seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf ch = shape[1] new_shape = [1, ch, 1, 1] if ch is None: raise ValueError("Input of instancebn require known channel!") mean, var = tf.nn.moments(inputdata, axis, keep_dims=True) if not use_affine: return tf.divide(inputdata - mean, tf.sqrt(var + epsilon), name='output') beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer()) beta = tf.reshape(beta, new_shape) gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0)) gamma = tf.reshape(gamma, new_shape) return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name) @staticmethod def dropout(inputdata, keep_prob, noise_shape=None, name=None): """ :param name: :param inputdata:
tensorflow.reshape
2,600
import tensorflow as tf weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32)
tensorflow.reshape
2,601
import tensorflow as tf return loss, active_loss, summaries hard_negative_loss, hard_negative_active_loss, hard_negative_summaries = ( compute_loss_and_create_summaries(use_semi_hard=False)) (semi_hard_negative_loss, semi_hard_negative_active_loss, semi_hard_negative_summaries) = ( compute_loss_and_create_summaries(use_semi_hard=True)) summaries = { 'triplet_loss/Margin': tf.constant(margin), 'triplet_loss/Anchor/Positive/Distance/Mean': tf.math.reduce_mean(anchor_positive_distances), 'triplet_mining/Anchor/Positive/Distance/Mean': tf.math.reduce_mean(anchor_positive_mining_distances), } if summarize_percentiles: summaries.update({ 'triplet_loss/Anchor/Positive/Distance/Median': tfp.stats.percentile(anchor_positive_distances, q=50), 'triplet_mining/Anchor/Positive/Distance/Median':
tensorflow.constant
2,602
import tensorflow as tf def test_and_valid(test_loop=1,valid_loop=1,test_num=64,valid_num=64): feed_dict={ testnum: test_num, validnum: valid_num } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) #test
tensorflow.Session
2,603
import tensorflow as tf tgtctx_h3 = lrelu(conv2d(tgtctx_h2, self.df_dim*8, name='h3_conv')) tgtctx_h4 = lrelu(linear(tf.reshape(tgtctx_h3, [self.batch_size, -1]), featsize, 'h4_lin')) tgtctx_z = linear(tgtctx_h4, featsize, 'hz_lin') with tf.variable_scope("conv") as scope: srcimg_h0 = lrelu(conv2d(srcimg, self.df_dim, name='h0_conv')) srcimg_h1 = lrelu(conv2d(srcimg_h0, self.df_dim*2, name='h1_conv')) srcimg_h2 = lrelu(conv2d(srcimg_h1, self.df_dim*4, name='h2_conv')) srcimg_h3 = lrelu(conv2d(srcimg_h2, self.df_dim*8, name='h3_conv')) print(srcimg_h3.get_shape()) srcimg_h4 = lrelu(linear(tf.reshape(srcimg_h3, [self.batch_size, -1]), featsize, 'h4_lin')) srcimg_z = lrelu(linear(srcimg_h4, featsize, 'hz_lin')) scope.reuse_variables() tgtimg_h0 = lrelu(conv2d(tgtimg, self.df_dim, name='h0_conv')) tgtimg_h1 = lrelu(conv2d(tgtimg_h0, self.df_dim*2, name='h1_conv')) tgtimg_h2 = lrelu(conv2d(tgtimg_h1, self.df_dim*4, name='h2_conv')) tgtimg_h3 = lrelu(conv2d(tgtimg_h2, self.df_dim*8, name='h3_conv')) tgtimg_h4 = lrelu(linear(tf.reshape(tgtimg_h3, [self.batch_size, -1]), featsize, 'h4_lin'))
tensorflow.reshape
2,604
import tensorflow as tf return (loss, i + 1) # def sample_compute(i): # batch1 = tf.gather(batch, tf.random.shuffle(index)) # batch2 = tf.gather(batch, tf.random.shuffle(index)) # pred1 = tf.slice(batch1, [0, 0], [num_sam, 1]) # pred2 = tf.slice(batch2, [0, 0], [num_sam, 1]) # tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1]) # tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1]) # loss = compute_contra_loss(pred1, pred2, tgt1, tgt2) # print(loss) # return loss i = tf.constant(0) loss = tf.constant(0.) final_loss = tf.while_loop(lambda l, i: i < resample, sample_compute, [loss, i])[0] # final_loss = tf.scan(sample_compute, tf.range(resample), loss)[-1] # final_loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems= tf.range(resample), dtype=tf.float32, parallel_iterations=1) # print('final', final_loss) # final_loss = loss avg_loss = tf.reduce_mean(final_loss) / divider # p = tf.print('cur_loss', [final_loss, avg_loss]) # with tf.control_dependencies([p]): # avg_loss = tf.identity(avg_loss) # print(final_loss, avg_loss) # p = tf.print('debug loss ', [final_loss, avg_loss]) # with tf.control_dependencies([p]): # avg_loss = 1. * avg_loss # print(avg_loss) # exit()
tensorflow.while_loop
2,605
import tensorflow as tf tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '') tf.app.flags.DEFINE_integer('num_readers', 16, '') tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 100000, '') tf.app.flags.DEFINE_integer('loss_scale', 1024, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '1', '') tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tensorflow.app.flags.DEFINE_float
2,606
import tensorflow as tf # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask if mask is not None: # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
tensorflow.layers.dense
2,607
import tensorflow as tf # data processing inputs_list = [] for i in range(num_gpu): img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i]
tensorflow.py_func
2,608
import tensorflow as tf 'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).') # checkpoint related configuration tf.app.flags.DEFINE_string( 'checkpoint_path', './model/resnet50',#None, 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string( 'checkpoint_model_scope', '', 'Model scope in the checkpoint. None if the same as the trained model.') tf.app.flags.DEFINE_string( 'model_scope', 'xdet_resnet', 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', 'xdet_resnet/xdet_head, xdet_resnet/xdet_multi_path, xdet_resnet/xdet_additional_conv',#None 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True,
tensorflow.app.flags.DEFINE_string
2,609
import tensorflow as tf # use the initializers from torch with argscope([Conv2D, Deconv2D], use_bias=False, W_init=tf.random_normal_initializer(stddev=0.02)), \ argscope([Conv2D, Deconv2D, InstanceNorm], data_format='NCHW'), \ argscope(LeakyReLU, alpha=0.2): with tf.variable_scope('gen'): with tf.variable_scope('B'): AB = self.generator(A) with tf.variable_scope('A'): BA = self.generator(B) ABA = self.generator(AB) with tf.variable_scope('B'): BAB = self.generator(BA) viz3('A_recon', A, AB, ABA) viz3('B_recon', B, BA, BAB)
tensorflow.variable_scope
2,610
import tensorflow as tf def cw_1d(X, y=None): def N0(mean, variance): return 1.0/(tf.sqrt(2.0 * m.pi * variance)) * tf.exp((-(mean**2))/(2*variance)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)) return (1.0/(N*N)) * tf.reduce_sum(N0(A, 2*y)) + N0(0.0, 2.0 + 2*y) - (2/N) * tf.reduce_sum(N0(X, 1.0 + 2*y))
tensorflow.shape
2,611
import tensorflow as tf inc = tf.matmul(eigvec, tf.reshape(v, [3, 1])) image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype)
