filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_27259
# Sharon Gibbons, 12-03-2018 # Project Euler Problem 5: Smallest multiple # https://projecteuler.net/problem=5 # https://www.programiz.com/python-programming/examples/lcm # Python program to find the least common multiple for a range of numbers # defines function # https://codility.com/media/train/10-Gcd.pdf def findgcd(x, y): """This function returns the greatest common factor/divisor.""" if x % y == 0: # if statement to identify return y else: return findgcd(y, x % y) # defines findlcm function # https://codility.com/media/train/10-Gcd.pdf def findlcm(x, y): """This function returns the least common multiple.""" # least common multiple is the computation of the product of the input integers divided by gcd of the input integers lcm = int(int(x * y) // int(findgcd(x, y))) return lcm # sets variables and keyword argument l = range(1,21) x = l[0] y = l[1] lcm = findlcm(x, y) # iterates called function over sequence for i in range(1,20): lcm = findlcm(lcm, l[i]) # output print(lcm)
the-stack_106_27261
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle.nn.initializer import Normal, Constant import numpy as np import math import cv2 from ..utils.keypoint_utils import transform_preds from ..utils.workspace import register, create __all__ = ['TopDownHRNet'] class BaseArch(nn.Layer): def __init__(self, data_format='NCHW'): super(BaseArch, self).__init__() self.data_format = data_format self.inputs = {} self.fuse_norm = False def load_meanstd(self, cfg_transform): self.scale = 1. self.mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape( (1, 3, 1, 1)) self.std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1)) for item in cfg_transform: if 'NormalizeImage' in item: self.mean = paddle.to_tensor(item['NormalizeImage'][ 'mean']).reshape((1, 3, 1, 1)) self.std = paddle.to_tensor(item['NormalizeImage'][ 'std']).reshape((1, 3, 1, 1)) if item['NormalizeImage'].get('is_scale', True): self.scale = 1. / 255. break if self.data_format == 'NHWC': self.mean = self.mean.reshape(1, 1, 1, 3) self.std = self.std.reshape(1, 1, 1, 3) def forward(self, inputs): if self.data_format == 'NHWC': image = inputs['image'] inputs['image'] = paddle.transpose(image, [0, 2, 3, 1]) if self.fuse_norm: image = inputs['image'] self.inputs['image'] = (image * self.scale - self.mean) / self.std self.inputs['im_shape'] = inputs['im_shape'] self.inputs['scale_factor'] = inputs['scale_factor'] else: self.inputs = inputs self.model_arch() if self.training: out = self.get_loss() else: out = self.get_pred() return out def build_inputs(self, data, input_def): inputs = {} for i, k in enumerate(input_def): inputs[k] = data[i] return inputs def model_arch(self, ): pass def get_loss(self, ): raise NotImplementedError("Should implement get_loss method!") def get_pred(self, ): raise NotImplementedError("Should implement get_pred method!") def Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, weight_init=Normal(std=0.001), bias_init=Constant(0.)): weight_attr = paddle.framework.ParamAttr(initializer=weight_init) if bias: bias_attr = paddle.framework.ParamAttr(initializer=bias_init) else: bias_attr = False conv = nn.Conv2D( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, weight_attr=weight_attr, bias_attr=bias_attr) return conv @register class TopDownHRNet(BaseArch): __category__ = 'architecture' __inject__ = ['loss'] def __init__(self, width, num_joints, backbone='HRNet', loss='KeyPointMSELoss', post_process='HRNetPostProcess', flip_perm=None, flip=True, shift_heatmap=True, use_dark=True): """ HRNet network, see https://arxiv.org/abs/1902.09212 Args: backbone (nn.Layer): backbone instance post_process (object): `HRNetPostProcess` instance flip_perm (list): The left-right joints exchange order list use_dark(bool): Whether to use DARK in post processing """ super(TopDownHRNet, self).__init__() self.backbone = backbone self.post_process = HRNetPostProcess(use_dark) self.loss = loss self.flip_perm = flip_perm self.flip = flip self.final_conv = Conv2d(width, num_joints, 1, 1, 0, bias=True) self.shift_heatmap = shift_heatmap self.deploy = False @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) return {'backbone': backbone, } def _forward(self): feats = self.backbone(self.inputs) hrnet_outputs = self.final_conv(feats[0]) if self.training: return self.loss(hrnet_outputs, self.inputs) elif self.deploy: outshape = hrnet_outputs.shape max_idx = paddle.argmax( hrnet_outputs.reshape( (outshape[0], outshape[1], outshape[2] * outshape[3])), axis=-1) return hrnet_outputs, max_idx else: if self.flip: self.inputs['image'] = self.inputs['image'].flip([3]) feats = self.backbone(self.inputs) output_flipped = self.final_conv(feats[0]) output_flipped = self.flip_back(output_flipped.numpy(), self.flip_perm) output_flipped = paddle.to_tensor(output_flipped.copy()) if self.shift_heatmap: output_flipped[:, :, :, 1:] = output_flipped.clone( )[:, :, :, 0:-1] hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5 imshape = (self.inputs['im_shape'].numpy() )[:, ::-1] if 'im_shape' in self.inputs else None center = self.inputs['center'].numpy( ) if 'center' in self.inputs else np.round(imshape / 2.) scale = self.inputs['scale'].numpy( ) if 'scale' in self.inputs else imshape / 200. outputs = self.post_process(hrnet_outputs, center, scale) return outputs def get_loss(self): return self._forward() def get_pred(self): res_lst = self._forward() outputs = {'keypoint': res_lst} return outputs def flip_back(self, output_flipped, matched_parts): assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped class HRNetPostProcess(object): def __init__(self, use_dark=True): self.use_dark = use_dark def get_max_preds(self, heatmaps): '''get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints ''' assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def gaussian_blur(self, heatmap, kernel): border = (kernel - 1) // 2 batch_size = heatmap.shape[0] num_joints = heatmap.shape[1] height = heatmap.shape[2] width = heatmap.shape[3] for i in range(batch_size): for j in range(num_joints): origin_max = np.max(heatmap[i, j]) dr = np.zeros((height + 2 * border, width + 2 * border)) dr[border:-border, border:-border] = heatmap[i, j].copy() dr = cv2.GaussianBlur(dr, (kernel, kernel), 0) heatmap[i, j] = dr[border:-border, border:-border].copy() heatmap[i, j] *= origin_max / np.max(heatmap[i, j]) return heatmap def dark_parse(self, hm, coord): heatmap_height = hm.shape[0] heatmap_width = hm.shape[1] px = int(coord[0]) py = int(coord[1]) if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2: dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1]) dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px]) dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2]) dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \ + hm[py-1][px-1]) dyy = 0.25 * ( hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px]) derivative = np.matrix([[dx], [dy]]) hessian = np.matrix([[dxx, dxy], [dxy, dyy]]) if dxx * dyy - dxy**2 != 0: hessianinv = hessian.I offset = -hessianinv * derivative offset = np.squeeze(np.array(offset.T), axis=0) coord += offset return coord def dark_postprocess(self, hm, coords, kernelsize): '''DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). ''' hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals def __call__(self, output, center, scale): preds, maxvals = self.get_final_preds(output.numpy(), center, scale) outputs = [[ np.concatenate( (preds, maxvals), axis=-1), np.mean( maxvals, axis=1) ]] return outputs
the-stack_106_27262
""" A two-step (registration followed by activation) workflow, implemented by emailing an HMAC-verified timestamped activation token to the user on signup. """ from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.sites.shortcuts import get_current_site from django.core import signing from django.template.loader import render_to_string from django.urls import reverse_lazy from django.utils.translation import ugettext_lazy as _ from django_registration import signals from django_registration.exceptions import ActivationError from django_registration.views import ActivationView as BaseActivationView from django_registration.views import RegistrationView as BaseRegistrationView REGISTRATION_SALT = getattr(settings, "REGISTRATION_SALT", "registration") class RegistrationView(BaseRegistrationView): """ Register a new (inactive) user account, generate an activation key and email it to the user. This is different from the model-based activation workflow in that the activation key is the username, signed using Django's TimestampSigner, with HMAC verification on activation. """ email_body_template = "django_registration/activation_email_body.txt" email_subject_template = "django_registration/activation_email_subject.txt" success_url = reverse_lazy("django_registration_complete") def register(self, form): new_user = self.create_inactive_user(form) signals.user_registered.send( sender=self.__class__, user=new_user, request=self.request ) return new_user def create_inactive_user(self, form): """ Create the inactive user account and send an email containing activation instructions. """ new_user = form.save(commit=False) new_user.is_active = False new_user.save() self.send_activation_email(new_user) return new_user def get_activation_key(self, user): """ Generate the activation key which will be emailed to the user. """ return signing.dumps(obj=user.get_username(), salt=REGISTRATION_SALT) def get_email_context(self, activation_key): """ Build the template context used for the activation email. """ scheme = "https" if self.request.is_secure() else "http" return { "scheme": scheme, "activation_key": activation_key, "expiration_days": settings.ACCOUNT_ACTIVATION_DAYS, "site": get_current_site(self.request), } def send_activation_email(self, user): """ Send the activation email. The activation key is the username, signed using TimestampSigner. """ activation_key = self.get_activation_key(user) context = self.get_email_context(activation_key) context["user"] = user subject = render_to_string( template_name=self.email_subject_template, context=context, request=self.request, ) # Force subject to a single line to avoid header-injection # issues. subject = "".join(subject.splitlines()) message = render_to_string( template_name=self.email_body_template, context=context, request=self.request, ) user.email_user(subject, message, settings.DEFAULT_FROM_EMAIL) class ActivationView(BaseActivationView): """ Given a valid activation key, activate the user's account. Otherwise, show an error message stating the account couldn't be activated. """ ALREADY_ACTIVATED_MESSAGE = _( "The account you tried to activate has already been activated." ) BAD_USERNAME_MESSAGE = _("The account you attempted to activate is invalid.") EXPIRED_MESSAGE = _("This account has expired.") INVALID_KEY_MESSAGE = _("The activation key you provided is invalid.") success_url = reverse_lazy("django_registration_activation_complete") def activate(self, *args, **kwargs): username = self.validate_key(kwargs.get("activation_key")) user = self.get_user(username) user.is_active = True user.save() return user def validate_key(self, activation_key): """ Verify that the activation key is valid and within the permitted activation time window, returning the username if valid or raising ``ActivationError`` if not. """ try: username = signing.loads( activation_key, salt=REGISTRATION_SALT, max_age=settings.ACCOUNT_ACTIVATION_DAYS * 86400, ) return username except signing.SignatureExpired: raise ActivationError(self.EXPIRED_MESSAGE, code="expired") except signing.BadSignature: raise ActivationError( self.INVALID_KEY_MESSAGE, code="invalid_key", params={"activation_key": activation_key}, ) def get_user(self, username): """ Given the verified username, look up and return the corresponding user account if it exists, or raising ``ActivationError`` if it doesn't. """ User = get_user_model() try: user = User.objects.get(**{User.USERNAME_FIELD: username}) if user.is_active: raise ActivationError( self.ALREADY_ACTIVATED_MESSAGE, code="already_activated" ) return user except User.DoesNotExist: raise ActivationError(self.BAD_USERNAME_MESSAGE, code="bad_username")
the-stack_106_27264
import logging from galaxy.web.form_builder import SelectField from tool_shed.util import hg_util, metadata_util log = logging.getLogger( __name__ ) def build_approved_select_field( trans, name, selected_value=None, for_component=True ): options = [ ( 'No', trans.model.ComponentReview.approved_states.NO ), ( 'Yes', trans.model.ComponentReview.approved_states.YES ) ] if for_component: options.append( ( 'Not applicable', trans.model.ComponentReview.approved_states.NA ) ) if selected_value is None: selected_value = trans.model.ComponentReview.approved_states.NA select_field = SelectField( name=name ) for option_tup in options: selected = selected_value and option_tup[ 1 ] == selected_value select_field.add_option( option_tup[ 0 ], option_tup[ 1 ], selected=selected ) return select_field def build_changeset_revision_select_field( trans, repository, selected_value=None, add_id_to_name=True, downloadable=False, reviewed=False, not_reviewed=False ): """ Build a SelectField whose options are the changeset_rev strings of certain revisions of the received repository. """ options = [] changeset_tups = [] refresh_on_change_values = [] if downloadable: # Restrict the options to downloadable revisions. repository_metadata_revisions = repository.downloadable_revisions elif reviewed: # Restrict the options to revisions that have been reviewed. repository_metadata_revisions = [] metadata_changeset_revision_hashes = [] for metadata_revision in repository.metadata_revisions: metadata_changeset_revision_hashes.append( metadata_revision.changeset_revision ) for review in repository.reviews: if review.changeset_revision in metadata_changeset_revision_hashes: repository_metadata_revisions.append( review.repository_metadata ) elif not_reviewed: # Restrict the options to revisions that have not yet been reviewed. repository_metadata_revisions = [] reviewed_metadata_changeset_revision_hashes = [] for review in repository.reviews: reviewed_metadata_changeset_revision_hashes.append( review.changeset_revision ) for metadata_revision in repository.metadata_revisions: if metadata_revision.changeset_revision not in reviewed_metadata_changeset_revision_hashes: repository_metadata_revisions.append( metadata_revision ) else: # Restrict the options to all revisions that have associated metadata. repository_metadata_revisions = repository.metadata_revisions for repository_metadata in repository_metadata_revisions: rev, label, changeset_revision = \ hg_util.get_rev_label_changeset_revision_from_repository_metadata( trans.app, repository_metadata, repository=repository, include_date=True, include_hash=False ) changeset_tups.append( ( rev, label, changeset_revision ) ) refresh_on_change_values.append( changeset_revision ) # Sort options by the revision label. Even though the downloadable_revisions query sorts by update_time, # the changeset revisions may not be sorted correctly because setting metadata over time will reset update_time. for changeset_tup in sorted( changeset_tups ): # Display the latest revision first. options.insert( 0, ( changeset_tup[ 1 ], changeset_tup[ 2 ] ) ) if add_id_to_name: name = 'changeset_revision_%d' % repository.id else: name = 'changeset_revision' select_field = SelectField( name=name, refresh_on_change=True, refresh_on_change_values=refresh_on_change_values ) for option_tup in options: selected = selected_value and option_tup[ 1 ] == selected_value select_field.add_option( option_tup[ 0 ], option_tup[ 1 ], selected=selected ) return select_field def filter_by_latest_downloadable_changeset_revision_that_has_missing_tool_test_components( trans, repository ): """ Inspect the latest downloadable changeset revision for the received repository to see if it includes tools that are either missing functional tests or functional test data. If the changset revision includes tools but is missing tool test components, return the changeset revision hash. This will filter out repositories of type repository_suite_definition and tool_dependency_definition. """ repository_metadata = get_latest_downloadable_repository_metadata_if_it_includes_tools( trans, repository ) if repository_metadata is not None \ and repository_metadata.missing_test_components: return repository_metadata.changeset_revision return None def filter_by_latest_metadata_changeset_revision_that_has_invalid_tools( trans, repository ): """ Inspect the latest changeset revision with associated metadata for the received repository to see if it has invalid tools. This will filter out repositories of type repository_suite_definition and tool_dependency_definition. """ repository_metadata = get_latest_repository_metadata_if_it_includes_invalid_tools( trans, repository ) if repository_metadata is not None: return repository_metadata.changeset_revision return None def get_latest_downloadable_repository_metadata( trans, repository ): """ Return the latest downloadable repository_metadata record for the received repository. This will return repositories of type unrestricted as well as types repository_suite_definition and tool_dependency_definition. """ encoded_repository_id = trans.security.encode_id( repository.id ) repo = hg_util.get_repo_for_repository( trans.app, repository=repository, repo_path=None, create=False ) tip_ctx = str( repo.changectx( repo.changelog.tip() ) ) repository_metadata = None try: repository_metadata = metadata_util.get_repository_metadata_by_changeset_revision( trans.app, encoded_repository_id, tip_ctx ) if repository_metadata is not None and repository_metadata.downloadable: return repository_metadata return None except: latest_downloadable_revision = metadata_util.get_previous_metadata_changeset_revision( repository, repo, tip_ctx, downloadable=True ) if latest_downloadable_revision == hg_util.INITIAL_CHANGELOG_HASH: return None repository_metadata = metadata_util.get_repository_metadata_by_changeset_revision( trans.app, encoded_repository_id, latest_downloadable_revision ) if repository_metadata is not None and repository_metadata.downloadable: return repository_metadata return None def get_latest_downloadable_repository_metadata_if_it_includes_tools( trans, repository ): """ Return the latest downloadable repository_metadata record for the received repository if its includes_tools attribute is True. This will filter out repositories of type repository_suite_definition and tool_dependency_definition. """ repository_metadata = get_latest_downloadable_repository_metadata( trans, repository ) if repository_metadata is not None and repository_metadata.includes_tools: return repository_metadata return None def get_latest_repository_metadata( trans, repository ): """ Return the latest repository_metadata record for the received repository if it exists. This will return repositories of type unrestricted as well as types repository_suite_definition and tool_dependency_definition. """ encoded_repository_id = trans.security.encode_id( repository.id ) repo = hg_util.get_repo_for_repository( trans.app, repository=repository, repo_path=None, create=False ) tip_ctx = str( repo.changectx( repo.changelog.tip() ) ) try: repository_metadata = metadata_util.get_repository_metadata_by_changeset_revision( trans.app, encoded_repository_id, tip_ctx ) return repository_metadata except: latest_downloadable_revision = metadata_util.get_previous_metadata_changeset_revision( repository, repo, tip_ctx, downloadable=False ) if latest_downloadable_revision == hg_util.INITIAL_CHANGELOG_HASH: return None repository_metadata = metadata_util.get_repository_metadata_by_changeset_revision( trans.app, encoded_repository_id, latest_downloadable_revision ) return repository_metadata def get_latest_repository_metadata_if_it_includes_invalid_tools( trans, repository ): """ Return the latest repository_metadata record for the received repository that contains invalid tools if one exists. This will filter out repositories of type repository_suite_definition and tool_dependency_definition. """ repository_metadata = get_latest_repository_metadata( trans, repository ) if repository_metadata is not None: metadata = repository_metadata.metadata if metadata is not None and 'invalid_tools' in metadata: return repository_metadata return None
the-stack_106_27265
# -*- coding: utf-8 -*- # @Time : 19-8-21 上午11:29 # @Author : Redtree # @File : r13.py # @Desc : 狼人 from data import skills DATA = { 'code':12, 'name':'狼人', 'attack':3, 'defend':0, 'hp':8, 'skill':skills.DATA[13], 'desc':'一个人的夜我的心,应该放在哪里' }
the-stack_106_27266
# -*- coding: utf-8 -*- import sys from pyqtgraph.Qt import QtCore, QtGui from visualizer import NMF4DVisualizer from nmf import * from generator import * def main(): # params # ========================= N = 10 M = 50 K = 3 T = 10 lr_pgd1 = 0.02 lr_pgd2 = 0.15 nmf_iter = 100 nmf_clk = 50 noise_coeff = 0 seed = 5 sampler = runif_matrix_normalized # X ~ U(0, 1) # sampler = prnorm_matrix_normalized # X' ~ N(0, a^2), X = max(X', eps) torch.manual_seed(seed) # models # ========================= initializer = MUNMF(K=K, T=0) MU = MUNMF(K=K, T=1) PGD1 = PGDNMF(K=K, T=1, eta=lr_pgd1, order=1) PGD2 = PGDNMF(K=K, T=1, eta=lr_pgd2, order=2) initializer.eval() MU.eval() PGD1.eval() PGD2.eval() v = NMF4DVisualizer() # draw the ground truth matrix # ========================= X, D_gt, C_gt = sampler(N, M, K, noise_coeff=noise_coeff) v.connect_vertices(D_gt, width=5, color=(1, 0.2, 1, 1)) # draw X as points # each point corresponds to each column vector of X v.draw_X(X) # initialize factor matrices Dinit, Cinit = initializer(X) # draw D0 v.connect_vertices(Dinit, color=(.8, .8, .8, 1)) # draw updating process of each model # ========================= def make_prediction_data(update_D, update_C, iter=50): Ds = [] Dpred, Cpred = Dinit, Cinit for i in range(iter): Dpred = update_D(X=X, D=Dpred, C=Cpred) Dpred = normalize_col(Dpred) Cpred = update_C(X=X, D=Dpred, C=Cpred) Cpred = normalize_col(Cpred) Ds.append(Dpred.detach().numpy()) return np.array(Ds) # MU # ---------- D_MU = make_prediction_data(MU.update_D, MU.update_C, nmf_iter) v.draw_model_history(D_MU, rgb=(.8, .4, .2), clock=nmf_clk) # 1st-order PGD # ---------- D_PGD1 = make_prediction_data(PGD1.update_D, PGD1.update_C, nmf_iter) v.draw_model_history(D_PGD1, rgb=(.5, .9, .8), clock=nmf_clk) # 2nd-order PGD # ---------- D_PGD2 = make_prediction_data(PGD2.update_D, PGD2.update_C, nmf_iter) v.draw_model_history(D_PGD2, rgb=(.5, .8, .3), clock=nmf_clk) # random # ---------- # Ds = [] # for i in range(30): # D = np.random.random((4, K)) # D = D / np.sum(D, axis=0) # Ds.append(D) # Ds = np.array(Ds) # v.draw_model_history(Ds, rgb=(.4, .8, .2), clock=50) # Start Qt event loop unless running in interactive mode. if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_() if __name__ == '__main__': main()
the-stack_106_27267
# SPDX-FileCopyrightText: 2021 easyCore contributors <[email protected]> # SPDX-License-Identifier: BSD-3-Clause # © 2021 Contributors to the easyCore project <https://github.com/easyScience/easyCore> __author__ = 'github.com/wardsimon' __version__ = '0.1.0' from easyCore.Symmetry.SymOp import SymmOp class Twin: def __init__(self, origin=(0, 0, 0), theta: float = 0.0, phi: float = 0.0): self.theta = theta self.phi = phi self.origin = list(origin) self.axis1 = [1, 0, 0] self.axis2 = [0, 0, 1] @property def operation(self): return SymmOp.from_origin_axis_angle(self.origin, self.axis1, self.phi) * \ SymmOp.from_origin_axis_angle(self.origin, self.axis2, self.theta)
the-stack_106_27268
import numpy as np from sampling import madowSampling from scipy.special import comb from decimal import * from sacred import Experiment from config import initialise from easydict import EasyDict as edict getcontext().prec = 100 ex = Experiment() ex = initialise(ex) class sageHedge: def __init__(self, args): self.args = args self.eta = args.eta self.N = args.N self.files = np.arange(args.N) self.k = args.k self.weights = args.weights self.R = args.R if self.args.method == "iterative": self.R = args.R self.a = args.a self.W = args.W self.mul_hedge = Decimal(np.exp(self.eta)) self.div_hedge = Decimal(np.exp(-self.eta)) self.mulvec = np.power(self.div_hedge, np.flip(range(self.N - self.k + 1), axis=0)) def initialize(self): self.weights = np.ones(self.N) self.R = np.zeros(self.N) if self.args.method == "iterative": self.W = np.ones((self.N, self.N - self.k + 1), dtype=Decimal) one = Decimal(1) self.inv_weights = [one for j in range(self.N)] self.a = np.zeros(self.N - self.k + 1, dtype=Decimal) for j in range(self.N - self.k + 1): self.a[j] = (-1) ** (self.N - j) * comb(self.N, j, exact=True) def get_normalized_weights(self): probs = self.weights / np.sum(self.weights) return probs def get_kset_direct(self, y): onehot_y = np.zeros(self.N) onehot_y[y] = 1 delta = np.exp(self.eta * onehot_y) self.weights = self.weights * delta K = self.elementary_symmetric_polynomial(self.weights, self.k) p = np.zeros(self.N) for i in range(self.N): W_i = np.delete(self.weights, i) p[i] = (self.weights[i] * self.elementary_symmetric_polynomial(W_i, self.k - 1)) / K return p, madowSampling(self.N, p, self.k) def elementary_symmetric_polynomial(self, X, k): X_ = np.zeros(self._next_power_of_2(len(X)), dtype=np.float64) X_[:len(X)] = X W = np.ones_like(X_, dtype=np.float64) X_ = np.vstack((W, X_)).T K = X_.shape[0] while K > 1: X_temp = [] for i in range(0, K, 2): x, y = list(X_[i]), list(X_[i + 1]) X_temp.append(np.polymul(x, y)[:k + 1]) X_ = np.asarray(X_temp) K = K // 2 return X_.flatten()[k] def get_kset_iterative(self, y): p = np.matmul(self.W, self.a) / self.a[self.N - self.k] if np.abs(p.sum() - self.k) > 1e-4: print(p.sum()) S = madowSampling(self.N, p, self.k) a_new = np.zeros(self.N - self.k + 1, dtype=Decimal) a_new[0] = self.mul_hedge * self.a[0] for i in range(1, self.N - self.k + 1): a_new[i] = self.mul_hedge * self.a[i] + self.inv_weights[y] * (a_new[i - 1] - self.a[i - 1]) self.inv_weights[y] = self.inv_weights[y] * self.div_hedge self.W[y, :] = np.multiply(self.W[y, :], self.mulvec) self.a = a_new return p, S def get_kset_large(self, y): # To overcome the numerical precision issues while dealing with large datasets, the following hack # is utilised. We use the fact that FTPL with Gumbel Noise is equivalent to Hedge in expectation. # Cite: http://proceedings.mlr.press/v35/abernethy14.pdf # Although, the equivalence is not exact in our case (as instead of a single expert, we deal with # a set of experts), the hack works exceptionally well for practical purposes. perturbed_R = self.R + np.random.gumbel(scale=1. / self.eta) kset = np.argsort(perturbed_R)[::-1][:self.k] self.R[y] += 1 return None, kset def get_kset(self, y): p, kset = None, None if self.args.method == "large": p, kset = self.get_kset_large(y) if self.args.method == "iterative": p, kset = self.get_kset_iterative(y) if self.args.method == "direct": p, kset = self.get_kset_direct(y) return p, kset def _next_power_of_2(self, n): count = 0 if n and not (n & (n - 1)): return n while n != 0: n >>= 1 count += 1 return 1 << count @ex.automain def main(_run): args = edict(_run.config) hedge = sageHedge(args) hedge.initialize() for t in range(args.T): y = np.random.randint(args.N) p, kset = hedge.get_kset(y) if p is None: print(t, y, kset) else: print(t, y, p.sum(), kset)
the-stack_106_27270
# Python program to find largest, smallest, # second largest and second smallest in a # list with complexity O(n) def Range(list1): #largest = list1[0] lowest = list1[0] #largest2 = None lowest2 = None for item in list1[1:]: #if item > largest: #largest2 = largest #largest = item #elif largest2 == None or largest2 < item: #largest2 = item if item < lowest: lowest2 = lowest lowest = item elif lowest2 == None or lowest2 > item: lowest2 = item #print("Largest element is:", largest) #print("Smallest element is:", lowest) #print("Second Largest element is:", largest2) print("Second Smallest element is:", lowest2) # Driver Code list1 = [12, 45, 2, 41, 31, 10, 8, 6, 4] Range(list1)
the-stack_106_27271
#!/usr/bin/env python """Tests for grr.parsers.sqlite_file.""" import os import StringIO from grr.lib import flags from grr.parsers import sqlite_file from grr.test_lib import test_lib class SQLiteFileTest(test_lib.GRRBaseTest): """Test parsing of sqlite database files.""" query = "SELECT * FROM moz_places;" def testErrors(self): """Test empty files don't raise errors.""" database_file = sqlite_file.SQLiteFile(StringIO.StringIO()) entries = [x for x in database_file.Query(self.query)] self.assertEqual(len(entries), 0) # The places.sqlite contains 92 rows in table moz_places def testTmpFiles(self): """This should force a write to a tmp file.""" filename = os.path.join(self.base_path, "places.sqlite") file_stream = StringIO.StringIO(open(filename, "rb").read()) database_file = sqlite_file.SQLiteFile(file_stream) entries = [x for x in database_file.Query(self.query)] self.assertEqual(len(entries), 92) # Test the tempfile is deleted self.assertEqual(database_file._delete_file, True) filename = database_file.name self.assertTrue(os.path.exists(filename)) del database_file self.assertFalse(os.path.exists(filename)) def main(argv): test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
the-stack_106_27275
#!/usr/bin/env python # 1 dragon with 1 point light # Copyright (c) 2011-2020 Hiroshi Tsubokawa import fujiyama si = fujiyama.SceneInterface() #plugins si.OpenPlugin('constant_shader', 'ConstantShader') si.OpenPlugin('plastic_shader', 'PlasticShader') si.OpenPlugin('stanfordply_procedure', 'StanfordPlyProcedure') #Camera si.NewCamera('cam1', 'PerspectiveCamera') si.SetSampleProperty3('cam1', 'translate', 0, 2, 6, 0) si.SetSampleProperty3('cam1', 'translate', 0, 2, 5.3, 1) si.SetSampleProperty3('cam1', 'rotate', -10, 0, 0, 0) #Light si.NewLight('light1', 'PointLight') si.SetProperty3('light1', 'translate', -10, 12, 10) #Texture si.NewTexture('tex1', '../../hdr/ennis.hdr') #Shader si.NewShader('dragon_shader', 'plastic_shader') si.SetProperty3('dragon_shader', 'diffuse', .1, .4, .0) si.NewShader('floor_shader', 'plastic_shader') si.SetProperty3('floor_shader', 'diffuse', .2, .25, .3) si.NewShader('dome_shader', 'constant_shader') si.SetProperty3('dome_shader', 'diffuse', .8, .8, .8) si.AssignTexture('dome_shader', 'texture', 'tex1') #Mesh si.NewMesh('dragon_mesh') si.NewMesh('floor_mesh') si.NewMesh('dome_mesh') #Procedure si.NewProcedure('dragon_proc', 'stanfordply_procedure') si.AssignMesh('dragon_proc', 'mesh', 'dragon_mesh') si.SetStringProperty('dragon_proc', 'filepath', '../../ply/dragon.ply') si.SetStringProperty('dragon_proc', 'io_mode', 'r') si.RunProcedure('dragon_proc') si.NewProcedure('floor_proc', 'stanfordply_procedure') si.AssignMesh('floor_proc', 'mesh', 'floor_mesh') si.SetStringProperty('floor_proc', 'filepath', '../../ply/floor.ply') si.SetStringProperty('floor_proc', 'io_mode', 'r') si.RunProcedure('floor_proc') si.NewProcedure('dome_proc', 'stanfordply_procedure') si.AssignMesh('dome_proc', 'mesh', 'dome_mesh') si.SetStringProperty('dome_proc', 'filepath', '../../ply/dome.ply') si.SetStringProperty('dome_proc', 'io_mode', 'r') si.RunProcedure('dome_proc') #ObjectInstance si.NewObjectInstance('dragon1', 'dragon_mesh') si.AssignShader('dragon1', 'DEFAULT_SHADING_GROUP', 'dragon_shader') si.SetProperty3('dragon1', 'rotate', 0, -90, 0) si.SetProperty3('dragon1', 'scale', .5, .5, .5) si.NewObjectInstance('floor1', 'floor_mesh') si.AssignShader('floor1', 'DEFAULT_SHADING_GROUP', 'floor_shader') si.NewObjectInstance('dome1', 'dome_mesh') si.AssignShader('dome1', 'DEFAULT_SHADING_GROUP', 'dome_shader') #ObjectGroup si.NewObjectGroup('group1') si.AddObjectToGroup('group1', 'dragon1') si.AssignObjectGroup('dragon1', 'shadow_target', 'group1') si.AssignObjectGroup('floor1', 'shadow_target', 'group1') #FrameBuffer si.NewFrameBuffer('fb1', 'rgba') #Renderer si.NewRenderer('ren1') si.AssignCamera('ren1', 'cam1') si.AssignFrameBuffer('ren1', 'fb1') si.SetProperty2('ren1', 'resolution', 640, 480) #si.SetProperty2('ren1', 'resolution', 160, 120) si.SetProperty2('ren1', 'pixelsamples', 9, 9) #Rendering si.RenderScene('ren1') #Output si.SaveFrameBuffer('fb1', '../camera_motion_blur.fb') #Run commands si.Run() #si.Print()
the-stack_106_27278
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from azure.core.pipeline.policies import ContentDecodePolicy from azure.core.pipeline.policies import SansIOHTTPPolicy from ._models import TextDocumentBatchStatistics from ._lro import _FINISHED class TextAnalyticsResponseHookPolicy(SansIOHTTPPolicy): def __init__(self, **kwargs): self._response_callback = kwargs.get("raw_response_hook") self._is_lro = None super().__init__() def on_request(self, request): self._response_callback = request.context.options.pop( "raw_response_hook", self._response_callback ) def on_response(self, request, response): if self._is_lro is None: # determine LRO based off of initial response. If 202, we say it's an LRO self._is_lro = response.http_response.status_code == 202 if self._response_callback: data = ContentDecodePolicy.deserialize_from_http_generics( response.http_response ) if self._is_lro and (not data or data.get("status", "").lower() not in _FINISHED): return if response.http_response.status_code == 429: return if data: inner = data.get("results", data) # language API compat statistics = inner.get("statistics", None) model_version = inner.get("modelVersion", None) batch_statistics = TextDocumentBatchStatistics._from_generated( # pylint: disable=protected-access statistics ) response.statistics = batch_statistics response.model_version = model_version response.raw_response = data self._response_callback(response)
the-stack_106_27279
from tkinter import * ventana= Tk() ventana.geometry("700x400") ventana.title("Formularios en Tkinter | Pilar Goonzález") # Texto Encabezado encabezado = Label(ventana, text="Formularios con Tkinter - Pilar G") encabezado.config( fg="white", bg="darkgray", font=("Open Sans",18), padx=10, pady=10 ) # Grid de 12 columnas(en el columnspan inicial) encabezado.grid(row=0,column=0,columnspan=12,sticky=W) # Label para el campo (nombre) label = Label(ventana, text="Nombre") label.grid(row=1,column=0,sticky=W,padx=5, pady=5) # Campo de texto (nombre) campo_texto = Entry(ventana) # sticky fija el campo de texto a la izquierda campo_texto.grid(row=1,column=1,sticky=W,padx=5,pady=5) campo_texto.config(justify="right",state="normal") # Label para el campo (apellidos) label = Label(ventana, text="Apellidos") label.grid(row=2,column=0,sticky=W,padx=5, pady=5) # Campo de texto (apellidos) campo_texto = Entry(ventana) # sticky fija el campo de texto a la izquierda campo_texto.grid(row=2,column=1,sticky=W,padx=5,pady=5) # Justificado derecha; el texto ingresado aparece desde la derecha, state: disabled (ex) campo_texto.config(justify="right",state="normal") # Label para el campo (descripción) label = Label(ventana, text="Descripción") label.grid(row=3,column=0,sticky=W,padx=5, pady=5) # Campo de texto GRANDE (descripción) campo_grande = Text(ventana) campo_grande.grid(row=3, column=1,sticky=N,padx=5, pady=5) campo_grande.config( width=30, height=5, font=("Arial",12), padx=15, pady=15 ) # Botón Label(ventana).grid(row=4,column=1) boton = Button(ventana,text="Enviar") boton.grid(row=5,column=1,sticky=W) boton.config(padx=15,pady=10,bg="green",fg="white") ventana.mainloop()
the-stack_106_27282
""" Represents a bundle. In the words of the Apple docs, it's a convenient way to deliver software. Really it's a particular kind of directory structure, with one main executable, well-known places for various data files and libraries, and tracking hashes of all those files for signing purposes. For isign, we have two main kinds of bundles: the App, and the Framework (a reusable library packaged along with its data files.) An App may contain many Frameworks, but a Framework has to be re-signed independently. See the Apple Developer Documentation "About Bundles" """ import glob import logging import os import shutil import copy from os.path import basename, exists, join, splitext import biplist from . import code_resources, signable from .exceptions import NotMatched from .signer import openssl_command from .utils import PY3 log = logging.getLogger(__name__) def is_info_plist_native(plist): """ If an bundle is for native iOS, it has these properties in the Info.plist """ key = 'CFBundleSupportedPlatforms' value = 'iPhoneOS' if PY3: key = key.encode() value = value.encode() return key in plist and value in plist[key] class Bundle(object): """ A bundle is a standard directory structure, a signable, installable set of files. Apps are Bundles, but so are some kinds of Frameworks (libraries) """ helpers = [] signable_class = None def __init__(self, path): self.path = path self.info_path = join(self.path, 'Info.plist') if not exists(self.info_path): raise NotMatched("no Info.plist found; probably not a bundle") self.info = biplist.readPlist(self.info_path) self.orig_info = None if not is_info_plist_native(self.info): raise NotMatched("not a native iOS bundle") # will be added later self.seal_path = None def get_executable_path(self): """ Path to the main executable. For an app, this is app itself. For a Framework, this is the main framework """ executable_name = None if 'CFBundleExecutable' in self.info: executable_name = self.info['CFBundleExecutable'] else: executable_name, _ = splitext(basename(self.path)) executable = join(self.path, executable_name) if not exists(executable): raise Exception( 'could not find executable for {0}'.format(self.path)) return executable def update_info_props(self, new_props): if self.orig_info is None: self.orig_info = copy.deepcopy(self.info) changed = False if ('CFBundleIdentifier' in new_props and 'CFBundleURLTypes' in self.info and 'CFBundleURLTypes' not in new_props): # The bundle identifier changed. Check CFBundleURLTypes for # CFBundleURLName values matching the old bundle # id if it's not being set explicitly old_bundle_id = self.info['CFBundleIdentifier'] new_bundle_id = new_props['CFBundleIdentifier'] for url_type in self.info['CFBundleURLTypes']: if 'CFBundleURLName' not in url_type: continue if url_type['CFBundleURLName'] == old_bundle_id: url_type['CFBundleURLName'] = new_bundle_id changed = True for key, val in new_props.items(): is_new_key = key not in self.info if is_new_key or self.info[key] != val: if is_new_key: log.warn("Adding new Info.plist key: {}".format(key)) self.info[key] = val changed = True if changed: biplist.writePlist(self.info, self.info_path, binary=True) else: self.orig_info = None def info_props_changed(self): return self.orig_info is not None def info_prop_changed(self, key): if not self.orig_info: # No props have been changed return False if key in self.info and key in self.orig_info and self.info[key] == self.orig_info[key]: return False return True def get_info_prop(self, key): return self.info[key] def sign_dylibs(self, signer, path): """ Sign all the dylibs in this directory """ for dylib_path in glob.glob(join(path, '*.dylib')): dylib = signable.Dylib(self, dylib_path) dylib.sign(self, signer) def sign(self, signer): """ Sign everything in this bundle, recursively with sub-bundles """ # log.debug("SIGNING: %s" % self.path) frameworks_path = join(self.path, 'Frameworks') if exists(frameworks_path): # log.debug("SIGNING FRAMEWORKS: %s" % frameworks_path) # sign all the frameworks for framework_name in os.listdir(frameworks_path): framework_path = join(frameworks_path, framework_name) # log.debug("checking for framework: %s" % framework_path) try: framework = Framework(framework_path) # log.debug("resigning: %s" % framework_path) framework.resign(signer) except NotMatched: # log.debug("not a framework: %s" % framework_path) continue # sign all the dylibs under Frameworks self.sign_dylibs(signer, frameworks_path) # sign any dylibs in the main directory (rare, but it happens) self.sign_dylibs(signer, self.path) plugins_path = join(self.path, 'PlugIns') if exists(plugins_path): # sign the appex executables appex_paths = glob.glob(join(plugins_path, '*.appex')) for appex_path in appex_paths: plist_path = join(appex_path, 'Info.plist') if not exists(plist_path): continue plist = biplist.readPlist(plist_path) appex_exec_path = join(appex_path, plist['CFBundleExecutable']) appex = signable.Appex(self, appex_exec_path) appex.sign(self, signer) # then create the seal # TODO maybe the app should know what its seal path should be... self.seal_path = code_resources.make_seal(self.get_executable_path(), self.path) # then sign the app executable = self.signable_class(self, self.get_executable_path()) executable.sign(self, signer) def resign(self, signer): """ signs bundle, modifies in place """ self.sign(signer) log.debug("Resigned bundle at <%s>", self.path) class Framework(Bundle): """ A bundle that comprises reusable code. Similar to an app in that it has its own resources and metadata. Not like an app because the main executable doesn't have Entitlements, or an Application hash, and it doesn't have its own provisioning profile. """ # the executable in this bundle will be a Framework signable_class = signable.Framework def __init__(self, path): super(Framework, self).__init__(path) class App(Bundle): """ The kind of bundle that is visible as an app to the user. Contains the provisioning profile, entitlements, etc. """ # the executable in this bundle will be an Executable (i.e. the main # executable of an app) signable_class = signable.Executable def __init__(self, path): super(App, self).__init__(path) self.entitlements_path = join(self.path, 'Entitlements.plist') self.provision_path = join(self.path, 'embedded.mobileprovision') def provision(self, provision_path): shutil.copyfile(provision_path, self.provision_path) @staticmethod def extract_entitlements(provision_path): """ Given a path to a provisioning profile, return the entitlements encoded therein """ cmd = [ 'smime', '-inform', 'der', '-verify', # verifies content, prints verification status to STDERR, # outputs content to STDOUT. In our case, will be an XML plist '-noverify', # accept self-signed certs. Not the opposite of -verify! '-in', provision_path ] # this command always prints 'Verification successful' to stderr. (profile_text, err) = openssl_command(cmd, data=None, expect_err=True) if err and err.strip() != 'Verification successful': log.error('Received unexpected error from openssl: {}'.format(err)) plist_dict = biplist.readPlistFromString(profile_text) if 'Entitlements' not in plist_dict: log.debug('failed to get entitlements in provisioning profile') raise Exception('could not find Entitlements in {}'.format(provision_path)) return plist_dict['Entitlements'] def write_entitlements(self, signer, provisioning_path): """ Given a path to a provisioning profile, write its entitlements to self.entitlements_path """ entitlements = self.extract_entitlements(provisioning_path) biplist.writePlist(entitlements, self.entitlements_path, binary=False) log.debug("wrote Entitlements to {0}".format(self.entitlements_path)) def resign(self, signer, provisioning_profile): """ signs app in place """ # copy the provisioning profile in self.provision(provisioning_profile) # Add entitlements from the pprof into the app self.write_entitlements(signer, provisioning_profile) # actually resign this bundle now super(App, self).resign(signer)
the-stack_106_27284
from django.urls import path # views(url for home page) from . import views urlpatterns = [ path('', views.index, name='listings'), path('<int:listing_id>', views.listing, name='listing'), path('search', views.search, name='search'), ]
the-stack_106_27285
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualMachineScaleSetNetworkConfigurationDnsSettings(Model): """Describes a virtual machines scale sets network configuration's DNS settings. :param dns_servers: List of DNS servers IP addresses :type dns_servers: list[str] """ _attribute_map = { 'dns_servers': {'key': 'dnsServers', 'type': '[str]'}, } def __init__(self, **kwargs): super(VirtualMachineScaleSetNetworkConfigurationDnsSettings, self).__init__(**kwargs) self.dns_servers = kwargs.get('dns_servers', None)
the-stack_106_27287
### ### Copyright (C) 2018-2019 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from ....lib import * from ....lib.gstreamer.vaapi.util import * from ....lib.gstreamer.vaapi.decoder import DecoderTest spec = load_test_spec("vp8", "decode") @slash.requires(*platform.have_caps("decode", "vp8")) @slash.requires(*have_gst_element("vaapivp8dec")) class default(DecoderTest): def before(self): # default metric self.metric = dict(type = "ssim", miny = 1.0, minu = 1.0, minv = 1.0) self.caps = platform.get_caps("decode", "vp8") super(default, self).before() @slash.parametrize(("case"), sorted(spec.keys())) def test(self, case): vars(self).update(spec[case].copy()) dxmap = {".ivf" : "ivfparse", ".webm" : "matroskademux"} ext = os.path.splitext(self.source)[1] assert ext in dxmap.keys(), "Unrecognized source file extension {}".format(ext) vars(self).update( case = case, gstdecoder = "{} ! vaapivp8dec".format(dxmap[ext]), ) self.decode()
the-stack_106_27288
"""Django settings for Pontoon.""" from __future__ import absolute_import import re import os import socket from django.utils.functional import lazy import dj_database_url _dirname = os.path.dirname ROOT = _dirname(_dirname(_dirname(os.path.abspath(__file__)))) def path(*args): return os.path.join(ROOT, *args) # Environment-dependent settings. These are loaded from environment # variables. # Make this unique, and don't share it with anybody. SECRET_KEY = os.environ["SECRET_KEY"] # Is this a dev instance? DEV = os.environ.get("DJANGO_DEV", "False") != "False" DEBUG = os.environ.get("DJANGO_DEBUG", "False") != "False" HEROKU_DEMO = os.environ.get("HEROKU_DEMO", "False") != "False" # Automatically log in the user with username 'AUTO_LOGIN_USERNAME' # and password 'AUTO_LOGIN_PASSWORD' AUTO_LOGIN = os.environ.get("AUTO_LOGIN", "False") != "False" AUTO_LOGIN_USERNAME = os.environ.get("AUTO_LOGIN_USERNAME", None) AUTO_LOGIN_PASSWORD = os.environ.get("AUTO_LOGIN_PASSWORD", None) LOGOUT_REDIRECT_URL = "/" ADMINS = MANAGERS = ( (os.environ.get("ADMIN_NAME", ""), os.environ.get("ADMIN_EMAIL", "")), ) # A list of project manager email addresses to send project requests to PROJECT_MANAGERS = os.environ.get("PROJECT_MANAGERS", "").split(",") DATABASES = { "default": dj_database_url.config(default="mysql://root@localhost/pontoon") } # Ensure that psycopg2 uses a secure SSL connection. if not DEV and not DEBUG: if "OPTIONS" not in DATABASES["default"]: DATABASES["default"]["OPTIONS"] = {} DATABASES["default"]["OPTIONS"]["sslmode"] = "require" FRONTEND_DIR = os.path.join(ROOT, "frontend") # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.environ.get("STATIC_ROOT", path("static")) # Optional CDN hostname for static files, e.g. '//asdf.cloudfront.net' STATIC_HOST = os.environ.get("STATIC_HOST", "") SESSION_COOKIE_HTTPONLY = os.environ.get("SESSION_COOKIE_HTTPONLY", "True") != "False" SESSION_COOKIE_SECURE = os.environ.get("SESSION_COOKIE_SECURE", "True") != "False" APP_URL_KEY = "APP_URL" SITE_URL = os.environ.get("SITE_URL", "http://localhost:8000") # Custom LD_LIBRARY_PATH environment variable for SVN SVN_LD_LIBRARY_PATH = os.environ.get("SVN_LD_LIBRARY_PATH", "") # URL to the RabbitMQ server BROKER_URL = os.environ.get("RABBITMQ_URL", None) # Google Cloud Translation API key GOOGLE_TRANSLATE_API_KEY = os.environ.get("GOOGLE_TRANSLATE_API_KEY", "") # Microsoft Translator API Key MICROSOFT_TRANSLATOR_API_KEY = os.environ.get("MICROSOFT_TRANSLATOR_API_KEY", "") # Google Analytics Key GOOGLE_ANALYTICS_KEY = os.environ.get("GOOGLE_ANALYTICS_KEY", "") # Raygun.io configuration RAYGUN4PY_CONFIG = {"api_key": os.environ.get("RAYGUN_APIKEY", "")} # Email settings EMAIL_HOST_USER = os.environ.get("SENDGRID_USERNAME", "") EMAIL_HOST = "smtp.sendgrid.net" EMAIL_PORT = 587 EMAIL_USE_TLS = True EMAIL_HOST_PASSWORD = os.environ.get("SENDGRID_PASSWORD", "") # Log emails to console if the SendGrid credentials are missing. if EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: EMAIL_BACKEND = "django.core.mail.backends.smtp.EmailBackend" else: EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # Environment-independent settings. These shouldn't have to change # between server environments. ROOT_URLCONF = "pontoon.urls" INSTALLED_APPS = ( "pontoon.actionlog", "pontoon.administration", "pontoon.base", "pontoon.contributors", "pontoon.checks", "pontoon.in_context", "pontoon.localizations", "pontoon.machinery", "pontoon.projects", "pontoon.sync", "pontoon.tags", "pontoon.teams", "pontoon.terminology", "pontoon.tour", "pontoon.translate", "pontoon.translations", "pontoon.homepage", # Django contrib apps "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.messages", "django.contrib.sessions", "whitenoise.runserver_nostatic", "django.contrib.staticfiles", # Django sites app is required by django-allauth "django.contrib.sites", # Third-party apps, patches, fixes "django_jinja", "django_nose", "pipeline", "session_csrf", "guardian", "corsheaders", "allauth", "allauth.account", "allauth.socialaccount", "allauth.socialaccount.providers.fxa", "allauth.socialaccount.providers.github", "allauth.socialaccount.providers.google", "allauth.socialaccount.providers.gitlab", "notifications", "graphene_django", "webpack_loader", "django_ace", ) BLOCKED_IPS = os.environ.get("BLOCKED_IPS", "").split(",") MIDDLEWARE = ( "django.middleware.security.SecurityMiddleware", "whitenoise.middleware.WhiteNoiseMiddleware", "django.middleware.gzip.GZipMiddleware", "pontoon.base.middleware.RaygunExceptionMiddleware", "pontoon.base.middleware.BlockedIpMiddleware", "corsheaders.middleware.CorsMiddleware", "django.middleware.common.CommonMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "session_csrf.CsrfMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "csp.middleware.CSPMiddleware", "pontoon.base.middleware.AutomaticLoginUserMiddleware", ) CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.template.context_processors.debug", "django.template.context_processors.media", "django.template.context_processors.request", "session_csrf.context_processor", "django.contrib.messages.context_processors.messages", "pontoon.base.context_processors.globals", ) TEMPLATES = [ { "BACKEND": "django_jinja.backend.Jinja2", "NAME": "jinja2", "APP_DIRS": True, "DIRS": [os.path.join(FRONTEND_DIR, "build")], "OPTIONS": { "match_extension": "", "match_regex": re.compile( r""" ^(?!( admin| registration| account| socialaccount| graphene| )/).*\.( html| jinja| js| )$ """, re.VERBOSE, ), "context_processors": CONTEXT_PROCESSORS, "extensions": [ "jinja2.ext.do", "jinja2.ext.loopcontrols", "jinja2.ext.with_", "jinja2.ext.i18n", "jinja2.ext.autoescape", "django_jinja.builtins.extensions.CsrfExtension", "django_jinja.builtins.extensions.CacheExtension", "django_jinja.builtins.extensions.TimezoneExtension", "django_jinja.builtins.extensions.UrlsExtension", "django_jinja.builtins.extensions.StaticFilesExtension", "django_jinja.builtins.extensions.DjangoFiltersExtension", "pipeline.jinja2.PipelineExtension", "webpack_loader.contrib.jinja2ext.WebpackExtension", ], }, }, { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [path("pontoon/base/templates/django")], "OPTIONS": { "debug": DEBUG, "context_processors": CONTEXT_PROCESSORS, "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], }, }, ] SESSION_COOKIE_SAMESITE = "lax" AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", "guardian.backends.ObjectPermissionBackend", ] # This variable is required by django-guardian. # App supports giving permissions for anonymous users. ANONYMOUS_USER_ID = -1 GUARDIAN_RAISE_403 = True PIPELINE_CSS = { "base": { "source_filenames": ( "css/fontawesome-all.css", "css/nprogress.css", "css/boilerplate.css", "css/fonts.css", "css/style.css", ), "output_filename": "css/base.min.css", }, "admin": { "source_filenames": ("css/table.css", "css/admin.css",), "output_filename": "css/admin.min.css", }, "admin_project": { "source_filenames": ("css/double_list_selector.css", "css/admin_project.css",), "output_filename": "css/admin_project.min.css", }, "project": { "source_filenames": ( "css/table.css", "css/request.css", "css/contributors.css", "css/heading_info.css", "css/sidebar_menu.css", "css/multiple_team_selector.css", "css/manual_notifications.css", ), "output_filename": "css/project.min.css", }, "localization": { "source_filenames": ( "css/table.css", "css/contributors.css", "css/heading_info.css", "css/info.css", ), "output_filename": "css/localization.min.css", }, "projects": { "source_filenames": ("css/heading_info.css", "css/table.css",), "output_filename": "css/projects.min.css", }, "team": { "source_filenames": ( "css/table.css", "css/double_list_selector.css", "css/contributors.css", "css/heading_info.css", "css/team.css", "css/info.css", "css/request.css", ), "output_filename": "css/team.min.css", }, "teams": { "source_filenames": ( "css/heading_info.css", "css/table.css", "css/request.css", ), "output_filename": "css/teams.min.css", }, "sync_logs": { "source_filenames": ("css/sync_logs.css",), "output_filename": "css/sync_logs.min.css", }, "profile": { "source_filenames": ("css/contributor.css", "css/profile.css",), "output_filename": "css/profile.min.css", }, "settings": { "source_filenames": ( "css/multiple_team_selector.css", "css/contributor.css", "css/team_selector.css", "css/settings.css", ), "output_filename": "css/settings.min.css", }, "notifications": { "source_filenames": ("css/sidebar_menu.css", "css/notifications.css",), "output_filename": "css/notifications.min.css", }, "machinery": { "source_filenames": ("css/team_selector.css", "css/machinery.css",), "output_filename": "css/machinery.min.css", }, "contributors": { "source_filenames": ("css/heading_info.css", "css/contributors.css",), "output_filename": "css/contributors.min.css", }, "in_context": { "source_filenames": ("css/bootstrap.min.css", "css/agency.css",), "output_filename": "css/in_context.min.css", }, "terms": { "source_filenames": ("css/terms.css",), "output_filename": "css/terms.min.css", }, "homepage": { "source_filenames": ("css/fullpage.css", "css/homepage.css",), "output_filename": "css/homepage.min.css", }, } PIPELINE_JS = { "base": { "source_filenames": ( "js/lib/jquery-1.11.1.min.js", "js/lib/jquery.timeago.js", "js/lib/jquery.color-2.1.2.js", "js/lib/nprogress.js", "js/main.js", ), "output_filename": "js/base.min.js", }, "admin": { "source_filenames": ("js/table.js",), "output_filename": "js/admin.min.js", }, "admin_project": { "source_filenames": ( "js/lib/jquery-ui.js", "js/double_list_selector.js", "js/admin_project.js", ), "output_filename": "js/admin_project.min.js", }, "localization": { "source_filenames": ( "js/table.js", "js/progress-chart.js", "js/tabs.js", "js/info.js", ), "output_filename": "js/localization.min.js", }, "project": { "source_filenames": ( "js/table.js", "js/request.js", "js/progress-chart.js", "js/tabs.js", "js/sidebar_menu.js", "js/multiple_team_selector.js", "js/manual_notifications.js", ), "output_filename": "js/project.min.js", }, "projects": { "source_filenames": ("js/table.js", "js/progress-chart.js",), "output_filename": "js/projects.min.js", }, "team": { "source_filenames": ( "js/table.js", "js/progress-chart.js", "js/double_list_selector.js", "js/bugzilla.js", "js/tabs.js", "js/request.js", "js/permissions.js", "js/info.js", ), "output_filename": "js/team.min.js", }, "teams": { "source_filenames": ("js/table.js", "js/progress-chart.js", "js/request.js",), "output_filename": "js/teams.min.js", }, "profile": { "source_filenames": ("js/contributor.js",), "output_filename": "js/profile.min.js", }, "settings": { "source_filenames": ( "js/lib/jquery-ui.js", "js/multiple_team_selector.js", "js/team_selector.js", "js/settings.js", ), "output_filename": "js/settings.min.js", }, "notifications": { "source_filenames": ("js/sidebar_menu.js", "js/notifications.js",), "output_filename": "js/notifications.min.js", }, "machinery": { "source_filenames": ( "js/lib/diff.js", "js/lib/clipboard.min.js", "js/team_selector.js", "js/machinery.js", ), "output_filename": "js/machinery.min.js", }, "homepage": { "source_filenames": ("js/lib/fullpage.js", "js/homepage.js"), "output_filename": "js/homepage.min.js", }, } PIPELINE = { "STYLESHEETS": PIPELINE_CSS, "JAVASCRIPT": PIPELINE_JS, "YUGLIFY_BINARY": path( os.environ.get("YUGLIFY_BINARY", "node_modules/.bin/yuglify") ), "BABEL_BINARY": path("node_modules/.bin/babel"), "BABEL_ARGUMENTS": "--modules ignore", "DISABLE_WRAPPER": True, } # Cache config # If the environment contains configuration data for Memcached, use # BMemcached for the cache backend. Otherwise, default to an in-memory # cache. if os.environ.get("MEMCACHE_SERVERS") is not None: CACHES = { "default": {"BACKEND": "django_bmemcached.memcached.BMemcached", "OPTIONS": {}} } else: CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "pontoon", } } # Site ID is used by Django's Sites framework. SITE_ID = 1 # Media and templates. # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = path("media") # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = "/media/" # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = STATIC_HOST + "/static/" STATICFILES_STORAGE = "pontoon.base.storage.CompressedManifestPipelineStorage" STATICFILES_FINDERS = ( "pipeline.finders.PipelineFinder", "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ) STATICFILES_DIRS = [ path("assets"), os.path.join(FRONTEND_DIR, "build", "static"), ] # Set ALLOWED_HOSTS based on SITE_URL setting. def _allowed_hosts(): from django.conf import settings from six.moves.urllib.parse import urlparse host = urlparse(settings.SITE_URL).netloc # Remove protocol and path result = [host] # In order to be able to use ALLOWED_HOSTS to validate URLs, we need to # have a version of the host that contains the port. This only applies # to local development (usually the host is localhost:8000). if ":" in host: host_no_port = host.rsplit(":", 1)[0] result = [host, host_no_port] # add values from environment variable. Needed in case of URL/domain redirections env_vars_str = os.getenv("ALLOWED_HOSTS", "127.0.0.1:8000") env_vars = [x.strip() for x in env_vars_str.split(",")] result.extend(env_vars) return result ALLOWED_HOSTS = lazy(_allowed_hosts, list)() # Auth # The first hasher in this list will be used for new passwords. # Any other hasher in the list can be used for existing passwords. PASSWORD_HASHERS = ( "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", "django.contrib.auth.hashers.BCryptPasswordHasher", "django.contrib.auth.hashers.SHA1PasswordHasher", "django.contrib.auth.hashers.MD5PasswordHasher", "django.contrib.auth.hashers.UnsaltedMD5PasswordHasher", ) # Logging LOGGING = { "version": 1, "disable_existing_loggers": False, "handlers": {"console": {"class": "logging.StreamHandler"}}, "formatters": { "verbose": {"format": "[%(levelname)s:%(name)s] %(asctime)s %(message)s"}, }, "loggers": { "django": {"handlers": ["console"]}, "pontoon": { "handlers": ["console"], "level": os.environ.get("DJANGO_LOG_LEVEL", "DEBUG" if DEBUG else "INFO"), }, }, } if DEBUG: LOGGING["handlers"]["console"]["formatter"] = "verbose" if os.environ.get("DJANGO_SQL_LOG", False): LOGGING["loggers"]["django.db.backends"] = { "level": "DEBUG", "handlers": ["console"], } # Tests TEST_RUNNER = "django_nose.NoseTestSuiteRunner" NOSE_ARGS = [ "--logging-filter=-factory,-django.db,-raygun4py", "--logging-clear-handlers", ] # Disable nose-progressive on CI due to ugly output. if not os.environ.get("CI", False): NOSE_ARGS.append("--with-progressive") # General auth settings LOGIN_URL = "/" LOGIN_REDIRECT_URL = "/" LOGIN_REDIRECT_URL_FAILURE = "/" # Should robots.txt deny everything or disallow a calculated list of # URLs we don't want to be crawled? Default is false, disallow # everything. ENGAGE_ROBOTS = False # Always generate a CSRF token for anonymous users. ANON_ALWAYS = True # Set X-Frame-Options to DENY by default on all responses. X_FRAME_OPTIONS = "DENY" # Use correct header for detecting HTTPS on Heroku. SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") # Do not set SECURE_HSTS_SECONDS. # HSTS is being taken care of in pontoon/wsgi.py. # SECURE_HSTS_SECONDS = 63072000 # X-Content-Type-Options: nosniff # Disables browser MIME type sniffing SECURE_CONTENT_TYPE_NOSNIFF = True # x-xss-protection: 1; mode=block # Activates the browser's XSS filtering and helps prevent XSS attacks SECURE_BROWSER_XSS_FILTER = True # Redirect non-HTTPS requests to HTTPS SECURE_SSL_REDIRECT = not (DEBUG or os.environ.get("CI", False)) # Content-Security-Policy headers CSP_DEFAULT_SRC = ("'none'",) CSP_CHILD_SRC = ("https:",) CSP_FRAME_SRC = ("https:",) # Older browsers CSP_CONNECT_SRC = ( "'self'", "https://bugzilla.mozilla.org/rest/bug", ) CSP_FONT_SRC = ("'self'",) CSP_IMG_SRC = ( "'self'", "https:", # Needed for ACE editor images "data:", "https://*.wp.com/pontoon.mozilla.org/", "https://www.google-analytics.com", "https://www.gravatar.com/avatar/", ) CSP_SCRIPT_SRC = ( "'self'", "'unsafe-eval'", "'sha256-fDsgbzHC0sNuBdM4W91nXVccgFLwIDkl197QEca/Cl4='", # Rules related to Google Analytics "'sha256-G5/M3dBlZdlvno5Cibw42fbeLr2PTEGd1M909Z7vPZE='", "https://www.google-analytics.com/analytics.js", ) CSP_STYLE_SRC = ( "'self'", "'unsafe-inline'", ) # Needed if site not hosted on HTTPS domains (like local setup) if not (HEROKU_DEMO or SITE_URL.startswith("https")): CSP_IMG_SRC = CSP_IMG_SRC + ("http://www.gravatar.com/avatar/",) CSP_CHILD_SRC = CSP_FRAME_SRC = CSP_FRAME_SRC + ("http:",) # For absolute urls try: DOMAIN = socket.gethostname() except socket.error: DOMAIN = "localhost" PROTOCOL = "http://" PORT = 80 # Names for slave databases from the DATABASES setting. SLAVE_DATABASES = [] # Internationalization. # Enable timezone-aware datetimes. USE_TZ = True # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = os.environ.get("TZ", "UTC") # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = False # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = False # Enable Bugs tab on the team pages, pulling data from bugzilla.mozilla.org. # See bug 1567402 for details. A Mozilla-specific variable. ENABLE_BUGS_TAB = os.environ.get("ENABLE_BUGS_TAB", "False") != "False" # Bleach tags and attributes ALLOWED_TAGS = [ "a", "abbr", "acronym", "b", "blockquote", "br", "code", "em", "i", "li", "ol", "p", "strong", "ul", ] ALLOWED_ATTRIBUTES = { "a": ["href", "title", "target"], "abbr": ["title"], "acronym": ["title"], } SYNC_TASK_TIMEOUT = 60 * 60 * 1 # 1 hour SYNC_LOG_RETENTION = 90 # days MANUAL_SYNC = os.environ.get("MANUAL_SYNC", "False") != "False" # Celery # Execute celery tasks locally instead of in a worker unless the # environment is configured. CELERY_ALWAYS_EAGER = os.environ.get("CELERY_ALWAYS_EAGER", "True") != "False" # Limit the number of tasks a celery worker can handle before being replaced. try: CELERYD_MAX_TASKS_PER_CHILD = int(os.environ.get("CELERYD_MAX_TASKS_PER_CHILD", "")) except ValueError: CELERYD_MAX_TASKS_PER_CHILD = 20 BROKER_POOL_LIMIT = 1 # Limit to one connection per worker BROKER_CONNECTION_TIMEOUT = 30 # Give up connecting faster CELERY_RESULT_BACKEND = None # We don't store results CELERY_SEND_EVENTS = False # We aren't yet monitoring events # The default serializer since Celery 4 is 'json' CELERY_TASK_SERIALIZER = "pickle" CELERY_RESULT_SERIALIZER = "pickle" CELERY_ACCEPT_CONTENT = ["pickle"] # Settings related to the CORS mechanisms. # For the sake of integration with other sites, # some of javascript files (e.g. pontoon.js) # require Access-Control-Allow-Origin header to be set as '*'. CORS_ORIGIN_ALLOW_ALL = True CORS_URLS_REGEX = r"^/(pontoon\.js|graphql/?)$" SOCIALACCOUNT_ENABLED = True SOCIALACCOUNT_ADAPTER = "pontoon.base.adapter.PontoonSocialAdapter" # Supported values: 'django', 'fxa', 'github', 'gitlab', 'google' AUTHENTICATION_METHOD = os.environ.get("AUTHENTICATION_METHOD", "django") def account_username(user): return user.name_or_email # django-allauth settings ACCOUNT_AUTHENTICATED_METHOD = "email" ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = "none" ACCOUNT_USER_DISPLAY = account_username # Firefox Accounts FXA_CLIENT_ID = os.environ.get("FXA_CLIENT_ID") FXA_SECRET_KEY = os.environ.get("FXA_SECRET_KEY") FXA_OAUTH_ENDPOINT = os.environ.get("FXA_OAUTH_ENDPOINT", "") FXA_PROFILE_ENDPOINT = os.environ.get("FXA_PROFILE_ENDPOINT", "") FXA_SCOPE = ["profile:uid", "profile:display_name", "profile:email"] # Github GITHUB_CLIENT_ID = os.environ.get("GITHUB_CLIENT_ID") GITHUB_SECRET_KEY = os.environ.get("GITHUB_SECRET_KEY") # GitLab GITLAB_URL = os.environ.get("GITLAB_URL", "https://gitlab.com") GITLAB_CLIENT_ID = os.environ.get("GITLAB_CLIENT_ID") GITLAB_SECRET_KEY = os.environ.get("GITLAB_SECRET_KEY") # Google Accounts GOOGLE_CLIENT_ID = os.environ.get("GOOGLE_CLIENT_ID") GOOGLE_SECRET_KEY = os.environ.get("GOOGLE_SECRET_KEY") # All settings related to the AllAuth SOCIALACCOUNT_PROVIDERS = { "fxa": { "SCOPE": FXA_SCOPE, "OAUTH_ENDPOINT": FXA_OAUTH_ENDPOINT, "PROFILE_ENDPOINT": FXA_PROFILE_ENDPOINT, }, "gitlab": {"GITLAB_URL": GITLAB_URL, "SCOPE": ["read_user"]}, } # Defined all trusted origins that will be returned in pontoon.js file. if os.environ.get("JS_TRUSTED_ORIGINS"): JS_TRUSTED_ORIGINS = os.environ.get("JS_TRUSTED_ORIGINS").split(",") else: JS_TRUSTED_ORIGINS = [ SITE_URL, ] # Configuration of `django-notifications-hq` app DJANGO_NOTIFICATIONS_CONFIG = { # Attach extra arguments passed to notify.send(...) to the .data attribute # of the Notification object. "USE_JSONFIELD": True, } # Maximum number of read notifications to display in the notifications menu NOTIFICATIONS_MAX_COUNT = 7
the-stack_106_27289
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.arrays import SparseArray from pandas.core.arrays.sparse import SparseDtype class TestSparseDataFrameIndexing: def test_getitem_sparse_column(self): # https://github.com/pandas-dev/pandas/issues/23559 data = SparseArray([0, 1]) df = pd.DataFrame({"A": data}) expected = pd.Series(data, name="A") result = df["A"] tm.assert_series_equal(result, expected) result = df.iloc[:, 0] tm.assert_series_equal(result, expected) result = df.loc[:, "A"] tm.assert_series_equal(result, expected) @pytest.mark.parametrize("spmatrix_t", ["coo_matrix", "csc_matrix", "csr_matrix"]) @pytest.mark.parametrize("dtype", [np.int64, np.float64, complex]) @td.skip_if_no_scipy def test_locindexer_from_spmatrix(self, spmatrix_t, dtype): import scipy.sparse spmatrix_t = getattr(scipy.sparse, spmatrix_t) # The bug is triggered by a sparse matrix with purely sparse columns. So the # recipe below generates a rectangular matrix of dimension (5, 7) where all the # diagonal cells are ones, meaning the last two columns are purely sparse. rows, cols = 5, 7 spmatrix = spmatrix_t(np.eye(rows, cols, dtype=dtype), dtype=dtype) df = pd.DataFrame.sparse.from_spmatrix(spmatrix) # regression test for #34526 itr_idx = range(2, rows) result = df.loc[itr_idx].values expected = spmatrix.toarray()[itr_idx] tm.assert_numpy_array_equal(result, expected) # regression test for #34540 result = df.loc[itr_idx].dtypes.values expected = np.full(cols, SparseDtype(dtype, fill_value=0)) tm.assert_numpy_array_equal(result, expected) def test_reindex(self): # https://github.com/pandas-dev/pandas/issues/35286 df = pd.DataFrame( {"A": [0, 1], "B": pd.array([0, 1], dtype=pd.SparseDtype("int64", 0))} ) result = df.reindex([0, 2]) expected = pd.DataFrame( { "A": [0.0, np.nan], "B": pd.array([0.0, np.nan], dtype=pd.SparseDtype("float64", 0.0)), }, index=[0, 2], ) tm.assert_frame_equal(result, expected) def test_all_sparse(self): df = pd.DataFrame({"A": pd.array([0, 0], dtype=pd.SparseDtype("int64"))}) result = df.loc[[0, 1]] tm.assert_frame_equal(result, df)
the-stack_106_27290
# -*- coding: utf-8 -*- from textwrap import dedent import logging import sys import pytest from parso.utils import split_lines from parso import cache from parso import load_grammar from parso.python.diff import DiffParser, _assert_valid_graph from parso import parse ANY = object() def test_simple(): """ The diff parser reuses modules. So check for that. """ grammar = load_grammar() module_a = grammar.parse('a', diff_cache=True) assert grammar.parse('b', diff_cache=True) == module_a def _check_error_leaves_nodes(node): if node.type in ('error_leaf', 'error_node'): return node try: children = node.children except AttributeError: pass else: for child in children: x_node = _check_error_leaves_nodes(child) if x_node is not None: return x_node return None class Differ(object): grammar = load_grammar() def initialize(self, code): logging.debug('differ: initialize') try: del cache.parser_cache[self.grammar._hashed][None] except KeyError: pass self.lines = split_lines(code, keepends=True) self.module = parse(code, diff_cache=True, cache=True) assert code == self.module.get_code() _assert_valid_graph(self.module) return self.module def parse(self, code, copies=0, parsers=0, expect_error_leaves=False): logging.debug('differ: parse copies=%s parsers=%s', copies, parsers) lines = split_lines(code, keepends=True) diff_parser = DiffParser( self.grammar._pgen_grammar, self.grammar._tokenizer, self.module, ) new_module = diff_parser.update(self.lines, lines) self.lines = lines assert code == new_module.get_code() _assert_valid_graph(new_module) error_node = _check_error_leaves_nodes(new_module) assert expect_error_leaves == (error_node is not None), error_node if parsers is not ANY: assert diff_parser._parser_count == parsers if copies is not ANY: assert diff_parser._copy_count == copies return new_module @pytest.fixture() def differ(): return Differ() def test_change_and_undo(differ): func_before = 'def func():\n pass\n' # Parse the function and a. differ.initialize(func_before + 'a') # Parse just b. differ.parse(func_before + 'b', copies=1, parsers=1) # b has changed to a again, so parse that. differ.parse(func_before + 'a', copies=1, parsers=1) # Same as before parsers should not be used. Just a simple copy. differ.parse(func_before + 'a', copies=1) # Now that we have a newline at the end, everything is easier in Python # syntax, we can parse once and then get a copy. differ.parse(func_before + 'a\n', copies=1, parsers=1) differ.parse(func_before + 'a\n', copies=1) # Getting rid of an old parser: Still no parsers used. differ.parse('a\n', copies=1) # Now the file has completely changed and we need to parse. differ.parse('b\n', parsers=1) # And again. differ.parse('a\n', parsers=1) def test_positions(differ): func_before = 'class A:\n pass\n' m = differ.initialize(func_before + 'a') assert m.start_pos == (1, 0) assert m.end_pos == (3, 1) m = differ.parse('a', copies=1) assert m.start_pos == (1, 0) assert m.end_pos == (1, 1) m = differ.parse('a\n\n', parsers=1) assert m.end_pos == (3, 0) m = differ.parse('a\n\n ', copies=1, parsers=2) assert m.end_pos == (3, 1) m = differ.parse('a ', parsers=1) assert m.end_pos == (1, 2) def test_if_simple(differ): src = dedent('''\ if 1: a = 3 ''') else_ = "else:\n a = ''\n" differ.initialize(src + 'a') differ.parse(src + else_ + "a", copies=0, parsers=1) differ.parse(else_, parsers=1, copies=1, expect_error_leaves=True) differ.parse(src + else_, parsers=1) def test_func_with_for_and_comment(differ): # The first newline is important, leave it. It should not trigger another # parser split. src = dedent("""\ def func(): pass for a in [1]: # COMMENT a""") differ.initialize(src) differ.parse('a\n' + src, copies=1, parsers=2) def test_one_statement_func(differ): src = dedent("""\ first def func(): a """) differ.initialize(src + 'second') differ.parse(src + 'def second():\n a', parsers=1, copies=1) def test_for_on_one_line(differ): src = dedent("""\ foo = 1 for x in foo: pass def hi(): pass """) differ.initialize(src) src = dedent("""\ def hi(): for x in foo: pass pass pass """) differ.parse(src, parsers=2) src = dedent("""\ def hi(): for x in foo: pass pass def nested(): pass """) # The second parser is for parsing the `def nested()` which is an `equal` # operation in the SequenceMatcher. differ.parse(src, parsers=1, copies=1) def test_open_parentheses(differ): func = 'def func():\n a\n' code = 'isinstance(\n\n' + func new_code = 'isinstance(\n' + func differ.initialize(code) differ.parse(new_code, parsers=1, expect_error_leaves=True) new_code = 'a = 1\n' + new_code differ.parse(new_code, parsers=2, expect_error_leaves=True) func += 'def other_func():\n pass\n' differ.initialize('isinstance(\n' + func) # Cannot copy all, because the prefix of the function is once a newline and # once not. differ.parse('isinstance()\n' + func, parsers=2, copies=1) def test_open_parentheses_at_end(differ): code = "a['" differ.initialize(code) differ.parse(code, parsers=1, expect_error_leaves=True) def test_backslash(differ): src = dedent(r""" a = 1\ if 1 else 2 def x(): pass """) differ.initialize(src) src = dedent(r""" def x(): a = 1\ if 1 else 2 def y(): pass """) differ.parse(src, parsers=2) src = dedent(r""" def first(): if foo \ and bar \ or baz: pass def second(): pass """) differ.parse(src, parsers=1) def test_full_copy(differ): code = 'def foo(bar, baz):\n pass\n bar' differ.initialize(code) differ.parse(code, copies=1) def test_wrong_whitespace(differ): code = ''' hello ''' differ.initialize(code) differ.parse(code + 'bar\n ', parsers=3) code += """abc(\npass\n """ differ.parse(code, parsers=2, copies=1, expect_error_leaves=True) def test_issues_with_error_leaves(differ): code = dedent(''' def ints(): str.. str ''') code2 = dedent(''' def ints(): str. str ''') differ.initialize(code) differ.parse(code2, parsers=1, copies=1, expect_error_leaves=True) def test_unfinished_nodes(differ): code = dedent(''' class a(): def __init__(self, a): self.a = a def p(self): a(1) ''') code2 = dedent(''' class a(): def __init__(self, a): self.a = a def p(self): self a(1) ''') differ.initialize(code) differ.parse(code2, parsers=1, copies=2) def test_nested_if_and_scopes(differ): code = dedent(''' class a(): if 1: def b(): 2 ''') code2 = code + ' else:\n 3' differ.initialize(code) differ.parse(code2, parsers=1, copies=0) def test_word_before_def(differ): code1 = 'blub def x():\n' code2 = code1 + ' s' differ.initialize(code1) differ.parse(code2, parsers=1, copies=0, expect_error_leaves=True) def test_classes_with_error_leaves(differ): code1 = dedent(''' class X(): def x(self): blablabla assert 3 self. class Y(): pass ''') code2 = dedent(''' class X(): def x(self): blablabla assert 3 str( class Y(): pass ''') differ.initialize(code1) differ.parse(code2, parsers=2, copies=1, expect_error_leaves=True) def test_totally_wrong_whitespace(differ): code1 = ''' class X(): raise n class Y(): pass ''' code2 = ''' class X(): raise n str( class Y(): pass ''' differ.initialize(code1) differ.parse(code2, parsers=4, copies=0, expect_error_leaves=True) def test_node_insertion(differ): code1 = dedent(''' class X(): def y(self): a = 1 b = 2 c = 3 d = 4 ''') code2 = dedent(''' class X(): def y(self): a = 1 b = 2 str c = 3 d = 4 ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=2) def test_whitespace_at_end(differ): code = dedent('str\n\n') differ.initialize(code) differ.parse(code + '\n', parsers=1, copies=1) def test_endless_while_loop(differ): """ This was a bug in Jedi #878. """ code = '#dead' differ.initialize(code) module = differ.parse(code, parsers=1) assert module.end_pos == (1, 5) code = '#dead\n' differ.initialize(code) module = differ.parse(code + '\n', parsers=1) assert module.end_pos == (3, 0) def test_in_class_movements(differ): code1 = dedent("""\ class PlaybookExecutor: p b def run(self): 1 try: x except: pass """) code2 = dedent("""\ class PlaybookExecutor: b def run(self): 1 try: x except: pass """) differ.initialize(code1) differ.parse(code2, parsers=2, copies=1) def test_in_parentheses_newlines(differ): code1 = dedent(""" x = str( True) a = 1 def foo(): pass b = 2""") code2 = dedent(""" x = str(True) a = 1 def foo(): pass b = 2""") differ.initialize(code1) differ.parse(code2, parsers=1, copies=1) def test_indentation_issue(differ): code1 = dedent(""" import module """) code2 = dedent(""" class L1: class L2: class L3: def f(): pass def f(): pass def f(): pass def f(): pass """) differ.initialize(code1) differ.parse(code2, parsers=1) def test_endmarker_newline(differ): code1 = dedent('''\ docu = None # some comment result = codet incomplete_dctassign = { "module" if "a": x = 3 # asdf ''') code2 = code1.replace('codet', 'coded') differ.initialize(code1) differ.parse(code2, parsers=2, copies=1, expect_error_leaves=True) def test_newlines_at_end(differ): differ.initialize('a\n\n') differ.parse('a\n', copies=1) def test_end_newline_with_decorator(differ): code = dedent('''\ @staticmethod def spam(): import json json.l''') differ.initialize(code) module = differ.parse(code + '\n', copies=1, parsers=1) decorated, endmarker = module.children assert decorated.type == 'decorated' decorator, func = decorated.children suite = func.children[-1] assert suite.type == 'suite' newline, first_stmt, second_stmt = suite.children assert first_stmt.get_code() == ' import json\n' assert second_stmt.get_code() == ' json.l\n' def test_invalid_to_valid_nodes(differ): code1 = dedent('''\ def a(): foo = 3 def b(): la = 3 else: la return foo base ''') code2 = dedent('''\ def a(): foo = 3 def b(): la = 3 if foo: latte = 3 else: la return foo base ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=3) def test_if_removal_and_reappearence(differ): code1 = dedent('''\ la = 3 if foo: latte = 3 else: la pass ''') code2 = dedent('''\ la = 3 latte = 3 else: la pass ''') code3 = dedent('''\ la = 3 if foo: latte = 3 else: la ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=4, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=1) differ.parse(code3, parsers=1, copies=1) def test_add_error_indentation(differ): code = 'if x:\n 1\n' differ.initialize(code) differ.parse(code + ' 2\n', parsers=1, copies=0, expect_error_leaves=True) def test_differing_docstrings(differ): code1 = dedent('''\ def foobar(x, y): 1 return x def bazbiz(): foobar() lala ''') code2 = dedent('''\ def foobar(x, y): 2 return x + y def bazbiz(): z = foobar() lala ''') differ.initialize(code1) differ.parse(code2, parsers=3, copies=1) differ.parse(code1, parsers=3, copies=1) def test_one_call_in_function_change(differ): code1 = dedent('''\ def f(self): mro = [self] for a in something: yield a def g(self): return C( a=str, b=self, ) ''') code2 = dedent('''\ def f(self): mro = [self] def g(self): return C( a=str, t b=self, ) ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=1, expect_error_leaves=True) differ.parse(code1, parsers=2, copies=1) def test_function_deletion(differ): code1 = dedent('''\ class C(list): def f(self): def iterate(): for x in b: break return list(iterate()) ''') code2 = dedent('''\ class C(): def f(self): for x in b: break return list(iterate()) ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=0, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=0) def test_docstring_removal(differ): code1 = dedent('''\ class E(Exception): """ 1 2 3 """ class S(object): @property def f(self): return cmd def __repr__(self): return cmd2 ''') code2 = dedent('''\ class E(Exception): """ 1 3 """ class S(object): @property def f(self): return cmd return cmd2 ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=2) differ.parse(code1, parsers=2, copies=1) def test_paren_in_strange_position(differ): code1 = dedent('''\ class C: """ ha """ def __init__(self, message): self.message = message ''') code2 = dedent('''\ class C: """ ha """ ) def __init__(self, message): self.message = message ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=2, expect_error_leaves=True) differ.parse(code1, parsers=0, copies=2) def insert_line_into_code(code, index, line): lines = split_lines(code, keepends=True) lines.insert(index, line) return ''.join(lines) def test_paren_before_docstring(differ): code1 = dedent('''\ # comment """ The """ from parso import tree from parso import python ''') code2 = insert_line_into_code(code1, 1, ' ' * 16 + 'raise InternalParseError(\n') differ.initialize(code1) differ.parse(code2, parsers=1, copies=1, expect_error_leaves=True) differ.parse(code1, parsers=2, copies=1) def test_parentheses_before_method(differ): code1 = dedent('''\ class A: def a(self): pass class B: def b(self): if 1: pass ''') code2 = dedent('''\ class A: def a(self): pass Exception.__init__(self, "x" % def b(self): if 1: pass ''') differ.initialize(code1) differ.parse(code2, parsers=2, copies=1, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=1) def test_indentation_issues(differ): code1 = dedent('''\ class C: def f(): 1 if 2: return 3 def g(): to_be_removed pass ''') code2 = dedent('''\ class C: def f(): 1 ``something``, very ``weird``). if 2: return 3 def g(): to_be_removed pass ''') code3 = dedent('''\ class C: def f(): 1 if 2: return 3 def g(): pass ''') differ.initialize(code1) differ.parse(code2, parsers=2, copies=2, expect_error_leaves=True) differ.parse(code1, copies=2) differ.parse(code3, parsers=2, copies=1) differ.parse(code1, parsers=1, copies=2) def test_error_dedent_issues(differ): code1 = dedent('''\ while True: try: 1 except KeyError: if 2: 3 except IndexError: 4 5 ''') code2 = dedent('''\ while True: try: except KeyError: 1 except KeyError: if 2: 3 except IndexError: 4 something_inserted 5 ''') differ.initialize(code1) differ.parse(code2, parsers=6, copies=2, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=0) def test_random_text_insertion(differ): code1 = dedent('''\ class C: def f(): return node def g(): try: 1 except KeyError: 2 ''') code2 = dedent('''\ class C: def f(): return node Some'random text: yeah for push in plan.dfa_pushes: def g(): try: 1 except KeyError: 2 ''') differ.initialize(code1) differ.parse(code2, parsers=1, copies=1, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=1) def test_many_nested_ifs(differ): code1 = dedent('''\ class C: def f(self): def iterate(): if 1: yield t else: yield return def g(): 3 ''') code2 = dedent('''\ def f(self): def iterate(): if 1: yield t hahahaha if 2: else: yield return def g(): 3 ''') differ.initialize(code1) differ.parse(code2, parsers=2, copies=1, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=1) @pytest.mark.skipif(sys.version_info < (3, 5), reason="Async starts working in 3.5") @pytest.mark.parametrize('prefix', ['', 'async ']) def test_with_and_funcdef_in_call(differ, prefix): code1 = prefix + dedent('''\ with x: la = C( a=1, b=2, c=3, ) ''') code2 = insert_line_into_code(code1, 3, 'def y(self, args):\n') differ.initialize(code1) differ.parse(code2, parsers=3, expect_error_leaves=True) differ.parse(code1, parsers=1) def test_wrong_backslash(differ): code1 = dedent('''\ def y(): 1 for x in y: continue ''') code2 = insert_line_into_code(code1, 3, '\\.whl$\n') differ.initialize(code1) differ.parse(code2, parsers=2, copies=2, expect_error_leaves=True) differ.parse(code1, parsers=1, copies=1) def test_comment_change(differ): differ.initialize('') def test_random_unicode_characters(differ): """ Those issues were all found with the fuzzer. """ differ.initialize('') differ.parse(u'\x1dĔBϞɛˁşʑ˳˻ȣſéÎ\x90̕ȟòwʘ\x1dĔBϞɛˁşʑ˳˻ȣſéÎ', parsers=1, expect_error_leaves=True) differ.parse(u'\r\r', parsers=1) differ.parse(u"˟Ę\x05À\r rúƣ@\x8a\x15r()\n", parsers=1, expect_error_leaves=True) differ.parse(u'a\ntaǁ\rGĒōns__\n\nb', parsers=1, expect_error_leaves=sys.version_info[0] == 2) s = ' if not (self, "_fi\x02\x0e\x08\n\nle"):' differ.parse(s, parsers=1, expect_error_leaves=True) differ.parse('') differ.parse(s + '\n', parsers=1, expect_error_leaves=True) differ.parse(u' result = (\r\f\x17\t\x11res)', parsers=2, expect_error_leaves=True) differ.parse('') differ.parse(' a( # xx\ndef', parsers=2, expect_error_leaves=True) @pytest.mark.skipif(sys.version_info < (2, 7), reason="No set literals in Python 2.6") def test_dedent_end_positions(differ): code1 = dedent('''\ if 1: if b: 2 c = { 5} ''') code2 = dedent('''\ if 1: if ⌟ഒᜈྡྷṭb: 2 'l': ''} c = { 5} ''') differ.initialize(code1) differ.parse(code2, parsers=1, expect_error_leaves=True) differ.parse(code1, parsers=1) def test_special_no_newline_ending(differ): code1 = dedent('''\ 1 ''') code2 = dedent('''\ 1 is ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=0) def test_random_character_insertion(differ): code1 = dedent('''\ def create(self): 1 if self.path is not None: return # 3 # 4 ''') code2 = dedent('''\ def create(self): 1 if 2: x return # 3 # 4 ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=3, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=1) def test_import_opening_bracket(differ): code1 = dedent('''\ 1 2 from bubu import (X, ''') code2 = dedent('''\ 11 2 from bubu import (X, ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=2, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=2, expect_error_leaves=True) def test_opening_bracket_at_end(differ): code1 = dedent('''\ class C: 1 [ ''') code2 = dedent('''\ 3 class C: 1 [ ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=2, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=1, expect_error_leaves=True) def test_all_sorts_of_indentation(differ): code1 = dedent('''\ class C: 1 def f(): 'same' if foo: a = b end ''') code2 = dedent('''\ class C: 1 def f(yield await %|( 'same' \x02\x06\x0f\x1c\x11 if foo: a = b end ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=4, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=3) code3 = dedent('''\ if 1: a b c d \x00 ''') differ.parse(code3, parsers=2, expect_error_leaves=True) differ.parse('') def test_dont_copy_dedents_in_beginning(differ): code1 = dedent('''\ a 4 ''') code2 = dedent('''\ 1 2 3 4 ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code1, parsers=2) def test_dont_copy_error_leaves(differ): code1 = dedent('''\ def f(n): x if 2: 3 ''') code2 = dedent('''\ def f(n): def if 1: indent x if 2: 3 ''') differ.initialize(code1) differ.parse(code2, parsers=1, expect_error_leaves=True) differ.parse(code1, parsers=2) def test_error_dedent_in_between(differ): code1 = dedent('''\ class C: def f(): a if something: x z ''') code2 = dedent('''\ class C: def f(): a dedent if other_thing: b if something: x z ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=2) def test_some_other_indentation_issues(differ): code1 = dedent('''\ class C: x def f(): "" copied a ''') code2 = dedent('''\ try: de a b c d def f(): "" copied a ''') differ.initialize(code1) differ.parse(code2, copies=2, parsers=1, expect_error_leaves=True) differ.parse(code1, copies=2, parsers=2) def test_open_bracket_case1(differ): code1 = dedent('''\ class C: 1 2 # ha ''') code2 = insert_line_into_code(code1, 2, ' [str\n') code3 = insert_line_into_code(code2, 4, ' str\n') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code3, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code1, copies=1, parsers=1) def test_open_bracket_case2(differ): code1 = dedent('''\ class C: def f(self): ( b c def g(self): d ''') code2 = dedent('''\ class C: def f(self): ( b c self. def g(self): d ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=2, expect_error_leaves=True) differ.parse(code1, copies=2, parsers=0, expect_error_leaves=True) def test_some_weird_removals(differ): code1 = dedent('''\ class C: 1 ''') code2 = dedent('''\ class C: 1 @property A return # x omega ''') code3 = dedent('''\ class C: 1 ; omega ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1, expect_error_leaves=True) differ.parse(code3, copies=1, parsers=2, expect_error_leaves=True) differ.parse(code1, copies=1) @pytest.mark.skipif(sys.version_info < (3, 5), reason="Async starts working in 3.5") def test_async_copy(differ): code1 = dedent('''\ async def main(): x = 3 print( ''') code2 = dedent('''\ async def main(): x = 3 print() ''') differ.initialize(code1) differ.parse(code2, copies=1, parsers=1) differ.parse(code1, copies=1, parsers=1, expect_error_leaves=True)
the-stack_106_27291
import re import json import requests import termcolor from .info import load_login_info, encrypt from .utils import Page QUOTE = re.compile('(?<!\\\\)\'') def auth(): user, pwd = load_login_info() encrypted, key = encrypt(pwd) url = 'http://1.1.1.3/ac_portal/login.php' data = { 'opr': 'pwdLogin', 'userName': user, 'pwd': encrypted, 'rc4Key': key, 'rememberPwd': 1 } print('Sending Request...') response = requests.post(url, data=data) text = QUOTE.sub('"', response.text) if json.loads(text).get('success', ''): print(termcolor.colored('Connected!', 'green')) else: print(termcolor.colored('Login Failed: ' + response.text, 'red'))
the-stack_106_27292
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from os.path import abspath, realpath, split, dirname import collections from datetime import datetime, timedelta import time import jinja2 import json import logging import pytz import shutil import sys import logging from jinja2.exceptions import UndefinedError from .core import args from .extras import parseFeedURL, fetch_content, templateContent, process_entry from .styles import cssTextDecoded from .__main__ import logFile #argsFilename = args.filename standardPath = os.getcwd() # Get a list of feed URLs try: with open('feeds.txt') as f: SUBSCRIPTIONS = list(f) print('Loading feeds.txt') except FileNotFoundError: # If you don't have 'feeds.txt' in specified path, you can specify one (nfsyndication-src --filename=sample.txt) try: for documentList in args.filename: parent_location = os.getcwd() with open(documentList) as f: SUBSCRIPTIONS = list(f) print("Loading file: {} from '{}'".format(documentList, os.path.join(parent_location))) except TypeError: raise Exception('NFSyndication [ERROR]: feeds.txt not found. See `nfsyndication-src --help` for more.') posts = [] outJSONFeed= [] try: for url in SUBSCRIPTIONS: try: feed = parseFeedURL(url) blog = feed['feed']['title'] except KeyError: if args.verbose and feed.bozo: logging.error("Feed data summary on URL {}".format(url)) logging.error("Failed command: {} ".format(sys.argv[0:])) logging.error("Exception [{bozo_exception}]: {bozo_message}".format(bozo_exception=str(feed.bozo_exception.__class__.__name__), bozo_message=str(feed.bozo_exception))) logging.error('Response code is: {}'.format(feed.status)) if (hasattr(feed.bozo_exception, 'getLineNumber') and hasattr(feed.bozo_exception, 'getMessage')): line = feed.bozo_exception.getLineNumber() logging.error('Line %d: %s', line, feed.bozo_exception.getMessage()) logging.error('[NFSyndication] Writing output logs to {}'.format(os.path.join(standardPath, logFile))) raise Exception(f"[{feed.bozo_exception}] (code {feed.status}) \n{(f'Could not fetch URL(s): {url}')}") sys.exit(-1) continue for entry in feed['entries']: post = process_entry(entry, blog, comp_field=args.comparator_filter) if post: posts.append(post) outJSONFeed.append(feed) try: fetch_content(url) except: raise SystemExit except NameError: pass if args.outputJSON: with open(args.outputJSON, 'w+', encoding='utf8') as outf: json.dump(outJSONFeed, outf, ensure_ascii=False, indent=4) # Get the template, and drop in the posts dir_path = os.path.split(os.path.realpath(__file__))[0] try: with open(f'{dir_path}/templates/template.html', encoding='utf8') as f: print("\nChecking original template file...") template = jinja2.Template(f.read()) with open(f'output/index.html', 'w', encoding='utf8') as f: f.write(template.render(posts=posts, time=datetime.now())) print('Successful.') with open("output/style.css", 'w') as f: f.write(cssTextDecoded) except FileNotFoundError: template = jinja2.Template(templateContent) # When done, it converts to HTML with open(f'output/index.html', 'w', encoding='utf8') as f: f.write(template.render(cssText=cssTextDecoded, posts=posts, time=datetime.now())) print('Successful.')
