seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
"""
# TODO: support shape and tt_ranks as TensorShape?.
# TODO: support None as a dimension.
shape = np.array(shape)
tt_rank = np.array(tt_rank)
_validate_input_parameters(is_tensor=True, shape=shape, tt_rank=tt_rank,
batch_size=batch_size)
num_dims = shape.size
if tt_rank.size == 1:
tt_rank = tt_rank * np.ones(num_dims - 1)
tt_rank = np.insert(tt_rank, 0, 1)
tt_rank = np.append(tt_rank, 1)
tt_rank = tt_rank.astype(int)
tt_cores = [None] * num_dims
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (batch_size, tt_rank[i], shape[i], tt_rank[i + 1])
tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev,
dtype=dtype)
return TensorTrainBatch(tt_cores, shape, tt_rank, batch_size)
def matrix_with_random_cores(shape, tt_rank=2, mean=0., stddev=1.,
dtype=tf.float32,
name='t3f_matrix_with_random_cores'):
"""Generate a TT-matrix of given shape with N(mean, stddev^2) cores.
Args:
| tensorflow.name_scope | 2,800 |
import tensorflow as tf
random_tensor = (1.0 - self._dropout_keep_prob +
tf.random_uniform(tf.shape(confidence_scores)))
| tensorflow.shape | 2,801 |
import tensorflow as tf
self.evaluate(pdf),
self._scipy_pareto(concentration_v, scale_v).pdf(x))
def testParetoLogPdfValidateArgs(self):
batch_size = 3
scale = tf.constant([2., 3., 4.])
concentration = tf.constant([2.] * batch_size)
pareto = tfd.Pareto(concentration, scale, validate_args=True)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 3., 3.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 2., 5.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
with self.assertRaisesOpError("not in the support"):
| tensorflow.placeholder_with_default | 2,802 |
import tensorflow as tf
)
out = tf.layers.dense(
inputs=fc2,
| tensorflow.layers.dense | 2,803 |
import tensorflow as tf
s_h, s_w = self.output_height, self.output_width
s_h2, s_h4, s_h8, s_h16 = \
int(s_h/2), int(s_h/4), int(s_h/8), int(s_h/16)
s_w2, s_w4, s_w8, s_w16 = \
int(s_w/2), int(s_w/4), int(s_w/8), int(s_w/16)
output_z_ = lrelu(linear(trans_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
output_h0 = tf.reshape(output_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
output_h1 = lrelu(deconv2d(tf.concat([output_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
output_h2 = lrelu(deconv2d(tf.concat([output_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
output_h3 = lrelu(deconv2d(tf.concat([output_h2, tgtctx_h1], 3),
[self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3'))
output_h4 = deconv2d(tf.concat([output_h3, tgtctx_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4')
scope.reuse_variables()
truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
| tensorflow.concat | 2,804 |
import tensorflow as tf
non_monotonous = (1 - monotonous) * mask
attn_loss = tf.reduce_sum(attention_weights * tf.stop_gradient(non_monotonous)) / tf.to_float(batch_size)
| tensorflow.to_float | 2,805 |
import tensorflow as tf
ref=self.internals_memory[name],
indices=indices,
updates=internals[name]
))
for name in sorted(actions):
assignments.append(tf.scatter_update(
ref=self.actions_memory[name],
indices=indices,
updates=actions[name]
))
| tensorflow.scatter_update | 2,806 |
import tensorflow as tf
with tf.Session() as sess:
# Load the model
facenet.load_model(args.model_dir)
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
# Run forward pass to calculate embeddings
nrof_images = len(image_list)
| tensorflow.get_default_graph | 2,807 |
import tensorflow as tf
train_vars = tf.trainable_variables()
d_params = [v for v in train_vars if v.name.startswith(name + '/discriminator/')]
g_params = [v for v in train_vars if v.name.startswith(name + '/generator/')]
rot_params = [v for v in train_vars if '/rotation/' in v.name] #slightly suspecting that this part is incorrect
self.opt_d = self.optimizer(self.init_lr, beta, self.loss_d_rot, d_params)
self.opt_g = self.optimizer(self.init_lr, beta, self.loss_g_rot, g_params) #used loss_g + rot_loss to update
self.opt_pred = self.optimizer(lr_pred, beta, self.real_pc_rot_loss, rot_params, batch) #only use real pics to update
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
self.init = tf.global_variables_initializer()
#Launch the session
config = tf.ConfigProto(allow_soft_placement = True)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config, graph=self.graph)
self.sess.run(self.init)
| tensorflow.global_variables | 2,808 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs')
tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every')
tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization')
tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ')
tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information')
tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode')
tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ')
tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set')
| tensorflow.app.flags.DEFINE_boolean | 2,809 |
import tensorflow as tf
rdd = sc.parallelize(data_list, splits)
tensor_structure = [TensorMeta(tf.as_dtype(t.dtype),
shape=t.shape[1:],
name="input_%s" % i)
for i, t in enumerate(tensors)]
else:
flattened = nest.flatten(tensors)
for i in range(len(flattened)):
if flattened[i].dtype == np.dtype("float64"):
flattened[i] = np.float32(flattened[i])
data_list = _splits(flattened)
rdd = sc.parallelize(data_list, splits)
rdd = rdd.map(lambda x: nest.pack_sequence_as(tensors, x))
tensor_structure = nest.pack_sequence_as(tensors,
[TensorMeta(tf.as_dtype(t.dtype),
shape=t.shape[1:],
name="input_%s" % i)
for i, t in enumerate(flattened)])
return rdd, tensor_structure
def _splits(tensors):
data_list = []
data_size = tensors[0].shape[0]
for i in range(data_size):
sample = []
for j in range(len(tensors)):
sample.append(tensors[j][i])
| tensorflow.as_dtype | 2,810 |
from tensorflow.python.framework import ops
train_ops = self._get_linear_training_ops(
linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
dnn_vars)
train_step = control_flow_ops.group(*train_ops, name="combined_training_op")
with ops.control_dependencies([train_step]):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, loss
def _run_metrics(self, predictions, targets, metrics, weights):
result = {}
| tensorflow.python.framework.ops.control_dependencies | 2,811 |
import tensorflow as tf
target_value_shape_suffix = [num_target_frames, distributional_size]
features = {
"inputs": observations,
"epoch": tf.constant(epoch + 1),
"input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]),
"target_action": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_reward": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_policy": tf.zeros(
obs_shape[:1] + [num_target_frames] + [action_space.n]),
"target_value": tf.zeros(
obs_shape[:1] + target_value_shape_suffix)
}
model.distributional_value_size = max(distributional_size, 1)
model.use_epochs = hparams.use_epochs
| tensorflow.zeros | 2,812 |
from tensorflow.python.ops import check_ops
raise ValueError("%s.ndims=%d is not 0 (scalar)" %
(x.name, x.get_shape().ndims))
if x_value_static < 0:
raise ValueError("%s.value=%d cannot be negative" %
(x.name, x_value_static))
return x
if self.validate_args:
x = control_flow_ops.with_dependencies([
check_ops.assert_rank(x, 0),
check_ops.assert_non_negative(x)], x)
return x
def _introspect_ndims(self, ndims):
"""Helper to establish some properties of input ndims args."""