tensorflow.reshape
2,612
import tensorflow as tf best_trial_info_file = os.path.join(FLAGS.output_dir, "best_trial.txt") def _best_trial_info(): """Returns information about which checkpoints have been evaled so far.""" if tf.gfile.Exists(best_trial_info_file): with tf.gfile.GFile(best_trial_info_file, "r") as best_info: global_step, best_metric_global_step, metric_value = ( best_info.read().split(":")) global_step = int(global_step)
tensorflow.gfile.Exists
2,613
import tensorflow as tf print("Optional Shortcut:", shortcut.get_shape()) print("-"*5) return inputs + shortcut return inputs # Three types of downsampling methods described by paper def downsampling(inputs, downsampling_type, name, optional_shortcut=False, shortcut=None): # k-maxpooling if downsampling_type=='k-maxpool': k = math.ceil(int(inputs.get_shape()[1]) / 2) pool = tf.nn.top_k(tf.transpose(inputs, [0,2,1]), k=k, name=name, sorted=False)[0] pool = tf.transpose(pool, [0,2,1]) # Linear elif downsampling_type=='linear': pool = tf.layers.conv1d(inputs=inputs, filters=inputs.get_shape()[2], kernel_size=3, strides=2, padding='same', use_bias=False) # Maxpooling else: pool = tf.layers.max_pooling1d(inputs=inputs, pool_size=3, strides=2, padding='same', name=name) if optional_shortcut:
tensorflow.transpose
2,614
from tensorflow.python.training import server_lib port1 = get_open_port() port2 = get_open_port() cs = server_lib.ClusterSpec({ "worker": ["localhost:%s" % port1], "ps": ["localhost:%s" % port2] }) worker = server_lib.Server(cs, job_name="worker", start=True) ps = server_lib.Server(cs, job_name="ps", start=True) return worker, ps @contextlib.contextmanager def _maybeWithDevice(self, device):
tensorflow.python.training.server_lib.Server
2,615
import tensorflow as tf # the post-processed predictions to generate masks. # Generate detections one image at a time. class_outputs, box_outputs, box_rois = ( mask_rcnn_architecture.faster_rcnn_fn( fpn_feats, rpn_score_outputs, rpn_box_outputs, all_anchors, features['image_info'], params, is_training=False)) batch_size, _, _ = class_outputs.get_shape().as_list() detections = [] softmax_class_outputs = tf.nn.softmax(class_outputs) for i in range(batch_size): detections.append( anchors.generate_detections_per_image_op( softmax_class_outputs[i], box_outputs[i], box_rois[i], features['source_ids'][i], features['image_info'][i], params['test_detections_per_image'], params['test_rpn_post_nms_topn'], params['test_nms'], params['bbox_reg_weights']) )
tensorflow.nn.softmax
2,616
import tensorflow as tf elif activation == 'sigmoid': layer_out = tf.nn.sigmoid(layer_out) elif activation == 'tanh': layer_out = tf.nn.tanh(layer_out) else: raise NotImplementedError('activation not recognized')
tensorflow.nn.tanh
2,617
import tensorflow as tf if __name__ == "__main__": tf.test.main()
tensorflow.test.main
2,618
from tensorflow.python.framework import ops and substitue the input with a place holder. Each captured input's corresponding place holder is converted into a function argument and the caller passes in the captured tensor. """ def __init__(self, *args, **kwargs): super(_FuncGraph, self).__init__(*args, **kwargs) self._building_function = True self._outer_graph = ops.get_default_graph() self._vscope = vs.get_variable_scope() self._old_custom_getter = self._vscope.custom_getter self._captured = {} self.extra_inputs = [] self.extra_args = [] self.extra_vars = [] def getvar(self,
tensorflow.python.framework.ops.get_default_graph
2,619
import tensorflow as tf wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b
tensorflow.constant_initializer
2,620
import tensorflow as tf def print_all_variables(train_only=True): ''' Print all trainable and non-trainable variables ''' if train_only: t_vars = tf.trainable_variables() print('[*] printing trainable variables') else: try: t_vars = tf.global_variables() except: t_vars = tf.all_variables() print('[*] printing global variables') for idx, v in enumerate(t_vars): print(' var {:3}: {:15} {}'.format(idx, str(v.get_shape()), v.name))
tensorflow.global_variables
2,621
import tensorflow as tf inputs=inputs, filter_depth=filter_depth1, kernel_size=1, stride=1, padding="same", ) x = self.__batch_norm("{}2a".format(bn_name_base), x) x = tf.nn.relu(x) x = self.__conv2d( name="{}2b".format(conv_name_base), inputs=x, filter_depth=filter_depth2, kernel_size=kernel_size,
tensorflow.nn.relu
2,622
import tensorflow as tf facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation
tensorflow.layers.dense
2,623
import tensorflow as tf with tf.compat.v1.name_scope(name, 'sum'): if reduce_instance_dims: x = tf.reduce_sum(input_tensor=tf_utils.get_values(x)) elif isinstance(x, tf.SparseTensor): if x.dtype == tf.uint8 or x.dtype == tf.uint16: x = tf.cast(x, tf.int64) elif x.dtype == tf.uint32 or x.dtype == tf.uint64: TypeError('Data type %r is not supported' % x.dtype) x = tf.sparse.reduce_sum(x, axis=0) elif isinstance(x, tf.RaggedTensor):
tensorflow.cast
2,624
import tensorflow as tf self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits1, labels=self.y1) losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits2, labels=self.y2) self.loss = tf.reduce_mean(losses + losses2) if config.l2_norm is not None: variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables) self.loss += l2_loss if config.decay is not None: self.var_ema = tf.train.ExponentialMovingAverage(config.decay) ema_op = self.var_ema.apply(tf.trainable_variables()) with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) self.assign_vars = []
tensorflow.contrib.layers.apply_regularization
2,625
import tensorflow as tf def __init__(self, model_fn, params): self._model_dir = params.model_dir # Sets up evaluator. self._evaluator = factory.evaluator_generator(params.eval) input_partition_dims = None num_cores_per_replica = None if params.use_tpu: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( params.platform.tpu, zone=params.platform.tpu_zone, project=params.platform.gcp_project) tpu_grpc_url = tpu_cluster_resolver.get_master() tf.Session.reset(tpu_grpc_url) # If the input image is transposed (from NHWC to HWCN), the partition # dimensions also need to be transposed the same way. def _maybe_transpose(input_partition_dims):
tensorflow.contrib.cluster_resolver.TPUClusterResolver
2,626
