing the populated environment variables
"""
if "localhost" in config.cloud.api:
api = "http://host.docker.internal:{}".format(config.server.port)
else:
api = config.cloud.api
env = {}
# Populate environment variables, later sources overriding
# 1. Logging level from config
# Default to the config logging level, allowing it to be overriden
# by later config soruces
env.update({"PREFECT__LOGGING__LEVEL": config.logging.level})
# 2. Values set on the agent via `--env`
env.update(self.env_vars)
# 3. Values set on a DockerRun RunConfig (if present)
if run_config is not None and run_config.env is not None:
env.update(run_config.env)
# 4. Non-overrideable required env vars
env.update(
{
"PREFECT__BACKEND": config.backend,
"PREFECT__CLOUD__API": api,
"PREFECT__CLOUD__AUTH_TOKEN": (
# Pull an auth token if it exists but fall back to an API key so
# flows in pre-0.15.0 containers still authenticate correctly
config.cloud.agent.get("auth_token")
or self.flow_run_api_key
or ""
),
"PREFECT__CLOUD__API_KEY": self.flow_run_api_key or "",
"PREFECT__CLOUD__TENANT_ID": (
# Providing a tenant id is only necessary for API keys (not tokens)
self.client.tenant_id
if self.flow_run_api_key
else ""
),
"PREFECT__CLOUD__AGENT__LABELS": str(self.labels),
"PREFECT__CLOUD__SEND_FLOW_RUN_LOGS": str(self.log_to_cloud).lower(),
"PREFECT__CONTEXT__FLOW_RUN_ID": flow_run.id, # type: ignore
"PREFECT__CONTEXT__FLOW_ID": flow_run.flow.id, # type: ignore
"PREFECT__CONTEXT__IMAGE": image,
"PREFECT__CLOUD__USE_LOCAL_SECRETS": "false",
"PREFECT__ENGINE__FLOW_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudFlowRunner",
"PREFECT__ENGINE__TASK_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudTaskRunner",
# Backwards compatibility variable for containers on Prefect <0.15.0
"PREFECT__LOGGING__LOG_TO_CLOUD": str(self.log_to_cloud).lower(),
}
)
return env |
Python | def _interval_validation(self, data: dict, **kwargs: Any) -> dict:
"""
Ensures interval is at least one minute in length
"""
if data["interval"] / 1e6 < 60:
raise ValueError(
"Interval can not be less than one minute when deploying to Prefect Cloud."
)
return data | def _interval_validation(self, data: dict, **kwargs: Any) -> dict:
"""
Ensures interval is at least one minute in length
"""
if data["interval"] / 1e6 < 60:
raise ValueError(
"Interval can not be less than one minute when deploying to Prefect Cloud."
)
return data |
Python | async def fetch_posts(urls):
"""
Wrapper that allows blogposts to be fetched asynchronously
:param urls: List of blog urls
"""
coroutines = [parse_blog_post(url) for url in urls]
await asyncio.wait(coroutines) | async def fetch_posts(urls):
"""
Wrapper that allows blogposts to be fetched asynchronously
:param urls: List of blog urls
"""
coroutines = [parse_blog_post(url) for url in urls]
await asyncio.wait(coroutines) |
Python | async def parse_blog_post(blog_link):
"""
Given a blog post's URL, this function GETs it and pulls the body out.
We then analyze each word with NTLK and write some data into redis.
:param blog_link: String
:return: Raw text from the blog post w/html tags stripped out
"""
global blogs_scraped_counter
global word_count
print('Fetching raw text for {}'.format(blog_link))
soup = BeautifulSoup(r.get(blog_link).content,
features='html.parser')
post_text = soup.find(
'div', attrs={'class': parser_util.POST_BODY_CLASS}).get_text()
sanitized_post_text = parser_util.sanitize_blogpost(
post_text, translator=parser_util.sentence_translator)
print('Successfully parsed post.')
if parser_util.DEBUG_MODE:
print('\nSanitized blogpost:\n{clean}\n\nOriginal text:{orig}'.format(clean=sanitized_post_text,
orig=post_text))
print('Adding sentence information to postgres.')
for sentence in sanitized_post_text.split('.'):
# TODO: Implement word2vec and send actual vector instead of empty tuple
pg.update_sentence_details(sentence, blog_link, '{}')
for word in sentence.split(' '):
analyze_word(word.strip(), blog_link)
blogs_scraped_counter = blogs_scraped_counter + 1 | async def parse_blog_post(blog_link):
"""
Given a blog post's URL, this function GETs it and pulls the body out.
We then analyze each word with NTLK and write some data into redis.
:param blog_link: String
:return: Raw text from the blog post w/html tags stripped out
"""
global blogs_scraped_counter
global word_count
print('Fetching raw text for {}'.format(blog_link))
soup = BeautifulSoup(r.get(blog_link).content,
features='html.parser')
post_text = soup.find(
'div', attrs={'class': parser_util.POST_BODY_CLASS}).get_text()
sanitized_post_text = parser_util.sanitize_blogpost(
post_text, translator=parser_util.sentence_translator)
print('Successfully parsed post.')
if parser_util.DEBUG_MODE:
print('\nSanitized blogpost:\n{clean}\n\nOriginal text:{orig}'.format(clean=sanitized_post_text,
orig=post_text))
print('Adding sentence information to postgres.')
for sentence in sanitized_post_text.split('.'):
# TODO: Implement word2vec and send actual vector instead of empty tuple
pg.update_sentence_details(sentence, blog_link, '{}')
for word in sentence.split(' '):
analyze_word(word.strip(), blog_link)
blogs_scraped_counter = blogs_scraped_counter + 1 |
Python | def analyze_word(word, blog_link):
"""
Given a word, we figure out its POS and store various info in redis.
:param word: str
:param blog_link: url that the word came from, only used for logging
:return: tuple containing the word and POS of that word
"""
global word_count
word_count = word_count + 1
# Now we do some nltk wizardry
try:
pos_array = nltk.pos_tag([word])
pos_tuple = pos_array[0]
pos = pos_tuple[1]
# Send some info to the db
pg.update_word_details(word, pos)
pg.update_blog_details(word, blog_link)
if pos in pos_counts:
pos_counts[pos] = pos_counts[pos] + 1
else:
pos_counts[pos] = 1
# we don't actually need this but it's useful for testing
return pos_tuple
except IndexError:
# This is the only instance in which an exception is actually cause for concern
if len(word) > 0:
print('Failed to nltk-ify a post.\nURL: {url}\nWord: {word}'.format(url=blog_link,
word=word))
except Exception as e:
print('Word analyzer encountered an unexpected exception on word: {w}\n Exception:{e}'.format(w=word,
e=e)) | def analyze_word(word, blog_link):
"""
Given a word, we figure out its POS and store various info in redis.
:param word: str
:param blog_link: url that the word came from, only used for logging
:return: tuple containing the word and POS of that word
"""
global word_count
word_count = word_count + 1
# Now we do some nltk wizardry
try:
pos_array = nltk.pos_tag([word])
pos_tuple = pos_array[0]
pos = pos_tuple[1]
# Send some info to the db
pg.update_word_details(word, pos)
pg.update_blog_details(word, blog_link)
if pos in pos_counts:
pos_counts[pos] = pos_counts[pos] + 1
else:
pos_counts[pos] = 1
# we don't actually need this but it's useful for testing
return pos_tuple
except IndexError:
# This is the only instance in which an exception is actually cause for concern
if len(word) > 0:
print('Failed to nltk-ify a post.\nURL: {url}\nWord: {word}'.format(url=blog_link,
word=word))
except Exception as e:
print('Word analyzer encountered an unexpected exception on word: {w}\n Exception:{e}'.format(w=word,
e=e)) |
Python | def _execute_query(query):
"""
Fetches a connection to our pg db
"""
try:
_db_cursor.execute(query)
result = _db_cursor.fetchall()
except pg.ProgrammingError:
result = None
except pg.IntegrityError:
print('Violated a DB constraint with query: ' + query)
result = None
return result | def _execute_query(query):
"""
Fetches a connection to our pg db
"""
try:
_db_cursor.execute(query)
result = _db_cursor.fetchall()
except pg.ProgrammingError:
result = None
except pg.IntegrityError:
print('Violated a DB constraint with query: ' + query)
result = None
return result |
Python | def update_word_details(word, pos):
"""
Given a word and a part of speech, we update the word_details table
:param word: it's uh.. a word. Pulled from the blog post being parsed
:param pos: part of speech as determined by NLTK
"""
if len(word) < 1:
print('Skipping empty word.')
else:
_execute_query(_WORD_UPDATE_QUERY.format(word=word,
pos=pos)) | def update_word_details(word, pos):
"""
Given a word and a part of speech, we update the word_details table
:param word: it's uh.. a word. Pulled from the blog post being parsed
:param pos: part of speech as determined by NLTK
"""
if len(word) < 1:
print('Skipping empty word.')
else:
_execute_query(_WORD_UPDATE_QUERY.format(word=word,
pos=pos)) |
Python | def update_blog_details(word, url):
"""
Given a word and a url, we update the blog_details table
:param word: yeah again.. it's a word
:param url: blog's url
"""
if len(word) < 1:
print('Skipping empty word.')
else:
_execute_query(_BLOG_UPDATE_QUERY.format(word=word,
url=url)) | def update_blog_details(word, url):
"""
Given a word and a url, we update the blog_details table
:param word: yeah again.. it's a word
:param url: blog's url
"""
if len(word) < 1:
print('Skipping empty word.')
else:
_execute_query(_BLOG_UPDATE_QUERY.format(word=word,
url=url)) |
Python | def update_sentence_details(sentence, url, vector):
"""
Given a sentence, blog url, and vector, update the sentence details table.
:param sentence: Sanitized and pruned sentence
:param url: link to the blog sentence came from
:param vector: word2vec vector
"""
sentence_length = len(sentence)
if sentence_length < 1:
print("Skipping empty sentence.")
else:
_execute_query(_SENTENCE_UPDATE_QUERY.format(sentence=sentence,
length=sentence_length,
vector=vector,
url=url)) | def update_sentence_details(sentence, url, vector):
"""
Given a sentence, blog url, and vector, update the sentence details table.
:param sentence: Sanitized and pruned sentence
:param url: link to the blog sentence came from
:param vector: word2vec vector
"""
sentence_length = len(sentence)
if sentence_length < 1:
print("Skipping empty sentence.")
else:
_execute_query(_SENTENCE_UPDATE_QUERY.format(sentence=sentence,
length=sentence_length,
vector=vector,
url=url)) |
Python | def sanitize_blogpost(post, translator=word_translator):
"""
This function removes punctuation, newlines, and double spaces so that
nltk has a fighting chance of parsing a scraped blogpost.
:param post: Raw post text from Soup
:param translator: string translator that cleans up punctuation
:return: cleaned text from the post body
"""
return post.replace('\n\n', '\n') \
.replace('\r', ' ').replace('\n', ' ') \
.translate(translator) \
.replace(' ', ' ') \
.strip() \
.lower() | def sanitize_blogpost(post, translator=word_translator):
"""
This function removes punctuation, newlines, and double spaces so that
nltk has a fighting chance of parsing a scraped blogpost.
:param post: Raw post text from Soup
:param translator: string translator that cleans up punctuation
:return: cleaned text from the post body
"""
return post.replace('\n\n', '\n') \
.replace('\r', ' ').replace('\n', ' ') \
.translate(translator) \
.replace(' ', ' ') \
.strip() \
.lower() |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train'
)
])
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'test'
)
])
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train'
)
])
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'test'
)
])
return message |
Python | def construct_model():
"""Construct LBANN model.
Pilot1 Combo model
"""
import lbann
# Layer graph
data = lbann.Input(data_field='samples')
responses = lbann.Input(data_field='responses')
pred = combo.Combo()(data)
mse = lbann.MeanSquaredError([responses, pred])
SS_res = lbann.Reduction(lbann.Square(lbann.Subtract(responses, pred)), mode='sum')
#SS_tot = var(x) = mean((x-mean(x))^2)
mini_batch_size = lbann.MiniBatchSize()
mean = lbann.Divide(lbann.BatchwiseReduceSum(responses), mini_batch_size)
SS_tot = lbann.Divide(lbann.BatchwiseReduceSum(lbann.Square(lbann.Subtract(responses, mean))), mini_batch_size)
eps = lbann.Constant(value=1e-07,hint_layer=SS_tot)
r2 = lbann.Subtract(lbann.Constant(value=1, num_neurons='1'), lbann.Divide(SS_res, lbann.Add(SS_tot,eps)))
metrics = [lbann.Metric(mse, name='mse')]
metrics.append(lbann.Metric(r2, name='r2'))
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
# Construct model
num_epochs = 100
layers = list(lbann.traverse_layer_graph([data, responses]))
return lbann.Model(num_epochs,
layers=layers,
metrics=metrics,
objective_function=mse,
callbacks=callbacks) | def construct_model():
"""Construct LBANN model.