if self._is_all_constant_helper(ndims):
return (tensor_util.constant_value(ndims),
| tensorflow.python.ops.check_ops.assert_rank | 2,813 |
import tensorflow as tf
:param kernel_size:
:param name:
:param depth_multiplier:
:param padding:
:param stride:
:return:
"""
with tf.variable_scope(name_or_scope=name):
in_shape = input_tensor.get_shape().as_list()
in_channel = in_shape[3]
padding = padding.upper()
depthwise_filter_shape = [kernel_size, kernel_size] + [in_channel, depth_multiplier]
w_init = tf.contrib.layers.variance_scaling_initializer()
| tensorflow.variable_scope | 2,814 |
import tensorflow as tf
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
| tensorflow.nn.seq2seq.embedding_attention_seq2seq | 2,815 |
import tensorflow as tf
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
| tensorflow.expand_dims | 2,816 |
import tensorflow as tf
run_metadata=run_metadata)
if (save_vis_dir is not None and os.path.exists(save_vis_dir)):
# first get the weights out
with tf.variable_scope('conv5_3', reuse=True) as scope:
conv5_3_weights = tf.get_variable("weights")
conv5_3_weights_np, conv5_3_features, st_pool_features =\
| tensorflow.variable_scope | 2,817 |
import tensorflow as tf
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
valid_pre = tf.argmax(valid_pre, 1)
valid_true = tf.argmax(valid_labels, 1)
target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj',
'class no', 'class yh', 'class fb']
init = tf.initialize_all_variables()
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
#init=tf.initialize_all_variables()
def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False):
with tf.Session(config=config) as sess:
sess.run(init)
coord = tf.train.Coordinator()
| tensorflow.initialize_all_variables | 2,818 |
import tensorflow as tf
input_dict[fields.InputDataFields.image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
| tensorflow.cast | 2,819 |
import tensorflow as tf
(y_p - 368 / 2) * (y_p - 368 / 2)
exponent = dist_sq / 2.0 / (21**2)
gaussian_map[y_p, x_p] = np.exp(-exponent)
return gaussian_map.reshape((1, 368, 368, 1))
def CPM(image):
image = image / 256.0 - 0.5
gmap = tf.constant(get_gaussian_map())
gmap = tf.pad(gmap, [[0, 0], [0, 1], [0, 1], [0, 0]])
pool_center = AvgPooling('mappool', gmap, 9, stride=8, padding='VALID')
with argscope(Conv2D, kernel_shape=3, nl=tf.nn.relu,
W_init=tf.random_normal_initializer(stddev=0.01)):
shared = (LinearWrap(image)
.Conv2D('conv1_1', 64)
.Conv2D('conv1_2', 64)
.MaxPooling('pool1', 2)
# 184
.Conv2D('conv2_1', 128)
| tensorflow.pad | 2,820 |
import tensorflow as tf
def _train_semi_supervised(self, dataset, start_epoch, weights_from, summary_every, model_name,
weights_dir):
training_X, training_y, validation_X, validation_y = \
dataset.training_X, dataset.training_y, dataset.validation_X, dataset.validation_y
if not os.path.exists(weights_dir):
os.mkdir(weights_dir)
if not os.path.exists(weights_dir + '/best_models'):
os.mkdir(weights_dir + '/best_models')
# Create a saver.
saver = tf.train.Saver(max_to_keep=None)
if self.is_summary:
training_batch_summary_op = tf.merge_all_summaries(key=TRAINING_BATCH_SUMMARIES)
training_epoch_summary_op = tf.merge_all_summaries(key=TRAINING_EPOCH_SUMMARIES)
validation_batch_summary_op = tf.merge_all_summaries(key=VALIDATION_BATCH_SUMMARIES)
validation_epoch_summary_op = tf.merge_all_summaries(key=VALIDATION_EPOCH_SUMMARIES)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
gpu_options = tf.GPUOptions(
per_process_gpu_memory_fraction=self.cnf.get('gpu_memory_fraction', 0.9))
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options))
sess.run(init)
if start_epoch > 1:
weights_from = "weights/model-epoch-%d.ckpt" % (start_epoch - 1)
if weights_from:
| tensorflow.merge_all_summaries | 2,821 |
import tensorflow as tf
optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy)
# calculate the prediction and the accuracy
accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1))
loss_summary = tf.summary.scalar('Loss', cross_entropy)
acc_summary = tf.summary.scalar('Accuracy', accuracy)
# summaries for TensorBoard visualisation
validation_summary = tf.summary.merge([img_summary, acc_summary])
training_summary = tf.summary.merge([img_summary, loss_summary])
test_summary = tf.summary.merge([img_summary, acc_summary])
# saver for checkpoints
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
with tf.Session() as sess:
summary_writer = tf.summary.FileWriter(run_log_dir + '_train', sess.graph, flush_secs=5)
summary_writer_validation = tf.summary.FileWriter(run_log_dir + '_validate', sess.graph, flush_secs=5)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
| tensorflow.summary.merge | 2,822 |
import tensorflow as tf
ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
"""
image_shape = image_tensor.get_shape()
image_height = static_shape.get_height(image_shape)
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
if image_height < min_dim or image_width < min_dim:
raise ValueError(
'image size must be >= %d in both height and width; image dim = %d,%d' %
(min_dim, image_height, image_width))
return image_tensor
def assert_shape_equal(shape_a, shape_b):
| tensorflow.identity | 2,823 |
import tensorflow as tf
flattened_lm_emb = tf.reshape(lm_emb, [num_sentences * max_sentence_length * lm_emb_size, lm_num_layers])
flattened_aggregated_lm_emb = tf.matmul(flattened_lm_emb, tf.expand_dims(self.lm_weights, 1)) # [num_sentences * max_sentence_length * emb, 1]
aggregated_lm_emb = tf.reshape(flattened_aggregated_lm_emb, [num_sentences, max_sentence_length, lm_emb_size])
aggregated_lm_emb *= self.lm_scaling
context_emb_list.append(aggregated_lm_emb)
context_emb = tf.concat(context_emb_list, 2) # [num_sentences, max_sentence_length, emb]
head_emb = tf.concat(head_emb_list, 2) # [num_sentences, max_sentence_length, emb]
context_emb = tf.nn.dropout(context_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb]
head_emb = tf.nn.dropout(head_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb]
text_len_mask = tf.sequence_mask(text_len, maxlen=max_sentence_length) # [num_sentence, max_sentence_length]
context_outputs = self.lstm_contextualize(context_emb, text_len, text_len_mask) # [num_words, emb]
| tensorflow.concat | 2,824 |
import tensorflow as tf
self.demo = demo
self.graph = graph if graph is not None else tf.Graph()
| tensorflow.Graph | 2,825 |
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
| tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Tensor | 2,826 |
import tensorflow as tf
) # [bs,bn,vec]
block_ct_res_tile = tf.tile(tf.expand_dims(block_ct_res, 2), [1, 1, bl, 1])#[bs,bn,vec]->[bs,bn,bl,vec]
with tf.variable_scope('combination'):
# input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec]
rep_tensor_with_ct = tf.concat([rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec]
new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate',
False, wd, keep_prob, is_train) # [bs,bn,bl,2vec]
new_context, gate = tf.split(new_context_and_gate, 2, 3) # bs,bn,bl,vec
if activation == "relu":
new_context_act = tf.nn.relu(new_context)
elif activation == "elu":
new_context_act = tf.nn.elu(new_context)
elif activation == "linear":
new_context_act = tf.identity(new_context)
else:
raise RuntimeError
| tensorflow.split | 2,827 |
import tensorflow as tf
# Location predictions.
location_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self.num_classes *
self._box_code_size)
location_feature_map = slim.conv2d(net, location_feature_map_depth,
[1, 1], activation_fn=None,
scope='refined_locations')
box_encodings = ops.position_sensitive_crop_regions(
location_feature_map,
boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]),
box_ind=get_box_indices(proposal_boxes),
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, squeeze_dims=[1, 2])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
total_classes = self.num_classes + 1 # Account for background class.