import tensorflow as tf labeled_boxes_init = tf.gather( sample['groundtruth_boxes'], axis=1, indices=[1, 0, 3, 2]) * 256.0 for _, metric in self.metrics.items(): if isinstance(metric, ShapeAccuracyMetric): labels = sample['shapes'] weights = tf.math.sign(labels + 1) # -1 is mapped to zero, else 1 metric.update(labels, detections['shapes_logits'], weights) elif isinstance(metric, BoxIoUMetric): scene_id = str(sample['scene_filename'].numpy(), 'utf-8') # Get ground truth boxes labeled_boxes = labeled_boxes_init if metric.threed: rotations_y = tf.concat([tf_utils.euler_from_rotation_matrix( tf.reshape(detections['rotations_3d'][i], [3, 3]), 1) for i in range(num_boxes)], axis=0) rotations_y = tf.reshape(rotations_y, [-1, 1]) labeled_boxes = tf.concat([sample['translations_3d'], sample['sizes_3d'], rotations_y], axis=1) # Get predicted boxes predicted_boxes = detections['detection_boxes'] if metric.threed: rotations_y = tf.concat([tf_utils.euler_from_rotation_matrix( tf.reshape(detections['rotations_3d'][i], [3, 3]), 1) for i in range(num_boxes)], axis=0) rotations_y = tf.reshape(rotations_y, [-1, 1]) predicted_boxes = tf.concat([detections['translations_3d'],
tensorflow.reshape
2,627
import tensorflow as tf def call( self, inputs: Mapping[str, common_types.TensorType] ) -> Dict[str, common_types.TensorType]: if self._exported_as_v1 and not ops.executing_eagerly_outside_functions(): tf.compat.v1.logging.warning('Falling back to transform_raw_features...') return self._tft_output._transform_raw_features_compat_v1( # pylint: disable=protected-access inputs, drop_unused_features=True) else:
tensorflow.compat.v1.logging.warning
2,628
import tensorflow as tf inputs=x, filter_depth=filter_depth3, kernel_size=1, padding="same", stride=1 ) x = self.__batch_norm("{}2c".format(bn_name_base), x) x = tf.add(x, inputs) return tf.nn.relu(x)
tensorflow.add
2,629
import tensorflow as tf name = 'batch_norm' with tf.variable_scope(name): phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) n_out = int(x.get_shape()[3]) beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), name=name+'/beta', trainable=True, dtype=x.dtype) gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), name=name+'/gamma', trainable=True, dtype=x.dtype) batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = control_flow_ops.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) return normed def inception(inp, inSize, ks, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2, o4s3, poolType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): print('name = ', name) print('inputSize = ', inSize) print('kernelSize = {3,5}') print('kernelStride = {%d,%d}' % (ks,ks))
tensorflow.identity
2,630
import tensorflow as tf 'weight_decay', 1e-5, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'mse_weight', 1., 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.') tf.app.flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')#1e-3 tf.app.flags.DEFINE_float( 'end_learning_rate', 0.000001, 'The minimal end learning rate used by a polynomial decay learning rate.') tf.app.flags.DEFINE_float( 'warmup_learning_rate', 0.00001, 'The start warm-up learning rate to avoid NAN.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_float
2,631
import tensorflow as tf # for pred_ind in list(range(len(pred_outputs))): # bce_loss_list.append(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred_outputs[pred_ind], labels=targets_list[pred_ind]/255., name='loss_{}'.format(pred_ind)), name='loss_mean_{}'.format(pred_ind))) # mse_loss = tf.multiply(params['mse_weight'] / params['num_stacks'], tf.add_n(bce_loss_list), name='mse_loss') # tf.summary.scalar('mse', mse_loss) # tf.losses.add_loss(mse_loss) # Add weight decay to the loss. We exclude the batch norm variables because # doing so leads to a small improvement in accuracy. loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') tf.summary.scalar('loss', total_loss) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']],
tensorflow.summary.scalar
2,632
from tensorflow.contrib.framework import tensor_util Returns: covariance: A `Tensor` representing the current unbiased sample covariance, `comoment` / (`count` - 1). update_op: An operation that updates the local variables appropriately. Raises: ValueError: If labels and predictions are of different sizes or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'covariance', [predictions, labels]): predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) count = _create_local('count', []) mean_prediction = _create_local('mean_prediction', []) mean_label = _create_local('mean_label', []) comoment = _create_local('comoment', []) # C_A in update equation if weights is None: batch_count = math_ops.to_float(array_ops.size(labels)) # n_B in eqn
tensorflow.contrib.framework.tensor_util.remove_squeezable_dimensions
2,633
import tensorflow as tf W = tf.reshape(g, [1, 1, num_filters, 1]) * tf.nn.l2_normalize(V, [0, 1, 3]) # calculate convolutional layer output x = tf.nn.conv2d_transpose(x, W, target_shape, [1] + list(stride) + [1], padding=pad) x = tf.nn.bias_add(x, b) return x
tensorflow.nn.bias_add
2,634
import tensorflow as tf o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def conv_to_fc(x): nh = np.prod([v.value for v in x.get_shape()[1:]])
tensorflow.concat
2,635
import tensorflow as tf tf.summary.histogram('weight', filt) tf.summary.histogram('bias', conv_biases) return bias def conv_bn_relu(self, bottom,name, kernel_size, output_channels, initializer,stride=1, bn=False,training=False,relu=True): input_channels = bottom.get_shape().as_list()[-1] with tf.variable_scope(name) as scope: kernel = self.variable('weights', [kernel_size, kernel_size, input_channels, output_channels], initializer, regularizer=tf.contrib.layers.l2_regularizer(0.0005)) conv = tf.nn.conv2d(bottom, kernel, [1, stride, stride, 1], padding='SAME') biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0)) conv_layer = tf.nn.bias_add(conv, biases) if bn: conv_layer = self.batch_norm_layer('batch_norm_layer',conv_layer,training) if relu: conv_layer = tf.nn.relu(conv_layer, name=scope.name) print('Conv layer {0} -> {1}'.format(bottom.get_shape().as_list(),conv_layer.get_shape().as_list())) return conv_layer
tensorflow.nn.conv2d
2,636
from tensorflow.contrib.eager.python import tfe return self.relu(hidden_states) def loss(labels, predictions): """Computes mean squared loss.""" return tf.reduce_mean(tf.squared_difference(predictions, labels)) def test(model, eval_data): """Computes the average loss on eval_data, which should be a Dataset.""" avg_loss = tfe.metrics.Mean("loss") for (labels, chars, sequence_length) in tfe.Iterator(eval_data): predictions = model((chars, sequence_length), training=False) avg_loss(loss(labels, predictions)) print("eval/loss: %.6f\n" % avg_loss.result()) with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", avg_loss.result()) def train_one_epoch(model, optimizer, train_data, log_interval=10): """Trains model on train_data using optimizer."""