the-stack_106_27295
from __future__ import unicode_literals import frappe import re def execute(): for srl in frappe.get_all('Salary Slip',['name']): if srl.get("name"): substring = re.search("\/(.*?)\/",srl.get("name")).group(1) emp = frappe.db.get_value('Employee',{'name':substring},'user_id') if "Employee" in frappe.get_roles(emp) and "HR Manager" not in frappe.get_roles(emp) and len(frappe.get_all('User Permission',filters={'allow':"Salary Slip",'for_value':srl.get("name"),'user':emp}))==0: print(emp,"***",substring) permission=frappe.new_doc('User Permission') permission.user= emp permission.allow= 'Salary Slip' permission.for_value= srl.get("name") permission.apply_to_all_doctypes = 0 permission.applicable_for = 'Salary Slip' permission.save() #homzhub_customization.homzhub_customization.patches.set_salary_permission.execute
the-stack_106_27296
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the LICENSE # file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import platform import shutil import subprocess import sys def get_parser(): if platform.system() == "Linux": default_platform = "linux" elif platform.system() == "macos": default_platform = "macosx" elif platform.system() == "Windows": default_platform = "windows" else: default_platform = "unknown" parser = argparse.ArgumentParser() parser.add_argument( "--target-platform", type=str, dest="target_platform", choices=["linux", "macosx", "windows", "iphoneos", "iphonesimulator"], default=default_platform, ) parser.add_argument( "--build-system", type=str, dest="build_system", default="Ninja", help="Generator to pass into CMake", ) parser.add_argument( "--cmake-flags", type=str, dest="cmake_flags", default="", help="Additional flags to pass to CMake", ) parser.add_argument( "--build-type", type=str, dest="build_type", choices=["MinSizeRel", "Debug"], default=None, help="Optimization level of build", ) parser.add_argument( "--http-proxy", type=str, dest="http_proxy", default=os.environ.get("HTTP_PROXY", ""), ) parser.add_argument("--distribute", action="store_true") parser.add_argument("--32-bit", dest="is_32_bit", action="store_true") parser.add_argument("--enable-asan", dest="enable_asan", action="store_true") return parser def is_visual_studio(build_system): return "Visual Studio" in build_system def run_command(cmd, **kwargs): print("+ " + " ".join(cmd)) return subprocess.check_call(cmd, stdout=sys.stdout, stderr=sys.stderr, **kwargs) def which(cmd): if sys.version_info >= (3, 3): # On Python 3.3 and above, use shutil.which for a quick error message. resolved = shutil.which(cmd) if not resolved: raise Exception("{} not found on PATH".format(cmd)) return os.path.realpath(resolved) else: # Manually check PATH for p in os.environ["PATH"].split(os.path.pathsep): p = os.path.join(p, cmd) if "PATHEXT" in os.environ: # try out adding each extension to the PATH as well for ext in os.environ["PATHEXT"].split(os.path.pathsep): # Add the extension. p_and_extension = p + ext if os.path.exists(p_and_extension) and os.access( p_and_extension, os.X_OK ): return os.path.realpath(p_and_extension) else: if os.path.isfile(p) and os.access(p, os.X_OK): return os.path.realpath(p) raise Exception("{} not found on PATH".format(cmd)) def build_dir_suffix(args): build_dir_suffix = "" if args.enable_asan: build_dir_suffix += "_asan" if args.distribute: build_dir_suffix += "_release" if args.is_32_bit: build_dir_suffix += "_32" return build_dir_suffix
the-stack_106_27297
import itertools import logging from det3d.utils.config_tool import get_downsample_factor tasks = [ dict(num_class=1, class_names=["car"]), dict(num_class=2, class_names=["truck", "construction_vehicle"]), dict(num_class=2, class_names=["bus", "trailer"]), dict(num_class=1, class_names=["barrier"]), dict(num_class=2, class_names=["motorcycle", "bicycle"]), dict(num_class=2, class_names=["pedestrian", "traffic_cone"]), ] class_names = list(itertools.chain(*[t["class_names"] for t in tasks])) # training and testing settings target_assigner = dict( tasks=tasks, ) # model settings model = dict( type="VoxelNet", pretrained=None, reader=dict( type="VoxelFeatureExtractorV3", # type='SimpleVoxel', num_input_features=5, ), backbone=dict( type="SpMiddleResNetFHD", num_input_features=5, ds_factor=8 ), neck=dict( type="RPN", layer_nums=[5, 5], ds_layer_strides=[1, 2], ds_num_filters=[128, 256], us_layer_strides=[1, 2], us_num_filters=[256, 256], num_input_features=256, logger=logging.getLogger("RPN"), ), bbox_head=dict( type="CenterHead", in_channels=sum([256,]), tasks=tasks, dataset='nuscenes', weight=0.25, code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0], common_heads={'reg': (2, 2), 'height': (1, 2), 'dim':(3, 2), 'rot':(2, 2), 'vel': (2, 2)}, share_conv_channel=64, dcn_head=False ), ) assigner = dict( target_assigner=target_assigner, out_size_factor=get_downsample_factor(model), dense_reg=1, gaussian_overlap=0.1, max_objs=500, min_radius=2, ) train_cfg = dict(assigner=assigner) test_cfg = dict( post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], max_per_img=500, nms=dict( use_rotate_nms=True, use_multi_class_nms=False, nms_pre_max_size=1000, nms_post_max_size=83, nms_iou_threshold=0.2, ), score_threshold=0.1, pc_range=[-54, -54], out_size_factor=get_downsample_factor(model), voxel_size=[0.075, 0.075] ) # dataset settings dataset_type = "NuScenesDataset" nsweeps = 10 data_root = "data/nuScenes" db_sampler = dict( type="GT-AUG", enable=False, db_info_path="data/nuScenes/dbinfos_train_10sweeps_withvelo.pkl", sample_groups=[ dict(car=2), dict(truck=3), dict(construction_vehicle=7), dict(bus=4), dict(trailer=6), dict(barrier=2), dict(motorcycle=6), dict(bicycle=6), dict(pedestrian=2), dict(traffic_cone=2), ], db_prep_steps=[ dict( filter_by_min_num_points=dict( car=5, truck=5, bus=5, trailer=5, construction_vehicle=5, traffic_cone=5, barrier=5, motorcycle=5, bicycle=5, pedestrian=5, ) ), dict(filter_by_difficulty=[-1],), ], global_random_rotation_range_per_object=[0, 0], rate=1.0, ) train_preprocessor = dict( mode="train", shuffle_points=True, global_rot_noise=[-0.78539816, 0.78539816], global_scale_noise=[0.95, 1.05], global_translate_std=0.5, db_sampler=db_sampler, class_names=class_names, ) val_preprocessor = dict( mode="val", shuffle_points=False, ) voxel_generator = dict( range=[-54, -54, -5.0, 54, 54, 3.0], voxel_size=[0.075, 0.075, 0.2], max_points_in_voxel=10, max_voxel_num=[120000, 160000], ) train_pipeline = [ dict(type="LoadPointCloudFromFile", dataset=dataset_type), dict(type="LoadPointCloudAnnotations", with_bbox=True), dict(type="Preprocess", cfg=train_preprocessor), dict(type="Voxelization", cfg=voxel_generator), dict(type="AssignLabel", cfg=train_cfg["assigner"]), dict(type="Reformat"), # dict(type='PointCloudCollect', keys=['points', 'voxels', 'annotations', 'calib']), ] test_pipeline = [ dict(type="LoadPointCloudFromFile", dataset=dataset_type), dict(type="LoadPointCloudAnnotations", with_bbox=True), dict(type="Preprocess", cfg=val_preprocessor), dict(type="Voxelization", cfg=voxel_generator), dict(type="AssignLabel", cfg=train_cfg["assigner"]), dict(type="Reformat"), ] train_anno = "data/nuScenes/infos_train_10sweeps_withvelo_filter_True.pkl" val_anno = "data/nuScenes/infos_val_10sweeps_withvelo_filter_True.pkl" test_anno = None data = dict( samples_per_gpu=8, workers_per_gpu=16, train=dict( type=dataset_type, root_path=data_root, info_path=train_anno, ann_file=train_anno, nsweeps=nsweeps, class_names=class_names, pipeline=train_pipeline, ), val=dict( type=dataset_type, root_path=data_root, info_path=val_anno, test_mode=True, ann_file=val_anno, nsweeps=nsweeps, class_names=class_names, pipeline=test_pipeline, ), test=dict( type=dataset_type, root_path=data_root, info_path=test_anno, ann_file=test_anno, nsweeps=nsweeps, class_names=class_names, pipeline=test_pipeline, ), ) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # optimizer optimizer = dict( type="adam", amsgrad=0.0, wd=0.01, fixed_wd=True, moving_average=False, ) lr_config = dict( type="one_cycle", lr_max=0.001, moms=[0.95, 0.85], div_factor=10.0, pct_start=0.4, ) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=5, hooks=[ dict(type="TextLoggerHook"), # dict(type='TensorboardLoggerHook') ], ) # yapf:enable # runtime settings total_epochs = 20 device_ids = range(8) dist_params = dict(backend="nccl", init_method="env://") log_level = "INFO" work_dir = './work_dirs/{}/'.format(__file__[__file__.rfind('/') + 1:-3]) load_from = None resume_from = None workflow = [('train', 1)]
the-stack_106_27299
# Copyright (c) 2018 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import retro import click import gym import neat from pytorch_neat.multi_env_eval import MultiEnvEvaluator from pytorch_neat.neat_reporter import LogReporter from pytorch_neat.recurrent_net import RecurrentNet max_env_steps = 200 def make_env(): return retro.make("SonicTheHedgehog-Genesis") def make_net(genome, config, bs): return RecurrentNet.create(genome, config, bs) def activate_net(net, states): outputs = net.activate(states).numpy() return outputs[:, 0] > 0.5 @click.command() @click.option("--n_generations", type=int, default=100) def run(n_generations): # Load the config file, which is assumed to live in # the same directory as this script. config_path = os.path.join(os.path.dirname(__file__), "neat.cfg") config = neat.Config( neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path, ) evaluator = MultiEnvEvaluator( make_net, activate_net, make_env=make_env, max_env_steps=max_env_steps ) def eval_genomes(genomes, config): for _, genome in genomes: genome.fitness = evaluator.eval_genome(genome, config) pop = neat.Population(config) stats = neat.StatisticsReporter() pop.add_reporter(stats) reporter = neat.StdOutReporter(True) pop.add_reporter(reporter) logger = LogReporter("neat.log", evaluator.eval_genome) pop.add_reporter(logger) pop.run(eval_genomes, n_generations) if __name__ == "__main__": run() # pylint: disable=no-value-for-parameter
the-stack_106_27301
# -*- coding: utf-8 -*- """ Created on Wed Aug 8 08:33:28 2018 @author: pgallego """ import pydicom as dicom #Bladder, Rectum, Body Fermoales, PTV RdPath = 'C:\\Users\\pgallego\\Desktop\\Prostate1\\RD.1.2.246.352.71.7.2101921327.432885.20121219084743.dcm' RsPath = 'C:\\Users\\pgallego\\Desktop\\Prostate1\\RS.1.2.246.352.71.4.2101921327.18465.20121219102519.dcm' # def FindStructures(RsPath): BufetaList=['bladdder','Bufeta','bufeta','bllader','Bladder','BUFETA','BLADDER','bufet','VEJIGA','Vejiga'] RectoList=['RECTUM','Recte','rectum','recte','recto','RECTO','RECTE','OR-RECTE','Recto'] LFemoralListt=['femuresq','Cap femur esq','FEMURESQ','femurE','OR-FE','Cap femur E','Cap femur esquerre','capfemoralesq','Cap Femur E','Cap fem Esq','cap femoral esq','cap femoral Esq','C. femoral E','cap femoral esquerre','femur esq'] RFemoralListt=['femurdret','Cap femur dret','FEMURDRTE','femurD','OR-FD','Cap femur D','Cap femu dret','capfemodret','Cap Femur D','cap fem dret','FEMURD','cap femoral dret','cap femoral D','C. femoral D','cap femur dret','femur dret','fèmur dret'] PTV1List=['PTV1','PTV-P','P T V 1','p t v 1'] PTV11List=['PTV11','PTV1 1','PTV1.1','PTV 11','PTV11 sib'] string = "Locations : " f = dicom.read_file(RsPath,force=True) for i in range(len(f.RTROIObservationsSequence)): string = string + " " +f.StructureSetROISequence[i].ROIName if f.RTROIObservationsSequence[i].RTROIInterpretedType == 'EXTERNAL' : Body = i elif f.StructureSetROISequence[i].ROIName in BufetaList: Bufeta =i elif f.StructureSetROISequence[i].ROIName in RectoList: Recto =i elif f.StructureSetROISequence[i].ROIName in LFemoralListt: LFemoral =i elif f.StructureSetROISequence[i].ROIName in RFemoralListt: RFemoral =i elif f.StructureSetROISequence[i].ROIName in PTV1List: PTV1 =i elif f.StructureSetROISequence[i].ROIName in PTV11List: PTV11 =i print(string) return [Body,Recto,Bufeta,LFemoral,RFemoral,PTV1,PTV11] def FindStructuresBreast(RsPath,Side): if Side =='L': PulmonLList=['OR-PULMOESQ','OR PULMO izqdo','OR PULMO IZQ','OR PULMO ESQ','OR-PULMOE','pulmon','PULMO ESQ OK','OR_PULMOE2','PULMO ESQ'] PTVMamaList=['PTV MAMA izqda','MAMA 50GY','PTV MAMA IZQ','PTV mama Esq','PTV MAMA ESQ','PTV PAREDI','PTV-MAMAI','PTV-MAMAE','PTV PARET ESQ','PTV pared','PTV-MAME','PTV paredMAMAESQ','PTV-PAREDI','PTV-MAMAE2','PTV-PARETESQ','PTV-MAMAESQ','PTV PARET'] elif Side =='R': PulmonLList=['OR-PDerecho','OR_PULMOD','OR PULMO Dret','OR-PULMOD','OR PULMO DRET','OR-PULMON DRET','OR PULMO D','OR-PULMO DT','OR.PULMO DRET','OR-PDerecho','OR PULMO DRET2','pulmon','PULMO DRET'] PTVMamaList=['PTV1','PTV PARET DRETA','PTV_MAMAD','PTV-MAMAD2','PTV MAMA','PTV pared','PTV MAMA DRETA','PTV MAMA dreta','PTV-MAMAD','PTV pared derech','PTV PARET DRETA','PTV-PARETD','PTV PAREDD','PTV PARET D','PTV pared mamaD','PTV-PARETETD','PTV MAMA DRETA2','PTV-PAREDD','PTV MAMAD'] CorList=['or-cor','OR COR','OR-COR','Heart','corazon','OR_COR2'] PTVAreaList=['PTV Axilo-SC Esq','PTV AxiloSC E','PTVarea SC','PTV Ã rees','PTV AIXELLA DRET','PTV_APEX','PTV-AREES2','PTV_AREES','PTV AREES','PTV AREAS','PTV-AREES','PTVareas','PTV-AREAS','PTV areas','PTV AREES D','PTV axilo-SC Dr','PTVAREES2CORREGI','PTV-APEX','PTV-AREE2','PTV AREASD','PTV- AREAS','PTV AREx'] string = "Locations : " f = dicom.read_file(RsPath,force=True) for i in range(len(f.RTROIObservationsSequence)): string = string + " " +f.StructureSetROISequence[i].ROIName + "\n" if f.RTROIObservationsSequence[i].RTROIInterpretedType == 'EXTERNAL' : Body = i elif f.StructureSetROISequence[i].ROIName in PulmonLList: Pulmon =i elif f.StructureSetROISequence[i].ROIName in CorList: Cor =i elif f.StructureSetROISequence[i].ROIName in PTVMamaList: PTVMama =i elif f.StructureSetROISequence[i].ROIName in PTVAreaList: PTVAreas =i #print(string ) if Side == "L": return [Body,Pulmon,Cor,PTVMama,PTVAreas] else: return [Body,Pulmon,PTVMama,PTVAreas]
the-stack_106_27302
#!/usr/bin/env python3 import sys import json import os import argparse columns = [ 'count', 't_sum', 't_avg', 'operation', 'key' ] parser = argparse.ArgumentParser() parser.add_argument("--hide", choices=['count', 't_sum','t_avg','key'], nargs='+', help="Hide specified column") parser.add_argument("--log", choices=["http", "duration", "all"], default="all", help="Log to analayse") parser.add_argument("--sort", choices=columns + ['D'+c for c in columns], default='count', help="Sort criteria.") parser.add_argument("--groupby", choices=['bucket'], default='bucket', help="Goruping by criteria") parser.add_argument("--min", type=float, default=0, help="Duration below this time will be omitted") parser.add_argument("--operation", choices=['add', 'lookup','search','bind', 'modify'], default=['add', 'lookup','search','bind', 'modify'], nargs='+', help="Database operations to include") parser.add_argument("--type", choices=["csv", "html", "text"], default="text", help="Output type") parser.add_argument("dir", help="Path to log dir") args = parser.parse_args() if not args.dir: args.print_help() sys.exit() def sort_result(result): descending = False order_by = args.sort if order_by[0] == 'D': order_by = order_by[1:] descending = True result.sort(key=lambda mydic: mydic[order_by]) if descending: result.reverse() def get_formatted_str(v): if type(v) == type(1): return str(v).rjust(8) elif type(v) == type(1.1): return '{:0.3f}'.format(v).rjust(8) else: return v def is_hidden(c): if args.hide and c in args.hide: return True def print_result(result, k, heading): columnsl = columns[:] columnsl.remove('operation') sort_result(result) if args.type == 'text': print(heading,':') print('-'*(len(heading)+1)) print('#'.rjust(3), end=' ') for c in columnsl: if not is_hidden(c): if c=='key': print(' '+k, end=' ') else: print(c.rjust(8), end=' ') print() footer = {'count':0, 't_sum':0, 't_avg':0} for ln, row in enumerate(result): print(str(ln+1).rjust(3), end=' ') for c in columnsl: if not is_hidden(c): if c == 'key': print(' ', end=' ') print(get_formatted_str(row[c]), end=' ') if c in footer: footer[c] += row[c] print() print('='*100) print(' '.rjust(3), end=' ') for c in columns[:-2]: if not is_hidden(c): if c=='t_avg': pp = footer[c] / len(result) else: pp = footer[c] print(get_formatted_str(pp), end=' ') print(" GRANT TOTAL") print() print() if args.type == 'html': print('<table>') print('<caption><b>{0}</b></caption>'.format(heading)) print('<tr><td style="padding-right:10px; padding-left:10px">#</td>', end=' ') for c in columns: if not is_hidden(c): if c=='key': td = k else: td = c print('<td>{0}</td>'.format(td), end=' ') print('</tr>') footer = {'count':0, 't_sum':0, 't_avg':0} for ln, row in enumerate(result): print('<tr><td align="right">{0}</td>'.format(ln+1), end=' ') for c in columns: if not is_hidden(c): if c == 'key': align = '' else: align=' align="right"' print('<td {0}>{1}</td>'.format(align, get_formatted_str(row[c]).strip()), end=' ') if c in footer: footer[c] += row[c] print('</tr>') print('<tr><td></td>', end=' ') for c in columns[:-2]: if not is_hidden(c): if c=='t_avg': pp = footer[c] / len(result) else: pp = footer[c] print('<td align="right">{0}</td>'.format(get_formatted_str(pp).strip()), end=' ') print('<td colspan="2"> GRANT TOTAL </td></tr>') print('</table>\n') print('<br><br>') def http_log(): fn = os.path.join(args.dir, 'http_request_response.log') if not os.path.exists(fn): print("File {0} does not exists".format(fn)) return rdict = {} for l in open(fn): ls = l.strip().split(' - ') data = json.loads(ls[-1]) if data.get('method') == 'GET': if data.get('duration'): d = float(data['duration'][2:-1]) if d > args.min: if data['path'] in rdict: rdict[data['path']].append(d) else: rdict[data['path']] = [d] if not rdict: print("\n *** NO HTTP LOG ANALYSES IS AVAILABLE ***") return sn = 0 st = 0 result=[] for path in rdict: data = rdict[path] n = len(data) ssn = str(n).rjust(5) sn += n t = sum(data) st += t a= t/n result.append({'count': n, 't_sum': t, 't_avg': a, 'key': path}) print_result(result, 'path', "HTTP REQUEST LOG ANALYSES") def durations(): fn = os.path.join(args.dir,'oxauth_persistence_duration.log') if not os.path.exists(fn): print("File {0} does not exists".format(fn)) return rdict = {} operations = {} buckets = {} for l in open(fn): ls = l.split(',') operation = ls[1].split('operation: ')[1] bucket = ls[3].strip()[8:] if not bucket in buckets: buckets[bucket] = [] if not operation in args.operation: continue ds = ls[2].strip()[12:-1] if 'M' in ds: m,s=ds.split('M') d= float(m)*60 + float(s) else: d = float(ds) if d > args.min: if len(ls)>6: p = ls[5].strip() else: p = ls[4].strip() if p in rdict: rdict[p].append(d) else: rdict[p] = [d] operations[p] = operation if args.groupby == 'bucket': print("Grouped by", args.groupby) sn = 0 st = 0 result = [] for path in rdict: data = rdict[path] n = len(data) sn += n t = sum(data) a = t/n result.append({'count': n, 't_sum': t, 't_avg': a, 'key': path, 'operation': operations[path]}) st += t print_result(result, "expression", "DURATIONS LOG ANALYSES") if args.type == 'html': print('<!DOCTYPE html>\n<html>\n<head>') print('<style>table, th, td {padding-right:10px; padding-left:10px; border: 1px solid black; border-collapse: collapse;} * {font-family: Arial, Helvetica, sans-serif;}</style>') print('</head>\n<body>\n') if args.log in ('duration', 'all'): durations() if args.log in ('http', 'all'): http_log() if args.type == 'html': print('\n</body>\n</html>')
the-stack_106_27303
""" PDBBind dataset loader. """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import multiprocessing import os import re import time import deepchem import numpy as np import pandas as pd def featurize_pdbbind(data_dir=None, feat="grid", subset="core"): """Featurizes pdbbind according to provided featurization""" tasks = ["-logKd/Ki"] if "DEEPCHEM_DATA_DIR" in os.environ: data_dir = os.environ["DEEPCHEM_DATA_DIR"] else: data_dir = "/tmp" data_dir = os.path.join(data_dir, "pdbbind") dataset_dir = os.path.join(data_dir, "%s_%s" % (subset, feat)) if not os.path.exists(dataset_dir): os.system( 'wget -P ' + data_dir + ' http://deepchem.io.s3-website-us-west-1.amazonaws.com/featurized_datasets/core_grid.tar.gz' ) os.system( 'wget -P ' + data_dir + ' http://deepchem.io.s3-website-us-west-1.amazonaws.com/featurized_datasets/full_grid.tar.gz' ) os.system( 'wget -P ' + data_dir + ' http://deepchem.io.s3-website-us-west-1.amazonaws.com/featurized_datasets/refined_grid.tar.gz' ) os.system('tar -zxvf ' + os.path.join(data_dir, 'core_grid.tar.gz') + ' -C ' + data_dir) os.system('tar -zxvf ' + os.path.join(data_dir, 'full_grid.tar.gz') + ' -C ' + data_dir) os.system('tar -zxvf ' + os.path.join(data_dir, 'refined_grid.tar.gz') + ' -C ' + data_dir) return deepchem.data.DiskDataset(dataset_dir), tasks def load_pdbbind_grid(split="random", featurizer="grid", subset="full", reload=True): """Load PDBBind datasets. Does not do train/test split""" dataset, tasks = featurize_pdbbind(feat=featurizer, subset=subset) splitters = { 'index': deepchem.splits.IndexSplitter(), 'random': deepchem.splits.RandomSplitter() } splitter = splitters[split] train, valid, test = splitter.train_valid_test_split(dataset) transformers = [] for transformer in transformers: train = transformer.transform(train) for transformer in transformers: valid = transformer.transform(valid) for transformer in transformers: test = transformer.transform(test) return tasks, (train, valid, test), transformers
the-stack_106_27305
import json import logging import re from datetime import datetime from funcy.colls import walk_values, get_in from funcy.flow import silent from funcy.seqs import flatten from hivebase.exceptions import ( PostDoesNotExist, VotingInvalidOnArchivedPost, ) from hivebase.operations import CommentOptions from .amount import Amount from .commit import Commit from .instance import shared_hived_instance from .utils import construct_identifier, resolve_identifier from .utils import parse_time, remove_from_dict log = logging.getLogger(__name__) class Post(dict): """ This object gets instantiated by Hive.streams and is used as an abstraction layer for Comments in Hive Args: post (str or dict): ``author/permlink`` or raw ``comment`` as dictionary. hived_instance (Hived): Hived node to connect to """ def __init__(self, post, hived_instance=None): self.hived = hived_instance or shared_hived_instance() self.commit = Commit(hived_instance=self.hived) # will set these during refresh() self.patched = False self.category = None self.root_identifier = None if isinstance(post, str): # From identifier self.identifier = self.parse_identifier(post) elif isinstance(post, dict) and "author" in post and "permlink" in post: self.identifier = construct_identifier(post["author"], post["permlink"]) else: raise ValueError("Post expects an identifier or a dict " "with author and permlink!") self.refresh() @staticmethod def parse_identifier(uri): """ Extract canonical post id/url (i.e. strip any leading `@`). """ return uri.split('@')[-1] def refresh(self): post_author, post_permlink = resolve_identifier(self.identifier) post = self.hived.get_content(post_author, post_permlink) if not post["permlink"]: raise PostDoesNotExist("Post does not exist: %s" % self.identifier) # If this 'post' comes from an operation, it might carry a patch if "body" in post and re.match("^@@", post["body"]): self.patched = True # Parse Times parse_times = [ "active", "cashout_time", "created", "last_payout", "last_update", "max_cashout_time" ] for p in parse_times: post[p] = parse_time(post.get(p, "1970-01-01T00:00:00")) # Parse Amounts hbd_amounts = [ "total_payout_value", "max_accepted_payout", "pending_payout_value", "curator_payout_value", "total_pending_payout_value", "promoted", ] for p in hbd_amounts: post[p] = Amount(post.get(p, "0.000 HBD")) # turn json_metadata into python dict meta_str = post.get("json_metadata", "{}") post['json_metadata'] = silent(json.loads)(meta_str) or {} post["tags"] = [] post['community'] = '' if isinstance(post['json_metadata'], dict): if post["depth"] == 0: tags = [post["parent_permlink"]] tags += get_in(post, ['json_metadata', 'tags'], default=[]) post["tags"] = set(tags) post['community'] = get_in( post, ['json_metadata', 'community'], default='') # If this post is a comment, retrieve the root comment self.root_identifier, self.category = self._get_root_identifier(post) self._store_post(post) def _store_post(self, post): # Store original values as obtained from the rpc for key, value in post.items(): super(Post, self).__setitem__(key, value) # Set attributes as well for key in post: setattr(self, key, post[key]) # also set identifier super(Post, self).__setitem__("identifier", self.identifier) def __getattr__(self, key): return object.__getattribute__(self, key) def __getitem__(self, key): return super(Post, self).__getitem__(key) def __repr__(self): return "<Post-%s>" % self.identifier __str__ = __repr__ def _get_root_identifier(self, post=None): if not post: post = self m = re.match("/([^/]*)/@([^/]*)/([^#]*).*", post.get("url", "")) if not m: return "", "" else: category = m.group(1) author = m.group(2) permlink = m.group(3) return construct_identifier(author, permlink), category def get_replies(self): """ Return **first-level** comments of the post. """ post_author, post_permlink = resolve_identifier(self.identifier) replies = self.hived.get_content_replies(post_author, post_permlink) return map(silent(Post), replies) @staticmethod def get_all_replies(root_post=None, comments=list(), all_comments=list()): """ Recursively fetch all the child comments, and return them as a list. Usage: all_comments = Post.get_all_replies(Post('foo/bar')) """ # see if our root post has any comments if root_post: return Post.get_all_replies(comments=list(root_post.get_replies())) if not comments: return all_comments # recursively scrape children one depth layer at a time children = list(flatten([list(x.get_replies()) for x in comments])) if not children: return all_comments or comments return Post.get_all_replies( comments=children, all_comments=comments + children) @property def reward(self): """Return a float value of estimated total HBD reward. """ return Amount(self.get("total_payout_value", "0 HBD")) + \ Amount(self.get("pending_payout_value", "0 HBD")) def time_elapsed(self): """Return a timedelta on how old the post is. """ return datetime.utcnow() - self['created'] def is_main_post(self): """ Retuns True if main post, and False if this is a comment (reply). """ return self['depth'] == 0 def is_comment(self): """ Retuns True if post is a comment """ return self['depth'] > 0 def curation_reward_pct(self): """ If post is less than 15 minutes old, it will incur a curation reward penalty. """ reward = (self.time_elapsed().seconds / 900) * 100 if reward > 100: reward = 100 return reward def export(self): """ This method returns a dictionary that is type-safe to store as JSON or in a database. """ self.refresh() # Remove Hive instance object safe_dict = remove_from_dict(self, ['hived', 'commit']) # Convert Amount class objects into pure dictionaries def decompose_amounts(item): if type(item) == Amount: return dict(item) return item return walk_values(decompose_amounts, safe_dict) ###################### # Commital Properties ###################### def upvote(self, weight=+100, voter=None): """ Upvote the post :param float weight: (optional) Weight for posting (-100.0 - +100.0) defaults to +100.0 :param str voter: (optional) Voting account """ return self.vote(weight, voter=voter) def downvote(self, weight=-100, voter=None): """ Downvote the post :param float weight: (optional) Weight for posting (-100.0 - +100.0) defaults to -100.0 :param str voter: (optional) Voting account """ return self.vote(weight, voter=voter) def vote(self, weight, voter=None): """ Vote the post :param float weight: Weight for posting (-100.0 - +100.0) :param str voter: Voting account """ # Test if post is archived, if so, voting is worthless but just # pollutes the blockchain and account history if self.get('net_rshares', None) == None: raise VotingInvalidOnArchivedPost return self.commit.vote(self.identifier, weight, account=voter) def edit(self, body, meta=None, replace=False): """ Edit an existing post :param str body: Body of the reply :param json meta: JSON meta object that can be attached to the post. (optional) :param bool replace: Instead of calculating a *diff*, replace the post entirely (defaults to ``False``) """ if not meta: meta = {} original_post = self if replace: newbody = body else: import diff_match_patch dmp = diff_match_patch.diff_match_patch() patch = dmp.patch_make(original_post["body"], body) newbody = dmp.patch_toText(patch) if not newbody: log.info("No changes made! Skipping ...") return reply_identifier = construct_identifier( original_post["parent_author"], original_post["parent_permlink"]) new_meta = {} if meta: if original_post["json_metadata"]: import json new_meta = original_post["json_metadata"].update(meta) else: new_meta = meta return self.commit.post( original_post["title"], newbody, reply_identifier=reply_identifier, author=original_post["author"], permlink=original_post["permlink"], json_metadata=new_meta, ) def reply(self, body, title="", author="", meta=None): """ Reply to an existing post :param str body: Body of the reply :param str title: Title of the reply post :param str author: Author of reply (optional) if not provided ``default_user`` will be used, if present, else a ``ValueError`` will be raised. :param json meta: JSON meta object that can be attached to the post. (optional) """ return self.commit.post( title, body, json_metadata=meta, author=author, reply_identifier=self.identifier) def set_comment_options(self, options): op = CommentOptions( **{ "author": self["author"], "permlink": self["permlink"], "max_accepted_payout": options.get("max_accepted_payout", str(self["max_accepted_payout"])), "percent_hive_dollars": int( options.get("percent_hive_dollars", self["percent_hive_dollars"] / 100) * 100), "allow_votes": options.get("allow_votes", self["allow_votes"]), "allow_curation_rewards": options.get("allow_curation_rewards", self[ "allow_curation_rewards"]), }) return self.commit.finalizeOp(op, self["author"], "posting")
the-stack_106_27306
"""A parser for reading NASA JPL GipsyX timeseries file Example: -------- from analyx import parsers p = parsers.parse_file(parser_name='gipsyx_series', file_path='NYA1.series') data = p.as_dict() Description: ------------ Reads data from files in GipsyX timeseries format. """ # Standard library imports from typing import Any, Dict, List, Union # External library imports import numpy as np # Midgard imports from midgard.data import dataset from midgard.data import position from midgard.dev import log from midgard.dev import plugins from midgard.parsers import LineParser @plugins.register class GipsyxSeriesParser(LineParser): """A parser for reading GipsyX timeseries file Following **data** are available after reading GipsyX residual output file: | Key | Description | |----------------------|--------------------------------------------------------------------------------------| | corr_en | Correlation East-North. | | corr_ev | Correlation East-Vertical. | | corr_nv | Correlation North-Vertical. | | day | Day | | decimalyear | Date in unit year. | | east | East coordinate in [m]. | | east_sigma | Standard devication of east coordinate in [m]. | | hour | Hour | | minute | Minute | | month | Month | | north | North coordinate in [m]. | | north_sigma | Standard devication of north coordinate in [m]. | | second | Second | | time_past_j2000 | Time given in GPS seconds past J2000, whereby GipsyX uses following definition: | | | J2000 is continuous seconds past Jan. 1, 2000 11:59:47 UTC. | | vertical | Vertical coordinate in [m]. | | vertical_sigma | Standard devication of vertical coordinate in [m]. | | year | Year | and **meta**-data: | Key | Description | |----------------------|--------------------------------------------------------------------------------------| | \__data_path__ | File path | | \__parser_name__ | Parser name | """ def setup_parser(self) -> Dict[str, Any]: """Set up information needed for the parser This should return a dictionary with all parameters needed by np.genfromtxt to do the actual parsing. Returns: Dict: Parameters needed by np.genfromtxt to parse the input file. """ # ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0---- # 1997.41546410 -0.129049 -0.184509 -0.104704 0.000704 0.000885 0.004622 0.057219 0.479851 0.539105 -81561750.00 1997 6 1 11 57 30 # 1997.41820195 -0.131761 -0.188031 -0.106736 0.000698 0.000846 0.004422 0.010166 0.229144 0.489866 -81475350.00 1997 6 2 11 57 30 # 1997.42093981 -0.128925 -0.186854 -0.109757 0.000743 0.000918 0.004718 0.031938 -0.126787 0.490283 -81388950.00 1997 6 3 11 57 30 return dict( skip_header=1, names=( "decimalyear", "east", "north", "vertical", "east_sigma", "north_sigma", "vertical_sigma", "corr_en", "corr_ev", "corr_nv", "time_past_j2000", "year", "month", "day", "hour", "minute", "second", ), delimiter=(13, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 6, 3, 3, 3, 3, 3), dtype=( "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", "f8", ), autostrip=True, ) # # WRITE DATA # def as_dataset(self, ref_pos: Union[np.ndarray, List[float]] = [0.0, 0.0, 0.0]) -> "Dataset": """Return the parsed data as a Dataset Args: ref_pos: Reference position given in terrestrial reference system and meters Returns: Midgard Dataset where timeseries data are stored with following fields: | Field | Type | Description | |---------------------|-------------------|----------------------------------------------------------------| | obs.dpos | PositionDelta | Position delta object referred to a reference position | | obs.dpos_sigma_east | numpy.array | Standard deviation of east position | | obs.dpos_sigma_north| numpy.array | Standard deviation of north position | | obs.dpos_sigma_up | numpy.array | Standard deviation of up position | | time | Time | Parameter time given as TimeTable object | """ # Initialize dataset dset = dataset.Dataset() if not self.data: log.warn("No data in {self.file_path}.") return dset dset.num_obs = len(self.data["decimalyear"]) dset.meta.update(self.meta) # Add position ref_pos = position.Position(np.repeat(np.array([ref_pos]), dset.num_obs, axis=0), system="trs") dset.add_position_delta( name="obs.dpos", val=np.stack((self.data["east"], self.data["north"], self.data["vertical"]), axis=1), system="enu", ref_pos=ref_pos, ) # TODO: sigma functionality has to be improved: dpos_sigma.enu.east, dpos_sigma.trs.x ## Add position sigma # sigma = np.stack((self.data["east_sigma"], self.data["north_sigma"], self.data["vertical_sigma"]), axis=1) # dset.add_sigma(name="dpos_sigma", val=dset.dpos.val, sigma=sigma, unit="meter") dset.add_float(name="obs.dpos_sigma_east", val=self.data["east_sigma"], unit="meter") dset.add_float(name="obs.dpos_sigma_north", val=self.data["north_sigma"], unit="meter") dset.add_float(name="obs.dpos_sigma_up", val=self.data["vertical_sigma"], unit="meter") # Add time dset.add_time( name="time", val=self.data["decimalyear"], scale="utc", fmt="decimalyear", write_level="operational" ) return dset
the-stack_106_27307
# -*- coding: utf-8 -*- ''' Jinja loading utils to enable a more powerful backend for jinja templates ''' # Import python libs from __future__ import absolute_import import json import pprint import logging from os import path from functools import wraps # Import third party libs import salt.ext.six as six from jinja2 import BaseLoader, Markup, TemplateNotFound, nodes from jinja2.environment import TemplateModule from jinja2.ext import Extension from jinja2.exceptions import TemplateRuntimeError import jinja2 import yaml # Import salt libs import salt import salt.utils import salt.utils.url import salt.fileclient from salt.utils.odict import OrderedDict log = logging.getLogger(__name__) __all__ = [ 'SaltCacheLoader', 'SerializerExtension' ] # To dump OrderedDict objects as regular dicts. Used by the yaml # template filter. class OrderedDictDumper(yaml.Dumper): # pylint: disable=W0232 pass yaml.add_representer(OrderedDict, yaml.representer.SafeRepresenter.represent_dict, Dumper=OrderedDictDumper) class SaltCacheLoader(BaseLoader): ''' A special jinja Template Loader for salt. Requested templates are always fetched from the server to guarantee that the file is up to date. Templates are cached like regular salt states and only loaded once per loader instance. ''' def __init__(self, opts, saltenv='base', encoding='utf-8', pillar_rend=False): self.opts = opts self.saltenv = saltenv self.encoding = encoding if self.opts['file_roots'] is self.opts['pillar_roots']: self.searchpath = opts['file_roots'][saltenv] else: self.searchpath = [path.join(opts['cachedir'], 'files', saltenv)] log.debug('Jinja search path: %s', self.searchpath) self._file_client = None self.cached = [] self.pillar_rend = pillar_rend def file_client(self): ''' Return a file client. Instantiates on first call. ''' if not self._file_client: self._file_client = salt.fileclient.get_file_client( self.opts, self.pillar_rend) return self._file_client def cache_file(self, template): ''' Cache a file from the salt master ''' saltpath = salt.utils.url.create(template) self.file_client().get_file(saltpath, '', True, self.saltenv) def check_cache(self, template): ''' Cache a file only once ''' if template not in self.cached: self.cache_file(template) self.cached.append(template) def get_source(self, environment, template): # checks for relative '..' paths if '..' in template: log.warning( 'Discarded template path \'{0}\', relative paths are ' 'prohibited'.format(template) ) raise TemplateNotFound(template) self.check_cache(template) if environment and template: tpldir = path.dirname(template).replace('\\', '/') tpldata = { 'tplfile': template, 'tpldir': '.' if tpldir == '' else tpldir, 'tpldot': tpldir.replace('/', '.'), } environment.globals.update(tpldata) # pylint: disable=cell-var-from-loop for spath in self.searchpath: filepath = path.join(spath, template) try: with salt.utils.fopen(filepath, 'rb') as ifile: contents = ifile.read().decode(self.encoding) mtime = path.getmtime(filepath) def uptodate(): try: return path.getmtime(filepath) == mtime except OSError: return False return contents, filepath, uptodate except IOError: # there is no file under current path continue # pylint: enable=cell-var-from-loop # there is no template file within searchpaths raise TemplateNotFound(template) class PrintableDict(OrderedDict): ''' Ensures that dict str() and repr() are YAML friendly. .. code-block:: python mapping = OrderedDict([('a', 'b'), ('c', None)]) print mapping # OrderedDict([('a', 'b'), ('c', None)]) decorated = PrintableDict(mapping) print decorated # {'a': 'b', 'c': None} ''' def __str__(self): output = [] for key, value in six.iteritems(self): if isinstance(value, six.string_types): # keeps quotes around strings output.append('{0!r}: {1!r}'.format(key, value)) # pylint: disable=repr-flag-used-in-string else: # let default output output.append('{0!r}: {1!s}'.format(key, value)) # pylint: disable=repr-flag-used-in-string return '{' + ', '.join(output) + '}' def __repr__(self): # pylint: disable=W0221 output = [] for key, value in six.iteritems(self): # Raw string formatter required here because this is a repr # function. output.append('{0!r}: {1!r}'.format(key, value)) # pylint: disable=repr-flag-used-in-string return '{' + ', '.join(output) + '}' def ensure_sequence_filter(data): ''' Ensure sequenced data. **sequence** ensure that parsed data is a sequence .. code-block:: yaml {% set my_string = "foo" %} {% set my_list = ["bar", ] %} {% set my_dict = {"baz": "qux"} %} {{ my_string|sequence|first }} {{ my_list|sequence|first }} {{ my_dict|sequence|first }} will be rendered as: .. code-block:: yaml foo bar baz ''' if not isinstance(data, (list, tuple, set, dict)): return [data] return data @jinja2.contextfunction def show_full_context(ctx): return ctx class SerializerExtension(Extension, object): ''' Yaml and Json manipulation. **Format filters** Allows jsonifying or yamlifying any data structure. For example, this dataset: .. code-block:: python data = { 'foo': True, 'bar': 42, 'baz': [1, 2, 3], 'qux': 2.0 } .. code-block:: jinja yaml = {{ data|yaml }} json = {{ data|json }} python = {{ data|python }} will be rendered as:: yaml = {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0} json = {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0} python = {'bar': 42, 'baz': [1, 2, 3], 'foo': True, 'qux': 2.0} The yaml filter takes an optional flow_style parameter to control the default-flow-style parameter of the YAML dumper. .. code-block:: jinja {{ data|yaml(False) }} will be rendered as: .. code-block:: yaml bar: 42 baz: - 1 - 2 - 3 foo: true qux: 2.0 **Load filters** Strings and variables can be deserialized with **load_yaml** and **load_json** tags and filters. It allows one to manipulate data directly in templates, easily: .. code-block:: jinja {%- set yaml_src = "{foo: it works}"|load_yaml %} {%- set json_src = "{'bar': 'for real'}"|load_json %} Dude, {{ yaml_src.foo }} {{ json_src.bar }}! will be rendered as:: Dude, it works for real! **Load tags** Salt implements ``import_yaml`` and ``import_json`` tags. They work like the `import tag`_, except that the document is also deserialized. Syntaxes are ``{% load_yaml as [VARIABLE] %}[YOUR DATA]{% endload %}`` and ``{% load_json as [VARIABLE] %}[YOUR DATA]{% endload %}`` For example: .. code-block:: jinja {% load_yaml as yaml_src %} foo: it works {% endload %} {% load_json as json_src %} { "bar": "for real" } {% endload %} Dude, {{ yaml_src.foo }} {{ json_src.bar }}! will be rendered as:: Dude, it works for real! **Import tags** External files can be imported and made available as a Jinja variable. .. code-block:: jinja {% import_yaml "myfile.yml" as myfile %} {% import_json "defaults.json" as defaults %} {% import_text "completeworksofshakespeare.txt" as poems %} **Catalog** ``import_*`` and ``load_*`` tags will automatically expose their target variable to import. This feature makes catalog of data to handle. for example: .. code-block:: jinja # doc1.sls {% load_yaml as var1 %} foo: it works {% endload %} {% load_yaml as var2 %} bar: for real {% endload %} .. code-block:: jinja # doc2.sls {% from "doc1.sls" import var1, var2 as local2 %} {{ var1.foo }} {{ local2.bar }} .. _`import tag`: http://jinja.pocoo.org/docs/templates/#import ''' tags = set(['load_yaml', 'load_json', 'import_yaml', 'import_json', 'load_text', 'import_text']) def __init__(self, environment): super(SerializerExtension, self).__init__(environment) self.environment.filters.update({ 'yaml': self.format_yaml, 'yaml_safe': self.format_yaml_safe, 'json': self.format_json, 'python': self.format_python, 'load_yaml': self.load_yaml, 'load_json': self.load_json, 'load_text': self.load_text, }) if self.environment.finalize is None: self.environment.finalize = self.finalizer else: finalizer = self.environment.finalize @wraps(finalizer) def wrapper(self, data): return finalizer(self.finalizer(data)) self.environment.finalize = wrapper def finalizer(self, data): ''' Ensure that printed mappings are YAML friendly. ''' def explore(data): if isinstance(data, (dict, OrderedDict)): return PrintableDict( [(key, explore(value)) for key, value in six.iteritems(data)] ) elif isinstance(data, (list, tuple, set)): return data.__class__([explore(value) for value in data]) return data return explore(data) def format_json(self, value, sort_keys=True, indent=None): return Markup(json.dumps(value, sort_keys=sort_keys, indent=indent).strip()) def format_yaml(self, value, flow_style=True): yaml_txt = yaml.dump(value, default_flow_style=flow_style, Dumper=OrderedDictDumper).strip() if yaml_txt.endswith('\n...\n'): yaml_txt = yaml_txt[:len(yaml_txt-5)] return Markup(yaml_txt) def format_yaml_safe(self, value, flow_style=True): yaml_txt = yaml.safe_dump(value, default_flow_style=flow_style, Dumper=OrderedDictDumper).strip() if yaml_txt.endswith('\n...\n'): yaml_txt = yaml_txt[:len(yaml_txt-5)] return Markup(yaml_txt) def format_python(self, value): return Markup(pprint.pformat(value).strip()) def load_yaml(self, value): if isinstance(value, TemplateModule): value = str(value) try: return yaml.safe_load(value) except AttributeError: raise TemplateRuntimeError( 'Unable to load yaml from {0}'.format(value)) def load_json(self, value): if isinstance(value, TemplateModule): value = str(value) try: return json.loads(value) except (ValueError, TypeError, AttributeError): raise TemplateRuntimeError( 'Unable to load json from {0}'.format(value)) def load_text(self, value): if isinstance(value, TemplateModule): value = str(value) return value _load_parsers = set(['load_yaml', 'load_json', 'load_text']) def parse(self, parser): if parser.stream.current.value == 'import_yaml': return self.parse_yaml(parser) elif parser.stream.current.value == 'import_json': return self.parse_json(parser) elif parser.stream.current.value == 'import_text': return self.parse_text(parser) elif parser.stream.current.value in self._load_parsers: return self.parse_load(parser) parser.fail('Unknown format ' + parser.stream.current.value, parser.stream.current.lineno) # pylint: disable=E1120,E1121 def parse_load(self, parser): filter_name = parser.stream.current.value lineno = next(parser.stream).lineno if filter_name not in self.environment.filters: parser.fail('Unable to parse {0}'.format(filter_name), lineno) parser.stream.expect('name:as') target = parser.parse_assign_target() macro_name = '_' + parser.free_identifier().name macro_body = parser.parse_statements( ('name:endload',), drop_needle=True) return [ nodes.Macro( macro_name, [], [], macro_body ).set_lineno(lineno), nodes.Assign( target, nodes.Filter( nodes.Call( nodes.Name(macro_name, 'load').set_lineno(lineno), [], [], None, None ).set_lineno(lineno), filter_name, [], [], None, None ).set_lineno(lineno) ).set_lineno(lineno) ] def parse_yaml(self, parser): import_node = parser.parse_import() target = import_node.target lineno = import_node.lineno return [ import_node, nodes.Assign( nodes.Name(target, 'store').set_lineno(lineno), nodes.Filter( nodes.Name(target, 'load').set_lineno(lineno), 'load_yaml', [], [], None, None ) .set_lineno(lineno) ).set_lineno(lineno) ] def parse_json(self, parser): import_node = parser.parse_import() target = import_node.target lineno = import_node.lineno return [ import_node, nodes.Assign( nodes.Name(target, 'store').set_lineno(lineno), nodes.Filter( nodes.Name(target, 'load').set_lineno(lineno), 'load_json', [], [], None, None ) .set_lineno(lineno) ).set_lineno(lineno) ] def parse_text(self, parser): import_node = parser.parse_import() target = import_node.target lineno = import_node.lineno return [ import_node, nodes.Assign( nodes.Name(target, 'store').set_lineno(lineno), nodes.Filter( nodes.Name(target, 'load').set_lineno(lineno), 'load_text', [], [], None, None ) .set_lineno(lineno) ).set_lineno(lineno) ] # pylint: enable=E1120,E1121
the-stack_106_27310
"""A benchmark to be run externally. Executes a program that might make heavy use of Result/Option types in one of two ways: classically, with exceptions, or using result types. The program checks several data stores (in memory to minimize interference from slow IO &c.) in order for a key. If it finds it, it gets the value, adds something to it, and then overwrites the value. """ import sys import typing as t from timeit import timeit from safetywrap import Some, Nothing, Ok, Err, Option, Result T = t.TypeVar("T") class ClassicalDataStore: def __init__(self, values: dict = None) -> None: self._values = values or {} def connect(self, fail: bool = False) -> "ClassicalDataStore": """'Connect' to the store.""" if fail: raise RuntimeError("Failed to connect") return self def get(self, key: str) -> t.Any: """Return a value from the store.""" return self._values.get(key) def insert(self, key: str, val: T, overwrite: bool = False) -> T: """Insert the value and return it.""" if key in self._values and not overwrite: raise KeyError("Key already exists") self._values[key] = val return val class MonadicDataStore: """Using the monadic types.""" def __init__(self, values: dict = None) -> None: self._values = values or {} def connect(self, fail: bool = False) -> Result["MonadicDataStore", str]: if fail: return Err("failed to connect") return Ok(self) def get(self, key: str) -> Option[t.Any]: """Return a value from the store.""" if key in self._values: return Some(self._values[key]) return Nothing() def insert( self, key: str, val: T, overwrite: bool = False ) -> Result[T, str]: """Insert the value and return it.""" if key in self._values and not overwrite: return Err("Key already exists") self._values[key] = val return Ok(val) class Classical: """Run the program in the classical way.""" def __init__(self) -> None: self._stores = { 0: ClassicalDataStore(), 1: ClassicalDataStore(), 2: ClassicalDataStore(), 3: ClassicalDataStore({"you": "me"}), } def run(self) -> None: """Run the program.""" for store in self._stores.values(): try: store = store.connect() except RuntimeError: continue val = store.get("you") if val is not None: new_val = val + "et" try: inserted = store.insert("you", new_val) except KeyError: # oops, need to specify overwrite inserted = store.insert("you", new_val, overwrite=True) assert inserted == "meet" break else: raise RuntimeError("Could not get value anywhere.") class Monadic: """Use the monadic types.""" def __init__(self) -> None: self._stores = { 0: MonadicDataStore(), 1: MonadicDataStore(), 2: MonadicDataStore(), 3: MonadicDataStore({"you": "me"}), } def run(self) -> None: """Run the program.""" for unconnected in self._stores.values(): connected = unconnected.connect() if connected.is_err(): continue store = connected.unwrap() inserted = ( store.get("you") .ok_or("no such val") .map(lambda val: str(val + "et")) .and_then( lambda val: store.insert("you", val).or_else( lambda _: store.insert("you", val, overwrite=True) ) ) ) if inserted.is_ok(): assert inserted.unwrap() == "meet" break else: raise RuntimeError("Could not get value anywhere") if __name__ == "__main__": to_run = sys.argv[1].lower() switch: t.Dict[str, t.Callable[[], None]] = { "classical": lambda: Classical().run(), "monadic": lambda: Monadic().run(), } if to_run not in switch: raise RuntimeError("No such method: {}".format(to_run)) if len(sys.argv) > 2 and sys.argv[2] == "timeit": # run internal timings NUMBER = int(1e6) taken = timeit("switch[to_run]()", globals=globals(), number=NUMBER) print(taken / NUMBER) else: switch[to_run]()
the-stack_106_27312
# -*- coding: utf-8 -*- ''' Package support for openSUSE via the zypper package manager :depends: - ``rpm`` Python module. Install with ``zypper install rpm-python`` .. important:: If you feel that Salt should be using this module to manage packages on a minion, and it is using a different module (or gives an error similar to *'pkg.install' is not available*), see :ref:`here <module-provider-override>`. ''' # Import python libs from __future__ import absolute_import import copy import logging import re import os import time import datetime # Import 3rd-party libs # pylint: disable=import-error,redefined-builtin,no-name-in-module import salt.ext.six as six from salt.exceptions import SaltInvocationError import salt.utils.event from salt.ext.six.moves import configparser from salt.ext.six.moves.urllib.parse import urlparse as _urlparse # pylint: enable=import-error,redefined-builtin,no-name-in-module from xml.dom import minidom as dom from xml.parsers.expat import ExpatError # Import salt libs import salt.utils import salt.utils.systemd from salt.exceptions import ( CommandExecutionError, MinionError) log = logging.getLogger(__name__) HAS_ZYPP = False ZYPP_HOME = '/etc/zypp' LOCKS = '{0}/locks'.format(ZYPP_HOME) REPOS = '{0}/repos.d'.format(ZYPP_HOME) DEFAULT_PRIORITY = 99 # Define the module's virtual name __virtualname__ = 'pkg' def __virtual__(): ''' Set the virtual pkg module if the os is openSUSE ''' if __grains__.get('os_family', '') != 'Suse': return (False, "Module zypper: non SUSE OS not suppored by zypper package manager") # Not all versions of SUSE use zypper, check that it is available if not salt.utils.which('zypper'): return (False, "Module zypper: zypper package manager not found") return __virtualname__ class _Zypper(object): ''' Zypper parallel caller. Validates the result and either raises an exception or reports an error. Allows serial zypper calls (first came, first won). ''' SUCCESS_EXIT_CODES = [0, 100, 101, 102, 103] LOCK_EXIT_CODE = 7 XML_DIRECTIVES = ['-x', '--xmlout'] ZYPPER_LOCK = '/var/run/zypp.pid' TAG_RELEASED = 'zypper/released' TAG_BLOCKED = 'zypper/blocked' def __init__(self): ''' Constructor ''' self.__called = False self._reset() def _reset(self): ''' Resets values of the call setup. :return: ''' self.__cmd = ['zypper', '--non-interactive'] self.__exit_code = 0 self.__call_result = dict() self.__error_msg = '' self.__env = {'SALT_RUNNING': "1"} # Subject to change # Call config self.__xml = False self.__no_lock = False self.__no_raise = False self.__refresh = False self.__ignore_repo_failure = False self.__systemd_scope = False def __call__(self, *args, **kwargs): ''' :param args: :param kwargs: :return: ''' # Ignore exit code for 106 (repo is not available) if 'no_repo_failure' in kwargs: self.__ignore_repo_failure = kwargs['no_repo_failure'] if 'systemd_scope' in kwargs: self.__systemd_scope = kwargs['systemd_scope'] return self def __getattr__(self, item): ''' Call configurator. :param item: :return: ''' # Reset after the call if self.__called: self._reset() self.__called = False if item == 'xml': self.__xml = True elif item == 'nolock': self.__no_lock = True elif item == 'noraise': self.__no_raise = True elif item == 'refreshable': self.__refresh = True elif item == 'call': return self.__call else: return self.__dict__[item] # Prevent the use of "refreshable" together with "nolock". if self.__no_lock: self.__no_lock = not self.__refresh return self @property def exit_code(self): return self.__exit_code @exit_code.setter def exit_code(self, exit_code): self.__exit_code = int(exit_code or '0') @property def error_msg(self): return self.__error_msg @error_msg.setter def error_msg(self, msg): if self._is_error(): self.__error_msg = msg and os.linesep.join(msg) or "Check Zypper's logs." @property def stdout(self): return self.__call_result.get('stdout', '') @property def stderr(self): return self.__call_result.get('stderr', '') @property def pid(self): return self.__call_result.get('pid', '') def _is_error(self): ''' Is this is an error code? :return: ''' return self.exit_code not in self.SUCCESS_EXIT_CODES def _is_lock(self): ''' Is this is a lock error code? :return: ''' return self.exit_code == self.LOCK_EXIT_CODE def _is_xml_mode(self): ''' Is Zypper's output is in XML format? :return: ''' return [itm for itm in self.XML_DIRECTIVES if itm in self.__cmd] and True or False def _check_result(self): ''' Check and set the result of a zypper command. In case of an error, either raise a CommandExecutionError or extract the error. result The result of a zypper command called with cmd.run_all ''' if not self.__call_result: raise CommandExecutionError('No output result from Zypper?') self.exit_code = self.__call_result['retcode'] if self._is_lock(): return False if self._is_error(): _error_msg = list() if not self._is_xml_mode(): msg = self.__call_result['stderr'] and self.__call_result['stderr'].strip() or "" if msg: _error_msg.append(msg) else: try: doc = dom.parseString(self.__call_result['stdout']) except ExpatError as err: log.error(err) doc = None if doc: msg_nodes = doc.getElementsByTagName('message') for node in msg_nodes: if node.getAttribute('type') == 'error': _error_msg.append(node.childNodes[0].nodeValue) elif self.__call_result['stderr'].strip(): _error_msg.append(self.__call_result['stderr'].strip()) self.error_msg = _error_msg return True def __call(self, *args, **kwargs): ''' Call Zypper. :param state: :return: ''' self.__called = True if self.__xml: self.__cmd.append('--xmlout') if not self.__refresh: self.__cmd.append('--no-refresh') self.__cmd.extend(args) kwargs['output_loglevel'] = 'trace' kwargs['python_shell'] = False kwargs['env'] = self.__env.copy() if self.__no_lock: kwargs['env']['ZYPP_READONLY_HACK'] = "1" # Disables locking for read-only operations. Do not try that at home! # Zypper call will stuck here waiting, if another zypper hangs until forever. # However, Zypper lock needs to be always respected. was_blocked = False while True: cmd = [] if self.__systemd_scope: cmd.extend(['systemd-run', '--scope']) cmd.extend(self.__cmd) log.debug("Calling Zypper: " + ' '.join(cmd)) self.__call_result = __salt__['cmd.run_all'](cmd, **kwargs) if self._check_result(): break if os.path.exists(self.ZYPPER_LOCK): try: data = __salt__['ps.proc_info'](int(open(self.ZYPPER_LOCK).readline()), attrs=['pid', 'name', 'cmdline', 'create_time']) data['cmdline'] = ' '.join(data['cmdline']) data['info'] = 'Blocking process created at {0}.'.format( datetime.datetime.utcfromtimestamp(data['create_time']).isoformat()) data['success'] = True except Exception as err: data = {'info': 'Unable to retrieve information about blocking process: {0}'.format(err.message), 'success': False} else: data = {'info': 'Zypper is locked, but no Zypper lock has been found.', 'success': False} if not data['success']: log.debug("Unable to collect data about blocking process.") else: log.debug("Collected data about blocking process.") __salt__['event.fire_master'](data, self.TAG_BLOCKED) log.debug("Fired a Zypper blocked event to the master with the data: {0}".format(str(data))) log.debug("Waiting 5 seconds for Zypper gets released...") time.sleep(5) if not was_blocked: was_blocked = True if was_blocked: __salt__['event.fire_master']({'success': not len(self.error_msg), 'info': self.error_msg or 'Zypper has been released'}, self.TAG_RELEASED) if self.error_msg and not self.__no_raise and not self.__ignore_repo_failure: raise CommandExecutionError('Zypper command failure: {0}'.format(self.error_msg)) return self._is_xml_mode() and dom.parseString(self.__call_result['stdout']) or self.__call_result['stdout'] __zypper__ = _Zypper() def _systemd_scope(): return salt.utils.systemd.has_scope(__context__) \ and __salt__['config.get']('systemd.scope', True) def list_upgrades(refresh=True, **kwargs): ''' List all available package upgrades on this system refresh force a refresh if set to True (default). If set to False it depends on zypper if a refresh is executed. CLI Example: .. code-block:: bash salt '*' pkg.list_upgrades ''' if refresh: refresh_db() ret = dict() cmd = ['list-updates'] if 'fromrepo' in kwargs: repo_name = kwargs['fromrepo'] if not isinstance(repo_name, six.string_types): repo_name = str(repo_name) cmd.extend(['--repo', repo_name]) for update_node in __zypper__.nolock.xml.call(*cmd).getElementsByTagName('update'): if update_node.getAttribute('kind') == 'package': ret[update_node.getAttribute('name')] = update_node.getAttribute('edition') return ret # Provide a list_updates function for those used to using zypper list-updates list_updates = salt.utils.alias_function(list_upgrades, 'list_updates') def info_installed(*names, **kwargs): ''' Return the information of the named package(s), installed on the system. :param names: Names of the packages to get information about. :param attr: Comma-separated package attributes. If no 'attr' is specified, all available attributes returned. Valid attributes are: version, vendor, release, build_date, build_date_time_t, install_date, install_date_time_t, build_host, group, source_rpm, arch, epoch, size, license, signature, packager, url, summary, description. :param errors: Handle RPM field errors (true|false). By default, various mistakes in the textual fields are simply ignored and omitted from the data. Otherwise a field with a mistake is not returned, instead a 'N/A (bad UTF-8)' (not available, broken) text is returned. Valid attributes are: ignore, report CLI example: .. code-block:: bash salt '*' pkg.info_installed <package1> salt '*' pkg.info_installed <package1> <package2> <package3> ... salt '*' pkg.info_installed <package1> attr=version,vendor salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,vendor salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,vendor errors=true ''' ret = dict() for pkg_name, pkg_nfo in __salt__['lowpkg.info'](*names, **kwargs).items(): t_nfo = dict() # Translate dpkg-specific keys to a common structure for key, value in pkg_nfo.items(): if isinstance(value, six.string_types): # Check, if string is encoded in a proper UTF-8 if six.PY3: value_ = value.encode('UTF-8', 'ignore').decode('UTF-8', 'ignore') else: value_ = value.decode('UTF-8', 'ignore').encode('UTF-8', 'ignore') if value != value_: value = kwargs.get('errors') and value_ or 'N/A (invalid UTF-8)' log.error('Package {0} has bad UTF-8 code in {1}: {2}'.format(pkg_name, key, value)) if key == 'source_rpm': t_nfo['source'] = value else: t_nfo[key] = value ret[pkg_name] = t_nfo return ret def info_available(*names, **kwargs): ''' Return the information of the named package available for the system. refresh force a refresh if set to True (default). If set to False it depends on zypper if a refresh is executed or not. CLI example: .. code-block:: bash salt '*' pkg.info_available <package1> salt '*' pkg.info_available <package1> <package2> <package3> ... ''' ret = {} if not names: return ret else: names = sorted(list(set(names))) # Refresh db before extracting the latest package if kwargs.get('refresh', True): refresh_db() pkg_info = [] batch = names[:] batch_size = 200 # Run in batches while batch: pkg_info.extend(re.split(r"Information for package*", __zypper__.nolock.call('info', '-t', 'package', *batch[:batch_size]))) batch = batch[batch_size:] for pkg_data in pkg_info: nfo = {} for line in [data for data in pkg_data.split('\n') if ':' in data]: if line.startswith('-----'): continue kw = [data.strip() for data in line.split(':', 1)] if len(kw) == 2 and kw[1]: nfo[kw[0].lower()] = kw[1] if nfo.get('name'): name = nfo.pop('name') ret[name] = nfo if nfo.get('status'): nfo['status'] = nfo.get('status') if nfo.get('installed'): nfo['installed'] = nfo.get('installed').lower() == 'yes' and True or False return ret def info(*names, **kwargs): ''' .. deprecated:: Nitrogen Use :py:func:`~salt.modules.pkg.info_available` instead. Return the information of the named package available for the system. CLI example: .. code-block:: bash salt '*' pkg.info <package1> salt '*' pkg.info <package1> <package2> <package3> ... ''' salt.utils.warn_until('Nitrogen', "Please use 'pkg.info_available' instead") return info_available(*names) def latest_version(*names, **kwargs): ''' Return the latest version of the named package available for upgrade or installation. If more than one package name is specified, a dict of name/version pairs is returned. If the latest version of a given package is already installed, an empty dict will be returned for that package. refresh force a refresh if set to True (default). If set to False it depends on zypper if a refresh is executed or not. CLI example: .. code-block:: bash salt '*' pkg.latest_version <package name> salt '*' pkg.latest_version <package1> <package2> <package3> ... ''' ret = dict() if not names: return ret names = sorted(list(set(names))) package_info = info_available(*names, **kwargs) for name in names: pkg_info = package_info.get(name, {}) status = pkg_info.get('status', '').lower() if status.find('not installed') > -1 or status.find('out-of-date') > -1: ret[name] = pkg_info.get('version') # Return a string if only one package name passed if len(names) == 1 and len(ret): return ret[names[0]] return ret # available_version is being deprecated available_version = salt.utils.alias_function(latest_version, 'available_version') def upgrade_available(name, **kwargs): ''' Check whether or not an upgrade is available for a given package refresh force a refresh if set to True (default). If set to False it depends on zypper if a refresh is executed or not. CLI Example: .. code-block:: bash salt '*' pkg.upgrade_available <package name> ''' # The "not not" tactic is intended here as it forces the return to be False. return not not latest_version(name, **kwargs) # pylint: disable=C0113 def version(*names, **kwargs): ''' Returns a string representing the package version or an empty dict if not installed. If more than one package name is specified, a dict of name/version pairs is returned. CLI Example: .. code-block:: bash salt '*' pkg.version <package name> salt '*' pkg.version <package1> <package2> <package3> ... ''' return __salt__['pkg_resource.version'](*names, **kwargs) or {} def version_cmp(ver1, ver2, ignore_epoch=False): ''' .. versionadded:: 2015.5.4 Do a cmp-style comparison on two packages. Return -1 if ver1 < ver2, 0 if ver1 == ver2, and 1 if ver1 > ver2. Return None if there was a problem making the comparison. ignore_epoch : False Set to ``True`` to ignore the epoch when comparing versions .. versionadded:: 2015.8.10,2016.3.2 CLI Example: .. code-block:: bash salt '*' pkg.version_cmp '0.2-001' '0.2.0.1-002' ''' return __salt__['lowpkg.version_cmp'](ver1, ver2, ignore_epoch=ignore_epoch) def list_pkgs(versions_as_list=False, **kwargs): ''' List the packages currently installed as a dict with versions as a comma separated string:: {'<package_name>': '<version>[,<version>...]'} versions_as_list: If set to true, the versions are provided as a list {'<package_name>': ['<version>', '<version>']} removed: not supported purge_desired: not supported CLI Example: .. code-block:: bash salt '*' pkg.list_pkgs ''' versions_as_list = salt.utils.is_true(versions_as_list) # not yet implemented or not applicable if any([salt.utils.is_true(kwargs.get(x)) for x in ('removed', 'purge_desired')]): return {} if 'pkg.list_pkgs' in __context__: if versions_as_list: return __context__['pkg.list_pkgs'] else: ret = copy.deepcopy(__context__['pkg.list_pkgs']) __salt__['pkg_resource.stringify'](ret) return ret cmd = ['rpm', '-qa', '--queryformat', '%{NAME}_|-%{VERSION}_|-%{RELEASE}_|-%|EPOCH?{%{EPOCH}}:{}|\\n'] ret = {} for line in __salt__['cmd.run'](cmd, output_loglevel='trace', python_shell=False).splitlines(): name, pkgver, rel, epoch = line.split('_|-') if epoch: pkgver = '{0}:{1}'.format(epoch, pkgver) if rel: pkgver += '-{0}'.format(rel) __salt__['pkg_resource.add_pkg'](ret, name, pkgver) __salt__['pkg_resource.sort_pkglist'](ret) __context__['pkg.list_pkgs'] = copy.deepcopy(ret) if not versions_as_list: __salt__['pkg_resource.stringify'](ret) return ret def _get_configured_repos(): ''' Get all the info about repositories from the configurations. ''' repos_cfg = configparser.ConfigParser() repos_cfg.read([REPOS + '/' + fname for fname in os.listdir(REPOS)]) return repos_cfg def _get_repo_info(alias, repos_cfg=None): ''' Get one repo meta-data. ''' try: meta = dict((repos_cfg or _get_configured_repos()).items(alias)) meta['alias'] = alias for key, val in six.iteritems(meta): if val in ['0', '1']: meta[key] = int(meta[key]) == 1 elif val == 'NONE': meta[key] = None return meta except (ValueError, configparser.NoSectionError): return {} def get_repo(repo, **kwargs): # pylint: disable=unused-argument ''' Display a repo. CLI Example: .. code-block:: bash salt '*' pkg.get_repo alias ''' return _get_repo_info(repo) def list_repos(): ''' Lists all repos. CLI Example: .. code-block:: bash salt '*' pkg.list_repos ''' repos_cfg = _get_configured_repos() all_repos = {} for alias in repos_cfg.sections(): all_repos[alias] = _get_repo_info(alias, repos_cfg=repos_cfg) return all_repos def del_repo(repo): ''' Delete a repo. CLI Examples: .. code-block:: bash salt '*' pkg.del_repo alias ''' repos_cfg = _get_configured_repos() for alias in repos_cfg.sections(): if alias == repo: doc = __zypper__.xml.call('rr', '--loose-auth', '--loose-query', alias) msg = doc.getElementsByTagName('message') if doc.getElementsByTagName('progress') and msg: return { repo: True, 'message': msg[0].childNodes[0].nodeValue, } raise CommandExecutionError('Repository \'{0}\' not found.'.format(repo)) def mod_repo(repo, **kwargs): ''' Modify one or more values for a repo. If the repo does not exist, it will be created, so long as the following values are specified: repo or alias alias by which the zypper refers to the repo url, mirrorlist or baseurl the URL for zypper to reference enabled enable or disable (True or False) repository, but do not remove if disabled. refresh enable or disable (True or False) auto-refresh of the repository. cache Enable or disable (True or False) RPM files caching. gpgcheck Enable or disable (True or False) GOG check for this repository. gpgautoimport Automatically trust and import new repository. Key/Value pairs may also be removed from a repo's configuration by setting a key to a blank value. Bear in mind that a name cannot be deleted, and a url can only be deleted if a mirrorlist is specified (or vice versa). CLI Examples: .. code-block:: bash salt '*' pkg.mod_repo alias alias=new_alias salt '*' pkg.mod_repo alias url= mirrorlist=http://host.com/ ''' repos_cfg = _get_configured_repos() added = False # An attempt to add new one? if repo not in repos_cfg.sections(): url = kwargs.get('url', kwargs.get('mirrorlist', kwargs.get('baseurl'))) if not url: raise CommandExecutionError( 'Repository \'{0}\' not found, and neither \'baseurl\' nor ' '\'mirrorlist\' was specified'.format(repo) ) if not _urlparse(url).scheme: raise CommandExecutionError( 'Repository \'{0}\' not found and URL for baseurl/mirrorlist ' 'is malformed'.format(repo) ) # Is there already such repo under different alias? for alias in repos_cfg.sections(): repo_meta = _get_repo_info(alias, repos_cfg=repos_cfg) # Complete user URL, in case it is not new_url = _urlparse(url) if not new_url.path: new_url = _urlparse.ParseResult(scheme=new_url.scheme, # pylint: disable=E1123 netloc=new_url.netloc, path='/', params=new_url.params, query=new_url.query, fragment=new_url.fragment) base_url = _urlparse(repo_meta['baseurl']) if new_url == base_url: raise CommandExecutionError( 'Repository \'{0}\' already exists as \'{1}\'.'.format( repo, alias ) ) # Add new repo __zypper__.xml.call('ar', url, repo) # Verify the repository has been added repos_cfg = _get_configured_repos() if repo not in repos_cfg.sections(): raise CommandExecutionError( 'Failed add new repository \'{0}\' for unspecified reason. ' 'Please check zypper logs.'.format(repo)) added = True # Modify added or existing repo according to the options cmd_opt = [] global_cmd_opt = [] call_refresh = False if 'enabled' in kwargs: cmd_opt.append(kwargs['enabled'] and '--enable' or '--disable') if 'refresh' in kwargs: cmd_opt.append(kwargs['refresh'] and '--refresh' or '--no-refresh') if 'cache' in kwargs: cmd_opt.append( kwargs['cache'] and '--keep-packages' or '--no-keep-packages' ) if 'gpgcheck' in kwargs: cmd_opt.append(kwargs['gpgcheck'] and '--gpgcheck' or '--no-gpgcheck') if 'priority' in kwargs: cmd_opt.append("--priority={0}".format(kwargs.get('priority', DEFAULT_PRIORITY))) if 'humanname' in kwargs: cmd_opt.append("--name='{0}'".format(kwargs.get('humanname'))) if kwargs.get('gpgautoimport') is True: global_cmd_opt.append('--gpg-auto-import-keys') call_refresh = True if cmd_opt: cmd_opt = global_cmd_opt + ['mr'] + cmd_opt + [repo] __zypper__.refreshable.xml.call(*cmd_opt) comment = None if call_refresh: # when used with "zypper ar --refresh" or "zypper mr --refresh" # --gpg-auto-import-keys is not doing anything # so we need to specifically refresh here with --gpg-auto-import-keys refresh_opts = global_cmd_opt + ['refresh'] + [repo] __zypper__.xml.call(*refresh_opts) elif not added and not cmd_opt: comment = 'Specified arguments did not result in modification of repo' repo = get_repo(repo) if comment: repo['comment'] = comment return repo def refresh_db(): ''' Force a repository refresh by calling ``zypper refresh --force``, return a dict:: {'<database name>': Bool} CLI Example: .. code-block:: bash salt '*' pkg.refresh_db ''' ret = {} out = __zypper__.refreshable.call('refresh', '--force') for line in out.splitlines(): if not line: continue if line.strip().startswith('Repository') and '\'' in line: key = line.split('\'')[1].strip() if 'is up to date' in line: ret[key] = False elif line.strip().startswith('Building') and '\'' in line: key = line.split('\'')[1].strip() if 'done' in line: ret[key] = True return ret def install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, downloadonly=None, skip_verify=False, version=None, ignore_repo_failure=False, **kwargs): ''' .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands which modify installed packages from the ``salt-minion`` daemon's control group. This is done to keep systemd from killing any zypper commands spawned by Salt when the ``salt-minion`` service is restarted. (see ``KillMode`` in the `systemd.kill(5)`_ manpage for more information). If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html .. _`systemd.kill(5)`: https://www.freedesktop.org/software/systemd/man/systemd.kill.html Install the passed package(s), add refresh=True to force a 'zypper refresh' before package is installed. name The name of the package to be installed. Note that this parameter is ignored if either ``pkgs`` or ``sources`` is passed. Additionally, please note that this option can only be used to install packages from a software repository. To install a package file manually, use the ``sources`` option. CLI Example: .. code-block:: bash salt '*' pkg.install <package name> refresh force a refresh if set to True. If set to False (default) it depends on zypper if a refresh is executed. fromrepo Specify a package repository to install from. downloadonly Only download the packages, do not install. skip_verify Skip the GPG verification check (e.g., ``--no-gpg-checks``) version Can be either a version number, or the combination of a comparison operator (<, >, <=, >=, =) and a version number (ex. '>1.2.3-4'). This parameter is ignored if ``pkgs`` or ``sources`` is passed. Multiple Package Installation Options: pkgs A list of packages to install from a software repository. Must be passed as a python list. A specific version number can be specified by using a single-element dict representing the package and its version. As with the ``version`` parameter above, comparison operators can be used to target a specific version of a package. CLI Examples: .. code-block:: bash salt '*' pkg.install pkgs='["foo", "bar"]' salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]' salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]' sources A list of RPM packages to install. Must be passed as a list of dicts, with the keys being package names, and the values being the source URI or local path to the package. CLI Example: .. code-block:: bash salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"},{"bar": "salt://bar.rpm"}]' ignore_repo_failure Zypper returns error code 106 if one of the repositories are not available for various reasons. In case to set strict check, this parameter needs to be set to True. Default: False. Returns a dict containing the new package names and versions:: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} ''' if refresh: refresh_db() try: pkg_params, pkg_type = __salt__['pkg_resource.parse_targets'](name, pkgs, sources, **kwargs) except MinionError as exc: raise CommandExecutionError(exc) if pkg_params is None or len(pkg_params) == 0: return {} version_num = version if version_num: if pkgs is None and sources is None: # Allow "version" to work for single package target pkg_params = {name: version_num} else: log.warning("'version' parameter will be ignored for multiple package targets") if pkg_type == 'repository': targets = [] problems = [] for param, version_num in six.iteritems(pkg_params): if version_num is None: targets.append(param) else: match = re.match(r'^([<>])?(=)?([^<>=]+)$', version_num) if match: gt_lt, equal, verstr = match.groups() targets.append('{0}{1}{2}'.format(param, ((gt_lt or '') + (equal or '')) or '=', verstr)) log.debug(targets) else: msg = ('Invalid version string \'{0}\' for package \'{1}\''.format(version_num, name)) problems.append(msg) if problems: for problem in problems: log.error(problem) return {} else: targets = pkg_params old = list_pkgs() downgrades = [] if fromrepo: fromrepoopt = ['--force', '--force-resolution', '--from', fromrepo] log.info('Targeting repo \'{0}\''.format(fromrepo)) else: fromrepoopt = '' cmd_install = ['install', '--name', '--auto-agree-with-licenses'] if not refresh: cmd_install.insert(0, '--no-refresh') if skip_verify: cmd_install.append('--no-gpg-checks') if downloadonly: cmd_install.append('--download-only') if fromrepo: cmd_install.extend(fromrepoopt) errors = [] # Split the targets into batches of 500 packages each, so that # the maximal length of the command line is not broken systemd_scope = _systemd_scope() while targets: cmd = cmd_install + targets[:500] targets = targets[500:] for line in __zypper__(no_repo_failure=ignore_repo_failure, systemd_scope=systemd_scope).call(*cmd).splitlines(): match = re.match(r"^The selected package '([^']+)'.+has lower version", line) if match: downgrades.append(match.group(1)) while downgrades: cmd = cmd_install + ['--force'] + downgrades[:500] downgrades = downgrades[500:] __zypper__(no_repo_failure=ignore_repo_failure).call(*cmd) __context__.pop('pkg.list_pkgs', None) new = list_pkgs() ret = salt.utils.compare_dicts(old, new) if errors: raise CommandExecutionError( 'Problem encountered installing package(s)', info={'errors': errors, 'changes': ret} ) return ret def upgrade(refresh=True, dryrun=False, dist_upgrade=False, fromrepo=None, novendorchange=False, skip_verify=False, **kwargs): # pylint: disable=unused-argument ''' .