Pilot1 Combo model
"""
import lbann
# Layer graph
data = lbann.Input(data_field='samples')
responses = lbann.Input(data_field='responses')
pred = combo.Combo()(data)
mse = lbann.MeanSquaredError([responses, pred])
SS_res = lbann.Reduction(lbann.Square(lbann.Subtract(responses, pred)), mode='sum')
#SS_tot = var(x) = mean((x-mean(x))^2)
mini_batch_size = lbann.MiniBatchSize()
mean = lbann.Divide(lbann.BatchwiseReduceSum(responses), mini_batch_size)
SS_tot = lbann.Divide(lbann.BatchwiseReduceSum(lbann.Square(lbann.Subtract(responses, mean))), mini_batch_size)
eps = lbann.Constant(value=1e-07,hint_layer=SS_tot)
r2 = lbann.Subtract(lbann.Constant(value=1, num_neurons='1'), lbann.Divide(SS_res, lbann.Add(SS_tot,eps)))
metrics = [lbann.Metric(mse, name='mse')]
metrics.append(lbann.Metric(r2, name='r2'))
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
# Construct model
num_epochs = 100
layers = list(lbann.traverse_layer_graph([data, responses]))
return lbann.Model(num_epochs,
layers=layers,
metrics=metrics,
objective_function=mse,
callbacks=callbacks) |
Python | def _positional_encoding(self, sequence_length):
"""Positional encodings corresponding to a sequence length.
PE(pos,2*i) = sin( pos / 10000**(2*i/hidden_size) )
PE(pos,2*i+1) = cos( pos / 10000**(2*i/hidden_size) )
Encodings are memoized.
"""
# Construct positional encoding if not in cache
if sequence_length not in self._positional_encoding_cache:
vals = []
for pos in range(sequence_length):
for i in range((self.hidden_size+1) // 2):
x = pos / 10000**(2*i/self.hidden_size)
vals.append(math.sin(x))
vals.append(math.cos(x))
if self.hidden_size % 2 != 0:
vals.pop()
weights = lbann.Weights(
initializer=lbann.ValueInitializer(values=str_list(vals)),
optimizer=None,
name=f'{self.name}_positional{sequence_length}_weights',
)
self._positional_encoding_cache[sequence_length] = lbann.WeightsLayer(
dims=str_list([sequence_length, self.hidden_size]),
weights=weights,
name=f'{self.name}_positional{sequence_length}',
)
# Return cached positional encoding
return self._positional_encoding_cache[sequence_length] | def _positional_encoding(self, sequence_length):
"""Positional encodings corresponding to a sequence length.
PE(pos,2*i) = sin( pos / 10000**(2*i/hidden_size) )
PE(pos,2*i+1) = cos( pos / 10000**(2*i/hidden_size) )
Encodings are memoized.
"""
# Construct positional encoding if not in cache
if sequence_length not in self._positional_encoding_cache:
vals = []
for pos in range(sequence_length):
for i in range((self.hidden_size+1) // 2):
x = pos / 10000**(2*i/self.hidden_size)
vals.append(math.sin(x))
vals.append(math.cos(x))
if self.hidden_size % 2 != 0:
vals.pop()
weights = lbann.Weights(
initializer=lbann.ValueInitializer(values=str_list(vals)),
optimizer=None,
name=f'{self.name}_positional{sequence_length}_weights',
)
self._positional_encoding_cache[sequence_length] = lbann.WeightsLayer(
dims=str_list([sequence_length, self.hidden_size]),
weights=weights,
name=f'{self.name}_positional{sequence_length}',
)
# Return cached positional encoding
return self._positional_encoding_cache[sequence_length] |
Python | def _subsequent_mask(self, size):
"""Attention mask to prevent attending to subsequent positions.
The (i,j) entry is -1e9 if i<j and is 0 otherwise. Masks are
memoized.
"""
# Construct mask if not in cache
if size not in self._subsequent_mask_cache:
vals = np.triu(np.full((size,size), -1e9), k=1)
weights = lbann.Weights(
initializer=lbann.ValueInitializer(values=str_list(np.nditer(vals))),
optimizer=None,
name=f'{self.name}_mask{size}_weights',
)
self._subsequent_mask_cache[size] = lbann.WeightsLayer(
dims=str_list([size, size]),
weights=weights,
name=f'{self.name}_mask{size}',
)
# Return cached mask
return self._subsequent_mask_cache[size] | def _subsequent_mask(self, size):
"""Attention mask to prevent attending to subsequent positions.
The (i,j) entry is -1e9 if i<j and is 0 otherwise. Masks are
memoized.
"""
# Construct mask if not in cache
if size not in self._subsequent_mask_cache:
vals = np.triu(np.full((size,size), -1e9), k=1)
weights = lbann.Weights(
initializer=lbann.ValueInitializer(values=str_list(np.nditer(vals))),
optimizer=None,
name=f'{self.name}_mask{size}_weights',
)
self._subsequent_mask_cache[size] = lbann.WeightsLayer(
dims=str_list([size, size]),
weights=weights,
name=f'{self.name}_mask{size}',
)
# Return cached mask
return self._subsequent_mask_cache[size] |
Python | def forward(self, source, source_length, target, target_length):
"""Apply Transformer.
The input and output tensors are interpreted as sequences of
vectors, where the first tensor dimension is the sequence
dimension.
Args:
source (lbann.Layer): Sequence of input vectors to encoder
stack.
source_length (int): Length of input sequence to encoder.
target (lbann.Layer): Sequence of input vectors to decoder
stack.
target_length (int): Length of input sequence to decoder.
Returns:
lbann.Layer: Sequence of output vectors.
"""
self.instance += 1
# Encoder stack
# Note: Add positional encoding to input
x = lbann.Sum([
source,
self._positional_encoding(source_length)],
name=f'{self.name}_instance{self.instance}_positional_source',
)
for encoder_layer in self.encoder:
x = encoder_layer(x)
memory = x
# Decoder stack
# Note: Add positional encoding to input
x = lbann.Sum(
[target,
self._positional_encoding(target_length)],
name=f'{self.name}_instance{self.instance}_positional_target',
)
subgraph_masks = {}
if(self.branches>0):
for i in range(self.branches):
subgraph_masks[i+1] = lbann.Identity(self._subsequent_mask(target_length),name="mylayer"+str(i) ,
parallel_strategy = {'sub_branch_tag':i+1,'enable_subgraph':True})
subgraph_masks[i+1] = lbann.Identity(subgraph_masks[i+1])
if(self.branches>0):
for decoder_layer in self.decoder:
x = decoder_layer(
x,
memory,
tgt_mask=subgraph_masks,
)
else:
for decoder_layer in self.decoder:
x = decoder_layer(
x,
memory,
tgt_mask=self._subsequent_mask(target_length),
)
return x | def forward(self, source, source_length, target, target_length):
"""Apply Transformer.
The input and output tensors are interpreted as sequences of
vectors, where the first tensor dimension is the sequence
dimension.
Args:
source (lbann.Layer): Sequence of input vectors to encoder
stack.
source_length (int): Length of input sequence to encoder.
target (lbann.Layer): Sequence of input vectors to decoder
stack.
target_length (int): Length of input sequence to decoder.
Returns:
lbann.Layer: Sequence of output vectors.
"""
self.instance += 1
# Encoder stack
# Note: Add positional encoding to input
x = lbann.Sum([
source,
self._positional_encoding(source_length)],
name=f'{self.name}_instance{self.instance}_positional_source',
)
for encoder_layer in self.encoder:
x = encoder_layer(x)
memory = x
# Decoder stack
# Note: Add positional encoding to input
x = lbann.Sum(
[target,
self._positional_encoding(target_length)],
name=f'{self.name}_instance{self.instance}_positional_target',
)
subgraph_masks = {}
if(self.branches>0):
for i in range(self.branches):
subgraph_masks[i+1] = lbann.Identity(self._subsequent_mask(target_length),name="mylayer"+str(i) ,
parallel_strategy = {'sub_branch_tag':i+1,'enable_subgraph':True})
subgraph_masks[i+1] = lbann.Identity(subgraph_masks[i+1])
if(self.branches>0):
for decoder_layer in self.decoder:
x = decoder_layer(
x,
memory,
tgt_mask=subgraph_masks,
)
else:
for decoder_layer in self.decoder:
x = decoder_layer(
x,
memory,
tgt_mask=self._subsequent_mask(target_length),
)
return x |
Python | def create_cosmoflow_data_reader(
train_path, val_path, test_path, num_responses):
"""Create a data reader for CosmoFlow.
Args:
{train, val, test}_path (str): Path to the corresponding dataset.
num_responses (int): The number of parameters to predict.
"""
reader_args = [
{"role": "train", "data_filename": train_path},
{"role": "validate", "data_filename": val_path},
{"role": "test", "data_filename": test_path},
]
for reader_arg in reader_args:
reader_arg["data_file_pattern"] = "{}/*.hdf5".format(
reader_arg["data_filename"])
reader_arg["hdf5_key_data"] = "full"
reader_arg["hdf5_key_responses"] = "unitPar"
reader_arg["num_responses"] = num_responses
reader_arg.pop("data_filename")
readers = []
for reader_arg in reader_args:
reader = lbann.reader_pb2.Reader(
name="hdf5",
shuffle=(reader_arg["role"] != "test"),
validation_percent=0,
absolute_sample_count=0,
percent_of_data_to_use=1.0,
disable_labels=True,
disable_responses=False,
scaling_factor_int16=1.0,
**reader_arg)
readers.append(reader)
return lbann.reader_pb2.DataReader(reader=readers) | def create_cosmoflow_data_reader(
train_path, val_path, test_path, num_responses):
"""Create a data reader for CosmoFlow.
Args:
{train, val, test}_path (str): Path to the corresponding dataset.
num_responses (int): The number of parameters to predict.
"""
reader_args = [
{"role": "train", "data_filename": train_path},
{"role": "validate", "data_filename": val_path},
{"role": "test", "data_filename": test_path},
]
for reader_arg in reader_args:
reader_arg["data_file_pattern"] = "{}/*.hdf5".format(
reader_arg["data_filename"])
reader_arg["hdf5_key_data"] = "full"
reader_arg["hdf5_key_responses"] = "unitPar"
reader_arg["num_responses"] = num_responses
reader_arg.pop("data_filename")
readers = []
for reader_arg in reader_args:
reader = lbann.reader_pb2.Reader(
name="hdf5",
shuffle=(reader_arg["role"] != "test"),
validation_percent=0,
absolute_sample_count=0,
percent_of_data_to_use=1.0,
disable_labels=True,
disable_responses=False,
scaling_factor_int16=1.0,
**reader_arg)
readers.append(reader)
return lbann.reader_pb2.DataReader(reader=readers) |
Python | def generate_operator_layer(operator_class):
"""Create operator layer class for a single operator
Returns a class that inherits from lbann.OperatorLayer.
Args:
operator_class (type): A derived class of
lbann.operators.Operator
"""
def __init__(self, *args, **kwargs):
"""Operator layer with a single operator
Forwards arguments to lbann.OperatorLayer or sub-class of
lbann.Operator.
"""
layer_kwargs = lbann.Layer.__init__.__kwdefaults__.copy()
op_kwargs = {}
for key, value in kwargs.items():
if key in layer_kwargs:
layer_kwargs[key] = value
else:
op_kwargs[key] = value
layer_kwargs['ops'] = [ operator_class(**op_kwargs) ]
OperatorLayer.__init__(self, *args, **layer_kwargs)
def export_proto(self):
"""Construct and return a protobuf message."""
# Use default datatype if not specified
if self.datatype is None:
self.datatype = 0
# Convert device string to enum
device = lbann.DeviceAllocation.DEFAULT_DEVICE
if isinstance(self.device, str):
if self.device.lower() == 'cpu':
device = lbann.DeviceAllocation.CPU
elif self.device.lower() == 'gpu':
device = lbann.DeviceAllocation.GPU
# Configure operators to match layer
for o in self.ops:
o.input_type = self.datatype
o.output_type = self.datatype
o.device_allocation = device
# Generate Protobuf message
return OperatorLayer.export_proto(self)
# Return operator layer class
class_name = operator_class.__name__
class_dict = {'__init__': __init__, 'export_proto': export_proto}
return type(class_name, (OperatorLayer,), class_dict) | def generate_operator_layer(operator_class):
"""Create operator layer class for a single operator
Returns a class that inherits from lbann.OperatorLayer.
Args:
operator_class (type): A derived class of
lbann.operators.Operator
"""
def __init__(self, *args, **kwargs):
"""Operator layer with a single operator
Forwards arguments to lbann.OperatorLayer or sub-class of
lbann.Operator.
"""
layer_kwargs = lbann.Layer.__init__.__kwdefaults__.copy()
op_kwargs = {}
for key, value in kwargs.items():
if key in layer_kwargs:
layer_kwargs[key] = value
else:
op_kwargs[key] = value
layer_kwargs['ops'] = [ operator_class(**op_kwargs) ]
OperatorLayer.__init__(self, *args, **layer_kwargs)
def export_proto(self):
"""Construct and return a protobuf message."""