class_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
total_classes)
class_feature_map = slim.conv2d(net, class_feature_map_depth, [1, 1],
activation_fn=None,
scope='class_predictions')
class_predictions_with_background = ops.position_sensitive_crop_regions(
class_feature_map,
| tensorflow.squeeze | 2,828 |
import tensorflow as tf
x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1)
y = tf.transpose(x, [1, 0])
kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2))
#print(kernel_matrix)
kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1])
kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1])
#kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3])
outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur')
if data_format_ == 'NHWC':
outputs = tf.transpose(outputs, [0, 3, 1, 2])
return outputs
cpn_backbone = cpn.cascaded_pyramid_net
if 'seresnext50' in FLAGS.backbone:
cpn_backbone = cpn.xt_cascaded_pyramid_net
def keypoint_model_fn(features, labels, mode, params):
targets = labels['targets']
| tensorflow.transpose | 2,829 |
import tensorflow as tf
super(RestoreMovingAverageHook, self).__init__()
self.model_dir = model_dir
def begin(self):
ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY)
variables_to_restore = ema.variables_to_restore()
self.load_ema = tf.contrib.framework.assign_from_checkpoint_fn(
tf.train.latest_checkpoint(self.model_dir), variables_to_restore
)
def after_create_session(self, sess, coord):
tf.logging.info('Loading EMA weights...')
self.load_ema(sess)
| tensorflow.train.latest_checkpoint | 2,830 |
import tensorflow as tf
def _tensor_to_image(self, net):
with tf.name_scope('to_image'):
if FLAGS.new_blur:
net = net[..., :self.batch_shape[-1]]
net = tf.nn.relu(net)
net = tf.cast(net <= 1, net.dtype) * net * 255
net = tf.cast(net, tf.uint8)
return net
def _image_to_tensor(self, image):
with tf.name_scope('args_transform'):
net = tf.cast(image, tf.float32) / 255.
if FLAGS.new_blur:
net = _blur_expand(net)
FLAGS.blur = 0.
return net
def _init_optimizer(self):
self.loss_total = tf.add_n(self.losses, 'loss_total')
self.optimizer = self.optimizer_constructor(learning_rate=FLAGS.learning_rate)
| tensorflow.name_scope | 2,831 |
import tensorflow as tf
sigmean = tf.Variable(5.28, name="sigmean", dtype=tf.float64)
sigwidth = tf.Variable(0.0027, name="sigwidth", dtype=tf.float64)
vdict['sigmean'] = sigmean
vdict['sigwidth'] = sigwidth
# RooGaussian gauss("gauss","gaussian PDF",mes,sigmean,sigwidth) ;
def gaussian_pdf(x, mean, std):
val = tf.div(tf.exp(-tf.pow((x - mean) / std, 2) / two), (sqrt2pi * std),
name="gaussian_pdf")
return val
# // --- Build Argus background PDF ---
# RooRealVar argpar("argpar","argus shape parameter",-20.0,-100.,-1.) ;
# RooConstVar m0("m0", "resonant mass", 5.291);
| tensorflow.pow | 2,832 |
import tensorflow as tf
@pytest.fixture
def sqrt_diag(session_tf):
return tf.convert_to_tensor(Datum.sqrt_diag_data)
@pytest.fixture
def K(session_tf):
return tf.convert_to_tensor(Datum.K_data)
@pytest.fixture
def K_batch(session_tf):
return tf.convert_to_tensor(Datum.K_batch_data)
@pytest.fixture
def sqrt(session_tf):
return tf.convert_to_tensor(Datum.sqrt_data)
@pytest.fixture()
def I(session_tf):
return tf.convert_to_tensor(Datum.I)
@pytest.mark.parametrize('white', [True, False])
def test_diags(session_tf, white, mu, sqrt_diag, K):
"""
The covariance of q(x) can be Cholesky matrices or diagonal matrices.
Here we make sure the behaviours overlap.
"""
# the chols are diagonal matrices, with the same entries as the diag representation.
chol_from_diag = tf.stack([tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)]) # N x M x M
| tensorflow.convert_to_tensor | 2,833 |
import tensorflow as tf
embeddings = np.zeros((n_tokens, embed_dim), dtype=DTYPE)
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
| tensorflow.ConfigProto | 2,834 |
import tensorflow as tf
Tout=[tf.float32, tf.float32])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])
| tensorflow.reshape | 2,835 |
import tensorflow as tf
token_type_ids.append(e.token_type_ids)
attention_mask.append(e.attention_mask)
labels.append(e.label_ids)
# parse examples to dataset
def _to_dataset(x, dtype=tf.int32):
x = tf.ragged.constant(x, dtype=dtype)
d = tf.data.Dataset.from_tensor_slices(x)
d = d.map(lambda x: x)
return d
dataset = tf.data.Dataset.zip(
| tensorflow.ragged.constant | 2,836 |
import tensorflow as tf
self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))
self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1]))
self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.U0_pred = self.net_U0(self.x0_tf) # N0 x q
self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
| tensorflow.placeholder | 2,837 |
import tensorflow as tf
-------
A tuple length of 3, (normalized_tensor, mean, variance).