tensorflow.contrib.eager.python.tfe.Iterator
2,637
import tensorflow as tf def testEmbeddingAttentionDecoder(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 cell = tf.nn.rnn_cell.GRUCell(2) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] dec, mem = tf.nn.seq2seq.embedding_attention_decoder( dec_inp, enc_state, attn_states, cell, num_symbols=4, embedding_size=2, output_size=3) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 3), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testEmbeddingAttentionSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)]
tensorflow.global_variables_initializer
2,638
import tensorflow as tf None. """ # placeholder of input images. Currently batch size of one is supported. x = tf.placeholder(tf.float32, [1, None, None, 3]) # n, h, w, c # Create the tiny face model which weights are loaded from a pretrained model. model = tiny_face_model.Model(weight_file_path)
tensorflow.placeholder
2,639
import tensorflow as tf """Defines the model function.""" target_num_classes = FLAGS.target_num_classes global_step = tf.train.get_global_step() src_features, src_labels = features['src'], tf.cast(labels['src'], tf.int64) finetune_features = features['finetune'] target_features = features['target']
tensorflow.cast
2,640
import tensorflow as tf from distillation import knowledge_distillation as distill def correlation(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) x = tf.nn.l2_normalize(x, -1) y = tf.nn.l2_normalize(y, -1) return -tf.reduce_sum(x*y, axis=-1) # higher the better def kd(x, y): x_prob = tf.nn.softmax(x) print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape()) return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better def mse(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) return tf.reduce_sum((x-y)**2, axis=-1) # lower the better def kd_distance(x, y, dist_type):
tensorflow.nn.softmax
2,641
from tensorflow.python.ops import math_ops weights: `Tensor` whose shape is broadcastable to the the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ default_name = _at_k_name('true_positive', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope: tp = _sparse_true_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_tp = math_ops.to_double(math_ops.reduce_sum(tp)) var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_tp, name='update') def _sparse_false_positive_at_k(predictions_idx, labels, class_id=None, weights=None): """Calculates false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only.
tensorflow.python.ops.math_ops.reduce_sum
2,642
import tensorflow as tf pi = act_limit * mlp_dropout(x, list(hidden_sizes)+[act_dim], activation, output_activation) with tf.variable_scope('q'): q = tf.squeeze(mlp_dropout(tf.concat([x,a], axis=-1), list(hidden_sizes)+[1], activation, None, dropout_rate), axis=1) with tf.variable_scope('q', reuse=True):
tensorflow.concat
2,643
import tensorflow as tf # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_second_moment_op = utils.smart_cond( is_training, build_update_ops, build_no_ops, ) # Every new connection creates a new op which adds its contribution # to the running average when ran. tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_second_moment_op) def _build(self, input_batch, is_training=True, test_local_stats=True): """Connects the BatchNorm module into the graph. Args: input_batch: A Tensor of arbitrary dimension. By default, the final dimension is not reduced over when computing the minibatch statistics. is_training: A boolean to indicate if the module should be connected in training mode, meaning the moving averages are updated. By default `True`. Can be a Tensor. test_local_stats: A boolean to indicate if local batch statistics should
tensorflow.add_to_collection
2,644
import tensorflow as tf # Default initial value of ent_coef when learned init_value = 1.0 if '_' in self.ent_coef: init_value = float(self.ent_coef.split('_')[1]) assert init_value > 0., "The initial value of ent_coef must be greater than 0" self.log_ent_coef = tf.get_variable('log_ent_coef', dtype=tf.float32, initializer=np.log(init_value).astype(np.float32)) self.ent_coef = tf.exp(self.log_ent_coef) else: # Force conversion to float # this will throw an error if a malformed string (different from 'auto') # is passed self.ent_coef = float(self.ent_coef) with tf.variable_scope("target", reuse=False):
tensorflow.exp
2,645
import tensorflow as tf outputs = tf.nn.bias_add(outputs, biases) if bn: outputs = tf.layers.batch_normalization(outputs, momentum=0.99, epsilon=1e-6, training=is_training) if activation_fn is not None: outputs = tf.nn.leaky_relu(outputs, alpha=0.2)
tensorflow.layers.batch_normalization
2,646
import tensorflow as tf x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu, name="dense1") logits = tf.layers.dense( x, self.hparams.problem.num_actions, name="dense2" ) logits = tf.expand_dims(logits, axis=1) logits = clip_logits(logits, self.hparams) value = tf.layers.dense(x, 1, name="value") return {"target_policy": logits, "target_value": value} @registry.register_model class DenseBitwiseCategoricalPolicy(PolicyBase): """Dense network with bitwise input and categorical output."""
tensorflow.layers.dense
2,647
import tensorflow as tf ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4] theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32')
tensorflow.variable_scope
2,648
import tensorflow as tf self.summary_tags += tag self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag)
tensorflow.placeholder
2,649
import tensorflow as tf [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ if not features: features = {} inputs_old = None if "inputs" in features and len(features["inputs"].shape) < 4: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 2) if not self.has_input: features["partial_targets"] = tf.to_int64(features["inputs"]) # Save the targets in a var and reassign it after the tf.while loop to avoid # having targets being in a 'while' frame. This ensures targets when used # in metric functions stays in the same frame as other vars. targets_old = features.get("targets", None) target_modality = self._problem_hparams.target_modality def infer_step(recent_output, recent_logits, unused_loss): """Inference step."""