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands which modify installed packages from the ``salt-minion`` daemon's control group. This is done to keep systemd from killing any zypper commands spawned by Salt when the ``salt-minion`` service is restarted. (see ``KillMode`` in the `systemd.kill(5)`_ manpage for more information). If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html .. _`systemd.kill(5)`: https://www.freedesktop.org/software/systemd/man/systemd.kill.html Run a full system upgrade, a zypper upgrade refresh force a refresh if set to True (default). If set to False it depends on zypper if a refresh is executed. dryrun If set to True, it creates a debug solver log file and then perform a dry-run upgrade (no changes are made). Default: False dist_upgrade Perform a system dist-upgrade. Default: False fromrepo Specify a list of package repositories to upgrade from. Default: None novendorchange If set to True, no allow vendor changes. Default: False skip_verify Skip the GPG verification check (e.g., ``--no-gpg-checks``) Returns a dictionary containing the changes: .. code-block:: python {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} CLI Example: .. code-block:: bash salt '*' pkg.upgrade salt '*' pkg.upgrade dist-upgrade=True fromrepo='["MyRepoName"]' novendorchange=True salt '*' pkg.upgrade dist-upgrade=True dryrun=True ''' cmd_update = (['dist-upgrade'] if dist_upgrade else ['update']) + ['--auto-agree-with-licenses'] if skip_verify: # The '--no-gpg-checks' needs to be placed before the Zypper command. cmd_update.insert(0, '--no-gpg-checks') if refresh: refresh_db() if dryrun: cmd_update.append('--dry-run') if dist_upgrade: if fromrepo: for repo in fromrepo: cmd_update.extend(['--from', repo]) log.info('Targeting repos: {0}'.format(fromrepo)) if novendorchange: # TODO: Grains validation should be moved to Zypper class if __grains__['osrelease_info'][0] > 11: cmd_update.append('--no-allow-vendor-change') log.info('Disabling vendor changes') else: log.warning('Disabling vendor changes is not supported on this Zypper version') if dryrun: # Creates a solver test case for debugging. log.info('Executing debugsolver and performing a dry-run dist-upgrade') __zypper__(systemd_scope=_systemd_scope()).noraise.call(*cmd_update + ['--debug-solver']) old = list_pkgs() __zypper__(systemd_scope=_systemd_scope()).noraise.call(*cmd_update) __context__.pop('pkg.list_pkgs', None) new = list_pkgs() ret = salt.utils.compare_dicts(old, new) if __zypper__.exit_code not in __zypper__.SUCCESS_EXIT_CODES: result = { 'retcode': __zypper__.exit_code, 'stdout': __zypper__.stdout, 'stderr': __zypper__.stderr, 'pid': __zypper__.pid, } raise CommandExecutionError( 'Problem encountered upgrading packages', info={'changes': ret, 'result': result} ) if dryrun: ret = (__zypper__.stdout + os.linesep + __zypper__.stderr).strip() return ret def _uninstall(name=None, pkgs=None): ''' Remove and purge do identical things but with different Zypper commands, this function performs the common logic. ''' try: pkg_params = __salt__['pkg_resource.parse_targets'](name, pkgs)[0] except MinionError as exc: raise CommandExecutionError(exc) old = list_pkgs() targets = [target for target in pkg_params if target in old] if not targets: return {} systemd_scope = _systemd_scope() errors = [] while targets: __zypper__(systemd_scope=systemd_scope).call('remove', *targets[:500]) targets = targets[500:] __context__.pop('pkg.list_pkgs', None) ret = salt.utils.compare_dicts(old, list_pkgs()) if errors: raise CommandExecutionError( 'Problem encountered removing package(s)', info={'errors': errors, 'changes': ret} ) return ret def remove(name=None, pkgs=None, **kwargs): # pylint: disable=unused-argument ''' .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands which modify installed packages from the ``salt-minion`` daemon's control group. This is done to keep systemd from killing any zypper commands spawned by Salt when the ``salt-minion`` service is restarted. (see ``KillMode`` in the `systemd.kill(5)`_ manpage for more information). If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html .. _`systemd.kill(5)`: https://www.freedesktop.org/software/systemd/man/systemd.kill.html Remove packages with ``zypper -n remove`` name The name of the package to be deleted. Multiple Package Options: pkgs A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. .. versionadded:: 0.16.0 Returns a dict containing the changes. CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]' ''' return _uninstall(name=name, pkgs=pkgs) def purge(name=None, pkgs=None, **kwargs): # pylint: disable=unused-argument ''' .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands which modify installed packages from the ``salt-minion`` daemon's control group. This is done to keep systemd from killing any zypper commands spawned by Salt when the ``salt-minion`` service is restarted. (see ``KillMode`` in the `systemd.kill(5)`_ manpage for more information). If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html .. _`systemd.kill(5)`: https://www.freedesktop.org/software/systemd/man/systemd.kill.html Recursively remove a package and all dependencies which were installed with it, this will call a ``zypper -n remove -u`` name The name of the package to be deleted. Multiple Package Options: pkgs A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. .. versionadded:: 0.16.0 Returns a dict containing the changes. CLI Example: .. code-block:: bash salt '*' pkg.purge <package name> salt '*' pkg.purge <package1>,<package2>,<package3> salt '*' pkg.purge pkgs='["foo", "bar"]' ''' return _uninstall(name=name, pkgs=pkgs) def list_locks(): ''' List current package locks. Return a dict containing the locked package with attributes:: {'<package>': {'case_sensitive': '<case_sensitive>', 'match_type': '<match_type>' 'type': '<type>'}} CLI Example: .. code-block:: bash salt '*' pkg.list_locks ''' locks = {} if os.path.exists(LOCKS): with salt.utils.fopen(LOCKS) as fhr: for meta in [item.split('\n') for item in fhr.read().split('\n\n')]: lock = {} for element in [el for el in meta if el]: if ':' in element: lock.update(dict([tuple([i.strip() for i in element.split(':', 1)]), ])) if lock.get('solvable_name'): locks[lock.pop('solvable_name')] = lock return locks def clean_locks(): ''' Remove unused locks that do not currently (with regard to repositories used) lock any package. CLI Example: .. code-block:: bash salt '*' pkg.clean_locks ''' LCK = "removed" out = {LCK: 0} if not os.path.exists("/etc/zypp/locks"): return out for node in __zypper__.xml.call('cl').getElementsByTagName("message"): text = node.childNodes[0].nodeValue.lower() if text.startswith(LCK): out[LCK] = text.split(" ")[1] break return out def remove_lock(packages, **kwargs): # pylint: disable=unused-argument ''' Remove specified package lock. CLI Example: .. code-block:: bash salt '*' pkg.remove_lock <package name> salt '*' pkg.remove_lock <package1>,<package2>,<package3> salt '*' pkg.remove_lock pkgs='["foo", "bar"]' ''' locks = list_locks() try: packages = list(__salt__['pkg_resource.parse_targets'](packages)[0].keys()) except MinionError as exc: raise CommandExecutionError(exc) removed = [] missing = [] for pkg in packages: if locks.get(pkg): removed.append(pkg) else: missing.append(pkg) if removed: __zypper__.call('rl', *removed) return {'removed': len(removed), 'not_found': missing} def add_lock(packages, **kwargs): # pylint: disable=unused-argument ''' Add a package lock. Specify packages to lock by exact name. CLI Example: .. code-block:: bash salt '*' pkg.add_lock <package name> salt '*' pkg.add_lock <package1>,<package2>,<package3> salt '*' pkg.add_lock pkgs='["foo", "bar"]' ''' locks = list_locks() added = [] try: packages = list(__salt__['pkg_resource.parse_targets'](packages)[0].keys()) except MinionError as exc: raise CommandExecutionError(exc) for pkg in packages: if not locks.get(pkg): added.append(pkg) if added: __zypper__.call('al', *added) return {'added': len(added), 'packages': added} def verify(*names, **kwargs): ''' Runs an rpm -Va on a system, and returns the results in a dict Files with an attribute of config, doc, ghost, license or readme in the package header can be ignored using the ``ignore_types`` keyword argument CLI Example: .. code-block:: bash salt '*' pkg.verify salt '*' pkg.verify httpd salt '*' pkg.verify 'httpd postfix' salt '*' pkg.verify 'httpd postfix' ignore_types=['config','doc'] ''' return __salt__['lowpkg.verify'](*names, **kwargs) def file_list(*packages): ''' List the files that belong to a package. Not specifying any packages will return a list of *every* file on the system's rpm database (not generally recommended). CLI Examples: .. code-block:: bash salt '*' pkg.file_list httpd salt '*' pkg.file_list httpd postfix salt '*' pkg.file_list ''' return __salt__['lowpkg.file_list'](*packages) def file_dict(*packages): ''' List the files that belong to a package, grouped by package. Not specifying any packages will return a list of *every* file on the system's rpm database (not generally recommended). CLI Examples: .. code-block:: bash salt '*' pkg.file_list httpd salt '*' pkg.file_list httpd postfix salt '*' pkg.file_list ''' return __salt__['lowpkg.file_dict'](*packages) def modified(*packages, **flags): ''' List the modified files that belong to a package. Not specifying any packages will return a list of _all_ modified files on the system's RPM database. .. versionadded:: 2015.5.0 Filtering by flags (True or False): size Include only files where size changed. mode Include only files which file's mode has been changed. checksum Include only files which MD5 checksum has been changed. device Include only files which major and minor numbers has been changed. symlink Include only files which are symbolic link contents. owner Include only files where owner has been changed. group Include only files where group has been changed. time Include only files where modification time of the file has been changed. capabilities Include only files where capabilities differ or not. Note: supported only on newer RPM versions. CLI Examples: .. code-block:: bash salt '*' pkg.modified salt '*' pkg.modified httpd salt '*' pkg.modified httpd postfix salt '*' pkg.modified httpd owner=True group=False ''' return __salt__['lowpkg.modified'](*packages, **flags) def owner(*paths): ''' Return the name of the package that owns the file. Multiple file paths can be passed. If a single path is passed, a string will be returned, and if multiple paths are passed, a dictionary of file/package name pairs will be returned. If the file is not owned by a package, or is not present on the minion, then an empty string will be returned for that path. CLI Examples: .. code-block:: bash salt '*' pkg.owner /usr/bin/apachectl salt '*' pkg.owner /usr/bin/apachectl /etc/httpd/conf/httpd.conf ''' return __salt__['lowpkg.owner'](*paths) def _get_patterns(installed_only=None): ''' List all known patterns in repos. ''' patterns = {} for element in __zypper__.nolock.xml.call('se', '-t', 'pattern').getElementsByTagName('solvable'): installed = element.getAttribute('status') == 'installed' if (installed_only and installed) or not installed_only: patterns[element.getAttribute('name')] = { 'installed': installed, 'summary': element.getAttribute('summary'), } return patterns def list_patterns(refresh=False): ''' List all known patterns from available repos. refresh force a refresh if set to True. If set to False (default) it depends on zypper if a refresh is executed. CLI Examples: .. code-block:: bash salt '*' pkg.list_patterns ''' if refresh: refresh_db() return _get_patterns() def list_installed_patterns(): ''' List installed patterns on the system. CLI Examples: .. code-block:: bash salt '*' pkg.list_installed_patterns ''' return _get_patterns(installed_only=True) def search(criteria, refresh=False): ''' List known packags, available to the system. refresh force a refresh if set to True. If set to False (default) it depends on zypper if a refresh is executed. CLI Examples: .. code-block:: bash salt '*' pkg.search <criteria> ''' if refresh: refresh_db() solvables = __zypper__.nolock.xml.call('se', criteria).getElementsByTagName('solvable') if not solvables: raise CommandExecutionError( 'No packages found matching \'{0}\''.format(criteria) ) out = {} for solvable in [slv for slv in solvables if slv.getAttribute('status') == 'not-installed' and slv.getAttribute('kind') == 'package']: out[solvable.getAttribute('name')] = {'summary': solvable.getAttribute('summary')} return out def _get_first_aggregate_text(node_list): ''' Extract text from the first occurred DOM aggregate. ''' if not node_list: return '' out = [] for node in node_list[0].childNodes: if node.nodeType == dom.Document.TEXT_NODE: out.append(node.nodeValue) return '\n'.join(out) def list_products(all=False, refresh=False): ''' List all available or installed SUSE products. all List all products available or only installed. Default is False. refresh force a refresh if set to True. If set to False (default) it depends on zypper if a refresh is executed. Includes handling for OEM products, which read the OEM productline file and overwrite the release value. CLI Examples: .. code-block:: bash salt '*' pkg.list_products salt '*' pkg.list_products all=True ''' if refresh: refresh_db() ret = list() OEM_PATH = "/var/lib/suseRegister/OEM" cmd = list() if not all: cmd.append('--disable-repos') cmd.append('products') if not all: cmd.append('-i') product_list = __zypper__.nolock.xml.call(*cmd).getElementsByTagName('product-list') if not product_list: return ret # No products found for prd in product_list[0].getElementsByTagName('product'): p_nfo = dict() for k_p_nfo, v_p_nfo in prd.attributes.items(): if k_p_nfo in ['isbase', 'installed']: p_nfo[k_p_nfo] = bool(v_p_nfo in ['true', '1']) elif v_p_nfo: p_nfo[k_p_nfo] = v_p_nfo eol = prd.getElementsByTagName('endoflife') if eol: p_nfo['eol'] = eol[0].getAttribute('text') p_nfo['eol_t'] = int(eol[0].getAttribute('time_t') or 0) p_nfo['description'] = " ".join( [line.strip() for line in _get_first_aggregate_text( prd.getElementsByTagName('description') ).split(os.linesep)] ) if 'productline' in p_nfo and p_nfo['productline']: oem_file = os.path.join(OEM_PATH, p_nfo['productline']) if os.path.isfile(oem_file): with salt.utils.fopen(oem_file, 'r') as rfile: oem_release = rfile.readline().strip() if oem_release: p_nfo['release'] = oem_release ret.append(p_nfo) return ret def download(*packages, **kwargs): ''' Download packages to the local disk. refresh force a refresh if set to True. If set to False (default) it depends on zypper if a refresh is executed. CLI example: .. code-block:: bash salt '*' pkg.download httpd salt '*' pkg.download httpd postfix ''' if not packages: raise SaltInvocationError('No packages specified') refresh = kwargs.get('refresh', False) if refresh: refresh_db() pkg_ret = {} for dld_result in __zypper__.xml.call('download', *packages).getElementsByTagName("download-result"): repo = dld_result.getElementsByTagName("repository")[0] path = dld_result.getElementsByTagName("localfile")[0].getAttribute("path") pkg_info = { 'repository-name': repo.getAttribute('name'), 'repository-alias': repo.getAttribute('alias'), 'path': path, } key = _get_first_aggregate_text( dld_result.getElementsByTagName('name') ) if __salt__['lowpkg.checksum'](pkg_info['path']): pkg_ret[key] = pkg_info if pkg_ret: failed = [pkg for pkg in packages if pkg not in pkg_ret] if failed: pkg_ret['_error'] = ('The following package(s) failed to download: {0}'.format(', '.join(failed))) return pkg_ret raise CommandExecutionError( 'Unable to download packages: {0}'.format(', '.join(packages)) ) def diff(*paths): ''' Return a formatted diff between current files and original in a package. NOTE: this function includes all files (configuration and not), but does not work on binary content. :param path: Full path to the installed file :return: Difference string or raises and exception if examined file is binary. CLI example: .. code-block:: bash salt '*' pkg.diff /etc/apache2/httpd.conf /etc/sudoers ''' ret = {} pkg_to_paths = {} for pth in paths: pth_pkg = __salt__['lowpkg.owner'](pth) if not pth_pkg: ret[pth] = os.path.exists(pth) and 'Not managed' or 'N/A' else: if pkg_to_paths.get(pth_pkg) is None: pkg_to_paths[pth_pkg] = [] pkg_to_paths[pth_pkg].append(pth) if pkg_to_paths: local_pkgs = __salt__['pkg.download'](*pkg_to_paths.keys()) for pkg, files in six.iteritems(pkg_to_paths): for path in files: ret[path] = __salt__['lowpkg.diff']( local_pkgs[pkg]['path'], path ) or 'Unchanged' return ret
the-stack_106_27313
import json from http import HTTPStatus import responses # type: ignore from flask import current_app import pytest import sqlalchemy # type: ignore from sqlalchemy.exc import OperationalError from lighthouse.constants import ( FIELD_COG_BARCODE, FIELD_ROOT_SAMPLE_ID, MLWH_LH_SAMPLE_ROOT_SAMPLE_ID, MLWH_LH_SAMPLE_COG_UK_ID, FIELD_RNA_ID, FIELD_RESULT ) from lighthouse.helpers.plates import ( add_cog_barcodes, create_post_body, get_centre_prefix, get_samples, get_positive_samples, update_mlwh_with_cog_uk_ids, UnmatchedSampleError ) def test_add_cog_barcodes(app, centres, samples, mocked_responses): with app.app_context(): baracoda_url = f"http://{current_app.config['BARACODA_URL']}/barcodes_group/TS1/new?count={len(samples)}" # remove the cog_barcode key and value from the samples fixture before testing map(lambda sample: sample.pop(FIELD_COG_BARCODE), samples) cog_barcodes = ("123", "456", "789", "101", "131", "161", "192", "222") # update the 'cog_barcode' tuple when adding more samples to the fixture data assert len(cog_barcodes) == len(samples) mocked_responses.add( responses.POST, baracoda_url, body=json.dumps({"barcodes_group": {"barcodes": cog_barcodes}}), status=HTTPStatus.CREATED, ) add_cog_barcodes(samples) for idx, sample in enumerate(samples): assert FIELD_COG_BARCODE in sample.keys() assert sample[FIELD_COG_BARCODE] == cog_barcodes[idx] def test_centre_prefix(app, centres, mocked_responses): with app.app_context(): assert get_centre_prefix("TEST1") == "TS1" assert get_centre_prefix("test2") == "TS2" assert get_centre_prefix("TeSt3") == "TS3" def test_create_post_body(app, samples): with app.app_context(): barcode = "12345" correct_body = { "data": { "type": "plates", "attributes": { "barcode": "12345", "purpose_uuid": current_app.config["SS_UUID_PLATE_PURPOSE"], "study_uuid": current_app.config["SS_UUID_STUDY"], "wells": { "A01": { "content": { "phenotype": "positive", "supplier_name": "abc", "sample_description": "MCM001", } }, "B01": { "content": { "phenotype": "negative", "supplier_name": "def", "sample_description": "MCM002", } }, "C01": { "content": { "phenotype": "void", "supplier_name": "hij", "sample_description": "MCM003", } }, "D01": { "content": { "phenotype": "limit of detection", "supplier_name": "klm", "sample_description": "MCM004", } }, "E01": { "content": { "phenotype": "positive", "supplier_name": "nop", "sample_description": "MCM005", } }, "F01": { "content": { "phenotype": "positive", "supplier_name": "qrs", "sample_description": "MCM006", } }, "G01": { "content": { "phenotype": "positive", "supplier_name": "tuv", "sample_description": "MCM007", } }, "A02": { "content": { "phenotype": "positive", "supplier_name": "wxy", "sample_description": "CBIQA_MCM008", } } }, }, } } assert create_post_body(barcode, samples) == correct_body def test_get_samples(app, samples): with app.app_context(): assert len(get_samples("123")) == 8 def test_get_positive_samples(app, samples): with app.app_context(): assert len(get_positive_samples("123")) == 3 def test_get_positive_samples_different_plates(app, samples_different_plates): with app.app_context(): assert len(get_positive_samples("123")) == 1 def test_update_mlwh_with_cog_uk_ids(app, mlwh_lh_samples_multiple, samples_for_mlwh_update, cog_uk_ids, sql_engine): with app.app_context(): # check that the samples already exist in the MLWH db but do not have cog uk ids before = retrieve_samples_cursor(app.config, sql_engine) before_count = 0 for row in before: before_count += 1 assert row[MLWH_LH_SAMPLE_COG_UK_ID] is None assert before_count == 3 # run the function we're testing update_mlwh_with_cog_uk_ids(samples_for_mlwh_update) # check that the same samples in the MLWH now have the correct cog uk ids after = retrieve_samples_cursor(app.config, sql_engine) after_count = 0 after_cog_uk_ids = set() for row in after: after_count += 1 after_cog_uk_ids.add(row[MLWH_LH_SAMPLE_COG_UK_ID]) assert after_count == before_count assert after_cog_uk_ids == set(cog_uk_ids) def test_update_mlwh_with_cog_uk_ids_connection_fails(app, mlwh_lh_samples_multiple, samples_for_mlwh_update): with app.app_context(): # mock this out to cause an exception app.config['MLWH_RW_CONN_STRING'] = 'notarealconnectionstring' with pytest.raises(OperationalError): update_mlwh_with_cog_uk_ids(samples_for_mlwh_update) def test_update_mlwh_with_cog_uk_ids_field_missing(app, mlwh_lh_samples_multiple): with app.app_context(): samples = [{ FIELD_ROOT_SAMPLE_ID: 'root_1', FIELD_RNA_ID: 'rna_1', FIELD_RESULT: 'positive' # no cog uk id }] with pytest.raises(KeyError): update_mlwh_with_cog_uk_ids(samples) def test_update_mlwh_with_cog_uk_ids_unmatched_sample(app, mlwh_lh_samples_multiple, samples_for_mlwh_update, cog_uk_ids, sql_engine): # Should - update the ones it can, but then log a detailed error, and throw an exception with app.app_context(): # add sample that doesn't match one in the MLWH samples_for_mlwh_update.append({ FIELD_ROOT_SAMPLE_ID: 'root_253', FIELD_RNA_ID: 'rna_253', FIELD_RESULT: 'positive', FIELD_COG_BARCODE: 'cog_253' }) # check that the expected number of samples are in the MLWH db but do not have cog uk ids before = retrieve_samples_cursor(app.config, sql_engine) before_count = 0 for row in before: before_count += 1 assert row[MLWH_LH_SAMPLE_COG_UK_ID] is None assert before_count == 3 # check the function raises an exception due to the unmatched sample with pytest.raises(UnmatchedSampleError): update_mlwh_with_cog_uk_ids(samples_for_mlwh_update) # check that the matched samples in the MLWH now have the correct cog uk ids after = retrieve_samples_cursor(app.config, sql_engine) after_count = 0 after_cog_uk_ids = set() for row in after: after_count += 1 after_cog_uk_ids.add(row[MLWH_LH_SAMPLE_COG_UK_ID]) assert after_count == before_count assert after_cog_uk_ids == set(cog_uk_ids) def retrieve_samples_cursor(config, sql_engine): with sql_engine.connect() as connection: results = connection.execute(f"SELECT {MLWH_LH_SAMPLE_ROOT_SAMPLE_ID}, {MLWH_LH_SAMPLE_COG_UK_ID} from lighthouse_sample") return results
the-stack_106_27315
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from abc import abstractmethod import torch from torch import nn import torch.nn.functional as F from torch.nn import Parameter, Dropout class ModelWithDummyParameter(nn.Module): def __init__(self): super().__init__() self.dummy_param = Parameter(torch.zeros(1)) @abstractmethod def forward(self, x): pass class ManyNonEvalModules(ModelWithDummyParameter): class AuxBranch(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(1, 1) self.weight = Parameter(torch.ones([1, 1])) def forward(self, x): x = F.linear(x, self.weight) x = self.linear(x) x = F.relu(x) return x class ModuleWithMixedModules(nn.Module): def __init__(self): super().__init__() self.weight = Parameter(torch.ones([1, 1])) self.not_called_linear = nn.Linear(1, 1) self.called_linear = nn.Linear(1, 1) def forward(self, x): x = Dropout(p=0.2)(x) x = F.linear(x, self.weight) x = Dropout(p=0.2)(x) x = self.called_linear(x) return x def __init__(self): super().__init__() self.aux_branch = self.AuxBranch() self.mixed_modules = self.ModuleWithMixedModules() self.avg_pool = nn.AvgPool2d(1) def forward(self, x): x = self.avg_pool(x) if self.training: aux = self.aux_branch(x) x = self.mixed_modules(x) return x, aux if self.training else x class PoolUnPool(ModelWithDummyParameter): def __init__(self): super().__init__() self.pool = nn.MaxPool3d(3, stride=2, return_indices=True) self.unpool = nn.MaxUnpool3d(3, stride=2) def forward(self, input_): output, indices = self.pool(input_) return self.unpool(output, indices) class ArangeModel(ModelWithDummyParameter): def forward(self, dummy_x): return torch.arange(0, dummy_x.size(0), dtype=torch.int64) class TransposeModel(ModelWithDummyParameter): def forward(self, x): o1 = x.transpose(dim0=0, dim1=0) o2 = x.permute(dims=[0]) return o1, o2 class GatherModel(ModelWithDummyParameter): def forward(self, x): index = torch.zeros(1, dtype=torch.int64).to(x.device) o1 = torch.where(self.dummy_param > 0, x, self.dummy_param) o2 = torch.index_select(x, dim=0, index=index) o3 = x.index_select(dim=0, index=index) o4 = x[0] return o1, o2, o3, o4 class MaskedFillModel(ModelWithDummyParameter): def forward(self, x): o1 = x.masked_fill_(self.dummy_param > 0, 1.0) o2 = x.masked_fill(self.dummy_param > 0, 1.0) return o1, o2 class ReshapeModel(ModelWithDummyParameter): def forward(self, x): torch.squeeze(x) torch.unsqueeze(x, dim=0) torch.flatten(x) return x.reshape([1]), x.squeeze(), x.flatten(), x.unsqueeze(dim=0), x.view([1])
the-stack_106_27316
import bokeh.plotting import bokeh.layouts import bokeh.models def main(): columns = [] color_mappers = [] for name in bokeh.palettes.mpl: figures = [] for number in bokeh.palettes.mpl[name]: palette = bokeh.palettes.mpl[name][number] color_mapper = bokeh.models.LinearColorMapper(palette=palette, low=0, high=1) color_mappers.append(color_mapper) figures.append(make_figure(color_mapper)) columns.append(bokeh.layouts.column(*figures)) button = bokeh.models.Button() def on_click(): for mapper in color_mappers: mapper.palette = mapper.palette[::-1] button.on_click(on_click) row = bokeh.layouts.row(*columns) document = bokeh.plotting.curdoc() document.add_root(button) document.add_root(row) def make_figure(color_mapper): padding = 5 margin = 20 plot_height = 60 plot_width = 250 figure = bokeh.plotting.figure( plot_height=plot_height, plot_width=plot_width, toolbar_location=None, min_border=0, background_fill_alpha=0, border_fill_alpha=0, outline_line_color=None, ) figure.axis.visible = False colorbar = bokeh.models.ColorBar( color_mapper=color_mapper, location=(0, 0), height=10, width=int(plot_width - (margin + padding)), padding=padding, orientation="horizontal", major_tick_line_color="black", bar_line_color="black", background_fill_alpha=0., ) colorbar.title = "" figure.add_layout(colorbar, 'center') return figure if __name__.startswith("bk"): main()
the-stack_106_27317
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC from collections import defaultdict from enum import Enum from typing import Dict import onnx import torch from nemo.core.classes import typecheck from nemo.core.neural_types import AxisKind, NeuralType from nemo.utils import logging from nemo.utils.export_utils import replace_for_export try: import onnx_graphsurgeon as gs ONNX_GRAPHSURGEON_AVAILABLE = True except (ImportError, ModuleNotFoundError): ONNX_GRAPHSURGEON_AVAILABLE = False __all__ = ['ExportFormat', 'Exportable'] class ExportFormat(Enum): """Which format to use when exporting a Neural Module for deployment""" ONNX = (1,) TORCHSCRIPT = (2,) _EXT_DICT = { ".pt": ExportFormat.TORCHSCRIPT, ".ts": ExportFormat.TORCHSCRIPT, ".onnx": ExportFormat.ONNX, } class Exportable(ABC): """ This Interface should be implemented by particular classes derived from nemo.core.NeuralModule or nemo.core.ModelPT. It gives these entities ability to be exported for deployment to formats such as ONNX. """ @staticmethod def get_format(filename: str): _, ext = os.path.splitext(filename) try: return _EXT_DICT[ext] except KeyError: raise ValueError(f"Export file {filename} extension does not correspond to any export format!") @property def input_module(self): return self @property def output_module(self): return self def get_input_names(self, input_example): if isinstance(input_example, Dict): input_names = list(input_example.keys()) else: if not (hasattr(self, 'input_types')): raise NotImplementedError( 'For export to work you must define input_types or pass names in input_example' ) input_names = list(self.input_types.keys()) # remove unnecessary inputs for input_ports for name in self.disabled_deployment_input_names: input_names.remove(name) return input_names def get_output_names(self, output_example): if isinstance(output_example, Dict): output_names = list(output_example.keys()) else: if not (hasattr(self, 'output_types')): raise NotImplementedError( 'For export to work you must define output_types or pass names in output_example' ) output_names = list(self.output_types.keys()) # remove unnecessary inputs for input_ports for name in self.disabled_deployment_output_names: output_names.remove(name) return output_names def get_input_dynamic_axes(self, input_names): dynamic_axes = defaultdict(list) for name in input_names: dynamic_axes = { **dynamic_axes, **self._extract_dynamic_axes(name, self.input_types[name]), } return dynamic_axes def get_output_dynamic_axes(self, output_names): dynamic_axes = defaultdict(list) for name in output_names: dynamic_axes = { **dynamic_axes, **self._extract_dynamic_axes(name, self.output_types[name]), } return dynamic_axes def export( self, output: str, input_example=None, output_example=None, verbose=False, export_params=True, do_constant_folding=True, keep_initializers_as_inputs=False, onnx_opset_version: int = 12, try_script: bool = False, set_eval: bool = True, check_trace: bool = True, use_dynamic_axes: bool = True, dynamic_axes=None, check_tolerance=0.01, forward_method=None, ): my_args = locals() del my_args['self'] qual_name = self.__module__ + '.' + self.__class__.__qualname__ output_descr = qual_name + ' exported to ONNX' try: # Disable typechecks typecheck.set_typecheck_enabled(enabled=False) # Allow user to completely override forward method to export if forward_method is None and hasattr(type(self), "forward_for_export"): forward_method = type(self).forward_for_export if forward_method: old_forward_method = type(self).forward type(self).forward = forward_method # Set module to eval mode if set_eval: self.eval() format = self.get_format(output) if input_example is None: input_example = self.input_module.input_example() if isinstance(input_example, Dict): input_example = tuple(input_example.values()) my_args['input_example'] = input_example self._prepare_for_export(**my_args) if output_example is None: if isinstance(input_example, tuple): output_example = self.forward(*input_example) else: output_example = self.forward(input_example) input_names = self.input_module.get_input_names(input_example) output_names = self.output_module.get_output_names(output_example) with torch.jit.optimized_execution(True), torch.no_grad(): jitted_model = None if try_script: try: jitted_model = torch.jit.script(self) except Exception as e: print("jit.script() failed!", e) with torch.jit.optimized_execution(True), torch.no_grad(): if format == ExportFormat.TORCHSCRIPT: if jitted_model is None: jitted_model = torch.jit.trace( self, input_example, strict=False, optimize=True, check_trace=check_trace, check_tolerance=check_tolerance, ) if verbose: print(jitted_model.code) jitted_model.save(output) assert os.path.exists(output) elif format == ExportFormat.ONNX: if jitted_model is None: jitted_model = self # dynamic axis is a mapping from input/output_name => list of "dynamic" indices if dynamic_axes is None and use_dynamic_axes: dynamic_axes = self.input_module.get_input_dynamic_axes(input_names) dynamic_axes = {**dynamic_axes, **self.output_module.get_output_dynamic_axes(output_names)} torch.onnx.export( jitted_model, input_example, output, input_names=input_names, output_names=output_names, verbose=verbose, export_params=export_params, do_constant_folding=do_constant_folding, keep_initializers_as_inputs=keep_initializers_as_inputs, dynamic_axes=dynamic_axes, opset_version=onnx_opset_version, example_outputs=output_example, ) # Verify the model can be read, and is valid onnx_model = onnx.load(output) onnx.checker.check_model(onnx_model, full_check=True) if do_constant_folding: if not ONNX_GRAPHSURGEON_AVAILABLE: logging.info( f"onnx-graphsurgeon module is not instlled." "That may result in suboptimal optimization of exported ONNX graph (including unneeded DOUBLE initializers)." "Please follow the instructions available at:" "https://github.com/NVIDIA/TensorRT/tree/master/tools/onnx-graphsurgeon" "to install onnx-graphsurgeon from source to improve exported graph." ) else: # This pass is to remove/recast certain constants that are generated as 'double' # Those constants break ONNX -> TRT conversion (TRT does not support 'double' as of 7.2) # Can probably be removed once TRT has automatic downcast for double. # However, it may still be useful even then as it seems to always make the graph shorter. graph = gs.import_onnx(onnx_model) onnx_model = gs.export_onnx(graph.fold_constants().cleanup()) onnx.checker.check_model(onnx_model, full_check=True) onnx.save(onnx_model, output) else: raise ValueError(f'Encountered unknown export format {format}.') finally: typecheck.set_typecheck_enabled(enabled=True) if forward_method: type(self).forward = old_forward_method return ([output], [output_descr]) @property def disabled_deployment_input_names(self): """Implement this method to return a set of input names disabled for export""" return set() @property def disabled_deployment_output_names(self): """Implement this method to return a set of output names disabled for export""" return set() @property def supported_export_formats(self): """Implement this method to return a set of export formats supported. Default is all types.""" return set([ExportFormat.ONNX, ExportFormat.TORCHSCRIPT]) @staticmethod def _extract_dynamic_axes(name: str, ntype: NeuralType): """ Implement this method to provide dynamic axes id for ONNX export. By default, this method will extract BATCH and TIME dimension ids from each provided input/output name argument. For example, if module/model accepts argument named "input_signal" with type corresponding to [Batch, Time, Dim] shape, then the returned result should contain "input_signal" -> [0, 1] because Batch and Time are dynamic axes as they can change from call to call during inference. Args: name: Name of input or output parameter ntype: Corresponding Neural Type Returns: """ dynamic_axes = defaultdict(list) if ntype.axes: for ind, axis in enumerate(ntype.axes): if axis.kind in [AxisKind.Batch, AxisKind.Time, AxisKind.Width, AxisKind.Height]: dynamic_axes[name].append(ind) return dynamic_axes def _prepare_for_export(self, **kwargs): """ Override this method to prepare module for export. This is in-place operation. Base version does common necessary module replacements (Apex etc) """ replace_1D_2D = kwargs.get('replace_1D_2D', False) replace_for_export(self, replace_1D_2D)
the-stack_106_27319
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ from torch import nn class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, int(channel / reduction), bias=False), nn.ReLU(inplace=True), nn.Linear(int(channel / reduction), channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x)
the-stack_106_27320
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 1 15:24:54 2020 @author: magnus """ import numpy as np #from randomSequence import * # xvals = np.random.rand(-1,1,len(xvals)) # yvals = np.random.rand(-1,1,len(yvals)) # vals = [[x, y] for x, y in zip(xvals, yvals)] # print(vals) def circleAreaMC(xvals, yvals): n = 0 for i in range(np.size(xvals)): if np.linalg.norm(np.array([xvals[i],yvals[i]])) < 1: n += 1 Ac = 4*(n/np.size(xvals)) return Ac
the-stack_106_27323
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import Dict, TYPE_CHECKING from cirq.protocols.json_serialization import ObjectFactory if TYPE_CHECKING: import cirq.ops.pauli_gates import cirq.devices.unconstrained_device @functools.lru_cache() def _class_resolver_dictionary() -> Dict[str, ObjectFactory]: import cirq from cirq.ops import raw_types import pandas as pd import numpy as np from cirq.devices.noise_model import _NoNoiseModel from cirq.experiments import CrossEntropyResult, CrossEntropyResultDict, GridInteractionLayer from cirq.experiments.grid_parallel_two_qubit_xeb import GridParallelXEBMetadata def _identity_operation_from_dict(qubits, **kwargs): return cirq.identity_each(*qubits) def single_qubit_matrix_gate(matrix): if not isinstance(matrix, np.ndarray): matrix = np.array(matrix, dtype=np.complex128) return cirq.MatrixGate(matrix, qid_shape=(matrix.shape[0],)) def two_qubit_matrix_gate(matrix): if not isinstance(matrix, np.ndarray): matrix = np.array(matrix, dtype=np.complex128) return cirq.MatrixGate(matrix, qid_shape=(2, 2)) def _parallel_gate_op(gate, qubits): return cirq.parallel_gate_op(gate, *qubits) import sympy return { 'AmplitudeDampingChannel': cirq.AmplitudeDampingChannel, 'AsymmetricDepolarizingChannel': cirq.AsymmetricDepolarizingChannel, 'BitFlipChannel': cirq.BitFlipChannel, 'BitstringAccumulator': cirq.work.BitstringAccumulator, 'BooleanHamiltonian': cirq.BooleanHamiltonian, 'ProductState': cirq.ProductState, 'CCNotPowGate': cirq.CCNotPowGate, 'CCXPowGate': cirq.CCXPowGate, 'CCZPowGate': cirq.CCZPowGate, 'CNotPowGate': cirq.CNotPowGate, 'ControlledGate': cirq.ControlledGate, 'ControlledOperation': cirq.ControlledOperation, 'CSwapGate': cirq.CSwapGate, 'CXPowGate': cirq.CXPowGate, 'CZPowGate': cirq.CZPowGate, 'CrossEntropyResult': CrossEntropyResult, 'CrossEntropyResultDict': CrossEntropyResultDict, 'Circuit': cirq.Circuit, 'CircuitOperation': cirq.CircuitOperation, 'CliffordState': cirq.CliffordState, 'CliffordTableau': cirq.CliffordTableau, 'DepolarizingChannel': cirq.DepolarizingChannel, 'ConstantQubitNoiseModel': cirq.ConstantQubitNoiseModel, 'Duration': cirq.Duration, 'FrozenCircuit': cirq.FrozenCircuit, 'FSimGate': cirq.FSimGate, 'DensePauliString': cirq.DensePauliString, 'MutableDensePauliString': cirq.MutableDensePauliString, 'MutablePauliString': cirq.MutablePauliString, 'ObservableMeasuredResult': cirq.work.ObservableMeasuredResult, 'GateOperation': cirq.GateOperation, 'GeneralizedAmplitudeDampingChannel': cirq.GeneralizedAmplitudeDampingChannel, 'GlobalPhaseOperation': cirq.GlobalPhaseOperation, 'GridInteractionLayer': GridInteractionLayer, 'GridParallelXEBMetadata': GridParallelXEBMetadata, 'GridQid': cirq.GridQid, 'GridQubit': cirq.GridQubit, 'HPowGate': cirq.HPowGate, 'ISwapPowGate': cirq.ISwapPowGate, 'IdentityGate': cirq.IdentityGate, 'IdentityOperation': _identity_operation_from_dict, 'InitObsSetting': cirq.work.InitObsSetting, 'KrausChannel': cirq.KrausChannel, 'LinearDict': cirq.LinearDict, 'LineQubit': cirq.LineQubit, 'LineQid': cirq.LineQid, 'LineTopology': cirq.LineTopology, 'MatrixGate': cirq.MatrixGate, 'MixedUnitaryChannel': cirq.MixedUnitaryChannel, 'MeasurementKey': cirq.MeasurementKey, 'MeasurementGate': cirq.MeasurementGate, '_MeasurementSpec': cirq.work._MeasurementSpec, 'Moment': cirq.Moment, '_XEigenState': cirq.value.product_state._XEigenState, # type: ignore '_YEigenState': cirq.value.product_state._YEigenState, # type: ignore '_ZEigenState': cirq.value.product_state._ZEigenState, # type: ignore '_NoNoiseModel': _NoNoiseModel, 'NamedQubit': cirq.NamedQubit, 'NamedQid': cirq.NamedQid, 'NoIdentifierQubit': cirq.testing.NoIdentifierQubit, '_PauliX': cirq.ops.pauli_gates._PauliX, '_PauliY': cirq.ops.pauli_gates._PauliY, '_PauliZ': cirq.ops.pauli_gates._PauliZ, 'ParamResolver': cirq.ParamResolver, 'ParallelGateOperation': _parallel_gate_op, # Removed in v0.14 'ParallelGate': cirq.ParallelGate, 'PauliMeasurementGate': cirq.PauliMeasurementGate, 'PauliString': cirq.PauliString, 'PhaseDampingChannel': cirq.PhaseDampingChannel, 'PhaseFlipChannel': cirq.PhaseFlipChannel, 'PhaseGradientGate': cirq.PhaseGradientGate, 'PhasedFSimGate': cirq.PhasedFSimGate, 'PhasedISwapPowGate': cirq.PhasedISwapPowGate, 'PhasedXPowGate': cirq.PhasedXPowGate, 'PhasedXZGate': cirq.PhasedXZGate, 'StatePreparationChannel': cirq.StatePreparationChannel, 'ProjectorString': cirq.ProjectorString, 'ProjectorSum': cirq.ProjectorSum, 'RandomGateChannel': cirq.RandomGateChannel, 'QuantumFourierTransformGate': cirq.QuantumFourierTransformGate, 'RepetitionsStoppingCriteria': cirq.work.RepetitionsStoppingCriteria, 'ResetChannel': cirq.ResetChannel, 'SingleQubitCliffordGate': cirq.SingleQubitCliffordGate, 'SingleQubitMatrixGate': single_qubit_matrix_gate, 'SingleQubitPauliStringGateOperation': cirq.SingleQubitPauliStringGateOperation, 'SingleQubitReadoutCalibrationResult': cirq.experiments.SingleQubitReadoutCalibrationResult, 'StabilizerStateChForm': cirq.StabilizerStateChForm, 'SwapPowGate': cirq.SwapPowGate, 'SymmetricalQidPair': cirq.SymmetricalQidPair, 'TaggedOperation': cirq.TaggedOperation, 'TiltedSquareLattice': cirq.TiltedSquareLattice, 'TrialResult': cirq.Result, # keep support for Cirq < 0.11. 'Result': cirq.Result, 'Rx': cirq.Rx, 'Ry': cirq.Ry, 'Rz': cirq.Rz, 'TwoQubitMatrixGate': two_qubit_matrix_gate, '_UnconstrainedDevice': cirq.devices.unconstrained_device._UnconstrainedDevice, 'VarianceStoppingCriteria': cirq.work.VarianceStoppingCriteria, 'VirtualTag': cirq.VirtualTag, 'WaitGate': cirq.WaitGate, '_QubitAsQid': raw_types._QubitAsQid, # The formatter keeps putting this back # pylint: disable=line-too-long 'XEBPhasedFSimCharacterizationOptions': cirq.experiments.XEBPhasedFSimCharacterizationOptions, # pylint: enable=line-too-long 'XPowGate': cirq.XPowGate, 'XXPowGate': cirq.XXPowGate, 'YPowGate': cirq.YPowGate, 'YYPowGate': cirq.YYPowGate, 'ZPowGate': cirq.ZPowGate, 'ZZPowGate': cirq.ZZPowGate, # not a cirq class, but treated as one: 'pandas.DataFrame': pd.DataFrame, 'pandas.Index': pd.Index, 'pandas.MultiIndex': pd.MultiIndex.from_tuples, 'sympy.Symbol': sympy.Symbol, 'sympy.Add': lambda args: sympy.Add(*args), 'sympy.Mul': lambda args: sympy.Mul(*args), 'sympy.Pow': lambda args: sympy.Pow(*args), 'sympy.Float': lambda approx: sympy.Float(approx), 'sympy.Integer': sympy.Integer, 'sympy.Rational': sympy.Rational, 'sympy.pi': lambda: sympy.pi, 'sympy.E': lambda: sympy.E, 'sympy.EulerGamma': lambda: sympy.EulerGamma, 'complex': complex, }
the-stack_106_27324
""" Python implementation of the fast ICA algorithms. Reference: Tables 8.3 and 8.4 page 196 in the book: Independent Component Analysis, by Hyvarinen et al. """ # Authors: Pierre Lafaye de Micheaux, Stefan van der Walt, Gael Varoquaux, # Bertrand Thirion, Alexandre Gramfort, Denis A. Engemann # License: BSD 3 clause import warnings import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six import moves from ..utils import array2d, as_float_array, check_random_state, deprecated from ..utils.extmath import fast_dot __all__ = ['fastica', 'FastICA'] def _gs_decorrelation(w, W, j): """ Orthonormalize w wrt the first j rows of W Parameters ---------- w: array of shape(n), to be orthogonalized W: array of shape(p, n), null space definition j: int < p caveats ------- assumes that W is orthogonal w changed in place """ w -= np.dot(np.dot(w, W[:j].T), W[:j]) return w def _sym_decorrelation(W): """ Symmetric decorrelation i.e. W <- (W * W.T) ^{-1/2} * W """ s, u = linalg.eigh(np.dot(W, W.T)) # u (resp. s) contains the eigenvectors (resp. square roots of # the eigenvalues) of W * W.T return np.dot(np.dot(u * (1. / np.sqrt(s)), u.T), W) def _ica_def(X, tol, g, fun_args, max_iter, w_init): """Deflationary FastICA using fun approx to neg-entropy function Used internally by FastICA. """ n_components = w_init.shape[0] W = np.zeros((n_components, n_components), dtype=X.dtype) # j is the index of the extracted component for j in range(n_components): w = w_init[j, :].copy() w /= np.sqrt((w ** 2).sum()) for _ in moves.xrange(max_iter): gwtx, g_wtx = g(fast_dot(w.T, X), fun_args) w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w _gs_decorrelation(w1, W, j) w1 /= np.sqrt((w1 ** 2).sum()) lim = np.abs(np.abs((w1 * w).sum()) - 1) w = w1 if lim < tol: break W[j, :] = w return W def _ica_par(X, tol, g, fun_args, max_iter, w_init): """Parallel FastICA. Used internally by FastICA --main loop """ W = _sym_decorrelation(w_init) del w_init p_ = float(X.shape[1]) for ii in moves.xrange(max_iter): gwtx, g_wtx = g(fast_dot(W, X), fun_args) W1 = _sym_decorrelation(fast_dot(gwtx, X.T) / p_ - g_wtx[:, np.newaxis] * W) del gwtx, g_wtx # builtin max, abs are faster than numpy counter parts. lim = max(abs(abs(np.diag(fast_dot(W1, W.T))) - 1)) W = W1 if lim < tol: break else: warnings.warn('FastICA did not converge.' + ' You might want' + ' to increase the number of iterations.') return W # Some standard non-linear functions. # XXX: these should be optimized, as they can be a bottleneck. def _logcosh(x, fun_args=None): alpha = fun_args.get('alpha', 1.0) # comment it out? x *= alpha gx = np.tanh(x, x) # apply the tanh inplace g_x = np.empty(x.shape[0]) # XXX compute in chunks to avoid extra allocation for i, gx_i in enumerate(gx): # please don't vectorize. g_x[i] = (alpha * (1 - gx_i ** 2)).mean() return gx, g_x def _exp(x, fun_args): exp = np.exp(-(x ** 2) / 2) gx = x * exp g_x = (1 - x ** 2) * exp return gx, g_x.mean(axis=-1) def _cube(x, fun_args): return x ** 3, (3 * x ** 2).mean(axis=-1) def fastica(X, n_components=None, algorithm="parallel", whiten=True, fun="logcosh", fun_args=None, max_iter=200, tol=1e-04, w_init=None, random_state=None, return_X_mean=False, compute_sources=True): """Perform Fast Independent Component Analysis. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. n_components : int, optional Number of components to extract. If None no dimension reduction is performed. algorithm : {'parallel', 'deflation'}, optional Apply a parallel or deflational FASTICA algorithm. whiten : boolean, optional If True perform an initial whitening of the data. If False, the data is assumed to have already been preprocessed: it should be centered, normed and white. Otherwise you will get incorrect results. In this case the parameter n_components will be ignored. fun : string or function, optional. Default: 'logcosh' The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. Example: def my_g(x): return x ** 3, 3 * x ** 2 fun_args : dictionary, optional Arguments to send to the functional form. If empty or None and if fun='logcosh', fun_args will take value {'alpha' : 1.0} max_iter : int, optional Maximum number of iterations to perform. tol: float, optional A positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged. w_init : (n_components, n_components) array, optional Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array of normal r.v.'s is used. random_state : int or RandomState Pseudo number generator state used for random sampling. return_X_mean : bool, optional If True, X_mean is returned too. compute_sources : bool, optional If False, sources are not computed, but only the rotation matrix. This can save memory when working with big data. Defaults to True. Returns ------- K : array, shape (n_components, n_features) | None. If whiten is 'True', K is the pre-whitening matrix that projects data onto the first n_components principal components. If whiten is 'False', K is 'None'. W : array, shape (n_components, n_components) Estimated un-mixing matrix. The mixing matrix can be obtained by:: w = np.dot(W, K.T) A = w.T * (w * w.T).I S : array, shape (n_components, n_samples) | None Estimated source matrix X_mean : array, shape (n_features, ) The mean over features. Returned only if return_X_mean is True. Notes ----- The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X = AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA attempts to `un-mix' the data by estimating an un-mixing matrix W where ``S = W K X.`` This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed before the algorithm is applied. This makes it slightly faster for Fortran-ordered input. Implemented using FastICA: `A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430` """ random_state = check_random_state(random_state) fun_args = {} if fun_args is None else fun_args # make interface compatible with other decompositions # a copy is required only for non whitened data X = array2d(X, copy=whiten).T alpha = fun_args.get('alpha', 1.0) if not 1 <= alpha <= 2: raise ValueError('alpha must be in [1,2]') if fun == 'logcosh': g = _logcosh elif fun == 'exp': g = _exp elif fun == 'cube': g = _cube elif callable(fun): def g(x, fun_args): return fun(x, **fun_args) else: exc = ValueError if isinstance(fun, six.string_types) else TypeError raise exc("Unknown function %r;" " should be one of 'logcosh', 'exp', 'cube' or callable" % fun) n, p = X.shape if not whiten and n_components is not None: n_components = None warnings.warn('Ignoring n_components with whiten=False.') if n_components is None: n_components = min(n, p) if (n_components > min(n, p)): n_components = min(n, p) print("n_components is too large: it will be set to %s" % n_components) if whiten: # Centering the columns (ie the variables) X_mean = X.mean(axis=-1) X -= X_mean[:, np.newaxis] # Whitening and preprocessing by PCA u, d, _ = linalg.svd(X, full_matrices=False) del _ K = (u / d).T[:n_components] # see (6.33) p.140 del u, d X1 = np.dot(K, X) # see (13.6) p.267 Here X1 is white and data # in X has been projected onto a subspace by PCA X1 *= np.sqrt(p) else: # X must be casted to floats to avoid typing issues with numpy # 2.0 and the line below X1 = as_float_array(X, copy=False) # copy has been taken care of if w_init is None: w_init = np.asarray(random_state.normal(size=(n_components, n_components)), dtype=X1.dtype) else: w_init = np.asarray(w_init) if w_init.shape != (n_components, n_components): raise ValueError('w_init has invalid shape -- should be %(shape)s' % {'shape': (n_components, n_components)}) kwargs = {'tol': tol, 'g': g, 'fun_args': fun_args, 'max_iter': max_iter, 'w_init': w_init} if algorithm == 'parallel': W = _ica_par(X1, **kwargs) elif algorithm == 'deflation': W = _ica_def(X1, **kwargs) else: raise ValueError('Invalid algorithm: must be either `parallel` or' ' `deflation`.') del X1 if whiten: if compute_sources: S = fast_dot(fast_dot(W, K), X).T else: S = None if return_X_mean: return K, W, S, X_mean else: return K, W, S else: if compute_sources: S = fast_dot(W, X).T else: S = None if return_X_mean: return None, W, S, None else: return None, W, S class FastICA(BaseEstimator, TransformerMixin): """FastICA: a fast algorithm for Independent Component Analysis. Parameters ---------- n_components : int, optional Number of components to use. If none is passed, all are used. algorithm : {'parallel', 'deflation'} Apply parallel or deflational algorithm for FastICA. whiten : boolean, optional If whiten is false, the data is already considered to be whitened, and no whitening is performed. fun : string or function, optional. Default: 'logcosh' The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. Example: def my_g(x): return x ** 3, 3 * x ** 2 fun_args : dictionary, optional Arguments to send to the functional form. If empty and if fun='logcosh', fun_args will take value {'alpha' : 1.0}. max_iter : int, optional Maximum number of iterations during fit. tol : float, optional Tolerance on update at each iteration. w_init : None of an (n_components, n_components) ndarray The mixing matrix to be used to initialize the algorithm. random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- `components_` : 2D array, shape (n_components, n_features) The unmixing matrix. `mixing_` : array, shape (n_features, n_components) The mixing matrix. `sources_` : 2D array, shape (n_samples, n_components) The estimated latent sources of the data. This attribute is deprecated and will be removed in 0.16. Use `fit_transform` instead and store the result. Notes ----- Implementation based on `A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430` """ def __init__(self, n_components=None, algorithm='parallel', whiten=True, fun='logcosh', fun_args=None, max_iter=200, tol=1e-4, w_init=None, random_state=None): super(FastICA, self).__init__() self.n_components = n_components self.algorithm = algorithm self.whiten = whiten self.fun = fun self.fun_args = fun_args self.max_iter = max_iter self.tol = tol self.w_init = w_init self.random_state = random_state def _fit(self, X, compute_sources=False): """Fit the model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. compute_sources : bool If False, sources are not computes but only the rotation matrix. This can save memory when working with big data. Defaults to False. Returns ------- X_new : array-like, shape (n_samples, n_components) """ fun_args = {} if self.fun_args is None else self.fun_args whitening, unmixing, sources, X_mean = fastica( X=X, n_components=self.n_components, algorithm=self.algorithm, whiten=self.whiten, fun=self.fun, fun_args=fun_args, max_iter=self.max_iter, tol=self.tol, w_init=self.w_init, random_state=self.random_state, return_X_mean=True, compute_sources=compute_sources) if self.whiten: self.components_ = np.dot(unmixing, whitening) self.mean_ = X_mean self.whitening_ = whitening else: self.components_ = unmixing self.mixing_ = linalg.pinv(self.components_) if compute_sources: self.__sources = sources return sources def fit_transform(self, X, y=None): """Fit the model and recover the sources from X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ return self._fit(X, compute_sources=True) def fit(self, X, y=None): """Fit the model to X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self """ self._fit(X, compute_sources=True) # will become False in 0.16 return self def transform(self, X, y=None, copy=True): """Recover the sources from X (apply the unmixing matrix). Parameters ---------- X : array-like, shape (n_samples, n_features) Data to transform, where n_samples is the number of samples and n_features is the number of features. copy : bool (optional) If False, data passed to fit are overwritten. Defaults to True. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = array2d(X, copy=copy) if self.whiten: X -= self.mean_ return fast_dot(X, self.components_.T) @deprecated('To be removed in 0.16. Use the `mixing_` attribute.') def get_mixing_matrix(self): """Compute the mixing matrix. Returns ------- mixing_matrix : array, shape (n_features, n_components) """ return self.mixing_ @property @deprecated('To be removed in 0.16. Use `fit_transform` and store the ' 'output instead.') def sources_(self): return self.__sources def inverse_transform(self, X, copy=True): """Transform the sources back to the mixed data (apply mixing matrix). Parameters ---------- X : array-like, shape (n_samples, n_components) Sources, where n_samples is the number of samples and n_components is the number of components. copy : bool (optional) If False, data passed to fit are overwritten. Defaults to True. Returns ------- X_new : array-like, shape (n_samples, n_features) """ if copy: X = X.copy() X = fast_dot(X, self.mixing_.T) if self.whiten: X += self.mean_ return X
the-stack_106_27326
# ============================================================================= # Copyright 2020 NVIDIA. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import argparse import os import numpy as np import nemo import nemo.collections.nlp as nemo_nlp from nemo import logging from nemo.collections.nlp.data import NemoBertTokenizer from nemo.collections.nlp.nm.trainables import TokenClassifier from nemo.collections.nlp.utils.data_utils import get_vocab # Parsing arguments parser = argparse.ArgumentParser(description='NER with pretrained BERT') parser.add_argument("--max_seq_length", default=128, type=int) parser.add_argument("--fc_dropout", default=0, type=float) parser.add_argument("--pretrained_bert_model", default="bert-base-cased", type=str) parser.add_argument("--none_label", default='O', type=str) parser.add_argument( "--queries", action='append', default=[ 'we bought four shirts from the nvidia gear ' + 'store in santa clara', 'Nvidia is a company', 'The Adventures of Tom Sawyer by Mark Twain ' + 'is an 1876 novel about a young boy growing ' + 'up along the Mississippi River', ], help="Example: --queries 'San Francisco' --queries 'LA'", ) parser.add_argument( "--add_brackets", action='store_false', help="Whether to take predicted label in brackets or \ just append to word in the output", ) parser.add_argument("--work_dir", default='output/checkpoints', type=str) parser.add_argument("--labels_dict", default='label_ids.csv', type=str) parser.add_argument("--amp_opt_level", default="O0", type=str, choices=["O0", "O1", "O2"]) args = parser.parse_args() logging.info(args) if not os.path.exists(args.work_dir): raise ValueError(f'Work directory not found at {args.work_dir}') if not os.path.exists(args.labels_dict): raise ValueError(f'Dictionary with ids to labels not found at {args.labels_dict}') nf = nemo.core.NeuralModuleFactory( backend=nemo.core.Backend.PyTorch, optimization_level=args.amp_opt_level, log_dir=None ) labels_dict = get_vocab(args.labels_dict) """ Load the pretrained BERT parameters See the list of pretrained models, call: nemo_nlp.huggingface.BERT.list_pretrained_models() """ pretrained_bert_model = nemo_nlp.nm.trainables.huggingface.BERT(pretrained_model_name=args.pretrained_bert_model) hidden_size = pretrained_bert_model.hidden_size tokenizer = NemoBertTokenizer(args.pretrained_bert_model) data_layer = nemo_nlp.nm.data_layers.BertTokenClassificationInferDataLayer( queries=args.queries, tokenizer=tokenizer, max_seq_length=args.max_seq_length, batch_size=1 ) classifier = TokenClassifier(hidden_size=hidden_size, num_classes=len(labels_dict), dropout=args.fc_dropout) input_ids, input_type_ids, input_mask, _, subtokens_mask = data_layer() hidden_states = pretrained_bert_model(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) logits = classifier(hidden_states=hidden_states) ########################################################################### # Instantiate an optimizer to perform `infer` action evaluated_tensors = nf.infer(tensors=[logits, subtokens_mask], checkpoint_dir=args.work_dir) def concatenate(lists): return np.concatenate([t.cpu() for t in lists]) def add_brackets(text, add=args.add_brackets): return '[' + text + ']' if add else text logits, subtokens_mask = [concatenate(tensors) for tensors in evaluated_tensors] preds = np.argmax(logits, axis=2) for i, query in enumerate(args.queries): logging.info(f'Query: {query}') pred = preds[i][subtokens_mask[i] > 0.5] words = query.strip().split() if len(pred) != len(words): raise ValueError('Pred and words must be of the same length') output = '' for j, w in enumerate(words): output += w label = labels_dict[pred[j]] if label != args.none_label: label = add_brackets(label) output += label output += ' ' logging.info(f'Combined: {output.strip()}')
the-stack_106_27327
import json import scrapy from locations.hourstudy import inputoutput def process_hours(hours): if 'Hours' not in hours: return None opening_hours = '' days = hours['Hours'] for day in days: shortname = day['ShortName'] if '-' in shortname: startday, endday = shortname.split('-') if startday == "M": startday = "Mo" if endday == "M": endday = "Mo" shortname = '-'.join([startday, endday]) timeperiod = day['TimePeriod'] starttime = timeperiod['BeginTime'][:-3] endtime = timeperiod['ThruTime'][:-3] time_together = '-'.join([starttime, endtime]) opening_hours += "{shortname} {time_together};".format( shortname=shortname, time_together=time_together ) return opening_hours[:-1] class TargetSpider(scrapy.Spider): ''' The Target api allows us a maximum search radius of 625 miles, so we have to use multiple api requests with zip codes from different states to search the whole country. NOTE: There is a "key" variable used in the url for the requests. It seems that this does not vary between natural requests (those sent from a browser), but it might be something that expires and renders requests invalid. So, if this spider stops working, that's probably why. ''' name = "target" allowed_domains = ["target.com"] def start_requests(self): zips = [ '97062', '90021', '73301', '82633', '29401', '60007', '04019', '87101', '59601', '39056', '14201', '55111', '94203', '64030', '33601', '10001', '98101', '37011', '58501', '78501', '97501' ] template = 'https://api.target.com/v2/store?nearby={zipcode}&range=625&limit=999999&locale=en-US&key=eb2551e4accc14f38cc42d32fbc2b2ea' headers = { 'Accept': 'application/json', } for zipcode in zips: yield scrapy.http.FormRequest( url=template.format(zipcode=zipcode), method='GET', headers=headers, callback=self.parse ) def parse(self, response): data = json.loads(response.body_as_unicode()) stores = data['Locations']['Location'] for store in stores: loc_info = store['Address'] properties = { 'ref': store['ID'], 'name': store['Name'], 'addr_full': loc_info['AddressLine1'], 'city': loc_info['City'], 'state': loc_info['Subdivision'], 'country': loc_info['CountryName'], 'postcode': loc_info['PostalCode'], 'lat': loc_info['Latitude'], 'lon': loc_info['Longitude'], } phones = store['TelephoneNumber'] if type(phones) == "list": for i in phones: if i['FunctionalTypeDescription'] == 'Main': properties['phone'] = i['PhoneNumber'] elif type(phones) == 'dict': if phones['FunctionalTypeDescription'] == 'Main': properties['phone'] = phones['PhoneNumber'] if 'OperatingHours' in store: processed_hours = process_hours(store['OperatingHours']) if processed_hours: properties['opening_hours'] = processed_hours raw = store['OperatingHours'] formatted = processed_hours yield inputoutput(raw,formatted) # yield inputoutput(**properties)
the-stack_106_27328
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import pytest from azext_iot.tests.generators import generate_generic_id from azext_iot.tests.settings import DynamoSettings from azure.cli.testsdk import LiveScenarioTest from azext_iot.common.embedded_cli import EmbeddedCLI from knack.log import get_logger logger = get_logger(__name__) MOCK_RESOURCE_TAGS = "a=b c=d" MOCK_RESOURCE_TAGS_DICT = {"a": "b", "c": "d"} MOCK_DEAD_LETTER_ENDPOINT = "https://accountname.blob.core.windows.net/containerName" MOCK_DEAD_LETTER_SECRET = "{}?sasToken".format(MOCK_DEAD_LETTER_ENDPOINT) REGION_RESOURCE_LIMIT = 10 REGION_LIST = ["westus2", "westcentralus", "eastus2", "eastus", "eastus2euap"] required_test_env_vars = ["azext_iot_testrg"] resource_test_env_vars = [ "azext_dt_ep_eventhub_namespace", "azext_dt_ep_eventhub_policy", "azext_dt_ep_eventhub_topic", "azext_dt_ep_servicebus_namespace", "azext_dt_ep_servicebus_policy", "azext_dt_ep_servicebus_topic", "azext_dt_ep_eventgrid_topic", "azext_dt_ep_rg", "azext_dt_region", ] settings = DynamoSettings(req_env_set=required_test_env_vars, opt_env_set=resource_test_env_vars) # Endpoint resource group EP_RG = settings.env.azext_dt_ep_rg or settings.env.azext_iot_testrg # EventHub EP_EVENTHUB_NAMESPACE = settings.env.azext_dt_ep_eventhub_namespace or ("test-ehn-" + generate_generic_id()) EP_EVENTHUB_POLICY = settings.env.azext_dt_ep_eventhub_policy or ("test-ehp-" + generate_generic_id()) EP_EVENTHUB_TOPIC = settings.env.azext_dt_ep_eventhub_topic or ("test-eh-" + generate_generic_id()) # Service Bus EP_SERVICEBUS_NAMESPACE = settings.env.azext_dt_ep_servicebus_namespace or ("test-sbn-" + generate_generic_id()) EP_SERVICEBUS_POLICY = settings.env.azext_dt_ep_servicebus_policy or ("test-sbp-" + generate_generic_id()) EP_SERVICEBUS_TOPIC = settings.env.azext_dt_ep_servicebus_topic or ("test-sbt-" + generate_generic_id()) # EventGrid EP_EVENTGRID_TOPIC = settings.env.azext_dt_ep_eventgrid_topic or ("test-egt-" + generate_generic_id()) def generate_resource_id(): return "dtcli-{}".format(generate_generic_id()) class DTLiveScenarioTest(LiveScenarioTest): role_map = { "owner": "Azure Digital Twins Data Owner", "reader": "Azure Digital Twins Data Reader", } def __init__(self, test_scenario): assert test_scenario super(DTLiveScenarioTest, self).__init__(test_scenario) self.embedded_cli = EmbeddedCLI() self._bootup_scenario() def _bootup_scenario(self): self._is_provider_registered() self._init_basic_env_vars() self.tracked_instances = [] def _is_provider_registered(self): result = self.cmd( "provider show --namespace 'Microsoft.DigitalTwins' --query 'registrationState'" ) if '"registered"' in result.output.lower(): return pytest.skip( "Microsoft.DigitalTwins provider not registered. " "Run 'az provider register --namespace Microsoft.DigitalTwins'" ) def _init_basic_env_vars(self): self._force_region = settings.env.azext_dt_region if self._force_region and not self.is_region_available(self._force_region): raise RuntimeError( "Forced region: {} does not have capacity.".format(self._force_region) ) self.region = ( self._force_region if self._force_region else self.get_available_region() ) self.rg = settings.env.azext_iot_testrg if not self.rg: pytest.skip( "Digital Twins CLI tests requires at least 'azext_iot_testrg' for resource deployment." ) self.rg_region = self.embedded_cli.invoke( "group show --name {}".format(self.rg) ).as_json()["location"] @property def current_user(self): return self.embedded_cli.invoke("account show").as_json()["user"]["name"] @property def current_subscription(self): return self.embedded_cli.invoke("account show").as_json()["id"] def wait_for_capacity( self, region=None, capacity: int = 1, wait_in_sec: int = 10, interval: int = 3 ): from time import sleep target_region = region if not target_region: target_region = self.region if self.is_region_available(region=target_region, capacity=capacity): return while interval >= 1: logger.info("Waiting :{} (sec) for capacity.") sleep(wait_in_sec) if self.is_region_available(region=target_region, capacity=capacity): return interval = interval - 1 raise RuntimeError( "Unavailable region DT capacity. wait(sec): {}, interval: {}, region: {}, capacity: {}".format( wait_in_sec, interval, target_region, capacity ) ) def is_region_available(self, region, capacity: int = 1): region_capacity = self.calculate_region_capacity return (region_capacity.get(region, 0) + capacity) <= REGION_RESOURCE_LIMIT @property def calculate_region_capacity(self) -> dict: instances = self.instances = self.embedded_cli.invoke("dt list").as_json() capacity_map = {} for instance in instances: cap_val = capacity_map.get(instance["location"], 0) cap_val = cap_val + 1 capacity_map[instance["location"]] = cap_val for region in REGION_LIST: if region not in capacity_map: capacity_map[region] = 0 return capacity_map def get_available_region(self, capacity: int = 1, skip_regions: list = None) -> str: if not skip_regions: skip_regions = [] region_capacity = self.calculate_region_capacity while region_capacity: region = min(region_capacity, key=region_capacity.get) if region not in skip_regions: if region_capacity[region] + capacity <= REGION_RESOURCE_LIMIT: return region region_capacity.pop(region, None) raise RuntimeError( "There are no available regions with capacity: {} for provision DT instances in subscription: {}".format( capacity, self.current_subscription ) ) def ensure_eventhub_resource(self): """Ensure that the test has all Event hub resources.""" if not settings.env.azext_dt_ep_eventhub_namespace: self.embedded_cli.invoke( "eventhubs namespace create --name {} --resource-group {}".format( EP_EVENTHUB_NAMESPACE, EP_RG, ) ) if not settings.env.azext_dt_ep_eventhub_topic: self.embedded_cli.invoke( "eventhubs eventhub create --namespace-name {} --resource-group {} --name {}".format( EP_EVENTHUB_NAMESPACE, EP_RG, EP_EVENTHUB_TOPIC ) ) if not settings.env.azext_dt_ep_eventhub_policy: self.embedded_cli.invoke( "eventhubs eventhub authorization-rule create --namespace-name {} --resource-group {} " "--eventhub-name {} --name {} --rights Send".format( EP_EVENTHUB_NAMESPACE, EP_RG, EP_EVENTHUB_TOPIC, EP_EVENTHUB_POLICY ) ) def ensure_eventgrid_resource(self): """Ensure that the test has the Event Grid.""" if not settings.env.azext_dt_ep_eventgrid_topic: self.embedded_cli.invoke( "eventgrid topic create --name {} --resource-group {} -l {}".format( EP_EVENTGRID_TOPIC, EP_RG, self.region, ) ) def ensure_servicebus_resource(self): """Ensure that the test has all Service Bus resources.""" if not settings.env.azext_dt_ep_servicebus_namespace: self.embedded_cli.invoke( "servicebus namespace create --name {} --resource-group {}".format( EP_SERVICEBUS_NAMESPACE, EP_RG, ) ) if not settings.env.azext_dt_ep_servicebus_topic: self.embedded_cli.invoke( "servicebus topic create --namespace-name {} --resource-group {} --name {}".format( EP_SERVICEBUS_NAMESPACE, EP_RG, EP_SERVICEBUS_TOPIC ) ) if not settings.env.azext_dt_ep_servicebus_policy: self.embedded_cli.invoke( "servicebus topic authorization-rule create --namespace-name {} --resource-group {} " "--topic-name {} --name {} --rights Send".format( EP_SERVICEBUS_NAMESPACE, EP_RG, EP_SERVICEBUS_TOPIC, EP_SERVICEBUS_POLICY ) ) def delete_eventhub_resources(self): """Delete all created resources for endpoint tests.""" # Eventhub if not settings.env.azext_dt_ep_eventhub_namespace: self.embedded_cli.invoke( "eventhubs namespace delete --name {} --resource-group {}".format( EP_EVENTHUB_NAMESPACE, EP_RG, ) ) elif not settings.env.azext_dt_ep_eventhub_topic: self.embedded_cli.invoke( "eventhubs eventhub delete --namespace-name {} --resource-group {} --name {}".format( EP_EVENTHUB_NAMESPACE, EP_RG, EP_EVENTHUB_TOPIC ) ) elif not settings.env.azext_dt_ep_eventhub_policy: self.embedded_cli.invoke( "eventhubs eventhub authorization-rule delete --namespace-name {} --resource-group {} " "--topic-name {} --name {} --rights Send".format( EP_EVENTHUB_NAMESPACE, EP_RG, EP_EVENTHUB_TOPIC, EP_EVENTHUB_POLICY ) ) def delete_eventgrid_resources(self): """Delete all created resources for endpoint tests.""" # Event Grid if not settings.env.azext_dt_ep_eventgrid_topic: self.embedded_cli.invoke( "eventgrid topic delete --name {} --resource-group {}".format( EP_EVENTGRID_TOPIC, EP_RG, ) ) def delete_servicebus_resources(self): """Delete all created resources for endpoint tests.""" # Service Bus if not settings.env.azext_dt_ep_servicebus_namespace: self.embedded_cli.invoke( "servicebus namespace delete --name {} --resource-group {}".format( EP_SERVICEBUS_NAMESPACE, EP_RG, ) ) elif not settings.env.azext_dt_ep_servicebus_topic: self.embedded_cli.invoke( "servicebus topic delete --namespace-name {} --resource-group {} --name {}".format( EP_SERVICEBUS_NAMESPACE, EP_RG, EP_SERVICEBUS_TOPIC ) ) elif not settings.env.azext_dt_ep_servicebus_policy: self.embedded_cli.invoke( "servicebus topic authorization-rule delete --namespace-name {} --resource-group {} " "--topic-name {} --name {} ".format( EP_SERVICEBUS_NAMESPACE, EP_RG, EP_SERVICEBUS_TOPIC, EP_SERVICEBUS_POLICY ) ) def track_instance(self, instance: dict): self.tracked_instances.append((instance["name"], instance["resourceGroup"])) def tearDown(self): for instance in self.tracked_instances: try: self.embedded_cli.invoke( "dt delete -n {} -g {} -y --no-wait".format(instance[0], instance[1]) ) except Exception: logger.info("The DT instance {} has already been deleted.".format(instance))
the-stack_106_27329
""" Data container for ligand-kinase data. """ import logging import pandas as pd from src.evaluation.data.base_data import BaseData logger = logging.getLogger(__name__) class LigandVsKinaseData(BaseData): """ Prepare data to compare ligand- and kinase-focused data. Attributes ---------- ligand_query : str Ligand name (kinases are extracted from `ligand_kinase_matrix` by this ligand). kinase_query : str Kinase name (kinases are extracted from `kinase_kinase_matrix` by this kinase). ligand_kinase_method : str Name for ligand profiling method to be used as identifier. kinase_kinase_method : str Name for kinase distances method to be used as identifier. data : pandas.DataFrame Merged ligand-kinase and kinase-kinase datasets. n_kinases_by_kinase : int Number of kinases in kinase-kinase method n_kinases_by_ligand : int Number of kinases in ligand-kinase method n_kinases_shared : int Number of shared kinases n_active_kinases_shared : int Number of shared active kinases """ def __init__( self, ligand_query, kinase_query, ligand_kinase_method, kinase_kinase_method, ligand_kinase_matrix, kinase_kinase_matrix, kinase_activity_cutoff, kinase_activity_max, ): """ Initiate dataset to compare ligand- and kinase-focused data. Parameters ---------- ligand_query : str Ligand name (kinases are extracted from `ligand_kinase_matrix` by this ligand). kinase_query : str Kinase name (kinases are extracted from `kinase_kinase_matrix` by this kinase). ligand_kinase_method : str Name for ligand profiling method to be used as identifier. kinase_kinase_method : str Name for kinase distances method to be used as identifier. ligand_kinase_matrix : pandas.DataFrame Ligand-kinase activity matrix. kinase_kinase_matrix : pandas.DataFrame Kinase-kinase distance matrix. kinase_activity_cutoff : float Cutoff value to be used to determine activity. By default this cutoff is the maximum value. Set `kinase_activity_max=False` if cutoff is the minimum value. kinase_activity_max : bool If `True` (default), the `kinase_activity_cutoff` is used as the maximum cutoff, else as the minimum cutoff. """ self.ligand_query = ligand_query self.kinase_query = kinase_query self.ligand_kinase_method = ligand_kinase_method self.kinase_kinase_method = kinase_kinase_method self.data = None self.n_kinases_by_kinase = None self.n_kinases_by_ligand = None self.n_kinases_shared = None self.n_active_kinases_shared = None ( self.data, self.n_kinases_by_kinase, self.n_kinases_by_ligand, self.n_kinases_shared, self.n_active_kinases_shared, ) = self._merge_datasets( ligand_kinase_matrix, kinase_kinase_matrix, kinase_activity_cutoff, kinase_activity_max, ) def _merge_datasets( self, ligand_kinase_matrix, kinase_kinase_matrix, kinase_activity_cutoff, kinase_activity_max, ): """ Compare kinase ranks between a ligand profiling dataset and a kinase distances dataset. The profiling dataset contains kinases for the query ligand extracted from the ligand-kinase matrix. The distances dataset contains kinases for the query kinase extracted from the kinase-kinase matrix. Returns ------- kinase_data : pandas.DataFrame Contains for each kinase (rows) details on profiling and distances ranks (columns): <ligand_kinase_method>.measure : float Ligand profiling data. <ligand_kinase_method>.active : bool Active kinase? <ligand_kinase_method>.rank1 : float Kinase rank by profiling data based on all ligand-kinase method data points. <ligand_kinase_method>.rank2 : float Kinase rank by profiling distances based on shared data points only. <kinase_kinase_method>.measure : float Kinase distances <kinase_kinase_method>.rank1 : float Kinase rank by kinase distances based on all kinase-kinase method data points. <kinase_kinase_method>.rank2 : float Kinase rank by kinase distances based on shared data points only. n_kinases_by_kinase : int Number of kinases in kinase-kinase method n_kinases_by_ligand : int Number of kinases in ligand-kinase method n_kinases_shared : int Number of shared kinases n_active_kinases_shared : int Number of shared active kinases """ # Load kinase data from kinase-kinase matrix (by query kinase) kinase_data_by_kinase = self._kinase_data_by_query_kinase( self.kinase_query, kinase_kinase_matrix ) # Load kinase data from ligand-kinase matrix (by query ligand) ranks_by_ligand = self._kinase_data_by_query_ligand( self.ligand_query, ligand_kinase_matrix ) if kinase_activity_max: ranks_by_ligand[f"active_{self.ligand_kinase_method}"] = ( ranks_by_ligand["measure"] <= kinase_activity_cutoff ) else: ranks_by_ligand[f"active_{self.ligand_kinase_method}"] = ( ranks_by_ligand["measure"] >= kinase_activity_cutoff ) # Merge two datasets while keeping only common kinases kinase_data = pd.merge( kinase_data_by_kinase, ranks_by_ligand, how="inner", on="kinase", suffixes=(f"_{self.kinase_kinase_method}", f"_{self.ligand_kinase_method}"), ) kinase_data = kinase_data.set_index("kinase") # Now rank kinases again based only on the shared kinases kinase_data[f"rank2_{self.kinase_kinase_method}"] = kinase_data[ f"measure_{self.kinase_kinase_method}" ].rank() kinase_data[f"rank2_{self.ligand_kinase_method}"] = kinase_data[ f"measure_{self.ligand_kinase_method}" ].rank() # Rearange columns kinase_data = kinase_data[ [ f"measure_{self.ligand_kinase_method}", f"active_{self.ligand_kinase_method}", f"rank1_{self.ligand_kinase_method}", f"rank2_{self.ligand_kinase_method}", f"measure_{self.kinase_kinase_method}", f"rank1_{self.kinase_kinase_method}", f"rank2_{self.kinase_kinase_method}", ] ] kinase_data.columns = [f"{i.split('_')[1]}.{i.split('_')[0]}" for i in kinase_data.columns] # Log number of kinases for different criteria n_kinases_by_kinase = kinase_data_by_kinase.shape[0] n_kinases_by_ligand = ranks_by_ligand.shape[0] n_kinases_shared = kinase_data.shape[0] n_active_kinases_shared = kinase_data[ kinase_data[f"{self.ligand_kinase_method}.active"] ].shape[0] # Sort rows by kinase-kinase method (DO NOT CHANGE!) kinase_data = kinase_data.sort_values(f"{self.kinase_kinase_method}.measure") # Throw error if... try: # ... query kinase is not part of the ligand dataset kinase_data.loc[self.kinase_query] except KeyError: raise KeyError( f"{self.kinase_query} is not part of the ligand profiling dataset " f"for {self.ligand_query}" ) try: # ... query kinase is not measured as an active kinase in ligand dataset kinase_data[kinase_data[f"{self.ligand_kinase_method}.active"]].loc[self.kinase_query] except KeyError: raise KeyError( f"{self.kinase_query} is not an active kinase in the ligand profiling dataset " f"for {self.ligand_query}" ) return ( kinase_data, n_kinases_by_kinase, n_kinases_by_ligand, n_kinases_shared, n_active_kinases_shared, ) def _kinase_data_by_query_ligand(self, ligand_query, ligand_kinase_matrix): """ Parameters ---------- ligand_query : str Ligand name (kinases are extracted from `ligand_kinase_matrix` by this ligand). ligand_kinase_matrix : pandas.DataFrame Profiling data for a ligand set against a kinase set loaded from `src.data.profiling`. Returns ------- pandas.DataFrame Contains for each kinase (rows) details on profiling and distances ranks (columns): kinase : name Kinase name. measure : float Ligand profiling data. rank1 : float Kinase rank by profiling data based on all ligand-kinase method data points. """ try: kinase_data = ligand_kinase_matrix[ligand_query] kinase_data = self._add_rank(kinase_data) return kinase_data except KeyError: raise KeyError(f"Query ligand {ligand_query} is not part of dataset.")