"""
mean, var = tf.nn.moments(
x, reduction_axes, shift=None, name=None, keep_dims=False)
if sorted(reduction_axes) == range(ndim(x))[:-1]:
| tensorflow.nn.moments | 2,838 |
import tensorflow as tf
return a
elif type(a) == list:
if type(a[0]) == tf.Tensor:
return tf.stack(a, 0)
else:
return tf.constant(a, dtype)
else:
print(type(a))
return tf.constant(a, dtype)
| tensorflow.constant | 2,839 |
import tensorflow as tf
# q network evaluation
q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func")
# target q network evalution
q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func")
# q scores for actions which we know were selected in the given state.
q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1)
# compute estimate of best possible value starting from state at t + 1
if double_q:
q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True)
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1)
else:
q_tp1_best = tf.reduce_max(q_tp1, 1)
q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
errors = U.huber_loss(td_error)
weighted_error = tf.reduce_mean(importance_weights_ph * errors)
# compute optimization op (potentially with gradient clipping)
| tensorflow.argmax | 2,840 |
import tensorflow as tf
else self.config['eval_batch_size']
shards = {d: tf.unstack(v, num=batch_size*self.n_gpus, axis=0)
| tensorflow.unstack | 2,841 |
import tensorflow as tf
with tf.variable_scope(scope, 'InceptionV1', [inputs]):
| tensorflow.variable_scope | 2,842 |
import tensorflow as tf
# Compute sparse softmax cross entropy loss from logits & labels
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=classes)
loss = tf.reduce_mean(log_probs)
self._mark_for_monitoring('loss', loss)
# Add regularization loss
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = reg_decay * tf.add_n(reg_losses)
self._mark_for_monitoring('reg_loss', reg_loss)
# Add loss from auxiliary logits
aux_loss = tf.constant(0, dtype=tf.float32)
for aux_logits in aux_logits_list:
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=aux_logits, labels=classes)
aux_loss += aux_loss_mul * tf.reduce_mean(log_probs)
total_loss = loss + reg_loss + aux_loss
return total_loss
def _add_global_avg_pool(self, X, in_w, in_h, in_ch):
X = tf.nn.relu(X)
X = tf.reduce_mean(X, (1, 2))
| tensorflow.constant | 2,843 |
import tensorflow as tf
# strides = np.asarray(self.pool_strides)
# strides[1:] *= len(self.ff_conv_k)
# kernels = np.asarray(self.pooling_kernel)
# kernels[1:] *= len(self.ff_conv_k)
# return tf.layers.conv3d_transpose(
# inputs=x,
# strides=strides,
# padding=self.padding,
# filters=y_size[-1],
# kernel_size=kernels,
# trainable=self.train,
# use_bias=use_bias,
# activation=self.ff_nl)
resized = tf.nn.conv3d_transpose(
value=x,
filter=kernel,
output_shape=y_size,
strides=[1] + strides + [1],
padding=self.padding,
name='resize_x_to_y')
resized = tf.nn.bias_add(
resized,
bias)
resized = self.ff_nl(resized)
return resized
elif mode == 'replicate_n_transpose':
| tensorflow.nn.conv3d_transpose | 2,844 |
from tensorflow.python.ops import array_ops
Args:
x: `Tensor`.
name: `String`. The name to give this op.
Returns:
sample_shape: `Tensor` (1D, `int32`).
batch_shape: `Tensor` (1D, `int32`).
event_shape: `Tensor` (1D, `int32`).
"""
with self._name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
def slice_shape(start_sum, size, name):
"""Closure to slice out shape."""
start_sum = start_sum if start_sum else (
array_ops.zeros((), dtype=dtypes.int32, name="zero"),)
if (x.get_shape().ndims is not None and
self._is_all_constant_helper(size, *start_sum)):
start = sum(tensor_util.constant_value(s) for s in start_sum)
stop = start + tensor_util.constant_value(size)
slice_ = x.get_shape()[start:stop].as_list()
if all(s is not None for s in slice_):
return ops.convert_to_tensor(slice_, dtype=dtypes.int32, name=name)
# Fall-through intended.
return array_ops.slice(array_ops.shape(x), (sum(start_sum),), (size,))
sample_ndims = self.get_sample_ndims(x, name=name)
return (slice_shape((), sample_ndims,
name="sample_shape"),
slice_shape((sample_ndims,), self.batch_ndims,
| tensorflow.python.ops.array_ops.zeros | 2,845 |
import tensorflow as tf
reader = tf.TFRecordReader
# Features in Pascal VOC TFRecords.
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height': tf.FixedLenFeature([1], tf.int64),
'image/width': tf.FixedLenFeature([1], tf.int64),
'image/channels': tf.FixedLenFeature([1], tf.int64),
'image/shape': tf.FixedLenFeature([3], tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),
}
items_to_handlers = {
'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'),
'shape': slim.tfexample_decoder.Tensor('image/shape'),
'object/bbox': slim.tfexample_decoder.BoundingBox(
['xmin', 'ymin', 'xmax', 'ymax'], 'image/object/bbox/'),
'object/label': slim.tfexample_decoder.Tensor('image/object/bbox/label'),
'object/difficult': slim.tfexample_decoder.Tensor('image/object/bbox/difficult'),
'object/truncated': slim.tfexample_decoder.Tensor('image/object/bbox/truncated'),
}
decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
| tensorflow.VarLenFeature | 2,846 |
import tensorflow as tf
#
# c = tf.constant('haHa')
# print(sess.run(c))
#
# sess.close()
identity_matrix = tf.diag([1.0, 3.0, 1.0])
A = tf.truncated_normal([2, 3])
B = tf.fill([2, 3], 5.0)
C = tf.random_uniform([3, 2], maxval=100)
D = tf.convert_to_tensor(np.array([[1., 2., 3.], [-3., -7., -1.], [0., 5., -2.]]))
sess = tf.Session()
# sess.run(tf.global_variables_initializer())
| tensorflow.diag | 2,847 |
import tensorflow as tf
initializer=tf.initializers.zeros(),
shape=[num_classes, num_choices],
dtype=tf.float32)
dist = tfp.distributions.Categorical(logits=logits)
dist_entropy = tf.reduce_sum(dist.entropy())
sample = dist.sample()
sample_masks = 1. * tf.cast(sample, tf.float32) / num_choices
sample_log_prob = tf.reduce_mean(dist.log_prob(sample))
return (dist_entropy, sample_masks, sample_log_prob)
def get_loss_weights(name=None):
| tensorflow.cast | 2,848 |
import tensorflow as tf
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
class VecAttGRUCell(RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).
Args:
| tensorflow.shape | 2,849 |
import tensorflow as tf
labels_adv_all = np.array([])
labels_true_all = np.array([])
labels_nor_all = np.array([])
L2_distance = np.array([])
nor_img_all = np.reshape(np.array([]), (0, image_size,image_size,num_channel))
adv_img_all = np.reshape(np.array([]), (0, image_size,image_size,num_channel))
print('Num of sample per eps is %d' % (num_sample))
#Construct carlini adversarial samples
model_carlini_adv = models_carlini(hps)
#Construct predictions
image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size,
num_channel])############MNIST and CIFAR10 are different ar here
adv_image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size,
num_channel])############MNIST and CIFAR10 are different ar here
predict = tf.placeholder(tf.float32,shape=[hps.batch_size, 10])
logit_nor,tsne_logit_nor = model_carlini_adv.predict(image,tsne_logits=True)
logit_adv,tsne_logit_adv = model_carlini_adv.predict(adv_image,tsne_logits=True)
predict_nor = tf.nn.softmax(logit_nor)
predict_adv = tf.nn.softmax(logit_adv)
# Calculate entropy
argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1)
normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1)
entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot,1) / normalized_y_nonmaximal + tf.log(normalized_y_nonmaximal)
for k in range(1):
result_dict = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_for_attack_' + f1 + '.mat')
| tensorflow.placeholder | 2,850 |
import tensorflow as tf
config.allow_soft_placement = True
sess_soft = tf.Session(config=config)
# 4. 当使用CPU时,TensorFlow默认占据大部分CPU内存。虽然这也是时常期望的,但是我们能谨慎分配GPU内存。当TensorFlow一直不释放GPU内存时,如有必要,我们可以设置GPU内存增长选项让GPU内存分配缓慢增大到最大限制
config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)
# 5. 如果希望限制死TensorFlow使用GPU内存的百分比,可以使用config设置per_process_gpu_memory_fraction
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
# 6. 有时,我们希望代码健壮到可以决定运行多少GPU合适。TensorFlow有内建函数可以探测到。如果我们期望代码在GPU内存合适时利用GPU计算能力,并分配指定操作给GPU,那么该功能是有益的
if tf.test.is_built_with_cuda(): pass
# 7. 我们希望分配指定操作给GPU。下面是一个示例代码,做了一些简单的计算,并将它们分配给主CPU和两个副GPU
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1,3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:0'):
c = tf.matmul(a,b)
c = tf.reshape(c, [-1])
with tf.device('/gpu:1'):
| tensorflow.test.is_built_with_cuda | 2,851 |
import tensorflow as tf
axis: A list of integer. Axes to compute the mean.