tensorflow.expand_dims
2,650
from tensorflow.python.platform import tf_logging as logging self._tensors = [] graph = ops.get_default_graph() graph_def = graph.as_graph_def() for node in graph_def.node: if node.op in self._ignore_ops: continue logging.info("op=%s name=%s.", node.op, node.name) try: self._tensors.append(graph.get_tensor_by_name(node.name + ":0")) except KeyError: pass
tensorflow.python.platform.tf_logging.info
2,651
import tensorflow as tf theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32') out_depth = out_size[0] out_height = out_size[1] out_width = out_size[2] grid = _meshgrid(out_depth, out_height, out_width, z_near, z_far) grid = tf.expand_dims(grid, 0) grid = tf.reshape(grid, [-1]) grid = tf.tile(grid, tf.stack([num_batch])) grid = tf.reshape(grid, tf.stack([num_batch, 4, -1])) # Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1). t_g = tf.matmul(theta, grid) z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1]) y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1]) x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1]) z_s_flat = tf.reshape(z_s, [-1]) y_s_flat = tf.reshape(y_s, [-1]) x_s_flat = tf.reshape(x_s, [-1]) input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, z_s_flat, out_size) output = tf.reshape(
tensorflow.matmul
2,652
import tensorflow as tf sampled2 = get_stn(image) # For visualization in tensorboard with tf.name_scope('visualization'): padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1) transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1) stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz') tf.summary.image('visualize', tf.expand_dims(stacked, -1), max_outputs=30) sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat') logits = (LinearWrap(sampled) .FullyConnected('fc1', out_dim=256, nl=tf.nn.relu) .FullyConnected('fc2', out_dim=128, nl=tf.nn.relu) .FullyConnected('fct', out_dim=19, nl=tf.identity)()) tf.nn.softmax(logits, name='prob') cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label) cost = tf.reduce_mean(cost, name='cross_entropy_loss')
tensorflow.expand_dims
2,653
import tensorflow as tf channel_axis = 3 if data_format == 'channels_last' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Deconv2D] Input cannot have unknown channel!" padding = padding.upper() if w_init is None: w_init = tf.contrib.layers.variance_scaling_initializer() if b_init is None: b_init = tf.constant_initializer() ret = tf.layers.conv2d_transpose(inputs=inputdata, filters=out_channel, kernel_size=kernel_size, strides=stride, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=w_init, bias_initializer=b_init, trainable=trainable, name=name) return ret @staticmethod
tensorflow.layers.conv2d_transpose
2,654
import tensorflow as tf self.logger.info("applying optimize %s" % self.optim_type) trainable_vars = tf.trainable_variables() if self.config.clip_weight: # clip_weight tvars = tf.trainable_variables() grads = tf.gradients(self.loss, tvars) grads, _ = tf.clip_by_global_norm(grads, clip_norm=self.config.max_norm_grad) grad_var_pairs = zip(grads, tvars)
tensorflow.trainable_variables
2,655
import tensorflow as tf logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype) logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype) logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1]) prediction = tf.nn.sigmoid(logits) prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll]) prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1])
tensorflow.nn.sigmoid
2,656
import tensorflow as tf dataset = problem.dataset(mode=tf.estimator.ModeKeys.TRAIN, data_dir=algorithmic.TinyAlgo.data_dir, shuffle_files=False) tensor1 = dataset.make_one_shot_iterator().get_next()["targets"] tensor2 = dataset.make_one_shot_iterator().get_next()["targets"] with tf.Session() as sess: self.assertTrue(assert_tensors_equal(sess, tensor1, tensor2, 20)) def testNoShufflePreprocess(self): problem = algorithmic.TinyAlgo() dataset1 = problem.dataset(mode=tf.estimator.ModeKeys.TRAIN,
tensorflow.Session
2,657
import tensorflow as tf scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
tensorflow.argmax
2,658
import tensorflow as tf def main(args): # pass the args as params so the model_fn can use # the TPU specific args params = vars(args) if args.use_tpu: # additional configs required for using TPUs tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu) tpu_config = tf.contrib.tpu.TPUConfig( num_shards=8, # using Cloud TPU v2-8 iterations_per_loop=args.save_checkpoints_steps) # use the TPU version of RunConfig config = tf.contrib.tpu.RunConfig(
tensorflow.contrib.cluster_resolver.TPUClusterResolver
2,659
import tensorflow as tf height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(height * scale) new_width = tf.to_int32(width * scale) return new_height, new_width def _aspect_preserving_resize(image, smallest_side): """Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`.
tensorflow.to_int32
2,660
import tensorflow as tf context_word_emb = context_word_emb[sentence_offset:sentence_offset + max_training_sentences, :, :] head_word_emb = head_word_emb[sentence_offset:sentence_offset + max_training_sentences, :, :] lm_emb = lm_emb[sentence_offset:sentence_offset + max_training_sentences, :, :, :] char_index = char_index[sentence_offset:sentence_offset + max_training_sentences, :, :] text_len = text_len[sentence_offset:sentence_offset + max_training_sentences] speaker_ids = speaker_ids[word_offset: word_offset + num_words] gold_spans = np.logical_and(gold_ends >= word_offset, gold_starts < word_offset + num_words) gold_starts = gold_starts[gold_spans] - word_offset gold_ends = gold_ends[gold_spans] - word_offset cluster_ids = cluster_ids[gold_spans] return tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids def get_candidate_labels(self, candidate_starts, candidate_ends, labeled_starts, labeled_ends, labels): same_start = tf.equal(tf.expand_dims(labeled_starts, 1), tf.expand_dims(candidate_starts, 0)) # [num_labeled, num_candidates] same_end = tf.equal(tf.expand_dims(labeled_ends, 1), tf.expand_dims(candidate_ends, 0)) # [num_labeled, num_candidates] same_span = tf.logical_and(same_start, same_end) # [num_labeled, num_candidates] candidate_labels = tf.matmul(tf.expand_dims(labels, 0), tf.to_int32(same_span)) # [1, num_candidates] candidate_labels = tf.squeeze(candidate_labels, 0) # [num_candidates] return candidate_labels def get_dropout(self, dropout_rate, is_training): return 1 - (tf.to_float(is_training) * dropout_rate) def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_span_range = tf.range(k) # [k] antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k] antecedents_mask = antecedent_offsets >= 1 # [k, k]
tensorflow.expand_dims
2,661