the-stack_106_27330
""" This script is used to write `sqf/dababase.py`, that contains all valid SQF expressions. It reads a file from here: https://raw.githubusercontent.com/intercept/intercept/master/src/client/headers/client/sqf_pointers_declaration.hpp """ import urllib.request from sqf.interpreter_types import ForType, IfType, SwitchType, WhileType, TryType, WithType from sqf.types import Code, Array, Boolean, Number, Type, Nothing, Anything, String, Namespace, \ Object, Config, Script, Control, Group, Display, Side, Task, Location, NetObject, DiaryReport, TeamMember, HashMap # The mapping of SQF types to our types STRING_TO_TYPE = { 'array': Array, 'scalar': Number, 'bool': Boolean, 'code': Code, 'string': String, 'text': String, 'namespace': Namespace, 'config': Config, 'location': Location, 'object': Object, 'group': Group, 'member': TeamMember, # team_member gets split 'control': Control, 'display': Display, 'exception': TryType, 'for': ForType, 'if': IfType, 'switch': SwitchType, 'while': WhileType, 'with': WithType, 'side': Side, 'task': Task, 'script': Script, 'nan': Number, 'nothing': Nothing, 'netobject': NetObject, 'any': Type, 'diary': DiaryReport, # diary_record gets split 'hashmap': HashMap } # the argument the type is initialized with TYPE_TO_INIT_ARGS = { Namespace: "'missionNamespace'", } # The return type "ANY" means that we do not know it, so it is Nothing() STRING_TO_TYPE_RETURN = STRING_TO_TYPE.copy() STRING_TO_TYPE_RETURN['any'] = Anything WRONG_RETURN_TYPES = { 'attachedto': Object, 'getclientstatenumber': Number, 'handgunmagazine': Array, 'ammoonpylon': Anything } def _parse_type_names(type_names): # Alternative types separated by _ char types_names = type_names.split('_') # Never care about NaN type (covered by scalar) if 'nan' in types_names: types_names.remove('nan') # Remove parts of types that also get split if 'team' in types_names: types_names.remove('team') if 'record' in types_names: types_names.remove('record') return types_names def _parse_return_type_names(return_type_names): return_type_names = _parse_type_names(return_type_names) if len(return_type_names) > 1 and 'nothing' in return_type_names: return_type_names.remove('nothing') if len(return_type_names) > 1: return_type_name = 'any' else: return_type_name = return_type_names[0] return STRING_TO_TYPE_RETURN[return_type_name] # url = 'https://raw.githubusercontent.com/intercept/intercept/master/src/client/headers/client/sqf_pointers_declaration.hpp' # data = urllib.request.urlopen(url).read().decode('utf-8').split('\n') data = open('sqf_pointers_declaration.hpp', 'r').read().split('\n') expressions = [] for line in data: if not line.startswith('static '): continue sections = line.split('__') num_sections = len(sections) if num_sections not in [4, 5, 6]: print('Could\'t read line: ', line) continue # Name always comes first op_name = sections[1] # Return type always comes last (some operators have incorrect values for whatever reason) if op_name in WRONG_RETURN_TYPES: return_type = WRONG_RETURN_TYPES[op_name] else: return_type = _parse_return_type_names(sections[num_sections-1][:-1]) # Adds any relevant initialization argument for the return type init_code = '' # Number of sections allows us to classify the operation if num_sections == 6: if return_type in TYPE_TO_INIT_ARGS: init_code = ', action=lambda lhs, rhs, i: %s' % TYPE_TO_INIT_ARGS[return_type] for lhs_type_name in _parse_type_names(sections[2]): lhs_type = STRING_TO_TYPE[lhs_type_name] for rhs_type_name in _parse_type_names(sections[3]): rhs_type = STRING_TO_TYPE[rhs_type_name] expression = 'BinaryExpression(' \ '{lhs_type}, ' \ 'Keyword(\'{keyword}\'), ' \ '{rhs_type}, {return_type}{init_code})'.format( lhs_type=lhs_type.__name__, keyword=op_name, rhs_type=rhs_type.__name__, return_type=return_type.__name__, init_code=init_code ) expressions.append(expression) elif num_sections == 5: if return_type in TYPE_TO_INIT_ARGS: init_code = ', action=lambda rhs, i: %s' % TYPE_TO_INIT_ARGS[return_type] for rhs_type_name in _parse_type_names(sections[2]): rhs_type = STRING_TO_TYPE[rhs_type_name] expression = 'UnaryExpression(' \ 'Keyword(\'{keyword}\'), ' \ '{rhs_type}, {return_type}{init_code})'.format( keyword=op_name, rhs_type=rhs_type.__name__, return_type=return_type.__name__, init_code=init_code ) expressions.append(expression) else: if return_type in TYPE_TO_INIT_ARGS: init_code = ', action=lambda i: %s' % TYPE_TO_INIT_ARGS[return_type] expression = 'NullExpression(' \ 'Keyword(\'{keyword}\'), ' \ '{return_type}{init_code})'.format( keyword=op_name, return_type=return_type.__name__, init_code=init_code ) expressions.append(expression) preamble = r'''# This file is generated automatically by `build_database.py`. Change it there. from sqf.expressions import BinaryExpression, UnaryExpression, NullExpression from sqf.types import Keyword, Type, Nothing, Anything, String, Code, Array, Number, Boolean, Namespace, \ Object, Config, Script, Control, Group, Display, Side, Task, Location, NetObject, DiaryReport, TeamMember, HashMap from sqf.interpreter_types import WhileType, \ ForType, SwitchType, IfType, TryType, WithType''' # Expressions that use symbols are hardcoded since they aren't present in the parsed file symbols = r''' EXPRESSIONS = [ BinaryExpression(Array, Keyword('#'), Number, Anything), BinaryExpression(Number, Keyword('!='), Boolean, Boolean), BinaryExpression(Number, Keyword('!='), Boolean, Anything), BinaryExpression(Number, Keyword('!='), Number, Boolean), BinaryExpression(String, Keyword('!='), String, Boolean), BinaryExpression(Object, Keyword('!='), Object, Boolean), BinaryExpression(Group, Keyword('!='), Group, Boolean), BinaryExpression(Side, Keyword('!='), Side, Boolean), BinaryExpression(String, Keyword('!='), String, Boolean), BinaryExpression(Config, Keyword('!='), Config, Boolean), BinaryExpression(Display, Keyword('!='), Display, Boolean), BinaryExpression(Control, Keyword('!='), Control, Boolean), BinaryExpression(TeamMember, Keyword('!='), TeamMember, Boolean), BinaryExpression(NetObject, Keyword('!='), NetObject, Boolean), BinaryExpression(Task, Keyword('!='), Task, Boolean), BinaryExpression(Location, Keyword('!='), Location, Boolean), BinaryExpression(Number, Keyword('%'), Number, Number), BinaryExpression(Boolean, Keyword('&&'), Boolean, Boolean), BinaryExpression(Boolean, Keyword('&&'), Code, Boolean), BinaryExpression(Number, Keyword('*'), Number, Number), BinaryExpression(Number, Keyword('+'), Number, Number), BinaryExpression(String, Keyword('+'), String, String), BinaryExpression(Array, Keyword('+'), Array, Array), BinaryExpression(Number, Keyword('-'), Number, Number), BinaryExpression(Array, Keyword('-'), Array, Array), BinaryExpression(Number, Keyword('/'), Number, Number), BinaryExpression(Config, Keyword('/'), String, Config), BinaryExpression(SwitchType, Keyword(':'), Code, Nothing), BinaryExpression(Number, Keyword('<'), Number, Boolean), BinaryExpression(Number, Keyword('<='), Number, Boolean), BinaryExpression(Number, Keyword('=='), Number, Boolean), BinaryExpression(String, Keyword('=='), String, Boolean), BinaryExpression(Object, Keyword('=='), Object, Boolean), BinaryExpression(Group, Keyword('=='), Group, Boolean), BinaryExpression(Side, Keyword('=='), Side, Boolean), BinaryExpression(String, Keyword('=='), String, Boolean), BinaryExpression(Config, Keyword('=='), Config, Boolean), BinaryExpression(Display, Keyword('=='), Display, Boolean), BinaryExpression(Control, Keyword('=='), Control, Boolean), BinaryExpression(TeamMember, Keyword('=='), TeamMember, Boolean), BinaryExpression(NetObject, Keyword('=='), NetObject, Boolean), BinaryExpression(Task, Keyword('=='), Task, Boolean), BinaryExpression(Location, Keyword('=='), Location, Boolean), BinaryExpression(Number, Keyword('>'), Number, Boolean), BinaryExpression(Number, Keyword('>='), Number, Boolean), BinaryExpression(Config, Keyword('>>'), String, Config), BinaryExpression(Number, Keyword('^'), Number, Number), BinaryExpression(Boolean, Keyword('||'), Boolean, Boolean), BinaryExpression(Boolean, Keyword('||'), Code, Boolean), BinaryExpression(Array, Keyword('#'), Number, Anything), UnaryExpression(Keyword('!'), Boolean, Boolean), UnaryExpression(Keyword('+'), Number, Number), UnaryExpression(Keyword('+'), Array, Array), UnaryExpression(Keyword('-'), Number, Number), BinaryExpression(Object, Keyword('ammoonpylon'), String, Boolean), BinaryExpression(Object, Keyword('ammoonpylon'), Number, Boolean), BinaryExpression(HashMap, Keyword('deleteat'), Side, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Config, Anything), BinaryExpression(HashMap, Keyword('deleteat'), String, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Number, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Boolean, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Array, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Code, Anything), BinaryExpression(HashMap, Keyword('deleteat'), Namespace, Anything), BinaryExpression(HashMap, Keyword('get'), Side, Anything), BinaryExpression(HashMap, Keyword('get'), Config, Anything), BinaryExpression(HashMap, Keyword('get'), String, Anything), BinaryExpression(HashMap, Keyword('get'), Number, Anything), BinaryExpression(HashMap, Keyword('get'), Boolean, Anything), BinaryExpression(HashMap, Keyword('get'), Array, Anything), BinaryExpression(HashMap, Keyword('get'), Code, Anything), BinaryExpression(HashMap, Keyword('get'), Namespace, Anything), BinaryExpression(Side, Keyword('in'), HashMap, Boolean), BinaryExpression(Config, Keyword('in'), HashMap, Boolean), BinaryExpression(String, Keyword('in'), HashMap, Boolean), BinaryExpression(Number, Keyword('in'), HashMap, Boolean), BinaryExpression(Boolean, Keyword('in'), HashMap, Boolean), BinaryExpression(Array, Keyword('in'), HashMap, Boolean), BinaryExpression(Code, Keyword('in'), HashMap, Boolean), BinaryExpression(Namespace, Keyword('in'), HashMap, Boolean), ''' with open('sqf/database.py', 'w') as f: f.write(preamble + '\n\n') f.write(symbols + ' ') f.write(',\n '.join(expressions)) f.write('\n]\n')
the-stack_106_27331
import io from datetime import timedelta import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter matplotlib.use("Agg") matplotlib.style.use("seaborn") def _moving_avg(data, days=7): # Use 1d convolution for moving average, as explained in https://stackoverflow.com/a/22621523. return np.convolve(data, np.ones(days) / days, mode="valid") def plot_timeseries(data): fig, ax = plt.subplots() ax.yaxis.set_major_formatter(StrMethodFormatter("{x:,.0f}")) cases, deaths = _moving_avg(data["cases"]), _moving_avg(data["deaths"]) dates = [data["last_date"] - timedelta(days=i) for i in range(len(cases))][::-1] plt.figure(figsize=(13, 8)) plt.plot(dates, cases, ".-c", label="Infections") plt.fill_between(dates, cases, color="c", alpha=0.5) plt.plot(dates, deaths, ".-r", label="Deaths") plt.fill_between(dates, deaths, color="r", alpha=0.5) plt.annotate(round(cases[-1]), (dates[-1], cases[-1]), ha="right", va="bottom", color="c") plt.annotate(round(deaths[-1]), (dates[-1], deaths[-1]), ha="right", va="bottom", color="r") plt.legend() plt.xticks(rotation=30, ha="right") plt.xlim((dates[0], dates[-1])) plt.ylabel("Cases (moving 7-day avg.)") plt.title("New Covid-19 Cases in {} - {} Days".format(data["name"], len(cases))) plt.text(0, 0, "by @coronaviruskenyabot; data by JHUCSSE", fontsize=6, va="bottom", transform=ax.transAxes) plt.tight_layout() buffer = io.BytesIO() plt.savefig(buffer, format="png") buffer.seek(0) plt.clf() return buffer def plot_vaccinations_series(data): fig, ax = plt.subplots() ax.yaxis.set_major_formatter(StrMethodFormatter("{x:,.0f}")) vaccinations = _moving_avg(data["vaccinations"]) dates = [data["last_date"] - timedelta(days=i) for i in range(len(vaccinations))][::-1] plt.figure(figsize=(13, 8)) plt.plot(dates, vaccinations, ".-g") plt.fill_between(dates, vaccinations, color="g", alpha=0.5) plt.xticks(rotation=30, ha="right") plt.xlim((dates[0], dates[-1])) plt.ylabel("Vaccinations Doses (moving 7-day avg.)") plt.title("Daily Vaccination Doses in {} - {} Days".format(data["name"], len(vaccinations))) plt.text(0.01, 0.95, f"Total: {data['total']:,}", weight="bold", transform=ax.transAxes) plt.text( 0, 0, "by @coronaviruskenyabot; data by ourworldindata.org.", fontsize=6, va="bottom", transform=ax.transAxes ) plt.tight_layout() buffer = io.BytesIO() plt.savefig(buffer, format="png") buffer.seek(0) plt.clf() return buffer if __name__ == "__main__": import argparse from statistics_api import CovidApi parser = argparse.ArgumentParser(description="Create timeline plots used by @coronaviruskenyabot") parser.add_argument("type", type=str, choices=["cases", "vacc"], help="type of plot to create") parser.add_argument("--country", type=str, default=None, help="country to plot, world by default") parser.add_argument("-o", "--output", type=str, default="plot.png", help="output file, defaults to plot.png") args = parser.parse_args() api = CovidApi() if args.type == "cases": data = api.timeseries(country=args.country) buffer = plot_timeseries(data) else: data = api.vaccinations_series(country=args.country) buffer = plot_vaccinations_series(data) with open(args.output, "wb") as f: f.write(buffer.getvalue())
the-stack_106_27334
from typing import List from homecomp.models import AssetMixin from homecomp.models import BudgetItem from homecomp.models import BudgetLineItem from homecomp.models import MonthlyBudget from homecomp.models import MonthlyExpense from homecomp import const class Investment(AssetMixin, BudgetItem): """ Simple Investment. Always generates expected return and invests remaining budget. If the budget is negative then the assumption is that the investment is liquid enough to fill any budget gaps. """ def __init__(self, principal: int = 0, roi: float = const.DEFAULT_INVESTMENT_RETURN_RATE, **kwargs): super().__init__(value=principal, **kwargs) self.rate = roi def _step(self, budget: MonthlyBudget) -> MonthlyExpense: """Calculate cost for current period""" self.value = round(self.value * (1 + self.rate), 2) self.value += budget.remaining return MonthlyExpense( savings=-budget.remaining, costs=0 ) class Home(AssetMixin, BudgetItem): """ Simple Home. Behaves the same way as an investment only with different default rate of return and no monthly budget contribution. """ def __init__(self, price: int, lifetime: List[int] = None, down_payment_pct: float = const.DEFAULT_DOWN_PAYMENT_PCT, appreciation: float = const.DEFAULT_HOME_APPRECIATION_RATE, buying_costs_rate: float = const.DEFAULT_HOME_BUYING_COSTS_PCT, selling_costs_rate: float = const.DEFAULT_HOME_SELLING_COSTS_PCT, **kwargs): lifetime = lifetime or [] initial_value = price if const.INIT_PERIOD in lifetime else 0 super().__init__(value=initial_value, **kwargs) self.price = price self.rate = appreciation self.lifetime = lifetime self.down_payment_pct = down_payment_pct self.buying_costs_rate = buying_costs_rate self.selling_costs_rate = selling_costs_rate def is_owned(self, period): if not self.lifetime: return True return period in self.lifetime @property def buying_period(self): if not self.lifetime: return const.NEVER_PERIOD return self.lifetime[0] - 1 # bought period before the first period the home is owned @property def selling_period(self): if not self.lifetime: return const.NEVER_PERIOD return self.lifetime[-1] def _purchasing_step(self, budget: MonthlyBudget) -> MonthlyExpense: """Set asset value and remove down payment and buying costs from cash flow""" self.value = self.price buying_costs = self.price * self.buying_costs_rate down_payment = self.price * self.down_payment_pct return MonthlyExpense( costs=-buying_costs, savings=-down_payment ) def _selling_step(self, budget: MonthlyBudget) -> MonthlyExpense: """Clear asset value and add liquid asset value to budget minus selling costs""" sell_price = self.value selling_costs = sell_price * self.selling_costs_rate self.value = 0 return MonthlyExpense( costs=-selling_costs, savings=sell_price ) def _step(self, budget: MonthlyBudget) -> MonthlyExpense: """Calculate cost for current period""" if self.period == self.buying_period: return self._purchasing_step(budget) elif self.period == self.selling_period: return self._selling_step(budget) self.value = round(self.value * (1 + self.rate), 2) return MonthlyExpense()
the-stack_106_27335
import logging from mpfmc.tests.MpfMcTestCase import MpfMcTestCase from unittest.mock import MagicMock, ANY from mpfmc.widgets.video import VideoWidget try: from mpfmc.core.audio import SoundSystem from mpfmc.assets.sound import SoundStealingMethod except ImportError: SoundSystem = None SoundStealingMethod = None logging.warning("mpfmc.core.audio library could not be loaded. Audio " "features will not be available") class TestAudioGStreamer(MpfMcTestCase): """ Tests the GStreamer audio features in the media controller. The core audio library is a custom extension library written in Cython that interfaces with the SDL2 and SDL_Mixer libraries. """ def get_machine_path(self): return 'tests/machine_files/audio' def get_config_file(self): return 'test_audio_gstreamer.yaml' def test_loading_while_playing_video(self): """ Tests loading a sound file while playing a video (both using gstreamer) """ if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudio') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudio') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) # Mock BCP send method self.mc.bcp_processor.send = MagicMock() self.mc.bcp_processor.enabled = True # Make sure the low quality test video exists self.assertIn('mpf_video_small_test', self.mc.videos) self.mc.events.post('show_slide1') self.advance_time() video_widget = self.mc.targets['default'].current_slide.widgets[0].widget self.assertEqual(video_widget.state, 'play') self.assertTrue(video_widget.video.loaded) self.mc.events.post('play_sound_sfx_028') self.advance_real_time(1) self.mc.events.post('play_city_loop') self.advance_real_time(1) self.mc.events.post('play_sound_text') self.advance_real_time(0.35) self.mc.events.post('play_sound_text') self.advance_real_time(6) self.mc.bcp_processor.send.assert_any_call('trigger', sound_instance=ANY, name='text_sound_played') self.mc.bcp_processor.send.assert_any_call('trigger', name='test_video_played') self.mc.bcp_processor.send.assert_any_call('trigger', name='test_video_stopped') def test_retrigger_streamed_sound(self): """ Tests retriggering a streamed sound (play, stop, play) (using gstreamer) """ if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudio') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudio') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) track_music = interface.get_track_by_name("music") self.assertIsNotNone(track_music) # Mock BCP send method self.mc.bcp_processor.send = MagicMock() self.mc.bcp_processor.enabled = True self.mc.events.post('play_city_loop') self.advance_real_time(1) self.assertTrue(track_music.sound_is_playing(self.mc.sounds['city_loop'])) self.mc.events.post('stop_city_loop') self.advance_real_time(0.25) self.assertFalse(track_music.sound_is_playing(self.mc.sounds['city_loop'])) self.advance_real_time(0.25) self.mc.events.post('play_city_loop') self.advance_real_time(1) self.assertTrue(track_music.sound_is_playing(self.mc.sounds['city_loop'])) self.advance_real_time(1)
the-stack_106_27337
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from astropy.units import Quantity from astropy.io import fits from astropy import log from astropy.table import Table from astropy.extern import six from ..utils.fits import table_to_fits_table __all__ = [ 'Energy', 'EnergyBounds', ] class Energy(Quantity): """Energy quantity scalar or array. This is a `~astropy.units.Quantity` sub-class that adds convenience methods to handle common tasks for energy bin center arrays, like FITS I/O or generating equal-log-spaced grids of energies. See :ref:`energy_handling_gammapy` for further information. Parameters ---------- energy : `~numpy.array`, scalar, `~astropy.units.Quantity` Energy unit : `~astropy.units.UnitBase`, str, optional The unit of the value specified for the energy. This may be any string that `~astropy.units.Unit` understands, but it is better to give an actual unit object. dtype : `~numpy.dtype`, optional See `~astropy.units.Quantity`. copy : bool, optional See `~astropy.units.Quantity`. """ def __new__(cls, energy, unit=None, dtype=None, copy=True): # Techniques to subclass Quantity taken from astropy.coordinates.Angle # see: http://docs.scipy.org/doc/numpy/user/basics.subclassing.html if isinstance(energy, six.string_types): val, unit = energy.split() energy = float(val) self = super(Energy, cls).__new__(cls, energy, unit, dtype=dtype, copy=copy) if not self.unit.is_equivalent('eV'): raise ValueError("Given unit {0} is not an" " energy".format(self.unit.to_string())) return self def __array_finalize__(self, obj): super(Energy, self).__array_finalize__(obj) def __quantity_subclass__(self, unit): if unit.is_equivalent('eV'): return Energy, True else: return super(Energy, self).__quantity_subclass__(unit)[0], False @property def nbins(self): """ The number of bins """ return self.size @property def range(self): """ The covered energy range (tuple) """ return self[0:self.size:self.size - 1] @classmethod def equal_log_spacing(cls, emin, emax, nbins, unit=None): """Create Energy with equal log-spacing (`~gammapy.utils.energy.Energy`). if no unit is given, it will be taken from emax Parameters ---------- emin : `~astropy.units.Quantity`, float Lowest energy bin emax : `~astropy.units.Quantity`, float Highest energy bin bins : int Number of bins unit : `~astropy.units.UnitBase`, str Energy unit """ if unit is not None: emin = Energy(emin, unit) emax = Energy(emax, unit) else: emin = Energy(emin) emax = Energy(emax) unit = emax.unit emin = emin.to(unit) x_min, x_max = np.log10([emin.value, emax.value]) energy = np.logspace(x_min, x_max, nbins) return cls(energy, unit, copy=False) @classmethod def from_fits(cls, hdu, unit=None): """Read ENERGIES fits extension (`~gammapy.utils.energy.Energy`). Parameters ---------- hdu: `~astropy.io.fits.BinTableHDU` ``ENERGIES`` extensions. unit : `~astropy.units.UnitBase`, str, None Energy unit """ header = hdu.header fitsunit = header.get('TUNIT1') if fitsunit is None: if unit is not None: log.warning("No unit found in the FITS header." " Setting it to {0}".format(unit)) fitsunit = unit else: raise ValueError("No unit found in the FITS header." " Please specifiy a unit") energy = cls(hdu.data['Energy'], fitsunit) return energy.to(unit) def to_fits(self, **kwargs): """Write ENERGIES fits extension Returns ------- hdu: `~astropy.io.fits.BinTableHDU` ENERGIES fits extension """ col1 = fits.Column(name='Energy', format='D', array=self.value) cols = fits.ColDefs([col1]) hdu = fits.BinTableHDU.from_columns(cols) hdu.name = 'ENERGIES' hdu.header['TUNIT1'] = "{0}".format(self.unit.to_string('fits')) return hdu class EnergyBounds(Energy): """EnergyBounds array. This is a `~gammapy.utils.energy.Energy` sub-class that adds convenience methods to handle common tasks for energy bin edges arrays, like FITS I/O or generating arrays of bin centers. See :ref:`energy_handling_gammapy` for further information. Parameters ---------- energy : `~numpy.array`, scalar, `~astropy.units.Quantity` EnergyBounds unit : `~astropy.units.UnitBase`, str The unit of the values specified for the energy. This may be any string that `~astropy.units.Unit` understands, but it is better to give an actual unit object. """ @property def nbins(self): """ The number of bins """ return self.size - 1 @property def log_centers(self): """Log centers of the energy bounds """ center = np.sqrt(self[:-1] * self[1:]) return center.view(Energy) @property def upper_bounds(self): """Upper energy bin edges """ return self[1:] @property def lower_bounds(self): """Lower energy bin edges """ return self[:-1] @property def boundaries(self): """Energy range""" return self[[0, -1]] @property def bands(self): """Width of the energy bins """ upper = self.upper_bounds lower = self.lower_bounds return upper - lower @classmethod def from_lower_and_upper_bounds(cls, lower, upper, unit=None): """EnergyBounds from lower and upper bounds (`~gammapy.utils.energy.EnergyBounds`). If no unit is given, it will be taken from upper Parameters ---------- lower,upper : `~astropy.units.Quantity`, float Lowest and highest energy bin unit : `~astropy.units.UnitBase`, str, None Energy units """ # np.append renders Quantities dimensionless # http://docs.astropy.org/en/latest/known_issues.html#quantity-issues lower = cls(lower, unit) upper = cls(upper, unit) unit = upper.unit energy = np.hstack((lower, upper[-1])) return cls(energy.value, unit) @classmethod def equal_log_spacing(cls, emin, emax, nbins, unit=None): """EnergyBounds with equal log-spacing (`~gammapy.utils.energy.EnergyBounds`). If no unit is given, it will be taken from emax Parameters ---------- emin : `~astropy.units.Quantity`, float Lowest energy bin emax : `~astropy.units.Quantity`, float Highest energy bin bins : int Number of bins unit : `~astropy.units.UnitBase`, str, None Energy unit """ return super(EnergyBounds, cls).equal_log_spacing( emin, emax, nbins + 1, unit) @classmethod def from_ebounds(cls, hdu, unit=None): """Read EBOUNDS fits extension (`~gammapy.utils.energy.EnergyBounds`). Parameters ---------- hdu: `~astropy.io.fits.BinTableHDU` ``EBOUNDS`` extensions. unit : `~astropy.units.UnitBase`, str, None Energy unit """ if hdu.name != 'EBOUNDS': log.warning('This does not seem like an EBOUNDS extension. ' 'Are you sure?') header = hdu.header unit = header.get('TUNIT2') low = hdu.data['E_MIN'] high = hdu.data['E_MAX'] return cls.from_lower_and_upper_bounds(low, high, unit) @classmethod def from_rmf_matrix(cls, hdu, unit=None): """Read MATRIX fits extension (`~gammapy.utils.energy.EnergyBounds`). Parameters ---------- hdu: `~astropy.io.fits.BinTableHDU` ``MATRIX`` extensions. unit : `~astropy.units.UnitBase`, str, None Energy unit """ if hdu.name != 'MATRIX': log.warning('This does not seem like a MATRIX extension. ' 'Are you sure?') header = hdu.header unit = header.get('TUNIT1') low = hdu.data['ENERG_LO'] high = hdu.data['ENERG_HI'] return cls.from_lower_and_upper_bounds(low, high, unit) def bin(self, i): """ Return energy bin edges (zero-based numbering) Parameters ---------- i : int Energy bin """ return self[[i, i + 2]] def find_energy_bin(self, energy): """Find the bins that contain the specified energy values. Parameters ---------- energy : `~gammapy.utils.energy.Energy` Array of energies to search for. Returns ------- bin_index : `~numpy.ndarray` Indices of the energy bins containing the specified energies. """ # check that the specified energy is within the boundaries if not self.contains(energy).all(): ss_error = "Specified energy {}".format(energy) ss_error += " is outside the boundaries {}".format(self.boundaries) raise ValueError(ss_error) bin_index = np.searchsorted(self.upper_bounds, energy) return bin_index def contains(self, energy): """Check of energy is contained in boundaries Parameters ---------- energy : `~gammapy.utils.energy.Energy` Array of energies to test """ return (energy > self[0]) & (energy < self[-1]) def to_table(self, unit=None): """Convert to `~astropy.table.Table`. """ if unit is None: unit = self.unit table = Table() table['CHANNEL'] = np.arange(self.nbins, dtype=np.int16) table['E_MIN'] = Quantity(self.lower_bounds, unit=unit, dtype=np.float32) table['E_MAX'] = Quantity(self.upper_bounds, unit=unit, dtype=np.float32) return table def to_ebounds(self, unit=None, **kwargs): """Write EBOUNDS fits extension Returns ------- hdu: `~astropy.io.fits.BinTableHDU` EBOUNDS fits extension """ hdu = table_to_fits_table(self.to_table(unit)) header = hdu.header header['EXTNAME'] = 'EBOUNDS', 'Name of this binary table extension' header['TELESCOP'] = 'DUMMY', 'Mission/satellite name' header['INSTRUME'] = 'DUMMY', 'Instrument/detector' header['FILTER'] = '', 'Filter information' header['CHANTYPE'] = 'PHA', 'Type of channels (PHA, PI etc)' header['DETCHANS'] = self.nbins, 'Total number of detector PHA channels' header['HDUCLASS'] = 'OGIP', 'Organisation devising file format' header['HDUCLAS1'] = 'RESPONSE', 'File relates to response of instrument' header['HDUCLAS2'] = 'EBOUNDS', 'This is an EBOUNDS extension' header['HDUVERS'] = '1.2.0', 'Version of file format' # Obsolet EBOUNDS headers, included for the benefit of old software header['RMFVERSN'] = '1992a', 'Obsolete' header['HDUVERS1'] = '1.0.0', 'Obsolete' header['HDUVERS2'] = '1.1.0', 'Obsolete' return hdu def to_dict(self): """Construct dict representing an energy range""" if len(self) != 2: raise ValueError( "This is not an energy range. Nbins: {}".format(self.nbins)) d = dict(min=self[0].value, max=self[1].value, unit='{}'.format(self.unit)) return d @classmethod def from_dict(cls, d): """Read dict representing an energy range""" return cls((d['min'], d['max']), d['unit'])
the-stack_106_27338
try: from io import StringIO from io import BytesIO except ImportError: from cStringIO import StringIO # NOQA try: from configparser import ConfigParser except ImportError: from ConfigParser import ConfigParser # NOQA from circus.tests.support import TestCase from circus.tests.support import EasyTestSuite from circus.tests.support import skipIf, PYTHON, IS_WINDOWS import os import shutil import tempfile from pipes import quote as shell_escape_arg import subprocess import time import yaml import json import logging.config import sys HERE = os.path.abspath(os.path.dirname(__file__)) CONFIG_PATH = os.path.join(HERE, 'config', 'circus.ini') def run_circusd(options=(), config=(), log_capture_path="log.txt", additional_files=()): options = list(options) additional_files = dict(additional_files) config_ini_update = { "watcher:touch.cmd": PYTHON, "watcher:touch.args": "-c \"open('workerstart.txt', 'w+').close()\"", "watcher:touch.respawn": 'False' } config_ini_update.update(dict(config)) config_ini = ConfigParser() config_ini.read(CONFIG_PATH) for dottedkey in config_ini_update: section, key = dottedkey.split(".", 1) if section not in config_ini.sections(): config_ini.add_section(section) config_ini.set( section, key, config_ini_update[dottedkey]) temp_dir = tempfile.mkdtemp() try: circus_ini_path = os.path.join(temp_dir, "circus.ini") with open(circus_ini_path, "w") as fh: config_ini.write(fh) for relpath in additional_files: path = os.path.join(temp_dir, relpath) with open(path, "w") as fh: fh.write(additional_files[relpath]) env = os.environ.copy() sep = ';' if IS_WINDOWS else ':' # We're going to run circus from a process with a different # cwd, so we need to make sure that Python will import the # current version of circus pythonpath = env.get('PYTHONPATH', '') pythonpath += '%s%s' % (sep, os.path.abspath( os.path.join(HERE, os.pardir, os.pardir))) env['PYTHONPATH'] = pythonpath argv = ["circus.circusd"] + options + [circus_ini_path] if sys.gettrace() is None or IS_WINDOWS: # killing a coverage run process leaves a zombie on # Windows so we should skip coverage argv = [PYTHON, "-m"] + argv else: exe_dir = os.path.dirname(PYTHON) coverage = os.path.join(exe_dir, "coverage") if not os.path.isfile(coverage): coverage = "coverage" argv = [coverage, "run", "-p", "-m"] + argv child = subprocess.Popen(argv, cwd=temp_dir, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) try: touch_path = os.path.join(temp_dir, "workerstart.txt") while True: child.poll() if os.path.exists(touch_path): break if child.returncode is not None: break time.sleep(0.01) finally: child.terminate() child.wait() log_file_path = os.path.join(temp_dir, log_capture_path) try: if os.path.exists(log_file_path): with open(log_file_path, "r") as fh: return fh.read() else: if child.stdout is not None: raise Exception(child.stdout.read().decode("ascii")) finally: if child.stdout is not None: child.stdout.close() if child.stderr is not None: child.stderr.close() if child.stdin is not None: child.stdin.close() assert child.returncode == 0, \ " ".join(shell_escape_arg(a) for a in argv) finally: for basename in sorted(os.listdir(temp_dir)): if basename.startswith(".coverage."): source = os.path.join(temp_dir, basename) target = os.path.abspath(basename) shutil.copy(source, target) try: shutil.rmtree(temp_dir) except OSError: # Sometimes on Windows we can't delete the # logging file because it says it's still in # use (lock). pass EXAMPLE_YAML = """\ version: 1 disable_existing_loggers: false formatters: simple: format: '%(asctime)s - %(name)s - [%(levelname)s] %(message)s' handlers: logfile: class: logging.FileHandler filename: logoutput.txt level: DEBUG formatter: simple loggers: circus: level: DEBUG handlers: [logfile] propagate: no root: level: DEBUG handlers: [logfile] """ EXPECTED_LOG_MESSAGE = "[INFO] Arbiter now waiting for commands" def logging_dictconfig_to_ini(config): assert config.get("version", 1) == 1, config ini = ConfigParser() ini.add_section("loggers") loggers = config.get("loggers", {}) if "root" in config: loggers["root"] = config["root"] ini.set("loggers", "keys", ",".join(sorted(loggers.keys()))) for logger in sorted(loggers.keys()): section = "logger_%s" % (logger.replace(".", "_"),) ini.add_section(section) for key, value in sorted(loggers[logger].items()): if key == "handlers": value = ",".join(value) if key == "propagate": value = "1" if value else "0" ini.set(section, key, value) ini.set(section, "qualname", logger) ini.add_section("handlers") handlers = config.get("handlers", {}) ini.set("handlers", "keys", ",".join(sorted(handlers.keys()))) for handler in sorted(handlers.keys()): section = "handler_%s" % (handler,) ini.add_section(section) args = [] for key, value in sorted(handlers[handler].items()): if (handlers[handler]["class"] == "logging.FileHandler" and key == "filename"): args.append(value) else: ini.set(section, key, value) ini.set(section, "args", repr(tuple(args))) ini.add_section("formatters") formatters = config.get("formatters", {}) ini.set("formatters", "keys", ",".join(sorted(formatters.keys()))) for formatter in sorted(formatters.keys()): section = "formatter_%s" % (formatter,) ini.add_section(section) for key, value in sorted(formatters[formatter].items()): ini.set(section, key, value) try: # Older Python (without io.StringIO/io.BytesIO) and Python 3 use # this code path. result = StringIO() ini.write(result) return result.getvalue() except TypeError: # Python 2.7 has io.StringIO and io.BytesIO but ConfigParser.write # has not been fixed to work with StringIO. result = BytesIO() ini.write(result) return result.getvalue().decode("ascii") def hasDictConfig(): return hasattr(logging.config, "dictConfig") class TestLoggingConfig(TestCase): def test_loggerconfig_default_ini(self): logs = run_circusd( [], {"circus.logoutput": "log_ini.txt"}, log_capture_path="log_ini.txt") self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) def test_loggerconfig_default_opt(self): logs = run_circusd( ["--log-output", "log_opt.txt"], {}, log_capture_path="log_opt.txt") self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) @skipIf(not hasDictConfig(), "Needs logging.config.dictConfig()") def test_loggerconfig_yaml_ini(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_yaml_ini.txt" logs = run_circusd( [], {"circus.loggerconfig": "logging.yaml"}, log_capture_path="log_yaml_ini.txt", additional_files={"logging.yaml": yaml.dump(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) @skipIf(not hasDictConfig(), "Needs logging.config.dictConfig()") def test_loggerconfig_yaml_opt(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_yaml_opt.txt" logs = run_circusd( ["--logger-config", "logging.yaml"], {}, log_capture_path="log_yaml_opt.txt", additional_files={"logging.yaml": yaml.dump(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) @skipIf(not hasDictConfig(), "Needs logging.config.dictConfig()") def test_loggerconfig_json_ini(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_json_ini.txt" logs = run_circusd( [], {"circus.loggerconfig": "logging.json"}, log_capture_path="log_json_ini.txt", additional_files={"logging.json": json.dumps(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) @skipIf(not hasDictConfig(), "Needs logging.config.dictConfig()") def test_loggerconfig_json_opt(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_json_opt.txt" logs = run_circusd( ["--logger-config", "logging.json"], {}, log_capture_path="log_json_opt.txt", additional_files={"logging.json": json.dumps(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) def test_loggerconfig_ini_ini(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_ini_ini.txt" logs = run_circusd( [], {"circus.loggerconfig": "logging.ini"}, log_capture_path="log_ini_ini.txt", additional_files={ "logging.ini": logging_dictconfig_to_ini(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) def test_loggerconfig_ini_opt(self): config = yaml.load(EXAMPLE_YAML) config["handlers"]["logfile"]["filename"] = "log_ini_opt.txt" logs = run_circusd( ["--logger-config", "logging.ini"], {}, log_capture_path="log_ini_opt.txt", additional_files={ "logging.ini": logging_dictconfig_to_ini(config)}) self.assertTrue(EXPECTED_LOG_MESSAGE in logs, logs) test_suite = EasyTestSuite(__name__)
the-stack_106_27339
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test processing of unrequested blocks. Setup: two nodes, node0+node1, not connected to each other. Node1 will have nMinimumChainWork set to 0x10, so it won't process low-work unrequested blocks. We have one NodeConn connection to node0 called test_node, and one to node1 called min_work_node. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance for node0, but node1 should skip processing due to nMinimumChainWork. Node1 is unused in tests 3-7: 3. Mine a block that forks from the genesis block, and deliver to test_node. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more or equal work to the tip. 4a,b. Send another two blocks that build on the forking block. Node0 should process the second block but be stuck on the shorter chain, because it's missing an intermediate block. 4c.Send 288 more blocks on the longer chain (the number of blocks ahead we currently store). Node0 should process all but the last block (too far ahead in height). 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. 8. Create a fork which is invalid at a height longer than the current chain (ie to which the node will try to reorg) but which has headers built on top of the invalid block. Check that we get disconnected if we send more headers on the chain the node now knows to be invalid. 9. Test Node1 is able to sync when connected to node0 (which should have sufficient work on its chain). """ from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase, create_transaction class AcceptBlockTest(BitcoinTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("LITECOIND", "amorecoind"), help="amorecoind binary to test") def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [[], ["-minimumchainwork=0x10"]] def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. # Node2 will be used for non-whitelisted peers to test the interaction # with nMinimumChainWork. self.setup_nodes() def run_test(self): # Setup the p2p connections and start up the network thread. test_node = NodeConnCB() # connects to node0 min_work_node = NodeConnCB() # connects to node1 connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], min_work_node)) test_node.add_connection(connections[0]) min_work_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here test_node.wait_for_verack() min_work_node.wait_for_verack() # 1. Have nodes mine a block (leave IBD) [ n.generate(1) for n in self.nodes ] tips = [ int("0x" + n.getbestblockhash(), 0) for n in self.nodes ] # 2. Send one block that builds on each tip. # This should be accepted by node0 blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in range(2): blocks_h2.append(create_block(tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) min_work_node.send_message(msg_block(blocks_h2[1])) for x in [test_node, min_work_node]: x.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 1) self.log.info("First height 2 block accepted by node0; correctly rejected by node1") # 3. Send another block that builds on genesis. block_h1f = create_block(int("0x" + self.nodes[0].getblockhash(0), 0), create_coinbase(1), block_time) block_time += 1 block_h1f.solve() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h1f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_h1f.hash) # 4. Send another two block that build on the fork. block_h2f = create_block(block_h1f.sha256, create_coinbase(2), block_time) block_time += 1 block_h2f.solve() test_node.send_message(msg_block(block_h2f)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h2f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) # But this block should be accepted by node since it has equal work. self.nodes[0].getblock(block_h2f.hash) self.log.info("Second height 2 block accepted, but not reorg'ed to") # 4b. Now send another block that builds on the forking chain. block_h3 = create_block(block_h2f.sha256, create_coinbase(3), block_h2f.nTime+1) block_h3.solve() test_node.send_message(msg_block(block_h3)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h3.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) self.nodes[0].getblock(block_h3.hash) # But this block should be accepted by node since it has more work. self.nodes[0].getblock(block_h3.hash) self.log.info("Unrequested more-work block accepted") # 4c. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node (as long as its not missing any headers) tip = block_h3 all_blocks = [] for i in range(288): next_block = create_block(tip.sha256, create_coinbase(i + 4), tip.nTime+1) next_block.solve() all_blocks.append(next_block) tip = next_block # Now send the block at height 5 and check that it wasn't accepted (missing header) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, all_blocks[1].hash) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblockheader, all_blocks[1].hash) # The block at height 5 should be accepted if we provide the missing header, though headers_message = msg_headers() headers_message.headers.append(CBlockHeader(all_blocks[0])) test_node.send_message(headers_message) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() self.nodes[0].getblock(all_blocks[1].hash) # Now send the blocks in all_blocks for i in range(288): test_node.send_message(msg_block(all_blocks[i])) test_node.sync_with_ping() # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead for x in all_blocks[:-1]: self.nodes[0].getblock(x.hash) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[-1].hash) # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). # The node should have requested the blocks at some point, so # disconnect/reconnect first connections[0].disconnect_node() test_node.wait_for_disconnect() test_node = NodeConnCB() # connects to node (not whitelisted) connections[0] = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node) test_node.add_connection(connections[0]) test_node.wait_for_verack() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) self.log.info("Unrequested block that would complete more-work chain was ignored") # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_message.pop("getdata", None) test_node.send_message(msg_inv([CInv(2, block_h3.sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_message["getdata"] # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, block_h1f.sha256) self.log.info("Inv at tip triggered getdata for unprocessed block") # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 290) self.nodes[0].getblock(all_blocks[286].hash) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[287].hash) self.log.info("Successfully reorged to longer chain from non-whitelisted peer") # 8. Create a chain which is invalid at a height longer than the # current chain, but which has more blocks on top of that block_289f = create_block(all_blocks[284].sha256, create_coinbase(289), all_blocks[284].nTime+1) block_289f.solve() block_290f = create_block(block_289f.sha256, create_coinbase(290), block_289f.nTime+1) block_290f.solve() block_291 = create_block(block_290f.sha256, create_coinbase(291), block_290f.nTime+1) # block_291 spends a coinbase below maturity! block_291.vtx.append(create_transaction(block_290f.vtx[0], 0, b"42", 1)) block_291.hashMerkleRoot = block_291.calc_merkle_root() block_291.solve() block_292 = create_block(block_291.sha256, create_coinbase(292), block_291.nTime+1) block_292.solve() # Now send all the headers on the chain and enough blocks to trigger reorg headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_289f)) headers_message.headers.append(CBlockHeader(block_290f)) headers_message.headers.append(CBlockHeader(block_291)) headers_message.headers.append(CBlockHeader(block_292)) test_node.send_message(headers_message) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_292.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_292.hash) test_node.send_message(msg_block(block_289f)) test_node.send_message(msg_block(block_290f)) test_node.sync_with_ping() self.nodes[0].getblock(block_289f.hash) self.nodes[0].getblock(block_290f.hash) test_node.send_message(msg_block(block_291)) # At this point we've sent an obviously-bogus block, wait for full processing # without assuming whether we will be disconnected or not try: # Only wait a short while so the test doesn't take forever if we do get # disconnected test_node.sync_with_ping(timeout=1) except AssertionError: test_node.wait_for_disconnect() test_node = NodeConnCB() # connects to node (not whitelisted) connections[0] = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node) test_node.add_connection(connections[0]) NetworkThread().start() # Start up network handling in another thread test_node.wait_for_verack() # We should have failed reorg and switched back to 290 (but have block 291) assert_equal(self.nodes[0].getblockcount(), 290) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_equal(self.nodes[0].getblock(block_291.hash)["confirmations"], -1) # Now send a new header on the invalid chain, indicating we're forked off, and expect to get disconnected block_293 = create_block(block_292.sha256, create_coinbase(293), block_292.nTime+1) block_293.solve() headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_293)) test_node.send_message(headers_message) test_node.wait_for_disconnect() # 9. Connect node1 to node0 and ensure it is able to sync connect_nodes(self.nodes[0], 1) sync_blocks([self.nodes[0], self.nodes[1]]) self.log.info("Successfully synced nodes 1 and 0") [ c.disconnect_node() for c in connections ] if __name__ == '__main__': AcceptBlockTest().main()
the-stack_106_27340
import asyncio import random import discord from discord.ext.buttons import Paginator class Pag(Paginator): async def teardown(self): try: await self.page.clear_reactions() except discord.HTTPException: pass async def GetMessage( bot, ctx, contentOne="Default Message", contentTwo="\uFEFF", timeout=100 ): """ This function sends an embed containing the params and then waits for a message to return Params: - bot (commands.Bot object) : - ctx (context object) : Used for sending msgs n stuff - Optional Params: - contentOne (string) : Embed title - contentTwo (string) : Embed description - timeout (int) : Timeout for wait_for Returns: - msg.content (string) : If a message is detected, the content will be returned or - False (bool) : If a timeout occurs """ embed = discord.Embed( title=f"{contentOne}", description=f"{contentTwo}", colour=random.choice(bot.color_list), ) sent = await ctx.send(embed=embed) try: msg = await bot.wait_for( "message", timeout=timeout, check=lambda message: message.author == ctx.author and message.channel == ctx.channel, ) if msg: await asyncio.sleep(1) await sent.delete() await msg.delete() return msg.content except asyncio.TimeoutError: await sent.delete() return False
the-stack_106_27341
import weakref from collections import namedtuple import operator from functools import partial from llvmlite.llvmpy.core import Constant, Type, Builder from numba import _dynfunc from numba.core import (typing, utils, types, ir, debuginfo, funcdesc, generators, config, ir_utils, cgutils) from numba.core.errors import (LoweringError, new_error_context, TypingError, LiteralTypingError, UnsupportedError) from numba.core.funcdesc import default_mangler class Environment(_dynfunc.Environment): """Stores globals and constant pyobjects for runtime. It is often needed to convert b/w nopython objects and pyobjects. """ __slots__ = ('env_name', '__weakref__') # A weak-value dictionary to store live environment with env_name as the # key. _memo = weakref.WeakValueDictionary() @classmethod def from_fndesc(cls, fndesc): try: # Avoid creating new Env return cls._memo[fndesc.env_name] except KeyError: inst = cls(fndesc.lookup_globals()) inst.env_name = fndesc.env_name cls._memo[fndesc.env_name] = inst return inst def __reduce__(self): return _rebuild_env, ( self.globals['__name__'], self.consts, self.env_name, ) def __del__(self): return def _rebuild_env(modname, consts, env_name): if env_name in Environment._memo: return Environment._memo[env_name] from numba.core import serialize mod = serialize._rebuild_module(modname) env = Environment(mod.__dict__) env.consts[:] = consts return env _VarArgItem = namedtuple("_VarArgItem", ("vararg", "index")) class BaseLower(object): """ Lower IR to LLVM """ def __init__(self, context, library, fndesc, func_ir, metadata=None): self.library = library self.fndesc = fndesc self.blocks = utils.SortedMap(utils.iteritems(func_ir.blocks)) self.func_ir = func_ir self.call_conv = context.call_conv self.generator_info = func_ir.generator_info self.metadata = metadata # Initialize LLVM self.module = self.library.create_ir_module(self.fndesc.unique_name) # Python execution environment (will be available to the compiled # function). self.env = Environment.from_fndesc(self.fndesc) # Internal states self.blkmap = {} self.pending_phis = {} self.varmap = {} self.firstblk = min(self.blocks.keys()) self.loc = -1 # Specializes the target context as seen inside the Lowerer # This adds: # - environment: the python execution environment self.context = context.subtarget(environment=self.env, fndesc=self.fndesc) # Debuginfo dibuildercls = (self.context.DIBuilder if self.context.enable_debuginfo else debuginfo.DummyDIBuilder) self.debuginfo = dibuildercls(module=self.module, filepath=func_ir.loc.filename) # Subclass initialization self.init() def init(self): pass def init_pyapi(self): """ Init the Python API and Environment Manager for the function being lowered. """ if self.pyapi is not None: return self.pyapi = self.context.get_python_api(self.builder) # Store environment argument for later use self.env_manager = self.context.get_env_manager(self.builder) self.env_body = self.env_manager.env_body self.envarg = self.env_manager.env_ptr def pre_lower(self): """ Called before lowering all blocks. """ # A given Lower object can be used for several LL functions # (for generators) and it's important to use a new API and # EnvironmentManager. self.pyapi = None self.debuginfo.mark_subprogram(function=self.builder.function, name=self.fndesc.qualname, loc=self.func_ir.loc) def post_lower(self): """ Called after all blocks are lowered """ self.debuginfo.finalize() def pre_block(self, block): """ Called before lowering a block. """ def post_block(self, block): """ Called after lowering a block. """ def return_exception(self, exc_class, exc_args=None, loc=None): """Propagate exception to the caller. """ self.call_conv.return_user_exc( self.builder, exc_class, exc_args, loc=loc, func_name=self.func_ir.func_id.func_name, ) def set_exception(self, exc_class, exc_args=None, loc=None): """Set exception state in the current function. """ self.call_conv.set_static_user_exc( self.builder, exc_class, exc_args, loc=loc, func_name=self.func_ir.func_id.func_name, ) def emit_environment_object(self): """Emit a pointer to hold the Environment object. """ # Define global for the environment and initialize it to NULL envname = self.context.get_env_name(self.fndesc) self.context.declare_env_global(self.module, envname) def lower(self): # Emit the Env into the module self.emit_environment_object() if self.generator_info is None: self.genlower = None self.lower_normal_function(self.fndesc) else: self.genlower = self.GeneratorLower(self) self.gentype = self.genlower.gentype self.genlower.lower_init_func(self) self.genlower.lower_next_func(self) if self.gentype.has_finalizer: self.genlower.lower_finalize_func(self) if config.DUMP_LLVM: print(("LLVM DUMP %s" % self.fndesc).center(80, '-')) if config.HIGHLIGHT_DUMPS: try: from pygments import highlight from pygments.lexers import LlvmLexer as lexer from pygments.formatters import Terminal256Formatter from numba.misc.dump_style import by_colorscheme print(highlight(self.module.__repr__(), lexer(), Terminal256Formatter( style=by_colorscheme()))) except ImportError: msg = "Please install pygments to see highlighted dumps" raise ValueError(msg) else: print(self.module) print('=' * 80) # Run target specific post lowering transformation self.context.post_lowering(self.module, self.library) # Materialize LLVM Module self.library.add_ir_module(self.module) def extract_function_arguments(self): self.fnargs = self.call_conv.decode_arguments(self.builder, self.fndesc.argtypes, self.function) return self.fnargs def lower_normal_function(self, fndesc): """ Lower non-generator *fndesc*. """ self.setup_function(fndesc) # Init argument values self.extract_function_arguments() entry_block_tail = self.lower_function_body() # Close tail of entry block self.builder.position_at_end(entry_block_tail) self.builder.branch(self.blkmap[self.firstblk]) def lower_function_body(self): """ Lower the current function's body, and return the entry block. """ # Init Python blocks for offset in self.blocks: bname = "B%s" % offset self.blkmap[offset] = self.function.append_basic_block(bname) self.pre_lower() # pre_lower() may have changed the current basic block entry_block_tail = self.builder.basic_block self.debug_print("# function begin: {0}".format( self.fndesc.unique_name)) # Lower all blocks for offset, block in sorted(self.blocks.items()): bb = self.blkmap[offset] self.builder.position_at_end(bb) self.lower_block(block) self.post_lower() return entry_block_tail def lower_block(self, block): """ Lower the given block. """ self.pre_block(block) for inst in block.body: self.loc = inst.loc defaulterrcls = partial(LoweringError, loc=self.loc) with new_error_context('lowering "{inst}" at {loc}', inst=inst, loc=self.loc, errcls_=defaulterrcls): self.lower_inst(inst) self.post_block(block) def create_cpython_wrapper(self, release_gil=False): """ Create CPython wrapper(s) around this function (or generator). """ if self.genlower: self.context.create_cpython_wrapper(self.library, self.genlower.gendesc, self.env, self.call_helper, release_gil=release_gil) self.context.create_cpython_wrapper(self.library, self.fndesc, self.env, self.call_helper, release_gil=release_gil) def create_cfunc_wrapper(self): """ Create C wrapper around this function. """ if self.genlower: raise UnsupportedError('generator as a first-class function type') self.context.create_cfunc_wrapper(self.library, self.fndesc, self.env, self.call_helper) def setup_function(self, fndesc): # Setup function self.function = self.context.declare_function(self.module, fndesc) self.entry_block = self.function.append_basic_block('entry') self.builder = Builder(self.entry_block) self.call_helper = self.call_conv.init_call_helper(self.builder) def typeof(self, varname): return self.fndesc.typemap[varname] def debug_print(self, msg): if config.DEBUG_JIT: self.context.debug_print(self.builder, "DEBUGJIT: {0}".format(msg)) # Dictionary mapping instruction class to its lowering function. lower_extensions = {} class Lower(BaseLower): GeneratorLower = generators.GeneratorLower def pre_block(self, block): from numba.core.unsafe import eh super(Lower, self).pre_block(block) if block == self.firstblk: # create slots for all the vars, irrespective of whether they are # initialized, SSA will pick this up and warn users about using # uninitialized variables. Slots are added as alloca in the first # block bb = self.blkmap[self.firstblk] self.builder.position_at_end(bb) all_names = set() for block in self.blocks.values(): for x in block.find_insts(ir.Del): if x.value not in all_names: all_names.add(x.value) for name in all_names: fetype = self.typeof(name) self._alloca_var(name, fetype) # Detect if we are in a TRY block by looking for a call to # `eh.exception_check`. for call in block.find_exprs(op='call'): defn = ir_utils.guard( ir_utils.get_definition, self.func_ir, call.func, ) if defn is not None and isinstance(defn, ir.Global): if defn.value is eh.exception_check: if isinstance(block.terminator, ir.Branch): targetblk = self.blkmap[block.terminator.truebr] # NOTE: This hacks in an attribute for call_conv to # pick up. This hack is no longer needed when # all old-style implementations are gone. self.builder._in_try_block = {'target': targetblk} break def post_block(self, block): # Clean-up try: del self.builder._in_try_block except AttributeError: pass def lower_inst(self, inst): # Set debug location for all subsequent LL instructions self.debuginfo.mark_location(self.builder, self.loc) self.debug_print(str(inst)) if isinstance(inst, ir.Assign): ty = self.typeof(inst.target.name) val = self.lower_assign(ty, inst) self.storevar(val, inst.target.name) elif isinstance(inst, ir.Branch): cond = self.loadvar(inst.cond.name) tr = self.blkmap[inst.truebr] fl = self.blkmap[inst.falsebr] condty = self.typeof(inst.cond.name) pred = self.context.cast(self.builder, cond, condty, types.boolean) assert pred.type == Type.int(1), ("cond is not i1: %s" % pred.type) self.builder.cbranch(pred, tr, fl) elif isinstance(inst, ir.Jump): target = self.blkmap[inst.target] self.builder.branch(target) elif isinstance(inst, ir.Return): if self.generator_info: # StopIteration self.genlower.return_from_generator(self) return val = self.loadvar(inst.value.name) oty = self.typeof(inst.value.name) ty = self.fndesc.restype if isinstance(ty, types.Optional): # If returning an optional type self.call_conv.return_optional_value(self.builder, ty, oty, val) return if ty != oty: val = self.context.cast(self.builder, val, oty, ty) retval = self.context.get_return_value(self.builder, ty, val) self.call_conv.return_value(self.builder, retval) elif isinstance(inst, ir.StaticSetItem): signature = self.fndesc.calltypes[inst] assert signature is not None try: impl = self.context.get_function('static_setitem', signature) except NotImplementedError: return self.lower_setitem(inst.target, inst.index_var, inst.value, signature) else: target = self.loadvar(inst.target.name) value = self.loadvar(inst.value.name) valuety = self.typeof(inst.value.name) value = self.context.cast(self.builder, value, valuety, signature.args[2]) return impl(self.builder, (target, inst.index, value)) elif isinstance(inst, ir.Print): self.lower_print(inst) elif isinstance(inst, ir.SetItem): signature = self.fndesc.calltypes[inst] assert signature is not None return self.lower_setitem(inst.target, inst.index, inst.value, signature) elif isinstance(inst, ir.StoreMap): signature = self.fndesc.calltypes[inst] assert signature is not None return self.lower_setitem(inst.dct, inst.key, inst.value, signature) elif isinstance(inst, ir.DelItem): target = self.loadvar(inst.target.name) index = self.loadvar(inst.index.name) targetty = self.typeof(inst.target.name) indexty = self.typeof(inst.index.name) signature = self.fndesc.calltypes[inst] assert signature is not None op = operator.delitem fnop = self.context.typing_context.resolve_value_type(op) callsig = fnop.get_call_type( self.context.typing_context, signature.args, {}, ) impl = self.context.get_function(fnop, callsig) assert targetty == signature.args[0] index = self.context.cast(self.builder, index, indexty, signature.args[1]) return impl(self.builder, (target, index)) elif isinstance(inst, ir.Del): self.delvar(inst.value) elif isinstance(inst, ir.SetAttr): target = self.loadvar(inst.target.name) value = self.loadvar(inst.value.name) signature = self.fndesc.calltypes[inst] targetty = self.typeof(inst.target.name) valuety = self.typeof(inst.value.name) assert signature is not None assert signature.args[0] == targetty impl = self.context.get_setattr(inst.attr, signature) # Convert argument to match value = self.context.cast(self.builder, value, valuety, signature.args[1]) return impl(self.builder, (target, value)) elif isinstance(inst, ir.StaticRaise): self.lower_static_raise(inst) elif isinstance(inst, ir.StaticTryRaise): self.lower_static_try_raise(inst) else: for _class, func in lower_extensions.items(): if isinstance(inst, _class): func(self, inst) return raise NotImplementedError(type(inst)) def lower_setitem(self, target_var, index_var, value_var, signature): target = self.loadvar(target_var.name) value = self.loadvar(value_var.name) index = self.loadvar(index_var.name) targetty = self.typeof(target_var.name) valuety = self.typeof(value_var.name) indexty = self.typeof(index_var.name) op = operator.setitem fnop = self.context.typing_context.resolve_value_type(op) callsig = fnop.get_call_type( self.context.typing_context, signature.args, {}, ) impl = self.context.get_function(fnop, callsig) # Convert argument to match if isinstance(targetty, types.Optional): target = self.context.cast(self.builder, target, targetty, targetty.type) else: assert targetty == signature.args[0] index = self.context.cast(self.builder, index, indexty, signature.args[1]) value = self.context.cast(self.builder, value, valuety, signature.args[2]) return impl(self.builder, (target, index, value)) def lower_static_raise(self, inst): if inst.exc_class is None: # Reraise self.return_exception(None, loc=self.loc) else: self.return_exception(inst.exc_class, inst.exc_args, loc=self.loc) def lower_static_try_raise(self, inst): if inst.exc_class is None: # Reraise self.set_exception(None, loc=self.loc) else: self.set_exception(inst.exc_class, inst.exc_args, loc=self.loc) def lower_assign(self, ty, inst): value = inst.value # In nopython mode, closure vars are frozen like globals if isinstance(value, (ir.Const, ir.Global, ir.FreeVar)): res = self.context.get_constant_generic(self.builder, ty, value.value) self.incref(ty, res) return res elif isinstance(value, ir.Expr): return self.lower_expr(ty, value) elif isinstance(value, ir.Var): val = self.loadvar(value.name) oty = self.typeof(value.name) res = self.context.cast(self.builder, val, oty, ty) self.incref(ty, res) return res elif isinstance(value, ir.Arg): # Cast from the argument type to the local variable type # (note the "arg.FOO" convention as used in typeinfer) argty = self.typeof("arg." + value.name) if isinstance(argty, types.Omitted): pyval = argty.value tyctx = self.context.typing_context valty = tyctx.resolve_value_type_prefer_literal(pyval) # use the type of the constant value const = self.context.get_constant_generic( self.builder, valty, pyval, ) # cast it to the variable type res = self.context.cast(self.builder, const, valty, ty) else: val = self.fnargs[value.index] res = self.context.cast(self.builder, val, argty, ty) self.incref(ty, res) return res elif isinstance(value, ir.Yield): res = self.lower_yield(ty, value) self.incref(ty, res) return res raise NotImplementedError(type(value), value) def lower_yield(self, retty, inst): yp = self.generator_info.yield_points[inst.index] assert yp.inst is inst y = generators.LowerYield(self, yp, yp.live_vars) y.lower_yield_suspend() # Yield to caller val = self.loadvar(inst.value.name) typ = self.typeof(inst.value.name) # cast the local val to the type yielded yret = self.context.cast(self.builder, val, typ, self.gentype.yield_type) # get the return repr of yielded value retval = self.context.get_return_value(self.builder, typ, yret) # return self.call_conv.return_value(self.builder, retval) # Resumption point y.lower_yield_resume() # None is returned by the yield expression return self.context.get_constant_generic(self.builder, retty, None) def lower_binop(self, resty, expr, op): # if op in utils.OPERATORS_TO_BUILTINS: # map operator.the_op => the corresponding types.Function() # TODO: is this looks dodgy ... op = self.context.typing_context.resolve_value_type(op) lhs = expr.lhs rhs = expr.rhs static_lhs = expr.static_lhs static_rhs = expr.static_rhs lty = self.typeof(lhs.name) rty = self.typeof(rhs.name) lhs = self.loadvar(lhs.name) rhs = self.loadvar(rhs.name) # Convert argument to match signature = self.fndesc.calltypes[expr] lhs = self.context.cast(self.builder, lhs, lty, signature.args[0]) rhs = self.context.cast(self.builder, rhs, rty, signature.args[1]) def cast_result(res): return self.context.cast(self.builder, res, signature.return_type, resty) # First try with static operands, if known def try_static_impl(tys, args): if any(a is ir.UNDEFINED for a in args): return None try: if isinstance(op, types.Function): static_sig = op.get_call_type(self.context.typing_context, tys, {}) else: static_sig = typing.signature(signature.return_type, *tys) except TypingError: return None try: static_impl = self.context.get_function(op, static_sig) return static_impl(self.builder, args) except NotImplementedError: return None res = try_static_impl( (_lit_or_omitted(static_lhs), _lit_or_omitted(static_rhs)), (static_lhs, static_rhs), ) if res is not None: return cast_result(res) res = try_static_impl( (_lit_or_omitted(static_lhs), rty), (static_lhs, rhs), ) if res is not None: return cast_result(res) res = try_static_impl( (lty, _lit_or_omitted(static_rhs)), (lhs, static_rhs), ) if res is not None: return cast_result(res) # Normal implementation for generic arguments sig = op.get_call_type(self.context.typing_context, signature.args, {}) impl = self.context.get_function(op, sig) res = impl(self.builder, (lhs, rhs)) return cast_result(res) def lower_getitem(self, resty, expr, value, index, signature): baseval = self.loadvar(value.name) indexval = self.loadvar(index.name) # Get implementation of getitem op = operator.getitem fnop = self.context.typing_context.resolve_value_type(op) callsig = fnop.get_call_type( self.context.typing_context, signature.args, {}, ) impl = self.context.get_function(fnop, callsig) argvals = (baseval, indexval) argtyps = (self.typeof(value.name), self.typeof(index.name)) castvals = [self.context.cast(self.builder, av, at, ft) for av, at, ft in zip(argvals, argtyps, signature.args)] res = impl(self.builder, castvals) return self.context.cast(self.builder, res, signature.return_type, resty) def _cast_var(self, var, ty): """ Cast a Numba IR variable to the given Numba type, returning a low-level value. """ if isinstance(var, _VarArgItem): varty = self.typeof(var.vararg.name)[var.index] val = self.builder.extract_value(self.loadvar(var.vararg.name), var.index) else: varty = self.typeof(var.name) val = self.loadvar(var.name) return self.context.cast(self.builder, val, varty, ty) def fold_call_args(self, fnty, signature, pos_args, vararg, kw_args): if vararg: # Inject *args from function call # The lowering will be done in _cast_var() above. tp_vararg = self.typeof(vararg.name) assert isinstance(tp_vararg, types.BaseTuple) pos_args = pos_args + [_VarArgItem(vararg, i) for i in range(len(tp_vararg))] # Fold keyword arguments and resolve default argument values pysig = signature.pysig if pysig is None: if kw_args: raise NotImplementedError("unsupported keyword arguments " "when calling %s" % (fnty,)) argvals = [self._cast_var(var, sigty) for var, sigty in zip(pos_args, signature.args)] else: def normal_handler(index, param, var): return self._cast_var(var, signature.args[index]) def default_handler(index, param, default): return self.context.get_constant_generic( self.builder, signature.args[index], default) def stararg_handler(index, param, vars): stararg_ty = signature.args[index] assert isinstance(stararg_ty, types.BaseTuple), stararg_ty values = [self._cast_var(var, sigty) for var, sigty in zip(vars, stararg_ty)] return cgutils.make_anonymous_struct(self.builder, values) argvals = typing.fold_arguments(pysig, pos_args, dict(kw_args), normal_handler, default_handler, stararg_handler) return argvals def lower_print(self, inst): """ Lower a ir.Print() """ # We handle this, as far as possible, as a normal call to built-in # print(). This will make it easy to undo the special ir.Print # rewrite when it becomes unnecessary (e.g. when we have native # strings). sig = self.fndesc.calltypes[inst] assert sig.return_type == types.none fnty = self.context.typing_context.resolve_value_type(print) # Fix the call signature to inject any constant-inferred # string argument pos_tys = list(sig.args) pos_args = list(inst.args) for i in range(len(pos_args)): if i in inst.consts: pyval = inst.consts[i] if isinstance(pyval, str): pos_tys[i] = types.literal(pyval) fixed_sig = typing.signature(sig.return_type, *pos_tys) fixed_sig = fixed_sig.replace(pysig=sig.pysig) argvals = self.fold_call_args(fnty, sig, pos_args, inst.vararg, {}) impl = self.context.get_function(print, fixed_sig) impl(self.builder, argvals) def lower_call(self, resty, expr): signature = self.fndesc.calltypes[expr] self.debug_print("# lower_call: expr = {0}".format(expr)) if isinstance(signature.return_type, types.Phantom): return self.context.get_dummy_value() if isinstance(expr.func, ir.Intrinsic): fnty = expr.func.name else: fnty = self.typeof(expr.func.name) if isinstance(fnty, types.ObjModeDispatcher): res = self._lower_call_ObjModeDispatcher(fnty, expr, signature) elif isinstance(fnty, types.ExternalFunction): res = self._lower_call_ExternalFunction(fnty, expr, signature) elif isinstance(fnty, types.ExternalFunctionPointer): res = self._lower_call_ExternalFunctionPointer( fnty, expr, signature) elif isinstance(fnty, types.RecursiveCall): res = self._lower_call_RecursiveCall(fnty, expr, signature) elif isinstance(fnty, types.FunctionType): res = self._lower_call_FunctionType(fnty, expr, signature) else: res = self._lower_call_normal(fnty, expr, signature) # If lowering the call returned None, interpret that as returning dummy # value if the return type of the function is void, otherwise there is # a problem if res is None: if signature.return_type == types.void: res = self.context.get_dummy_value() else: raise LoweringError( msg="non-void function returns None from implementation", loc=self.loc ) return self.context.cast(self.builder, res, signature.return_type, resty) def _lower_call_ObjModeDispatcher(self, fnty, expr, signature): self.init_pyapi() # Acquire the GIL gil_state = self.pyapi.gil_ensure() # Fix types argnames = [a.name for a in expr.args] argtypes = [self.typeof(a) for a in argnames] argvalues = [self.loadvar(a) for a in argnames] for v, ty in zip(argvalues, argtypes): # Because .from_native_value steal the reference self.incref(ty, v) argobjs = [self.pyapi.from_native_value(atyp, aval, self.env_manager) for atyp, aval in zip(argtypes, argvalues)] # Make Call entry_pt = fnty.dispatcher.compile(tuple(argtypes)) callee = self.context.add_dynamic_addr( self.builder, id(entry_pt), info="with_objectmode", ) ret_obj = self.pyapi.call_function_objargs(callee, argobjs) has_exception = cgutils.is_null(self.builder, ret_obj) with self. builder.if_else(has_exception) as (then, orelse): # Handles exception # This branch must exit the function with then: # Clean arg for obj in argobjs: self.pyapi.decref(obj) # Release the GIL self.pyapi.gil_release(gil_state) # Return and signal exception self.call_conv.return_exc(self.builder) # Handles normal return with orelse: # Fix output value native = self.pyapi.to_native_value( fnty.dispatcher.output_types, ret_obj, ) output = native.value # Release objs self.pyapi.decref(ret_obj) for obj in argobjs: self.pyapi.decref(obj) # cleanup output if callable(native.cleanup): native.cleanup() # Release the GIL self.pyapi.gil_release(gil_state) # Error during unboxing with self.builder.if_then(native.is_error): self.call_conv.return_exc(self.builder) return output def _lower_call_ExternalFunction(self, fnty, expr, signature): # Handle a named external function self.debug_print("# external function") argvals = self.fold_call_args( fnty, signature, expr.args, expr.vararg, expr.kws, ) fndesc = funcdesc.ExternalFunctionDescriptor( fnty.symbol, fnty.sig.return_type, fnty.sig.args) func = self.context.declare_external_function( self.builder.module, fndesc) return self.context.call_external_function( self.builder, func, fndesc.argtypes, argvals, ) def _lower_call_ExternalFunctionPointer(self, fnty, expr, signature): # Handle a C function pointer self.debug_print("# calling external function pointer") argvals = self.fold_call_args( fnty, signature, expr.args, expr.vararg, expr.kws, ) pointer = self.loadvar(expr.func.name) # If the external function pointer uses libpython if fnty.requires_gil: self.init_pyapi() # Acquire the GIL gil_state = self.pyapi.gil_ensure() # Make PyObjects newargvals = [] pyvals = [] for exptyp, gottyp, aval in zip(fnty.sig.args, signature.args, argvals): # Adjust argument values to pyobjects if exptyp == types.ffi_forced_object: self.incref(gottyp, aval) obj = self.pyapi.from_native_value( gottyp, aval, self.env_manager, ) newargvals.append(obj) pyvals.append(obj) else: newargvals.append(aval) # Call external function res = self.context.call_function_pointer( self.builder, pointer, newargvals, fnty.cconv, ) # Release PyObjects for obj in pyvals: self.pyapi.decref(obj) # Release the GIL self.pyapi.gil_release(gil_state) # If the external function pointer does NOT use libpython else: res = self.context.call_function_pointer( self.builder, pointer, argvals, fnty.cconv, ) return res def _lower_call_RecursiveCall(self, fnty, expr, signature): # Recursive call argvals = self.fold_call_args( fnty, signature, expr.args, expr.vararg, expr.kws, ) qualprefix = fnty.overloads[signature.args] mangler = self.context.mangler or default_mangler mangled_name = mangler(qualprefix, signature.args) # special case self recursion if self.builder.function.name.startswith(mangled_name): res = self.context.call_internal( self.builder, self.fndesc, signature, argvals, ) else: res = self.context.call_unresolved( self.builder, mangled_name, signature, argvals, ) return res def _lower_call_FunctionType(self, fnty, expr, signature): self.debug_print("# calling first-class function type") sig = types.unliteral(signature) if not fnty.check_signature(signature): # value dependent polymorphism? raise UnsupportedError( f'mismatch of function types:' f' expected {fnty} but got {types.FunctionType(sig)}') ftype = fnty.ftype argvals = self.fold_call_args( fnty, sig, expr.args, expr.vararg, expr.kws, ) func_ptr = self.__get_function_pointer(ftype, expr.func.name, sig=sig) res = self.builder.call(func_ptr, argvals, cconv=fnty.cconv) return res def __get_function_pointer(self, ftype, fname, sig=None): from numba.experimental.function_type import lower_get_wrapper_address llty = self.context.get_value_type(ftype) fstruct = self.loadvar(fname) addr = self.builder.extract_value(fstruct, 0, name='addr_of_%s' % (fname)) fptr = cgutils.alloca_once(self.builder, llty, name="fptr_of_%s" % (fname)) with self.builder.if_else( cgutils.is_null(self.builder, addr), likely=False) as (then, orelse): with then: self.init_pyapi() # Acquire the GIL gil_state = self.pyapi.gil_ensure() pyaddr = self.builder.extract_value( fstruct, 1, name='pyaddr_of_%s' % (fname)) # try to recover the function address, see # test_zero_address BadToGood example in # test_function_type.py addr1 = lower_get_wrapper_address( self.context, self.builder, pyaddr, sig, failure_mode='ignore') with self.builder.if_then( cgutils.is_null(self.builder, addr1), likely=False): self.return_exception( RuntimeError, exc_args=(f"{ftype} function address is null",), loc=self.loc) addr2 = self.pyapi.long_as_voidptr(addr1) self.builder.store(self.builder.bitcast(addr2, llty), fptr) self.pyapi.decref(addr1) self.pyapi.gil_release(gil_state) with orelse: self.builder.store(self.builder.bitcast(addr, llty), fptr) return self.builder.load(fptr) def _lower_call_normal(self, fnty, expr, signature): # Normal function resolution self.debug_print("# calling normal function: {0}".format(fnty)) self.debug_print("# signature: {0}".format(signature)) if (isinstance(expr.func, ir.Intrinsic) or isinstance(fnty, types.ObjModeDispatcher)): argvals = expr.func.args else: argvals = self.fold_call_args( fnty, signature, expr.args, expr.vararg, expr.kws, ) impl = self.context.get_function(fnty, signature) if signature.recvr: # The "self" object is passed as the function object # for bounded function the_self = self.loadvar(expr.func.name) # Prepend the self reference argvals = [the_self] + list(argvals) res = impl(self.builder, argvals, self.loc) return res def lower_expr(self, resty, expr): if expr.op == 'binop': return self.lower_binop(resty, expr, expr.fn) elif expr.op == 'inplace_binop': lty = self.typeof(expr.lhs.name) if lty.mutable: return self.lower_binop(resty, expr, expr.fn) else: # inplace operators on non-mutable types reuse the same # definition as the corresponding copying operators.) return self.lower_binop(resty, expr, expr.immutable_fn) elif expr.op == 'unary': val = self.loadvar(expr.value.name) typ = self.typeof(expr.value.name) func_ty = self.context.typing_context.resolve_value_type(expr.fn) # Get function signature = self.fndesc.calltypes[expr] impl = self.context.get_function(func_ty, signature) # Convert argument to match val = self.context.cast(self.builder, val, typ, signature.args[0]) res = impl(self.builder, [val]) res = self.context.cast(self.builder, res, signature.return_type, resty) return res elif expr.op == 'call': res = self.lower_call(resty, expr) return res elif expr.op == 'pair_first': val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) res = self.context.pair_first(self.builder, val, ty) self.incref(resty, res) return res elif expr.op == 'pair_second': val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) res = self.context.pair_second(self.builder, val, ty) self.incref(resty, res) return res elif expr.op in ('getiter', 'iternext'): val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) signature = self.fndesc.calltypes[expr] impl = self.context.get_function(expr.op, signature) [fty] = signature.args castval = self.context.cast(self.builder, val, ty, fty) res = impl(self.builder, (castval,)) res = self.context.cast(self.builder, res, signature.return_type, resty) return res elif expr.op == 'exhaust_iter': val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) # Unpack optional if isinstance(ty, types.Optional): val = self.context.cast(self.builder, val, ty, ty.type) ty = ty.type # If we have a tuple, we needn't do anything # (and we can't iterate over the heterogeneous ones). if isinstance(ty, types.BaseTuple): assert ty == resty self.incref(ty, val) return val itemty = ty.iterator_type.yield_type tup = self.context.get_constant_undef(resty) pairty = types.Pair(itemty, types.boolean) getiter_sig = typing.signature(ty.iterator_type, ty) getiter_impl = self.context.get_function('getiter', getiter_sig) iternext_sig = typing.signature(pairty, ty.iterator_type) iternext_impl = self.context.get_function('iternext', iternext_sig) iterobj = getiter_impl(self.builder, (val,)) # We call iternext() as many times as desired (`expr.count`). for i in range(expr.count): pair = iternext_impl(self.builder, (iterobj,)) is_valid = self.context.pair_second(self.builder, pair, pairty) with cgutils.if_unlikely(self.builder, self.builder.not_(is_valid)): self.return_exception(ValueError, loc=self.loc) item = self.context.pair_first(self.builder, pair, pairty) tup = self.builder.insert_value(tup, item, i) # Call iternext() once more to check that the iterator # is exhausted. pair = iternext_impl(self.builder, (iterobj,)) is_valid = self.context.pair_second(self.builder, pair, pairty) with cgutils.if_unlikely(self.builder, is_valid): self.return_exception(ValueError, loc=self.loc) self.decref(ty.iterator_type, iterobj) return tup elif expr.op == "getattr": val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) if isinstance(resty, types.BoundFunction): # if we are getting out a method, assume we have typed this # properly and just build a bound function object casted = self.context.cast(self.builder, val, ty, resty.this) res = self.context.get_bound_function(self.builder, casted, resty.this) self.incref(resty, res) return res else: impl = self.context.get_getattr(ty, expr.attr) attrty = self.context.typing_context.resolve_getattr(ty, expr.attr) if impl is None: # ignore the attribute return self.context.get_dummy_value() else: res = impl(self.context, self.builder, ty, val, expr.attr) # Cast the attribute type to the expected output type res = self.context.cast(self.builder, res, attrty, resty) return res elif expr.op == "static_getitem": signature = typing.signature( resty, self.typeof(expr.value.name), _lit_or_omitted(expr.index), ) try: # Both get_function() and the returned implementation can # raise NotImplementedError if the types aren't supported impl = self.context.get_function("static_getitem", signature) return impl(self.builder, (self.loadvar(expr.value.name), expr.index)) except NotImplementedError: if expr.index_var is None: raise # Fall back on the generic getitem() implementation # for this type. signature = self.fndesc.calltypes[expr] return self.lower_getitem(resty, expr, expr.value, expr.index_var, signature) elif expr.op == "typed_getitem": signature = typing.signature( resty, self.typeof(expr.value.name), self.typeof(expr.index.name), ) impl = self.context.get_function("typed_getitem", signature) return impl(self.builder, (self.loadvar(expr.value.name), self.loadvar(expr.index.name))) elif expr.op == "getitem": signature = self.fndesc.calltypes[expr] return self.lower_getitem(resty, expr, expr.value, expr.index, signature) elif expr.op == "build_tuple": itemvals = [self.loadvar(i.name) for i in expr.items] itemtys = [self.typeof(i.name) for i in expr.items] castvals = [self.context.cast(self.builder, val, fromty, toty) for val, toty, fromty in zip(itemvals, resty, itemtys)] tup = self.context.make_tuple(self.builder, resty, castvals) self.incref(resty, tup) return tup elif expr.op == "build_list": itemvals = [self.loadvar(i.name) for i in expr.items] itemtys = [self.typeof(i.name) for i in expr.items] castvals = [self.context.cast(self.builder, val, fromty, resty.dtype) for val, fromty in zip(itemvals, itemtys)] return self.context.build_list(self.builder, resty, castvals) elif expr.op == "build_set": # Insert in reverse order, as Python does items = expr.items[::-1] itemvals = [self.loadvar(i.name) for i in items] itemtys = [self.typeof(i.name) for i in items] castvals = [self.context.cast(self.builder, val, fromty, resty.dtype) for val, fromty in zip(itemvals, itemtys)] return self.context.build_set(self.builder, resty, castvals) elif expr.op == "build_map": items = expr.items keys, values = [], [] key_types, value_types = [], [] for k, v in items: key = self.loadvar(k.name) keytype = self.typeof(k.name) val = self.loadvar(v.name) valtype = self.typeof(v.name) keys.append(key) values.append(val) key_types.append(keytype) value_types.append(valtype) return self.context.build_map(self.builder, resty, list(zip(key_types, value_types)), list(zip(keys, values))) elif expr.op == "cast": val = self.loadvar(expr.value.name) ty = self.typeof(expr.value.name) castval = self.context.cast(self.builder, val, ty, resty) self.incref(resty, castval) return castval elif expr.op == "phi": raise LoweringError("PHI not stripped") elif expr.op == 'null': return self.context.get_constant_null(resty) elif expr.op in self.context.special_ops: res = self.context.special_ops[expr.op](self, expr) return res raise NotImplementedError(expr) def _alloca_var(self, name, fetype): """ Ensure the given variable has an allocated stack slot. """ if name not in self.varmap: # If not already defined, allocate it llty = self.context.get_value_type(fetype) ptr = self.alloca_lltype(name, llty) # Remember the pointer self.varmap[name] = ptr def getvar(self, name): """ Get a pointer to the given variable's slot. """ return self.varmap[name] def loadvar(self, name): """ Load the given variable's value. """ ptr = self.getvar(name) return self.builder.load(ptr) def storevar(self, value, name): """ Store the value into the given variable. """ fetype = self.typeof(name) # Define if not already self._alloca_var(name, fetype) # Clean up existing value stored in the variable old = self.loadvar(name) self.decref(fetype, old) # Store variable ptr = self.getvar(name) if value.type != ptr.type.pointee: msg = ("Storing {value.type} to ptr of {ptr.type.pointee} " "('{name}'). FE type {fetype}").format(value=value, ptr=ptr, fetype=fetype, name=name) raise AssertionError(msg) self.builder.store(value, ptr) def delvar(self, name): """ Delete the given variable. """ fetype = self.typeof(name) # Define if not already (may happen if the variable is deleted # at the beginning of a loop, but only set later in the loop) self._alloca_var(name, fetype) ptr = self.getvar(name) self.decref(fetype, self.builder.load(ptr)) # Zero-fill variable to avoid double frees on subsequent dels self.builder.store(Constant.null(ptr.type.pointee), ptr) def alloca(self, name, type): lltype = self.context.get_value_type(type) return self.alloca_lltype(name, lltype) def alloca_lltype(self, name, lltype): # Is user variable? is_uservar = not name.startswith('$') # Allocate space for variable aptr = cgutils.alloca_once(self.builder, lltype, name=name, zfill=False) if is_uservar: # Emit debug info for user variable sizeof = self.context.get_abi_sizeof(lltype) self.debuginfo.mark_variable(self.builder, aptr, name=name, lltype=lltype, size=sizeof, loc=self.loc) return aptr def incref(self, typ, val): if not self.context.enable_nrt: return self.context.nrt.incref(self.builder, typ, val) def decref(self, typ, val): if not self.context.enable_nrt: return self.context.nrt.decref(self.builder, typ, val) def _lit_or_omitted(value): """Returns a Literal instance if the type of value is supported; otherwise, return `Omitted(value)`. """ try: return types.literal(value) except LiteralTypingError: return types.Omitted(value)