# Use default datatype if not specified
if self.datatype is None:
self.datatype = 0
# Convert device string to enum
device = lbann.DeviceAllocation.DEFAULT_DEVICE
if isinstance(self.device, str):
if self.device.lower() == 'cpu':
device = lbann.DeviceAllocation.CPU
elif self.device.lower() == 'gpu':
device = lbann.DeviceAllocation.GPU
# Configure operators to match layer
for o in self.ops:
o.input_type = self.datatype
o.output_type = self.datatype
o.device_allocation = device
# Generate Protobuf message
return OperatorLayer.export_proto(self)
# Return operator layer class
class_name = operator_class.__name__
class_dict = {'__init__': __init__, 'export_proto': export_proto}
return type(class_name, (OperatorLayer,), class_dict) |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
# Use default datatype if not specified
if self.datatype is None:
self.datatype = 0
# Convert device string to enum
device = lbann.DeviceAllocation.DEFAULT_DEVICE
if isinstance(self.device, str):
if self.device.lower() == 'cpu':
device = lbann.DeviceAllocation.CPU
elif self.device.lower() == 'gpu':
device = lbann.DeviceAllocation.GPU
# Configure operators to match layer
for o in self.ops:
o.input_type = self.datatype
o.output_type = self.datatype
o.device_allocation = device
# Generate Protobuf message
return OperatorLayer.export_proto(self) | def export_proto(self):
"""Construct and return a protobuf message."""
# Use default datatype if not specified
if self.datatype is None:
self.datatype = 0
# Convert device string to enum
device = lbann.DeviceAllocation.DEFAULT_DEVICE
if isinstance(self.device, str):
if self.device.lower() == 'cpu':
device = lbann.DeviceAllocation.CPU
elif self.device.lower() == 'gpu':
device = lbann.DeviceAllocation.GPU
# Configure operators to match layer
for o in self.ops:
o.input_type = self.datatype
o.output_type = self.datatype
o.device_allocation = device
# Generate Protobuf message
return OperatorLayer.export_proto(self) |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# TODO (tym): Figure out how to switch between LBANN builds. See
# GitHub Issue #1289.
import lbann.contrib.lc.paths
# Load data readers from prototext
dirname = os.path.dirname
lbann_dir = dirname(dirname(dirname(os.path.realpath(__file__))))
pb_file = os.path.join(lbann_dir,
'model_zoo',
'data_readers',
'data_reader_mnist.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(pb_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Set location of MNIST data
for reader in message.reader:
reader.data_filedir = lbann.contrib.lc.paths.mnist_dir()
reader.percent_of_data_to_use = lenet_fraction
# Validation set
message.reader[0].validation_percent = 0.1
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# TODO (tym): Figure out how to switch between LBANN builds. See
# GitHub Issue #1289.
import lbann.contrib.lc.paths
# Load data readers from prototext
dirname = os.path.dirname
lbann_dir = dirname(dirname(dirname(os.path.realpath(__file__))))
pb_file = os.path.join(lbann_dir,
'model_zoo',
'data_readers',
'data_reader_mnist.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(pb_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
# Set location of MNIST data
for reader in message.reader:
reader.data_filedir = lbann.contrib.lc.paths.mnist_dir()
reader.percent_of_data_to_use = lenet_fraction
# Validation set
message.reader[0].validation_percent = 0.1
return message |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
# Initialize protobuf message
model = model_pb2.Model()
model.num_epochs = self.epochs
model.subgraph_communication = convert_to_protbuf_enums(self.subgraph_communication)
model.enable_subgraph_topology = self.subgraph_topology
model.subgraph_parent_grid_resources = self.subgraph_num_common_resources
if self.summary_dir is not None:
model.summarizer.dir = self.summary_dir
# Add model components
model.layer.extend([l.export_proto() for l in self.layers])
model.weights.extend([w.export_proto() for w in self.weights])
model.objective_function.CopyFrom(self.objective_function.export_proto())
model.metric.extend([m.export_proto() for m in self.metrics])
model.callback.extend([c.export_proto() for c in self.callbacks])
return model | def export_proto(self):
"""Construct and return a protobuf message."""
# Initialize protobuf message
model = model_pb2.Model()
model.num_epochs = self.epochs
model.subgraph_communication = convert_to_protbuf_enums(self.subgraph_communication)
model.enable_subgraph_topology = self.subgraph_topology
model.subgraph_parent_grid_resources = self.subgraph_num_common_resources
if self.summary_dir is not None:
model.summarizer.dir = self.summary_dir
# Add model components
model.layer.extend([l.export_proto() for l in self.layers])
model.weights.extend([w.export_proto() for w in self.weights])
model.objective_function.CopyFrom(self.objective_function.export_proto())
model.metric.extend([m.export_proto() for m in self.metrics])
model.callback.extend([c.export_proto() for c in self.callbacks])
return model |
Python | def numpy_cross_entropy(x, xhat):
"""Cross entropy between two distributions, computed with NumPy
The computation is performed with 64-bit floats.
Args:
x: Estimated distribution
xhat: True distribution
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
if xhat.dtype is not np.float64:
xhat = xhat.astype(np.float64)
return -np.inner(xhat, np.log(x)) | def numpy_cross_entropy(x, xhat):
"""Cross entropy between two distributions, computed with NumPy
The computation is performed with 64-bit floats.
Args:
x: Estimated distribution
xhat: True distribution
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
if xhat.dtype is not np.float64:
xhat = xhat.astype(np.float64)
return -np.inner(xhat, np.log(x)) |
Python | def make_random_array(shape, seed):
"""Hacked function to generate a random array.
NumPy's RNG produces different values with different NumPy
versions. This function is helpful when array values must be
identical across all runs, e.g. when checking against precomputed
metric values.
Args:
shape (Iterable of int): Array dimensions
seed (int): Parameter for RNG. Must be non-zero.
Returns:
numpy.ndarray: Array of `np.float32`. Values will be in
[-0.5,0.5).
"""
size = functools.reduce(operator.mul, shape)
eps = np.finfo(np.float32).eps
x = (seed / np.linspace(math.sqrt(eps), 0.1, size)) % 1 - 0.5
return x.reshape(shape).astype(np.float32) | def make_random_array(shape, seed):
"""Hacked function to generate a random array.
NumPy's RNG produces different values with different NumPy
versions. This function is helpful when array values must be
identical across all runs, e.g. when checking against precomputed
metric values.
Args:
shape (Iterable of int): Array dimensions
seed (int): Parameter for RNG. Must be non-zero.
Returns:
numpy.ndarray: Array of `np.float32`. Values will be in
[-0.5,0.5).
"""
size = functools.reduce(operator.mul, shape)
eps = np.finfo(np.float32).eps
x = (seed / np.linspace(math.sqrt(eps), 0.1, size)) % 1 - 0.5
return x.reshape(shape).astype(np.float32) |
Python | def pytorch_convolution(data,
kernel,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1):
"""Wrapper around PyTorch convolution.
Input and output data are NumPy arrays.
"""
# Convert input data to PyTorch tensors with 64-bit floats
import torch
import torch.nn.functional
if type(data) is np.ndarray:
data = torch.from_numpy(data)
if type(kernel) is np.ndarray:
kernel = torch.from_numpy(kernel)
if type(bias) is np.ndarray:
bias = torch.from_numpy(bias)
if data.dtype is not torch.float64:
data = data.astype(torch.float64)
if kernel.dtype is not torch.float64:
kernel = kernel.astype(torch.float64)
if bias.dtype is not torch.float64:
bias = bias.astype(torch.float64)
# Perform convolution with PyTorch
output = None
if len(kernel.shape) == 3:
output = torch.nn.functional.conv1d(
data, kernel, bias, stride, padding, dilation, groups
)
if len(kernel.shape) == 4:
output = torch.nn.functional.conv2d(
data, kernel, bias, stride, padding, dilation, groups
)
if len(kernel.shape) == 5:
output = torch.nn.functional.conv3d(
data, kernel, bias, stride, padding, dilation, groups
)
if output is None:
raise ValueError('PyTorch only supports 1D, 2D, and 3D convolution')
# Return output as NumPy array
return output.numpy() | def pytorch_convolution(data,
kernel,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1):
"""Wrapper around PyTorch convolution.
Input and output data are NumPy arrays.
"""
# Convert input data to PyTorch tensors with 64-bit floats
import torch
import torch.nn.functional
if type(data) is np.ndarray:
data = torch.from_numpy(data)
if type(kernel) is np.ndarray:
kernel = torch.from_numpy(kernel)
if type(bias) is np.ndarray:
bias = torch.from_numpy(bias)
if data.dtype is not torch.float64:
data = data.astype(torch.float64)
if kernel.dtype is not torch.float64:
kernel = kernel.astype(torch.float64)
if bias.dtype is not torch.float64:
bias = bias.astype(torch.float64)
# Perform convolution with PyTorch
output = None
if len(kernel.shape) == 3:
output = torch.nn.functional.conv1d(
data, kernel, bias, stride, padding, dilation, groups
)
if len(kernel.shape) == 4:
output = torch.nn.functional.conv2d(
data, kernel, bias, stride, padding, dilation, groups
)
if len(kernel.shape) == 5:
output = torch.nn.functional.conv3d(
data, kernel, bias, stride, padding, dilation, groups
)
if output is None:
raise ValueError('PyTorch only supports 1D, 2D, and 3D convolution')
# Return output as NumPy array
return output.numpy() |
Python | def initialize_rng():
"""Initialize random seed if needed.
Seed should be initialized independently on each process. We
reinitialize if we detect a process fork.
"""
global rng_pid
if rng_pid != os.getpid():
rng_pid = os.getpid()
random.seed() | def initialize_rng():
"""Initialize random seed if needed.
Seed should be initialized independently on each process. We
reinitialize if we detect a process fork.
"""
global rng_pid
if rng_pid != os.getpid():
rng_pid = os.getpid()
random.seed() |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'test',
),
])
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'test',
),
])
return message |
Python | def construct_model(args):
"""Construct LBANN for CosmoGAN 3D model.
"""
obj = []
metrics = []
callbacks = []
w = [args.input_width]*3
w.insert(0,args.input_channel)
_sample_dims = w
ps = None
#have model and input ps
if(args.use_distconv):
ps = get_parallel_strategy_args(
sample_groups=args.mini_batch_size,
depth_groups=args.depth_groups,
height_groups=args.height_groups,
)
g_device = 'GPU'
input_ = lbann.Input(name='input', data_field='samples')
input_ = lbann.Reshape(input_, dims=list2str(_sample_dims),name='in_reshape', device=g_device),
x1 = lbann.Identity(input_, parallel_strategy=None, name='x1')
x2 = lbann.Identity(input_, name='x2') if args.compute_mse else None
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero',device=g_device)
one = lbann.Constant(value=1.0,num_neurons='1',name='one', device=g_device)
z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec', device=g_device),
dims='1 64', name='noise_vec_reshape',device=g_device)
print("RUN ARGS ", args)
d1_real,d1_fake,d_adv, gen_img = model.Exa3DGAN(args.input_width,args.input_channel,
g_device,ps,use_bn=args.use_bn)(x1,z)
layers=list(lbann.traverse_layer_graph([d1_real, d1_fake]))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc1" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2, analogous to discrim.trainable=False in Keras
if(l.weights and "disc2" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
mse = lbann.MeanSquaredError([gen_img, x2], name='MSE') if args.compute_mse else None
obj.append(d1_real_bce)
obj.append(d1_fake_bce)
obj.append(d_adv_bce)
metrics.append(lbann.Metric(d_adv_bce, name='d_adv_bce'))
metrics.append(lbann.Metric(d1_real_bce, name='d1_real_bce'))
metrics.append(lbann.Metric(d1_fake_bce, name='d1_fake_bce'))
if (mse is not None):
obj.append(mse)
metrics.append(lbann.Metric(mse, name='MSE'))
callbacks.append(lbann.CallbackPrint())
callbacks.append(lbann.CallbackTimer())
callbacks.append(lbann.CallbackGPUMemoryUsage())
# ------------------------------------------
# Construct model
# ------------------------------------------
return lbann.Model(args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) | def construct_model(args):
"""Construct LBANN for CosmoGAN 3D model.