import tensorflow as tf output_dim: The PCA output dimension (number of eigenvectors to return). dtype: Tensorflow dtype of entries in the returned matrix. name: (Optional) A name for this operation. Raises: ValueError: if input is not a rank-2 Tensor. Returns: A 2D `Tensor` (matrix) M of shape (input_dim, output_dim). """ if not isinstance(x, tf.Tensor): raise TypeError('Expected a Tensor, but got %r' % x) with tf.compat.v1.name_scope(name, 'pca'): x.shape.assert_has_rank(2) input_dim = x.shape.as_list()[1] shape = (input_dim, output_dim) (result,) = _apply_cacheable_combiner( PCACombiner(shape, output_dim, dtype.as_numpy_dtype), x) return result def _maybe_annotate_vocab_metadata(vocab_filename: str, unfiltered_vocabulary_size: tf.Tensor, filtered_vocabulary_size: tf.Tensor):
tensorflow.compat.v1.name_scope
2,662
import tensorflow as tf intermediate_act_fn=get_activation(config.hidden_act), hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=config.attention_probs_dropout_prob, initializer_range=config.initializer_range, do_return_all_layers=True) self.sequence_output = self.all_encoder_layers[-1] # The "pooler" converts the encoded sequence tensor of shape # [batch_size, seq_length, hidden_size] to a tensor of shape # [batch_size, hidden_size]. This is necessary for segment-level # (or segment-pair-level) classification tasks where we need a fixed # dimensional representation of the segment. with tf.variable_scope("pooler"): # We "pool" the model by simply taking the hidden state corresponding # to the first token. We assume that this has been pre-trained first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1) self.pooled_output = tf.layers.dense( first_token_tensor, config.hidden_size, activation=tf.tanh, kernel_initializer=create_initializer(config.initializer_range)) def get_pooled_output(self): return self.pooled_output
tensorflow.variable_scope
2,663
import tensorflow as tf images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'): self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0)) def inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2
tensorflow.contrib.layers.xavier_initializer_conv2d
2,664
import tensorflow as tf dilations=(1, dilation, dilation, 1)) x = x * mask_ratio if use_bias: bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0)) x = tf.nn.bias_add(x, bias) return x * update_mask
tensorflow.constant_initializer
2,665
import tensorflow as tf q_tp1_best_using_online_net = tf.argmax(double_q_values, axis=1) q_tp1_best = tf.reduce_sum(target_policy.q_values * tf.one_hot(q_tp1_best_using_online_net, n_actions), axis=1) else: q_tp1_best = tf.reduce_max(target_policy.q_values, axis=1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
tensorflow.reduce_max
2,666
import tensorflow as tf 'norm_grads'] if self.trust_region: self.run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj] self.names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj'] self.train_model = train_model self.step_model = step_model self.step = step_model.step self.proba_step = step_model.proba_step self.initial_state = step_model.initial_state tf.global_variables_initializer().run(session=self.sess) self.summary = tf.summary.merge_all() def _train_step(self, obs, actions, rewards, dones, mus, states, masks, steps, writer=None): """ applies a training step to the model :param obs: ([float]) The input observations :param actions: ([float]) The actions taken :param rewards: ([float]) The rewards from the environment :param dones: ([bool]) Whether or not the episode is over (aligned with reward, used for reward calculation) :param mus: ([float]) The logits values :param states: ([float]) The states (used for recurrent policies) :param masks: ([bool]) Whether or not the episode is over (used for recurrent policies) :param steps: (int) the number of steps done so far (can be None) :param writer: (TensorFlow Summary.writer) the writer for tensorboard
tensorflow.summary.merge_all
2,667
import tensorflow as tf mapper = fbresnet_mapper(isTrain) if parallel is None: parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading imglist = get_imglist(datadir, name) N = len(imglist) filenames = tf.constant([k[0] for k in imglist], name='filenames') labels = tf.constant([k[1] for k in imglist], dtype=tf.int32, name='labels') ds = tf.data.Dataset.from_tensor_slices((filenames, labels)) if isTrain:
tensorflow.constant
2,668
import tensorflow as tf futures.append(tp.apply_async(session.run, [output])) for i, future in enumerate(futures): result = future.get() self.assertAllEqual([[i * 2] * 5], result) def test_input_batch_size_should_be_one(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(a): return a output = f(tf.constant([1, 2])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output) with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, 'requires batch size 1'): coord.join() def test_run_after_error_should_be_cancelled(self): with self.test_session() as session: @dynamic_batching.batch_fn
tensorflow.train.Coordinator
2,669
import tensorflow.contrib.graph_editor as ge deps[o] = set(op.inputs) sorted_ts = toposort(deps) # only keep the tensors from our original list ts_sorted_lists = [] for l in sorted_ts: keep = list(set(l).intersection(ts)) if keep: ts_sorted_lists.append(keep) return ts_sorted_lists def fast_backward_ops(within_ops, seed_ops, stop_at_ts): bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts)) ops = bwd_ops.intersection(within_ops).difference([t.op for t in stop_at_ts]) return list(ops) @contextlib.contextmanager def capture_ops(): """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6)
tensorflow.contrib.graph_editor.get_backward_walk_ops
2,670
import tensorflow as tf adv_image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size, num_channel]) ############MNIST and CIFAR10 are different ar here predict = tf.placeholder(tf.float32, shape=[hps.batch_size, 10]) predict_nor, tsne_logit_nor = models(hps, image, FLAGS.RCE_train, logits=False, tsne_logits=True) predict_adv, tsne_logit_adv = models(hps, adv_image, FLAGS.RCE_train, logits=False, tsne_logits=True) # Calculate entropy argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1) normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1) entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot, 1) / normalized_y_nonmaximal + tf.log( normalized_y_nonmaximal) for k in range(10): adv_image_craft = adv_craft_func(hps, image, FLAGS.attack_method, eps=0.02 * k + 0.02, RCE_train=FLAGS.RCE_train) #adv_image_craft = adv_craft_func(hps, image, FLAGS.attack_method, eps=0.04,RCE_train=FLAGS.RCE_train) sess.run(tf.global_variables_initializer())
tensorflow.reduce_sum
2,671
import tensorflow as tf Returns: A tensor with the kappa loss. """ with tf.name_scope(name): labels = tf.to_float(labels) repeat_op = tf.to_float( tf.tile(tf.reshape(tf.range(0, num_ratings), [num_ratings, 1]), [1, num_ratings])) repeat_op_sq = tf.square((repeat_op - tf.transpose(repeat_op))) weights = repeat_op_sq / tf.to_float((num_ratings - 1)**2) pred_ = predictions**y_pow try: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [-1, 1])) except Exception: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [batch_size, 1])) hist_rater_a = tf.reduce_sum(pred_norm, 0) hist_rater_b = tf.reduce_sum(labels, 0) conf_mat = tf.matmul(tf.transpose(pred_norm), labels) nom = tf.reduce_sum(weights * conf_mat) denom = tf.reduce_sum(weights * tf.matmul( tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) /
