MultiEup-v2 / README.md
Jinruiy's picture
Create README.md
3828178 verified
---
pretty_name: "Multi-EuP v2: European Parliament Debates with MEP Metadata (24 languages)"
dataset_name: multi-eup-v2
configs:
- config_name: default
data_files: "clean_all_with_did_qid.MEP.csv"
license: cc-by-4.0
multilinguality: multilingual
task_categories:
- text-classification
- text-retrieval
- text-generation
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
size_categories:
- 10K<n<100K
homepage: ""
repository: ""
paper: "https://aclanthology.org/2024.mrl-1.23/"
tags:
- multilingual
- european-parliament
- political-discourse
- metadata
- mep
---
# Multi-EuP-v2
This dataset card documents **Multi-EuP-v2**, a multilingual corpus of European Parliament debate speeches enriched with Member of European Parliament (MEP) metadata and multilingual debate titles/IDs. It supports research on political text analysis, speaker-attribute prediction, stance/vote prediction, multilingual NLP, and retrieval.
## Dataset Details
### Dataset Description
**Multi-EuP-v2** aggregates **50,337** debate speeches (each a unique `did`) in **24 languages**. Each row contains the speech text (`TEXT`), speaker identity (`NAME`, `MEPID`), language (`LANGUAGE`), political group (`PARTY`), country and gender of the MEP, date, video timestamps, plus **multilingual debate titles `title_<LANG>`** and **per-language debate/vote linkage IDs `qid_<LANG>`**.
- **Curated by:** Jinrui Yang, Fan Jiang, Timothy Baldwin
- **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200)
- **Shared by:** University of Melbourne
- **Language(s) (NLP):** `bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv` (24 total)
- **License:** cc-by-4.0
### Dataset Sources
- **Repository:** [https://github.com/jrnlp/MLIR_language_bias]
- **Paper:** https://aclanthology.org/2024.mrl-1.23/
## Uses
### Direct Use
- **Text classification:** predict `gender`, `PARTY`, or `country` from `TEXT`.
- **Stance/vote prediction:** link `qid_<LANG>` to external roll-call vote labels.
- **Multilingual representation learning:** train/evaluate models across 24 EU languages.
- **Information retrieval:** index `TEXT` and use `title_*`/`qid_*` as multilingual query anchors.
### Out-of-Scope Use
- Inferring private attributes beyond public MEP metadata.
- Automated profiling for sensitive decisions.
- Misrepresenting model outputs as factual statements.
## Dataset Structure
Each row corresponds to a single speech/document.
**Core fields:**
- `did` *(string)* β€” unique speech ID
- `TEXT` *(string)* β€” speech text
- `DATE` *(string/date)* β€” debate date
- `LANGUAGE` *(string)* β€” language code
- `NAME` *(string)* β€” MEP name
- `MEPID` *(string)* β€” MEP ID
- `PARTY` *(string)* β€” political group
- `country` *(string)* β€” MEP's country
- `gender` *(string)* β€” `Female`, `Male`, or `Unknown`
- Additional provenance fields: `PRESIDENT`, `TEXTID`, `CODICT`, `VOD-START`, `VOD-END`
**Multilingual metadata:**
- `title_<LANG>` *(string)* β€” debate title in that language
- `qid_<LANG>` *(string)* β€” debate/vote linkage ID in that language
**Splits:** Single CSV, no predefined splits.
**Basic stats:**
- Rows: 50,337
- Languages: 24
- Top political groups: PPE 8,869; S-D 8,468; Renew 5,313; ECR 4,130; Verts/ALE 4,001; ID 3,286; The Left 2,951; NI 2,539; GUE/NGL 468
- Gender counts: Female 25,536; Male 23,461; Unknown 349
- Top countries: Germany 7,226; France 6,158; Poland 3,706; Spain 3,312; Italy 3,222; Netherlands 1,924; Greece 1,756; Romania 1,701; Czechia 1,661; Portugal 1,150; Belgium 1,134; Hungary 1,106
## Dataset Creation
### Curation Rationale
Support multilingual political text research, enabling standardized tasks in gender/group prediction, stance/vote prediction, and IR.
### Source Data
#### Data Collection and Processing
- **Source:** Official EP debates.
- **Processing:** metadata linking, language verification, deduplication, multilingual title extraction.
- **Quality checks:** consistency in language tags and IDs.
#### Who are the source data producers?
MEPs speaking in plenary debates; titles from official EP records.
### Annotations
#### Annotation process
Metadata compiled from public records; no manual stance labels.
#### Personal and Sensitive Information
Contains names and political opinions of public officials.
## Bias, Risks, and Limitations
- Domain bias: formal political discourse.
- Risk in demographic inference tasks.
- Language/script differences affect comparability.
### Recommendations
- Report per-language metrics.
- Avoid over-claiming causal interpretations.
## Citation
**BibTeX:**
```bibtex
@inproceedings{yang-etal-2024-language-bias,
title = {Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods},
author = {Yang, Jinrui and Jiang, Fan and Baldwin, Timothy},
booktitle = {Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)},
year = {2024},
pages = {280--292},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2024.mrl-1.23/},
doi = {10.18653/v1/2024.mrl-1.23}
}
```
**APA:** Yang, J., Jiang, F., & Baldwin, T. (2024). *Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods*. In MRL 2024. ACL.
## Contact
[email protected]