File size: 5,867 Bytes
a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd bbe5ce0 a4ee9cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# π OpenAI GPT OSS Models - Works on Regular GPUs!
Generate synthetic datasets with transparent reasoning using OpenAI's GPT OSS models. **No H100s required** - works on L4, A100, A10G, and even T4 GPUs!
## π Key Discovery
**The models work on regular datacenter GPUs!** Transformers automatically handles MXFP4 β bf16 conversion, making these models accessible on standard hardware.
## π Quick Start
### Test Locally (Single Prompt)
```bash
uv run gpt_oss_transformers.py --prompt "Write a haiku about mountains"
```
### Run on HuggingFace Jobs (No GPU Required!)
```bash
# Generate haiku with reasoning (~$1.50/hr on A10G)
hf jobs uv run --flavor a10g-small \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-reasoning \
--prompt-column question \
--max-samples 50
```
## π‘ What You Get
The models output structured reasoning in separate channels:
**Raw Output**:
```
analysisI need to write a haiku about mountains. Haiku: 5-7-5 syllable structure...
assistantfinalSilent peaks climb high,
Echoing winds trace stone's breath,
Dawn paints them gold bright.
```
**Parsed Dataset**:
```json
{
"prompt": "Write a haiku about mountains",
"think": "[Analysis] I need to write a haiku about mountains. Haiku: 5-7-5 syllable structure...",
"content": "Silent peaks climb high,\nEchoing winds trace stone's breath,\nDawn paints them gold bright.",
"reasoning_level": "high",
"model": "openai/gpt-oss-20b"
}
```
## π₯οΈ GPU Requirements
### β
Confirmed Working GPUs
| GPU | Memory | Status | Notes |
|-----|--------|--------|-------|
| **L4** | 24GB | β
Tested | Works perfectly! |
| **A100** | 40/80GB | β
Works | Great performance |
| **A10G** | 24GB | β
Recommended | Best value at $1.50/hr |
| **T4** | 16GB | β οΈ Limited | May need 8-bit for 20B |
| **RTX 4090** | 24GB | β
Works | Consumer GPU support |
### Memory Requirements
- **20B model**: ~40GB VRAM when dequantized (use A100-40GB or 2xL4)
- **120B model**: ~240GB VRAM when dequantized (use 4xA100-80GB)
## π― Examples
### Creative Writing with Reasoning
```bash
# Process haiku dataset with high reasoning
uv run gpt_oss_transformers.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset my-haiku-reasoning \
--prompt-column question \
--reasoning-level high \
--max-samples 100
```
### Math Problems with Step-by-Step Solutions
```bash
# Generate math solutions with reasoning traces
uv run gpt_oss_transformers.py \
--input-dataset gsm8k \
--output-dataset math-with-reasoning \
--prompt-column question \
--reasoning-level high
```
### Test Different Reasoning Levels
```bash
# Compare reasoning levels
for level in low medium high; do
echo "Testing: $level"
uv run gpt_oss_transformers.py \
--prompt "Explain gravity to a 5-year-old" \
--reasoning-level $level \
--debug
done
```
## π Script Options
| Option | Description | Default |
|--------|-------------|---------|
| `--input-dataset` | HuggingFace dataset to process | - |
| `--output-dataset` | Output dataset name | - |
| `--prompt-column` | Column with prompts | `prompt` |
| `--model-id` | Model to use | `openai/gpt-oss-20b` |
| `--reasoning-level` | Reasoning depth: low/medium/high | `high` |
| `--max-samples` | Limit samples to process | None |
| `--temperature` | Sampling temperature | `0.7` |
| `--max-tokens` | Max tokens to generate | `512` |
| `--prompt` | Single prompt test (skip dataset) | - |
| `--debug` | Show raw model output | `False` |
## π§ Technical Details
### Why It Works Without H100s
1. **Automatic MXFP4 Handling**: When your GPU doesn't support MXFP4, you'll see:
```
MXFP4 quantization requires triton >= 3.4.0 and triton_kernels installed,
we will default to dequantizing the model to bf16
```
2. **No Flash Attention 3 Required**: FA3 needs Hopper architecture, but models work fine without it
3. **Simple Loading**: Just use standard transformers:
```python
model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype=torch.bfloat16,
device_map="auto"
)
```
### Channel Output Format
The models use a simplified channel format:
- `analysis`: Chain of thought reasoning
- `commentary`: Meta operations (optional)
- `final`: User-facing response
### Reasoning Control
Control reasoning depth via system message:
```python
messages = [
{
"role": "system",
"content": f"...Reasoning: {level}..."
},
{"role": "user", "content": prompt}
]
```
## π¨ Best Practices
1. **Token Limits**: Use 1000+ tokens for detailed reasoning
2. **Security**: Never expose reasoning channels to end users
3. **Batch Size**: Keep at 1 for memory efficiency
4. **Reasoning Levels**:
- `low`: Quick responses
- `medium`: Balanced reasoning
- `high`: Detailed chain-of-thought
## π Troubleshooting
### Out of Memory
- Use larger GPU flavor: `--flavor a100-large`
- Reduce batch size to 1
- Try 8-bit quantization for smaller GPUs
### No GPU Available
- Use HuggingFace Jobs (no local GPU needed!)
- Or use cloud instances with GPU support
### Empty Reasoning
- Increase `--max-tokens` to 1500+
- Ensure prompts trigger reasoning
## π References
- [OpenAI Cookbook: GPT OSS](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
- [Model: openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
- [HF Jobs Documentation](https://huggingface.co/docs/hub/spaces-gpu-jobs)
## π The Bottom Line
**You don't need H100s!** These models work great on regular datacenter GPUs. Just run the script and start generating datasets with transparent reasoning.
---
*Last tested: 2025-08-05 on NVIDIA L4 GPUs - Working perfectly!* |