"""
obj = []
metrics = []
callbacks = []
w = [args.input_width]*3
w.insert(0,args.input_channel)
_sample_dims = w
ps = None
#have model and input ps
if(args.use_distconv):
ps = get_parallel_strategy_args(
sample_groups=args.mini_batch_size,
depth_groups=args.depth_groups,
height_groups=args.height_groups,
)
g_device = 'GPU'
input_ = lbann.Input(name='input', data_field='samples')
input_ = lbann.Reshape(input_, dims=list2str(_sample_dims),name='in_reshape', device=g_device),
x1 = lbann.Identity(input_, parallel_strategy=None, name='x1')
x2 = lbann.Identity(input_, name='x2') if args.compute_mse else None
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero',device=g_device)
one = lbann.Constant(value=1.0,num_neurons='1',name='one', device=g_device)
z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec', device=g_device),
dims='1 64', name='noise_vec_reshape',device=g_device)
print("RUN ARGS ", args)
d1_real,d1_fake,d_adv, gen_img = model.Exa3DGAN(args.input_width,args.input_channel,
g_device,ps,use_bn=args.use_bn)(x1,z)
layers=list(lbann.traverse_layer_graph([d1_real, d1_fake]))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc1" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2, analogous to discrim.trainable=False in Keras
if(l.weights and "disc2" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
mse = lbann.MeanSquaredError([gen_img, x2], name='MSE') if args.compute_mse else None
obj.append(d1_real_bce)
obj.append(d1_fake_bce)
obj.append(d_adv_bce)
metrics.append(lbann.Metric(d_adv_bce, name='d_adv_bce'))
metrics.append(lbann.Metric(d1_real_bce, name='d1_real_bce'))
metrics.append(lbann.Metric(d1_fake_bce, name='d1_fake_bce'))
if (mse is not None):
obj.append(mse)
metrics.append(lbann.Metric(mse, name='MSE'))
callbacks.append(lbann.CallbackPrint())
callbacks.append(lbann.CallbackTimer())
callbacks.append(lbann.CallbackGPUMemoryUsage())
# ------------------------------------------
# Construct model
# ------------------------------------------
return lbann.Model(args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
message = lbann.reader_pb2.DataReader()
_reader = message.reader.add()
_reader.name = 'synthetic'
_reader.role = 'train'
_reader.num_samples = 2
_reader.synth_dimensions = '1'
_reader.percent_of_data_to_use = 1.0
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
message = lbann.reader_pb2.DataReader()
_reader = message.reader.add()
_reader.name = 'synthetic'
_reader.role = 'train'
_reader.num_samples = 2
_reader.synth_dimensions = '1'
_reader.percent_of_data_to_use = 1.0
return message |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
# Initialize protobuf message
trainer = trainer_pb2.Trainer()
if self.name is not None:
trainer.name = self.name
if self.num_parallel_readers is not None:
trainer.num_parallel_readers = self.num_parallel_readers
if self.random_seed is not None:
trainer.random_seed = self.random_seed
if self.mini_batch_size is not None:
trainer.mini_batch_size = self.mini_batch_size
if self.hydrogen_block_size is not None:
trainer.hydrogen_block_size = self.hydrogen_block_size
if self.serialize_io is not None:
trainer.serialize_io = self.serialize_io
if self.training_algo is not None:
trainer.training_algorithm.CopyFrom(self.training_algo.export_proto())
# Add trainer components
trainer.callback.extend([c.export_proto() for c in self.callbacks])
return trainer | def export_proto(self):
"""Construct and return a protobuf message."""
# Initialize protobuf message
trainer = trainer_pb2.Trainer()
if self.name is not None:
trainer.name = self.name
if self.num_parallel_readers is not None:
trainer.num_parallel_readers = self.num_parallel_readers
if self.random_seed is not None:
trainer.random_seed = self.random_seed
if self.mini_batch_size is not None:
trainer.mini_batch_size = self.mini_batch_size
if self.hydrogen_block_size is not None:
trainer.hydrogen_block_size = self.hydrogen_block_size
if self.serialize_io is not None:
trainer.serialize_io = self.serialize_io
if self.training_algo is not None:
trainer.training_algorithm.CopyFrom(self.training_algo.export_proto())
# Add trainer components
trainer.callback.extend([c.export_proto() for c in self.callbacks])
return trainer |
Python | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
print("Dump model dir ", run_args.dump_model_dir)
assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=run_args.z_dim)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output)
recon, d1_real, d1_fake, d_adv, arg_max = waemodel(input_,z)
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero')
one = lbann.Constant(value=1.0,num_neurons='1',name='one')
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
wae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc0" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2
if(l.weights and "disc1" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)
wae_loss.append(d1_real_bce)
wae_loss.append(d_adv_bce)
wae_loss.append(d1_fake_bce)
wae_loss.append(l2_reg)
print("LEN wae loss ", len(wae_loss))
obj = lbann.ObjectiveFunction(wae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(d_adv_bce, name='adv_loss'),
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
#lbann.CallbackStepLearningRate(step=10, amt=0.5),
lbann.CallbackTimer()]
callbacks.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
destination_layers=list2str(dst_layers),
batch_interval=2))
#Dump output (activation) for post processing
if(run_args.dump_outputs_dir):
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
directory=run_args.dump_outputs_dir,
layers=f'inp pred_tensor {waemodel.q_mu.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
print("Dump model dir ", run_args.dump_model_dir)
assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None
print("sequence length is {}".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Identity(lbann.Input(name='inp',data_field='samples'), name='inp1')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=run_args.z_dim)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output)
recon, d1_real, d1_fake, d_adv, arg_max = waemodel(input_,z)
zero = lbann.Constant(value=0.0,num_neurons='1',name='zero')
one = lbann.Constant(value=1.0,num_neurons='1',name='one')
d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
wae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
src_layers = []
dst_layers = []
for l in layers:
if(l.weights and "disc0" in l.name and "instance1" in l.name):
src_layers.append(l.name)
#freeze weights in disc2
if(l.weights and "disc1" in l.name):
dst_layers.append(l.name)
for idx in range(len(l.weights)):
l.weights[idx].optimizer = lbann.NoOptimizer()
weights.update(l.weights)
l2_weights = [w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)]
l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)
wae_loss.append(d1_real_bce)
wae_loss.append(d_adv_bce)
wae_loss.append(d1_fake_bce)
wae_loss.append(l2_reg)
print("LEN wae loss ", len(wae_loss))
obj = lbann.ObjectiveFunction(wae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(d_adv_bce, name='adv_loss'),
lbann.Metric(recon, name='recon')
]
callbacks = [lbann.CallbackPrint(),
#lbann.CallbackStepLearningRate(step=10, amt=0.5),
lbann.CallbackTimer()]
callbacks.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
destination_layers=list2str(dst_layers),
batch_interval=2))
#Dump output (activation) for post processing
if(run_args.dump_outputs_dir):
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
directory=run_args.dump_outputs_dir,
layers=f'inp pred_tensor {waemodel.q_mu.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) |
Python | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.tournament_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.1
data_reader.tournament_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message |
Python | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "train"
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message |
Python | def DGCN_layer(feature_matrix,adj_matrix, node_features):
"""An example 3 layer GCN kernel.
Args:
feature_matrix (Layer): Node feature layer. Should have the shape:
(num_nodes, node_features)
adj_matrix (Layer): Adjancency matrix layer. Should have the shape:
(num_nodes, num_nodes)
node_features (int): The number of features per node
Returns:
(Layer): Returns the new embedding of the node features
"""
out_channel_1 = 1024
out_channel_2 = 512
out_channel_3 = 256
gcn1 = DenseGCNConv(input_channels = node_features, output_channels = out_channel_1)
gcn2 = DenseGCNConv(input_channels = out_channel_1, output_channels = out_channel_2)
gcn3 = DenseGCNConv(input_channels = out_channel_2, output_channels = out_channel_3)
out_channel = out_channel_3
x = gcn1(feature_matrix, adj_matrix )
x = lbann.Relu(x,name="DGCN1_activation")
x = gcn2(x, adj_matrix)
x = lbann.Relu(x, name="DGCN2_activation")
x = gcn3 (x, adj_matrix)
x = lbann.Relu(x, name="DGCN3_activation")
return x | def DGCN_layer(feature_matrix,adj_matrix, node_features):
"""An example 3 layer GCN kernel.
Args:
feature_matrix (Layer): Node feature layer. Should have the shape:
(num_nodes, node_features)
adj_matrix (Layer): Adjancency matrix layer. Should have the shape:
(num_nodes, num_nodes)
node_features (int): The number of features per node
Returns:
(Layer): Returns the new embedding of the node features
"""
out_channel_1 = 1024
out_channel_2 = 512
out_channel_3 = 256
gcn1 = DenseGCNConv(input_channels = node_features, output_channels = out_channel_1)
gcn2 = DenseGCNConv(input_channels = out_channel_1, output_channels = out_channel_2)
gcn3 = DenseGCNConv(input_channels = out_channel_2, output_channels = out_channel_3)
out_channel = out_channel_3
x = gcn1(feature_matrix, adj_matrix )
x = lbann.Relu(x,name="DGCN1_activation")
x = gcn2(x, adj_matrix)
x = lbann.Relu(x, name="DGCN2_activation")
x = gcn3 (x, adj_matrix)
x = lbann.Relu(x, name="DGCN3_activation")
return x |
Python | def DGraph_Layer(feature_matrix,adj_matrix, node_features):
"""An example 3 layer Graph kernel.
Args:
feature_matrix (Layer): Node feature layer. Should have the shape:
(num_nodes, node_features)
adj_matrix (Layer): Adjancency matrix layer. Should have the shape:
(num_nodes, num_nodes)
node_features (int): The number of features per node
Returns:
(Layer): Returns the new embedding of the node features
"""
out_channel_1 = 1024
out_channel_2 = 512
out_channel_3 = 256
gcn1 = DenseGraphConv(input_channels = node_features, output_channels = out_channel_1)
gcn2 = DenseGraphConv(input_channels = out_channel_1, output_channels = out_channel_2)
gcn3 = DenseGraphConv(input_channels = out_channel_2, output_channels = out_channel_3)
out_channel = out_channel_3
x = gcn1(feature_matrix, adj_matrix )
x = lbann.Relu(x,name="DGraph1_activation")
x = gcn2(x, adj_matrix)
x = lbann.Relu(x, name="DGraph2_activation")
x = gcn3 (x, adj_matrix)
x = lbann.Relu(x, name="DGraph3_activation")
return x | def DGraph_Layer(feature_matrix,adj_matrix, node_features):
"""An example 3 layer Graph kernel.
Args:
feature_matrix (Layer): Node feature layer. Should have the shape:
(num_nodes, node_features)
adj_matrix (Layer): Adjancency matrix layer. Should have the shape:
(num_nodes, num_nodes)
node_features (int): The number of features per node
Returns:
(Layer): Returns the new embedding of the node features
"""
out_channel_1 = 1024
out_channel_2 = 512
out_channel_3 = 256
gcn1 = DenseGraphConv(input_channels = node_features, output_channels = out_channel_1)
gcn2 = DenseGraphConv(input_channels = out_channel_1, output_channels = out_channel_2)
gcn3 = DenseGraphConv(input_channels = out_channel_2, output_channels = out_channel_3)
out_channel = out_channel_3
x = gcn1(feature_matrix, adj_matrix )
x = lbann.Relu(x,name="DGraph1_activation")
x = gcn2(x, adj_matrix)
x = lbann.Relu(x, name="DGraph2_activation")
x = gcn3 (x, adj_matrix)
x = lbann.Relu(x, name="DGraph3_activation")
return x |
Python | def make_model(num_vertices = None,
node_features = None,
num_classes = None,
kernel_type = 'GCN',
callbacks = None,
num_epochs = 1):
'''Construct a model DAG using one of the Graph Kernels
Args:
num_vertices (int): Number of vertices of each graph (default: None)
node_features (int): Number of features per noded (default: None)
num_classes (int): Number of classes as targets (default: None)
kernel_type (str): Graph Kernel to use in model. Expected one of
GCN, or Graph (deafult: GCN)
callbacks (list): Callbacks for the model. If set to None the model description,
GPU usage, training_output, and timer is reported.
(default: None)
num_epochs (int): Number of epochs to run (default: 1)
Returns:
(lbann Model Object: A model object with the supplied callbacks, dataset
presets, and graph kernels.