the-stack_106_27342
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ start = ListNode(0) res = ListNode(0) start.next = res bit = 0 while l1 and l2: res.next = ListNode(l1.val + l2.val + bit) res = res.next if res.val < 10: bit = 0 else: bit = 1 res.val -= 10 l1, l2 = l1.next, l2.next res.next = l1 if l1 else l2 while bit: if res.next: res.next.val += 1 res = res.next if res.val < 10: bit = 0 else: bit = 1 res.val -= 10 else: res.next = ListNode(1) break return start.next.next # for testing, not included in solution def initial(nums): start = ListNode(0) res = ListNode(nums[0]) start.next = res for i in nums[1:]: res.next = ListNode(i) res = res.next return start.next def traversal(node): res = [] while node: res.append(node.val) node = node.next print(res)
the-stack_106_27343
from robolearn.utils.samplers import rollout from robolearn.torch.core import PyTorchModule from robolearn.torch.utils.pytorch_util import set_gpu_mode from robolearn.envs.normalized_box_env import NormalizedBoxEnv from robolearn_gym_envs.pybullet import CentauroTrayEnv from robolearn.torch.policies import MultiPolicySelector from robolearn.torch.policies import WeightedMultiPolicySelector from robolearn.torch.policies import TanhGaussianPolicy from robolearn.models.policies import MakeDeterministic from robolearn.models.policies import ExplorationPolicy import os from robolearn.utils.plots import plot_reward_composition from robolearn.utils.plots import plot_reward_iu from robolearn.utils.plots import plot_weigths_unintentionals from robolearn.utils.plots import plot_q_vals import argparse import joblib import uuid from robolearn.utils.logging import logger import json import numpy as np import robolearn.torch.utils.pytorch_util as ptu filename = str(uuid.uuid4()) SEED = 110 def simulate_policy(args): np.random.seed(SEED) ptu.seed(SEED) data = joblib.load(args.file) if args.deterministic: if args.un > -1: print('Using the deterministic version of the UNintentional policy ' '%02d.' % args.un) if 'u_policy' in data: policy = MakeDeterministic( MultiPolicySelector(data['u_policy'], args.un)) # WeightedMultiPolicySelector(data['u_policy'], args.un)) else: # policy = MakeDeterministic(data['u_policies'][args.un]) if isinstance(data['policy'], TanhGaussianPolicy): policy = MakeDeterministic(data['policy']) else: policy = MakeDeterministic( WeightedMultiPolicySelector(data['policy'], args.un) ) else: print('Using the deterministic version of the Intentional policy.') if isinstance(data['policy'], ExplorationPolicy): policy = MakeDeterministic(data['policy']) else: policy = data['policy'] else: if args.un > -1: print('Using the UNintentional stochastic policy %02d' % args.un) if 'u_policy' in data: # policy = MultiPolicySelector(data['u_policy'], args.un) policy = WeightedMultiPolicySelector(data['u_policy'], args.un) else: policy = WeightedMultiPolicySelector(data['policy'], args.un) # policy = data['policy'][args.un] else: print('Using the Intentional stochastic policy.') # policy = data['exploration_policy'] policy = data['policy'] print("Policy loaded!!") # Load environment dirname = os.path.dirname(args.file) with open(os.path.join(dirname, 'variant.json')) as json_data: log_data = json.load(json_data) env_params = log_data['env_params'] H = int(log_data['path_length']) env_params['is_render'] = True if 'obs_mean' in data.keys(): obs_mean = data['obs_mean'] print('OBS_MEAN') print(repr(obs_mean)) else: obs_mean = None # obs_mean = np.array([ 0.07010766, 0.37585765, 0.21402615, 0.24426296, 0.5789634 , # 0.88510203, 1.6878743 , 0.02656335, 0.03794186, -1.0241051 , # -0.5226027 , 0.6198239 , 0.49062446, 0.01197532, 0.7888951 , # -0.4857273 , 0.69160587, -0.00617676, 0.08966777, -0.14694819, # 0.9559917 , 1.0450271 , -0.40958315, 0.86435956, 0.00609685, # -0.01115279, -0.21607827, 0.9762933 , 0.80748135, -0.48661205, # 0.7473679 , 0.01649722, 0.15451911, -0.17285274, 0.89978695]) if 'obs_var' in data.keys(): obs_var = data['obs_var'] print('OBS_VAR') print(repr(obs_var)) else: obs_var = None # obs_var = np.array([0.10795759, 0.12807205, 0.9586606 , 0.46407 , 0.8994803 , # 0.35167143, 0.30286264, 0.34667444, 0.35105848, 1.9919134 , # 0.9462659 , 2.245269 , 0.84190637, 1.5407104 , 0.1 , # 0.10330457, 0.1 , 0.1 , 0.1 , 0.1528581 , # 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , # 0.1 , 0.1 , 0.1 , 0.1 , 0.12320185, # 0.1 , 0.18369523, 0.200373 , 0.11895574, 0.15118493]) print(env_params) if args.subtask and args.un != -1: env_params['subtask'] = args.un # else: # env_params['subtask'] = None env = NormalizedBoxEnv( CentauroTrayEnv(**env_params), # normalize_obs=True, normalize_obs=False, online_normalization=False, obs_mean=None, obs_var=None, obs_alpha=0.001, ) print("Environment loaded!!") if args.gpu: set_gpu_mode(True) policy.cuda() if isinstance(policy, MakeDeterministic): if isinstance(policy.stochastic_policy, PyTorchModule): policy.stochastic_policy.train(False) else: if isinstance(policy, PyTorchModule): policy.train(False) while True: if args.record: rollout_start_fcn = lambda: \ env.start_recording_video('centauro_video.mp4') rollout_end_fcn = lambda: \ env.stop_recording_video() else: rollout_start_fcn = None rollout_end_fcn = None obs_normalizer = data.get('obs_normalizer') if args.H != -1: H = args.H path = rollout( env, policy, max_path_length=H, animated=True, obs_normalizer=obs_normalizer, rollout_start_fcn=rollout_start_fcn, rollout_end_fcn=rollout_end_fcn, ) plot_rollout_reward(path) if hasattr(env, "log_diagnostics"): env.log_diagnostics([path]) logger.dump_tabular() if args.record: break def plot_rollout_reward(path): import matplotlib.pyplot as plt rewards = np.squeeze(path['rewards']) plt.plot(rewards) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('file', type=str, default='./params.pkl', help='path to the snapshot file') parser.add_argument('--H', type=int, default=-1, help='Max length of rollout') parser.add_argument('--gpu', action='store_true') parser.add_argument('--deterministic', action="store_true") parser.add_argument('--record', action="store_true") parser.add_argument('--env', type=str, default='manipulator') parser.add_argument('--un', type=int, default=-1, help='Unintentional id') parser.add_argument('--subtask', action='store_true') args = parser.parse_args() simulate_policy(args) input('Press a key to finish the script')
the-stack_106_27344
import numpy as np from . import is_scalar_nan from .fixes import _object_dtype_isnan def _get_mask(X, value_to_mask): """Compute the boolean mask X == missing_values.""" if is_scalar_nan(value_to_mask): if X.dtype.kind == "f": return np.isnan(X) elif X.dtype.kind in ("i", "u"): # can't have NaNs in integer array. return np.zeros(X.shape, dtype=bool) else: # np.isnan does not work on object dtypes. return _object_dtype_isnan(X) else: # X == value_to_mask with object dtypes does not always perform # element-wise for old versions of numpy return np.equal(X, value_to_mask)
the-stack_106_27348
import pickle import os from os.path import join, expanduser from invoke.util import six from mock import patch, call, Mock import pytest from pytest_relaxed import raises from invoke.runners import Local from invoke.config import Config from invoke.exceptions import ( AmbiguousEnvVar, UncastableEnvVar, UnknownFileType, UnpicklableConfigMember, ) from _util import skip_if_windows, support pytestmark = pytest.mark.usefixtures("integration") CONFIGS_PATH = "configs" TYPES = ("yaml", "yml", "json", "python") def _load(kwarg, type_, **kwargs): path = join(CONFIGS_PATH, type_ + "/") kwargs[kwarg] = path return Config(**kwargs) class Config_: class class_attrs: # TODO: move all other non-data-bearing kwargs to this mode class prefix: def defaults_to_invoke(self): assert Config().prefix == "invoke" @patch.object(Config, "_load_yaml") def informs_config_filenames(self, load_yaml): class MyConf(Config): prefix = "other" MyConf(system_prefix="dir/") load_yaml.assert_any_call("dir/other.yaml") def informs_env_var_prefix(self): os.environ["OTHER_FOO"] = "bar" class MyConf(Config): prefix = "other" c = MyConf(defaults={"foo": "notbar"}) c.load_shell_env() assert c.foo == "bar" class file_prefix: def defaults_to_None(self): assert Config().file_prefix is None @patch.object(Config, "_load_yaml") def informs_config_filenames(self, load_yaml): class MyConf(Config): file_prefix = "other" MyConf(system_prefix="dir/") load_yaml.assert_any_call("dir/other.yaml") class env_prefix: def defaults_to_None(self): assert Config().env_prefix is None def informs_env_vars_loaded(self): os.environ["OTHER_FOO"] = "bar" class MyConf(Config): env_prefix = "other" c = MyConf(defaults={"foo": "notbar"}) c.load_shell_env() assert c.foo == "bar" class global_defaults: @skip_if_windows def basic_settings(self): # Just a catchall for what the baseline config settings should # be...for some reason we're not actually capturing all of these # reliably (even if their defaults are often implied by the tests # which override them, e.g. runner tests around warn=True, etc). expected = { "run": { "asynchronous": False, "disown": False, "dry": False, "echo": False, "echo_format": "\033[1;37m{command}\033[0m", "echo_stdin": None, "encoding": None, "env": {}, "err_stream": None, "fallback": True, "hide": None, "in_stream": None, "out_stream": None, "pty": False, "replace_env": False, "shell": "/bin/bash", "warn": False, "watchers": [], }, "runners": {"local": Local}, "sudo": { "password": None, "prompt": "[sudo] password: ", "user": None, }, "tasks": { "auto_dash_names": True, "collection_name": "tasks", "dedupe": True, "executor_class": None, "search_root": None, }, "timeouts": {"command": None}, } assert Config.global_defaults() == expected class init: "__init__" def can_be_empty(self): assert Config().__class__ == Config # derp @patch.object(Config, "_load_yaml") def configure_global_location_prefix(self, load_yaml): # This is a bit funky but more useful than just replicating the # same test farther down? Config(system_prefix="meh/") load_yaml.assert_any_call("meh/invoke.yaml") @skip_if_windows @patch.object(Config, "_load_yaml") def default_system_prefix_is_etc(self, load_yaml): # TODO: make this work on Windows somehow without being a total # tautology? heh. Config() load_yaml.assert_any_call("/etc/invoke.yaml") @patch.object(Config, "_load_yaml") def configure_user_location_prefix(self, load_yaml): Config(user_prefix="whatever/") load_yaml.assert_any_call("whatever/invoke.yaml") @patch.object(Config, "_load_yaml") def default_user_prefix_is_homedir_plus_dot(self, load_yaml): Config() load_yaml.assert_any_call(expanduser("~/.invoke.yaml")) @patch.object(Config, "_load_yaml") def configure_project_location(self, load_yaml): Config(project_location="someproject").load_project() load_yaml.assert_any_call(join("someproject", "invoke.yaml")) @patch.object(Config, "_load_yaml") def configure_runtime_path(self, load_yaml): Config(runtime_path="some/path.yaml").load_runtime() load_yaml.assert_any_call("some/path.yaml") def accepts_defaults_dict_kwarg(self): c = Config(defaults={"super": "low level"}) assert c.super == "low level" def overrides_dict_is_first_posarg(self): c = Config({"new": "data", "run": {"hide": True}}) assert c.run.hide is True # default is False assert c.run.warn is False # in global defaults, untouched assert c.new == "data" # data only present at overrides layer def overrides_dict_is_also_a_kwarg(self): c = Config(overrides={"run": {"hide": True}}) assert c.run.hide is True @patch.object(Config, "load_system") @patch.object(Config, "load_user") @patch.object(Config, "merge") def system_and_user_files_loaded_automatically( self, merge, load_u, load_s ): Config() load_s.assert_called_once_with(merge=False) load_u.assert_called_once_with(merge=False) merge.assert_called_once_with() @patch.object(Config, "load_system") @patch.object(Config, "load_user") def can_defer_loading_system_and_user_files(self, load_u, load_s): config = Config(lazy=True) assert not load_s.called assert not load_u.called # Make sure default levels are still in place! (When bug present, # i.e. merge() never called, config appears effectively empty.) assert config.run.echo is False class basic_API: "Basic API components" def can_be_used_directly_after_init(self): # No load() here... c = Config({"lots of these": "tests look similar"}) assert c["lots of these"] == "tests look similar" def allows_dict_and_attr_access(self): # TODO: combine with tests for Context probably c = Config({"foo": "bar"}) assert c.foo == "bar" assert c["foo"] == "bar" def nested_dict_values_also_allow_dual_access(self): # TODO: ditto c = Config({"foo": "bar", "biz": {"baz": "boz"}}) # Sanity check - nested doesn't somehow kill simple top level assert c.foo == "bar" assert c["foo"] == "bar" # Actual check assert c.biz.baz == "boz" assert c["biz"]["baz"] == "boz" assert c.biz["baz"] == "boz" assert c["biz"].baz == "boz" def attr_access_has_useful_error_msg(self): c = Config() try: c.nope except AttributeError as e: expected = """ No attribute or config key found for 'nope' Valid keys: ['run', 'runners', 'sudo', 'tasks', 'timeouts'] Valid real attributes: ['clear', 'clone', 'env_prefix', 'file_prefix', 'from_data', 'global_defaults', 'load_base_conf_files', 'load_collection', 'load_defaults', 'load_overrides', 'load_project', 'load_runtime', 'load_shell_env', 'load_system', 'load_user', 'merge', 'pop', 'popitem', 'prefix', 'set_project_location', 'set_runtime_path', 'setdefault', 'update'] """.strip() # noqa assert str(e) == expected else: assert False, "Didn't get an AttributeError on bad key!" def subkeys_get_merged_not_overwritten(self): # Ensures nested keys merge deeply instead of shallowly. defaults = {"foo": {"bar": "baz"}} overrides = {"foo": {"notbar": "notbaz"}} c = Config(defaults=defaults, overrides=overrides) assert c.foo.notbar == "notbaz" assert c.foo.bar == "baz" def is_iterable_like_dict(self): c = Config(defaults={"a": 1, "b": 2}) assert set(c.keys()) == {"a", "b"} assert set(list(c)) == {"a", "b"} def supports_readonly_dict_protocols(self): # Use single-keypair dict to avoid sorting problems in tests. c = Config(defaults={"foo": "bar"}) c2 = Config(defaults={"foo": "bar"}) assert "foo" in c assert "foo" in c2 # mostly just to trigger loading :x assert c == c2 assert len(c) == 1 assert c.get("foo") == "bar" if six.PY2: assert c.has_key("foo") is True # noqa assert list(c.iterkeys()) == ["foo"] assert list(c.itervalues()) == ["bar"] assert list(c.items()) == [("foo", "bar")] assert list(six.iteritems(c)) == [("foo", "bar")] assert list(c.keys()) == ["foo"] assert list(c.values()) == ["bar"] class runtime_loading_of_defaults_and_overrides: def defaults_can_be_given_via_method(self): c = Config() assert "foo" not in c c.load_defaults({"foo": "bar"}) assert c.foo == "bar" def defaults_can_skip_merging(self): c = Config() c.load_defaults({"foo": "bar"}, merge=False) assert "foo" not in c c.merge() assert c.foo == "bar" def overrides_can_be_given_via_method(self): c = Config(defaults={"foo": "bar"}) assert c.foo == "bar" # defaults level c.load_overrides({"foo": "notbar"}) assert c.foo == "notbar" # overrides level def overrides_can_skip_merging(self): c = Config() c.load_overrides({"foo": "bar"}, merge=False) assert "foo" not in c c.merge() assert c.foo == "bar" class deletion_methods: def pop(self): # Root c = Config(defaults={"foo": "bar"}) assert c.pop("foo") == "bar" assert c == {} # With the default arg assert c.pop("wut", "fine then") == "fine then" # Leaf (different key to avoid AmbiguousMergeError) c.nested = {"leafkey": "leafval"} assert c.nested.pop("leafkey") == "leafval" assert c == {"nested": {}} def delitem(self): "__delitem__" c = Config(defaults={"foo": "bar"}) del c["foo"] assert c == {} c.nested = {"leafkey": "leafval"} del c.nested["leafkey"] assert c == {"nested": {}} def delattr(self): "__delattr__" c = Config(defaults={"foo": "bar"}) del c.foo assert c == {} c.nested = {"leafkey": "leafval"} del c.nested.leafkey assert c == {"nested": {}} def clear(self): c = Config(defaults={"foo": "bar"}) c.clear() assert c == {} c.nested = {"leafkey": "leafval"} c.nested.clear() assert c == {"nested": {}} def popitem(self): c = Config(defaults={"foo": "bar"}) assert c.popitem() == ("foo", "bar") assert c == {} c.nested = {"leafkey": "leafval"} assert c.nested.popitem() == ("leafkey", "leafval") assert c == {"nested": {}} class modification_methods: def setitem(self): c = Config(defaults={"foo": "bar"}) c["foo"] = "notbar" assert c.foo == "notbar" del c["foo"] c["nested"] = {"leafkey": "leafval"} assert c == {"nested": {"leafkey": "leafval"}} def setdefault(self): c = Config({"foo": "bar", "nested": {"leafkey": "leafval"}}) assert c.setdefault("foo") == "bar" assert c.nested.setdefault("leafkey") == "leafval" assert c.setdefault("notfoo", "notbar") == "notbar" assert c.notfoo == "notbar" nested = c.nested.setdefault("otherleaf", "otherval") assert nested == "otherval" assert c.nested.otherleaf == "otherval" def update(self): c = Config( defaults={"foo": "bar", "nested": {"leafkey": "leafval"}} ) # Regular update(dict) c.update({"foo": "notbar"}) assert c.foo == "notbar" c.nested.update({"leafkey": "otherval"}) assert c.nested.leafkey == "otherval" # Apparently allowed but wholly useless c.update() expected = {"foo": "notbar", "nested": {"leafkey": "otherval"}} assert c == expected # Kwarg edition c.update(foo="otherbar") assert c.foo == "otherbar" # Iterator of 2-tuples edition c.nested.update( [("leafkey", "yetanotherval"), ("newleaf", "turnt")] ) assert c.nested.leafkey == "yetanotherval" assert c.nested.newleaf == "turnt" def reinstatement_of_deleted_values_works_ok(self): # Sounds like a stupid thing to test, but when we have to track # deletions and mutations manually...it's an easy thing to overlook c = Config(defaults={"foo": "bar"}) assert c.foo == "bar" del c["foo"] # Sanity checks assert "foo" not in c assert len(c) == 0 # Put it back again...as a different value, for funsies c.foo = "formerly bar" # And make sure it stuck assert c.foo == "formerly bar" def deleting_parent_keys_of_deleted_keys_subsumes_them(self): c = Config({"foo": {"bar": "biz"}}) del c.foo["bar"] del c.foo # Make sure we didn't somehow still end up with {'foo': {'bar': # None}} assert c._deletions == {"foo": None} def supports_mutation_via_attribute_access(self): c = Config({"foo": "bar"}) assert c.foo == "bar" c.foo = "notbar" assert c.foo == "notbar" assert c["foo"] == "notbar" def supports_nested_mutation_via_attribute_access(self): c = Config({"foo": {"bar": "biz"}}) assert c.foo.bar == "biz" c.foo.bar = "notbiz" assert c.foo.bar == "notbiz" assert c["foo"]["bar"] == "notbiz" def real_attrs_and_methods_win_over_attr_proxying(self): # Setup class MyConfig(Config): myattr = None def mymethod(self): return 7 c = MyConfig({"myattr": "foo", "mymethod": "bar"}) # By default, attr and config value separate assert c.myattr is None assert c["myattr"] == "foo" # After a setattr, same holds true c.myattr = "notfoo" assert c.myattr == "notfoo" assert c["myattr"] == "foo" # Method and config value separate assert callable(c.mymethod) assert c.mymethod() == 7 assert c["mymethod"] == "bar" # And same after setattr def monkeys(): return 13 c.mymethod = monkeys assert c.mymethod() == 13 assert c["mymethod"] == "bar" def config_itself_stored_as_private_name(self): # I.e. one can refer to a key called 'config', which is relatively # commonplace (e.g. <Config>.myservice.config -> a config file # contents or path or etc) c = Config() c["foo"] = {"bar": "baz"} c["whatever"] = {"config": "myconfig"} assert c.foo.bar == "baz" assert c.whatever.config == "myconfig" def inherited_real_attrs_also_win_over_config_keys(self): class MyConfigParent(Config): parent_attr = 17 class MyConfig(MyConfigParent): pass c = MyConfig() assert c.parent_attr == 17 c.parent_attr = 33 oops = "Oops! Looks like config won over real attr!" assert "parent_attr" not in c, oops assert c.parent_attr == 33 c["parent_attr"] = "fifteen" assert c.parent_attr == 33 assert c["parent_attr"] == "fifteen" def nonexistent_attrs_can_be_set_to_create_new_top_level_configs(self): # I.e. some_config.foo = 'bar' is like some_config['foo'] = 'bar'. # When this test breaks it usually means some_config.foo = 'bar' # sets a regular attribute - and the configuration itself is never # touched! c = Config() c.some_setting = "some_value" assert c["some_setting"] == "some_value" def nonexistent_attr_setting_works_nested_too(self): c = Config() c.a_nest = {} assert c["a_nest"] == {} c.a_nest.an_egg = True assert c["a_nest"]["an_egg"] def string_display(self): "__str__ and friends" config = Config(defaults={"foo": "bar"}) assert repr(config) == "<Config: {'foo': 'bar'}>" def merging_does_not_wipe_user_modifications_or_deletions(self): c = Config({"foo": {"bar": "biz"}, "error": True}) c.foo.bar = "notbiz" del c["error"] assert c["foo"]["bar"] == "notbiz" assert "error" not in c c.merge() # Will be back to 'biz' if user changes don't get saved on their # own (previously they are just mutations on the cached central # config) assert c["foo"]["bar"] == "notbiz" # And this would still be here, too assert "error" not in c class config_file_loading: "Configuration file loading" def system_global(self): "Systemwide conf files" # NOTE: using lazy=True to avoid autoloading so we can prove # load_system() works. for type_ in TYPES: config = _load("system_prefix", type_, lazy=True) assert "outer" not in config config.load_system() assert config.outer.inner.hooray == type_ def system_can_skip_merging(self): config = _load("system_prefix", "yml", lazy=True) assert "outer" not in config._system assert "outer" not in config config.load_system(merge=False) # Test that we loaded into the per-level dict, but not the # central/merged config. assert "outer" in config._system assert "outer" not in config def user_specific(self): "User-specific conf files" # NOTE: using lazy=True to avoid autoloading so we can prove # load_user() works. for type_ in TYPES: config = _load("user_prefix", type_, lazy=True) assert "outer" not in config config.load_user() assert config.outer.inner.hooray == type_ def user_can_skip_merging(self): config = _load("user_prefix", "yml", lazy=True) assert "outer" not in config._user assert "outer" not in config config.load_user(merge=False) # Test that we loaded into the per-level dict, but not the # central/merged config. assert "outer" in config._user assert "outer" not in config def project_specific(self): "Local-to-project conf files" for type_ in TYPES: c = Config(project_location=join(CONFIGS_PATH, type_)) assert "outer" not in c c.load_project() assert c.outer.inner.hooray == type_ def project_can_skip_merging(self): config = Config( project_location=join(CONFIGS_PATH, "yml"), lazy=True ) assert "outer" not in config._project assert "outer" not in config config.load_project(merge=False) # Test that we loaded into the per-level dict, but not the # central/merged config. assert "outer" in config._project assert "outer" not in config def loads_no_project_specific_file_if_no_project_location_given(self): c = Config() assert c._project_path is None c.load_project() assert list(c._project.keys()) == [] defaults = ["tasks", "run", "runners", "sudo", "timeouts"] assert set(c.keys()) == set(defaults) def project_location_can_be_set_after_init(self): c = Config() assert "outer" not in c c.set_project_location(join(CONFIGS_PATH, "yml")) c.load_project() assert c.outer.inner.hooray == "yml" def runtime_conf_via_cli_flag(self): c = Config(runtime_path=join(CONFIGS_PATH, "yaml", "invoke.yaml")) c.load_runtime() assert c.outer.inner.hooray == "yaml" def runtime_can_skip_merging(self): path = join(CONFIGS_PATH, "yaml", "invoke.yaml") config = Config(runtime_path=path, lazy=True) assert "outer" not in config._runtime assert "outer" not in config config.load_runtime(merge=False) # Test that we loaded into the per-level dict, but not the # central/merged config. assert "outer" in config._runtime assert "outer" not in config @raises(UnknownFileType) def unknown_suffix_in_runtime_path_raises_useful_error(self): c = Config(runtime_path=join(CONFIGS_PATH, "screw.ini")) c.load_runtime() def python_modules_dont_load_special_vars(self): "Python modules don't load special vars" # Borrow another test's Python module. c = _load("system_prefix", "python") # Sanity test that lowercase works assert c.outer.inner.hooray == "python" # Real test that builtins, etc are stripped out for special in ("builtins", "file", "package", "name", "doc"): assert "__{}__".format(special) not in c def python_modules_except_usefully_on_unpicklable_modules(self): # Re: #556; when bug present, a TypeError pops up instead (granted, # at merge time, but we want it to raise ASAP, so we're testing the # intended new behavior: raising at config load time. c = Config() c.set_runtime_path(join(support, "has_modules.py")) expected = r"'os' is a module.*giving a tasks file.*mistake" with pytest.raises(UnpicklableConfigMember, match=expected): c.load_runtime(merge=False) @patch("invoke.config.debug") def nonexistent_files_are_skipped_and_logged(self, mock_debug): c = Config() c._load_yml = Mock(side_effect=IOError(2, "aw nuts")) c.set_runtime_path("is-a.yml") # Triggers use of _load_yml c.load_runtime() mock_debug.assert_any_call("Didn't see any is-a.yml, skipping.") @raises(IOError) def non_missing_file_IOErrors_are_raised(self): c = Config() c._load_yml = Mock(side_effect=IOError(17, "uh, what?")) c.set_runtime_path("is-a.yml") # Triggers use of _load_yml c.load_runtime() class collection_level_config_loading: def performed_explicitly_and_directly(self): # TODO: do we want to update the other levels to allow 'direct' # loading like this, now that they all have explicit methods? c = Config() assert "foo" not in c c.load_collection({"foo": "bar"}) assert c.foo == "bar" def merging_can_be_deferred(self): c = Config() assert "foo" not in c._collection assert "foo" not in c c.load_collection({"foo": "bar"}, merge=False) assert "foo" in c._collection assert "foo" not in c class comparison_and_hashing: def comparison_looks_at_merged_config(self): c1 = Config(defaults={"foo": {"bar": "biz"}}) # Empty defaults to suppress global_defaults c2 = Config(defaults={}, overrides={"foo": {"bar": "biz"}}) assert c1 is not c2 assert c1._defaults != c2._defaults assert c1 == c2 def allows_comparison_with_real_dicts(self): c = Config({"foo": {"bar": "biz"}}) assert c["foo"] == {"bar": "biz"} @raises(TypeError) def is_explicitly_not_hashable(self): hash(Config()) class env_vars: "Environment variables" def base_case_defaults_to_INVOKE_prefix(self): os.environ["INVOKE_FOO"] = "bar" c = Config(defaults={"foo": "notbar"}) c.load_shell_env() assert c.foo == "bar" def non_predeclared_settings_do_not_get_consumed(self): os.environ["INVOKE_HELLO"] = "is it me you're looking for?" c = Config() c.load_shell_env() assert "HELLO" not in c assert "hello" not in c def underscores_top_level(self): os.environ["INVOKE_FOO_BAR"] = "biz" c = Config(defaults={"foo_bar": "notbiz"}) c.load_shell_env() assert c.foo_bar == "biz" def underscores_nested(self): os.environ["INVOKE_FOO_BAR"] = "biz" c = Config(defaults={"foo": {"bar": "notbiz"}}) c.load_shell_env() assert c.foo.bar == "biz" def both_types_of_underscores_mixed(self): os.environ["INVOKE_FOO_BAR_BIZ"] = "baz" c = Config(defaults={"foo_bar": {"biz": "notbaz"}}) c.load_shell_env() assert c.foo_bar.biz == "baz" @raises(AmbiguousEnvVar) def ambiguous_underscores_dont_guess(self): os.environ["INVOKE_FOO_BAR"] = "biz" c = Config(defaults={"foo_bar": "wat", "foo": {"bar": "huh"}}) c.load_shell_env() class type_casting: def strings_replaced_with_env_value(self): os.environ["INVOKE_FOO"] = u"myvalue" c = Config(defaults={"foo": "myoldvalue"}) c.load_shell_env() assert c.foo == u"myvalue" assert isinstance(c.foo, six.text_type) def unicode_replaced_with_env_value(self): # Python 3 doesn't allow you to put 'bytes' objects into # os.environ, so the test makes no sense there. if six.PY3: return os.environ["INVOKE_FOO"] = "myunicode" c = Config(defaults={"foo": u"myoldvalue"}) c.load_shell_env() assert c.foo == "myunicode" assert isinstance(c.foo, str) def None_replaced(self): os.environ["INVOKE_FOO"] = "something" c = Config(defaults={"foo": None}) c.load_shell_env() assert c.foo == "something" def booleans(self): for input_, result in ( ("0", False), ("1", True), ("", False), ("meh", True), ("false", True), ): os.environ["INVOKE_FOO"] = input_ c = Config(defaults={"foo": bool()}) c.load_shell_env() assert c.foo == result def boolean_type_inputs_with_non_boolean_defaults(self): for input_ in ("0", "1", "", "meh", "false"): os.environ["INVOKE_FOO"] = input_ c = Config(defaults={"foo": "bar"}) c.load_shell_env() assert c.foo == input_ def numeric_types_become_casted(self): tests = [ (int, "5", 5), (float, "5.5", 5.5), # TODO: more? ] # Can't use '5L' in Python 3, even having it in a branch makes # it upset. if not six.PY3: tests.append((long, "5", long(5))) # noqa for old, new_, result in tests: os.environ["INVOKE_FOO"] = new_ c = Config(defaults={"foo": old()}) c.load_shell_env() assert c.foo == result def arbitrary_types_work_too(self): os.environ["INVOKE_FOO"] = "whatever" class Meh(object): def __init__(self, thing=None): pass old_obj = Meh() c = Config(defaults={"foo": old_obj}) c.load_shell_env() assert isinstance(c.foo, Meh) assert c.foo is not old_obj class uncastable_types: @raises(UncastableEnvVar) def _uncastable_type(self, default): os.environ["INVOKE_FOO"] = "stuff" c = Config(defaults={"foo": default}) c.load_shell_env() def lists(self): self._uncastable_type(["a", "list"]) def tuples(self): self._uncastable_type(("a", "tuple")) class hierarchy: "Config hierarchy in effect" # # NOTE: most of these just leverage existing test fixtures (which live # in their own directories & have differing values for the 'hooray' # key), since we normally don't need more than 2-3 different file # locations for any one test. # def collection_overrides_defaults(self): c = Config(defaults={"nested": {"setting": "default"}}) c.load_collection({"nested": {"setting": "collection"}}) assert c.nested.setting == "collection" def systemwide_overrides_collection(self): c = Config(system_prefix=join(CONFIGS_PATH, "yaml/")) c.load_collection({"outer": {"inner": {"hooray": "defaults"}}}) assert c.outer.inner.hooray == "yaml" def user_overrides_systemwide(self): c = Config( system_prefix=join(CONFIGS_PATH, "yaml/"), user_prefix=join(CONFIGS_PATH, "json/"), ) assert c.outer.inner.hooray == "json" def user_overrides_collection(self): c = Config(user_prefix=join(CONFIGS_PATH, "json/")) c.load_collection({"outer": {"inner": {"hooray": "defaults"}}}) assert c.outer.inner.hooray == "json" def project_overrides_user(self): c = Config( user_prefix=join(CONFIGS_PATH, "json/"), project_location=join(CONFIGS_PATH, "yaml"), ) c.load_project() assert c.outer.inner.hooray == "yaml" def project_overrides_systemwide(self): c = Config( system_prefix=join(CONFIGS_PATH, "json/"), project_location=join(CONFIGS_PATH, "yaml"), ) c.load_project() assert c.outer.inner.hooray == "yaml" def project_overrides_collection(self): c = Config(project_location=join(CONFIGS_PATH, "yaml")) c.load_project() c.load_collection({"outer": {"inner": {"hooray": "defaults"}}}) assert c.outer.inner.hooray == "yaml" def env_vars_override_project(self): os.environ["INVOKE_OUTER_INNER_HOORAY"] = "env" c = Config(project_location=join(CONFIGS_PATH, "yaml")) c.load_project() c.load_shell_env() assert c.outer.inner.hooray == "env" def env_vars_override_user(self): os.environ["INVOKE_OUTER_INNER_HOORAY"] = "env" c = Config(user_prefix=join(CONFIGS_PATH, "yaml/")) c.load_shell_env() assert c.outer.inner.hooray == "env" def env_vars_override_systemwide(self): os.environ["INVOKE_OUTER_INNER_HOORAY"] = "env" c = Config(system_prefix=join(CONFIGS_PATH, "yaml/")) c.load_shell_env() assert c.outer.inner.hooray == "env" def env_vars_override_collection(self): os.environ["INVOKE_OUTER_INNER_HOORAY"] = "env" c = Config() c.load_collection({"outer": {"inner": {"hooray": "defaults"}}}) c.load_shell_env() assert c.outer.inner.hooray == "env" def runtime_overrides_env_vars(self): os.environ["INVOKE_OUTER_INNER_HOORAY"] = "env" c = Config(runtime_path=join(CONFIGS_PATH, "json", "invoke.json")) c.load_runtime() c.load_shell_env() assert c.outer.inner.hooray == "json" def runtime_overrides_project(self): c = Config( runtime_path=join(CONFIGS_PATH, "json", "invoke.json"), project_location=join(CONFIGS_PATH, "yaml"), ) c.load_runtime() c.load_project() assert c.outer.inner.hooray == "json" def runtime_overrides_user(self): c = Config( runtime_path=join(CONFIGS_PATH, "json", "invoke.json"), user_prefix=join(CONFIGS_PATH, "yaml/"), ) c.load_runtime() assert c.outer.inner.hooray == "json" def runtime_overrides_systemwide(self): c = Config( runtime_path=join(CONFIGS_PATH, "json", "invoke.json"), system_prefix=join(CONFIGS_PATH, "yaml/"), ) c.load_runtime() assert c.outer.inner.hooray == "json" def runtime_overrides_collection(self): c = Config(runtime_path=join(CONFIGS_PATH, "json", "invoke.json")) c.load_collection({"outer": {"inner": {"hooray": "defaults"}}}) c.load_runtime() assert c.outer.inner.hooray == "json" def cli_overrides_override_all(self): "CLI-driven overrides win vs all other layers" # TODO: expand into more explicit tests like the above? meh c = Config( overrides={"outer": {"inner": {"hooray": "overrides"}}}, runtime_path=join(CONFIGS_PATH, "json", "invoke.json"), ) c.load_runtime() assert c.outer.inner.hooray == "overrides" def yaml_prevents_yml_json_or_python(self): c = Config(system_prefix=join(CONFIGS_PATH, "all-four/")) assert "json-only" not in c assert "python_only" not in c assert "yml-only" not in c assert "yaml-only" in c assert c.shared == "yaml-value" def yml_prevents_json_or_python(self): c = Config(system_prefix=join(CONFIGS_PATH, "three-of-em/")) assert "json-only" not in c assert "python_only" not in c assert "yml-only" in c assert c.shared == "yml-value" def json_prevents_python(self): c = Config(system_prefix=join(CONFIGS_PATH, "json-and-python/")) assert "python_only" not in c assert "json-only" in c assert c.shared == "json-value" class clone: def preserves_basic_members(self): c1 = Config( defaults={"key": "default"}, overrides={"key": "override"}, system_prefix="global", user_prefix="user", project_location="project", runtime_path="runtime.yaml", ) c2 = c1.clone() # NOTE: expecting identical defaults also implicitly tests that # clone() passes in defaults= instead of doing an empty init + # copy. (When that is not the case, we end up with # global_defaults() being rerun and re-added to _defaults...) assert c2._defaults == c1._defaults assert c2._defaults is not c1._defaults assert c2._overrides == c1._overrides assert c2._overrides is not c1._overrides assert c2._system_prefix == c1._system_prefix assert c2._user_prefix == c1._user_prefix assert c2._project_prefix == c1._project_prefix assert c2.prefix == c1.prefix assert c2.file_prefix == c1.file_prefix assert c2.env_prefix == c1.env_prefix assert c2._runtime_path == c1._runtime_path def preserves_merged_config(self): c = Config( defaults={"key": "default"}, overrides={"key": "override"} ) assert c.key == "override" assert c._defaults["key"] == "default" c2 = c.clone() assert c2.key == "override" assert c2._defaults["key"] == "default" assert c2._overrides["key"] == "override" def preserves_file_data(self): c = Config(system_prefix=join(CONFIGS_PATH, "yaml/")) assert c.outer.inner.hooray == "yaml" c2 = c.clone() assert c2.outer.inner.hooray == "yaml" assert c2._system == {"outer": {"inner": {"hooray": "yaml"}}} @patch.object( Config, "_load_yaml", return_value={"outer": {"inner": {"hooray": "yaml"}}}, ) def does_not_reload_file_data(self, load_yaml): path = join(CONFIGS_PATH, "yaml/") c = Config(system_prefix=path) c2 = c.clone() assert c2.outer.inner.hooray == "yaml" # Crummy way to say "only got called with this specific invocation # one time" (since assert_calls_with gets mad about other # invocations w/ different args) calls = load_yaml.call_args_list my_call = call("{}invoke.yaml".format(path)) try: calls.remove(my_call) assert my_call not in calls except ValueError: err = "{} not found in {} even once!" assert False, err.format(my_call, calls) def preserves_env_data(self): os.environ["INVOKE_FOO"] = "bar" c = Config(defaults={"foo": "notbar"}) c.load_shell_env() c2 = c.clone() assert c2.foo == "bar" def works_correctly_when_subclassed(self): # Because sometimes, implementation #1 is really naive! class MyConfig(Config): pass c = MyConfig() assert isinstance(c, MyConfig) # sanity c2 = c.clone() assert isinstance(c2, MyConfig) # actual test class into_kwarg: "'into' kwarg" def is_not_required(self): c = Config(defaults={"meh": "okay"}) c2 = c.clone() assert c2.meh == "okay" def raises_TypeError_if_value_is_not_Config_subclass(self): try: Config().clone(into=17) except TypeError: pass else: assert False, "Non-class obj did not raise TypeError!" class Foo(object): pass try: Config().clone(into=Foo) except TypeError: pass else: assert False, "Non-subclass did not raise TypeError!" def resulting_clones_are_typed_as_new_class(self): class MyConfig(Config): pass c = Config() c2 = c.clone(into=MyConfig) assert type(c2) is MyConfig def non_conflicting_values_are_merged(self): # NOTE: this is really just basic clone behavior. class MyConfig(Config): @staticmethod def global_defaults(): orig = Config.global_defaults() orig["new"] = {"data": "ohai"} return orig c = Config(defaults={"other": {"data": "hello"}}) c["runtime"] = {"modification": "sup"} c2 = c.clone(into=MyConfig) # New default data from MyConfig present assert c2.new.data == "ohai" # As well as old default data from the cloned instance assert c2.other.data == "hello" # And runtime user mods from the cloned instance assert c2.runtime.modification == "sup" def does_not_deepcopy(self): c = Config( defaults={ # Will merge_dicts happily "oh": {"dear": {"god": object()}}, # And shallow-copy compound values "shallow": {"objects": ["copy", "okay"]}, # Will preserve refrences to the innermost dict, sadly. Not # much we can do without incurring deepcopy problems (or # reimplementing it entirely) "welp": {"cannot": ["have", {"everything": "we want"}]}, } ) c2 = c.clone() # Basic identity assert c is not c2, "Clone had same identity as original!" # Dicts get recreated assert c.oh is not c2.oh, "Top level key had same identity!" assert ( c.oh.dear is not c2.oh.dear ), "Midlevel key had same identity!" # noqa # Basic values get copied err = "Leaf object() had same identity!" assert c.oh.dear.god is not c2.oh.dear.god, err assert c.shallow.objects == c2.shallow.objects err = "Shallow list had same identity!" assert c.shallow.objects is not c2.shallow.objects, err # Deeply nested non-dict objects are stil problematic, oh well err = "Huh, a deeply nested dict-in-a-list had different identity?" assert c.welp.cannot[1] is c2.welp.cannot[1], err err = "Huh, a deeply nested dict-in-a-list value had different identity?" # noqa assert ( c.welp.cannot[1]["everything"] is c2.welp.cannot[1]["everything"] ), err # noqa def can_be_pickled(self): c = Config(overrides={"foo": {"bar": {"biz": ["baz", "buzz"]}}}) c2 = pickle.loads(pickle.dumps(c)) assert c == c2 assert c is not c2 assert c.foo.bar.biz is not c2.foo.bar.biz # NOTE: merge_dicts has its own very low level unit tests in its own file
the-stack_106_27349
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * import glob import os import sys from llnl.util.filesystem import fix_darwin_install_name class Papi(Package): """PAPI provides the tool designer and application engineer with a consistent interface and methodology for use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation between software performance and processor events. In addition Component PAPI provides access to a collection of components that expose performance measurement opportunites across the hardware and software stack.""" homepage = "http://icl.cs.utk.edu/papi/index.html" url = "http://icl.cs.utk.edu/projects/papi/downloads/papi-5.4.1.tar.gz" version('5.5.1', '86a8a6f3d0f34cd83251da3514aae15d') version('5.5.0', '5e1244a04ca031d4cc29b46ce3dd05b5') version('5.4.3', '3211b5a5bb389fe692370f5cf4cc2412') version('5.4.1', '9134a99219c79767a11463a76b0b01a2') version('5.3.0', '367961dd0ab426e5ae367c2713924ffb') def install(self, spec, prefix): with working_dir("src"): configure_args = ["--prefix=%s" % prefix] # PAPI uses MPI if MPI is present; since we don't require # an MPI package, we ensure that all attempts to use MPI # fail, so that PAPI does not get confused configure_args.append('MPICC=:') configure(*configure_args) # Don't use <malloc.h> for level in [".", "*", "*/*"]: files = glob.iglob(join_path(level, "*.[ch]")) filter_file(r"\<malloc\.h\>", "<stdlib.h>", *files) make() make("install") # The shared library is not installed correctly on Darwin if sys.platform == 'darwin': os.rename(join_path(prefix.lib, 'libpapi.so'), join_path(prefix.lib, 'libpapi.dylib')) fix_darwin_install_name(prefix.lib)
the-stack_106_27350
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import hashlib import os import random import re import sys from abc import ABCMeta, abstractmethod from threading import Thread from time import time, sleep import os.path from os.path import dirname, exists, isdir, join import mycroft.util from mycroft.enclosure.api import EnclosureAPI from mycroft.configuration import Configuration from mycroft.messagebus.message import Message from mycroft.metrics import report_timing, Stopwatch from mycroft.util import ( play_wav, play_mp3, check_for_signal, create_signal, resolve_resource_file ) from mycroft.util.log import LOG from queue import Queue, Empty def send_playback_metric(stopwatch, ident): """ Send playback metrics in a background thread """ def do_send(stopwatch, ident): report_timing(ident, 'speech_playback', stopwatch) t = Thread(target=do_send, args=(stopwatch, ident)) t.daemon = True t.start() class PlaybackThread(Thread): """ Thread class for playing back tts audio and sending visime data to enclosure. """ def __init__(self, queue): super(PlaybackThread, self).__init__() self.queue = queue self._terminated = False self._processing_queue = False self._clear_visimes = False def init(self, tts): self.tts = tts def clear_queue(self): """ Remove all pending playbacks. """ while not self.queue.empty(): self.queue.get() try: self.p.terminate() except Exception: pass def run(self): """ Thread main loop. get audio and visime data from queue and play. """ while not self._terminated: try: snd_type, data, visimes, ident = self.queue.get(timeout=2) self.blink(0.5) if not self._processing_queue: self._processing_queue = True self.tts.begin_audio() stopwatch = Stopwatch() with stopwatch: if snd_type == 'wav': self.p = play_wav(data) elif snd_type == 'mp3': self.p = play_mp3(data) if visimes: if self.show_visimes(visimes): self.clear_queue() else: self.p.communicate() self.p.wait() send_playback_metric(stopwatch, ident) if self.queue.empty(): self.tts.end_audio() self._processing_queue = False self._clear_visimes = False self.blink(0.2) except Empty: pass except Exception as e: LOG.exception(e) if self._processing_queue: self.tts.end_audio() self._processing_queue = False def show_visimes(self, pairs): """ Send visime data to enclosure Args: pairs(list): Visime and timing pair Returns: True if button has been pressed. """ start = time() if self.enclosure: self.enclosure.mouth_viseme_list(start, pairs) # TODO 19.02 Remove the one by one method below for code, duration in pairs: if self._clear_visimes: self._clear_visimes = False return True if self.enclosure: # Include time stamp to assist with animation timing self.enclosure.mouth_viseme(code, start + duration) delta = time() - start if delta < duration: sleep(duration - delta) return False def clear_visimes(self): self._clear_visimes = True def clear(self): """ Clear all pending actions for the TTS playback thread. """ self.clear_queue() self.clear_visimes() def blink(self, rate=1.0): """ Blink mycroft's eyes """ if self.enclosure and random.random() < rate: self.enclosure.eyes_blink("b") def stop(self): """ Stop thread """ self._terminated = True self.clear_queue() class TTS(metaclass=ABCMeta): """ TTS abstract class to be implemented by all TTS engines. It aggregates the minimum required parameters and exposes ``execute(sentence)`` and ``validate_ssml(sentence)`` functions. Args: lang (str): config (dict): Configuration for this specific tts engine validator (TTSValidator): Used to verify proper installation phonetic_spelling (bool): Whether to spell certain words phonetically ssml_tags (list): Supported ssml properties. Ex. ['speak', 'prosody'] """ def __init__(self, lang, config, validator, audio_ext='wav', phonetic_spelling=True, ssml_tags=None): super(TTS, self).__init__() self.bus = None # initalized in "init" step self.lang = lang or 'en-us' self.config = config self.validator = validator self.phonetic_spelling = phonetic_spelling self.audio_ext = audio_ext self.ssml_tags = ssml_tags or [] self.voice = config.get("voice") self.filename = '/tmp/tts.wav' self.enclosure = None random.seed() self.queue = Queue() self.playback = PlaybackThread(self.queue) self.playback.start() self.clear_cache() self.spellings = self.load_spellings() def load_spellings(self): """Load phonetic spellings of words as dictionary""" path = join('text', self.lang, 'phonetic_spellings.txt') spellings_file = resolve_resource_file(path) if not spellings_file: return {} try: with open(spellings_file) as f: lines = filter(bool, f.read().split('\n')) lines = [i.split(':') for i in lines] return {key.strip(): value.strip() for key, value in lines} except ValueError: LOG.exception('Failed to load phonetic spellings.') return {} def begin_audio(self): """Helper function for child classes to call in execute()""" # Create signals informing start of speech self.bus.emit(Message("recognizer_loop:audio_output_start")) def end_audio(self): """ Helper function for child classes to call in execute(). Sends the recognizer_loop:audio_output_end message, indicating that speaking is done for the moment. It also checks if cache directory needs cleaning to free up disk space. """ self.bus.emit(Message("recognizer_loop:audio_output_end")) # Clean the cache as needed cache_dir = mycroft.util.get_cache_directory("tts") mycroft.util.curate_cache(cache_dir, min_free_percent=100) # This check will clear the "signal" check_for_signal("isSpeaking") def init(self, bus): """ Performs intial setup of TTS object. Arguments: bus: Mycroft messagebus connection """ self.bus = bus self.playback.init(self) self.enclosure = EnclosureAPI(self.bus) self.playback.enclosure = self.enclosure def get_tts(self, sentence, wav_file): """ Abstract method that a tts implementation needs to implement. Should get data from tts. Args: sentence(str): Sentence to synthesize wav_file(str): output file Returns: tuple: (wav_file, phoneme) """ pass def modify_tag(self, tag): """Override to modify each supported ssml tag""" return tag @staticmethod def remove_ssml(text): return re.sub('<[^>]*>', '', text).replace(' ', ' ') def validate_ssml(self, utterance): """ Check if engine supports ssml, if not remove all tags Remove unsupported / invalid tags Args: utterance(str): Sentence to validate Returns: validated_sentence (str) """ # if ssml is not supported by TTS engine remove all tags if not self.ssml_tags: return self.remove_ssml(utterance) # find ssml tags in string tags = re.findall('<[^>]*>', utterance) for tag in tags: if any(supported in tag for supported in self.ssml_tags): utterance = utterance.replace(tag, self.modify_tag(tag)) else: # remove unsupported tag utterance = utterance.replace(tag, "") # return text with supported ssml tags only return utterance.replace(" ", " ") def execute(self, sentence, ident=None): """ Convert sentence to speech, preprocessing out unsupported ssml The method caches results if possible using the hash of the sentence. Args: sentence: Sentence to be spoken ident: Id reference to current interaction """ sentence = self.validate_ssml(sentence) create_signal("isSpeaking") if self.phonetic_spelling: for word in re.findall(r"[\w']+", sentence): if word.lower() in self.spellings: sentence = sentence.replace(word, self.spellings[word.lower()]) key = str(hashlib.md5(sentence.encode('utf-8', 'ignore')).hexdigest()) wav_file = os.path.join(mycroft.util.get_cache_directory("tts"), key + '.' + self.audio_ext) if os.path.exists(wav_file): LOG.debug("TTS cache hit") phonemes = self.load_phonemes(key) else: wav_file, phonemes = self.get_tts(sentence, wav_file) if phonemes: self.save_phonemes(key, phonemes) vis = self.visime(phonemes) self.queue.put((self.audio_ext, wav_file, vis, ident)) def visime(self, phonemes): """ Create visimes from phonemes. Needs to be implemented for all tts backend Args: phonemes(str): String with phoneme data """ return None def clear_cache(self): """ Remove all cached files. """ if not os.path.exists(mycroft.util.get_cache_directory('tts')): return for f in os.listdir(mycroft.util.get_cache_directory("tts")): file_path = os.path.join(mycroft.util.get_cache_directory("tts"), f) if os.path.isfile(file_path): os.unlink(file_path) def save_phonemes(self, key, phonemes): """ Cache phonemes Args: key: Hash key for the sentence phonemes: phoneme string to save """ cache_dir = mycroft.util.get_cache_directory("tts") pho_file = os.path.join(cache_dir, key + ".pho") try: with open(pho_file, "w") as cachefile: cachefile.write(phonemes) except Exception: LOG.exception("Failed to write {} to cache".format(pho_file)) pass def load_phonemes(self, key): """ Load phonemes from cache file. Args: Key: Key identifying phoneme cache """ pho_file = os.path.join(mycroft.util.get_cache_directory("tts"), key + ".pho") if os.path.exists(pho_file): try: with open(pho_file, "r") as cachefile: phonemes = cachefile.read().strip() return phonemes except Exception: LOG.debug("Failed to read .PHO from cache") return None def __del__(self): self.playback.stop() self.playback.join() class TTSValidator(metaclass=ABCMeta): """ TTS Validator abstract class to be implemented by all TTS engines. It exposes and implements ``validate(tts)`` function as a template to validate the TTS engines. """ def __init__(self, tts): self.tts = tts def validate(self): self.validate_dependencies() self.validate_instance() self.validate_filename() self.validate_lang() self.validate_connection() def validate_dependencies(self): pass def validate_instance(self): clazz = self.get_tts_class() if not isinstance(self.tts, clazz): raise AttributeError('tts must be instance of ' + clazz.__name__) def validate_filename(self): filename = self.tts.filename if not (filename and filename.endswith('.wav')): raise AttributeError('file: %s must be in .wav format!' % filename) dir_path = dirname(filename) if not (exists(dir_path) and isdir(dir_path)): raise AttributeError('filename: %s is not valid!' % filename) @abstractmethod def validate_lang(self): pass @abstractmethod def validate_connection(self): pass @abstractmethod def get_tts_class(self): pass class TTSFactory: from mycroft.tts.espeak_tts import ESpeak from mycroft.tts.fa_tts import FATTS from mycroft.tts.google_tts import GoogleTTS from mycroft.tts.mary_tts import MaryTTS from mycroft.tts.mimic_tts import Mimic # from mycroft.tts.flite_tts import Flite from mycroft.tts.arabic_tts import ArabicTTS from mycroft.tts.spdsay_tts import SpdSay from mycroft.tts.bing_tts import BingTTS from mycroft.tts.ibm_tts import WatsonTTS from mycroft.tts.kacst_tts import KACSTTTS from mycroft.tts.responsive_voice_tts import ResponsiveVoice from mycroft.tts.mimic2_tts import Mimic2 CLASSES = { "mimic": Mimic, # "flite": Flite, "arabic": ArabicTTS, "mimic2": Mimic2, "google": GoogleTTS, "marytts": MaryTTS, "fatts": FATTS, "espeak": ESpeak, "spdsay": SpdSay, "watson": WatsonTTS, "kacst": KACSTTTS, "bing": BingTTS, "responsive_voice": ResponsiveVoice } @staticmethod def create(): """ Factory method to create a TTS engine based on configuration. The configuration file ``mycroft.conf`` contains a ``tts`` section with the name of a TTS module to be read by this method. "tts": { "module": <engine_name> } """ config = Configuration.get() lang = config.get("lang", "en-us") tts_module = config.get('tts', {}).get('module', 'mimic') tts_config = config.get('tts', {}).get(tts_module, {}) tts_lang = tts_config.get('lang', lang) clazz = TTSFactory.CLASSES.get(tts_module) tts = clazz(tts_lang, tts_config) tts.validator.validate() return tts
the-stack_106_27351
# coding=utf-8 # Copyright 2020 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2 python3 """Tests for infectious_disease_rl.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile from absl.testing import absltest from experiments import infectious_disease_rl class InfectiousDiseaseRlTest(absltest.TestCase): def test_dopamine_train_eval(self): """Tests that both train and eval can execute without raising errors.""" tmpdir = tempfile.mkdtemp() runner = infectious_disease_rl.dopamine_train( base_dir=tmpdir, hidden_layer_size=10, gamma=0.5, learning_rate=0.1, num_train_steps=10, network='chain') infectious_disease_rl.dopamine_eval(runner, patient0=0) def test_negative_delta_percent_sick(self): reward_fn = infectious_disease_rl.NegativeDeltaPercentSick(base=0.25) observation = {'health_states': [0, 1, 2, 1]} # 50% are infected. The base is 25%, so the negative delta is -0.25 self.assertEqual(reward_fn(observation), -0.25) # Using the same observation a second time. Now the percent infected has not # changed, so negative delta should be 0. self.assertEqual(reward_fn(observation), 0) if __name__ == '__main__': absltest.main()
the-stack_106_27353
""" Plotting imports for PyDSTool, from Matplotlib's pyplot library. Robert Clewley, March 2006. """ from __future__ import absolute_import, print_function from numpy import Inf, NaN, isfinite, int, int8, int16, int32, int64, float, float32, float64 try: import matplotlib ver = matplotlib.__version__.split(".") if int(ver[0]) == 0 and int(ver[1]) < 65: import matplotlib.matlab as plt from matplotlib.matlab import * else: import matplotlib.pyplot as plt from matplotlib.pyplot import * except RuntimeError as err: if str(err) == 'could not open display': failed=True else: raise except ImportError: failed=True else: failed=False if failed: # Dummy plot overrides for PyDSTool when matplotlib fails to import def plot(*args, **kw): print("Warning: plot does not work!") def save_fig(fignum, fname, formats=[]): print("Warning: plot does not work!") print("Warning: matplotlib failed to import properly and so is not") print(" providing a graphing interface") plt = None # will cause an error if someone tries to access in order to plot gca = None else: import os from .Trajectory import Trajectory from .common import _num_types # Convenient shorthand to permit singleton numeric types and Trajectories # in the plot arguments without first converting them to lists or arrays. def plot(*args, **kw): new_args = list(args) if isinstance(args[0], _num_types): new_args[0] = [args[0]] elif isinstance(args[0], Trajectory): try: new_args[0] = args[0].sample() except: raise RuntimeError("Could not sample trajectory with default " "options for plotting") if len(args) > 1: if isinstance(args[1], _num_types): new_args[1] = [args[1]] elif isinstance(args[1], Trajectory): try: new_args[1] = args[1].sample() except: raise RuntimeError("Could not sample trajectory with " "default options for plotting") return plt.plot(*tuple(new_args), **kw) def save_fig(fignum, fname, formats=['png','svg','eps']): """Save figure fignum to multiple files with different formats and extensions given by the formats argument. These are platform-dependent and are specific to matplotlib's support. """ for f in formats: plt.figure(fignum).savefig(fname+'.'+f)
the-stack_106_27354
""" Following DeepRobust repo https://github.com/DSE-MSU/DeepRobust """ """ FGA: Fast Gradient Attack on Network Embedding (https://arxiv.org/pdf/1809.02797.pdf) Another very similar algorithm to mention here is FGSM (for graph data). It is mentioned in Zugner's paper, Adversarial Attacks on Neural Networks for Graph Data, KDD'19 """ import torch from base_attack import BaseAttack from torch.nn.parameter import Parameter from copy import deepcopy from utils import * import torch.nn.functional as F import scipy.sparse as sp class FGA(BaseAttack): """FGA/FGSM. Parameters ---------- model : model to attack nnodes : int number of nodes in the input graph feature_shape : tuple shape of the input node features attack_structure : bool whether to attack graph structure attack_features : bool whether to attack node features device: str 'cpu' or 'cuda' Examples -------- >>> from deeprobust.graph.data import Dataset >>> from deeprobust.graph.defense import GCN >>> from deeprobust.graph.targeted_attack import FGA >>> data = Dataset(root='/tmp/', name='cora') >>> adj, features, labels = data.adj, data.features, data.labels >>> idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test >>> # Setup Surrogate model >>> surrogate = GCN(nfeat=features.shape[1], nclass=labels.max().item()+1, nhid=16, dropout=0, with_relu=False, with_bias=False, device='cpu').to('cpu') >>> surrogate.fit(features, adj, labels, idx_train, idx_val, patience=30) >>> # Setup Attack Model >>> target_node = 0 >>> model = FGA(surrogate, nnodes=adj.shape[0], attack_structure=True, attack_features=False, device='cpu').to('cpu') >>> # Attack >>> model.attack(features, adj, labels, idx_train, target_node, n_perturbations=5) >>> modified_adj = model.modified_adj """ def __init__(self, model, nnodes, feature_shape=None, attack_structure=True, attack_features=False, device='cpu'): super(FGA, self).__init__(model, nnodes, attack_structure=attack_structure, attack_features=attack_features, device=device) assert not self.attack_features, "not support attacking features" if self.attack_features: self.feature_changes = Parameter(torch.FloatTensor(feature_shape)) self.feature_changes.data.fill_(0) def attack(self, ori_features, ori_adj, labels, idx_train, target_node, n_perturbations, verbose=False, **kwargs): """Generate perturbations on the input graph. Parameters ---------- ori_features : scipy.sparse.csr_matrix Original (unperturbed) adjacency matrix ori_adj : scipy.sparse.csr_matrix Original (unperturbed) node feature matrix labels : node labels idx_train: training node indices target_node : int target node index to be attacked n_perturbations : int Number of perturbations on the input graph. Perturbations could be edge removals/additions or feature removals/additions. """ modified_adj = ori_adj.todense() modified_features = ori_features.todense() modified_adj, modified_features, labels = to_tensor(modified_adj, modified_features, labels, device=self.device) self.surrogate.eval() if verbose == True: print('number of pertubations: %s' % n_perturbations) pseudo_labels = self.surrogate.predict().detach().argmax(1) pseudo_labels[idx_train] = labels[idx_train] modified_adj.requires_grad = True for i in range(n_perturbations): adj_norm = normalize_adj_tensor(modified_adj) if self.attack_structure: output = self.surrogate(modified_features, adj_norm) loss = F.nll_loss(output[[target_node]], pseudo_labels[[target_node]]) grad = torch.autograd.grad(loss, modified_adj)[0] # bidirection grad = (grad[target_node] + grad[:, target_node]) * (-2*modified_adj[target_node] + 1) grad[target_node] = -10 grad_argmax = torch.argmax(grad) value = -2*modified_adj[target_node][grad_argmax] + 1 modified_adj.data[target_node][grad_argmax] += value modified_adj.data[grad_argmax][target_node] += value if self.attack_features: pass modified_adj = modified_adj.detach().cpu().numpy() modified_adj = sp.csr_matrix(modified_adj) self.check_adj(modified_adj) self.modified_adj = modified_adj # self.modified_features = modified_features
the-stack_106_27356