tensorflow.reduce_sum
2,672
import tensorflow.contrib.graph_editor as ge for op in all_ops: for o in op.outputs: deps[o] = set(op.inputs) sorted_ts = toposort(deps) # only keep the tensors from our original list ts_sorted_lists = [] for l in sorted_ts: keep = list(set(l).intersection(ts)) if keep: ts_sorted_lists.append(keep) return ts_sorted_lists def fast_backward_ops(within_ops, seed_ops, stop_at_ts): bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts)) ops = bwd_ops.intersection(within_ops).difference([t.op for t in stop_at_ts]) return list(ops) @contextlib.contextmanager def capture_ops(): """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = []
tensorflow.contrib.graph_editor.get_backward_walk_ops
2,673
import tensorflow as tf other_tensors = [tf.reshape(monitor_dict[key], [1]) for key in metric_names] return host_call_fn, [global_step_tensor] + other_tensors def two_stream_loss(FLAGS, features, labels, mems, is_training): """Pretraining loss with two-stream attention Transformer-XL.""" #### Unpack input mem_name = "mems" mems = mems.get(mem_name, None) inp_k = tf.transpose(features["input_k"], [1, 0]) inp_q = tf.transpose(features["input_q"], [1, 0]) seg_id = tf.transpose(features["seg_id"], [1, 0]) inp_mask = None perm_mask = tf.transpose(features["perm_mask"], [1, 2, 0]) if FLAGS.num_predict is not None: # [num_predict x tgt_len x bsz] target_mapping = tf.transpose(features["target_mapping"], [1, 2, 0]) else: target_mapping = None # target for LM loss tgt = tf.transpose(features["target"], [1, 0]) # target mask for LM loss
tensorflow.transpose
2,674
import tensorflow as tf tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_0/': 'main_level/agent/online/network_0'}) tf.train.init_from_checkpoint(ckpt_dir, {'main_level/agent/online/network_1/': 'main_level/agent/online/network_1'}) # Create a new session with a new tf graph. sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess.run(tf.global_variables_initializer()) # initialize the checkpoint. # This is the node that will accept the input. input_nodes = tf.get_default_graph().get_tensor_by_name('main_level/agent/main/online/' + \ 'network_0/observation/observation:0') # This is the node that will produce the output. output_nodes = tf.get_default_graph().get_operation_by_name('main_level/agent/main/online/' + \
tensorflow.global_variables_initializer
2,675
from tensorflow.python.summary import summary (", ".join(OPTIMIZER_SUMMARIES), summ)) if learning_rate is not None and learning_rate_decay_fn is not None: if global_step is None: raise ValueError("global_step is required for learning_rate_decay_fn.") lr = learning_rate_decay_fn(lr, global_step) if "learning_rate" in summaries: summary.scalar("learning_rate", lr) # Create optimizer, given specified parameters. if isinstance(optimizer, six.string_types): if lr is None: raise ValueError("Learning rate is None, but should be specified if "
tensorflow.python.summary.summary.scalar
2,676
import tensorflow as tf with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.reduce_sum(tf.multiply(output_layer,output_weights),-1) logits = tf.add(logits, output_bias)
tensorflow.nn.dropout
2,677
import tensorflow as tf block_ch *= 2 w >>= 1 h >>= 1 with tf.variable_scope('reduction_cell'): if use_dynamic_arch: self._add_dynamic_cell(reduction_arch, layers, w, h, block_ch, drop_path_keep_prob, is_train) else: self._add_static_cell(reduction_arch, layers, w, h, block_ch, drop_path_keep_prob, is_train, is_reduction=True) else: with tf.variable_scope('normal_cell'): if use_dynamic_arch: self._add_dynamic_cell(normal_arch, layers, w, h, block_ch, drop_path_keep_prob, is_train) else: self._add_static_cell(normal_arch, layers, w, h, block_ch, drop_path_keep_prob, is_train) # Maybe add auxiliary heads if l in aux_head_layers: with tf.variable_scope('aux_head'): aux_logits = self._add_aux_head(*layers[-1], K, is_train) aux_logits_list.append(aux_logits)
tensorflow.variable_scope
2,678
import tensorflow as tf shape[1] = hparams.max_length v.set_shape(shape) else: shape = logits.get_shape().as_list() if shape[0] is None: shape[0] = params["batch_size"] if shape[1] is None: shape[1] = hparams.max_length logits.set_shape(shape) assert "training" in losses_dict # Summarize losses with tf.name_scope("losses"): for loss_name, loss_val in losses_dict.items(): tf.summary.scalar(loss_name, loss_val) # Accumulate losses loss = sum(losses_dict.values()) # EVAL mode if mode == tf.estimator.ModeKeys.EVAL: return model.estimator_spec_eval(features, logits, labels, loss, losses_dict) # TRAIN mode assert mode == tf.estimator.ModeKeys.TRAIN num_async_replicas = (1 if (use_tpu or not config) else config.t2t_device_info["num_async_replicas"]) return model.estimator_spec_train(
tensorflow.summary.scalar
2,679
import tensorflow as tf y_w_diff = y[:, :, 1:] - y[:, :, :-1] h_diff = tf.abs(tf.abs(x_h_diff) - tf.abs(y_h_diff)) w_diff = tf.abs(tf.abs(x_w_diff) - tf.abs(y_w_diff)) return h_diff + tf.transpose(w_diff) def leaky_relu(x, leak=0.2, name='leaky_relu'): with tf.variable_scope(name): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) def linear(x, shape, name, bias=False):
tensorflow.variable_scope
2,680
import tensorflow as tf m = mlp(n, 'mlp', nx*4, train=train) h = norm(n+m, 'ln_2') return h def embed(X, we): #X [-1,,2] we = convert_gradient_to_tensor(we) e = tf.gather(we, X) h = tf.reduce_sum(e, 2) return h def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False): with tf.variable_scope('clf'): nx = shape_list(x)[-1] w = tf.get_variable("w", [nx, ny], initializer=w_init) b = tf.get_variable("b", [ny], initializer=b_init) return tf.matmul(x, w)+b def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train)
tensorflow.constant_initializer
2,681
import tensorflow as tf if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
tensorflow.array_ops.transpose
2,682
import tensorflow as tf act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.placeholder(tf.bool, (), name="reset") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
tensorflow.placeholder
2,683
import tensorflow as tf # Check that the parameter nodes have been restored. self.assertEqual(np.int64(15), v.eval()) def testSomeErrors(self): with tf.Graph().as_default(): v0 = tf.Variable([10.0], name="v0") v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # By default the name used for "v2" will be "v1" and raise an error. with self.assertRaisesRegexp(ValueError, "same name: v1"): tf.train.Saver([v0, v1, v2]) # The names are different and will work. tf.train.Saver({"vee1": v1, "other": [v2]}) def testBasicsWithListOfVariables(self): save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.test_session(graph=tf.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0")