'''
num_vertices = 100
num_classes = 2
node_features = 3
assert num_vertices is not None
assert num_classes is not None
assert node_features is not None
#----------------------------------
# Reshape and Slice Input Tensor
#----------------------------------
input_ = lbann.Input(data_field='samples')
# Input dimensions should be (num_vertices * node_features + num_vertices^2 + num_classes )
# input should have atleast two children since the target is classification
sample_dims = num_vertices*node_features + (num_vertices ** 2) + num_classes
graph_dims = num_vertices*node_features + (num_vertices ** 2)
feature_matrix_size = num_vertices * node_features
graph_input = lbann.Slice(input_, axis = 0 ,
slice_points = str_list([0,feature_matrix_size,graph_dims, sample_dims]),
name = "Graph_Input")
feature_matrix = lbann.Reshape(graph_input,
dims = str_list([num_vertices, node_features]),
name="Node_features")
adj_matrix = lbann.Reshape(graph_input,
dims = str_list([num_vertices,num_vertices]),
name="Adj_Mat")
target = lbann.Identity(graph_input, name="Target")
target = lbann.Reshape(target, dims=str(num_classes))
#----------------------------------
# Perform Graph Convolution
#----------------------------------
if kernel_type == 'GCN':
x = DGCN_layer(feature_matrix, adj_matrix, node_features)
elif kernel_type == 'Graph':
x = DGraph_Layer(feature_matrix, adj_matrix, node_features)
else:
ValueError('Invalid Graph kernel specifier "{}" recieved. Expected one of:\
GCN or Graph'.format(kernel_type))
out_channel = 256
#----------------------------------
# Apply Reduction on Node Features
#----------------------------------
average_vector = lbann.Constant(value = 1/num_vertices, num_neurons = str_list([1,num_vertices]), name="Average_Vector")
x = lbann.MatMul(average_vector,x, name="Node_Feature_Reduction") # X is now a vector with output_channel dimensions
x = lbann.Reshape(x, dims= str_list([out_channel]), name="Squeeze")
x = lbann.FullyConnected(x, num_neurons=256, name="hidden_layer_1")
x = lbann.Relu(x, name="hidden_layer_1_activation")
x = lbann.FullyConnected(x, num_neurons=num_classes, name="Output_Fully_Connected")
#----------------------------------
# Loss Function and Accuracy s
#----------------------------------
probs = lbann.Softmax(x, name="Softmax")
loss = lbann.CrossEntropy(probs, target, name="Cross_Entropy_Loss")
accuracy = lbann.CategoricalAccuracy(probs, target, name="Accuracy")
layers = lbann.traverse_layer_graph(input_)
if callbacks is None:
print_model = lbann.CallbackPrintModelDescription() #Prints initial Model after Setup
training_output = lbann.CallbackPrint( interval = 1,
print_global_stat_only = False) #Prints training progress
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [print_model, training_output, gpu_usage, timer]
else:
if isinstance (callbacks, list):
callbacks = callbacks
metrics = [lbann.Metric(accuracy, name='accuracy', unit="%")]
model = lbann.Model(num_epochs,
layers = layers,
objective_function = loss,
metrics = metrics,
callbacks = callbacks
)
return model | def make_model(num_vertices = None,
node_features = None,
num_classes = None,
kernel_type = 'GCN',
callbacks = None,
num_epochs = 1):
'''Construct a model DAG using one of the Graph Kernels
Args:
num_vertices (int): Number of vertices of each graph (default: None)
node_features (int): Number of features per noded (default: None)
num_classes (int): Number of classes as targets (default: None)
kernel_type (str): Graph Kernel to use in model. Expected one of
GCN, or Graph (deafult: GCN)
callbacks (list): Callbacks for the model. If set to None the model description,
GPU usage, training_output, and timer is reported.
(default: None)
num_epochs (int): Number of epochs to run (default: 1)
Returns:
(lbann Model Object: A model object with the supplied callbacks, dataset
presets, and graph kernels.
'''
num_vertices = 100
num_classes = 2
node_features = 3
assert num_vertices is not None
assert num_classes is not None
assert node_features is not None
#----------------------------------
# Reshape and Slice Input Tensor
#----------------------------------
input_ = lbann.Input(data_field='samples')
# Input dimensions should be (num_vertices * node_features + num_vertices^2 + num_classes )
# input should have atleast two children since the target is classification
sample_dims = num_vertices*node_features + (num_vertices ** 2) + num_classes
graph_dims = num_vertices*node_features + (num_vertices ** 2)
feature_matrix_size = num_vertices * node_features
graph_input = lbann.Slice(input_, axis = 0 ,
slice_points = str_list([0,feature_matrix_size,graph_dims, sample_dims]),
name = "Graph_Input")
feature_matrix = lbann.Reshape(graph_input,
dims = str_list([num_vertices, node_features]),
name="Node_features")
adj_matrix = lbann.Reshape(graph_input,
dims = str_list([num_vertices,num_vertices]),
name="Adj_Mat")
target = lbann.Identity(graph_input, name="Target")
target = lbann.Reshape(target, dims=str(num_classes))
#----------------------------------
# Perform Graph Convolution
#----------------------------------
if kernel_type == 'GCN':
x = DGCN_layer(feature_matrix, adj_matrix, node_features)
elif kernel_type == 'Graph':
x = DGraph_Layer(feature_matrix, adj_matrix, node_features)
else:
ValueError('Invalid Graph kernel specifier "{}" recieved. Expected one of:\
GCN or Graph'.format(kernel_type))
out_channel = 256
#----------------------------------
# Apply Reduction on Node Features
#----------------------------------
average_vector = lbann.Constant(value = 1/num_vertices, num_neurons = str_list([1,num_vertices]), name="Average_Vector")
x = lbann.MatMul(average_vector,x, name="Node_Feature_Reduction") # X is now a vector with output_channel dimensions
x = lbann.Reshape(x, dims= str_list([out_channel]), name="Squeeze")
x = lbann.FullyConnected(x, num_neurons=256, name="hidden_layer_1")
x = lbann.Relu(x, name="hidden_layer_1_activation")
x = lbann.FullyConnected(x, num_neurons=num_classes, name="Output_Fully_Connected")
#----------------------------------
# Loss Function and Accuracy s
#----------------------------------
probs = lbann.Softmax(x, name="Softmax")
loss = lbann.CrossEntropy(probs, target, name="Cross_Entropy_Loss")
accuracy = lbann.CategoricalAccuracy(probs, target, name="Accuracy")
layers = lbann.traverse_layer_graph(input_)
if callbacks is None:
print_model = lbann.CallbackPrintModelDescription() #Prints initial Model after Setup
training_output = lbann.CallbackPrint( interval = 1,
print_global_stat_only = False) #Prints training progress
gpu_usage = lbann.CallbackGPUMemoryUsage()
timer = lbann.CallbackTimer()
callbacks = [print_model, training_output, gpu_usage, timer]
else:
if isinstance (callbacks, list):
callbacks = callbacks
metrics = [lbann.Metric(accuracy, name='accuracy', unit="%")]
model = lbann.Model(num_epochs,
layers = layers,
objective_function = loss,
metrics = metrics,
callbacks = callbacks
)
return model |
Python | def pytorch_pooling(data,
kernel_dims,
pool_mode,
stride=1,
padding=0):
"""Wrapper around PyTorch pooling.
Input and output data are NumPy arrays.
"""
# Convert input data to PyTorch tensors with 64-bit floats
import torch
import torch.nn.functional
if type(data) is np.ndarray:
data = torch.from_numpy(data)
if data.dtype is not torch.float64:
data = data.astype(torch.float64)
# Perform pooling with PyTorch
if len(kernel_dims) not in [1, 2, 3]:
raise ValueError('PyTorch only supports 1D, 2D, and 3D pooling')
func_name = "{}_pool{}d".format(
{"average": "avg", "max": "max"}[pool_mode],
len(kernel_dims),
)
output = getattr(torch.nn.functional, func_name)(
data, kernel_dims, stride, padding,
)
# Return output as NumPy array
return output.numpy() | def pytorch_pooling(data,
kernel_dims,
pool_mode,
stride=1,
padding=0):
"""Wrapper around PyTorch pooling.
Input and output data are NumPy arrays.
"""
# Convert input data to PyTorch tensors with 64-bit floats
import torch
import torch.nn.functional
if type(data) is np.ndarray:
data = torch.from_numpy(data)
if data.dtype is not torch.float64:
data = data.astype(torch.float64)
# Perform pooling with PyTorch
if len(kernel_dims) not in [1, 2, 3]:
raise ValueError('PyTorch only supports 1D, 2D, and 3D pooling')
func_name = "{}_pool{}d".format(
{"average": "avg", "max": "max"}[pool_mode],
len(kernel_dims),
)
output = getattr(torch.nn.functional, func_name)(
data, kernel_dims, stride, padding,
)
# Return output as NumPy array
return output.numpy() |
Python | def construct_trainer(lbann, ):
"""Construct LBANN trainer and training algorithm.
Args:
lbann (module): Module for LBANN Python frontend
"""
num_epochs = 1
mini_batch_size = num_samples()
algo = lbann.KFAC(
"kfac",
lbann.BatchedIterativeOptimizer("sgd", epoch_count=num_epochs),
damping_warmup_steps=0,
kronecker_decay=0,
damping_act="1e-30",
damping_err="1e-30",
compute_interval=1,
)
trainer = lbann.Trainer(mini_batch_size, training_algo=algo)
return trainer | def construct_trainer(lbann, ):
"""Construct LBANN trainer and training algorithm.
Args:
lbann (module): Module for LBANN Python frontend
"""
num_epochs = 1
mini_batch_size = num_samples()
algo = lbann.KFAC(
"kfac",
lbann.BatchedIterativeOptimizer("sgd", epoch_count=num_epochs),
damping_warmup_steps=0,
kronecker_decay=0,
damping_act="1e-30",
damping_err="1e-30",
compute_interval=1,
)
trainer = lbann.Trainer(mini_batch_size, training_algo=algo)
return trainer |
Python | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None, 'should be training seq len + bos + eos'
print("sequence length is {}, which is training sequence len + bos + eos".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Input(data_field='samples',name='inp_data')
#Note input assumes to come from encoder script concatenation of input smiles + z
inp_slice = lbann.Slice(input_, axis=0,
slice_points=str_list([0, sequence_length, sequence_length+run_args.z_dim]),
name='inp_slice')
inp_smile = lbann.Identity(inp_slice,name='inp_smile')
z = lbann.Identity(inp_slice, name='z')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
#uncomment below for random sampling
#z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=str(run_args.z_dim))
x = lbann.Slice(inp_smile, slice_points=str_list([0, input_feature_dims]))
x = lbann.Identity(x)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output=save_output)
x_emb = lbann.Embedding(
x,
num_embeddings=waemodel.dictionary_size,
embedding_dim=waemodel.embedding_size,
name='emb',
weights=waemodel.emb_weights
)
pred, arg_max = waemodel.forward_decoder(x_emb,z)
recon = waemodel.compute_loss(x, pred)
wae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
#l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
#wae_loss.append(l2_reg)
print("LEN wae loss ", len(wae_loss))
obj = lbann.ObjectiveFunction(wae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(recon, name='recon')]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
#Dump output (activation) for post processing
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
conc_out = lbann.Concatenation([input_,pred_tensor], name='conc_out')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
directory=run_args.dump_outputs_dir,
layers=f'{conc_out.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) | def construct_model(run_args):
"""Construct LBANN model.
Initial model for ATOM molecular VAE
"""
import lbann
pad_index = run_args.pad_index
assert pad_index is not None
sequence_length = run_args.sequence_length
assert sequence_length is not None, 'should be training seq len + bos + eos'
print("sequence length is {}, which is training sequence len + bos + eos".format(sequence_length))
data_layout = "data_parallel"
# Layer graph
input_ = lbann.Input(data_field='samples',name='inp_data')
#Note input assumes to come from encoder script concatenation of input smiles + z
inp_slice = lbann.Slice(input_, axis=0,
slice_points=str_list([0, sequence_length, sequence_length+run_args.z_dim]),
name='inp_slice')
inp_smile = lbann.Identity(inp_slice,name='inp_smile')
z = lbann.Identity(inp_slice, name='z')
wae_loss= []
input_feature_dims = sequence_length
embedding_size = run_args.embedding_dim
dictionary_size = run_args.num_embeddings
assert embedding_size is not None
assert dictionary_size is not None
save_output = True if run_args.dump_outputs_dir else False
print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
#uncomment below for random sampling
#z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=str(run_args.z_dim))
x = lbann.Slice(inp_smile, slice_points=str_list([0, input_feature_dims]))
x = lbann.Identity(x)
waemodel = molwae.MolWAE(input_feature_dims,
dictionary_size,
embedding_size,
pad_index,run_args.z_dim,save_output=save_output)
x_emb = lbann.Embedding(
x,
num_embeddings=waemodel.dictionary_size,
embedding_dim=waemodel.embedding_size,
name='emb',
weights=waemodel.emb_weights
)
pred, arg_max = waemodel.forward_decoder(x_emb,z)
recon = waemodel.compute_loss(x, pred)
wae_loss.append(recon)
layers = list(lbann.traverse_layer_graph(input_))
# Setup objective function
weights = set()
for l in layers:
weights.update(l.weights)
#l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
#wae_loss.append(l2_reg)
print("LEN wae loss ", len(wae_loss))
obj = lbann.ObjectiveFunction(wae_loss)
# Initialize check metric callback
metrics = [lbann.Metric(recon, name='recon')]
callbacks = [lbann.CallbackPrint(),
lbann.CallbackTimer()]
#Dump output (activation) for post processing
pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
conc_out = lbann.Concatenation([input_,pred_tensor], name='conc_out')
callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
execution_modes='test',
directory=run_args.dump_outputs_dir,
layers=f'{conc_out.name}'))
# Construct model
return lbann.Model(run_args.num_epochs,
weights=weights,
layers=layers,
objective_function=obj,
metrics=metrics,
callbacks=callbacks) |
Python | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
#@todo: provide base directory and use join
os.environ["DATA_PATH"] = run_args.data_path
seq_len = run_args.sequence_length+run_args.z_dim
print("SEQ LEN for env ", seq_len)
os.environ["MAX_SEQ_LEN"] = str(seq_len)
print("MODULE file ", module_file)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "test"
data_reader.shuffle = False
data_reader.percent_of_data_to_use = 1.0
#data_reader.validation_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message | def construct_data_reader(run_args):
"""
Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
module_file = os.path.abspath(run_args.data_module_file)
os.environ["DATA_CONFIG"] = os.path.abspath(run_args.data_config)
#@todo: provide base directory and use join
os.environ["DATA_PATH"] = run_args.data_path
seq_len = run_args.sequence_length+run_args.z_dim
print("SEQ LEN for env ", seq_len)
os.environ["MAX_SEQ_LEN"] = str(seq_len)
print("MODULE file ", module_file)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
print("module_name: {}\tmodule_dir: {}".format(module_name, module_dir))
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = "python"
data_reader.role = "test"
data_reader.shuffle = False
data_reader.percent_of_data_to_use = 1.0
#data_reader.validation_percent = 0.1
data_reader.python.module = module_name
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = "get_sample"
data_reader.python.num_samples_function = "num_samples"
data_reader.python.sample_dims_function = "sample_dims"
return message |
Python | def construct_trainer(lbann, ):
"""Construct LBANN trainer and training algorithm.