from __future__ import annotations import collections from datetime import timedelta import functools import gc from io import StringIO import json import operator import pickle import re from typing import ( TYPE_CHECKING, Any, Callable, Dict, FrozenSet, Hashable, List, Mapping, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import weakref import numpy as np from pandas._config import config from pandas._libs import lib from pandas._libs.tslibs import Tick, Timestamp, to_offset from pandas._typing import ( Axis, CompressionOptions, FilePathOrBuffer, FrameOrSeries, IndexKeyFunc, IndexLabel, JSONSerializable, Label, Level, Renamer, StorageOptions, TimedeltaConvertibleTypes, TimestampConvertibleTypes, ValueKeyFunc, ) from pandas.compat import set_function_name from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, InvalidIndexError from pandas.util._decorators import Appender, doc, rewrite_axis_style_signature from pandas.util._validators import ( validate_bool_kwarg, validate_fillna_kwargs, validate_percentile, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dict_like, is_extension_array_dtype, is_float, is_list_like, is_number, is_numeric_dtype, is_object_dtype, is_re_compilable, is_scalar, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna import pandas as pd from pandas.core import missing, nanops import pandas.core.algorithms as algos from pandas.core.base import PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.flags import Flags from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, MultiIndex, RangeIndex, ensure_index from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import Period, PeriodIndex import pandas.core.indexing as indexing from pandas.core.internals import BlockManager from pandas.core.missing import find_valid_index from pandas.core.ops import align_method_FRAME from pandas.core.shared_docs import _shared_docs from pandas.core.sorting import get_indexer_indexer from pandas.core.window import Expanding, ExponentialMovingWindow, Rolling, Window from pandas.io.formats import format as fmt from pandas.io.formats.format import DataFrameFormatter, format_percentiles from pandas.io.formats.printing import pprint_thing if TYPE_CHECKING: from pandas._libs.tslibs import BaseOffset from pandas.core.resample import Resampler from pandas.core.series import Series from pandas.core.window.indexers import BaseIndexer # goal is to be able to define the docs close to function, while still being # able to share _shared_docs = {**_shared_docs} _shared_doc_kwargs = dict( axes="keywords for axes", klass="Series/DataFrame", axes_single_arg="int or labels for object", args_transpose="axes to permute (int or label for object)", optional_by=""" by : str or list of str Name or list of names to sort by""", ) def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError( f"cannot replace {to_replace} with method {method} on a " f"{type(self).__name__}" ) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result) return return result bool_t = bool # Need alias because NDFrame has def bool: class NDFrame(PandasObject, SelectionMixin, indexing.IndexingMixin): """ N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure Parameters ---------- data : BlockManager axes : list copy : bool, default False """ _internal_names: List[str] = [ "_mgr", "_cacher", "_item_cache", "_cache", "_is_copy", "_subtyp", "_name", "_index", "_default_kind", "_default_fill_value", "_metadata", "__array_struct__", "__array_interface__", "_flags", ] _internal_names_set: Set[str] = set(_internal_names) _accessors: Set[str] = set() _deprecations: FrozenSet[str] = frozenset(["get_values", "tshift"]) _metadata: List[str] = [] _is_copy = None _mgr: BlockManager _attrs: Dict[Optional[Hashable], Any] _typ: str # ---------------------------------------------------------------------- # Constructors def __init__( self, data: BlockManager, copy: bool = False, attrs: Optional[Mapping[Optional[Hashable], Any]] = None, ): # copy kwarg is retained for mypy compat, is not used object.__setattr__(self, "_is_copy", None) object.__setattr__(self, "_mgr", data) object.__setattr__(self, "_item_cache", {}) if attrs is None: attrs = {} else: attrs = dict(attrs) object.__setattr__(self, "_attrs", attrs) object.__setattr__(self, "_flags", Flags(self, allows_duplicate_labels=True)) @classmethod def _init_mgr(cls, mgr, axes, dtype=None, copy: bool = False) -> BlockManager: """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: axe = ensure_index(axe) bm_axis = cls._get_block_manager_axis(a) mgr = mgr.reindex_axis(axe, axis=bm_axis, copy=False) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr # ---------------------------------------------------------------------- # attrs and flags @property def attrs(self) -> Dict[Optional[Hashable], Any]: """ Dictionary of global attributes of this dataset. .. warning:: attrs is experimental and may change without warning. See Also -------- DataFrame.flags """ if self._attrs is None: self._attrs = {} return self._attrs @attrs.setter def attrs(self, value: Mapping[Optional[Hashable], Any]) -> None: self._attrs = dict(value) @property def flags(self) -> Flags: """ Get the properties associated with this pandas object. The available flags are * :attr:`Flags.allows_duplicate_labels` See Also -------- Flags DataFrame.attrs Notes ----- "Flags" differ from "metadata". Flags reflect properties of the pandas object (the Series or DataFrame). Metadata refer to properties of the dataset, and should be stored in :attr:`DataFrame.attrs`. Examples -------- >>> df = pd.DataFrame({"A": [1, 2]}) >>> df.flags <Flags(allows_duplicate_labels=True)> Flags can be get or set using ``.`` >>> df.flags.allows_duplicate_labels True >>> df.flags.allows_duplicate_labels = False Or by slicing with a key >>> df.flags["allows_duplicate_labels"] False >>> df.flags["allows_duplicate_labels"] = True """ return self._flags def set_flags( self: FrameOrSeries, *, copy: bool = False, allows_duplicate_labels: Optional[bool] = None, ) -> FrameOrSeries: """ Return a new object with updated flags. Parameters ---------- allows_duplicate_labels : bool, optional Whether the returned object allows duplicate labels. Returns ------- Series or DataFrame The same type as the caller. See Also -------- DataFrame.attrs : Global metadata applying to this dataset. DataFrame.flags : Global flags applying to this object. Notes ----- This method returns a new object that's a view on the same data as the input. Mutating the input or the output values will be reflected in the other. This method is intended to be used in method chains. "Flags" differ from "metadata". Flags reflect properties of the pandas object (the Series or DataFrame). Metadata refer to properties of the dataset, and should be stored in :attr:`DataFrame.attrs`. Examples -------- >>> df = pd.DataFrame({"A": [1, 2]}) >>> df.flags.allows_duplicate_labels True >>> df2 = df.set_flags(allows_duplicate_labels=False) >>> df2.flags.allows_duplicate_labels False """ df = self.copy(deep=copy) if allows_duplicate_labels is not None: df.flags["allows_duplicate_labels"] = allows_duplicate_labels return df @classmethod def _validate_dtype(cls, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == "V": raise NotImplementedError( "compound dtypes are not implemented " f"in the {cls.__name__} constructor" ) return dtype # ---------------------------------------------------------------------- # Construction @property def _constructor(self: FrameOrSeries) -> Type[FrameOrSeries]: """ Used when a manipulation result has the same dimensions as the original. """ raise AbstractMethodError(self) @property def _constructor_sliced(self): """ Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing. """ raise AbstractMethodError(self) @property def _constructor_expanddim(self): """ Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() """ raise NotImplementedError # ---------------------------------------------------------------------- # Internals @property def _data(self): # GH#33054 retained because some downstream packages uses this, # e.g. fastparquet return self._mgr # ---------------------------------------------------------------------- # Axis _stat_axis_number = 0 _stat_axis_name = "index" _ix = None _AXIS_ORDERS: List[str] _AXIS_TO_AXIS_NUMBER: Dict[Axis, int] = {0: 0, "index": 0, "rows": 0} _AXIS_REVERSED: bool _info_axis_number: int _info_axis_name: str _AXIS_LEN: int @property def _AXIS_NUMBERS(self) -> Dict[str, int]: """.. deprecated:: 1.1.0""" warnings.warn("_AXIS_NUMBERS has been deprecated.", FutureWarning, stacklevel=3) return {"index": 0} @property def _AXIS_NAMES(self) -> Dict[int, str]: """.. deprecated:: 1.1.0""" warnings.warn("_AXIS_NAMES has been deprecated.", FutureWarning, stacklevel=3) return {0: "index"} def _construct_axes_dict(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d @classmethod def _construct_axes_from_arguments( cls, args, kwargs, require_all: bool = False, sentinel=None ): """ Construct and returns axes if supplied in args/kwargs. If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs). sentinel specifies the default parameter when an axis is not supplied; useful to distinguish when a user explicitly passes None in scenarios where None has special meaning. """ # construct the args args = list(args) for a in cls._AXIS_ORDERS: # look for a argument by position if a not in kwargs: try: kwargs[a] = args.pop(0) except IndexError as err: if require_all: raise TypeError( "not enough/duplicate arguments specified!" ) from err axes = {a: kwargs.pop(a, sentinel) for a in cls._AXIS_ORDERS} return axes, kwargs @classmethod def _get_axis_number(cls, axis: Axis) -> int: try: return cls._AXIS_TO_AXIS_NUMBER[axis] except KeyError: raise ValueError(f"No axis named {axis} for object type {cls.__name__}") @classmethod def _get_axis_name(cls, axis: Axis) -> str: axis_number = cls._get_axis_number(axis) return cls._AXIS_ORDERS[axis_number] def _get_axis(self, axis: Axis) -> Index: axis_number = self._get_axis_number(axis) assert axis_number in {0, 1} return self.index if axis_number == 0 else self.columns @classmethod def _get_block_manager_axis(cls, axis: Axis) -> int: """Map the axis to the block_manager axis.""" axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = cls._AXIS_LEN - 1 return m - axis return axis def _get_axis_resolvers(self, axis: str) -> Dict[str, Union[Series, MultiIndex]]: # index or columns axis_index = getattr(self, axis) d = dict() prefix = axis[0] for i, name in enumerate(axis_index.names): if name is not None: key = level = name else: # prefix with 'i' or 'c' depending on the input axis # e.g., you must do ilevel_0 for the 0th level of an unnamed # multiiindex key = f"{prefix}level_{i}" level = i level_values = axis_index.get_level_values(level) s = level_values.to_series() s.index = axis_index d[key] = s # put the index/columns itself in the dict if isinstance(axis_index, MultiIndex): dindex = axis_index else: dindex = axis_index.to_series() d[axis] = dindex return d def _get_index_resolvers(self) -> Dict[str, Union[Series, MultiIndex]]: from pandas.core.computation.parsing import clean_column_name d: Dict[str, Union[Series, MultiIndex]] = {} for axis_name in self._AXIS_ORDERS: d.update(self._get_axis_resolvers(axis_name)) return {clean_column_name(k): v for k, v in d.items() if not isinstance(k, int)} def _get_cleaned_column_resolvers(self) -> Dict[str, ABCSeries]: """ Return the special character free column resolvers of a dataframe. Column names with special characters are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`. """ from pandas.core.computation.parsing import clean_column_name if isinstance(self, ABCSeries): return {clean_column_name(self.name): self} return { clean_column_name(k): v for k, v in self.items() if not isinstance(k, int) } @property def _info_axis(self) -> Index: return getattr(self, self._info_axis_name) @property def _stat_axis(self) -> Index: return getattr(self, self._stat_axis_name) @property def shape(self) -> Tuple[int, ...]: """ Return a tuple of axis dimensions """ return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS) @property def axes(self) -> List[Index]: """ Return index label(s) of the internal NDFrame """ # we do it this way because if we have reversed axes, then # the block manager shows then reversed return [self._get_axis(a) for a in self._AXIS_ORDERS] @property def ndim(self) -> int: """ Return an int representing the number of axes / array dimensions. Return 1 if Series. Otherwise return 2 if DataFrame. See Also -------- ndarray.ndim : Number of array dimensions. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2 """ return self._mgr.ndim @property def size(self) -> int: """ Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. See Also -------- ndarray.size : Number of elements in the array. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4 """ return np.prod(self.shape) @property def _selected_obj(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self @property def _obj_with_exclusions(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): """ Assign desired index to given axis. Indexes for%(extended_summary_sub)s row labels can be changed by assigning a list-like or Index. Parameters ---------- labels : list-like, Index The values for the new index. axis : %(axes_single_arg)s, default 0 The axis to update. The value 0 identifies the rows%(axis_description_sub)s. inplace : bool, default False Whether to return a new %(klass)s instance. Returns ------- renamed : %(klass)s or None An object of type %(klass)s if inplace=False, None otherwise. See Also -------- %(klass)s.rename_axis : Alter the name of the index%(see_also_sub)s. """ self._check_inplace_and_allows_duplicate_labels(inplace) return self._set_axis_nocheck(labels, axis, inplace) def _set_axis_nocheck(self, labels, axis: Axis, inplace: bool): # NDFrame.rename with inplace=False calls set_axis(inplace=True) on a copy. if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj def _set_axis(self, axis: int, labels: Index) -> None: labels = ensure_index(labels) self._mgr.set_axis(axis, labels) self._clear_item_cache() def swapaxes(self: FrameOrSeries, axis1, axis2, copy=True) -> FrameOrSeries: """ Interchange axes and swap values axes appropriately. Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() # ignore needed because of NDFrame constructor is different than # DataFrame/Series constructors. return self._constructor( new_values, *new_axes # type: ignore[arg-type] ).__finalize__(self, method="swapaxes") def droplevel(self: FrameOrSeries, level, axis=0) -> FrameOrSeries: """ Return DataFrame with requested index / column level(s) removed. .. versionadded:: 0.24.0 Parameters ---------- level : int, str, or list-like If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the level(s) is removed: * 0 or 'index': remove level(s) in column. * 1 or 'columns': remove level(s) in row. Returns ------- DataFrame DataFrame with requested index / column level(s) removed. Examples -------- >>> df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12] ... ]).set_index([0, 1]).rename_axis(['a', 'b']) >>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2']) >>> df level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12 >>> df.droplevel('a') level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12 >>> df.droplevel('level_2', axis=1) level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12 """ labels = self._get_axis(axis) new_labels = labels.droplevel(level) result = self.set_axis(new_labels, axis=axis, inplace=False) return result def pop(self, item: Label) -> Union[Series, Any]: result = self[item] del self[item] if self.ndim == 2: result._reset_cacher() return result def squeeze(self, axis=None): """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes will project directly into a scalar: >>> df_0a.squeeze() 1 """ axis = range(self._AXIS_LEN) if axis is None else (self._get_axis_number(axis),) return self.iloc[ tuple( 0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes) ) ] # ---------------------------------------------------------------------- # Rename def rename( self: FrameOrSeries, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional[FrameOrSeries]: """ Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value (Series only). Parameters ---------- %(axes)s : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the ``Series.name`` attribute, and raise on DataFrame. dict-like or functions are transformations to apply to that axis' values copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new {klass}. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- renamed : {klass} (new object) Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- NDFrame.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 Since ``DataFrame`` doesn't have a ``.name`` attribute, only mapping-type arguments are allowed. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) Traceback (most recent call last): ... TypeError: 'int' object is not callable ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 See the :ref:`user guide <basics.rename>` for more. """ if mapper is None and index is None and columns is None: raise TypeError("must pass an index to rename") if index is not None or columns is not None: if axis is not None: raise TypeError( "Cannot specify both 'axis' and any of 'index' or 'columns'" ) elif mapper is not None: raise TypeError( "Cannot specify both 'mapper' and any of 'index' or 'columns'" ) else: # use the mapper argument if axis and self._get_axis_number(axis) == 1: columns = mapper else: index = mapper self._check_inplace_and_allows_duplicate_labels(inplace) result = self if inplace else self.copy(deep=copy) for axis_no, replacements in enumerate((index, columns)): if replacements is None: continue ax = self._get_axis(axis_no) f = com.get_rename_function(replacements) if level is not None: level = ax._get_level_number(level) # GH 13473 if not callable(replacements): indexer = ax.get_indexer_for(replacements) if errors == "raise" and len(indexer[indexer == -1]): missing_labels = [ label for index, label in enumerate(replacements) if indexer[index] == -1 ] raise KeyError(f"{missing_labels} not found in axis") new_index = ax._transform_index(f, level) result._set_axis_nocheck(new_index, axis=axis_no, inplace=True) result._clear_item_cache() if inplace: self._update_inplace(result) return None else: return result.__finalize__(self, method="rename") @rewrite_axis_style_signature("mapper", [("copy", True), ("inplace", False)]) def rename_axis(self, mapper=lib.no_default, **kwargs): """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Note that the ``columns`` parameter is not allowed if the object is a Series. This parameter only apply for DataFrame type objects. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 """ axes, kwargs = self._construct_axes_from_arguments( (), kwargs, sentinel=lib.no_default ) copy = kwargs.pop("copy", True) inplace = kwargs.pop("inplace", False) axis = kwargs.pop("axis", 0) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError( "rename_axis() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) inplace = validate_bool_kwarg(inplace, "inplace") if mapper is not lib.no_default: # Use v0.23 behavior if a scalar or list non_mapper = is_scalar(mapper) or ( is_list_like(mapper) and not is_dict_like(mapper) ) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: raise ValueError("Use `.rename` to alter labels with a mapper.") else: # Use new behavior. Means that index and/or columns # is specified result = self if inplace else self.copy(deep=copy) for axis in range(self._AXIS_LEN): v = axes.get(self._get_axis_name(axis)) if v is lib.no_default: continue non_mapper = is_scalar(v) or (is_list_like(v) and not is_dict_like(v)) if non_mapper: newnames = v else: f = com.get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if not inplace: return result def _set_axis_name(self, name, axis=0, inplace=False): """ Set the name(s) of the axis. Parameters ---------- name : str or list of str Name(s) to set. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to set the label. The value 0 or 'index' specifies index, and the value 1 or 'columns' specifies columns. inplace : bool, default False If `True`, do operation inplace and return None. Returns ------- Series, DataFrame, or None The same type as the caller or `None` if `inplace` is `True`. See Also -------- DataFrame.rename : Alter the axis labels of :class:`DataFrame`. Series.rename : Alter the index labels or set the index name of :class:`Series`. Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`. Examples -------- >>> df = pd.DataFrame({"num_legs": [4, 4, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs dog 4 cat 4 monkey 2 >>> df._set_axis_name("animal") num_legs animal dog 4 cat 4 monkey 2 >>> df.index = pd.MultiIndex.from_product( ... [["mammal"], ['dog', 'cat', 'monkey']]) >>> df._set_axis_name(["type", "name"]) num_legs type name mammal dog 4 cat 4 monkey 2 """ axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, "inplace") renamed = self if inplace else self.copy() renamed.set_axis(idx, axis=axis, inplace=True) if not inplace: return renamed # ---------------------------------------------------------------------- # Comparison Methods def _indexed_same(self, other) -> bool: return all( self._get_axis(a).equals(other._get_axis(a)) for a in self._AXIS_ORDERS ) def equals(self, other: object) -> bool: """ Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The row/column index do not need to have the same type, as long as the values are considered equal. Corresponding columns must be of the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. testing.assert_series_equal : Raises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others. testing.assert_frame_equal : Like assert_series_equal, but targets DataFrames. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False """ if not (isinstance(other, type(self)) or isinstance(self, type(other))): return False other = cast(NDFrame, other) return self._mgr.equals(other._mgr) # ------------------------------------------------------------------------- # Unary Methods def __neg__(self): values = self._values if is_bool_dtype(values): arr = operator.inv(values) elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.neg(values) else: raise TypeError(f"Unary negative expects numeric dtype, not {values.dtype}") return self.__array_wrap__(arr) def __pos__(self): values = self._values if is_bool_dtype(values): arr = values elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.pos(values) else: raise TypeError( "Unary plus expects bool, numeric, timedelta, " f"or object dtype, not {values.dtype}" ) return self.__array_wrap__(arr) def __invert__(self): if not self.size: # inv fails with 0 len return self new_data = self._mgr.apply(operator.invert) result = self._constructor(new_data).__finalize__(self, method="__invert__") return result def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ def bool(self): """ Return the bool of a single element Series or DataFrame. This must be a boolean scalar value, either True or False. It will raise a ValueError if the Series or DataFrame does not have exactly 1 element, or that element is not boolean (integer values 0 and 1 will also raise an exception). Returns ------- bool The value in the Series or DataFrame. See Also -------- Series.astype : Change the data type of a Series, including to boolean. DataFrame.astype : Change the data type of a DataFrame, including to boolean. numpy.bool_ : NumPy boolean data type, used by pandas for boolean values. Examples -------- The method will only work for single element objects with a boolean value: >>> pd.Series([True]).bool() True >>> pd.Series([False]).bool() False >>> pd.DataFrame({'col': [True]}).bool() True >>> pd.DataFrame({'col': [False]}).bool() False """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError( "bool cannot act on a non-boolean single element " f"{type(self).__name__}" ) self.__nonzero__() def __abs__(self: FrameOrSeries) -> FrameOrSeries: return self.abs() def __round__(self: FrameOrSeries, decimals: int = 0) -> FrameOrSeries: return self.round(decimals) # ------------------------------------------------------------------------- # Label or Level Combination Helpers # # A collection of helper methods for DataFrame/Series operations that # accept a combination of column/index labels and levels. All such # operations should utilize/extend these methods when possible so that we # have consistent precedence and validation logic throughout the library. def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool """ axis = self._get_axis_number(axis) return ( key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis) ) def _is_label_reference(self, key, axis=0) -> bool_t: """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) return ( key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes) ) def _is_label_or_level_reference(self, key: str, axis: int = 0) -> bool_t: """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ return self._is_level_reference(key, axis=axis) or self._is_label_reference( key, axis=axis ) def _check_label_or_level_ambiguity(self, key, axis: int = 0) -> None: """ Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns). Raises ------ ValueError: `key` is ambiguous """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) if ( key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes) ): # Build an informative and grammatical warning level_article, level_type = ( ("an", "index") if axis == 0 else ("a", "column") ) label_article, label_type = ( ("a", "column") if axis == 0 else ("an", "index") ) msg = ( f"'{key}' is both {level_article} {level_type} level and " f"{label_article} {label_type} label, which is ambiguous." ) raise ValueError(msg) def _get_label_or_level_values(self, key: str, axis: int = 0) -> np.ndarray: """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance(self._get_axis(other_axes[0]), MultiIndex): multi_message = ( "\n" "For a multi-index, the label must be a " "tuple with elements corresponding to each level." ) else: multi_message = "" label_axis_name = "column" if axis == 0 else "index" raise ValueError( f"The {label_axis_name} label '{key}' is not unique.{multi_message}" ) return values def _drop_labels_or_levels(self, keys, axis: int = 0): """ Drop labels and/or levels for the given `axis`. For each key in `keys`: - (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level. - (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level. Parameters ---------- keys: str or list of str labels or levels to drop axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- dropped: DataFrame Raises ------ ValueError if any `keys` match neither a label nor a level """ axis = self._get_axis_number(axis) # Validate keys keys = com.maybe_make_list(keys) invalid_keys = [ k for k in keys if not self._is_label_or_level_reference(k, axis=axis) ] if invalid_keys: raise ValueError( "The following keys are not valid labels or " f"levels for axis {axis}: {invalid_keys}" ) # Compute levels and labels to drop levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if not self._is_level_reference(k, axis=axis)] # Perform copy upfront and then use inplace operations below. # This ensures that we always perform exactly one copy. # ``copy`` and/or ``inplace`` options could be added in the future. dropped = self.copy() if axis == 0: # Handle dropping index levels if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) # Handle dropping columns labels if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: # Handle dropping column levels if levels_to_drop: if isinstance(dropped.columns, MultiIndex): # Drop the specified levels from the MultiIndex dropped.columns = dropped.columns.droplevel(levels_to_drop) else: # Drop the last level of Index by replacing with # a RangeIndex dropped.columns = RangeIndex(dropped.columns.size) # Handle dropping index labels if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped # ---------------------------------------------------------------------- # Iteration def __hash__(self): raise TypeError( f"{repr(type(self).__name__)} objects are mutable, " f"thus they cannot be hashed" ) def __iter__(self): """ Iterate over info axis. Returns ------- iterator Info axis as iterator. """ return iter(self._info_axis) # can we get a better explanation of this? def keys(self): """ Get the 'info axis' (see Indexing for more). This is index for Series, columns for DataFrame. Returns ------- Index Info axis. """ return self._info_axis def items(self): """ Iterate over (label, values) on info axis This is index for Series and columns for DataFrame. Returns ------- Generator """ for h in self._info_axis: yield h, self[h] @doc(items) def iteritems(self): return self.items() def __len__(self) -> int: """Returns length of info axis""" return len(self._info_axis) def __contains__(self, key) -> bool_t: """True if the key is in the info axis""" return key in self._info_axis @property def empty(self) -> bool_t: """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna : Return series without null values. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS) # ---------------------------------------------------------------------- # Array Interface # This is also set in IndexOpsMixin # GH#23114 Ensure ndarray.__op__(DataFrame) returns NotImplemented __array_priority__ = 1000 def __array__(self, dtype=None) -> np.ndarray: return np.asarray(self._values, dtype=dtype) def __array_wrap__( self, result: np.ndarray, context: Optional[Tuple[Callable, Tuple[Any, ...], int]] = None, ): """ Gets called after a ufunc and other functions. Parameters ---------- result: np.ndarray The result of the ufunc or other function called on the NumPy array returned by __array__ context: tuple of (func, tuple, int) This parameter is returned by ufuncs as a 3-element tuple: (name of the ufunc, arguments of the ufunc, domain of the ufunc), but is not set by other numpy functions.q Notes ----- Series implements __array_ufunc_ so this not called for ufunc on Series. """ result = lib.item_from_zerodim(result) if is_scalar(result): # e.g. we get here with np.ptp(series) # ptp also requires the item_from_zerodim return result d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) return self._constructor(result, **d).__finalize__( self, method="__array_wrap__" ) # ideally we would define this to avoid the getattr checks, but # is slower # @property # def __array_interface__(self): # """ provide numpy array interface method """ # values = self.values # return dict(typestr=values.dtype.str,shape=values.shape,data=values) # ---------------------------------------------------------------------- # Picklability def __getstate__(self) -> Dict[str, Any]: meta = {k: getattr(self, k, None) for k in self._metadata} return dict( _mgr=self._mgr, _typ=self._typ, _metadata=self._metadata, attrs=self.attrs, _flags={k: self.flags[k] for k in self.flags._keys}, **meta, ) def __setstate__(self, state): if isinstance(state, BlockManager): self._mgr = state elif isinstance(state, dict): if "_data" in state and "_mgr" not in state: # compat for older pickles state["_mgr"] = state.pop("_data") typ = state.get("_typ") if typ is not None: attrs = state.get("_attrs", {}) object.__setattr__(self, "_attrs", attrs) flags = state.get("_flags", dict(allows_duplicate_labels=True)) object.__setattr__(self, "_flags", Flags(self, **flags)) # set in the order of internal names # to avoid definitional recursion # e.g. say fill_value needing _mgr to be # defined meta = set(self._internal_names + self._metadata) for k in list(meta): if k in state and k != "_flags": v = state[k] object.__setattr__(self, k, v) for k, v in state.items(): if k not in meta: object.__setattr__(self, k, v) else: raise NotImplementedError("Pre-0.12 pickles are no longer supported") elif len(state) == 2: raise NotImplementedError("Pre-0.12 pickles are no longer supported") self._item_cache = {} # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: # string representation based upon iterating over self # (since, by definition, `PandasContainers` are iterable) prepr = f"[{','.join(map(pprint_thing, self))}]" return f"{type(self).__name__}({prepr})" def _repr_latex_(self): """ Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf). """ if config.get_option("display.latex.repr"): return self.to_latex() else: return None def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option("display.max_rows")) payload = json.loads( data.to_json(orient="table"), object_pairs_hook=collections.OrderedDict ) return payload # ---------------------------------------------------------------------- # I/O Methods @doc(klass="object") def to_excel( self, excel_writer, sheet_name="Sheet1", na_rep="", float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep="inf", verbose=True, freeze_panes=None, ) -> None: """ Write {klass} to an Excel sheet. To write a single {klass} to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. ExcelWriter : Class for writing DataFrame objects into excel sheets. read_excel : Read an Excel file into a pandas DataFrame. read_csv : Read a comma-separated values (csv) file into DataFrame. Notes ----- For compatibility with :meth:`~DataFrame.to_csv`, to_excel serializes lists and dicts to strings before writing. Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. Examples -------- Create, write to and save a workbook: >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') ExcelWriter can also be used to append to an existing Excel file: >>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: # doctest: +SKIP ... df.to_excel(writer, sheet_name='Sheet_name_3') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP """ df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter( df, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep, ) formatter.write( excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine, ) def to_json( self, path_or_buf: Optional[FilePathOrBuffer] = None, orient: Optional[str] = None, date_format: Optional[str] = None, double_precision: int = 10, force_ascii: bool_t = True, date_unit: str = "ms", default_handler: Optional[Callable[[Any], JSONSerializable]] = None, lines: bool_t = False, compression: CompressionOptions = "infer", index: bool_t = True, indent: Optional[int] = None, storage_options: StorageOptions = None, ) -> Optional[str]: """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : str or file handle, optional File path or object. If not specified, the result is returned as a string. orient : str Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {'split','records','index','table'}. * DataFrame: - default is 'columns' - allowed values are: {'split', 'records', 'index', 'columns', 'values', 'table'}. * The format of the JSON string: - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} Describing the data, where data component is like ``orient='records'``. date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : str, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. indent : int, optional Length of whitespace used to indent each record. .. versionadded:: 1.0.0 storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values. .. versionadded:: 1.2.0 Returns ------- None or str If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. See Also -------- read_json : Convert a JSON string to pandas object. Notes ----- The behavior of ``indent=0`` varies from the stdlib, which does not indent the output but does insert newlines. Currently, ``indent=0`` and the default ``indent=None`` are equivalent in pandas, though this may change in a future release. Examples -------- >>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) >>> result = df.to_json(orient="split") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] } Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> result = df.to_json(orient="records") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ] Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> result = df.to_json(orient="index") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } } Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> result = df.to_json(orient="columns") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } } Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> result = df.to_json(orient="values") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP [ [ "a", "b" ], [ "c", "d" ] ] Encoding with Table Schema: >>> result = df.to_json(orient="table") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) # doctest: +SKIP { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "0.20.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] } """ from pandas.io import json if date_format is None and orient == "table": date_format = "iso" elif date_format is None: date_format = "epoch" config.is_nonnegative_int(indent) indent = indent or 0 return json.to_json( path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index, indent=indent, storage_options=storage_options, ) def to_hdf( self, path_or_buf, key: str, mode: str = "a", complevel: Optional[int] = None, complib: Optional[str] = None, append: bool_t = False, format: Optional[str] = None, index: bool_t = True, min_itemsize: Optional[Union[int, Dict[str, int]]] = None, nan_rep=None, dropna: Optional[bool_t] = None, data_columns: Optional[Union[bool_t, List[str]]] = None, errors: str = "strict", encoding: str = "UTF-8", ) -> None: """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. append : bool, default False For Table formats, append the input data to the existing. format : {'fixed', 'table', None}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. - If None, pd.get_option('io.hdf.default_format') is checked, followed by fallback to "fixed" errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. encoding : str, default "UTF-8" min_itemsize : dict or int, optional Map column names to minimum string sizes for columns. nan_rep : Any, optional How to represent null values as str. Not allowed with append=True. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables pytables.to_hdf( path_or_buf, key, self, mode=mode, complevel=complevel, complib=complib, append=append, format=format, index=index, min_itemsize=min_itemsize, nan_rep=nan_rep, dropna=dropna, data_columns=data_columns, errors=errors, encoding=encoding, ) def to_sql( self, name: str, con, schema=None, if_exists: str = "fail", index: bool_t = True, index_label=None, chunksize=None, dtype=None, method=None, ) -> None: """ Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : str Name of SQL table. con : sqlalchemy.engine.(Engine or Connection) or sqlite3.Connection Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See `here \ <https://docs.sqlalchemy.org/en/13/core/connections.html>`_. schema : str, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : bool, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : str or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtype : dict or scalar, optional Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method : {None, 'multi', callable}, optional Controls the SQL insertion clause used: * None : Uses standard SQL ``INSERT`` clause (one per row). * 'multi': Pass multiple values in a single ``INSERT`` clause. * callable with signature ``(pd_table, conn, keys, data_iter)``. Details and a sample callable implementation can be found in the section :ref:`insert method <io.sql.method>`. .. versionadded:: 0.24.0 Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- read_sql : Read a DataFrame from a table. Notes ----- Timezone aware datetime columns will be written as ``Timestamp with timezone`` type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. .. versionadded:: 0.24.0 References ---------- .. [1] https://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] An `sqlalchemy.engine.Connection` can also be passed to to `con`: >>> with engine.begin() as connection: ... df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) ... df1.to_sql('users', con=connection, if_exists='append') This is allowed to support operations that require that the same DBAPI connection is used for the entire operation. >>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']}) >>> df2.to_sql('users', con=engine, if_exists='append') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5'), (0, 'User 6'), (1, 'User 7')] Overwrite the table with just ``df2``. >>> df2.to_sql('users', con=engine, if_exists='replace', ... index_label='id') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 6'), (1, 'User 7')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)] """ from pandas.io import sql sql.to_sql( self, name, con, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype, method=method, ) def to_pickle( self, path, compression: CompressionOptions = "infer", protocol: int = pickle.HIGHEST_PROTOCOL, storage_options: StorageOptions = None, ) -> None: """ Pickle (serialize) object to file. Parameters ---------- path : str File path where the pickled object will be stored. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, \ default 'infer' A string representing the compression to use in the output file. By default, infers from the file extension in specified path. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. .. [1] https://docs.python.org/3/library/pickle.html. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values. .. versionadded:: 1.2.0 See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> import os >>> os.remove("./dummy.pkl") """ from pandas.io.pickle import to_pickle to_pickle( self, path, compression=compression, protocol=protocol, storage_options=storage_options, ) def to_clipboard( self, excel: bool_t = True, sep: Optional[str] = None, **kwargs ) -> None: r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True Produce output in a csv format for easy pasting into excel. - True, use the provided separator for csv pasting. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) # doctest: +SKIP ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs) def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <https://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', ... 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df_multiindex = df_multiindex.set_index(['date', 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15 """ xarray = import_optional_dependency("xarray") if self.ndim == 1: return xarray.DataArray.from_series(self) else: return xarray.Dataset.from_dataframe(self) @doc(returns=fmt.return_docstring) def to_latex( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal=".", multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, position=None, ): r""" Render object to a LaTeX tabular, longtable, or nested table/tabular. Requires ``\usepackage{{booktabs}}``. The output can be copy/pasted into a main LaTeX document or read from an external file with ``\input{{table.tex}}``. .. versionchanged:: 1.0.0 Added caption and label arguments. Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {{str: function}}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function or str, optional, default None Formatter for floating point numbers. For example ``float_format="%.2f"`` and ``float_format="{{:0.2f}}".format`` will both result in 0.1234 being formatted as 0.12. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{{longtable}} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{{multirow}} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. caption : str, optional The LaTeX caption to be placed inside ``\caption{{}}`` in the output. .. versionadded:: 1.0.0 label : str, optional The LaTeX label to be placed inside ``\label{{}}`` in the output. This is used with ``\ref{{}}`` in the main ``.tex`` file. .. versionadded:: 1.0.0 position : str, optional The LaTeX positional argument for tables, to be placed after ``\begin{{}}`` in the output. {returns} See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame(dict(name=['Raphael', 'Donatello'], ... mask=['red', 'purple'], ... weapon=['sai', 'bo staff'])) >>> print(df.to_latex(index=False)) # doctest: +NORMALIZE_WHITESPACE \begin{{tabular}}{{lll}} \toprule name & mask & weapon \\ \midrule Raphael & red & sai \\ Donatello & purple & bo staff \\ \bottomrule \end{{tabular}} """ # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option("display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal, ) return formatter.to_latex( buf=buf, column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow, caption=caption, label=label, position=position, ) def to_csv( self, path_or_buf: Optional[FilePathOrBuffer] = None, sep: str = ",", na_rep: str = "", float_format: Optional[str] = None, columns: Optional[Sequence[Label]] = None, header: Union[bool_t, List[str]] = True, index: bool_t = True, index_label: Optional[IndexLabel] = None, mode: str = "w", encoding: Optional[str] = None, compression: CompressionOptions = "infer", quoting: Optional[int] = None, quotechar: str = '"', line_terminator: Optional[str] = None, chunksize: Optional[int] = None, date_format: Optional[str] = None, doublequote: bool_t = True, escapechar: Optional[str] = None, decimal: Optional[str] = ".", errors: str = "strict", storage_options: StorageOptions = None, ) -> Optional[str]: r""" Write object to a comma-separated values (csv) file. .. versionchanged:: 0.24.0 The order of arguments for Series was changed. Parameters ---------- path_or_buf : str or file handle, default None File path or object, if None is provided the result is returned as a string. If a non-binary file object is passed, it should be opened with `newline=''`, disabling universal newlines. If a binary file object is passed, `mode` needs to contain a `'b'`. .. versionchanged:: 0.24.0 Was previously named "path" for Series. .. versionchanged:: 1.2.0 Support for binary file objects was introduced. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. float_format : str, default None Format string for floating point numbers. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. .. versionchanged:: 0.24.0 Previously defaulted to False for Series. index : bool, default True Write row names (index). index_label : str or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R. mode : str Python write mode, default 'w'. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. `encoding` is not supported if `path_or_buf` is a non-binary file object. compression : str or dict, default 'infer' If str, represents compression mode. If dict, value at 'method' is the compression mode. Compression mode may be any of the following possible values: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and `path_or_buf` is path-like, then detect compression mode from the following extensions: '.gz', '.bz2', '.zip' or '.xz'. (otherwise no compression). If dict given and mode is one of {'zip', 'gzip', 'bz2'}, or inferred as one of the above, other entries passed as additional compression options. .. versionchanged:: 1.0.0 May now be a dict with key 'method' as compression mode and other entries as additional compression options if compression mode is 'zip'. .. versionchanged:: 1.1.0 Passing compression options as keys in dict is supported for compression modes 'gzip' and 'bz2' as well as 'zip'. .. versionchanged:: 1.2.0 Compression is supported for binary file objects. .. versionchanged:: 1.2.0 Previous versions forwarded dict entries for 'gzip' to `gzip.open` instead of `gzip.GzipFile` which prevented setting `mtime`. quoting : optional constant from csv module Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric. quotechar : str, default '\"' String of length 1. Character used to quote fields. line_terminator : str, optional The newline character or character sequence to use in the output file. Defaults to `os.linesep`, which depends on the OS in which this method is called ('\n' for linux, '\r\n' for Windows, i.e.). .. versionchanged:: 0.24.0 chunksize : int or None Rows to write at a time. date_format : str, default None Format string for datetime objects. doublequote : bool, default True Control quoting of `quotechar` inside a field. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. decimal : str, default '.' Character recognized as decimal separator. E.g. use ',' for European data. errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. .. versionadded:: 1.1.0 storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values. .. versionadded:: 1.2.0 Returns ------- None or str If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. See Also -------- read_csv : Load a CSV file into a DataFrame. to_excel : Write DataFrame to an Excel file. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' Create 'out.zip' containing 'out.csv' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') # doctest: +SKIP >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) # doctest: +SKIP """ df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.csvs import CSVFormatter formatter = CSVFormatter( df, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, errors=errors, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal, storage_options=storage_options, ) formatter.save() if path_or_buf is None: assert isinstance(formatter.path_or_buf, StringIO) return formatter.path_or_buf.getvalue() return None # ---------------------------------------------------------------------- # Lookup Caching def _set_as_cached(self, item, cacher) -> None: """ Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher)) def _reset_cacher(self) -> None: """ Reset the cacher. """ if hasattr(self, "_cacher"): del self._cacher def _maybe_cache_changed(self, item, value) -> None: """ The object has called back to us saying maybe it has changed. """ loc = self._info_axis.get_loc(item) self._mgr.iset(loc, value) @property def _is_cached(self) -> bool_t: """Return boolean indicating if self is cached or not.""" return getattr(self, "_cacher", None) is not None def _get_cacher(self): """return my cacher or None""" cacher = getattr(self, "_cacher", None) if cacher is not None: cacher = cacher[1]() return cacher def _maybe_update_cacher( self, clear: bool_t = False, verify_is_copy: bool_t = True ) -> None: """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : bool, default False Clear the item cache. verify_is_copy : bool, default True Provide is_copy checks. """ cacher = getattr(self, "_cacher", None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referent, hence # a copy if ref is None: del self._cacher else: if len(self) == len(ref): # otherwise, either self or ref has swapped in new arrays ref._maybe_cache_changed(cacher[0], self) else: # GH#33675 we have swapped in a new array, so parent # reference to self is now invalid ref._item_cache.pop(cacher[0], None) if verify_is_copy: self._check_setitem_copy(stacklevel=5, t="referent") if clear: self._clear_item_cache() def _clear_item_cache(self) -> None: self._item_cache.clear() # ---------------------------------------------------------------------- # Indexing Methods def take( self: FrameOrSeries, indices, axis=0, is_copy: Optional[bool_t] = None, **kwargs ) -> FrameOrSeries: """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : {0 or 'index', 1 or 'columns', None}, default 0 The axis on which to select elements. ``0`` means that we are selecting rows, ``1`` means that we are selecting columns. is_copy : bool Before pandas 1.0, ``is_copy=False`` can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0, ``take`` always returns a copy, and the keyword is therefore deprecated. .. deprecated:: 1.0.0 **kwargs For compatibility with :meth:`numpy.take`. Has no effect on the output. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That's because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5 """ if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) self._consolidate_inplace() new_data = self._mgr.take( indices, axis=self._get_block_manager_axis(axis), verify=True ) return self._constructor(new_data).__finalize__(self, method="take") def _take_with_is_copy(self: FrameOrSeries, indices, axis=0) -> FrameOrSeries: """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). See the docstring of `take` for full explanation of the parameters. """ result = self.take(indices=indices, axis=axis) # Maybe set copy if we didn't actually change the index. if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def xs(self, key, axis=0, level=None, drop_level: bool_t = True): """ Return cross-section from the Series/DataFrame. This method takes a `key` argument to select data at a particular level of a MultiIndex. Parameters ---------- key : label or tuple of label Label contained in the index, or partially in a MultiIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to retrieve cross-section on. level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. drop_level : bool, default True If False, returns object with same levels as self. Returns ------- Series or DataFrame Cross-section from the original Series or DataFrame corresponding to the selected index levels. See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc : Purely integer-location based indexing for selection by position. Notes ----- `xs` can not be used to set values. MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of `xs` functionality, see :ref:`MultiIndex Slicers <advanced.mi_slicers>`. Examples -------- >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) num_legs num_wings locomotion walks 4 0 Get values at specified index and level >>> df.xs('cat', level=1) num_legs num_wings class locomotion mammal walks 4 0 Get values at several indexes and levels >>> df.xs(('bird', 'walks'), ... level=[0, 'locomotion']) num_legs num_wings animal penguin 2 2 Get values at specified column and axis >>> df.xs('num_wings', axis=1) class animal locomotion mammal cat walks 0 dog walks 0 bat flies 2 bird penguin walks 2 Name: num_wings, dtype: int64 """ axis = self._get_axis_number(axis) labels = self._get_axis(axis) if level is not None: if not isinstance(labels, MultiIndex): raise TypeError("Index must be a MultiIndex") loc, new_ax = labels.get_loc_level(key, level=level, drop_level=drop_level) # create the tuple of the indexer _indexer = [slice(None)] * self.ndim _indexer[axis] = loc indexer = tuple(_indexer) result = self.iloc[indexer] setattr(result, result._get_axis_name(axis), new_ax) return result if axis == 1: return self[key] index = self.index if isinstance(index, MultiIndex): try: loc, new_index = self.index.get_loc_level(key, drop_level=drop_level) except TypeError as e: raise TypeError(f"Expected label or tuple of labels, got {key}") from e else: loc = self.index.get_loc(key) if isinstance(loc, np.ndarray): if loc.dtype == np.bool_: (inds,) = loc.nonzero() return self._take_with_is_copy(inds, axis=axis) else: return self._take_with_is_copy(loc, axis=axis) if not is_scalar(loc): new_index = self.index[loc] if is_scalar(loc): # In this case loc should be an integer if self.ndim == 1: # if we encounter an array-like and we only have 1 dim # that means that their are list/ndarrays inside the Series! # so just return them (GH 6394) return self._values[loc] new_values = self._mgr.fast_xs(loc) result = self._constructor_sliced( new_values, index=self.columns, name=self.index[loc], dtype=new_values.dtype, ) else: result = self.iloc[loc] result.index = new_index # this could be a view # but only in a single-dtyped view sliceable case result._set_is_copy(self, copy=not result._is_view) return result def __getitem__(self, item): raise AbstractMethodError(self) def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: # All places that call _get_item_cache have unique columns, # pending resolution of GH#33047 loc = self.columns.get_loc(item) values = self._mgr.iget(loc) res = self._box_col_values(values, loc) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res def _slice(self: FrameOrSeries, slobj: slice, axis=0) -> FrameOrSeries: """ Construct a slice of this container. Slicing with this method is *always* positional. """ assert isinstance(slobj, slice), type(slobj) axis = self._get_block_manager_axis(axis) result = self._constructor(self._mgr.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view sliceable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result def _iset_item(self, loc: int, value) -> None: self._mgr.iset(loc, value) self._clear_item_cache() def _set_item(self, key, value) -> None: try: loc = self._info_axis.get_loc(key) except KeyError: # This item wasn't present, just insert at end self._mgr.insert(len(self._info_axis), key, value) return NDFrame._iset_item(self, loc, value) def _set_is_copy(self, ref, copy: bool_t = True) -> None: if not copy: self._is_copy = None else: assert ref is not None self._is_copy = weakref.ref(ref) def _check_is_chained_assignment_possible(self) -> bool_t: """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t="referent", force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t="referent") return False def _check_setitem_copy(self, stacklevel=4, t="setting", force=False): """ Parameters ---------- stacklevel : int, default 4 the level to show of the stack when the error is output t : str, the type of setting error force : bool, default False If True, then force showing an error. validate if we are doing a setitem on a chained copy. If you call this function, be sure to set the stacklevel such that the user will see the error *at the level of setting* It is technically possible to figure out that we are setting on a copy even WITH a multi-dtyped pandas object. In other words, some blocks may be views while other are not. Currently _is_view will ALWAYS return False for multi-blocks to avoid having to handle this case. df = DataFrame(np.arange(0,9), columns=['count']) df['group'] = 'b' # This technically need not raise SettingWithCopy if both are view # (which is not # generally guaranteed but is usually True. However, # this is in general not a good practice and we recommend using .loc. df.iloc[0:5]['group'] = 'a' """ # return early if the check is not needed if not (force or self._is_copy): return value = config.get_option("mode.chained_assignment") if value is None: return # see if the copy is not actually referred; if so, then dissolve # the copy weakref if self._is_copy is not None and not isinstance(self._is_copy, str): r = self._is_copy() if not gc.get_referents(r) or r.shape == self.shape: self._is_copy = None return # a custom message if isinstance(self._is_copy, str): t = self._is_copy elif t == "referent": t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame\n\n" "See the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) else: t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame.\n" "Try using .loc[row_indexer,col_indexer] = value " "instead\n\nSee the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) if value == "raise": raise com.SettingWithCopyError(t) elif value == "warn": warnings.warn(t, com.SettingWithCopyWarning, stacklevel=stacklevel) def __delitem__(self, key) -> None: """ Delete item """ deleted = False maybe_shortcut = False if self.ndim == 2 and isinstance(self.columns, MultiIndex): try: maybe_shortcut = key not in self.columns._engine except TypeError: pass if maybe_shortcut: # Allow shorthand to delete all columns whose first len(key) # elements match key: if not isinstance(key, tuple): key = (key,) for col in self.columns: if isinstance(col, tuple) and col[: len(key)] == key: del self[col] deleted = True if not deleted: # If the above loop ran and didn't delete anything because # there was no match, this call should raise the appropriate # exception: loc = self.axes[-1].get_loc(key) self._mgr.idelete(loc) # delete from the caches try: del self._item_cache[key] except KeyError: pass # ---------------------------------------------------------------------- # Unsorted def _check_inplace_and_allows_duplicate_labels(self, inplace): if inplace and not self.flags.allows_duplicate_labels: raise ValueError( "Cannot specify 'inplace=True' when " "'self.flags.allows_duplicate_labels' is False." ) def get(self, key, default=None): """ Get item from object for given key (ex: DataFrame column). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object """ try: return self[key] except (KeyError, ValueError, IndexError): return default @property def _is_view(self) -> bool_t: """Return boolean indicating if self is view of another array """ return self._mgr.is_view def reindex_like( self: FrameOrSeries, other, method: Optional[str] = None, copy: bool_t = True, limit=None, tolerance=None, ) -> FrameOrSeries: """ Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium """ d = other._construct_axes_dict( axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance, ) return self.reindex(**d) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace: bool_t = False, errors: str = "raise", ): inplace = validate_bool_kwarg(inplace, "inplace") if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") axis_name = self._get_axis_name(axis) axes = {axis_name: labels} elif index is not None or columns is not None: axes, _ = self._construct_axes_from_arguments((index, columns), {}) else: raise ValueError( "Need to specify at least one of 'labels', 'index' or 'columns'" ) obj = self for axis, labels in axes.items(): if labels is not None: obj = obj._drop_axis(labels, axis, level=level, errors=errors) if inplace: self._update_inplace(obj) else: return obj def _drop_axis( self: FrameOrSeries, labels, axis, level=None, errors: str = "raise" ) -> FrameOrSeries: """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) result = self.reindex(**{axis_name: new_axis}) # Case for non-unique axis else: labels = ensure_object(com.index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") indexer = ~axis.get_level_values(level).isin(labels) # GH 18561 MultiIndex.drop should raise if label is absent if errors == "raise" and indexer.all(): raise KeyError(f"{labels} not found in axis") else: indexer = ~axis.isin(labels) # Check if label doesn't exist along axis labels_missing = (axis.get_indexer_for(labels) == -1).any() if errors == "raise" and labels_missing: raise KeyError(f"{labels} not found in axis") slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result def _update_inplace(self, result, verify_is_copy: bool_t = True) -> None: """ Replace self internals with result. Parameters ---------- result : same type as self verify_is_copy : bool, default True Provide is_copy checks. """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._mgr = result._mgr self._maybe_update_cacher(verify_is_copy=verify_is_copy) def add_prefix(self: FrameOrSeries, prefix: str) -> FrameOrSeries: """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{prefix}{}".format, prefix=prefix) mapper = {self._info_axis_name: f} # error: Incompatible return value type (got "Optional[FrameOrSeries]", # expected "FrameOrSeries") # error: Argument 1 to "rename" of "NDFrame" has incompatible type # "**Dict[str, partial[str]]"; expected "Union[str, int, None]" return self.rename(**mapper) # type: ignore[return-value, arg-type] def add_suffix(self: FrameOrSeries, suffix: str) -> FrameOrSeries: """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{}{suffix}".format, suffix=suffix) mapper = {self._info_axis_name: f} # error: Incompatible return value type (got "Optional[FrameOrSeries]", # expected "FrameOrSeries") # error: Argument 1 to "rename" of "NDFrame" has incompatible type # "**Dict[str, partial[str]]"; expected "Union[str, int, None]" return self.rename(**mapper) # type: ignore[return-value, arg-type] def sort_values( self, axis=0, ascending=True, inplace: bool_t = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool_t = False, key: ValueKeyFunc = None, ): """ Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 key : callable, optional Apply the key function to the values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect a ``Series`` and return a Series with the same shape as the input. It will be applied to each column in `by` independently. .. versionadded:: 1.1.0 Returns ------- DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. See Also -------- DataFrame.sort_index : Sort a DataFrame by the index. Series.sort_values : Similar method for a Series. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... 'col4': ['a', 'B', 'c', 'D', 'e', 'F'] ... }) >>> df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 NaN 8 4 D Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 col4 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B Sorting with a key function >>> df.sort_values(by='col4', key=lambda col: col.str.lower()) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F Natural sort with the key argument, using the `natsort <https://github.com/SethMMorton/natsort>` package. >>> df = pd.DataFrame({ ... "time": ['0hr', '128hr', '72hr', '48hr', '96hr'], ... "value": [10, 20, 30, 40, 50] ... }) >>> df time value 0 0hr 10 1 128hr 20 2 72hr 30 3 48hr 40 4 96hr 50 >>> from natsort import index_natsorted >>> df.sort_values( ... by="time", ... key=lambda x: np.argsort(index_natsorted(df["time"])) ... ) time value 0 0hr 10 3 48hr 40 2 72hr 30 4 96hr 50 1 128hr 20 """ raise AbstractMethodError(self) def sort_index( self, axis=0, level=None, ascending: bool_t = True, inplace: bool_t = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool_t = True, ignore_index: bool_t = False, key: IndexKeyFunc = None, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) target = self._get_axis(axis) indexer = get_indexer_indexer( target, level, ascending, kind, na_position, sort_remaining, key ) if indexer is None: if inplace: return else: return self.copy() baxis = self._get_block_manager_axis(axis) new_data = self._mgr.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: axis = 1 if isinstance(self, ABCDataFrame) else 0 new_data.axes[axis] = ibase.default_index(len(indexer)) result = self._constructor(new_data) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="sort_index") @doc( klass=_shared_doc_kwargs["klass"], axes=_shared_doc_kwargs["axes"], optional_labels="", optional_axis="", ) def reindex(self: FrameOrSeries, *args, **kwargs) -> FrameOrSeries: """ Conform {klass} to new index with optional filling logic. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- {optional_labels} {axes} : array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data. {optional_axis} method : {{None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: Propagate last valid observation forward to next valid. * backfill / bfill: Use next valid observation to fill gap. * nearest: Use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. limit : int, default None Maximum number of consecutive elements to forward or backward fill. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. Returns ------- {klass} with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={{'index', 'columns'}}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({{'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02 We can fill in the missing values by passing a value to the keyword ``fill_value``. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword ``method`` to fill the ``NaN`` values. >>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02 >>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({{"prices": [100, 101, np.nan, 100, 89, 88]}}, ... index=date_index) >>> df2 prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN The index entries that did not have a value in the original data frame (for example, '2009-12-29') are by default filled with ``NaN``. If desired, we can fill in the missing values using one of several options. For example, to back-propagate the last valid value to fill the ``NaN`` values, pass ``bfill`` as an argument to the ``method`` keyword. >>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100.0 2009-12-30 100.0 2009-12-31 100.0 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN Please note that the ``NaN`` value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the ``NaN`` values present in the original dataframe, use the ``fillna()`` method. See the :ref:`user guide <basics.reindexing>` for more. """ # TODO: Decide if we care about having different examples for different # kinds # construct the args axes, kwargs = self._construct_axes_from_arguments(args, kwargs) method = missing.clean_reindex_fill_method(kwargs.pop("method", None)) level = kwargs.pop("level", None) copy = kwargs.pop("copy", True) limit = kwargs.pop("limit", None) tolerance = kwargs.pop("tolerance", None) fill_value = kwargs.pop("fill_value", None) # Series.reindex doesn't use / need the axis kwarg # We pop and ignore it here, to make writing Series/Frame generic code # easier kwargs.pop("axis", None) if kwargs: raise TypeError( "reindex() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) self._consolidate_inplace() # if all axes that are requested to reindex are equal, then only copy # if indicated must have index names equal here as well as values if all( self._get_axis(axis).identical(ax) for axis, ax in axes.items() if ax is not None ): if copy: return self.copy() return self # check if we are a multi reindex if self._needs_reindex_multi(axes, method, level): return self._reindex_multi(axes, copy, fill_value) # perform the reindex on the axes return self._reindex_axes( axes, level, limit, tolerance, method, fill_value, copy ).__finalize__(self, method="reindex") def _reindex_axes( self: FrameOrSeries, axes, level, limit, tolerance, method, fill_value, copy ) -> FrameOrSeries: """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex( labels, level=level, limit=limit, tolerance=tolerance, method=method ) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers( {axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False, ) return obj def _needs_reindex_multi(self, axes, method, level) -> bool_t: """Check if we do need a multi reindex.""" return ( (com.count_not_none(*axes.values()) == self._AXIS_LEN) and method is None and level is None and not self._is_mixed_type ) def _reindex_multi(self, axes, copy, fill_value): raise AbstractMethodError(self) def _reindex_with_indexers( self: FrameOrSeries, reindexers, fill_value=None, copy: bool_t = False, allow_dups: bool_t = False, ) -> FrameOrSeries: """allow_dups indicates an internal call here """ # reindex doing multiple operations on different axes if indicated new_data = self._mgr for axis in sorted(reindexers.keys()): index, indexer = reindexers[axis] baxis = self._get_block_manager_axis(axis) if index is None: continue index = ensure_index(index) if indexer is not None: indexer = ensure_int64(indexer) # TODO: speed up on homogeneous DataFrame objects new_data = new_data.reindex_indexer( index, indexer, axis=baxis, fill_value=fill_value, allow_dups=allow_dups, copy=copy, ) # If we've made a copy once, no need to make another one copy = False if copy and new_data is self._mgr: new_data = new_data.copy() return self._constructor(new_data).__finalize__(self) def filter( self: FrameOrSeries, items=None, like: Optional[str] = None, regex: Optional[str] = None, axis=None, ) -> FrameOrSeries: """ Subset the dataframe rows or columns according to the specified index labels. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : str Keep labels from axis for which "like in label == True". regex : str (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> df one two three mouse 1 2 3 rabbit 4 5 6 >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 """ nkw = com.count_not_none(items, like, regex) if nkw > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive" ) if axis is None: axis = self._info_axis_name labels = self._get_axis(axis) if items is not None: name = self._get_axis_name(axis) return self.reindex(**{name: [r for r in items if r in labels]}) elif like: def f(x) -> bool: assert like is not None # needed for mypy return like in ensure_str(x) values = labels.map(f) return self.loc(axis=axis)[values] elif regex: def f(x) -> bool: return matcher.search(ensure_str(x)) is not None matcher = re.compile(regex) values = labels.map(f) return self.loc(axis=axis)[values] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def head(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of `n`, this function returns all rows except the last `n` rows, equivalent to ``df[:-n]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- same type as caller The first `n` rows of the caller object. See Also -------- DataFrame.tail: Returns the last `n` rows. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon For negative values of `n` >>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot """ return self.iloc[:n] def tail(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the last `n` rows. This function returns last `n` rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows. For negative values of `n`, this function returns all rows except the first `n` rows, equivalent to ``df[n:]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- type of caller The last `n` rows of the caller object. See Also -------- DataFrame.head : The first `n` rows of the caller object. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last 5 lines >>> df.tail() animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last `n` lines (three in this case) >>> df.tail(3) animal 6 shark 7 whale 8 zebra For negative values of `n` >>> df.tail(-3) animal 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra """ if n == 0: return self.iloc[0:0] return self.iloc[-n:] def sample( self: FrameOrSeries, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ) -> FrameOrSeries: """ Return a random sample of items from an axis of object. You can use `random_state` for reproducibility. Parameters ---------- n : int, optional Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None. frac : float, optional Fraction of axis items to return. Cannot be used with `n`. replace : bool, default False Allow or disallow sampling of the same row more than once. weights : str or ndarray-like, optional Default 'None' results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed. random_state : int, array-like, BitGenerator, np.random.RandomState, optional If int, array-like, or BitGenerator (NumPy>=1.17), seed for random number generator If np.random.RandomState, use as numpy RandomState object. .. versionchanged:: 1.1.0 array-like and BitGenerator (for NumPy>=1.17) object now passed to np.random.RandomState() as seed axis : {0 or ‘index’, 1 or ‘columns’, None}, default None Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames). Returns ------- Series or DataFrame A new object of same type as caller containing `n` items randomly sampled from the caller object. See Also -------- DataFrameGroupBy.sample: Generates random samples from each group of a DataFrame object. SeriesGroupBy.sample: Generates random samples from each group of a Series object. numpy.random.choice: Generates a random sample from a given 1-D numpy array. Notes ----- If `frac` > 1, `replacement` should be set to `True`. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 An upsample sample of the ``DataFrame`` with replacement: Note that `replace` parameter has to be `True` for `frac` parameter > 1. >>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) axis_length = self.shape[axis] # Process random_state argument rs = com.random_state(random_state) # Check weights for compliance if weights is not None: # If a series, align with frame if isinstance(weights, ABCSeries): weights = weights.reindex(self.axes[axis]) # Strings acceptable if a dataframe and axis = 0 if isinstance(weights, str): if isinstance(self, ABCDataFrame): if axis == 0: try: weights = self[weights] except KeyError as err: raise KeyError( "String passed to weights not a valid column" ) from err else: raise ValueError( "Strings can only be passed to " "weights when sampling from rows on " "a DataFrame" ) else: raise ValueError( "Strings cannot be passed as weights " "when sampling from a Series." ) weights = pd.Series(weights, dtype="float64") if len(weights) != axis_length: raise ValueError( "Weights and axis to be sampled must be of same length" ) if (weights == np.inf).any() or (weights == -np.inf).any(): raise ValueError("weight vector may not include `inf` values") if (weights < 0).any(): raise ValueError("weight vector many not include negative values") # If has nan, set to zero. weights = weights.fillna(0) # Renormalize if don't sum to 1 if weights.sum() != 1: if weights.sum() != 0: weights = weights / weights.sum() else: raise ValueError("Invalid weights: weights sum to zero") weights = weights._values # If no frac or n, default to n=1. if n is None and frac is None: n = 1 elif frac is not None and frac > 1 and not replace: raise ValueError( "Replace has to be set to `True` when " "upsampling the population `frac` > 1." ) elif n is not None and frac is None and n % 1 != 0: raise ValueError("Only integers accepted as `n` values") elif n is None and frac is not None: n = int(round(frac * axis_length)) elif n is not None and frac is not None: raise ValueError("Please enter a value for `frac` OR `n`, not both") # Check for negative sizes if n < 0: raise ValueError( "A negative number of rows requested. Please provide positive value." ) locs = rs.choice(axis_length, size=n, replace=replace, p=weights) return self.take(locs, axis=axis) @doc(klass=_shared_doc_kwargs["klass"]) def pipe(self, func, *args, **kwargs): r""" Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function Function to apply to the {klass}. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the {klass}. args : iterable, optional Positional arguments passed into ``func``. kwargs : mapping, optional A dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> func(g(h(df), arg1=a), arg2=b, arg3=c) # doctest: +SKIP You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(func, arg2=b, arg3=c) ... ) # doctest: +SKIP If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((func, 'arg2'), arg1=a, arg3=c) ... ) # doctest: +SKIP """ return com.pipe(self, func, *args, **kwargs) # ---------------------------------------------------------------------- # Attribute access def __finalize__( self: FrameOrSeries, other, method: Optional[str] = None, **kwargs ) -> FrameOrSeries: """ Propagate metadata from other to self. Parameters ---------- other : the object from which to get the attributes that we are going to propagate method : str, optional A passed method name providing context on where ``__finalize__`` was called. .. warning: The value passed as `method` are not currently considered stable across pandas releases. """ if isinstance(other, NDFrame): for name in other.attrs: self.attrs[name] = other.attrs[name] self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels # For subclasses using _metadata. for name in self._metadata: assert isinstance(name, str) object.__setattr__(self, name, getattr(other, name, None)) if method == "concat": allows_duplicate_labels = all( x.flags.allows_duplicate_labels for x in other.objs ) self.flags.allows_duplicate_labels = allows_duplicate_labels return self def __getattr__(self, name: str): """ After regular attribute access, try looking up the name This allows simpler access to columns for interactive use. """ # Note: obj.x will always call obj.__getattribute__('x') prior to # calling obj.__getattr__('x'). if ( name in self._internal_names_set or name in self._metadata or name in self._accessors ): return object.__getattribute__(self, name) else: if self._info_axis._can_hold_identifiers_and_holds_name(name): return self[name] return object.__getattribute__(self, name) def __setattr__(self, name: str, value) -> None: """ After regular attribute access, try setting the name This allows simpler access to columns for interactive use. """ # first try regular attribute access via __getattribute__, so that # e.g. ``obj.x`` and ``obj.x = 4`` will always reference/modify # the same attribute. try: object.__getattribute__(self, name) return object.__setattr__(self, name, value) except AttributeError: pass # if this fails, go on to more involved attribute setting # (note that this matches __getattr__, above). if name in self._internal_names_set: object.__setattr__(self, name, value) elif name in self._metadata: object.__setattr__(self, name, value) else: try: existing = getattr(self, name) if isinstance(existing, Index): object.__setattr__(self, name, value) elif name in self._info_axis: self[name] = value else: object.__setattr__(self, name, value) except (AttributeError, TypeError): if isinstance(self, ABCDataFrame) and (is_list_like(value)): warnings.warn( "Pandas doesn't allow columns to be " "created via a new attribute name - see " "https://pandas.pydata.org/pandas-docs/" "stable/indexing.html#attribute-access", stacklevel=2, ) object.__setattr__(self, name, value) def _dir_additions(self): """ add the string-like attributes from the info_axis. If info_axis is a MultiIndex, it's first level values are used. """ additions = { c for c in self._info_axis.unique(level=0)[:100] if isinstance(c, str) and c.isidentifier() } return super()._dir_additions().union(additions) # ---------------------------------------------------------------------- # Consolidation of internals def _protect_consolidate(self, f): """ Consolidate _mgr -- if the blocks have changed, then clear the cache """ blocks_before = len(self._mgr.blocks) result = f() if len(self._mgr.blocks) != blocks_before: self._clear_item_cache() return result def _consolidate_inplace(self) -> None: """Consolidate data in place and return None""" def f(): self._mgr = self._mgr.consolidate() self._protect_consolidate(f) def _consolidate(self, inplace: bool_t = False): """ Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Parameters ---------- inplace : bool, default False If False return new object, otherwise modify existing object. Returns ------- consolidated : same type as caller """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: self._consolidate_inplace() else: f = lambda: self._mgr.consolidate() cons_data = self._protect_consolidate(f) return self._constructor(cons_data).__finalize__(self) @property def _is_mixed_type(self) -> bool_t: f = lambda: self._mgr.is_mixed_type return self._protect_consolidate(f) def _check_inplace_setting(self, value) -> bool_t: """ check whether we allow in-place setting with this type of value """ if self._is_mixed_type: if not self._mgr.is_numeric_mixed_type: # allow an actual np.nan thru if is_float(value) and np.isnan(value): return True raise TypeError( "Cannot do inplace boolean setting on " "mixed-types with a non np.nan value" ) return True def _get_numeric_data(self): return self._constructor(self._mgr.get_numeric_data()).__finalize__(self) def _get_bool_data(self): return self._constructor(self._mgr.get_bool_data()).__finalize__(self) # ---------------------------------------------------------------------- # Internal Interface Methods @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame. .. warning:: We recommend using :meth:`DataFrame.to_numpy` instead. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. See Also -------- DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names. Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]]) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) """ self._consolidate_inplace() return self._mgr.as_array(transpose=self._AXIS_REVERSED) @property def _values(self) -> np.ndarray: """internal implementation""" return self.values @property def dtypes(self): """ Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the ``object`` dtype. See :ref:`the User Guide <basics.dtypes>` for more. Returns ------- pandas.Series The data type of each column. Examples -------- >>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object """ data = self._mgr.get_dtypes() return self._constructor_sliced(data, index=self._info_axis, dtype=np.object_) def _to_dict_of_blocks(self, copy: bool_t = True): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY """ return { k: self._constructor(v).__finalize__(self) for k, v, in self._mgr.to_dict(copy=copy).items() } def astype( self: FrameOrSeries, dtype, copy: bool_t = True, errors: str = "raise" ) -> FrameOrSeries: """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. copy : bool, default True Return a copy when ``copy=True`` (be very careful setting ``copy=False`` as changes to values then may propagate to other pandas objects). errors : {'raise', 'ignore'}, default 'raise' Control raising of exceptions on invalid data for provided dtype. - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. numpy.ndarray.astype : Cast a numpy array to a specified type. Examples -------- Create a DataFrame: >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df.dtypes col1 int64 col2 int64 dtype: object Cast all columns to int32: >>> df.astype('int32').dtypes col1 int32 col2 int32 dtype: object Cast col1 to int32 using a dictionary: >>> df.astype({'col1': 'int32'}).dtypes col1 int32 col2 int64 dtype: object Create a series: >>> ser = pd.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 Convert to categorical type: >>> ser.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2] Convert to ordered categorical type with custom ordering: >>> cat_dtype = pd.api.types.CategoricalDtype( ... categories=[2, 1], ordered=True) >>> ser.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1] Note that using ``copy=False`` and changing data on a new pandas object may propagate changes: >>> s1 = pd.Series([1, 2]) >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 # note that s1[0] has changed too 0 10 1 2 dtype: int64 Create a series of dates: >>> ser_date = pd.Series(pd.date_range('20200101', periods=3)) >>> ser_date 0 2020-01-01 1 2020-01-02 2 2020-01-03 dtype: datetime64[ns] Datetimes are localized to UTC first before converting to the specified timezone: >>> ser_date.astype('datetime64[ns, US/Eastern]') 0 2019-12-31 19:00:00-05:00 1 2020-01-01 19:00:00-05:00 2 2020-01-02 19:00:00-05:00 dtype: datetime64[ns, US/Eastern] """ if is_dict_like(dtype): if self.ndim == 1: # i.e. Series if len(dtype) > 1 or self.name not in dtype: raise KeyError( "Only the Series name can be used for " "the key in Series dtype mappings." ) new_type = dtype[self.name] return self.astype(new_type, copy, errors) for col_name in dtype.keys(): if col_name not in self: raise KeyError( "Only a column name can be used for the " "key in a dtype mappings argument." ) results = [] for col_name, col in self.items(): if col_name in dtype: results.append( col.astype(dtype=dtype[col_name], copy=copy, errors=errors) ) else: results.append(col.copy() if copy else col) elif is_extension_array_dtype(dtype) and self.ndim > 1: # GH 18099/22869: columnwise conversion to extension dtype # GH 24704: use iloc to handle duplicate column names results = [ self.iloc[:, i].astype(dtype, copy=copy) for i in range(len(self.columns)) ] else: # else, only a single dtype is given new_data = self._mgr.astype(dtype=dtype, copy=copy, errors=errors) return self._constructor(new_data).