Datasets:
Size:
10K<n<100K
License:
File size: 5,607 Bytes
3828178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
pretty_name: "Multi-EuP v2: European Parliament Debates with MEP Metadata (24 languages)"
dataset_name: multi-eup-v2
configs:
- config_name: default
data_files: "clean_all_with_did_qid.MEP.csv"
license: cc-by-4.0
multilinguality: multilingual
task_categories:
- text-classification
- text-retrieval
- text-generation
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
size_categories:
- 10K<n<100K
homepage: ""
repository: ""
paper: "https://aclanthology.org/2024.mrl-1.23/"
tags:
- multilingual
- european-parliament
- political-discourse
- metadata
- mep
---
# Multi-EuP-v2
This dataset card documents **Multi-EuP-v2**, a multilingual corpus of European Parliament debate speeches enriched with Member of European Parliament (MEP) metadata and multilingual debate titles/IDs. It supports research on political text analysis, speaker-attribute prediction, stance/vote prediction, multilingual NLP, and retrieval.
## Dataset Details
### Dataset Description
**Multi-EuP-v2** aggregates **50,337** debate speeches (each a unique `did`) in **24 languages**. Each row contains the speech text (`TEXT`), speaker identity (`NAME`, `MEPID`), language (`LANGUAGE`), political group (`PARTY`), country and gender of the MEP, date, video timestamps, plus **multilingual debate titles `title_<LANG>`** and **per-language debate/vote linkage IDs `qid_<LANG>`**.
- **Curated by:** Jinrui Yang, Fan Jiang, Timothy Baldwin
- **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200)
- **Shared by:** University of Melbourne
- **Language(s) (NLP):** `bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv` (24 total)
- **License:** cc-by-4.0
### Dataset Sources
- **Repository:** [https://github.com/jrnlp/MLIR_language_bias]
- **Paper:** https://aclanthology.org/2024.mrl-1.23/
## Uses
### Direct Use
- **Text classification:** predict `gender`, `PARTY`, or `country` from `TEXT`.
- **Stance/vote prediction:** link `qid_<LANG>` to external roll-call vote labels.
- **Multilingual representation learning:** train/evaluate models across 24 EU languages.
- **Information retrieval:** index `TEXT` and use `title_*`/`qid_*` as multilingual query anchors.
### Out-of-Scope Use
- Inferring private attributes beyond public MEP metadata.
- Automated profiling for sensitive decisions.
- Misrepresenting model outputs as factual statements.
## Dataset Structure
Each row corresponds to a single speech/document.
**Core fields:**
- `did` *(string)* β unique speech ID
- `TEXT` *(string)* β speech text
- `DATE` *(string/date)* β debate date
- `LANGUAGE` *(string)* β language code
- `NAME` *(string)* β MEP name
- `MEPID` *(string)* β MEP ID
- `PARTY` *(string)* β political group
- `country` *(string)* β MEP's country
- `gender` *(string)* β `Female`, `Male`, or `Unknown`
- Additional provenance fields: `PRESIDENT`, `TEXTID`, `CODICT`, `VOD-START`, `VOD-END`
**Multilingual metadata:**
- `title_<LANG>` *(string)* β debate title in that language
- `qid_<LANG>` *(string)* β debate/vote linkage ID in that language
**Splits:** Single CSV, no predefined splits.
**Basic stats:**
- Rows: 50,337
- Languages: 24
- Top political groups: PPE 8,869; S-D 8,468; Renew 5,313; ECR 4,130; Verts/ALE 4,001; ID 3,286; The Left 2,951; NI 2,539; GUE/NGL 468
- Gender counts: Female 25,536; Male 23,461; Unknown 349
- Top countries: Germany 7,226; France 6,158; Poland 3,706; Spain 3,312; Italy 3,222; Netherlands 1,924; Greece 1,756; Romania 1,701; Czechia 1,661; Portugal 1,150; Belgium 1,134; Hungary 1,106
## Dataset Creation
### Curation Rationale
Support multilingual political text research, enabling standardized tasks in gender/group prediction, stance/vote prediction, and IR.
### Source Data
#### Data Collection and Processing
- **Source:** Official EP debates.
- **Processing:** metadata linking, language verification, deduplication, multilingual title extraction.
- **Quality checks:** consistency in language tags and IDs.
#### Who are the source data producers?
MEPs speaking in plenary debates; titles from official EP records.
### Annotations
#### Annotation process
Metadata compiled from public records; no manual stance labels.
#### Personal and Sensitive Information
Contains names and political opinions of public officials.
## Bias, Risks, and Limitations
- Domain bias: formal political discourse.
- Risk in demographic inference tasks.
- Language/script differences affect comparability.
### Recommendations
- Report per-language metrics.
- Avoid over-claiming causal interpretations.
## Citation
**BibTeX:**
```bibtex
@inproceedings{yang-etal-2024-language-bias,
title = {Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods},
author = {Yang, Jinrui and Jiang, Fan and Baldwin, Timothy},
booktitle = {Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)},
year = {2024},
pages = {280--292},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2024.mrl-1.23/},
doi = {10.18653/v1/2024.mrl-1.23}
}
```
**APA:** Yang, J., Jiang, F., & Baldwin, T. (2024). *Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods*. In MRL 2024. ACL.
## Contact
[email protected] |