Args:
lbann (module): Module for LBANN Python frontend
"""
num_epochs = 1
mini_batch_size = num_samples() // 2
algo = lbann.KFAC(
"kfac",
lbann.BatchedIterativeOptimizer("sgd", epoch_count=num_epochs),
damping_act="1e-2",
damping_err="2e-2 2e-3",
damping_bn_act="3e-2",
damping_bn_err="4e-2 4e-3",
damping_warmup_steps=500,
kronecker_decay=0.6,
print_time=True,
print_matrix=False,
print_matrix_summary=True,
use_pi=True,
compute_interval=1,
)
trainer = lbann.Trainer(mini_batch_size, training_algo=algo)
return trainer | def construct_trainer(lbann, ):
"""Construct LBANN trainer and training algorithm.
Args:
lbann (module): Module for LBANN Python frontend
"""
num_epochs = 1
mini_batch_size = num_samples() // 2
algo = lbann.KFAC(
"kfac",
lbann.BatchedIterativeOptimizer("sgd", epoch_count=num_epochs),
damping_act="1e-2",
damping_err="2e-2 2e-3",
damping_bn_act="3e-2",
damping_bn_err="4e-2 4e-3",
damping_warmup_steps=500,
kronecker_decay=0.6,
print_time=True,
print_matrix=False,
print_matrix_summary=True,
use_pi=True,
compute_interval=1,
)
trainer = lbann.Trainer(mini_batch_size, training_algo=algo)
return trainer |
Python | def create_python_data_reader(lbann,
file_name,
sample_function_name,
num_samples_function_name,
sample_dims_function_name,
execution_mode):
"""Create protobuf message for Python data reader
A Python data reader gets data by importing a Python module and
calling functions in its scope.
Args:
lbann (module): Module for LBANN Python frontend.
file_name (str): Python file.
sample_function_name (str): Function to get a data sample. It
takes one integer argument for the sample index and
returns an `Iterator` of `float`s.
sample_dims_function_name (str): Function to get dimensions of
a data sample. It takes no arguments and returns a
`(int,)`.
num_samples_function_name (str): Function to get number of
data samples in data set. It takes no arguments and
returns an `int`.
execution_mode (str): 'train', 'validation', or 'test'
"""
# Extract paths
file_name = os.path.realpath(file_name)
dir_name = os.path.dirname(file_name)
module_name = os.path.splitext(os.path.basename(file_name))[0]
# Construct protobuf message for data reader
reader = lbann.reader_pb2.Reader()
reader.name = 'python'
reader.role = execution_mode
reader.shuffle = False
reader.percent_of_data_to_use = 1.0
reader.python.module = module_name
reader.python.module_dir = dir_name
reader.python.sample_function = sample_function_name
reader.python.num_samples_function = num_samples_function_name
reader.python.sample_dims_function = sample_dims_function_name
return reader | def create_python_data_reader(lbann,
file_name,
sample_function_name,
num_samples_function_name,
sample_dims_function_name,
execution_mode):
"""Create protobuf message for Python data reader
A Python data reader gets data by importing a Python module and
calling functions in its scope.
Args:
lbann (module): Module for LBANN Python frontend.
file_name (str): Python file.
sample_function_name (str): Function to get a data sample. It
takes one integer argument for the sample index and
returns an `Iterator` of `float`s.
sample_dims_function_name (str): Function to get dimensions of
a data sample. It takes no arguments and returns a
`(int,)`.
num_samples_function_name (str): Function to get number of
data samples in data set. It takes no arguments and
returns an `int`.
execution_mode (str): 'train', 'validation', or 'test'
"""
# Extract paths
file_name = os.path.realpath(file_name)
dir_name = os.path.dirname(file_name)
module_name = os.path.splitext(os.path.basename(file_name))[0]
# Construct protobuf message for data reader
reader = lbann.reader_pb2.Reader()
reader.name = 'python'
reader.role = execution_mode
reader.shuffle = False
reader.percent_of_data_to_use = 1.0
reader.python.module = module_name
reader.python.module_dir = dir_name
reader.python.sample_function = sample_function_name
reader.python.num_samples_function = num_samples_function_name
reader.python.sample_dims_function = sample_dims_function_name
return reader |
Python | def numpy_l2norm2(x):
"""Square of L2 norm, computed with NumPy
The computation is performed with 64-bit floats.
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
x = x.reshape(-1)
return np.inner(x, x) | def numpy_l2norm2(x):
"""Square of L2 norm, computed with NumPy
The computation is performed with 64-bit floats.
"""
if x.dtype is not np.float64:
x = x.astype(np.float64)
x = x.reshape(-1)
return np.inner(x, x) |
Python | def perturb_latent_vectors(latent_file, noise_factors):
"""
Given a CSV file of latent vectors, generate a series of perturbed latent vector arrays
by adding zero-mean Gaussian noise to the latent vector components, with SD
equal to noise_factor standard deviations of the respective components. Output each array
to a separate CSV file.
"""
# Load the latent vector table, which includes an identifier or SMILES string in the first column
#latent_df = pd.read_csv(latent_file)
latent_df = pd.DataFrame(np.load(latent_file))
print("Read %s" % latent_file)
print("In File shape ", latent_df.shape)
id_col = latent_df.columns.values[:102]
latent_cols = latent_df.columns.values[102:]
latent_dim = len(latent_cols)
latent_rows = len(latent_df)
latent_array = latent_df[latent_cols].values
for noise_factor in noise_factors:
latent_array = latent_df[latent_cols].values
if noise_factor > 0.0:
output_df = pd.DataFrame(latent_df[id_col].values)
std_dev = [np.std(latent_array[:,i]) for i in range(latent_dim)]
for i in range(latent_dim):
latent_array[:,i] += np.random.randn(latent_rows) * std_dev[i] * noise_factor
output_df[latent_cols[i]] = latent_array[:,i]
else:
output_df = latent_df
output_file = '%s_noise_sd_%.1f.npy' % (os.path.splitext(latent_file)[0], noise_factor)
print("Out df shape ", output_df.shape)
np.save(output_file, output_df.to_numpy())
print("Wrote %s" % output_file) | def perturb_latent_vectors(latent_file, noise_factors):
"""
Given a CSV file of latent vectors, generate a series of perturbed latent vector arrays
by adding zero-mean Gaussian noise to the latent vector components, with SD
equal to noise_factor standard deviations of the respective components. Output each array
to a separate CSV file.
"""
# Load the latent vector table, which includes an identifier or SMILES string in the first column
#latent_df = pd.read_csv(latent_file)
latent_df = pd.DataFrame(np.load(latent_file))
print("Read %s" % latent_file)
print("In File shape ", latent_df.shape)
id_col = latent_df.columns.values[:102]
latent_cols = latent_df.columns.values[102:]
latent_dim = len(latent_cols)
latent_rows = len(latent_df)
latent_array = latent_df[latent_cols].values
for noise_factor in noise_factors:
latent_array = latent_df[latent_cols].values
if noise_factor > 0.0:
output_df = pd.DataFrame(latent_df[id_col].values)
std_dev = [np.std(latent_array[:,i]) for i in range(latent_dim)]
for i in range(latent_dim):
latent_array[:,i] += np.random.randn(latent_rows) * std_dev[i] * noise_factor
output_df[latent_cols[i]] = latent_array[:,i]
else:
output_df = latent_df
output_file = '%s_noise_sd_%.1f.npy' % (os.path.splitext(latent_file)[0], noise_factor)
print("Out df shape ", output_df.shape)
np.save(output_file, output_df.to_numpy())
print("Wrote %s" % output_file) |
Python | def download_url(url, save_path):
"""Helper function to download file from url and save it
on save_path
"""
with urllib.request.urlopen(url) as dl_file:
with open(save_path, 'wb') as out_file:
out_file.write(dl_file.read()) | def download_url(url, save_path):
"""Helper function to download file from url and save it
on save_path
"""
with urllib.request.urlopen(url) as dl_file:
with open(save_path, 'wb') as out_file:
out_file.write(dl_file.read()) |
Python | def edge_list_to_dense(elist, num_vertices = 75):
""" Generates an (num_vertices, num_vertices) adjacency
matrix given edge list, elist
"""
adj_mat = np.zeros((num_vertices,num_vertices), dtype=np.float)
num_edges = elist.shape[0]
for edge in range(num_edges):
source, sink = elist[edge,:]
source = source.item()
sink = sink.item()
adj_mat[source][sink] = 1.0
adj_mat[sink][source] = 1.0
return adj_mat | def edge_list_to_dense(elist, num_vertices = 75):
""" Generates an (num_vertices, num_vertices) adjacency
matrix given edge list, elist
"""
adj_mat = np.zeros((num_vertices,num_vertices), dtype=np.float)
num_edges = elist.shape[0]
for edge in range(num_edges):
source, sink = elist[edge,:]
source = source.item()
sink = sink.item()
adj_mat[source][sink] = 1.0
adj_mat[sink][source] = 1.0
return adj_mat |
Python | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'validate',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'tournament',
),
])
return message | def construct_data_reader(lbann):
"""Construct Protobuf message for Python data reader.
The Python data reader will import the current Python file to
access the sample access functions.
Args:
lbann (module): Module for LBANN Python frontend
"""
# Note: The training data reader should be removed when
# https://github.com/LLNL/lbann/issues/1098 is resolved.
message = lbann.reader_pb2.DataReader()
message.reader.extend([
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'train',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'validate',
),
tools.create_python_data_reader(
lbann,
current_file,
'get_sample',
'num_samples',
'sample_dims',
'tournament',
),
])
return message |
Python | def construct_python_data_reader():
"""Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
import os.path
module_file = os.path.abspath(__file__)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = 'python'
data_reader.role = 'train'
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.2
data_reader.python.module = 'dataset3D'
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = 'get_sample'
data_reader.python.num_samples_function = 'num_samples'
data_reader.python.sample_dims_function = 'sample_dims'
return message | def construct_python_data_reader():
"""Construct Protobuf message for Python data reader.
The Python data reader will import this Python file to access the
sample access functions.
"""
import os.path
module_file = os.path.abspath(__file__)
module_name = os.path.splitext(os.path.basename(module_file))[0]
module_dir = os.path.dirname(module_file)
# Base data reader message
message = lbann.reader_pb2.DataReader()
# Training set data reader
data_reader = message.reader.add()
data_reader.name = 'python'
data_reader.role = 'train'
data_reader.shuffle = True
data_reader.percent_of_data_to_use = 1.0
data_reader.validation_percent = 0.2
data_reader.python.module = 'dataset3D'
data_reader.python.module_dir = module_dir
data_reader.python.sample_function = 'get_sample'
data_reader.python.num_samples_function = 'num_samples'
data_reader.python.sample_dims_function = 'sample_dims'
return message |
Python | def create_hdf5_data_reader(
train_path, val_path, test_path, num_responses=4):
"""Create a data reader for CosmoFlow.
Args:
{train, val, test}_path (str): Path to the corresponding dataset.
num_responses (int): The number of parameters to predict.
"""
reader_args = [
{"role": "train", "data_filename": train_path},
{"role": "validate", "data_filename": val_path},
{"role": "test", "data_filename": test_path},
]
for reader_arg in reader_args:
reader_arg["data_file_pattern"] = "{}/*.hdf5".format(
reader_arg["data_filename"])
reader_arg["hdf5_key_data"] = "full"
#reader_arg["hdf5_key_responses"] = "unitPar"
#reader_arg["num_responses"] = num_responses
reader_arg.pop("data_filename")
readers = []
for reader_arg in reader_args:
reader = lbann.reader_pb2.Reader(
name="hdf5",
shuffle=(reader_arg["role"] != "test"),
validation_percent=0,
absolute_sample_count=0,
percent_of_data_to_use=1.0,
disable_labels=True,
disable_responses=True,
scaling_factor_int16=1.0,
**reader_arg)
readers.append(reader)
return lbann.reader_pb2.DataReader(reader=readers) | def create_hdf5_data_reader(
train_path, val_path, test_path, num_responses=4):
"""Create a data reader for CosmoFlow.