keepdims: A boolean, whether to keep the dimensions or not.
If keepdims is False, the rank of the tensor is reduced
by 1 for each entry in axis. If keep_dims is True,
the reduced dimensions are retained with length 1.
Returns
-------
A tensor with the mean of elements of x.
"""
axis = _normalize_axis(axis, get_ndim(x))
if x.dtype.base_dtype == tf.bool:
x = tf.cast(x, tf.float32)
return tf.reduce_mean(x, axis=axis, keep_dims=keepdims)
def dot(x, y):
"""Multiplies 2 tensors (and/or variables) and returns a *tensor*.
When attempting to multiply a ND tensor
with a ND tensor, it reproduces the Theano behavior.
(e.g. (2, 3).(4, 3, 5) = (2, 4, 5))
Parameters
----------
| tensorflow.cast | 2,852 |
import tensorflow as tf
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
values = [
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss",
simple_value=before_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss",
simple_value=after_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss",
simple_value=stop_token_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss),
]
if linear_loss is not None:
values.append(tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_linear_loss",
simple_value=linear_loss))
| tensorflow.Summary.Value | 2,853 |
import tensorflow as tf
return tf.reshape(tf.stack(values=h, axis=1), [-1])
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def _ln(x, g, b, e=1e-5, axes=[1]):
u, s = tf.nn.moments(x, axes=axes, keep_dims=True)
x = (x-u)/tf.sqrt(s+e)
x = x*g+b
return x
| tensorflow.nn.sigmoid | 2,854 |
import tensorflow as tf
# For printing layers shape
self.training_end_points = self.end_points_D
self.training_end_points.update(self.end_points_G)
tf.summary.histogram("d", self.end_points_D['D_on_data'])
tf.summary.histogram("d_", self.end_points_D['D_on_G'])
tf.summary.image("G", G)
d_label_smooth = self.cnf['d_label_smooth'] # 0.25
self.d_loss_real = self._sigmoid_kl_with_logits(self.end_points_D['D_on_data_logits'],
1. - d_label_smooth)
class_loss_weight = 1.
self.d_loss_class = class_loss_weight * tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.end_points_D['class_logits'], labels=tf.to_int64(targets))
self.test_loss = 1. - \
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D_val['logits'], targets, 1)))
self.error_rate = 1. - \
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D['class_logits'], targets, 1)))
if gpu_idx == 0:
update = tf.assign(num_error_rate, num_error_rate + 1.)
with tf.control_dependencies([update]):
tc = tf.maximum(.01, 1. / num_error_rate)
update = tf.assign(avg_error_rate, (1. - tc) * avg_error_rate + tc * self.error_rate)
with tf.control_dependencies([update]):
self.d_loss_class = tf.identity(self.d_loss_class)
self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.end_points_D['D_on_G_logits'],
labels=tf.zeros_like(self.end_points_D['D_on_G_logits']))
| tensorflow.nn.in_top_k | 2,855 |
import tensorflow as tf
channels = tf.unstack(image, axis=-1)
image = tf.stack([channels[2], channels[1], channels[0]], axis=-1)
# dims for normalization
width = tf.to_float(tf.shape(image)[2])
height = tf.to_float(tf.shape(image)[1])
# from [x1, y1, x2, y2, cls] to normalized [y1, x1, y1, x1]
cols = tf.unstack(boxes, axis=1)
boxes = tf.stack([cols[1] / height,
cols[0] / width,
cols[3] / height,
cols[2] / width], axis=1)
# add batch dimension (assume batch_size==1)
#assert image.get_shape()[0] == 1
boxes = tf.expand_dims(boxes, dim=0)
image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth
return tf.summary.image('ground_truth', image)
def _add_act_summary(self, tensor):
tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor)
tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction',
tf.nn.zero_fraction(tensor))
def _add_score_summary(self, key, tensor):
tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor)
def _add_train_summary(self, var):
tf.summary.histogram('TRAIN/' + var.op.name, var)
| tensorflow.image.draw_bounding_boxes | 2,856 |
import tensorflow as tf
return X
def conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0, dilation=1):
assert padding in ["SAME", "VALID", "REFLECT", "PARTIAL"], 'valid paddings: "SAME", "VALID", "REFLECT", "PARTIAL"'
if type(size) == int: size = [size, size]
if init_stddev <= 0.0:
init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
else:
init = tf.truncated_normal_initializer(stddev=init_stddev)
if padding == "PARTIAL":
with tf.variable_scope('mask'):
_, h, w, _ = input.get_shape().as_list()
slide_window = size[0] * size[1]
mask = tf.ones(shape=[1, h, w, 1])
update_mask = tf.layers.conv2d(mask, filters=1, dilation_rate=(dilation, dilation), name='mask' + id,
| tensorflow.truncated_normal_initializer | 2,857 |
import tensorflow as tf
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
| tensorflow.one_hot | 2,858 |
from tensorflow.python.ops import math_ops
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
| tensorflow.python.ops.math_ops.floor | 2,859 |
import tensorflow as tf
width = shape[2]
channels = shape[3]
res = tf.reshape(input_, [batch_size, height, 1, width, 1, channels])
res = tf.concat(
| tensorflow.reshape | 2,860 |
from tensorflow.python.framework import op_def_registry as _op_def_registry
"""
result = _op_def_lib.apply_op("UnpackPath", path=path,
path_values=path_values, name=name)
return result
def _InitOpDefLibrary():
op_list = _op_def_pb2.OpList()
_text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
_op_def_registry.register_op_list(op_list)
op_def_lib = _op_def_library.OpDefLibrary()
op_def_lib.add_op_list(op_list)
return op_def_lib
_InitOpDefLibrary.op_list_ascii = """op {
name: "HardRoutingFunction"
input_arg {
| tensorflow.python.framework.op_def_registry.register_op_list | 2,861 |
import tensorflow as tf
"""
with tf.name_scope(name):
inputs_shape = list(map(int, inputs.get_shape()))
predictions_shape = list(map(int, predictions.get_shape()))
nr_mix = int(predictions_shape[-1] / 10)
logit_probs = predictions[:, :, :, :nr_mix]
predictions = tf.reshape(predictions[:, :, :, nr_mix:], inputs_shape + [nr_mix * 3])
means = predictions[:, :, :, :, :nr_mix]
log_scales = tf.maximum(predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.)
coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix])
inputs = tf.reshape(inputs, inputs_shape + [1]) + tf.zeros(inputs_shape + [nr_mix])
m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :],
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix])
m3 = tf.reshape(
means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] +
coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :],
| tensorflow.maximum | 2,862 |
import tensorflow as tf
nor_img_all = np.reshape(np.array([]), (0, image_size,image_size,num_channel))
adv_img_all = np.reshape(np.array([]), (0, image_size,image_size,num_channel))
print('Num of sample per eps is %d' % (num_sample))
#Construct carlini adversarial samples
model_carlini_adv = models_carlini(hps)
#Construct predictions
image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size,
num_channel])############MNIST and CIFAR10 are different ar here
adv_image = tf.placeholder(tf.float32,shape=[hps.batch_size, image_size, image_size,
num_channel])############MNIST and CIFAR10 are different ar here
predict = tf.placeholder(tf.float32,shape=[hps.batch_size, 10])
logit_nor,tsne_logit_nor = model_carlini_adv.predict(image,tsne_logits=True)
logit_adv,tsne_logit_adv = model_carlini_adv.predict(adv_image,tsne_logits=True)
predict_nor = tf.nn.softmax(logit_nor)
predict_adv = tf.nn.softmax(logit_adv)
# Calculate entropy
argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1)
normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1)
entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot,1) / normalized_y_nonmaximal + tf.log(normalized_y_nonmaximal)
for k in range(1):
result_dict = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_for_attack_' + f1 + '.mat')
| tensorflow.placeholder | 2,863 |
import tensorflow as tf
init_scale=np.sqrt(2)))
c3 = tf.nn.relu(self.conv(c2,
'c3',
nf=64,
rf=3,
stride=1,
init_scale=np.sqrt(2)))
nh = np.prod([v.value for v in c3.get_shape()[1:]])
h3 = tf.reshape(c3, [-1, nh])
pre_s = tf.nn.relu(self.fc(h3,
'fc1',
nh=512,
init_scale=np.sqrt(2)))
l1 = tf.layers.dense(inputs=pre_s,
units=200, # number of hidden units
activation=tf.nn.relu,
name='l1',
trainable=trainable
)
mu = 2 * tf.layers.dense(inputs=l1,
units=action_dim, # number of hidden units
activation=tf.nn.tanh,
name='mu',
trainable=trainable
)
sigma = tf.layers.dense(inputs=l1,
| tensorflow.layers.dense | 2,864 |
import tensorflow as tf
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale)
if scale == 0.:
return lambda _: None
def l1(weights, name='l1_regularizer'):
"""Applies L1 regularization to weights."""
with tf.name_scope(name):
my_scale = tf.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale')
return tf.multiply(my_scale, tf.reduce_sum(tf.abs(weights)), name=name)
return l1
def l2_regularizer(scale, name='l2_regularizer'):
"""Returns a function that can be used to apply L2 regularization to weights.
| tensorflow.convert_to_tensor | 2,865 |
import tensorflow as tf
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
# sum mean over each batch by time steps
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
out = tf.gradients(Omega, self.W_rec)
out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads")
out[0] = tf.verify_tensor_all_finite(out[0], "dead omega grad")
return out, test
| tensorflow.greater | 2,866 |
import tensorflow as tf
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
def c4_preprocess(dataset,
training,
max_target_length=-1,
tokenization=None,
spm_path=None):
"""Pre-processing function for C4 dataset."""
del training
def unicode_decode_chars(features, targets):
targets = tf.strings.unicode_decode(features['text'], 'UTF-8')
targets = tf.cast(targets, tf.int64)
features['targets'] = targets
features['inputs'] = targets
return (features, targets)
def spc_tokenize(tokenizer, features, targets):
del targets
tokenized_text = tokenizer.tokenize(features['text'])
features['targets'] = tf.cast(tokenized_text, tf.int64)
| tensorflow.strings.unicode_decode | 2,867 |
import tensorflow as tf
print("-" * 20)
self.layers = []
# Temp(First) Conv Layer
with tf.variable_scope("temp_conv") as scope:
filter_shape = [3, embedding_size, 4, 64]
W = tf.get_variable(name='W_1', shape=filter_shape,
initializer=he_normal,
regularizer=regularizer)
paddings = [[0, 0], [1, 1], [0, 0], [0, 0]]
cnn_inputs = tf.pad(cnn_inputs, paddings, "CONSTANT")
#print("cnn_inputs shape:", cnn_inputs.shape)
inputs = tf.nn.conv2d(cnn_inputs, W, strides=[1, 1, 1, 1], padding="VALID", name="first_conv")
inputs = tf.layers.batch_normalization(inputs, axis=-1, training=self.is_training)
inputs = tf.nn.relu(inputs, name="first_relu")
#print("temp cnn output shape:", inputs.shape)
inputs = tf.squeeze(inputs, axis=2)
#print("squeeze shape", inputs.shape)
#inputs = tf.nn.relu(inputs)
print("Temp Conv", inputs.get_shape())
self.layers.append(inputs)
| tensorflow.pad | 2,868 |
import tensorflow as tf
pos = tf.nn.sigmoid(tf.matmul(tf.nn.tanh(tf.matmul(state, wp)), vp))
pos = tf.floor(encoder_input_length * pos)
pos = tf.reshape(pos, [-1, 1])
pos = tf.minimum(pos, encoder_input_length - 1)
idx = tf.tile(tf.to_float(tf.range(attn_length)), tf.stack([batch_size]))
| tensorflow.minimum | 2,869 |
import tensorflow as tf
true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)),
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
)
vz.insert(u, r)
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])),
false_fn=lambda: tf.constant(0, dtype=tf.int64)
)
| tensorflow.size | 2,870 |
import tensorflow as tf
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
| tensorflow.trainable_variables | 2,871 |
from tensorflow.python.training import training as train
OPTIMIZER_CLS_NAMES = {
"Adagrad": train.AdagradOptimizer,
"Adam": train.AdamOptimizer,
"Ftrl": train.FtrlOptimizer,
"Momentum": lambda learning_rate: train.MomentumOptimizer(learning_rate, momentum=0.9), # pylint: disable=line-too-long
"RMSProp": train.RMSPropOptimizer,
"SGD": train.GradientDescentOptimizer,
}
| tensorflow.python.training.training.MomentumOptimizer | 2,872 |
import tensorflow as tf
labels: Labels tensor, int32 - [batch_size].
Returns:
loss: Loss tensor of type float.
"""
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def train(loss, global_step):
"""Train eccentricity model.
