openai-oss / README.md
davanstrien's picture
davanstrien HF Staff
Add reasoning_effort parameter to minimal script
a4ee9cd
|
raw
history blame
5.87 kB
# πŸš€ OpenAI GPT OSS Models - Works on Regular GPUs!
Generate synthetic datasets with transparent reasoning using OpenAI's GPT OSS models. **No H100s required** - works on L4, A100, A10G, and even T4 GPUs!
## πŸŽ‰ Key Discovery
**The models work on regular datacenter GPUs!** Transformers automatically handles MXFP4 β†’ bf16 conversion, making these models accessible on standard hardware.
## 🌟 Quick Start
### Test Locally (Single Prompt)
```bash
uv run gpt_oss_transformers.py --prompt "Write a haiku about mountains"
```
### Run on HuggingFace Jobs (No GPU Required!)
```bash
# Generate haiku with reasoning (~$1.50/hr on A10G)
hf jobs uv run --flavor a10g-small \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-reasoning \
--prompt-column question \
--max-samples 50
```
## πŸ’‘ What You Get
The models output structured reasoning in separate channels:
**Raw Output**:
```
analysisI need to write a haiku about mountains. Haiku: 5-7-5 syllable structure...
assistantfinalSilent peaks climb high,
Echoing winds trace stone's breath,
Dawn paints them gold bright.
```
**Parsed Dataset**:
```json
{
"prompt": "Write a haiku about mountains",
"think": "[Analysis] I need to write a haiku about mountains. Haiku: 5-7-5 syllable structure...",
"content": "Silent peaks climb high,\nEchoing winds trace stone's breath,\nDawn paints them gold bright.",
"reasoning_level": "high",
"model": "openai/gpt-oss-20b"
}
```
## πŸ–₯️ GPU Requirements
### βœ… Confirmed Working GPUs
| GPU | Memory | Status | Notes |
|-----|--------|--------|-------|
| **L4** | 24GB | βœ… Tested | Works perfectly! |
| **A100** | 40/80GB | βœ… Works | Great performance |
| **A10G** | 24GB | βœ… Recommended | Best value at $1.50/hr |
| **T4** | 16GB | ⚠️ Limited | May need 8-bit for 20B |
| **RTX 4090** | 24GB | βœ… Works | Consumer GPU support |
### Memory Requirements
- **20B model**: ~40GB VRAM when dequantized (use A100-40GB or 2xL4)
- **120B model**: ~240GB VRAM when dequantized (use 4xA100-80GB)
## 🎯 Examples
### Creative Writing with Reasoning
```bash
# Process haiku dataset with high reasoning
uv run gpt_oss_transformers.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset my-haiku-reasoning \
--prompt-column question \
--reasoning-level high \
--max-samples 100
```
### Math Problems with Step-by-Step Solutions
```bash
# Generate math solutions with reasoning traces
uv run gpt_oss_transformers.py \
--input-dataset gsm8k \
--output-dataset math-with-reasoning \
--prompt-column question \
--reasoning-level high
```
### Test Different Reasoning Levels
```bash
# Compare reasoning levels
for level in low medium high; do
echo "Testing: $level"
uv run gpt_oss_transformers.py \
--prompt "Explain gravity to a 5-year-old" \
--reasoning-level $level \
--debug
done
```
## πŸ“‹ Script Options
| Option | Description | Default |
|--------|-------------|---------|
| `--input-dataset` | HuggingFace dataset to process | - |
| `--output-dataset` | Output dataset name | - |
| `--prompt-column` | Column with prompts | `prompt` |
| `--model-id` | Model to use | `openai/gpt-oss-20b` |
| `--reasoning-level` | Reasoning depth: low/medium/high | `high` |
| `--max-samples` | Limit samples to process | None |
| `--temperature` | Sampling temperature | `0.7` |
| `--max-tokens` | Max tokens to generate | `512` |
| `--prompt` | Single prompt test (skip dataset) | - |
| `--debug` | Show raw model output | `False` |
## πŸ”§ Technical Details
### Why It Works Without H100s
1. **Automatic MXFP4 Handling**: When your GPU doesn't support MXFP4, you'll see:
```
MXFP4 quantization requires triton >= 3.4.0 and triton_kernels installed,
we will default to dequantizing the model to bf16
```
2. **No Flash Attention 3 Required**: FA3 needs Hopper architecture, but models work fine without it
3. **Simple Loading**: Just use standard transformers:
```python
model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype=torch.bfloat16,
device_map="auto"
)
```
### Channel Output Format
The models use a simplified channel format:
- `analysis`: Chain of thought reasoning
- `commentary`: Meta operations (optional)
- `final`: User-facing response
### Reasoning Control
Control reasoning depth via system message:
```python
messages = [
{
"role": "system",
"content": f"...Reasoning: {level}..."
},
{"role": "user", "content": prompt}
]
```
## 🚨 Best Practices
1. **Token Limits**: Use 1000+ tokens for detailed reasoning
2. **Security**: Never expose reasoning channels to end users
3. **Batch Size**: Keep at 1 for memory efficiency
4. **Reasoning Levels**:
- `low`: Quick responses
- `medium`: Balanced reasoning
- `high`: Detailed chain-of-thought
## πŸ› Troubleshooting
### Out of Memory
- Use larger GPU flavor: `--flavor a100-large`
- Reduce batch size to 1
- Try 8-bit quantization for smaller GPUs
### No GPU Available
- Use HuggingFace Jobs (no local GPU needed!)
- Or use cloud instances with GPU support
### Empty Reasoning
- Increase `--max-tokens` to 1500+
- Ensure prompts trigger reasoning
## πŸ“š References
- [OpenAI Cookbook: GPT OSS](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
- [Model: openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
- [HF Jobs Documentation](https://huggingface.co/docs/hub/spaces-gpu-jobs)
## πŸŽ‰ The Bottom Line
**You don't need H100s!** These models work great on regular datacenter GPUs. Just run the script and start generating datasets with transparent reasoning.
---
*Last tested: 2025-08-05 on NVIDIA L4 GPUs - Working perfectly!*