Args:
{train, val, test}_path (str): Path to the corresponding dataset.
num_responses (int): The number of parameters to predict.
"""
reader_args = [
{"role": "train", "data_filename": train_path},
{"role": "validate", "data_filename": val_path},
{"role": "test", "data_filename": test_path},
]
for reader_arg in reader_args:
reader_arg["data_file_pattern"] = "{}/*.hdf5".format(
reader_arg["data_filename"])
reader_arg["hdf5_key_data"] = "full"
#reader_arg["hdf5_key_responses"] = "unitPar"
#reader_arg["num_responses"] = num_responses
reader_arg.pop("data_filename")
readers = []
for reader_arg in reader_args:
reader = lbann.reader_pb2.Reader(
name="hdf5",
shuffle=(reader_arg["role"] != "test"),
validation_percent=0,
absolute_sample_count=0,
percent_of_data_to_use=1.0,
disable_labels=True,
disable_responses=True,
scaling_factor_int16=1.0,
**reader_arg)
readers.append(reader)
return lbann.reader_pb2.DataReader(reader=readers) |
Python | def download_data():
"""Download MNIST data files, if needed.
Data files are downloaded from http://yann.lecun.com/exdb/mnist/
and uncompressed. Does nothing if the files already exist.
"""
# MNIST data files and associated URLs
urls = {
'train-images-idx3-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz',
'train-labels-idx1-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz',
}
# Download and uncompress MNIST data files, if needed
for data_file, url in urls.items():
data_file = os.path.join(data_dir, data_file)
compressed_file = data_file + '.gz'
if not os.path.isfile(data_file):
request = urllib.request.Request(
url,
headers={'User-Agent': 'LBANN/vision-app'},
)
with urllib.request.urlopen(request) as response, \
open(compressed_file, 'wb') as out_file:
out_file.write(response.read())
with gzip.open(compressed_file, 'rb') as in_file, \
open(data_file, 'wb') as out_file:
out_file.write(in_file.read()) | def download_data():
"""Download MNIST data files, if needed.
Data files are downloaded from http://yann.lecun.com/exdb/mnist/
and uncompressed. Does nothing if the files already exist.
"""
# MNIST data files and associated URLs
urls = {
'train-images-idx3-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz',
'train-labels-idx1-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte': 'https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz',
}
# Download and uncompress MNIST data files, if needed
for data_file, url in urls.items():
data_file = os.path.join(data_dir, data_file)
compressed_file = data_file + '.gz'
if not os.path.isfile(data_file):
request = urllib.request.Request(
url,
headers={'User-Agent': 'LBANN/vision-app'},
)
with urllib.request.urlopen(request) as response, \
open(compressed_file, 'wb') as out_file:
out_file.write(response.read())
with gzip.open(compressed_file, 'rb') as in_file, \
open(data_file, 'wb') as out_file:
out_file.write(in_file.read()) |
Python | def make_data_reader(validation_percent=0.1):
"""Make Protobuf message for MNIST data reader.
MNIST data is downloaded if needed.
Args:
validation_percent (float): The proportion of samples to be tested
as the validation dataset.
"""
# Download MNIST data files
download_data()
# Load Protobuf message from file
protobuf_file = os.path.join(data_dir, 'data_reader.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(protobuf_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
if validation_percent is not None:
assert message.reader[0].role == "train"
message.reader[0].validation_percent = validation_percent
# Set paths
for reader in message.reader:
reader.data_filedir = data_dir
return message | def make_data_reader(validation_percent=0.1):
"""Make Protobuf message for MNIST data reader.
MNIST data is downloaded if needed.
Args:
validation_percent (float): The proportion of samples to be tested
as the validation dataset.
"""
# Download MNIST data files
download_data()
# Load Protobuf message from file
protobuf_file = os.path.join(data_dir, 'data_reader.prototext')
message = lbann.lbann_pb2.LbannPB()
with open(protobuf_file, 'r') as f:
google.protobuf.text_format.Merge(f.read(), message)
message = message.data_reader
if validation_percent is not None:
assert message.reader[0].role == "train"
message.reader[0].validation_percent = validation_percent
# Set paths
for reader in message.reader:
reader.data_filedir = data_dir
return message |
Python | def GraphExpand(features, indices, name=None):
"""Places the features according the indices to an expanded matrix
output[i] = features[indices[i]]
Args:
features (Layer) : 2D matrix with shape (N, F)
indices (Layer): 1D matrix with shape (E)
returnL (Layer) of shape (E,F)
"""
GraphExpand.count += 1
if (name is None):
name = f"graph_expand_{GraphExpand.count}"
return lbann.Gather(features, indices, axis=0, name=name) | def GraphExpand(features, indices, name=None):
"""Places the features according the indices to an expanded matrix
output[i] = features[indices[i]]
Args:
features (Layer) : 2D matrix with shape (N, F)
indices (Layer): 1D matrix with shape (E)
returnL (Layer) of shape (E,F)
"""
GraphExpand.count += 1
if (name is None):
name = f"graph_expand_{GraphExpand.count}"
return lbann.Gather(features, indices, axis=0, name=name) |
Python | def _generate_class(message_descriptor,
base_field_name,
base_class,
base_kwargs,
base_has_export_proto):
"""Generate new class from Protobuf message.
Args:
message (google.protobuf.descriptor.Descriptor): Descriptor
for Protobuf message.
base_field_name (str): Name of corresponding field in parent
message.
base_class (type): Base class for generated class.
base_kwargs (Iterable of str): Keyword arguments for base
class `__init__` method.
base_has_export_proto (bool): Whether the base class
implements an `export_proto` method. If `True`, the
generated class `export_proto` will set the appropriate
field in the Protobuf message returned by the base class
`export_proto`.
Returns:
type: Generated class.
"""
# Names of Protobuf message and its fields
message_name = message_descriptor.name
field_descriptors = message_descriptor.fields_by_name
field_names = field_descriptors.keys()
enums = message_descriptor.enum_types_by_name
# Handle "enum" type data.
all_enums = {}
for enum_name, enum_desc in enums.items():
enum_val_to_num = {}
enum_val_descs = enum_desc.values_by_name
for val_name, val_desc in enum_val_descs.items():
enum_val_to_num[val_name] = val_desc.number
all_enums[enum_name] = type(enum_name, (), enum_val_to_num)
# Note (trb 12/18/19): This is *NOT* meant to be a rigorous enum
# implementation (see the 'enum' module for such a thing). The
# goal is to simply expose "enum-like" semantics to the Python
# front-end:
#
# x = ClassName.EnumName.ENUM_VALUE
#
# Note that the value held by "x" after this will be "int". Based
# on my testing, Protobuf message classes are happy enough to take
# their enum-valued field values as "int", so this is not a
# problem.
# Make sure fields in generated and base classes are distinct
for arg in base_kwargs:
if arg in field_names:
raise RuntimeError(
'class {0} and its parent class {1} '
'both define the field {2}. This is a bug!'
.format(message_name, base_class.__name__, arg))
def __init__(self, *args, **kwargs):
# Extract arguments to pass to base class constructor
_base_kwargs = {}
for arg in base_kwargs:
if arg in kwargs:
_base_kwargs[arg] = kwargs[arg]
del kwargs[arg]
base_class.__init__(self, *args, **_base_kwargs)
# Make sure arguments are valid
for arg in kwargs:
if arg not in field_names:
raise ValueError('Unknown argument {0}'.format(arg))
# Set field values
for arg in field_names:
setattr(self, arg, kwargs.get(arg, None))
def export_proto(self):
"""Construct and return a protobuf message."""
# Construct Protobuf message
if base_has_export_proto:
proto = base_class.export_proto(self)
message = getattr(proto, base_field_name)
message.SetInParent()
else:
# TODO (trb 08/01/2019): This list would have to be
# updated any time another _pb2 file is created. It might
# be better to have this as a global `frozenset`
# (ndryden's suggestion) that gets maintained
# elsewhere. But this code either works or doesn't get
# executed now, so I vote delaying this fix until a need
# arises.
proto_modules = [callbacks_pb2, layers_pb2, metrics_pb2, model_pb2, objective_functions_pb2, operators_pb2, optimizers_pb2, training_algorithm_pb2, weights_pb2]
proto_type = None
while proto_type is None:
proto_type = getattr(proto_modules.pop(), message_name, None)
proto = proto_type()
message = proto
# Set message
for field_name in field_names:
val = getattr(self, field_name)
if val is not None:
try:
field = getattr(message, field_name)
field_descriptor = field_descriptors[field_name]
if field_descriptor.message_type in _protobuf_type_wrappers:
field.SetInParent()
field.value = val
elif field_descriptor.label == google.protobuf.descriptor.FieldDescriptor.LABEL_REPEATED:
iterable_val = make_iterable(val)
if field_descriptor.type == field_descriptor.TYPE_MESSAGE:
field.extend([x.export_proto() for x in iterable_val])
else:
field.extend(iterable_val)
elif isinstance(val, google.protobuf.message.Message):
getattr(message, field_name).MergeFrom(val)
elif callable(getattr(val, "export_proto", None)):
# 'val' is (hopefully) an LBANN class
# representation of a protobuf message.
getattr(message, field_name).MergeFrom(val.export_proto())
else:
setattr(message, field_name, val)
except:
raise TypeError('{} is invalid type for {}.{}'
.format(type(val).__name__,
self.__class__.__name__,
field_name))
# Return Protobuf message
return proto
def get_field_names(self):
"""Names of parameters in derived class."""
return field_names
# Generate docstring
if message_descriptor.fields:
doc = 'Fields:\n'
for field in message_descriptor.fields:
doc += ' {0} ({1} {2})\n'.format(
field.name,
_protobuf_field_label_names.get(field.label, 'unknown'),
_protobuf_field_type_names.get(field.type, 'unknown'))
else:
doc = 'Fields: none\n'
# Create new class
class_dictionary = {'__init__': __init__,
'__doc__': doc,
'export_proto': export_proto,
'get_field_names': get_field_names}
class_dictionary.update(all_enums)
return type(message_name, (base_class,), class_dictionary) | def _generate_class(message_descriptor,
base_field_name,
base_class,
base_kwargs,
base_has_export_proto):
"""Generate new class from Protobuf message.
Args:
message (google.protobuf.descriptor.Descriptor): Descriptor
for Protobuf message.
base_field_name (str): Name of corresponding field in parent
message.
base_class (type): Base class for generated class.
base_kwargs (Iterable of str): Keyword arguments for base
class `__init__` method.
base_has_export_proto (bool): Whether the base class
implements an `export_proto` method. If `True`, the
generated class `export_proto` will set the appropriate
field in the Protobuf message returned by the base class
`export_proto`.
Returns:
type: Generated class.
"""
# Names of Protobuf message and its fields
message_name = message_descriptor.name
field_descriptors = message_descriptor.fields_by_name
field_names = field_descriptors.keys()
enums = message_descriptor.enum_types_by_name
# Handle "enum" type data.
all_enums = {}
for enum_name, enum_desc in enums.items():
enum_val_to_num = {}
enum_val_descs = enum_desc.values_by_name
for val_name, val_desc in enum_val_descs.items():
enum_val_to_num[val_name] = val_desc.number
all_enums[enum_name] = type(enum_name, (), enum_val_to_num)
# Note (trb 12/18/19): This is *NOT* meant to be a rigorous enum
# implementation (see the 'enum' module for such a thing). The
# goal is to simply expose "enum-like" semantics to the Python
# front-end:
#
# x = ClassName.EnumName.ENUM_VALUE
#
# Note that the value held by "x" after this will be "int". Based
# on my testing, Protobuf message classes are happy enough to take
# their enum-valued field values as "int", so this is not a
# problem.
# Make sure fields in generated and base classes are distinct
for arg in base_kwargs:
if arg in field_names:
raise RuntimeError(
'class {0} and its parent class {1} '
'both define the field {2}. This is a bug!'
.format(message_name, base_class.__name__, arg))
def __init__(self, *args, **kwargs):
# Extract arguments to pass to base class constructor
_base_kwargs = {}
for arg in base_kwargs:
if arg in kwargs:
_base_kwargs[arg] = kwargs[arg]
del kwargs[arg]
base_class.__init__(self, *args, **_base_kwargs)
# Make sure arguments are valid
for arg in kwargs:
if arg not in field_names:
raise ValueError('Unknown argument {0}'.format(arg))
# Set field values
for arg in field_names:
setattr(self, arg, kwargs.get(arg, None))
def export_proto(self):
"""Construct and return a protobuf message."""