Create an optimizer and apply to all trainable variables.
| tensorflow.reduce_mean | 2,873 |
import tensorflow as tf
def variable(self, name, shape, initializer,regularizer=None):
with tf.device('/cpu:0'):
| tensorflow.device | 2,874 |
import tensorflow as tf
# tf.greater(n_negtives, 0),
# tf.divide(tf.cast(n_neg_to_select, tf.float32), n_negtives),
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
| tensorflow.logical_and | 2,875 |
import tensorflow as tf
self.path = path
self.tol = tol
def update(self, labeled_sdfs, labeled_classes, labeled_poses,
predicted_sdfs, predicted_classes, predicted_poses):
"""Update."""
if labeled_sdfs or labeled_classes:
print(labeled_sdfs)
mean_x = tf.reduce_mean(labeled_poses[1][:, 0])
mean_z = tf.reduce_mean(labeled_poses[1][:, 2])
samples_world = grid.generate(
(mean_x - 0.5, 0.0, mean_z - 0.5), (mean_x + 0.5, 1.0, mean_z + 0.5),
[self.resolution, self.resolution, self.resolution])
samples_world = tf.reshape(samples_world, [-1, 3])
status = False
if status:
_, axs = plt.subplots(3, 3)
fig_obj_count = 0
# Do the same for the ground truth and predictions
num_collisions = 0
prev_intersection = 0
sdf_values = tf.zeros_like(samples_world)[:, 0:1]
for classes, sdfs, poses in [(predicted_classes,
predicted_sdfs,
| tensorflow.reshape | 2,876 |
import tensorflow as tf
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
| tensorflow.gfile.GFile | 2,877 |
import tensorflow as tf
# values: [batch_size, step_size, vocab_size]
# answers: [batch_size, step_size]
def _mask_and_accuracy(values, answers, loss_weights):
values = tf.argmax(values,axis=2)
x = tf.cast(values, dtype=tf.int32)
y = tf.cast(answers, dtype=tf.int32)
| tensorflow.argmax | 2,878 |
import tensorflow as tf
INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1))
LR_A = tf.train.exponential_decay(LR_A, GLOBAL_STEP, 10000, .97, staircase=True)
LR_C = tf.train.exponential_decay(LR_C, GLOBAL_STEP, 10000, .97, staircase=True)
END_POINT = (200 - 10) * (14/30) # from game
env = gym.make(ENV_NAME)
env.seed(1)
STATE_DIM = env.observation_space.shape[0] # 24
ACTION_DIM = env.action_space.shape[0] # 4
ACTION_BOUND = env.action_space.high # [1, 1, 1, 1]
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_')
############################### Actor ####################################
class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
self.lr = learning_rate
| tensorflow.placeholder | 2,879 |
import tensorflow as tf
output = tf.nn.dropout(input_tensor, rate=dropout_prob)
| tensorflow.nn.dropout | 2,880 |
import tensorflow as tf
step=global_step)
tf.contrib.summary.scalar(
'rpn_score_loss', tf.reduce_mean(rpn_score_loss),
step=global_step)
| tensorflow.reduce_mean | 2,881 |
import tensorflow as tf
# during inference, compute the end logits based on beam search
start_top_log_probs, start_top_index = tf.nn.top_k(
start_log_probs, k=FLAGS.start_n_top)
| tensorflow.nn.top_k | 2,882 |
import tensorflow as tf
return x - 1
minus_one(tf.identity(v0))
save = tf.train.Saver({"v0": v0})
tf.initialize_all_variables()
| tensorflow.train.Saver | 2,883 |
from tensorflow.python.framework import ops
Returns:
A `Tensor` with the same type as `value`.
"""
with ops.op_scope([value, bias], name, "BiasAddV1") as name:
value = ops.convert_to_tensor(value, name="input")
bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
return gen_nn_ops._bias_add_v1(value, bias, name=name)
ops.RegisterShape("BiasAddV1")(common_shapes.bias_add_shape)
ops.RegisterShape("BiasAddGradV1")(common_shapes.bias_add_grad_shape)
def relu6(features, name=None):
"""Computes Rectified Linear 6: `min(max(features, 0), 6)`.
| tensorflow.python.framework.ops.RegisterShape | 2,884 |
import tensorflow as tf
with tf.Session() as sess:
self.assertTrue(assert_tensors_equal(sess, tensor1, tensor2, 20))
@tf.contrib.eager.run_test_in_graph_and_eager_modes()
def testProblemHparamsModality(self):
problem = problem_hparams.TestProblem(input_vocab_size=2,
target_vocab_size=3)
p_hparams = problem.get_hparams()
self.assertIsInstance(p_hparams.modality["inputs"],
modalities.SymbolModality)
self.assertIsInstance(p_hparams.modality["targets"],
modalities.SymbolModality)
@tf.contrib.eager.run_test_in_graph_and_eager_modes()
def testProblemHparamsModalityObj(self):
class ModalityObjProblem(problem_module.Problem):
def hparams(self, defaults, model_hparams):
hp = defaults
hp.modality = {"inputs": modalities.SymbolModality,
"targets": modalities.SymbolModality}
hp.vocab_size = {"inputs": 2,
"targets": 3}
problem = ModalityObjProblem(False, False)
p_hparams = problem.get_hparams()
| tensorflow.contrib.eager.run_test_in_graph_and_eager_modes | 2,885 |
import tensorflow as tf
tie_weight=True,
bi_data=run_config.bi_data,
use_tpu=run_config.use_tpu)
#### Quantity to monitor
monitor_dict = {}
if FLAGS.use_bfloat16:
tgt_mask = tf.cast(tgt_mask, tf.float32)
lm_loss = tf.cast(lm_loss, tf.float32)
total_loss = tf.reduce_sum(lm_loss * tgt_mask) / tf.reduce_sum(tgt_mask)
monitor_dict["total_loss"] = total_loss
return total_loss, new_mems, monitor_dict
def get_loss(FLAGS, features, labels, mems, is_training):
| tensorflow.cast | 2,886 |
import tensorflow as tf
"""
def _setup_placeholders(self):
if self.demo:
self.c = tf.placeholder(tf.int32, [None, self.config.max_p_len], "context")
self.q = tf.placeholder(tf.int32, [None, self.config.max_q_len], "question")
self.ch = tf.placeholder(tf.int32, [None, self.config.max_p_len, self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [None, self.config.max_q_len, self.config.max_ch_len], "question_char")
self.start_label = tf.placeholder(tf.int32, [None], "answer_label1")
self.end_label = tf.placeholder(tf.int32, [None], "answer_label2")
else:
self.c = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len],
"context")
self.q = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len],
"question")
self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len,
self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len,
self.config.max_ch_len], "question_char")
| tensorflow.placeholder | 2,887 |
import tensorflow as tf
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
cell = tf.nn.rnn_cell.OutputProjectionWrapper(
tf.nn.rnn_cell.GRUCell(2), 4)
dec, mem = tf.nn.seq2seq.basic_rnn_seq2seq(inp, dec_inp, cell)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
| tensorflow.nn.seq2seq.basic_rnn_seq2seq | 2,888 |
import tensorflow as tf
self._mark_for_monitoring('reg_loss', reg_loss)
# Add loss from auxiliary logits
aux_loss = tf.constant(0, dtype=tf.float32)
for aux_logits in aux_logits_list:
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=aux_logits, labels=classes)
aux_loss += aux_loss_mul * tf.reduce_mean(log_probs)
total_loss = loss + reg_loss + aux_loss
return total_loss
def _add_global_avg_pool(self, X, in_w, in_h, in_ch):
X = tf.nn.relu(X)
X = tf.reduce_mean(X, (1, 2))
X = tf.reshape(X, (-1, in_ch)) # Sanity shape check
return X
def _count_model_parameters(self):
tf_trainable_vars = tf.trainable_variables()
num_params = 0
# utils.logger.log('Model parameters:')
for var in tf_trainable_vars:
# utils.logger.log(str(var))
num_params += np.prod([dim.value for dim in var.get_shape()])
utils.logger.log('Model has {} parameters'.format(num_params))
return num_params
def _add_vars_assign_op(self, vars):
| tensorflow.reshape | 2,889 |
import tensorflow as tf
d1, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
res3 = sess.run(d3)
self.assertAllClose(res1, res2)
self.assertAllClose(res1, res3)
def testOne2ManyRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)]
dec_inp_dict = {}
dec_inp_dict["0"] = [
tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec_inp_dict["1"] = [
tf.constant(i, tf.int32, shape=[2]) for i in range(4)]
dec_symbols_dict = {"0": 5, "1": 6}
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
outputs_dict, state_dict = tf.nn.seq2seq.one2many_rnn_seq2seq(
enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(outputs_dict["0"])
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
| tensorflow.constant | 2,890 |
import tensorflow as tf
self.saver.restore(self.sess, path)
def close(self):
self.sess.close()
def create_log_file(self, filename):
self.log_file = filename
f = open(self.log_file, 'w')
f.close()
def weight_variable(shape):
return tf.get_variable('W', shape, initializer=tf.random_normal_initializer(0., 0.02))
def bias_variable(shape):
return tf.get_variable('b', shape, initializer=tf.constant_initializer(0.))