tensorflow.train.Saver
2,684
import tensorflow as tf d_c_real = discriminator_categorical(categorial_distribution) d_c_fake = discriminator_categorical(encoder_output_label, reuse=True) # Semi-Supervised Classification Phase with tf.variable_scope(tf.get_variable_scope()): encoder_output_label_, _ = encoder(x_input_l, reuse=True, supervised=True) # Generate output images
tensorflow.get_variable_scope
2,685
import tensorflow as tf # Record a short training history. tf.initialize_all_variables().run()
tensorflow.initialize_all_variables
2,686
import tensorflow as tf def metric_fn(per_example_loss, label_ids, logits): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) precision = tf_metrics.precision(label_ids,predictions,11,[1,2,4,5,6,7,8,9],average="macro") recall = tf_metrics.recall(label_ids,predictions,11,[1,2,4,5,6,7,8,9],average="macro") f = tf_metrics.f1(label_ids,predictions,11,[1,2,4,5,6,7,8,9],average="macro") loss = tf.metrics.mean(per_example_loss) return { "eval_precision":precision, "eval_recall":recall, "eval_f": f, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) return output_spec return model_fn def main(_):
tensorflow.contrib.tpu.TPUEstimatorSpec
2,687
import tensorflow as tf Raises: NotImplementedError: If an unsupported optimizer is requested. """ # TODO(user): gradient clipping (see Minimize) if optimizer == 'adagrad': train_op = tf.train.AdagradOptimizer(learning_rate) elif optimizer == 'adam': train_op = tf.train.AdamOptimizer(learning_rate) elif optimizer == 'momentum': train_op = tf.train.MomentumOptimizer(learning_rate, momentum) elif optimizer == 'rmsprop':
tensorflow.train.AdagradOptimizer
2,688
import tensorflow as tf tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small)) if hard_ratio < 1.0: hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
tensorflow.maximum
2,689
import tensorflow as tf return output_tensor def reshape_from_matrix(output_tensor, orig_shape_list): """Reshapes a rank 2 tensor back to its original rank >= 2 tensor.""" if len(orig_shape_list) == 2: return output_tensor output_shape = get_shape_list(output_tensor) orig_dims = orig_shape_list[0:-1] width = output_shape[-1] return tf.reshape(output_tensor, orig_dims + [width]) def assert_rank(tensor, expected_rank, name=None): """Raises an exception if the tensor rank is not of the expected rank. Args: tensor: A tf.Tensor to check the rank of. expected_rank: Python integer or list of integers, expected rank. name: Optional name of the tensor for the error message. Raises: ValueError: If the expected shape doesn't match the actual shape.
tensorflow.reshape
2,690
import tensorflow as tf def __call__(self, global_step): global_step = tf.cast(global_step, dtype=tf.float32) warmup_lr = self._params.warmup_learning_rate warmup_steps = self._params.warmup_steps init_lr = self._params.init_learning_rate total_steps = self._total_steps linear_warmup = ( warmup_lr + global_step / warmup_steps * (init_lr - warmup_lr)) cosine_learning_rate = ( init_lr * (tf.cos(np.pi * (global_step - warmup_steps) / (total_steps - warmup_steps)) + 1.0) / 2.0) learning_rate = tf.where(global_step < warmup_steps, linear_warmup, cosine_learning_rate) return learning_rate def get_config(self): return {'_params': self._params.as_dict()} def learning_rate_generator(total_steps, params): """The learning rate function generator.""" if params.type == 'step': return StepLearningRateWithLinearWarmup(total_steps, params)
tensorflow.where
2,691
import tensorflow as tf new_shape = [1, 1, 1, ch] else: axis = [2, 3] ch = shape[1] new_shape = [1, ch, 1, 1] if ch is None: raise ValueError("Input of instancebn require known channel!") mean, var = tf.nn.moments(inputdata, axis, keep_dims=True) if not use_affine: return tf.divide(inputdata - mean, tf.sqrt(var + epsilon), name='output') beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer()) beta = tf.reshape(beta, new_shape) gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0)) gamma = tf.reshape(gamma, new_shape) return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name) @staticmethod def dropout(inputdata, keep_prob, noise_shape=None, name=None): """ :param name: :param inputdata: :param keep_prob:
tensorflow.constant_initializer
2,692
import tensorflow as tf ops.append(s.assign_add(g)) update_counter = tf.assign_add(counter, 1, name='update_counter') update_slot_op = tf.group(update_counter, *ops, name='update_slot')
tensorflow.group
2,693
import tensorflow as tf else: return tower_preds def _train_graph(self, data): tower_losses, tower_gradvars, update_ops = self._gpu_tower(data, Mode.TRAIN) # Perform the consolidation on CPU gradvars = [] with tf.device('/cpu:0'): # Average losses and gradients with tf.name_scope('tower_averaging'): all_grads = {} for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in all_grads.items(): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads))
tensorflow.name_scope
2,694
import tensorflow as tf "metadata.") tf.flags.DEFINE_string( "gcp_project", None,
tensorflow.flags.DEFINE_string
2,695
import tensorflow.contrib.layers as layers with tf.variable_scope("convnet"): # original architecture out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu) out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out def atari_learn(env, session, num_timesteps): # This is just a rough estimate
tensorflow.contrib.layers.fully_connected
2,696
import tensorflow as tf labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity: No use. name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. """ loss = None with tf.name_scope(name, "softmax_loss",[output]): label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True) loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1) return tf.reduce_sum(loss) / tf.reduce_sum(labels) def get_normalized_weights(self, propensity): """Computes listwise softmax loss with propensity weighting. Args: propensity: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
tensorflow.name_scope
2,697
import tensorflow as tf # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]])
tensorflow.concat
2,698
import tensorflow as tf max_src_len = tf.shape(reconstructed_weights)[1] batch_size = tf.shape(reconstructed_weights)[0] attn_loss = tf.matmul(reconstructed_weights, attention_weights) - tf.eye(max_src_len) src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32) src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask) attn_loss *= tf.to_float(src_mask) # don't take padding words into account attn_loss = tf.norm(attn_loss) / tf.to_float(batch_size) xent_loss += reconstruction_attn_weight * attn_loss attention_weights = [attention_weights, reconstructed_weights]
tensorflow.einsum
2,699