# Construct Protobuf message
if base_has_export_proto:
proto = base_class.export_proto(self)
message = getattr(proto, base_field_name)
message.SetInParent()
else:
# TODO (trb 08/01/2019): This list would have to be
# updated any time another _pb2 file is created. It might
# be better to have this as a global `frozenset`
# (ndryden's suggestion) that gets maintained
# elsewhere. But this code either works or doesn't get
# executed now, so I vote delaying this fix until a need
# arises.
proto_modules = [callbacks_pb2, layers_pb2, metrics_pb2, model_pb2, objective_functions_pb2, operators_pb2, optimizers_pb2, training_algorithm_pb2, weights_pb2]
proto_type = None
while proto_type is None:
proto_type = getattr(proto_modules.pop(), message_name, None)
proto = proto_type()
message = proto
# Set message
for field_name in field_names:
val = getattr(self, field_name)
if val is not None:
try:
field = getattr(message, field_name)
field_descriptor = field_descriptors[field_name]
if field_descriptor.message_type in _protobuf_type_wrappers:
field.SetInParent()
field.value = val
elif field_descriptor.label == google.protobuf.descriptor.FieldDescriptor.LABEL_REPEATED:
iterable_val = make_iterable(val)
if field_descriptor.type == field_descriptor.TYPE_MESSAGE:
field.extend([x.export_proto() for x in iterable_val])
else:
field.extend(iterable_val)
elif isinstance(val, google.protobuf.message.Message):
getattr(message, field_name).MergeFrom(val)
elif callable(getattr(val, "export_proto", None)):
# 'val' is (hopefully) an LBANN class
# representation of a protobuf message.
getattr(message, field_name).MergeFrom(val.export_proto())
else:
setattr(message, field_name, val)
except:
raise TypeError('{} is invalid type for {}.{}'
.format(type(val).__name__,
self.__class__.__name__,
field_name))
# Return Protobuf message
return proto
def get_field_names(self):
"""Names of parameters in derived class."""
return field_names
# Generate docstring
if message_descriptor.fields:
doc = 'Fields:\n'
for field in message_descriptor.fields:
doc += ' {0} ({1} {2})\n'.format(
field.name,
_protobuf_field_label_names.get(field.label, 'unknown'),
_protobuf_field_type_names.get(field.type, 'unknown'))
else:
doc = 'Fields: none\n'
# Create new class
class_dictionary = {'__init__': __init__,
'__doc__': doc,
'export_proto': export_proto,
'get_field_names': get_field_names}
class_dictionary.update(all_enums)
return type(message_name, (base_class,), class_dictionary) |
Python | def export_proto(self):
"""Construct and return a protobuf message."""
# Construct Protobuf message
if base_has_export_proto:
proto = base_class.export_proto(self)
message = getattr(proto, base_field_name)
message.SetInParent()
else:
# TODO (trb 08/01/2019): This list would have to be
# updated any time another _pb2 file is created. It might
# be better to have this as a global `frozenset`
# (ndryden's suggestion) that gets maintained
# elsewhere. But this code either works or doesn't get
# executed now, so I vote delaying this fix until a need
# arises.
proto_modules = [callbacks_pb2, layers_pb2, metrics_pb2, model_pb2, objective_functions_pb2, operators_pb2, optimizers_pb2, training_algorithm_pb2, weights_pb2]
proto_type = None
while proto_type is None:
proto_type = getattr(proto_modules.pop(), message_name, None)
proto = proto_type()
message = proto
# Set message
for field_name in field_names:
val = getattr(self, field_name)
if val is not None:
try:
field = getattr(message, field_name)
field_descriptor = field_descriptors[field_name]
if field_descriptor.message_type in _protobuf_type_wrappers:
field.SetInParent()
field.value = val
elif field_descriptor.label == google.protobuf.descriptor.FieldDescriptor.LABEL_REPEATED:
iterable_val = make_iterable(val)
if field_descriptor.type == field_descriptor.TYPE_MESSAGE:
field.extend([x.export_proto() for x in iterable_val])
else:
field.extend(iterable_val)
elif isinstance(val, google.protobuf.message.Message):
getattr(message, field_name).MergeFrom(val)
elif callable(getattr(val, "export_proto", None)):
# 'val' is (hopefully) an LBANN class
# representation of a protobuf message.
getattr(message, field_name).MergeFrom(val.export_proto())
else:
setattr(message, field_name, val)
except:
raise TypeError('{} is invalid type for {}.{}'
.format(type(val).__name__,
self.__class__.__name__,
field_name))
# Return Protobuf message
return proto | def export_proto(self):
"""Construct and return a protobuf message."""
# Construct Protobuf message
if base_has_export_proto:
proto = base_class.export_proto(self)
message = getattr(proto, base_field_name)
message.SetInParent()
else:
# TODO (trb 08/01/2019): This list would have to be
# updated any time another _pb2 file is created. It might
# be better to have this as a global `frozenset`
# (ndryden's suggestion) that gets maintained
# elsewhere. But this code either works or doesn't get
# executed now, so I vote delaying this fix until a need
# arises.
proto_modules = [callbacks_pb2, layers_pb2, metrics_pb2, model_pb2, objective_functions_pb2, operators_pb2, optimizers_pb2, training_algorithm_pb2, weights_pb2]
proto_type = None
while proto_type is None:
proto_type = getattr(proto_modules.pop(), message_name, None)
proto = proto_type()
message = proto
# Set message
for field_name in field_names:
val = getattr(self, field_name)
if val is not None:
try:
field = getattr(message, field_name)
field_descriptor = field_descriptors[field_name]
if field_descriptor.message_type in _protobuf_type_wrappers:
field.SetInParent()
field.value = val
elif field_descriptor.label == google.protobuf.descriptor.FieldDescriptor.LABEL_REPEATED:
iterable_val = make_iterable(val)
if field_descriptor.type == field_descriptor.TYPE_MESSAGE:
field.extend([x.export_proto() for x in iterable_val])
else:
field.extend(iterable_val)
elif isinstance(val, google.protobuf.message.Message):
getattr(message, field_name).MergeFrom(val)
elif callable(getattr(val, "export_proto", None)):
# 'val' is (hopefully) an LBANN class
# representation of a protobuf message.
getattr(message, field_name).MergeFrom(val.export_proto())
else:
setattr(message, field_name, val)
except:
raise TypeError('{} is invalid type for {}.{}'
.format(type(val).__name__,
self.__class__.__name__,
field_name))
# Return Protobuf message
return proto |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
op = OpProto.Operator()
op.input_datatype = self.input_type
op.output_datatype = self.output_type
if self.device:
op.device_allocation = self.device
op.parameters.Pack(self.do_export_proto())
return op | def export_proto(self):
"""Get a protobuf representation of this object."""
op = OpProto.Operator()
op.input_datatype = self.input_type
op.output_datatype = self.output_type
if self.device:
op.device_allocation = self.device
op.parameters.Pack(self.do_export_proto())
return op |
Python | def do_export_proto(self):
"""Get a protobuf representation of this object.
Must be implemented in derived classes.
"""
raise NotImplementedError | def do_export_proto(self):
"""Get a protobuf representation of this object.
Must be implemented in derived classes.
"""
raise NotImplementedError |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
algo = AlgoProto.TrainingAlgorithm()
algo.name = self.name
algo.parameters.Pack(self.do_export_proto())
return algo | def export_proto(self):
"""Get a protobuf representation of this object."""
algo = AlgoProto.TrainingAlgorithm()
algo.name = self.name
algo.parameters.Pack(self.do_export_proto())
return algo |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.SGD.TerminationCriteria()
if self.batch_count > 0:
msg.max_batches = self.batch_count
if self.epoch_count > 0:
msg.max_epochs = self.epoch_count
if self.seconds > 0:
msg.max_seconds = self.seconds
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.SGD.TerminationCriteria()
if self.batch_count > 0:
msg.max_batches = self.batch_count
if self.epoch_count > 0:
msg.max_epochs = self.epoch_count
if self.seconds > 0:
msg.max_seconds = self.seconds
return msg |
Python | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.SGD()
params.stopping_criteria.CopyFrom(self.stopping.export_proto())
return params | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.SGD()
params.stopping_criteria.CopyFrom(self.stopping.export_proto())
return params |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.LTFB.TerminationCriteria()
msg.max_tournaments = self.metalearning_steps
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.LTFB.TerminationCriteria()
msg.max_tournaments = self.metalearning_steps
return msg |
Python | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.LTFB()
params.stopping_criteria.CopyFrom(self.stopping.export_proto())
params.meta_learning_strategy.Pack(self.metalearning.export_proto())
params.local_training_algorithm.CopyFrom(self.local_algo.export_proto())
return params | def do_export_proto(self):
"""Get a protobuf representation of this object."""
params = AlgoProto.LTFB()
params.stopping_criteria.CopyFrom(self.stopping.export_proto())
params.meta_learning_strategy.Pack(self.metalearning.export_proto())
params.local_training_algorithm.CopyFrom(self.local_algo.export_proto())
return params |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
MutationStrategyMsg = AlgoProto.MutationStrategy
msg = MutationStrategyMsg()
if self.strategy == "null_mutation":
NullMutationMsg = MutationStrategyMsg.NullMutation
msg.null_mutation.CopyFrom(NullMutationMsg())
elif self.strategy == "replace_activation":
ReplaceActivationMsg = MutationStrategyMsg.ReplaceActivation
msg.replace_activation.CopyFrom(ReplaceActivationMsg())
elif self.strategy == "replace_convolution":
ReplaceConvolutionMsg = MutationStrategyMsg.ReplaceConvolution
msg.replace_convolution.CopyFrom(ReplaceConvolutionMsg())
elif self.strategy == "hybrid_mutation":
HybridMutationMsg = MutationStrategyMsg.HybridMutation
msg.hybrid_mutation.CopyFrom(HybridMutationMsg())
else:
raise ValueError("Unknown Strategy")
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
MutationStrategyMsg = AlgoProto.MutationStrategy
msg = MutationStrategyMsg()
if self.strategy == "null_mutation":
NullMutationMsg = MutationStrategyMsg.NullMutation
msg.null_mutation.CopyFrom(NullMutationMsg())
elif self.strategy == "replace_activation":
ReplaceActivationMsg = MutationStrategyMsg.ReplaceActivation
msg.replace_activation.CopyFrom(ReplaceActivationMsg())
elif self.strategy == "replace_convolution":
ReplaceConvolutionMsg = MutationStrategyMsg.ReplaceConvolution
msg.replace_convolution.CopyFrom(ReplaceConvolutionMsg())
elif self.strategy == "hybrid_mutation":
HybridMutationMsg = MutationStrategyMsg.HybridMutation
msg.hybrid_mutation.CopyFrom(HybridMutationMsg())
else:
raise ValueError("Unknown Strategy")
return msg |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
ExchangeStrategyMsg = AlgoProto.RandomPairwiseExchange.ExchangeStrategy
msg = ExchangeStrategyMsg()
msg.weights_name.extend([n for n in self.weights_names])
if self.strategy == "checkpoint_binary":
CheckpointBinaryMsg = ExchangeStrategyMsg.CheckpointBinary
msg.checkpoint_binary.CopyFrom(CheckpointBinaryMsg())
elif self.strategy == "checkpoint_file":
if self.checkpoint_dir:
msg.checkpoint_file.checkpoint_dir = self.checkpoint_dir
else:
raise Exception("Must provide checkpoint dir")
elif self.strategy == "sendrecv_weights":
msg.sendrecv_weights.exchange_hyperparameters = self.exchange_hyperparameters
else:
raise ValueError("Unknown strategy")
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
ExchangeStrategyMsg = AlgoProto.RandomPairwiseExchange.ExchangeStrategy
msg = ExchangeStrategyMsg()
msg.weights_name.extend([n for n in self.weights_names])
if self.strategy == "checkpoint_binary":
CheckpointBinaryMsg = ExchangeStrategyMsg.CheckpointBinary
msg.checkpoint_binary.CopyFrom(CheckpointBinaryMsg())
elif self.strategy == "checkpoint_file":
if self.checkpoint_dir:
msg.checkpoint_file.checkpoint_dir = self.checkpoint_dir
else:
raise Exception("Must provide checkpoint dir")
elif self.strategy == "sendrecv_weights":
msg.sendrecv_weights.exchange_hyperparameters = self.exchange_hyperparameters
else:
raise ValueError("Unknown strategy")
return msg |
Python | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.RandomPairwiseExchange()
for key, value in self.metric_strategies.items():
msg.metric_name_strategy_map[key] = value
msg.exchange_strategy.CopyFrom(self.exchange_strategy.export_proto())
msg.mutation_strategy.CopyFrom(self.mutation_strategy.export_proto())
return msg | def export_proto(self):
"""Get a protobuf representation of this object."""
msg = AlgoProto.RandomPairwiseExchange()
for key, value in self.metric_strategies.items():
msg.metric_name_strategy_map[key] = value
msg.exchange_strategy.CopyFrom(self.exchange_strategy.export_proto())
msg.mutation_strategy.CopyFrom(self.mutation_strategy.export_proto())
return msg |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.