def keep_prob(dropout, train):
return tf.cond(train, lambda: tf.constant(dropout), lambda: tf.constant(1.))
def softmax_ce_with_logits(logits, labels):
return tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_ce_with_logits(logits, labels):
return tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
def sigmoid_kl_with_logits(logits, targets):
assert isinstance(targets, float)
if targets in [0., 1.]:
| tensorflow.constant_initializer | 2,891 |
import tensorflow as tf
opt = tf.train.RMSPropOptimizer(learning_rate, FLAGS.rmsprop_decay,
momentum=FLAGS.rmsprop_momentum,
epsilon=FLAGS.rmsprop_epsilon)
else:
raise ValueError('Optimizer "%s" was not recognized', FLAGS.optimizer)
self.variable_mgr.append_apply_gradients_ops(
gradient_state, opt, clipped_grads, training_ops)
train_op = tf.group(*(training_ops + update_ops + extra_nccl_ops))
with tf.device(self.cpu_device):
if self.task_index == 0 and FLAGS.summary_verbosity > 0:
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('total_loss', total_loss)
for grad, var in avg_grads:
if grad is not None:
| tensorflow.group | 2,892 |
import tensorflow as tf
self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size],
initializer=tf.contrib.layers.variance_scaling_initializer())
else:
self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W")
self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x)
embedded_text_expand = tf.expand_dims(self.embedded_characters, -1)
| tensorflow.random_uniform | 2,893 |
import tensorflow as tf
if t % LOG_EVERY_N_STEPS == 0 and model_initialized:
print("Timestep %d" % (t,))
print("mean reward (100 episodes) %f" % mean_episode_reward)
print("best mean reward %f" % best_mean_episode_reward)
print("episodes %d" % len(episode_rewards))
print("exploration %f" % exploration.value(t))
print("learning_rate %f" % optimizer_spec.lr_schedule.value(t))
mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='mean_rew',simple_value=mean_episode_reward)])
best_mean_rew_summ = tf.Summary(value=[tf.Summary.Value(tag='best_mean_rew',simple_value=best_mean_episode_reward)])
writer.add_summary(mean_rew_summ, global_step=t)
writer.add_summary(best_mean_rew_summ, global_step=t)
sys.stdout.flush()
def gather_2d(vectors,indices):
return tf.gather_nd(vectors, tf.stack([tf.range(tf.shape(vectors)[0]), indices], axis=1)) | tensorflow.shape | 2,894 |
import tensorflow as tf
import tensorflow as tf
from cotk.dataloader import MultiTurnDialog
from cotk.wordvector import WordVector, Glove
from utils import debug, try_cache
from model import HredModel
def create_model(sess, data, args, embed):
with tf.variable_scope(args.name):
model = HredModel(data, args, embed)
model.print_parameters()
latest_dir = '%s/checkpoint_latest' % args.model_dir
best_dir = '%s/checkpoint_best' % args.model_dir
if tf.train.get_checkpoint_state(latest_dir) and args.restore == "last":
print("Reading model parameters from %s" % latest_dir)
model.latest_saver.restore(sess, tf.train.latest_checkpoint(latest_dir))
| tensorflow.variable_scope | 2,895 |
import tensorflow as tf
predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network .
labels: 2D or array tensor, [batch_size, num_classes] ground truth labels or target labels.
eps: a constant to set upper or lower limit for labels, smoothening factor
name: Optional scope/name for op_scope.
Returns:
A tensor with the log loss.
"""
with tf.name_scope(name):
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
predictions = tf.clip_by_value(predictions, eps, 1 - eps)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
loss = -tf.reduce_mean(labels * tf.log(predictions))
return loss
| tensorflow.name_scope | 2,896 |
import tensorflow as tf
try:
config = load_config(logdir)
except RuntimeError:
print('Failed to load existing config.')
except IOError:
config = save_config(config, logdir)
trainer = trainer_.Trainer(logdir, config=config)
cleanups = []
try:
with tf.variable_scope('graph', use_resource=True):
data = get_batch(datasets, trainer.phase, trainer.reset)
score, summary, cleanups = model_fn(data, trainer, config)
message = 'Graph contains {} trainable variables.'
tf.logging.info(message.format(tools.count_weights()))
if config.train_steps:
trainer.add_phase(
'train', config.train_steps, score, summary,
batch_size=config.batch_shape[0],
| tensorflow.variable_scope | 2,897 |
import tensorflow as tf
logger.info('Sync warmup policy and vfn and model')
tf.get_default_session().run([sync_warmup_policy, sync_warmup_vfn, sync_warmup_model])
for p in warmup_policy.parameters(): p.invalidate()
| tensorflow.get_default_session | 2,898 |
import tensorflow as tf
fvar = (
tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) +
tf.matrix_diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) +
# tf.matrix_diag(tf.trace(tf.matmul(Li_eKuffu_Lit, cov))) +
tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu) -
# tf.matmul(q_mu, tf.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) -
fmean[:, :, None] * fmean[:, None, :] +
e_related_to_mean
)
else:
fvar = (
(eKff - tf.trace(Li_eKuffu_Lit))[:, None] +
tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov) +
tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu) -
fmean ** 2 +
tf.matrix_diag_part(e_related_to_mean)
)
return fmean, fvar
# ---------------------------------------------------------------
########################## HELPERS ##############################
# ---------------------------------------------------------------
| tensorflow.einsum | 2,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.