__finalize__(self, method="astype") # GH 33113: handle empty frame or series if not results: return self.copy() # GH 19920: retain column metadata after concat result = pd.concat(results, axis=1, copy=False) result.columns = self.columns return result def copy(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: """ Make a copy of this object's indices and data. When ``deep=True`` (default), a new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). When ``deep=False``, a new object will be created without copying the calling object's data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa). Parameters ---------- deep : bool, default True Make a deep copy, including a copy of the data and the indices. With ``deep=False`` neither the indices nor the data are copied. Returns ------- copy : Series or DataFrame Object type matches caller. Notes ----- When ``deep=True``, data is copied but actual Python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data (see examples below). While ``Index`` objects are copied when ``deep=True``, the underlying numpy array is not copied for performance reasons. Since ``Index`` is immutable, the underlying data can be safely shared and a copy is not needed. Examples -------- >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64 **Shallow copy versus default (deep) copy:** >>> s = pd.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False) Shallow copy shares data and index with original. >>> s is shallow False >>> s.values is shallow.values and s.index is shallow.index True Deep copy has own copy of data and index. >>> s is deep False >>> s.values is deep.values or s.index is deep.index False Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged. >>> s[0] = 3 >>> shallow[1] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64 Note that when copying an object containing Python objects, a deep copy will copy the data, but will not do so recursively. Updating a nested data object will be reflected in the deep copy. >>> s = pd.Series([[1, 2], [3, 4]]) >>> deep = s.copy() >>> s[0][0] = 10 >>> s 0 [10, 2] 1 [3, 4] dtype: object >>> deep 0 [10, 2] 1 [3, 4] dtype: object """ data = self._mgr.copy(deep=deep) self._clear_item_cache() return self._constructor(data).__finalize__(self, method="copy") def __copy__(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: return self.copy(deep=deep) def __deepcopy__(self: FrameOrSeries, memo=None) -> FrameOrSeries: """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) def _convert( self: FrameOrSeries, datetime: bool_t = False, numeric: bool_t = False, timedelta: bool_t = False, coerce: bool_t = False, ) -> FrameOrSeries: """ Attempt to infer better dtype for object columns Parameters ---------- datetime : bool, default False If True, convert to date where possible. numeric : bool, default False If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN. timedelta : bool, default False If True, convert to timedelta where possible. coerce : bool, default False If True, force conversion with unconvertible values converted to nulls (NaN or NaT). Returns ------- converted : same as input object """ validate_bool_kwarg(datetime, "datetime") validate_bool_kwarg(numeric, "numeric") validate_bool_kwarg(timedelta, "timedelta") validate_bool_kwarg(coerce, "coerce") return self._constructor( self._mgr.convert( datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=True, ) ).__finalize__(self) def infer_objects(self: FrameOrSeries) -> FrameOrSeries: """ Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. Returns ------- converted : same type as input object See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. convert_dtypes : Convert argument to best possible dtype. Examples -------- >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object """ # numeric=False necessary to only soft convert; # python objects will still be converted to # native numpy numeric types return self._constructor( self._mgr.convert( datetime=True, numeric=False, timedelta=True, coerce=False, copy=True ) ).__finalize__(self, method="infer_objects") def convert_dtypes( self: FrameOrSeries, infer_objects: bool_t = True, convert_string: bool_t = True, convert_integer: bool_t = True, convert_boolean: bool_t = True, ) -> FrameOrSeries: """ Convert columns to best possible dtypes using dtypes supporting ``pd.NA``. .. versionadded:: 1.0.0 Parameters ---------- infer_objects : bool, default True Whether object dtypes should be converted to the best possible types. convert_string : bool, default True Whether object dtypes should be converted to ``StringDtype()``. convert_integer : bool, default True Whether, if possible, conversion can be done to integer extension types. convert_boolean : bool, defaults True Whether object dtypes should be converted to ``BooleanDtypes()``. Returns ------- Series or DataFrame Copy of input object with new dtype. See Also -------- infer_objects : Infer dtypes of objects. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. Notes ----- By default, ``convert_dtypes`` will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support ``pd.NA``. By using the options ``convert_string``, ``convert_integer``, and ``convert_boolean``, it is possible to turn off individual conversions to ``StringDtype``, the integer extension types or ``BooleanDtype``, respectively. For object-dtyped columns, if ``infer_objects`` is ``True``, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to ``StringDtype``, ``BooleanDtype`` or an appropriate integer extension type, otherwise leave as ``object``. If the dtype is integer, convert to an appropriate integer extension type. If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. In the future, as new dtypes are added that support ``pd.NA``, the results of this method will change to support those new dtypes. Examples -------- >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) Start with a DataFrame with default dtypes. >>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0 >>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object Convert the DataFrame to use best possible dtypes. >>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 NaN 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0 >>> dfn.dtypes a Int32 b string c boolean d string e Int64 f float64 dtype: object Start with a Series of strings and missing data represented by ``np.nan``. >>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object Obtain a Series with dtype ``StringDtype``. >>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string """ if self.ndim == 1: return self._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) else: results = [ col._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) for col_name, col in self.items() ] result = pd.concat(results, axis=1, copy=False) return result # ---------------------------------------------------------------------- # Filling NA's @doc(**_shared_doc_kwargs) def fillna( self: FrameOrSeries, value=None, method=None, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap. axis : {axes_single_arg} Axis along which to fill missing values. inplace : bool, default False If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast : dict, default is None A dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- {klass} or None Object with missing values filled or None if ``inplace=True``. See Also -------- interpolate : Fill NaN values using interpolation. reindex : Conform object to new index. asfreq : Convert TimeSeries to specified frequency. Examples -------- >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {{'A': 0, 'B': 1, 'C': 2, 'D': 3}} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 Only replace the first NaN element. >>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 """ inplace = validate_bool_kwarg(inplace, "inplace") value, method = validate_fillna_kwargs(value, method) # set the default here, so functions examining the signaure # can detect if something was set (e.g. in groupby) (GH9221) if axis is None: axis = 0 axis = self._get_axis_number(axis) if value is None: if self._is_mixed_type and axis == 1: if inplace: raise NotImplementedError() result = self.T.fillna(method=method, limit=limit).T # need to downcast here because of all of the transposes result._mgr = result._mgr.downcast() return result new_data = self._mgr.interpolate( method=method, axis=axis, limit=limit, inplace=inplace, coerce=True, downcast=downcast, ) else: if self.ndim == 1: if isinstance(value, (dict, ABCSeries)): value = create_series_with_explicit_dtype( value, dtype_if_empty=object ) value = value.reindex(self.index, copy=False) value = value._values elif not is_list_like(value): pass else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " f'"{type(value).__name__}"' ) new_data = self._mgr.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, (dict, ABCSeries)): if axis == 1: raise NotImplementedError( "Currently only can fill " "with dict/Series column " "by column" ) result = self if inplace else self.copy() for k, v in value.items(): if k not in result: continue obj = result[k] obj.fillna(v, limit=limit, inplace=True, downcast=downcast) return result if not inplace else None elif not is_list_like(value): new_data = self._mgr.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, ABCDataFrame) and self.ndim == 2: new_data = self.where(self.notna(), value)._data else: raise ValueError(f"invalid fill value with a {type(value)}") result = self._constructor(new_data) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="fillna") def ffill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='ffill'``. Returns ------- {klass} or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="ffill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) pad = ffill def bfill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='bfill'``. Returns ------- {klass} or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="bfill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) backfill = bfill @doc(klass=_shared_doc_kwargs["klass"]) def replace( self, to_replace=None, value=None, inplace: bool_t = False, limit: Optional[int] = None, regex=False, method="pad", ): """ Replace values given in `to_replace` with `value`. Values of the {klass} are replaced with other values dynamically. This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value. Parameters ---------- to_replace : str, regex, list, dict, Series, int, float, or None How to find the values that will be replaced. * numeric, str or regex: - numeric: numeric values equal to `to_replace` will be replaced with `value` - str: string exactly matching `to_replace` will be replaced with `value` - regex: regexs matching `to_replace` will be replaced with `value` * list of str, regex, or numeric: - First, if `to_replace` and `value` are both lists, they **must** be the same length. - Second, if ``regex=True`` then all of the strings in **both** lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for `value` since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above. * dict: - Dicts can be used to specify different replacement values for different existing values. For example, ``{{'a': 'b', 'y': 'z'}}`` replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way the `value` parameter should be `None`. - For a DataFrame a dict can specify that different values should be replaced in different columns. For example, ``{{'a': 1, 'b': 'z'}}`` looks for the value 1 in column 'a' and the value 'z' in column 'b' and replaces these values with whatever is specified in `value`. The `value` parameter should not be ``None`` in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. - For a DataFrame nested dictionaries, e.g., ``{{'a': {{'b': np.nan}}}}``, are read as follows: look in column 'a' for the value 'b' and replace it with NaN. The `value` parameter should be ``None`` to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions. * None: - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also ``None`` then this **must** be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to replace any values matching `to_replace` with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : bool, default False If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True. limit : int or None, default None Maximum size gap to forward or backward fill. regex : bool or same types as `to_replace`, default False Whether to interpret `to_replace` and/or `value` as regular expressions. If this is ``True`` then `to_replace` *must* be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case `to_replace` must be ``None``. method : {{'pad', 'ffill', 'bfill', `None`}} The method to use when for replacement, when `to_replace` is a scalar, list or tuple and `value` is ``None``. Returns ------- {klass} Object after replacement. Raises ------ AssertionError * If `regex` is not a ``bool`` and `to_replace` is not ``None``. TypeError * If `to_replace` is not a scalar, array-like, ``dict``, or ``None`` * If `to_replace` is a ``dict`` and `value` is not a ``list``, ``dict``, ``ndarray``, or ``Series`` * If `to_replace` is ``None`` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple ``bool`` or ``datetime64`` objects and the arguments to `to_replace` does not match the type of the value being replaced ValueError * If a ``list`` or an ``ndarray`` is passed to `to_replace` and `value` but they are not the same length. See Also -------- {klass}.fillna : Fill NA values. {klass}.where : Replace values based on boolean condition. Series.str.replace : Simple string replacement. Notes ----- * Regex substitution is performed under the hood with ``re.sub``. The rules for substitution for ``re.sub`` are the same. * Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers *are* strings, then you can do this. * This method has *a lot* of options. You are encouraged to experiment and play with this method to gain intuition about how it works. * When dict is used as the `to_replace` value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples -------- **Scalar `to_replace` and `value`** >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame({{'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e **List-like `to_replace`** >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 0 1 3 2 3 3 3 4 4 dtype: int64 **dict-like `to_replace`** >>> df.replace({{0: 10, 1: 100}}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({{'A': 0, 'B': 5}}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({{'A': {{0: 100, 4: 400}}}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e **Regular expression `to_replace`** >>> df = pd.DataFrame({{'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({{'A': r'^ba.$'}}, {{'A': 'new'}}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={{r'^ba.$': 'new', 'foo': 'xyz'}}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Compare the behavior of ``s.replace({{'a': None}})`` and ``s.replace('a', None)`` to understand the peculiarities of the `to_replace` parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the `to_replace` value, it is like the value(s) in the dict are equal to the `value` parameter. ``s.replace({{'a': None}})`` is equivalent to ``s.replace(to_replace={{'a': None}}, value=None, method=None)``: >>> s.replace({{'a': None}}) 0 10 1 None 2 None 3 b 4 None dtype: object When ``value=None`` and `to_replace` is a scalar, list or tuple, `replace` uses the method parameter (default 'pad') to do the replacement. So this is why the 'a' values are being replaced by 10 in rows 1 and 2 and 'b' in row 4 in this case. The command ``s.replace('a', None)`` is actually equivalent to ``s.replace(to_replace='a', value=None, method='pad')``: >>> s.replace('a', None) 0 10 1 10 2 10 3 b 4 b dtype: object """ if not ( is_scalar(to_replace) or is_re_compilable(to_replace) or is_list_like(to_replace) ): raise TypeError( "Expecting 'to_replace' to be either a scalar, array-like, " "dict or None, got invalid type " f"{repr(type(to_replace).__name__)}" ) inplace = validate_bool_kwarg(inplace, "inplace") if not is_bool(regex) and to_replace is not None: raise ValueError("'to_replace' must be 'None' if 'regex' is not a bool") if value is None: # passing a single value that is scalar like # when value is None (GH5319), for compat if not is_dict_like(to_replace) and not is_dict_like(regex): to_replace = [to_replace] if isinstance(to_replace, (tuple, list)): if isinstance(self, ABCDataFrame): return self.apply( _single_replace, args=(to_replace, method, inplace, limit) ) return _single_replace(self, to_replace, method, inplace, limit) if not is_dict_like(to_replace): if not is_dict_like(regex): raise TypeError( 'If "to_replace" and "value" are both None ' 'and "to_replace" is not a list, then ' "regex must be a mapping" ) to_replace = regex regex = True items = list(to_replace.items()) if items: keys, values = zip(*items) else: keys, values = ([], []) are_mappings = [is_dict_like(v) for v in values] if any(are_mappings): if not all(are_mappings): raise TypeError( "If a nested mapping is passed, all values " "of the top level mapping must be mappings" ) # passed a nested dict/Series to_rep_dict = {} value_dict = {} for k, v in items: keys, values = list(zip(*v.items())) or ([], []) to_rep_dict[k] = list(keys) value_dict[k] = list(values) to_replace, value = to_rep_dict, value_dict else: to_replace, value = keys, values return self.replace( to_replace, value, inplace=inplace, limit=limit, regex=regex ) else: # need a non-zero len on all axes if not self.size: if inplace: return return self.copy() if is_dict_like(to_replace): if is_dict_like(value): # {'A' : NA} -> {'A' : 0} # Note: Checking below for `in foo.keys()` instead of # `in foo` is needed for when we have a Series and not dict mapping = { col: (to_replace[col], value[col]) for col in to_replace.keys() if col in value.keys() and col in self } return self._replace_columnwise(mapping, inplace, regex) # {'A': NA} -> 0 elif not is_list_like(value): # Operate column-wise if self.ndim == 1: raise ValueError( "Series.replace cannot use dict-like to_replace " "and non-None value" ) mapping = { col: (to_rep, value) for col, to_rep in to_replace.items() } return self._replace_columnwise(mapping, inplace, regex) else: raise TypeError("value argument must be scalar, dict, or Series") elif is_list_like(to_replace): # [NA, ''] -> [0, 'missing'] if is_list_like(value): if len(to_replace) != len(value): raise ValueError( f"Replacement lists must match in length. " f"Expecting {len(to_replace)} got {len(value)} " ) self._consolidate_inplace() new_data = self._mgr.replace_list( src_list=to_replace, dest_list=value, inplace=inplace, regex=regex, ) else: # [NA, ''] -> 0 new_data = self._mgr.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) elif to_replace is None: if not ( is_re_compilable(regex) or is_list_like(regex) or is_dict_like(regex) ): raise TypeError( f"'regex' must be a string or a compiled regular expression " f"or a list or dict of strings or regular expressions, " f"you passed a {repr(type(regex).__name__)}" ) return self.replace( regex, value, inplace=inplace, limit=limit, regex=True ) else: # dest iterable dict-like if is_dict_like(value): # NA -> {'A' : 0, 'B' : -1} # Operate column-wise if self.ndim == 1: raise ValueError( "Series.replace cannot use dict-value and " "non-None to_replace" ) mapping = {col: (to_replace, val) for col, val in value.items()} return self._replace_columnwise(mapping, inplace, regex) elif not is_list_like(value): # NA -> 0 new_data = self._mgr.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) else: raise TypeError( f'Invalid "to_replace" type: {repr(type(to_replace).__name__)}' ) result = self._constructor(new_data) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="replace") def interpolate( self: FrameOrSeries, method: str = "linear", axis: Axis = 0, limit: Optional[int] = None, inplace: bool_t = False, limit_direction: Optional[str] = None, limit_area: Optional[str] = None, downcast: Optional[str] = None, **kwargs, ) -> Optional[FrameOrSeries]: """ Please note that only ``method='linear'`` is supported for DataFrame/Series with a MultiIndex. Parameters ---------- method : str, default 'linear' Interpolation technique to use. One of: * 'linear': Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. * 'time': Works on daily and higher resolution data to interpolate given length of interval. * 'index', 'values': use the actual numerical values of the index. * 'pad': Fill in NaNs using existing values. * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline', 'barycentric', 'polynomial': Passed to `scipy.interpolate.interp1d`. These methods use the numerical values of the index. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. ``df.interpolate(method='polynomial', order=5)``. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima', 'cubicspline': Wrappers around the SciPy interpolation methods of similar names. See `Notes`. * 'from_derivatives': Refers to `scipy.interpolate.BPoly.from_derivatives` which replaces 'piecewise_polynomial' interpolation method in scipy 0.18. axis : {{0 or 'index', 1 or 'columns', None}}, default None Axis to interpolate along. limit : int, optional Maximum number of consecutive NaNs to fill. Must be greater than 0. inplace : bool, default False Update the data in place if possible. limit_direction : {{'forward', 'backward', 'both'}}, Optional Consecutive NaNs will be filled in this direction. If limit is specified: * If 'method' is 'pad' or 'ffill', 'limit_direction' must be 'forward'. * If 'method' is 'backfill' or 'bfill', 'limit_direction' must be 'backwards'. If 'limit' is not specified: * If 'method' is 'backfill' or 'bfill', the default is 'backward' * else the default is 'forward' .. versionchanged:: 1.1.0 raises ValueError if `limit_direction` is 'forward' or 'both' and method is 'backfill' or 'bfill'. raises ValueError if `limit_direction` is 'backward' or 'both' and method is 'pad' or 'ffill'. limit_area : {{`None`, 'inside', 'outside'}}, default None If limit is specified, consecutive NaNs will be filled with this restriction. * ``None``: No fill restriction. * 'inside': Only fill NaNs surrounded by valid values (interpolate). * 'outside': Only fill NaNs outside valid values (extrapolate). downcast : optional, 'infer' or None, defaults to None Downcast dtypes if possible. ``**kwargs`` : optional Keyword arguments to pass on to the interpolating function. Returns ------- Series or DataFrame Returns the same object type as the caller, interpolated at some or all ``NaN`` values. See Also -------- fillna : Fill missing values using different methods. scipy.interpolate.Akima1DInterpolator : Piecewise cubic polynomials (Akima interpolator). scipy.interpolate.BPoly.from_derivatives : Piecewise polynomial in the Bernstein basis. scipy.interpolate.interp1d : Interpolate a 1-D function. scipy.interpolate.KroghInterpolator : Interpolate polynomial (Krogh interpolator). scipy.interpolate.PchipInterpolator : PCHIP 1-d monotonic cubic interpolation. scipy.interpolate.CubicSpline : Cubic spline data interpolator. Notes ----- The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the `SciPy documentation <https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ and `SciPy tutorial <https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__. Examples -------- Filling in ``NaN`` in a :class:`~pandas.Series` via linear interpolation. >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 Filling in ``NaN`` in a Series by padding, but filling at most two consecutive ``NaN`` at a time. >>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object Filling in ``NaN`` in a Series via polynomial interpolation or splines: Both 'polynomial' and 'spline' methods require that you also specify an ``order`` (int). >>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64 Fill the DataFrame forward (that is, going down) along each column using linear interpolation. Note how the last entry in column 'a' is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column 'b' remains ``NaN``, because there is no entry before it to use for interpolation. >>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0 Using polynomial interpolation. >>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) fillna_methods = ["ffill", "bfill", "pad", "backfill"] should_transpose = axis == 1 and method not in fillna_methods obj = self.T if should_transpose else self if obj.empty: return self.copy() if method not in fillna_methods: axis = self._info_axis_number if isinstance(obj.index, MultiIndex) and method != "linear": raise ValueError( "Only `method=linear` interpolation is supported on MultiIndexes." ) # Set `limit_direction` depending on `method` if limit_direction is None: limit_direction = ( "backward" if method in ("backfill", "bfill") else "forward" ) else: if method in ("pad", "ffill") and limit_direction != "forward": raise ValueError( f"`limit_direction` must be 'forward' for method `{method}`" ) if method in ("backfill", "bfill") and limit_direction != "backward": raise ValueError( f"`limit_direction` must be 'backward' for method `{method}`" ) if obj.ndim == 2 and np.all(obj.dtypes == np.dtype(object)): raise TypeError( "Cannot interpolate with all object-dtype columns " "in the DataFrame. Try setting at least one " "column to a numeric dtype." ) # create/use the index if method == "linear": # prior default index = np.arange(len(obj.index)) else: index = obj.index methods = {"index", "values", "nearest", "time"} is_numeric_or_datetime = ( is_numeric_dtype(index.dtype) or is_datetime64_any_dtype(index.dtype) or is_timedelta64_dtype(index.dtype) ) if method not in methods and not is_numeric_or_datetime: raise ValueError( "Index column must be numeric or datetime type when " f"using {method} method other than linear. " "Try setting a numeric or datetime index column before " "interpolating." ) if isna(index).any(): raise NotImplementedError( "Interpolation with NaNs in the index " "has not been implemented. Try filling " "those NaNs before interpolating." ) new_data = obj._mgr.interpolate( method=method, axis=axis, index=index, limit=limit, limit_direction=limit_direction, limit_area=limit_area, inplace=inplace, downcast=downcast, **kwargs, ) result = self._constructor(new_data) if should_transpose: result = result.T if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="interpolate") # ---------------------------------------------------------------------- # Timeseries methods Methods def asof(self, where, subset=None): """ Return the last row(s) without any NaNs before `where`. The last row (for each element in `where`, if list) without any NaN is taken. In case of a :class:`~pandas.DataFrame`, the last row without NaN considering only the subset of columns (if not `None`) If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame Parameters ---------- where : date or array-like of dates Date(s) before which the last row(s) are returned. subset : str or array-like of str, default `None` For DataFrame, if not `None`, only use these columns to check for NaNs. Returns ------- scalar, Series, or DataFrame The return can be: * scalar : when `self` is a Series and `where` is a scalar * Series: when `self` is a Series and `where` is an array-like, or when `self` is a DataFrame and `where` is a scalar * DataFrame : when `self` is a DataFrame and `where` is an array-like Return scalar, Series, or DataFrame. See Also -------- merge_asof : Perform an asof merge. Similar to left join. Notes ----- Dates are assumed to be sorted. Raises if this is not the case. Examples -------- A Series and a scalar `where`. >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64 >>> s.asof(20) 2.0 For a sequence `where`, a Series is returned. The first value is NaN, because the first element of `where` is before the first index value. >>> s.asof([5, 20]) 5 NaN 20 2.0 dtype: float64 Missing values are not considered. The following is ``2.0``, not NaN, even though NaN is at the index location for ``30``. >>> s.asof(30) 2.0 Take all columns into consideration >>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50], ... 'b': [None, None, None, None, 500]}, ... index=pd.DatetimeIndex(['2018-02-27 09:01:00', ... '2018-02-27 09:02:00', ... '2018-02-27 09:03:00', ... '2018-02-27 09:04:00', ... '2018-02-27 09:05:00'])) >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30'])) a b 2018-02-27 09:03:30 NaN NaN 2018-02-27 09:04:30 NaN NaN Take a single column into consideration >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30']), ... subset=['a']) a b 2018-02-27 09:03:30 30.0 NaN 2018-02-27 09:04:30 40.0 NaN """ if isinstance(where, str): where = Timestamp(where) if not self.index.is_monotonic: raise ValueError("asof requires a sorted index") is_series = isinstance(self, ABCSeries) if is_series: if subset is not None: raise ValueError("subset is not valid for Series") else: if subset is None: subset = self.columns if not is_list_like(subset): subset = [subset] is_list = is_list_like(where) if not is_list: start = self.index[0] if isinstance(self.index, PeriodIndex): where = Period(where, freq=self.index.freq) if where < start: if not is_series: return self._constructor_sliced( index=self.columns, name=where, dtype=np.float64 ) return np.nan # It's always much faster to use a *while* loop here for # Series than pre-computing all the NAs. However a # *while* loop is extremely expensive for DataFrame # so we later pre-compute all the NAs and use the same # code path whether *where* is a scalar or list. # See PR: https://github.com/pandas-dev/pandas/pull/14476 if is_series: loc = self.index.searchsorted(where, side="right") if loc > 0: loc -= 1 values = self._values while loc > 0 and isna(values[loc]): loc -= 1 return values[loc] if not isinstance(where, Index): where = Index(where) if is_list else Index([where]) nulls = self.isna() if is_series else self[subset].isna().any(1) if nulls.all(): if is_series: return self._constructor(np.nan, index=where, name=self.name) elif is_list: return self._constructor(np.nan, index=where, columns=self.columns) else: return self._constructor_sliced( np.nan, index=self.columns, name=where[0] ) locs = self.index.asof_locs(where, ~(nulls._values)) # mask the missing missing = locs == -1 data = self.take(locs) data.index = where data.loc[missing] = np.nan return data if is_list else data.iloc[-1] # ---------------------------------------------------------------------- # Action Methods @doc(klass=_shared_doc_kwargs["klass"]) def isna(self: FrameOrSeries) -> FrameOrSeries: """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or :attr:`numpy.NaN`, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- {klass} Mask of bool values for each element in {klass} that indicates whether an element is not an NA value. See Also -------- {klass}.isnull : Alias of isna. {klass}.notna : Boolean inverse of isna. {klass}.dropna : Omit axes labels with missing values. isna : Top-level isna. Examples -------- Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool """ return isna(self).__finalize__(self, method="isna") @doc(isna, klass=_shared_doc_kwargs["klass"]) def isnull(self: FrameOrSeries) -> FrameOrSeries: return isna(self).__finalize__(self, method="isnull") @doc(klass=_shared_doc_kwargs["klass"]) def notna(self: FrameOrSeries) -> FrameOrSeries: """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to False values. Returns ------- {klass} Mask of bool values for each element in {klass} that indicates whether an element is not an NA value. See Also -------- {klass}.notnull : Alias of notna. {klass}.isna : Boolean inverse of notna. {klass}.dropna : Omit axes labels with missing values. notna : Top-level notna. Examples -------- Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool """ return notna(self).__finalize__(self, method="notna") @doc(notna, klass=_shared_doc_kwargs["klass"]) def notnull(self: FrameOrSeries) -> FrameOrSeries: return notna(self).__finalize__(self, method="notnull") def _clip_with_scalar(self, lower, upper, inplace: bool_t = False): if (lower is not None and np.any(isna(lower))) or ( upper is not None and np.any(isna(upper)) ): raise ValueError("Cannot use an NA value as a clip threshold") result = self mask = isna(self._values) with np.errstate(all="ignore"): if upper is not None: subset = self.to_numpy() <= upper result = result.where(subset, upper, axis=None, inplace=False) if lower is not None: subset = self.to_numpy() >= lower result = result.where(subset, lower, axis=None, inplace=False) if np.any(mask): result[mask] = np.nan if inplace: return self._update_inplace(result) else: return result def _clip_with_one_bound(self, threshold, method, axis, inplace): if axis is not None: axis = self._get_axis_number(axis) # method is self.le for upper bound and self.ge for lower bound if is_scalar(threshold) and is_number(threshold): if method.__name__ == "le": return self._clip_with_scalar(None, threshold, inplace=inplace) return self._clip_with_scalar(threshold, None, inplace=inplace) subset = method(threshold, axis=axis) | isna(self) # GH #15390 # In order for where method to work, the threshold must # be transformed to NDFrame from other array like structure. if (not isinstance(threshold, ABCSeries)) and is_list_like(threshold): if isinstance(self, ABCSeries): threshold = self._constructor(threshold, index=self.index) else: threshold = align_method_FRAME(self, threshold, axis, flex=None)[1] return self.where(subset, threshold, axis=axis, inplace=inplace) def clip( self: FrameOrSeries, lower=None, upper=None, axis=None, inplace: bool_t = False, *args, **kwargs, ) -> FrameOrSeries: """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis. Parameters ---------- lower : float or array_like, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or array_like, default None Maximum threshold value. All values above this threshold will be set to it. axis : int or str axis name, optional Align object with lower and upper along the given axis. inplace : bool, default False Whether to perform the operation in place on the data. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- Series or DataFrame Same type as calling object with the values outside the clip boundaries replaced. See Also -------- Series.clip : Trim values at input threshold in series. DataFrame.clip : Trim values at input threshold in dataframe. numpy.clip : Clip (limit) the values in an array. Examples -------- >>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = nv.validate_clip_with_axis(axis, args, kwargs) if axis is not None: axis = self._get_axis_number(axis) # GH 17276 # numpy doesn't like NaN as a clip value # so ignore # GH 19992 # numpy doesn't drop a list-like bound containing NaN if not is_list_like(lower) and np.any(isna(lower)): lower = None if not is_list_like(upper) and np.any(isna(upper)): upper = None # GH 2747 (arguments were reversed) if lower is not None and upper is not None: if is_scalar(lower) and is_scalar(upper): lower, upper = min(lower, upper), max(lower, upper) # fast-path for scalars if (lower is None or (is_scalar(lower) and is_number(lower))) and ( upper is None or (is_scalar(upper) and is_number(upper)) ): return self._clip_with_scalar(lower, upper, inplace=inplace) result = self if lower is not None: result = result._clip_with_one_bound( lower, method=self.ge, axis=axis, inplace=inplace ) if upper is not None: if inplace: result = self result = result._clip_with_one_bound( upper, method=self.le, axis=axis, inplace=inplace ) return result def asfreq( self: FrameOrSeries, freq, method=None, how: Optional[str] = None, normalize: bool_t = False, fill_value=None, ) -> FrameOrSeries: """ Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Returns the original data conformed to a new index with the specified frequency. ``resample`` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency. Parameters ---------- freq : DateOffset or str Frequency DateOffset or string. method : {'backfill'/'bfill', 'pad'/'ffill'}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): * 'pad' / 'ffill': propagate last valid observation forward to next valid * 'backfill' / 'bfill': use NEXT valid observation to fill. how : {'start', 'end'}, default end For PeriodIndex only (see PeriodIndex.asfreq). normalize : bool, default False Whether to reset output index to midnight. fill_value : scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). Returns ------- Same type as caller Object converted to the specified frequency. See Also -------- reindex : Conform DataFrame to new index with optional filling logic. Notes ----- To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 4 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 Upsample the series into 30 second bins. >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 Upsample again, providing a ``fill value``. >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 Upsample again, providing a ``method``. >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0 """ from pandas.core.resample import asfreq return asfreq( self, freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) def at_time( self: FrameOrSeries, time, asof: bool_t = False, axis=None ) -> FrameOrSeries: """ Select values at particular time of day (e.g., 9:30AM). Parameters ---------- time : datetime.time or str axis : {0 or 'index', 1 or 'columns'}, default 0 .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- between_time : Select values between particular times of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_at_time : Get just the index locations for values at particular time of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='12H') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-09 12:00:00 2 2018-04-10 00:00:00 3 2018-04-10 12:00:00 4 >>> ts.at_time('12:00') A 2018-04-09 12:00:00 2 2018-04-10 12:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) if not isinstance(index, DatetimeIndex): raise TypeError("Index must be DatetimeIndex") indexer = index.indexer_at_time(time, asof=asof) return self._take_with_is_copy(indexer, axis=axis) def between_time( self: FrameOrSeries, start_time, end_time, include_start: bool_t = True, include_end: bool_t = True, axis=None, ) -> FrameOrSeries: """ Select values between particular times of the day (e.g., 9:00-9:30 AM). By setting ``start_time`` to be later than ``end_time``, you can get the times that are *not* between the two times. Parameters ---------- start_time : datetime.time or str Initial time as a time filter limit. end_time : datetime.time or str End time as a time filter limit. include_start : bool, default True Whether the start time needs to be included in the result. include_end : bool, default True Whether the end time needs to be included in the result. axis : {0 or 'index', 1 or 'columns'}, default 0 Determine range time on index or columns value. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Data from the original object filtered to the specified dates range. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- at_time : Select values at a particular time of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_between_time : Get just the index locations for values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 >>> ts.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 You get the times that are *not* between two times by setting ``start_time`` later than ``end_time``: >>> ts.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) if not isinstance(index, DatetimeIndex): raise TypeError("Index must be DatetimeIndex") indexer = index.indexer_between_time( start_time, end_time, include_start=include_start, include_end=include_end ) return self._take_with_is_copy(indexer, axis=axis) def resample( self, rule, axis=0, closed: Optional[str] = None, label: Optional[str] = None, convention: str = "start", kind: Optional[str] = None, loffset=None, base: Optional[int] = None, on=None, level=None, origin: Union[str, TimestampConvertibleTypes] = "start_day", offset: Optional[TimedeltaConvertibleTypes] = None, ) -> Resampler: """ Resample time-series data. Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`, or `TimedeltaIndex`), or pass datetime-like values to the `on` or `level` keyword. Parameters ---------- rule : DateOffset, Timedelta or str The offset string or object representing target conversion. axis : {0 or 'index', 1 or 'columns'}, default 0 Which axis to use for up- or down-sampling. For `Series` this will default to 0, i.e. along the rows. Must be `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`. closed : {'right', 'left'}, default None Which side of bin interval is closed. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. label : {'right', 'left'}, default None Which bin edge label to label bucket with. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. convention : {'start', 'end', 's', 'e'}, default 'start' For `PeriodIndex` only, controls whether to use the start or end of `rule`. kind : {'timestamp', 'period'}, optional, default None Pass 'timestamp' to convert the resulting index to a `DateTimeIndex` or 'period' to convert it to a `PeriodIndex`. By default the input representation is retained. loffset : timedelta, default None Adjust the resampled time labels. .. deprecated:: 1.1.0 You should add the loffset to the `df.index` after the resample. See below. base : int, default 0 For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0. .. deprecated:: 1.1.0 The new arguments that you should use are 'offset' or 'origin'. on : str, optional For a DataFrame, column to use instead of index for resampling. Column must be datetime-like. level : str or int, optional For a MultiIndex, level (name or number) to use for resampling. `level` must be datetime-like. origin : {'epoch', 'start', 'start_day'}, Timestamp or str, default 'start_day' The timestamp on which to adjust the grouping. The timezone of origin must match the timezone of the index. If a timestamp is not used, these values are also supported: - 'epoch': `origin` is 1970-01-01 - 'start': `origin` is the first value of the timeseries - 'start_day': `origin` is the first day at midnight of the timeseries .. versionadded:: 1.1.0 offset : Timedelta or str, default is None An offset timedelta added to the origin. .. versionadded:: 1.1.0 Returns ------- Resampler object See Also -------- groupby : Group by mapping, function, label, or list of labels. Series.resample : Resample a Series. DataFrame.resample: Resample a DataFrame. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling>`_ for more. To learn more about the offset strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects>`__. Examples -------- Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed value in the resampled bucket with the label ``2000-01-01 00:03:00`` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``pad`` method. >>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``bfill`` method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like): ... return np.sum(array_like) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be used to control whether to use the start or end of `rule`. Resample a year by quarter using 'start' `convention`. Values are assigned to the first quarter of the period. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64 Resample quarters by month using 'end' `convention`. Values are assigned to the last month of the period. >>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64 For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling. >>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0 For a DataFrame with MultiIndex, the keyword `level` can be used to specify on which level the resampling needs to take place. >>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df2 = pd.DataFrame(d2, ... index=pd.MultiIndex.from_product([days, ... ['morning', ... 'afternoon']] ... )) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90 If you want to adjust the start of the bins based on a fixed timestamp: >>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00' >>> rng = pd.date_range(start, end, freq='7min') >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng) >>> ts 2000-10-01 23:30:00 0 2000-10-01 23:37:00 3 2000-10-01 23:44:00 6 2000-10-01 23:51:00 9 2000-10-01 23:58:00 12 2000-10-02 00:05:00 15 2000-10-02 00:12:00 18 2000-10-02 00:19:00 21 2000-10-02 00:26:00 24 Freq: 7T, dtype: int64 >>> ts.resample('17min').sum() 2000-10-01 23:14:00 0 2000-10-01 23:31:00 9 2000-10-01 23:48:00 21 2000-10-02 00:05:00 54 2000-10-02 00:22:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', origin='epoch').sum() 2000-10-01 23:18:00 0 2000-10-01 23:35:00 18 2000-10-01 23:52:00 27 2000-10-02 00:09:00 39 2000-10-02 00:26:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', origin='2000-01-01').sum() 2000-10-01 23:24:00 3 2000-10-01 23:41:00 15 2000-10-01 23:58:00 45 2000-10-02 00:15:00 45 Freq: 17T, dtype: int64 If you want to adjust the start of the bins with an `offset` Timedelta, the two following lines are equivalent: >>> ts.resample('17min', origin='start').sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', offset='23h30min').sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64 To replace the use of the deprecated `base` argument, you can now use `offset`, in this example it is equivalent to have `base=2`: >>> ts.resample('17min', offset='2min').sum() 2000-10-01 23:16:00 0 2000-10-01 23:33:00 9 2000-10-01 23:50:00 36 2000-10-02 00:07:00 39 2000-10-02 00:24:00 24 Freq: 17T, dtype: int64 To replace the use of the deprecated `loffset` argument: >>> from pandas.tseries.frequencies import to_offset >>> loffset = '19min' >>> ts_out = ts.resample('17min').sum() >>> ts_out.index = ts_out.index + to_offset(loffset) >>> ts_out 2000-10-01 23:33:00 0 2000-10-01 23:50:00 9 2000-10-02 00:07:00 21 2000-10-02 00:24:00 54 2000-10-02 00:41:00 24 Freq: 17T, dtype: int64 """ from pandas.core.resample import get_resampler axis = self._get_axis_number(axis) return get_resampler( self, freq=rule, label=label, closed=closed, axis=axis, kind=kind, loffset=loffset, convention=convention, base=base, key=on, level=level, origin=origin, offset=offset, ) def first(self: FrameOrSeries, offset) -> FrameOrSeries: """ Select initial periods of time series data based on a date offset. When having a DataFrame with dates as index, this function can select the first few rows based on a date offset. Parameters ---------- offset : str, DateOffset or dateutil.relativedelta The offset length of the data that will be selected. For instance, '1M' will display all the rows having their index within the first month. Returns ------- Series or DataFrame A subset of the caller. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- last : Select final periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the first 3 days: >>> ts.first('3D') A 2018-04-09 1 2018-04-11 2 Notice the data for 3 first calendar days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'first' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) end_date = end = self.index[0] + offset # Tick-like, e.g. 3 weeks if isinstance(offset, Tick): if end_date in self.index: end = self.index.searchsorted(end_date, side="left") return self.iloc[:end] return self.loc[:end] def last(self: FrameOrSeries, offset) -> FrameOrSeries: """ Select final periods of time series data based on a date offset. When having a DataFrame with dates as index, this function can select the last few rows based on a date offset. Parameters ---------- offset : str, DateOffset, dateutil.relativedelta The offset length of the data that will be selected. For instance, '3D' will display all the rows having their index within the last 3 days. Returns ------- Series or DataFrame A subset of the caller. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- first : Select initial periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the last 3 days: >>> ts.last('3D') A 2018-04-13 3 2018-04-15 4 Notice the data for 3 last calendar days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'last' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side="right") return self.iloc[start:] def rank( self: FrameOrSeries, axis=0, method: str = "average", numeric_only: Optional[bool_t] = None, na_option: str = "keep", ascending: bool_t = True, pct: bool_t = False, ) -> FrameOrSeries: """ Compute numerical data ranks (1 through n) along axis. By default, equal values are assigned a rank that is the average of the ranks of those values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Index to direct ranking. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' How to rank the group of records that have the same value (i.e. ties): * average: average rank of the group * min: lowest rank in the group * max: highest rank in the group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups. numeric_only : bool, optional For DataFrame objects, rank only numeric columns if set to True. na_option : {'keep', 'top', 'bottom'}, default 'keep' How to rank NaN values: * keep: assign NaN rank to NaN values * top: assign smallest rank to NaN values if ascending * bottom: assign highest rank to NaN values if ascending. ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to display the returned rankings in percentile form. Returns ------- same type as caller Return a Series or DataFrame with data ranks as values. See Also -------- core.groupby.GroupBy.rank : Rank of values within each group. Examples -------- >>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog', ... 'spider', 'snake'], ... 'Number_legs': [4, 2, 4, 8, np.nan]}) >>> df Animal Number_legs 0 cat 4.0 1 penguin 2.0 2 dog 4.0 3 spider 8.0 4 snake NaN The following example shows how the method behaves with the above parameters: * default_rank: this is the default behaviour obtained without using any parameter. * max_rank: setting ``method = 'max'`` the records that have the same values are ranked using the highest rank (e.g.: since 'cat' and 'dog' are both in the 2nd and 3rd position, rank 3 is assigned.) * NA_bottom: choosing ``na_option = 'bottom'``, if there are records with NaN values they are placed at the bottom of the ranking. * pct_rank: when setting ``pct = True``, the ranking is expressed as percentile rank. >>> df['default_rank'] = df['Number_legs'].rank() >>> df['max_rank'] = df['Number_legs'].rank(method='max') >>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom') >>> df['pct_rank'] = df['Number_legs'].rank(pct=True) >>> df Animal Number_legs default_rank max_rank NA_bottom pct_rank 0 cat 4.0 2.5 3.0 2.5 0.625 1 penguin 2.0 1.0 1.0 1.0 0.250 2 dog 4.0 2.5 3.0 2.5 0.625 3 spider 8.0 4.0 4.0 4.0 1.000 4 snake NaN NaN NaN 5.0 NaN """ axis = self._get_axis_number(axis) if na_option not in {"keep", "top", "bottom"}: msg = "na_option must be one of 'keep', 'top', or 'bottom'" raise ValueError(msg) def ranker(data): ranks = algos.rank( data.values, axis=axis, method=method, ascending=ascending, na_option=na_option, pct=pct, ) ranks = self._constructor(ranks, **data._construct_axes_dict()) return ranks.__finalize__(self, method="rank") # if numeric_only is None, and we can't get anything, we try with # numeric_only=True if numeric_only is None: try: return ranker(self) except TypeError: numeric_only = True if numeric_only: data = self._get_numeric_data() else: data = self return ranker(data) @Appender(_shared_docs["compare"] % _shared_doc_kwargs) def compare( self, other, align_axis: Axis = 1, keep_shape: bool_t = False, keep_equal: bool_t = False, ): from pandas.core.reshape.concat import concat if type(self) is not type(other): cls_self, cls_other = type(self).__name__, type(other).__name__ raise TypeError( f"can only compare '{cls_self}' (not '{cls_other}') with '{cls_self}'" ) mask = ~((self == other) | (self.isna() & other.isna())) keys = ["self", "other"] if not keep_equal: self = self.where(mask) other = other.where(mask) if not keep_shape: if isinstance(self, ABCDataFrame): cmask = mask.any() rmask = mask.any(axis=1) self = self.loc[rmask, cmask] other = other.loc[rmask, cmask] else: self = self[mask] other = other[mask] if align_axis in (1, "columns"): # This is needed for Series axis = 1 else: axis = self._get_axis_number(align_axis) diff = concat([self, other], axis=axis, keys=keys) if axis >= self.ndim: # No need to reorganize data if stacking on new axis # This currently applies for stacking two Series on columns return diff ax = diff._get_axis(axis) ax_names = np.array(ax.names) # set index names to positions to avoid confusion ax.names = np.arange(len(ax_names)) # bring self-other to inner level order = list(range(1, ax.nlevels)) + [0] if isinstance(diff, ABCDataFrame): diff = diff.reorder_levels(order, axis=axis) else: diff = diff.reorder_levels(order) # restore the index names in order diff._get_axis(axis=axis).names = ax_names[order] # reorder axis to keep things organized indices = ( np.arange(diff.shape[axis]).reshape([2, diff.shape[axis] // 2]).T.flatten() ) diff = diff.take(indices, axis=axis) return diff @doc(**_shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): """ Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters ---------- other : DataFrame or Series join : {{'outer', 'inner', 'left', 'right'}}, default 'outer' axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None). level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. copy : bool, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None Method to use for filling holes in reindexed Series: - pad / ffill: propagate last valid observation forward to next valid. - backfill / bfill: use NEXT valid observation to fill gap. limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis : {axes_single_arg}, default 0 Filling axis, method and limit. broadcast_axis : {axes_single_arg}, default None Broadcast values along this axis, if aligning two objects of different dimensions. Returns ------- (left, right) : ({klass}, type of other) Aligned objects. """ method = missing.clean_fill_method(method) if broadcast_axis == 1 and self.ndim != other.ndim: if isinstance(self, ABCSeries): # this means other is a DataFrame, and we need to broadcast # self cons = self._constructor_expanddim df = cons( {c: self for c in other.columns}, **other._construct_axes_dict() ) return df._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): # this means self is a DataFrame, and we need to broadcast # other cons = other._constructor_expanddim df = cons( {c: other for c in self.columns}, **self._construct_axes_dict() ) return self._align_frame( df, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) if axis is not None: axis = self._get_axis_number(axis) if isinstance(other, ABCDataFrame): return self._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): return self._align_series( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def _align_frame( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): # defaults join_index, join_columns = None, None ilidx, iridx = None, None clidx, cridx = None, None is_series = isinstance(self, ABCSeries) if axis is None or axis == 0: if not self.index.equals(other.index): join_index, ilidx, iridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if axis is None or axis == 1: if not is_series and not self.columns.equals(other.columns): join_columns, clidx, cridx = self.columns.join( other.columns, how=join, level=level, return_indexers=True ) if is_series: reindexers = {0: [join_index, ilidx]} else: reindexers = {0: [join_index, ilidx], 1: [join_columns, clidx]} left = self._reindex_with_indexers( reindexers, copy=copy, fill_value=fill_value, allow_dups=True ) # other must be always DataFrame right = other._reindex_with_indexers( {0: [join_index, iridx], 1: [join_columns, cridx]}, copy=copy, fill_value=fill_value, allow_dups=True, ) if method is not None: _left = left.fillna(method=method, axis=fill_axis, limit=limit) assert _left is not None # needed for mypy left = _left right = right.fillna(method=method, axis=fill_axis, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_datetime64tz_dtype(left.index.dtype): if left.index.tz != right.index.tz: if join_index is not None: # GH#33671 ensure we don't change the index on # our original Series (NB: by default deep=False) left = left.copy() right = right.copy() left.index = join_index right.index = join_index return ( left.__finalize__(self), right.__finalize__(other), ) def _align_series( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): is_series = isinstance(self, ABCSeries) # series/series compat, other must always be a Series if is_series: if axis: raise ValueError("cannot align series to a series other than axis 0") # equal if self.index.equals(other.index): join_index, lidx, ridx = None, None, None else: join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) left = self._reindex_indexer(join_index, lidx, copy) right = other._reindex_indexer(join_index, ridx, copy) else: # one has > 1 ndim fdata = self._mgr if axis == 0: join_index = self.index lidx, ridx = None, None if not self.index.equals(other.index): join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=1) elif axis == 1: join_index = self.columns lidx, ridx = None, None if not self.columns.equals(other.index): join_index, lidx, ridx = self.columns.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=0) else: raise ValueError("Must specify axis=0 or 1") if copy and fdata is self._mgr: fdata = fdata.copy() left = self._constructor(fdata) if ridx is None: right = other else: right = other.reindex(join_index, level=level) # fill fill_na = notna(fill_value) or (method is not None) if fill_na: left = left.fillna(fill_value, method=method, limit=limit, axis=fill_axis) right = right.fillna(fill_value, method=method, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_series or (not is_series and axis == 0): if is_datetime64tz_dtype(left.index.dtype): if left.index.tz != right.index.tz: if join_index is not None: # GH#33671 ensure we don't change the index on # our original Series (NB: by default deep=False) left = left.copy() right = right.copy() left.index = join_index right.index = join_index return ( left.__finalize__(self), right.__finalize__(other), ) def _where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): """ Equivalent to public method `where`, except that `other` is not applied as a function even if callable. Used in __setitem__. """ inplace = validate_bool_kwarg(inplace, "inplace") # align the cond to same shape as myself cond = com.apply_if_callable(cond, self) if isinstance(cond, NDFrame): cond, _ = cond.align(self, join="right", broadcast_axis=1) else: if not hasattr(cond, "shape"): cond = np.asanyarray(cond) if cond.shape != self.shape: raise ValueError("Array conditional must be same shape as self") cond = self._constructor(cond, **self._construct_axes_dict()) # make sure we are boolean fill_value = bool(inplace) cond = cond.fillna(fill_value) msg = "Boolean array expected for the condition, not {dtype}" if not cond.empty: if not isinstance(cond, ABCDataFrame): # This is a single-dimensional object. if not is_bool_dtype(cond): raise ValueError(msg.format(dtype=cond.dtype)) else: for dt in cond.dtypes: if not is_bool_dtype(dt): raise ValueError(msg.format(dtype=dt)) else: # GH#21947 we have an empty DataFrame/Series, could be object-dtype cond = cond.astype(bool) cond = -cond if inplace else cond # try to align with other try_quick = True if isinstance(other, NDFrame): # align with me if other.ndim <= self.ndim: _, other = self.align( other, join="left", axis=axis, level=level, fill_value=np.nan ) # if we are NOT aligned, raise as we cannot where index if axis is None and not all( other._get_axis(i).equals(ax) for i, ax in enumerate(self.axes) ): raise InvalidIndexError # slice me out of the other else: raise NotImplementedError( "cannot align with a higher dimensional NDFrame" ) if isinstance(other, np.ndarray): if other.shape != self.shape: if self.ndim == 1: icond = cond._values # GH 2745 / GH 4192 # treat like a scalar if len(other) == 1: other = other[0] # GH 3235 # match True cond to other elif len(cond[icond]) == len(other): # try to not change dtype at first (if try_quick) if try_quick: new_other = np.asarray(self) new_other = new_other.copy() new_other[icond] = other other = new_other else: raise ValueError( "Length of replacements must equal series length" ) else: raise ValueError( "other must be the same shape as self when an ndarray" ) # we are the same shape, so create an actual object for alignment else: other = self._constructor(other, **self._construct_axes_dict()) if axis is None: axis = 0 if self.ndim == getattr(other, "ndim", 0): align = True else: align = self._get_axis_number(axis) == 1 if align and isinstance(other, NDFrame): other = other.reindex(self._info_axis, axis=self._info_axis_number) if isinstance(cond, NDFrame): cond = cond.reindex(self._info_axis, axis=self._info_axis_number) block_axis = self._get_block_manager_axis(axis) if inplace: # we may have different type blocks come out of putmask, so # reconstruct the block manager self._check_inplace_setting(other) new_data = self._mgr.putmask( mask=cond, new=other, align=align, axis=block_axis ) result = self._constructor(new_data) return self._update_inplace(result) else: new_data = self._mgr.where( other=other, cond=cond, align=align, errors=errors, try_cast=try_cast, axis=block_axis, ) result = self._constructor(new_data) return result.__finalize__(self) @doc( klass=_shared_doc_kwargs["klass"], cond="True", cond_rev="False", name="where", name_other="mask", ) def where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): """ Replace values where the condition is {cond_rev}. Parameters ---------- cond : bool {klass}, array-like, or callable Where `cond` is {cond}, keep the original value. Where {cond_rev}, replace with corresponding value from `other`. If `cond` is callable, it is computed on the {klass} and should return boolean {klass} or array. The callable must not change input {klass} (though pandas doesn't check it). other : scalar, {klass}, or callable Entries where `cond` is {cond_rev} are replaced with corresponding value from `other`. If other is callable, it is computed on the {klass} and should return scalar or {klass}. The callable must not change input {klass} (though pandas doesn't check it). inplace : bool, default False Whether to perform the operation in place on the data. axis : int, default None Alignment axis if needed. level : int, default None Alignment level if needed. errors : str, {{'raise', 'ignore'}}, default 'raise' Note that currently this parameter won't affect the results and will always coerce to a suitable dtype. - 'raise' : allow exceptions to be raised. - 'ignore' : suppress exceptions. On error return original object. try_cast : bool, default False Try to cast the result back to the input type (if possible). Returns ------- Same type as caller See Also -------- :func:`DataFrame.{name_other}` : Return an object of same shape as self. Notes ----- The {name} method is an application of the if-then idiom. For each element in the calling DataFrame, if ``cond`` is ``{cond}`` the element is used; otherwise the corresponding element from the DataFrame ``other`` is used. The signature for :func:`DataFrame.where` differs from :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to ``np.where(m, df1, df2)``. For further details and examples see the ``{name}`` documentation in :ref:`indexing <indexing.where_mask>`. Examples -------- >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 >>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True """ other = com.apply_if_callable(other, self) return self._where( cond, other, inplace, axis, level, errors=errors, try_cast=try_cast ) @doc( where, klass=_shared_doc_kwargs["klass"], cond="False", cond_rev="True", name="mask", name_other="where", ) def mask( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): inplace = validate_bool_kwarg(inplace, "inplace") cond = com.apply_if_callable(cond, self) # see gh-21891 if not hasattr(cond, "__invert__"): cond = np.array(cond) return self.where( ~cond, other=other, inplace=inplace, axis=axis, level=level, try_cast=try_cast, errors=errors, ) @doc(klass=_shared_doc_kwargs["klass"]) def shift( self: FrameOrSeries, periods=1, freq=None, axis=0, fill_value=None ) -> FrameOrSeries: """ Shift index by desired number of periods with an optional time `freq`. When `freq` is not passed, shift the index without realigning the data. If `freq` is passed (in this case, the index must be date or datetime, or it will raise a `NotImplementedError`), the index will be increased using the periods and the `freq`. `freq` can be inferred when specified as "infer" as long as either freq or inferred_freq attribute is set in the index. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. freq : DateOffset, tseries.offsets, timedelta, or str, optional Offset to use from the tseries module or time rule (e.g. 'EOM'). If `freq` is specified then the index values are shifted but the data is not realigned. That is, use `freq` if you would like to extend the index when shifting and preserve the original data. If `freq` is specified as "infer" then it will be inferred from the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown. axis : {{0 or 'index', 1 or 'columns', None}}, default None Shift direction. fill_value : object, optional The scalar value to use for newly introduced missing values. the default depends on the dtype of `self`. For numeric data, ``np.nan`` is used. For datetime, timedelta, or period data, etc. :attr:`NaT` is used. For extension dtypes, ``self.dtype.na_value`` is used. .. versionchanged:: 1.1.0 Returns ------- {klass} Copy of input object, shifted. See Also -------- Index.shift : Shift values of Index. DatetimeIndex.shift : Shift values of DatetimeIndex. PeriodIndex.shift : Shift values of PeriodIndex. tshift : Shift the time index, using the index's frequency if available. Examples -------- >>> df = pd.DataFrame({{"Col1": [10, 20, 15, 30, 45], ... "Col2": [13, 23, 18, 33, 48], ... "Col3": [17, 27, 22, 37, 52]}}, ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> df Col1 Col2 Col3 2020-01-01 10 13 17 2020-01-02 20 23 27 2020-01-03 15 18 22 2020-01-04 30 33 37 2020-01-05 45 48 52 >>> df.shift(periods=3) Col1 Col2 Col3 2020-01-01 NaN NaN NaN 2020-01-02 NaN NaN NaN 2020-01-03 NaN NaN NaN 2020-01-04 10.0 13.0 17.0 2020-01-05 20.0 23.0 27.0 >>> df.shift(periods=1, axis="columns") Col1 Col2 Col3 2020-01-01 NaN 10.0 13.0 2020-01-02 NaN 20.0 23.0 2020-01-03 NaN 15.0 18.0 2020-01-04 NaN 30.0 33.0 2020-01-05 NaN 45.0 48.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 2020-01-01 0 0 0 2020-01-02 0 0 0 2020-01-03 0 0 0 2020-01-04 10 13 17 2020-01-05 20 23 27 >>> df.shift(periods=3, freq="D") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52 >>> df.shift(periods=3, freq="infer") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52 """ if periods == 0: return self.copy() if freq is None: # when freq is None, data is shifted, index is not block_axis = self._get_block_manager_axis(axis) new_data = self._mgr.shift( periods=periods, axis=block_axis, fill_value=fill_value ) return self._constructor(new_data).__finalize__(self, method="shift") # when freq is given, index is shifted, data is not index = self._get_axis(axis) if freq == "infer": freq = getattr(index, "freq", None) if freq is None: freq = getattr(index, "inferred_freq", None) if freq is None: msg = "Freq was not set in the index hence cannot be inferred" raise ValueError(msg) elif isinstance(freq, str): freq = to_offset(freq) if isinstance(index, PeriodIndex): orig_freq = to_offset(index.freq) if freq != orig_freq: assert orig_freq is not None # for mypy raise ValueError( f"Given freq {freq.rule_code} does not match " f"PeriodIndex freq {orig_freq.rule_code}" ) new_ax = index.shift(periods) else: new_ax = index.shift(periods, freq) result = self.set_axis(new_ax, axis) return result.__finalize__(self, method="shift") def slice_shift(self: FrameOrSeries, periods: int = 1, axis=0) -> FrameOrSeries: """ Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters ---------- periods : int Number of periods to move, can be positive or negative. Returns ------- shifted : same type as caller Notes ----- While the `slice_shift` is faster than `shift`, you may pay for it later during alignment. """ if periods == 0: return self if periods > 0: vslicer = slice(None, -periods) islicer = slice(periods, None) else: vslicer = slice(-periods, None) islicer = slice(None, periods) new_obj = self._slice(vslicer, axis=axis) shifted_axis = self._get_axis(axis)[islicer] new_obj.set_axis(shifted_axis, axis=axis, inplace=True) return new_obj.__finalize__(self, method="slice_shift") def tshift( self: FrameOrSeries, periods: int = 1, freq=None, axis: Axis = 0 ) -> FrameOrSeries: """ Shift the time index, using the index's frequency if available. .. deprecated:: 1.1.0 Use `shift` instead. Parameters ---------- periods : int Number of periods to move, can be positive or negative. freq : DateOffset, timedelta, or str, default None Increment to use from the tseries module or time rule expressed as a string (e.g. 'EOM'). axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0 Corresponds to the axis that contains the Index. Returns ------- shifted : Series/DataFrame Notes ----- If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown """ warnings.warn( ( "tshift is deprecated and will be removed in a future version. " "Please use shift instead." ), FutureWarning, stacklevel=2, ) if freq is None: freq = "infer" return self.shift(periods, freq, axis) def truncate( self: FrameOrSeries, before=None, after=None, axis=None, copy: bool_t = True ) -> FrameOrSeries: """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters ---------- before : date, str, int Truncate all rows before this index value. after : date, str, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : bool, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Notes ----- If the index being truncated contains only datetime values, `before` and `after` may be specified as strings instead of Timestamps. Examples -------- >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in ``truncate`` can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify `before` and `after` as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that ``truncate`` assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) ax = self._get_axis(axis) # GH 17935 # Check that index is sorted if not ax.is_monotonic_increasing and not ax.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") # if we have a date index, convert to dates, otherwise # treat like a slice if ax._is_all_dates: if is_object_dtype(ax.dtype): warnings.warn( "Treating object-dtype Index of date objects as DatetimeIndex " "is deprecated, will be removed in a future version.", FutureWarning, ) from pandas.core.tools.datetimes import to_datetime before = to_datetime(before) after = to_datetime(after) if before is not None and after is not None: if before > after: raise ValueError(f"Truncate: {after} must be after {before}") if len(ax) > 1 and ax.is_monotonic_decreasing: before, after = after, before slicer = [slice(None, None)] * self._AXIS_LEN slicer[axis] = slice(before, after) result = self.loc[tuple(slicer)] if isinstance(ax, MultiIndex): setattr(result, self._get_axis_name(axis), ax.truncate(before, after)) if copy: result = result.copy() return result def tz_convert( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True ) -> FrameOrSeries: """ Convert tz-aware axis to target time zone. Parameters ---------- tz : str or tzinfo object axis : the axis to convert level : int, str, default None If axis is a MultiIndex, convert a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. Returns ------- {klass} Object with time zone converted axis. Raises ------ TypeError If the axis is tz-naive. """ axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_convert(ax, tz): if not hasattr(ax, "tz_convert"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_convert(tz) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_convert(ax.levels[level], tz) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_convert(ax, tz) result = self.copy(deep=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self, method="tz_convert") def tz_localize( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True, ambiguous="raise", nonexistent: str = "raise", ) -> FrameOrSeries: """ Localize tz-naive index of a Series or DataFrame to target time zone. This operation localizes the Index. To localize the values in a timezone-naive Series, use :meth:`Series.dt.tz_localize`. Parameters ---------- tz : str or tzinfo axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. nonexistent : str, default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are: - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Same type as the input. Raises ------ TypeError If the TimeSeries is tz-aware and tz is not None. Examples -------- Localize local times: >>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64 Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.Series(range(7), ... index=pd.DatetimeIndex(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.Series(range(3), ... index=pd.DatetimeIndex(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64 If the DST transition causes nonexistent times, you can shift these dates forward or backward with a timedelta object or `'shift_forward'` or `'shift_backward'`. >>> s = pd.Series(range(2), ... index=pd.DatetimeIndex(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 """ nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward") if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta ): raise ValueError( "The nonexistent argument must be one of 'raise', " "'NaT', 'shift_forward', 'shift_backward' or " "a timedelta object" ) axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_localize(ax, tz, ambiguous, nonexistent): if not hasattr(ax, "tz_localize"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_localize(tz, ambiguous=ambiguous, nonexistent=nonexistent) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_localize(ax.levels[level], tz, ambiguous, nonexistent) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_localize(ax, tz, ambiguous, nonexistent) result = self.copy(deep=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self, method="tz_localize") # ---------------------------------------------------------------------- # Numeric Methods def abs(self: FrameOrSeries) -> FrameOrSeries: """ Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns ------- abs Series/DataFrame containing the absolute value of each element. See Also -------- numpy.absolute : Calculate the absolute value element-wise. Notes ----- For ``complex`` inputs, ``1.2 + 1j``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from `StackOverflow <https://stackoverflow.com/a/17758115>`__). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50 """ return np.abs(self) def describe( self: FrameOrSeries, percentiles=None, include=None, exclude=None, datetime_is_numeric=False, ) -> FrameOrSeries: """ Generate descriptive statistics. Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and 75th percentiles. include : 'all', list-like of dtypes or None (default), optional A white list of data types to include in the result. Ignored for ``Series``. Here are the options: - 'all' : All columns of the input will be included in the output. - A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit ``numpy.number``. To limit it instead to object columns submit the ``numpy.object`` data type. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To select pandas categorical columns, use ``'category'`` - None (default) : The result will include all numeric columns. exclude : list-like of dtypes or None (default), optional, A black list of data types to omit from the result. Ignored for ``Series``. Here are the options: - A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit ``numpy.number``. To exclude object columns submit the data type ``numpy.object``. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To exclude pandas categorical columns, use ``'category'`` - None (default) : The result will exclude nothing. datetime_is_numeric : bool, default False Whether to treat datetime dtypes as numeric. This affects statistics calculated for the column. For DataFrame input, this also controls whether datetime columns are included by default. .. versionadded:: 1.1.0 Returns ------- Series or DataFrame Summary statistics of the Series or Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. DataFrame.select_dtypes: Subset of a DataFrame including/excluding columns based on their dtype. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and upper percentiles. By default the lower percentile is ``25`` and the upper percentile is ``75``. The ``50`` percentile is the same as the median. For object data (e.g. strings or timestamps), the result's index will include ``count``, ``unique``, ``top``, and ``freq``. The ``top`` is the most common value. The ``freq`` is the most common value's frequency. Timestamps also include the ``first`` and ``last`` items. If multiple object values have the highest count, then the ``count`` and ``top`` results will be arbitrarily chosen from among those with the highest count. For mixed data types provided via a ``DataFrame``, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If ``include='all'`` is provided as an option, the result will include a union of attributes of each type. The `include` and `exclude` parameters can be used to limit which columns in a ``DataFrame`` are analyzed for the output. The parameters are ignored when analyzing a ``Series``. Examples -------- Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe(datetime_is_numeric=True) count 3 mean 2006-09-01 08:00:00 min 2000-01-01 00:00:00 25% 2004-12-31 12:00:00 50% 2010-01-01 00:00:00 75% 2010-01-01 00:00:00 max 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') # doctest: +SKIP categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN a freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[object]) # doctest: +SKIP object count 3 unique 3 top a freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) # doctest: +SKIP categorical object count 3 3 unique 3 3 top f a freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[object]) # doctest: +SKIP categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0 """ if self.ndim == 2 and self.columns.size == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: # explicit conversion of `percentiles` to list percentiles = list(percentiles) # get them all to be in [0, 1] validate_percentile(percentiles) # median should always be included if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.asarray(percentiles) else: percentiles = np.array([0.25, 0.5, 0.75]) # sort and check for duplicates unique_pcts = np.unique(percentiles) if len(unique_pcts) < len(percentiles): raise ValueError("percentiles cannot contain duplicates") percentiles = unique_pcts formatted_percentiles = format_percentiles(percentiles) def describe_numeric_1d(series): stat_index = ( ["count", "mean", "std", "min"] + formatted_percentiles + ["max"] ) d = ( [series.count(), series.mean(), series.std(), series.min()] + series.quantile(percentiles).tolist() + [series.max()] ) return pd.Series(d, index=stat_index, name=series.name) def describe_categorical_1d(data): names = ["count", "unique"] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) result = [data.count(), count_unique] dtype = None if result[1] > 0: top, freq = objcounts.index[0], objcounts.iloc[0] if is_datetime64_any_dtype(data.dtype): if self.ndim == 1: stacklevel = 4 else: stacklevel = 5 warnings.warn( "Treating datetime data as categorical rather than numeric in " "`.describe` is deprecated and will be removed in a future " "version of pandas. Specify `datetime_is_numeric=True` to " "silence this warning and adopt the future behavior now.", FutureWarning, stacklevel=stacklevel, ) tz = data.dt.tz asint = data.dropna().values.view("i8") top = Timestamp(top) if top.tzinfo is not None and tz is not None: # Don't tz_localize(None) if key is already tz-aware top = top.tz_convert(tz) else: top = top.tz_localize(tz) names += ["top", "freq", "first", "last"] result += [ top, freq, Timestamp(asint.min(), tz=tz), Timestamp(asint.max(), tz=tz), ] else: names += ["top", "freq"] result += [top, freq] # If the DataFrame is empty, set 'top' and 'freq' to None # to maintain output shape consistency else: names += ["top", "freq"] result += [np.nan, np.nan] dtype = "object" return pd.Series(result, index=names, name=data.name, dtype=dtype) def describe_timestamp_1d(data): # GH-30164 stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"] d = ( [data.count(), data.mean(), data.min()] + data.quantile(percentiles).tolist() + [data.max()] ) return pd.Series(d, index=stat_index, name=data.name) def describe_1d(data): if is_bool_dtype(data.dtype): return describe_categorical_1d(data) elif is_numeric_dtype(data): return describe_numeric_1d(data) elif is_datetime64_any_dtype(data.dtype) and datetime_is_numeric: return describe_timestamp_1d(data) elif is_timedelta64_dtype(data.dtype): return describe_numeric_1d(data) else: return describe_categorical_1d(data) if self.ndim == 1: return describe_1d(self) elif (include is None) and (exclude is None): # when some numerics are found, keep only numerics default_include = [np.number] if datetime_is_numeric: default_include.append("datetime") data = self.select_dtypes(include=default_include) if len(data.columns) == 0: data = self elif include == "all": if exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) data = self else: data = self.select_dtypes(include=include, exclude=exclude) ldesc = [describe_1d(s) for _, s in data.items()] # set a convenient order for rows names: List[Label] = [] ldesc_indexes = sorted((x.index for x in ldesc), key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) d = pd.concat([x.reindex(names, copy=False) for x in ldesc], axis=1, sort=False) d.columns = data.columns.copy() return d def pct_change( self: FrameOrSeries, periods=1, fill_method="pad", limit=None, freq=None, **kwargs, ) -> FrameOrSeries: """ Percentage change between the current and a prior element. Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'pad' How to handle NAs before computing percent changes. limit : int, default None The number of consecutive NAs to fill before stopping. freq : DateOffset, timedelta, or str, optional Increment to use from time series API (e.g. 'M' or BDay()). **kwargs Additional keyword arguments are passed into `DataFrame.shift` or `Series.shift`. Returns ------- chg : Series or DataFrame The same type as the calling object. See Also -------- Series.diff : Compute the difference of two elements in a Series. DataFrame.diff : Compute the difference of two elements in a DataFrame. Series.shift : Shift the index by some number of periods. DataFrame.shift : Shift the index by some number of periods. Examples -------- **Series** >>> s = pd.Series([90, 91, 85]) >>> s 0 90 1 91 2 85 dtype: int64 >>> s.pct_change() 0 NaN 1 0.011111 2 -0.065934 dtype: float64 >>> s.pct_change(periods=2) 0 NaN 1 NaN 2 -0.055556 dtype: float64 See the percentage change in a Series where filling NAs with last valid observation forward to next valid. >>> s = pd.Series([90, 91, None, 85]) >>> s 0 90.0 1 91.0 2 NaN 3 85.0 dtype: float64 >>> s.pct_change(fill_method='ffill') 0 NaN 1 0.011111 2 0.000000 3 -0.065934 dtype: float64 **DataFrame** Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01. >>> df = pd.DataFrame(dict( ... FR=[4.0405, 4.0963, 4.3149], ... GR=[1.7246, 1.7482, 1.8519], ... IT=[804.74, 810.01, 860.13]), ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13 >>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876 Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns. >>> df = pd.DataFrame(dict([ ... ('2016', [1769950, 30586265]), ... ('2015', [1500923, 40912316]), ... ('2014', [1371819, 41403351])]), ... index=['GOOG', 'APPL']) >>> df 2016 2015 2014 GOOG 1769950 1500923 1371819 APPL 30586265 40912316 41403351 >>> df.pct_change(axis='columns') 2016 2015 2014 GOOG NaN -0.151997 -0.086016 APPL NaN 0.337604 0.012002 """ axis = self._get_axis_number(kwargs.pop("axis", self._stat_axis_name)) if fill_method is None: data = self else: _data = self.fillna(method=fill_method, axis=axis, limit=limit) assert _data is not None # needed for mypy data = _data rs = data.div(data.shift(periods=periods, freq=freq, axis=axis, **kwargs)) - 1 if freq is not None: # Shift method is implemented differently when freq is not None # We want to restore the original index rs = rs.loc[~rs.index.duplicated()] rs = rs.reindex_like(data) return rs def _agg_by_level(self, name, axis=0, level=0, skipna=True, **kwargs): if axis is None: raise ValueError("Must specify 'axis' when aggregating by level.") grouped = self.groupby(level=level, axis=axis, sort=False) if hasattr(grouped, name) and skipna: return getattr(grouped, name)(**kwargs) axis = self._get_axis_number(axis) method = getattr(type(self), name) applyf = lambda x: method(x, axis=axis, skipna=skipna, **kwargs) return grouped.aggregate(applyf) @classmethod def _add_numeric_operations(cls): """ Add the operations to the cls; evaluate the doc strings again """ axis_descr, name1, name2 = _doc_parms(cls) cls.any = _make_logical_function( cls, "any", name1=name1, name2=name2, axis_descr=axis_descr, desc=_any_desc, func=nanops.nanany, see_also=_any_see_also, examples=_any_examples, empty_value=False, ) cls.all = _make_logical_function( cls, "all", name1=name1, name2=name2, axis_descr=axis_descr, desc=_all_desc, func=nanops.nanall, see_also=_all_see_also, examples=_all_examples, empty_value=True, ) @doc( desc="Return the mean absolute deviation of the values " "for the requested axis.", name1=name1, name2=name2, axis_descr=axis_descr, see_also="", examples="", ) def mad(self, axis=None, skipna=None, level=None): """ {desc} Parameters ---------- axis : {axis_descr} Axis for the function to be applied on. skipna : bool, default None Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a {name1}. Returns ------- {name1} or {name2} (if level specified)\ {see_also}\ {examples} """ if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level("mad", axis=axis, level=level, skipna=skipna) data = self._get_numeric_data() if axis == 0: demeaned = data - data.mean(axis=0) else: demeaned = data.sub(data.mean(axis=1), axis=0) return np.abs(demeaned).mean(axis=axis, skipna=skipna) cls.mad = mad cls.sem = _make_stat_function_ddof( cls, "sem", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return unbiased standard error of the mean over requested " "axis.\n\nNormalized by N-1 by default. This can be changed " "using the ddof argument", func=nanops.nansem, ) cls.var = _make_stat_function_ddof( cls, "var", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return unbiased variance over requested axis.\n\nNormalized by " "N-1 by default. This can be changed using the ddof argument", func=nanops.nanvar, ) cls.std = _make_stat_function_ddof( cls, "std", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return sample standard deviation over requested axis." "\n\nNormalized by N-1 by default. This can be changed using the " "ddof argument", func=nanops.nanstd, ) cls.cummin = _make_cum_function( cls, "cummin", name1=name1, name2=name2, axis_descr=axis_descr, desc="minimum", accum_func=np.minimum.accumulate, accum_func_name="min", examples=_cummin_examples, ) cls.cumsum = _make_cum_function( cls, "cumsum", name1=name1, name2=name2, axis_descr=axis_descr, desc="sum", accum_func=np.cumsum, accum_func_name="sum", examples=_cumsum_examples, ) cls.cumprod = _make_cum_function( cls, "cumprod", name1=name1, name2=name2, axis_descr=axis_descr, desc="product", accum_func=np.cumprod, accum_func_name="prod", examples=_cumprod_examples, ) cls.cummax = _make_cum_function( cls, "cummax", name1=name1, name2=name2, axis_descr=axis_descr, desc="maximum", accum_func=np.maximum.accumulate, accum_func_name="max", examples=_cummax_examples, ) cls.sum = _make_min_count_stat_function( cls, "sum", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the sum of the values for the requested axis.\n\n" "This is equivalent to the method ``numpy.sum``.", func=nanops.nansum, see_also=_stat_func_see_also, examples=_sum_examples, ) cls.mean = _make_stat_function( cls, "mean", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the mean of the values for the requested axis.", func=nanops.nanmean, ) cls.skew = _make_stat_function( cls, "skew", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return unbiased skew over requested axis.\n\nNormalized by N-1.", func=nanops.nanskew, ) cls.kurt = _make_stat_function( cls, "kurt", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return unbiased kurtosis over requested axis.\n\n" "Kurtosis obtained using Fisher's definition of\n" "kurtosis (kurtosis of normal == 0.0). Normalized " "by N-1.", func=nanops.nankurt, ) cls.kurtosis = cls.kurt cls.prod = _make_min_count_stat_function( cls, "prod", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the product of the values for the requested axis.", func=nanops.nanprod, examples=_prod_examples, ) cls.product = cls.prod cls.median = _make_stat_function( cls, "median", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the median of the values for the requested axis.", func=nanops.nanmedian, ) cls.max = _make_stat_function( cls, "max", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the maximum of the values for the requested axis.\n\n" "If you want the *index* of the maximum, use ``idxmax``. This is" "the equivalent of the ``numpy.ndarray`` method ``argmax``.", func=nanops.nanmax, see_also=_stat_func_see_also, examples=_max_examples, ) cls.min = _make_stat_function( cls, "min", name1=name1, name2=name2, axis_descr=axis_descr, desc="Return the minimum of the values for the requested axis.\n\n" "If you want the *index* of the minimum, use ``idxmin``. This is" "the equivalent of the ``numpy.ndarray`` method ``argmin``.", func=nanops.nanmin, see_also=_stat_func_see_also, examples=_min_examples, ) @doc(Rolling) def rolling( self, window: Union[int, timedelta, BaseOffset, BaseIndexer], min_periods: Optional[int] = None, center: bool_t = False, win_type: Optional[str] = None, on: Optional[str] = None, axis: Axis = 0, closed: Optional[str] = None, ): axis = self._get_axis_number(axis) if win_type is not None: return Window( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) return Rolling( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) @doc(Expanding) def expanding( self, min_periods: int = 1, center: Optional[bool_t] = None, axis: Axis = 0 ) -> Expanding: axis = self._get_axis_number(axis) if center is not None: warnings.warn( "The `center` argument on `expanding` will be removed in the future", FutureWarning, stacklevel=2, ) else: center = False return Expanding(self, min_periods=min_periods, center=center, axis=axis) @doc(ExponentialMovingWindow) def ewm( self, com: Optional[float] = None, span: Optional[float] = None, halflife: Optional[Union[float, TimedeltaConvertibleTypes]] = None, alpha: Optional[float] = None, min_periods: int = 0, adjust: bool_t = True, ignore_na: bool_t = False, axis: Axis = 0, times: Optional[Union[str, np.ndarray, FrameOrSeries]] = None, ) -> ExponentialMovingWindow: axis = self._get_axis_number(axis) return ExponentialMovingWindow( self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis, times=times, ) # ---------------------------------------------------------------------- # Misc methods def _find_valid_index(self, how: str): """ Retrieves the index of the first valid value. Parameters ---------- how : {'first', 'last'} Use this parameter to change between the first or last valid index. Returns ------- idx_first_valid : type of index """ idxpos = find_valid_index(self._values, how) if idxpos is None: return None return self.index[idxpos] @doc(position="first", klass=_shared_doc_kwargs["klass"]) def first_valid_index(self): """ Return index for {position} non-NA/null value. Returns ------- scalar : type of index Notes ----- If all elements are non-NA/null, returns None. Also returns None for empty {klass}. """ return self._find_valid_index("first") @doc(first_valid_index, position="last", klass=_shared_doc_kwargs["klass"]) def last_valid_index(self): return self._find_valid_index("last") def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = ( f"{{{', '.join(f'{a} ({i})' for i, a in enumerate(cls._AXIS_ORDERS))}}}" ) name = cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else "scalar" name2 = cls.__name__ return axis_descr, name, name2 _num_doc = """ {desc} Parameters ---------- axis : {axis_descr} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a {name1}. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. {min_count}\ **kwargs Additional keyword arguments to be passed to the function. Returns ------- {name1} or {name2} (if level specified)\ {see_also}\ {examples} """ _num_ddof_doc = """ {desc} Parameters ---------- axis : {axis_descr} skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a {name1}. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns ------- {name1} or {name2} (if level specified) Notes ----- To have the same behaviour as `numpy.std`, use `ddof=0` (instead of the default `ddof=1`)\n""" _bool_doc = """ {desc} Parameters ---------- axis : {{0 or 'index', 1 or 'columns', None}}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. * 1 / 'columns' : reduce the columns, return a Series whose index is the original index. * None : reduce all axes, return a scalar. bool_only : bool, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. skipna : bool, default True Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be {empty_value}, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a {name1}. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- {name1} or {name2} If level is specified, then, {name2} is returned; otherwise, {name1} is returned. {see_also} {examples}""" _all_desc = """\ Return whether all elements are True, potentially over an axis. Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).""" _all_examples = """\ Examples -------- **Series** >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([]).all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True **DataFrames** Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if column-wise values all return True. >>> df.all() col1 True col2 False dtype: bool Specify ``axis='columns'`` to check if row-wise values all return True. >>> df.all(axis='columns') 0 True 1 False dtype: bool Or ``axis=None`` for whether every value is True. >>> df.all(axis=None) False """ _all_see_also = """\ See Also -------- Series.all : Return True if all elements are True. DataFrame.any : Return True if one (or more) elements are True. """ _cnum_doc = """ Return cumulative {desc} over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative {desc}. Parameters ---------- axis : {{0 or 'index', 1 or 'columns'}}, default 0 The index or the name of the axis. 0 is equivalent to None or 'index'. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- {name1} or {name2} Return cumulative {desc} of {name1} or {name2}. See Also -------- core.window.Expanding.{accum_func_name} : Similar functionality but ignores ``NaN`` values. {name2}.{accum_func_name} : Return the {desc} over {name2} axis. {name2}.cummax : Return cumulative maximum over {name2} axis. {name2}.cummin : Return cumulative minimum over {name2} axis. {name2}.cumsum : Return cumulative sum over {name2} axis. {name2}.cumprod : Return cumulative product over {name2} axis. {examples}""" _cummin_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 To iterate over columns and find the minimum in each row, use ``axis=1`` >>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 """ _cumsum_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use ``axis=1`` >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0 """ _cumprod_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumprod() 0 2.0 1 NaN 2 10.0 3 -10.0 4 -0.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumprod(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the product in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 6.0 0.0 To iterate over columns and find the product in each row, use ``axis=1`` >>> df.cumprod(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 0.0 """ _cummax_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 To iterate over columns and find the maximum in each row, use ``axis=1`` >>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0 """ _any_see_also = """\ See Also -------- numpy.any : Numpy version of this method. Series.any : Return whether any element is True. Series.all : Return whether all elements are True. DataFrame.any : Return whether any element is True over requested axis. DataFrame.all : Return whether all elements are True over requested axis. """ _any_desc = """\ Return whether any element is True, potentially over an axis. Returns False unless there at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).""" _any_examples = """\ Examples -------- **Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([]).any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool Aggregating over the entire DataFrame with ``axis=None``. >>> df.any(axis=None) True `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool) """ _shared_docs[ "stat_func_example" ] = """ Examples -------- >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.{stat_func}() {default_output} {verb} using level names, as well as indices. >>> s.{stat_func}(level='blooded') blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64 >>> s.{stat_func}(level=0) blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64""" _sum_examples = _shared_docs["stat_func_example"].format( stat_func="sum", verb="Sum", default_output=14, level_output_0=6, level_output_1=8 ) _sum_examples += """ By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([]).sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([]).sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan""" _max_examples = _shared_docs["stat_func_example"].format( stat_func="max", verb="Max", default_output=8, level_output_0=4, level_output_1=8 ) _min_examples = _shared_docs["stat_func_example"].format( stat_func="min", verb="Min", default_output=0, level_output_0=2, level_output_1=0 ) _stat_func_see_also = """ See Also -------- Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.""" _prod_examples = """ Examples -------- By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([]).prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan""" _min_count_stub = """\ min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. """ def _make_min_count_stat_function( cls, name: str, name1: str, name2: str, axis_descr: str, desc: str, func: Callable, see_also: str = "", examples: str = "", ) -> Callable: @doc( _num_doc, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count=_min_count_stub, see_also=see_also, examples=examples, ) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs, ): if name == "sum": nv.validate_sum(tuple(), kwargs) elif name == "prod": nv.validate_prod(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, min_count=min_count ) return self._reduce( func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) return set_function_name(stat_func, name, cls) def _make_stat_function( cls, name: str, name1: str, name2: str, axis_descr: str, desc: str, func: Callable, see_also: str = "", examples: str = "", ) -> Callable: @doc( _num_doc, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count="", see_also=see_also, examples=examples, ) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs ): if name == "median": nv.validate_median(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce( func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only ) return set_function_name(stat_func, name, cls) def _make_stat_function_ddof( cls, name: str, name1: str, name2: str, axis_descr: str, desc: str, func: Callable ) -> Callable: @doc(_num_ddof_doc, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr) def stat_func( self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs ): nv.validate_stat_ddof_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, ddof=ddof ) return self._reduce( func, name, axis=axis, numeric_only=numeric_only, skipna=skipna, ddof=ddof ) return set_function_name(stat_func, name, cls) def _make_cum_function( cls, name: str, name1: str, name2: str, axis_descr: str, desc: str, accum_func: Callable, accum_func_name: str, examples: str, ) -> Callable: @doc( _cnum_doc, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, accum_func_name=accum_func_name, examples=examples, ) def cum_func(self, axis=None, skipna=True, *args, **kwargs): skipna = nv.validate_cum_func_with_skipna(skipna, args, kwargs, name) if axis is None: axis = self._stat_axis_number else: axis = self._get_axis_number(axis) if axis == 1: return cum_func(self.T, axis=0, skipna=skipna, *args, **kwargs).T def block_accum_func(blk_values): values = blk_values.T if hasattr(blk_values, "T") else blk_values result = nanops.na_accum_func(values, accum_func, skipna=skipna) result = result.T if hasattr(result, "T") else result return result result = self._mgr.apply(block_accum_func) return self._constructor(result).__finalize__(self, method=name) return set_function_name(cum_func, name, cls) def _make_logical_function( cls, name: str, name1: str, name2: str, axis_descr: str, desc: str, func: Callable, see_also: str, examples: str, empty_value: bool, ) -> Callable: @doc( _bool_doc, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, see_also=see_also, examples=examples, empty_value=empty_value, ) def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): nv.validate_logical_func(tuple(), kwargs, fname=name) if level is not None: if bool_only is not None: raise NotImplementedError( "Option bool_only is not implemented with option level." ) return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) if self.ndim > 1 and axis is None: # Reduce along one dimension then the other, to simplify DataFrame._reduce res = logical_func( self, axis=0, bool_only=bool_only, skipna=skipna, **kwargs ) return logical_func(res, skipna=skipna, **kwargs) return self._reduce( func, name=name, axis=axis, skipna=skipna, numeric_only=bool_only, filter_type="bool", ) return set_function_name(logical_func, name, cls)
the-stack_106_27357
import win32api from lib.pywin32_keys import VK #check which key is pressed def check_key_pressed(): try: while True: for i in VK: if win32api.GetAsyncKeyState(VK[i]) !=0: return i except: print("Something went wrong while checking which key is pressed") #take id of key from library of virtual keys def give_vk_id(name): return VK[name] if __name__=="__main__": print("Please press the button:") name_of_key=check_key_pressed() print("You pressed: "+ name_of_key + ", id virtual key is: "+ str(give_vk_id(name_of_key))) #Also if you need to check again which key is press -> You need to wait some time -> Use time.spleep
the-stack_106_27360
# -*- coding: utf-8 -*- # Copyright 2018-2019 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import threading import socket import sys import errno import traceback import click from enum import Enum import tornado.concurrent import tornado.gen import tornado.ioloop import tornado.web import tornado.websocket from streamlit import config from streamlit import util from streamlit.ForwardMsgCache import ForwardMsgCache from streamlit.ForwardMsgCache import create_reference_msg from streamlit.ForwardMsgCache import populate_hash_if_needed from streamlit.ReportSession import ReportSession from streamlit.logger import get_logger from streamlit.proto.BackMsg_pb2 import BackMsg from streamlit.proto.ForwardMsg_pb2 import ForwardMsg from streamlit.server.routes import AddSlashHandler from streamlit.server.routes import DebugHandler from streamlit.server.routes import HealthHandler from streamlit.server.routes import MessageCacheHandler from streamlit.server.routes import MetricsHandler from streamlit.server.routes import StaticFileHandler from streamlit.server.server_util import MESSAGE_SIZE_LIMIT from streamlit.server.server_util import is_cacheable_msg from streamlit.server.server_util import is_url_from_allowed_origins from streamlit.server.server_util import make_url_path_regex from streamlit.server.server_util import serialize_forward_msg LOGGER = get_logger(__name__) TORNADO_SETTINGS = { "compress_response": True, # Gzip HTTP responses. "websocket_ping_interval": 20, # Ping every 20s to keep WS alive. "websocket_ping_timeout": 30, # Pings should be responded to within 30s. "websocket_max_message_size": MESSAGE_SIZE_LIMIT, # Up the WS size limit. } # Dictionary key used to mark the script execution context that starts # up before the first browser connects. PREHEATED_REPORT_SESSION = "PREHEATED_REPORT_SESSION" # When server.port is not available it will look for the next available port # up to MAX_PORT_SEARCH_RETRIES. MAX_PORT_SEARCH_RETRIES = 100 class SessionInfo(object): """Type stored in our _report_sessions dict. For each ReportSession, the server tracks that session's report_run_count. This is used to track the age of messages in the ForwardMsgCache. """ def __init__(self, session): """Initialize a SessionInfo instance. Parameters ---------- session : ReportSession """ self.session = session self.report_run_count = 0 class State(Enum): INITIAL = "INITIAL" WAITING_FOR_FIRST_BROWSER = "WAITING_FOR_FIRST_BROWSER" ONE_OR_MORE_BROWSERS_CONNECTED = "ONE_OR_MORE_BROWSERS_CONNECTED" NO_BROWSERS_CONNECTED = "NO_BROWSERS_CONNECTED" STOPPING = "STOPPING" STOPPED = "STOPPED" class RetriesExceeded(Exception): pass def server_port_is_manually_set(): return config.is_manually_set("server.port") def start_listening(app): """Takes the server start listening at the configured port. In case the port is already taken it tries listening to the next available port. It will error after MAX_PORT_SEARCH_RETRIES attempts. """ call_count = 0 while call_count < MAX_PORT_SEARCH_RETRIES: port = config.get_option("server.port") try: app.listen(port) break # It worked! So let's break out of the loop. except (OSError, socket.error) as e: if e.errno == errno.EADDRINUSE: if server_port_is_manually_set(): LOGGER.error("Port %s is already in use", port) sys.exit(1) else: LOGGER.debug( "Port %s already in use, trying to use the next one.", port ) port += 1 # Save port 3000 because it is used for the development # server in the front end. if port == 3000: port += 1 config._set_option( "server.port", port, config.ConfigOption.STREAMLIT_DEFINITION ) call_count += 1 else: raise if call_count >= MAX_PORT_SEARCH_RETRIES: raise RetriesExceeded( "Cannot start Streamlit server. Port %s is already in use, and " "Streamlit was unable to find a free port after %s attempts.", port, MAX_PORT_SEARCH_RETRIES, ) class Server(object): _singleton = None @classmethod def get_current(cls): """Return the singleton instance.""" if cls._singleton is None: raise RuntimeError("Server has not been initialized yet") return Server._singleton def __init__(self, ioloop, script_path, command_line): """Create the server. It won't be started yet. Parameters ---------- ioloop : tornado.ioloop.IOLoop script_path : str command_line : str """ if Server._singleton is not None: raise RuntimeError("Server already initialized. Use .get_current() instead") Server._singleton = self _set_tornado_log_levels() self._ioloop = ioloop self._script_path = script_path self._command_line = command_line # Mapping of WebSocket->SessionInfo. self._session_infos = {} self._must_stop = threading.Event() self._state = None self._set_state(State.INITIAL) self._message_cache = ForwardMsgCache() def start(self, on_started): """Start the server. Parameters ---------- on_started : callable A callback that will be called when the server's run-loop has started, and the server is ready to begin receiving clients. """ if self._state != State.INITIAL: raise RuntimeError("Server has already been started") LOGGER.debug("Starting server...") app = self._create_app() start_listening(app) port = config.get_option("server.port") LOGGER.debug("Server started on port %s", port) self._ioloop.spawn_callback(self._loop_coroutine, on_started) def get_debug(self): return {"report": self._report.get_debug()} def _create_app(self): """Create our tornado web app. Returns ------- tornado.web.Application """ base = config.get_option("server.baseUrlPath") routes = [ ( make_url_path_regex(base, "stream"), _BrowserWebSocketHandler, dict(server=self), ), ( make_url_path_regex(base, "healthz"), HealthHandler, dict(callback=lambda: self.is_ready_for_browser_connection), ), (make_url_path_regex(base, "debugz"), DebugHandler, dict(server=self)), (make_url_path_regex(base, "metrics"), MetricsHandler), ( make_url_path_regex(base, "message"), MessageCacheHandler, dict(cache=self._message_cache), ), ] if config.get_option("global.developmentMode") and config.get_option( "global.useNode" ): LOGGER.debug("Serving static content from the Node dev server") else: static_path = util.get_static_dir() LOGGER.debug("Serving static content from %s", static_path) routes.extend( [ ( make_url_path_regex(base, "(.*)"), StaticFileHandler, {"path": "%s/" % static_path, "default_filename": "index.html"}, ), ( make_url_path_regex(base, trailing_slash=False), AddSlashHandler ) ] ) return tornado.web.Application(routes, **TORNADO_SETTINGS) def _set_state(self, new_state): LOGGER.debug("Server state: %s -> %s" % (self._state, new_state)) self._state = new_state @property def is_ready_for_browser_connection(self): return self._state not in (State.INITIAL, State.STOPPING, State.STOPPED) @property def browser_is_connected(self): return self._state == State.ONE_OR_MORE_BROWSERS_CONNECTED @tornado.gen.coroutine def _loop_coroutine(self, on_started=None): try: if self._state == State.INITIAL: self._set_state(State.WAITING_FOR_FIRST_BROWSER) elif self._state == State.ONE_OR_MORE_BROWSERS_CONNECTED: pass else: raise RuntimeError("Bad server state at start: %s" % self._state) if on_started is not None: on_started(self) while not self._must_stop.is_set(): if self._state == State.WAITING_FOR_FIRST_BROWSER: pass elif self._state == State.ONE_OR_MORE_BROWSERS_CONNECTED: # Shallow-clone our sessions into a list, so we can iterate # over it and not worry about whether it's being changed # outside this coroutine. session_pairs = list(self._session_infos.items()) for ws, session_info in session_pairs: if ws is PREHEATED_REPORT_SESSION: continue if ws is None: continue msg_list = session_info.session.flush_browser_queue() for msg in msg_list: try: self._send_message(ws, session_info, msg) except tornado.websocket.WebSocketClosedError: self._remove_browser_connection(ws) yield yield elif self._state == State.NO_BROWSERS_CONNECTED: pass else: # Break out of the thread loop if we encounter any other state. break yield tornado.gen.sleep(0.01) # Shut down all ReportSessions for session_info in list(self._session_infos.values()): session_info.session.shutdown() self._set_state(State.STOPPED) except Exception as e: print("EXCEPTION!", e) traceback.print_stack(file=sys.stdout) LOGGER.info( """ Please report this bug at https://github.com/streamlit/streamlit/issues. """ ) finally: self._on_stopped() def _send_message(self, ws, session_info, msg): """Send a message to a client. If the client is likely to have already cached the message, we may instead send a "reference" message that contains only the hash of the message. Parameters ---------- ws : _BrowserWebSocketHandler The socket connected to the client session_info : SessionInfo The SessionInfo associated with websocket msg : ForwardMsg The message to send to the client """ msg.metadata.cacheable = is_cacheable_msg(msg) msg_to_send = msg if msg.metadata.cacheable: populate_hash_if_needed(msg) if self._message_cache.has_message_reference( msg, session_info.session, session_info.report_run_count ): # This session has probably cached this message. Send # a reference instead. LOGGER.debug("Sending cached message ref (hash=%s)" % msg.hash) msg_to_send = create_reference_msg(msg) # Cache the message so it can be referenced in the future. # If the message is already cached, this will reset its # age. LOGGER.debug("Caching message (hash=%s)" % msg.hash) self._message_cache.add_message( msg, session_info.session, session_info.report_run_count ) # If this was a `report_finished` message, we increment the # report_run_count for this session, and update the cache if ( msg.WhichOneof("type") == "report_finished" and msg.report_finished == ForwardMsg.FINISHED_SUCCESSFULLY ): LOGGER.debug( "Report finished successfully; " "removing expired entries from MessageCache " "(max_age=%s)", config.get_option("global.maxCachedMessageAge"), ) session_info.report_run_count += 1 self._message_cache.remove_expired_session_entries( session_info.session, session_info.report_run_count ) # Ship it off! ws.write_message(serialize_forward_msg(msg_to_send), binary=True) def stop(self): click.secho(" Stopping...", fg="blue") self._set_state(State.STOPPING) self._must_stop.set() def _on_stopped(self): """Called when our runloop is exiting, to shut down the ioloop. This will end our process. (Tests can patch this method out, to prevent the test's ioloop from being shutdown.) """ self._ioloop.stop() def add_preheated_report_session(self): """Register a fake browser with the server and run the script. This is used to start running the user's script even before the first browser connects. """ session = self._add_browser_connection(PREHEATED_REPORT_SESSION) session.handle_rerun_script_request(is_preheat=True) def _add_browser_connection(self, ws): """Register a connected browser with the server Parameters ---------- ws : _BrowserWebSocketHandler or PREHEATED_REPORT_CONTEXT The newly-connected websocket handler Returns ------- ReportSession The ReportSession associated with this browser connection """ if ws not in self._session_infos: if PREHEATED_REPORT_SESSION in self._session_infos: assert len(self._session_infos) == 1 LOGGER.debug("Reusing preheated context for ws %s", ws) session = self._session_infos[PREHEATED_REPORT_SESSION].session del self._session_infos[PREHEATED_REPORT_SESSION] else: LOGGER.debug("Creating new context for ws %s", ws) session = ReportSession( ioloop=self._ioloop, script_path=self._script_path, command_line=self._command_line, ) self._session_infos[ws] = SessionInfo(session) if ws is not PREHEATED_REPORT_SESSION: self._set_state(State.ONE_OR_MORE_BROWSERS_CONNECTED) return self._session_infos[ws].session def _remove_browser_connection(self, ws): if ws in self._session_infos: session_info = self._session_infos[ws] del self._session_infos[ws] session_info.session.shutdown() if len(self._session_infos) == 0: self._set_state(State.NO_BROWSERS_CONNECTED) class _BrowserWebSocketHandler(tornado.websocket.WebSocketHandler): """Handles a WebSocket connection from the browser""" def initialize(self, server): self._server = server def check_origin(self, origin): """Set up CORS.""" return is_url_from_allowed_origins(origin) def open(self): self._session = self._server._add_browser_connection(self) def on_close(self): self._server._remove_browser_connection(self) @tornado.gen.coroutine def on_message(self, payload): msg = BackMsg() try: msg.ParseFromString(payload) LOGGER.debug("Received the following back message:\n%s", msg) msg_type = msg.WhichOneof("type") if msg_type == "cloud_upload": yield self._session.handle_save_request(self) elif msg_type == "rerun_script": self._session.handle_rerun_script_request() elif msg_type == "clear_cache": self._session.handle_clear_cache_request() elif msg_type == "set_run_on_save": self._session.handle_set_run_on_save_request(msg.set_run_on_save) elif msg_type == "stop_report": self._session.handle_stop_script_request() elif msg_type == "update_widgets": self._session.handle_rerun_script_request( widget_state=msg.update_widgets ) elif msg_type == "close_connection": if config.get_option("global.developmentMode"): Server.get_current().stop() else: LOGGER.warning( "Client tried to close connection when " "not in development mode" ) else: LOGGER.warning('No handler for "%s"', msg_type) except BaseException as e: LOGGER.error(e) self._session.enqueue_exception(e) def _set_tornado_log_levels(): if not config.get_option("global.developmentMode"): # Hide logs unless they're super important. # Example of stuff we don't care about: 404 about .js.map files. logging.getLogger("tornado.access").setLevel(logging.ERROR) logging.getLogger("tornado.application").setLevel(logging.ERROR) logging.getLogger("tornado.general").setLevel(logging.ERROR)
the-stack_106_27362
import math import tensorflow as tf import numpy as np import dnnlib.tflib as tflib from functools import partial def create_stub(name, batch_size): return tf.constant(0, dtype='float32', shape=(batch_size, 0)) def create_variable_for_generator(name, batch_size, tiled_dlatent, model_scale=18): if tiled_dlatent: low_dim_dlatent = tf.get_variable('learnable_dlatents', shape=(batch_size, 512), dtype='float32', initializer=tf.initializers.random_normal()) return tf.tile(tf.expand_dims(low_dim_dlatent, axis=1), [1, model_scale, 1]) else: return tf.get_variable('learnable_dlatents', shape=(batch_size, model_scale, 512), dtype='float32', initializer=tf.initializers.random_normal()) class Generator: def __init__(self, model, batch_size, clipping_threshold=2, tiled_dlatent=False, model_res=1024, randomize_noise=False): self.batch_size = batch_size self.tiled_dlatent=tiled_dlatent self.model_scale = int(2*(math.log(model_res,2)-1)) # For example, 1024 -> 18 if tiled_dlatent: self.initial_dlatents = np.zeros((self.batch_size, 512)) model.components.synthesis.run(np.zeros((self.batch_size, self.model_scale, 512)), randomize_noise=randomize_noise, minibatch_size=self.batch_size, custom_inputs=[partial(create_variable_for_generator, batch_size=batch_size, tiled_dlatent=True), partial(create_stub, batch_size=batch_size)], structure='fixed') else: self.initial_dlatents = np.zeros((self.batch_size, self.model_scale, 512)) model.components.synthesis.run(self.initial_dlatents, randomize_noise=randomize_noise, minibatch_size=self.batch_size, custom_inputs=[partial(create_variable_for_generator, batch_size=batch_size, tiled_dlatent=False, model_scale=self.model_scale), partial(create_stub, batch_size=batch_size)], structure='fixed') self.dlatent_avg_def = model.get_var('dlatent_avg') self.reset_dlatent_avg() self.sess = tf.get_default_session() self.graph = tf.get_default_graph() self.dlatent_variable = next(v for v in tf.global_variables() if 'learnable_dlatents' in v.name) self.set_dlatents(self.initial_dlatents) try: self.generator_output = self.graph.get_tensor_by_name('G_synthesis_1/_Run/concat:0') except KeyError: # If we loaded only Gs and didn't load G or D, then scope "G_synthesis_1" won't exist in the graph. self.generator_output = self.graph.get_tensor_by_name('G_synthesis/_Run/concat:0') self.generated_image = tflib.convert_images_to_uint8(self.generator_output, nchw_to_nhwc=True, uint8_cast=False) self.generated_image_uint8 = tf.saturate_cast(self.generated_image, tf.uint8) # Implement stochastic clipping similar to what is described in https://arxiv.org/abs/1702.04782 # (Slightly different in that the latent space is normal gaussian here and was uniform in [-1, 1] in that paper, # so we clip any vector components outside of [-2, 2]. It seems fine, but I haven't done an ablation check.) clipping_mask = tf.math.logical_or(self.dlatent_variable > clipping_threshold, self.dlatent_variable < -clipping_threshold) clipped_values = tf.where(clipping_mask, tf.random_normal(shape=self.dlatent_variable.shape), self.dlatent_variable) self.stochastic_clip_op = tf.assign(self.dlatent_variable, clipped_values) def reset_dlatents(self): self.set_dlatents(self.initial_dlatents) def set_dlatents(self, dlatents): if self.tiled_dlatent: if (dlatents.shape != (self.batch_size, 512)) and (dlatents.shape[1] != 512): dlatents = np.mean(dlatents, axis=1) if (dlatents.shape != (self.batch_size, 512)): dlatents = np.vstack([dlatents, np.zeros((self.batch_size-dlatents.shape[0], 512))]) assert (dlatents.shape == (self.batch_size, 512)) else: if (dlatents.shape[1] > self.model_scale): dlatents = dlatents[:,:self.model_scale,:] if (dlatents.shape != (self.batch_size, self.model_scale, 512)): dlatents = np.vstack([dlatents, np.zeros((self.batch_size-dlatents.shape[0], self.model_scale, 512))]) assert (dlatents.shape == (self.batch_size, self.model_scale, 512)) self.sess.run(tf.assign(self.dlatent_variable, dlatents)) def stochastic_clip_dlatents(self): self.sess.run(self.stochastic_clip_op) def get_dlatents(self): return self.sess.run(self.dlatent_variable) def get_dlatent_avg(self): return self.dlatent_avg def set_dlatent_avg(self, dlatent_avg): self.dlatent_avg = dlatent_avg def reset_dlatent_avg(self): self.dlatent_avg = self.dlatent_avg_def def generate_images(self, dlatents=None): if dlatents: self.set_dlatents(dlatents) return self.sess.run(self.generated_image_uint8)
the-stack_106_27363
# -*- coding: utf-8 -*- #@+leo-ver=5-thin #@+node:ekr.20171123135539.1: * @file ../commands/commanderEditCommands.py #@@first """Edit commands that used to be defined in leoCommands.py""" import re from typing import List from leo.core import leoGlobals as g #@+others #@+node:ekr.20171123135625.34: ** c_ec.addComments @g.commander_command('add-comments') def addComments(self, event=None): #@+<< addComments docstring >> #@+node:ekr.20171123135625.35: *3* << addComments docstring >> #@@pagewidth 50 """ Converts all selected lines to comment lines using the comment delimiters given by the applicable @language directive. Inserts single-line comments if possible; inserts block comments for languages like html that lack single-line comments. @bool indent_added_comments If True (the default), inserts opening comment delimiters just before the first non-whitespace character of each line. Otherwise, inserts opening comment delimiters at the start of each line. *See also*: delete-comments. """ #@-<< addComments docstring >> c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # "Before" snapshot. bunch = u.beforeChangeBody(p) # # Make sure there is a selection. head, lines, tail, oldSel, oldYview = self.getBodyLines() if not lines: g.warning('no text selected') return # # The default language in effect at p. language = c.frame.body.colorizer.scanLanguageDirectives(p) if c.hasAmbiguousLanguage(p): language = c.getLanguageAtCursor(p, language) d1, d2, d3 = g.set_delims_from_language(language) d2 = d2 or ''; d3 = d3 or '' if d1: openDelim, closeDelim = d1 + ' ', '' else: openDelim, closeDelim = d2 + ' ', ' ' + d3 # # Calculate the result. indent = c.config.getBool('indent-added-comments', default=True) result = [] for line in lines: if line.strip(): i = g.skip_ws(line, 0) if indent: s = line[i:].replace('\n', '') result.append(line[0:i] + openDelim + s + closeDelim + '\n') else: s = line.replace('\n', '') result.append(openDelim + s + closeDelim + '\n') else: result.append(line) # # Set p.b and w's text first. middle = ''.join(result) p.b = head + middle + tail # Sets dirty and changed bits. w.setAllText(head + middle + tail) # # Calculate the proper selection range (i, j, ins). i = len(head) j = max(i, len(head) + len(middle) - 1) # # Set the selection range and scroll position. w.setSelectionRange(i, j, insert=j) w.setYScrollPosition(oldYview) # # "after" snapshot. u.afterChangeBody(p, 'Add Comments', bunch) #@+node:ekr.20171123135625.3: ** c_ec.colorPanel @g.commander_command('set-colors') def colorPanel(self, event=None): """Open the color dialog.""" c = self; frame = c.frame if not frame.colorPanel: frame.colorPanel = g.app.gui.createColorPanel(c) frame.colorPanel.bringToFront() #@+node:ekr.20171123135625.16: ** c_ec.convertAllBlanks @g.commander_command('convert-all-blanks') def convertAllBlanks(self, event=None): """Convert all blanks to tabs in the selected outline.""" c = self; u = c.undoer; undoType = 'Convert All Blanks' current = c.p if g.app.batchMode: c.notValidInBatchMode(undoType) return d = c.scanAllDirectives(c.p) tabWidth = d.get("tabwidth") count = 0 u.beforeChangeGroup(current, undoType) for p in current.self_and_subtree(): innerUndoData = u.beforeChangeNodeContents(p) if p == current: changed = c.convertBlanks(event) if changed: count += 1 else: changed = False; result = [] text = p.v.b lines = text.split('\n') for line in lines: i, w = g.skip_leading_ws_with_indent(line, 0, tabWidth) s = g.computeLeadingWhitespace( w, abs(tabWidth)) + line[i:] # use positive width. if s != line: changed = True result.append(s) if changed: count += 1 p.setDirty() p.setBodyString('\n'.join(result)) u.afterChangeNodeContents(p, undoType, innerUndoData) u.afterChangeGroup(current, undoType) if not g.unitTesting: g.es("blanks converted to tabs in", count, "nodes") # Must come before c.redraw(). if count > 0: c.redraw_after_icons_changed() #@+node:ekr.20171123135625.17: ** c_ec.convertAllTabs @g.commander_command('convert-all-tabs') def convertAllTabs(self, event=None): """Convert all tabs to blanks in the selected outline.""" c = self; u = c.undoer; undoType = 'Convert All Tabs' current = c.p if g.app.batchMode: c.notValidInBatchMode(undoType) return theDict = c.scanAllDirectives(c.p) tabWidth = theDict.get("tabwidth") count = 0 u.beforeChangeGroup(current, undoType) for p in current.self_and_subtree(): undoData = u.beforeChangeNodeContents(p) if p == current: changed = self.convertTabs(event) if changed: count += 1 else: result = [] changed = False text = p.v.b lines = text.split('\n') for line in lines: i, w = g.skip_leading_ws_with_indent(line, 0, tabWidth) s = g.computeLeadingWhitespace( w, -abs(tabWidth)) + line[i:] # use negative width. if s != line: changed = True result.append(s) if changed: count += 1 p.setDirty() p.setBodyString('\n'.join(result)) u.afterChangeNodeContents(p, undoType, undoData) u.afterChangeGroup(current, undoType) if not g.unitTesting: g.es("tabs converted to blanks in", count, "nodes") if count > 0: c.redraw_after_icons_changed() #@+node:ekr.20171123135625.18: ** c_ec.convertBlanks @g.commander_command('convert-blanks') def convertBlanks(self, event=None): """ Convert *all* blanks to tabs in the selected node. Return True if the the p.b was changed. """ c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # "Before" snapshot. bunch = u.beforeChangeBody(p) oldYview = w.getYScrollPosition() w.selectAllText() head, lines, tail, oldSel, oldYview = c.getBodyLines() # # Use the relative @tabwidth, not the global one. d = c.scanAllDirectives(p) tabWidth = d.get("tabwidth") if not tabWidth: return False # # Calculate the result. changed, result = False, [] for line in lines: s = g.optimizeLeadingWhitespace(line, abs(tabWidth)) # Use positive width. if s != line: changed = True result.append(s) if not changed: return False # # Set p.b and w's text first. middle = ''.join(result) p.b = head + middle + tail # Sets dirty and changed bits. w.setAllText(head + middle + tail) # # Select all text and set scroll position. w.selectAllText() w.setYScrollPosition(oldYview) # # "after" snapshot. u.afterChangeBody(p, 'Indent Region', bunch) return True #@+node:ekr.20171123135625.19: ** c_ec.convertTabs @g.commander_command('convert-tabs') def convertTabs(self, event=None): """Convert all tabs to blanks in the selected node.""" c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # "Before" snapshot. bunch = u.beforeChangeBody(p) # # Data... w.selectAllText() head, lines, tail, oldSel, oldYview = self.getBodyLines() # Use the relative @tabwidth, not the global one. theDict = c.scanAllDirectives(p) tabWidth = theDict.get("tabwidth") if not tabWidth: return False # # Calculate the result. changed, result = False, [] for line in lines: i, width = g.skip_leading_ws_with_indent(line, 0, tabWidth) s = g.computeLeadingWhitespace(width, -abs(tabWidth)) + line[i:] # use negative width. if s != line: changed = True result.append(s) if not changed: return False # # Set p.b and w's text first. middle = ''.join(result) p.b = head + middle + tail # Sets dirty and changed bits. w.setAllText(head + middle + tail) # # Calculate the proper selection range (i, j, ins). i = len(head) j = max(i, len(head) + len(middle) - 1) # # Set the selection range and scroll position. w.setSelectionRange(i, j, insert=j) w.setYScrollPosition(oldYview) # # "after" snapshot. u.afterChangeBody(p, 'Add Comments', bunch) return True #@+node:ekr.20171123135625.21: ** c_ec.dedentBody (unindent-region) @g.commander_command('unindent-region') def dedentBody(self, event=None): """Remove one tab's worth of indentation from all presently selected lines.""" c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # Initial data. sel_1, sel_2 = w.getSelectionRange() tab_width = c.getTabWidth(c.p) head, lines, tail, oldSel, oldYview = self.getBodyLines() bunch = u.beforeChangeBody(p) # # Calculate the result. changed, result = False, [] for line in lines: i, width = g.skip_leading_ws_with_indent(line, 0, tab_width) s = g.computeLeadingWhitespace(width - abs(tab_width), tab_width) + line[i:] if s != line: changed = True result.append(s) if not changed: return # # Set p.b and w's text first. middle = ''.join(result) all = head + middle + tail p.b = all # Sets dirty and changed bits. w.setAllText(all) # # Calculate the proper selection range (i, j, ins). if sel_1 == sel_2: line = result[0] ins, width = g.skip_leading_ws_with_indent(line, 0, tab_width) i = j = len(head) + ins else: i = len(head) j = len(head) + len(middle) if middle.endswith('\n'): # #1742. j -= 1 # # Set the selection range and scroll position. w.setSelectionRange(i, j, insert=j) w.setYScrollPosition(oldYview) u.afterChangeBody(p, 'Unindent Region', bunch) #@+node:ekr.20171123135625.36: ** c_ec.deleteComments @g.commander_command('delete-comments') def deleteComments(self, event=None): #@+<< deleteComments docstring >> #@+node:ekr.20171123135625.37: *3* << deleteComments docstring >> #@@pagewidth 50 """ Removes one level of comment delimiters from all selected lines. The applicable @language directive determines the comment delimiters to be removed. Removes single-line comments if possible; removes block comments for languages like html that lack single-line comments. *See also*: add-comments. """ #@-<< deleteComments docstring >> c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # "Before" snapshot. bunch = u.beforeChangeBody(p) # # Initial data. head, lines, tail, oldSel, oldYview = self.getBodyLines() if not lines: g.warning('no text selected') return # The default language in effect at p. language = c.frame.body.colorizer.scanLanguageDirectives(p) if c.hasAmbiguousLanguage(p): language = c.getLanguageAtCursor(p, language) d1, d2, d3 = g.set_delims_from_language(language) # # Calculate the result. changed, result = False, [] if d1: # Remove the single-line comment delim in front of each line d1b = d1 + ' ' n1, n1b = len(d1), len(d1b) for s in lines: i = g.skip_ws(s, 0) if g.match(s, i, d1b): result.append(s[:i] + s[i + n1b :]) changed = True elif g.match(s, i, d1): result.append(s[:i] + s[i + n1 :]) changed = True else: result.append(s) else: # Remove the block comment delimiters from each line. n2, n3 = len(d2), len(d3) for s in lines: i = g.skip_ws(s, 0) j = s.find(d3, i + n2) if g.match(s, i, d2) and j > -1: first = i + n2 if g.match(s, first, ' '): first += 1 last = j if g.match(s, last - 1, ' '): last -= 1 result.append(s[:i] + s[first:last] + s[j + n3 :]) changed = True else: result.append(s) if not changed: return # # Set p.b and w's text first. middle = ''.join(result) p.b = head + middle + tail # Sets dirty and changed bits. w.setAllText(head + middle + tail) # # Set the selection range and scroll position. i = len(head) j = ins = max(i, len(head) + len(middle) - 1) w.setSelectionRange(i, j, insert=ins) w.setYScrollPosition(oldYview) # # "after" snapshot. u.afterChangeBody(p, 'Indent Region', bunch) #@+node:ekr.20171123135625.54: ** c_ec.editHeadline (edit-headline) @g.commander_command('edit-headline') def editHeadline(self, event=None): """ Begin editing the headline of the selected node. This is just a wrapper around tree.editLabel. """ c = self k, tree = c.k, c.frame.tree if g.app.batchMode: c.notValidInBatchMode("Edit Headline") return None, None e, wrapper = tree.editLabel(c.p) if k: # k.setDefaultInputState() k.setEditingState() k.showStateAndMode(w=wrapper) return e, wrapper # Neither of these is used by any caller. #@+node:ekr.20171123135625.23: ** c_ec.extract & helpers @g.commander_command('extract') def extract(self, event=None): #@+<< docstring for extract command >> #@+node:ekr.20201113130021.1: *3* << docstring for extract command >> r""" Create child node from the selected body text. 1. If the selection starts with a section reference, the section name becomes the child's headline. All following lines become the child's body text. The section reference line remains in the original body text. 2. If the selection looks like a definition line (for the Python, JavaScript, CoffeeScript or Clojure languages) the class/function/method name becomes the child's headline and all selected lines become the child's body text. You may add additional regex patterns for definition lines using @data extract-patterns nodes. Each line of the body text should a valid regex pattern. Lines starting with # are comment lines. Use \# for patterns starting with #. 3. Otherwise, the first line becomes the child's headline, and all selected lines become the child's body text. """ #@-<< docstring for extract command >> c, u, w = self, self.undoer, self.frame.body.wrapper undoType = 'Extract' # Set data. head, lines, tail, oldSel, oldYview = c.getBodyLines() if not lines: return # Nothing selected. # # Remove leading whitespace. junk, ws = g.skip_leading_ws_with_indent(lines[0], 0, c.tab_width) lines = [g.removeLeadingWhitespace(s, ws, c.tab_width) for s in lines] h = lines[0].strip() ref_h = extractRef(c, h).strip() def_h = extractDef_find(c, lines) if ref_h: h, b, middle = ref_h, lines[1:], ' ' * ws + lines[0] # By vitalije. elif def_h: h, b, middle = def_h, lines, '' else: h, b, middle = lines[0].strip(), lines[1:], '' # # Start the outer undo group. u.beforeChangeGroup(c.p, undoType) undoData = u.beforeInsertNode(c.p) p = createLastChildNode(c, c.p, h, ''.join(b)) u.afterInsertNode(p, undoType, undoData) # # Start inner undo. if oldSel: i, j = oldSel w.setSelectionRange(i, j, insert=j) bunch = u.beforeChangeBody(c.p) # Not p. # # Update the text and selection c.p.v.b = head + middle + tail # Don't redraw. w.setAllText(head + middle + tail) i = len(head) j = max(i, len(head) + len(middle) - 1) w.setSelectionRange(i, j, insert=j) # # End the inner undo. u.afterChangeBody(c.p, undoType, bunch) # # Scroll as necessary. if oldYview: w.setYScrollPosition(oldYview) else: w.seeInsertPoint() # # Add the changes to the outer undo group. u.afterChangeGroup(c.p, undoType=undoType) p.parent().expand() c.redraw(p.parent()) # A bit more convenient than p. c.bodyWantsFocus() # Compatibility g.command_alias('extractSection', extract) g.command_alias('extractPythonMethod', extract) #@+node:ekr.20171123135625.20: *3* def createLastChildNode def createLastChildNode(c, parent, headline, body): """A helper function for the three extract commands.""" # #1955: don't strip trailing lines. if not body: body = "" p = parent.insertAsLastChild() p.initHeadString(headline) p.setBodyString(body) p.setDirty() c.validateOutline() return p #@+node:ekr.20171123135625.24: *3* def extractDef extractDef_patterns = ( re.compile( r'\((?:def|defn|defui|deftype|defrecord|defonce)\s+(\S+)'), # clojure definition re.compile(r'^\s*(?:def|class)\s+(\w+)'), # python definitions re.compile(r'^\bvar\s+(\w+)\s*=\s*function\b'), # js function re.compile(r'^(?:export\s)?\s*function\s+(\w+)\s*\('), # js function re.compile(r'\b(\w+)\s*:\s*function\s'), # js function re.compile(r'\.(\w+)\s*=\s*function\b'), # js function re.compile(r'(?:export\s)?\b(\w+)\s*=\s(?:=>|->)'), # coffeescript function re.compile( r'(?:export\s)?\b(\w+)\s*=\s(?:\([^)]*\))\s*(?:=>|->)'), # coffeescript function re.compile(r'\b(\w+)\s*:\s(?:=>|->)'), # coffeescript function re.compile(r'\b(\w+)\s*:\s(?:\([^)]*\))\s*(?:=>|->)'), # coffeescript function ) def extractDef(c, s): """ Return the defined function/method/class name if s looks like definition. Tries several different languages. """ for pat in c.config.getData('extract-patterns') or []: try: pat = re.compile(pat) m = pat.search(s) if m: return m.group(1) except Exception: g.es_print('bad regex in @data extract-patterns', color='blue') g.es_print(pat) for pat in extractDef_patterns: m = pat.search(s) if m: return m.group(1) return '' #@+node:ekr.20171123135625.26: *3* def extractDef_find def extractDef_find(c, lines): for line in lines: def_h = extractDef(c, line.strip()) if def_h: return def_h return None #@+node:ekr.20171123135625.25: *3* def extractRef def extractRef(c, s): """Return s if it starts with a section name.""" i = s.find('<<') j = s.find('>>') if -1 < i < j: return s i = s.find('@<') j = s.find('@>') if -1 < i < j: return s return '' #@+node:ekr.20171123135625.27: ** c_ec.extractSectionNames & helper @g.commander_command('extract-names') def extractSectionNames(self, event=None): """ Create child nodes for every section reference in the selected text. - The headline of each new child node is the section reference. - The body of each child node is empty. """ c = self current = c.p u = c.undoer undoType = 'Extract Section Names' body = c.frame.body head, lines, tail, oldSel, oldYview = c.getBodyLines() if not lines: g.warning('No lines selected') return u.beforeChangeGroup(current, undoType) found = False for s in lines: name = findSectionName(c, s) if name: undoData = u.beforeInsertNode(current) p = createLastChildNode(c, current, name, None) u.afterInsertNode(p, undoType, undoData) found = True c.validateOutline() if found: u.afterChangeGroup(current, undoType) c.redraw(p) else: g.warning("selected text should contain section names") # Restore the selection. i, j = oldSel w = body.wrapper if w: w.setSelectionRange(i, j) w.setFocus() #@+node:ekr.20171123135625.28: *3* def findSectionName def findSectionName(self, s): head1 = s.find("<<") if head1 > -1: head2 = s.find(">>", head1) else: head1 = s.find("@<") if head1 > -1: head2 = s.find("@>", head1) if head1 == -1 or head2 == -1 or head1 > head2: name = None else: name = s[head1 : head2 + 2] return name #@+node:ekr.20171123135625.15: ** c_ec.findMatchingBracket @g.commander_command('match-brackets') @g.commander_command('select-to-matching-bracket') def findMatchingBracket(self, event=None): """Select the text between matching brackets.""" c, p = self, self.p if g.app.batchMode: c.notValidInBatchMode("Match Brackets") return language = g.getLanguageAtPosition(c, p) if language == 'perl': g.es('match-brackets not supported for', language) else: g.MatchBrackets(c, p, language).run() #@+node:ekr.20171123135625.9: ** c_ec.fontPanel @g.commander_command('set-font') def fontPanel(self, event=None): """Open the font dialog.""" c = self; frame = c.frame if not frame.fontPanel: frame.fontPanel = g.app.gui.createFontPanel(c) frame.fontPanel.bringToFront() #@+node:ekr.20110402084740.14490: ** c_ec.goToNext/PrevHistory @g.commander_command('goto-next-history-node') def goToNextHistory(self, event=None): """Go to the next node in the history list.""" c = self c.nodeHistory.goNext() @g.commander_command('goto-prev-history-node') def goToPrevHistory(self, event=None): """Go to the previous node in the history list.""" c = self c.nodeHistory.goPrev() #@+node:ekr.20171123135625.30: ** c_ec.alwaysIndentBody (always-indent-region) @g.commander_command('always-indent-region') def alwaysIndentBody(self, event=None): """ The always-indent-region command indents each line of the selected body text. The @tabwidth directive in effect determines amount of indentation. """ c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper # # #1801: Don't rely on bindings to ensure that we are editing the body. event_w = event and event.w if event_w != w: c.insertCharFromEvent(event) return # # "Before" snapshot. bunch = u.beforeChangeBody(p) # # Initial data. sel_1, sel_2 = w.getSelectionRange() tab_width = c.getTabWidth(p) head, lines, tail, oldSel, oldYview = self.getBodyLines() # # Calculate the result. changed, result = False, [] for line in lines: i, width = g.skip_leading_ws_with_indent(line, 0, tab_width) s = g.computeLeadingWhitespace(width + abs(tab_width), tab_width) + line[i:] if s != line: changed = True result.append(s) if not changed: return # # Set p.b and w's text first. middle = ''.join(result) all = head + middle + tail p.b = all # Sets dirty and changed bits. w.setAllText(all) # # Calculate the proper selection range (i, j, ins). if sel_1 == sel_2: line = result[0] i, width = g.skip_leading_ws_with_indent(line, 0, tab_width) i = j = len(head) + i else: i = len(head) j = len(head) + len(middle) if middle.endswith('\n'): # #1742. j -= 1 # # Set the selection range and scroll position. w.setSelectionRange(i, j, insert=j) w.setYScrollPosition(oldYview) # # "after" snapshot. u.afterChangeBody(p, 'Indent Region', bunch) #@+node:ekr.20210104123442.1: ** c_ec.indentBody (indent-region) @g.commander_command('indent-region') def indentBody(self, event=None): """ The indent-region command indents each line of the selected body text. Unlike the always-indent-region command, this command inserts a tab (soft or hard) when there is no selected text. The @tabwidth directive in effect determines amount of indentation. """ c, event_w, w = self, event and event.w, self.frame.body.wrapper # #1801: Don't rely on bindings to ensure that we are editing the body. if event_w != w: c.insertCharFromEvent(event) return # # 1739. Special case for a *plain* tab bound to indent-region. sel_1, sel_2 = w.getSelectionRange() if sel_1 == sel_2: char = getattr(event, 'char', None) stroke = getattr(event, 'stroke', None) if char == '\t' and stroke and stroke.isPlainKey(): c.editCommands.selfInsertCommand(event) # Handles undo. return c.alwaysIndentBody(event) #@+node:ekr.20171123135625.38: ** c_ec.insertBodyTime @g.commander_command('insert-body-time') def insertBodyTime(self, event=None): """Insert a time/date stamp at the cursor.""" c = self; undoType = 'Insert Body Time' w = c.frame.body.wrapper if g.app.batchMode: c.notValidInBatchMode(undoType) return oldSel = w.getSelectionRange() w.deleteTextSelection() s = self.getTime(body=True) i = w.getInsertPoint() w.insert(i, s) c.frame.body.onBodyChanged(undoType, oldSel=oldSel) #@+node:ekr.20171123135625.52: ** c_ec.justify-toggle-auto @g.commander_command("justify-toggle-auto") def justify_toggle_auto(self, event=None): c = self if c.editCommands.autojustify == 0: c.editCommands.autojustify = abs(c.config.getInt("autojustify") or 0) if c.editCommands.autojustify: g.es(f"Autojustify on, @int autojustify == {c.editCommands.autojustify}") else: g.es("Set @int autojustify in @settings") else: c.editCommands.autojustify = 0 g.es("Autojustify off") #@+node:ekr.20190210095609.1: ** c_ec.line_to_headline @g.commander_command('line-to-headline') def line_to_headline(self, event=None): """ Create child node from the selected line. Cut the selected line and make it the new node's headline """ c, p, u, w = self, self.p, self.undoer, self.frame.body.wrapper undoType = 'line-to-headline' ins, s = w.getInsertPoint(), p.b i = g.find_line_start(s, ins) j = g.skip_line(s, i) line = s[i:j].strip() if not line: return u.beforeChangeGroup(p, undoType) # # Start outer undo. undoData = u.beforeInsertNode(p) p2 = p.insertAsLastChild() p2.h = line u.afterInsertNode(p2, undoType, undoData) # # "before" snapshot. bunch = u.beforeChangeBody(p) p.b = s[:i] + s[j:] w.setInsertPoint(i) p2.setDirty() c.setChanged() # # "after" snapshot. u.afterChangeBody(p, undoType, bunch) # # Finish outer undo. u.afterChangeGroup(p, undoType=undoType) c.redraw_after_icons_changed() p.expand() c.redraw(p) c.bodyWantsFocus() #@+node:ekr.20171123135625.11: ** c_ec.preferences @g.commander_command('settings') def preferences(self, event=None): """Handle the preferences command.""" c = self c.openLeoSettings() #@+node:ekr.20171123135625.40: ** c_ec.reformatBody @g.commander_command('reformat-body') def reformatBody(self, event=None): """Reformat all paragraphs in the body.""" c, p = self, self.p undoType = 'reformat-body' w = c.frame.body.wrapper c.undoer.beforeChangeGroup(p, undoType) w.setInsertPoint(0) while 1: progress = w.getInsertPoint() c.reformatParagraph(event, undoType=undoType) ins = w.getInsertPoint() s = w.getAllText() w.setInsertPoint(ins) if ins <= progress or ins >= len(s): break c.undoer.afterChangeGroup(p, undoType) #@+node:ekr.20171123135625.41: ** c_ec.reformatParagraph & helpers @g.commander_command('reformat-paragraph') def reformatParagraph(self, event=None, undoType='Reformat Paragraph'): """ Reformat a text paragraph Wraps the concatenated text to present page width setting. Leading tabs are sized to present tab width setting. First and second line of original text is used to determine leading whitespace in reformatted text. Hanging indentation is honored. Paragraph is bound by start of body, end of body and blank lines. Paragraph is selected by position of current insertion cursor. """ c, w = self, self.frame.body.wrapper if g.app.batchMode: c.notValidInBatchMode("reformat-paragraph") return # Set the insertion point for find_bound_paragraph. if w.hasSelection(): i, j = w.getSelectionRange() w.setInsertPoint(i) head, lines, tail = find_bound_paragraph(c) if not lines: return oldSel, oldYview, original, pageWidth, tabWidth = rp_get_args(c) indents, leading_ws = rp_get_leading_ws(c, lines, tabWidth) result = rp_wrap_all_lines(c, indents, leading_ws, lines, pageWidth) rp_reformat(c, head, oldSel, oldYview, original, result, tail, undoType) #@+node:ekr.20171123135625.43: *3* function: ends_paragraph & single_line_paragraph def ends_paragraph(s): """Return True if s is a blank line.""" return not s.strip() def single_line_paragraph(s): """Return True if s is a single-line paragraph.""" return s.startswith('@') or s.strip() in ('"""', "'''") #@+node:ekr.20171123135625.42: *3* function: find_bound_paragraph def find_bound_paragraph(c): """ Return the lines of a paragraph to be reformatted. This is a convenience method for the reformat-paragraph command. """ head, ins, tail = c.frame.body.getInsertLines() head_lines = g.splitLines(head) tail_lines = g.splitLines(tail) result = [] insert_lines = g.splitLines(ins) para_lines = insert_lines + tail_lines # If the present line doesn't start a paragraph, # scan backward, adding trailing lines of head to ins. if insert_lines and not startsParagraph(insert_lines[0]): n = 0 # number of moved lines. for i, s in enumerate(reversed(head_lines)): if ends_paragraph(s) or single_line_paragraph(s): break elif startsParagraph(s): n += 1 break else: n += 1 if n > 0: para_lines = head_lines[-n :] + para_lines head_lines = head_lines[: -n] ended, started = False, False for i, s in enumerate(para_lines): if started: if ends_paragraph(s) or startsParagraph(s): ended = True break else: result.append(s) elif s.strip(): result.append(s) started = True if ends_paragraph(s) or single_line_paragraph(s): i += 1 ended = True break else: head_lines.append(s) if started: head = g.joinLines(head_lines) tail_lines = para_lines[i:] if ended else [] tail = g.joinLines(tail_lines) return head, result, tail # string, list, string return None, None, None #@+node:ekr.20171123135625.45: *3* function: rp_get_args def rp_get_args(c): """Compute and return oldSel,oldYview,original,pageWidth,tabWidth.""" body = c.frame.body w = body.wrapper d = c.scanAllDirectives(c.p) if c.editCommands.fillColumn > 0: pageWidth = c.editCommands.fillColumn else: pageWidth = d.get("pagewidth") tabWidth = d.get("tabwidth") original = w.getAllText() oldSel = w.getSelectionRange() oldYview = w.getYScrollPosition() return oldSel, oldYview, original, pageWidth, tabWidth #@+node:ekr.20171123135625.46: *3* function: rp_get_leading_ws def rp_get_leading_ws(c, lines, tabWidth): """Compute and return indents and leading_ws.""" # c = self indents = [0, 0] leading_ws = ["", ""] for i in (0, 1): if i < len(lines): # Use the original, non-optimized leading whitespace. leading_ws[i] = ws = g.get_leading_ws(lines[i]) indents[i] = g.computeWidth(ws, tabWidth) indents[1] = max(indents) if len(lines) == 1: leading_ws[1] = leading_ws[0] return indents, leading_ws #@+node:ekr.20171123135625.47: *3* function: rp_reformat def rp_reformat(c, head, oldSel, oldYview, original, result, tail, undoType): """Reformat the body and update the selection.""" p, u, w = c.p, c.undoer, c.frame.body.wrapper s = head + result + tail changed = original != s bunch = u.beforeChangeBody(p) if changed: w.setAllText(s) # Destroys coloring. # # #1748: Always advance to the next paragraph. i = len(head) j = max(i, len(head) + len(result) - 1) ins = j + 1 while ins < len(s): i, j = g.getLine(s, ins) line = s[i:j] # It's annoying, imo, to treat @ lines differently. if line.isspace(): ins = j + 1 else: ins = i break ins = min(ins, len(s)) w.setSelectionRange(ins, ins, insert=ins) # # Show more lines, if they exist. k = g.see_more_lines(s, ins, 4) p.v.insertSpot = ins w.see(k) # New in 6.4. w.see works! if not changed: return # # Finish. p.v.b = s # p.b would cause a redraw. u.afterChangeBody(p, undoType, bunch) w.setXScrollPosition(0) # Never scroll horizontally. #@+node:ekr.20171123135625.48: *3* function: rp_wrap_all_lines def rp_wrap_all_lines(c, indents, leading_ws, lines, pageWidth): """Compute the result of wrapping all lines.""" trailingNL = lines and lines[-1].endswith('\n') lines = [z[:-1] if z.endswith('\n') else z for z in lines] if lines: # Bug fix: 2013/12/22. s = lines[0] if startsParagraph(s): # Adjust indents[1] # Similar to code in startsParagraph(s) i = 0 if s[0].isdigit(): while i < len(s) and s[i].isdigit(): i += 1 if g.match(s, i, ')') or g.match(s, i, '.'): i += 1 elif s[0].isalpha(): if g.match(s, 1, ')') or g.match(s, 1, '.'): i = 2 elif s[0] == '-': i = 1 # Never decrease indentation. i = g.skip_ws(s, i + 1) if i > indents[1]: indents[1] = i leading_ws[1] = ' ' * i # Wrap the lines, decreasing the page width by indent. result_list = g.wrap_lines(lines, pageWidth - indents[1], pageWidth - indents[0]) # prefix with the leading whitespace, if any paddedResult = [] paddedResult.append(leading_ws[0] + result_list[0]) for line in result_list[1:]: paddedResult.append(leading_ws[1] + line) # Convert the result to a string. result = '\n'.join(paddedResult) if trailingNL: result = result + '\n' return result #@+node:ekr.20171123135625.44: *3* function: startsParagraph def startsParagraph(s): """Return True if line s starts a paragraph.""" if not s.strip(): val = False elif s.strip() in ('"""', "'''"): val = True elif s[0].isdigit(): i = 0 while i < len(s) and s[i].isdigit(): i += 1 val = g.match(s, i, ')') or g.match(s, i, '.') elif s[0].isalpha(): # Careful: single characters only. # This could cause problems in some situations. val = ( (g.match(s, 1, ')') or g.match(s, 1, '.')) and (len(s) < 2 or s[2] in ' \t\n')) else: val = s.startswith('@') or s.startswith('-') return val #@+node:ekr.20201124191844.1: ** c_ec.reformatSelection @g.commander_command('reformat-selection') def reformatSelection(self, event=None, undoType='Reformat Paragraph'): """ Reformat the selected text, as in reformat-paragraph, but without expanding the selection past the selected lines. """ c, undoType = self, 'reformat-selection' p, u, w = c.p, c.undoer, c.frame.body.wrapper if g.app.batchMode: c.notValidInBatchMode(undoType) return bunch = u.beforeChangeBody(p) oldSel, oldYview, original, pageWidth, tabWidth = rp_get_args(c) head, middle, tail = c.frame.body.getSelectionLines() lines = g.splitLines(middle) if not lines: return indents, leading_ws = rp_get_leading_ws(c, lines, tabWidth) result = rp_wrap_all_lines(c, indents, leading_ws, lines, pageWidth) s = head + result + tail if s == original: return # # Update the text and the selection. w.setAllText(s) # Destroys coloring. i = len(head) j = max(i, len(head) + len(result) - 1) j = min(j, len(s)) w.setSelectionRange(i, j, insert=j) # # Finish. p.v.b = s # p.b would cause a redraw. u.afterChangeBody(p, undoType, bunch) w.setXScrollPosition(0) # Never scroll horizontally. #@+node:ekr.20171123135625.12: ** c_ec.show/hide/toggleInvisibles @g.commander_command('hide-invisibles') def hideInvisibles(self, event=None): """Hide invisible (whitespace) characters.""" c = self showInvisiblesHelper(c, False) @g.commander_command('show-invisibles') def showInvisibles(self, event=None): """Show invisible (whitespace) characters.""" c = self showInvisiblesHelper(c, True) @g.commander_command('toggle-invisibles') def toggleShowInvisibles(self, event=None): """Toggle showing of invisible (whitespace) characters.""" c = self colorizer = c.frame.body.getColorizer() showInvisiblesHelper(c, not colorizer.showInvisibles) def showInvisiblesHelper(c, val): frame = c.frame colorizer = frame.body.getColorizer() colorizer.showInvisibles = val colorizer.highlighter.showInvisibles = val # It is much easier to change the menu name here than in the menu updater. menu = frame.menu.getMenu("Edit") index = frame.menu.getMenuLabel(menu, 'Hide Invisibles' if val else 'Show Invisibles') if index is None: if val: frame.menu.setMenuLabel(menu, "Show Invisibles", "Hide Invisibles") else: frame.menu.setMenuLabel(menu, "Hide Invisibles", "Show Invisibles") # #240: Set the status bits here. if hasattr(frame.body, 'set_invisibles'): frame.body.set_invisibles(c) c.frame.body.recolor(c.p) #@+node:ekr.20171123135625.55: ** c_ec.toggleAngleBrackets @g.commander_command('toggle-angle-brackets') def toggleAngleBrackets(self, event=None): """Add or remove double angle brackets from the headline of the selected node.""" c = self; p = c.p if g.app.batchMode: c.notValidInBatchMode("Toggle Angle Brackets") return c.endEditing() s = p.h.strip() # 2019/09/12: Guard against black. lt = "<<" rt = ">>" if s[0:2] == lt or s[-2:] == rt: if s[0:2] == "<<": s = s[2:] if s[-2:] == ">>": s = s[:-2] s = s.strip() else: s = g.angleBrackets(' ' + s + ' ') p.setHeadString(s) p.setDirty() # #1449. c.setChanged() # #1449. c.redrawAndEdit(p, selectAll=True) #@+node:ekr.20171123135625.49: ** c_ec.unformatParagraph & helper @g.commander_command('unformat-paragraph') def unformatParagraph(self, event=None, undoType='Unformat Paragraph'): """ Unformat a text paragraph. Removes all extra whitespace in a paragraph. Paragraph is bound by start of body, end of body and blank lines. Paragraph is selected by position of current insertion cursor. """ c = self body = c.frame.body w = body.wrapper if g.app.batchMode: c.notValidInBatchMode("unformat-paragraph") return if w.hasSelection(): i, j = w.getSelectionRange() w.setInsertPoint(i) oldSel, oldYview, original, pageWidth, tabWidth = rp_get_args(c) head, lines, tail = find_bound_paragraph(c) if lines: result = ' '.join([z.strip() for z in lines]) + '\n' unreformat(c, head, oldSel, oldYview, original, result, tail, undoType) #@+node:ekr.20171123135625.50: *3* function: unreformat def unreformat(c, head, oldSel, oldYview, original, result, tail, undoType): """unformat the body and update the selection.""" body, w = c.frame.body, c.frame.body.wrapper s = head + result + tail ins = max(len(head), len(head) + len(result) - 1) w.setAllText(s) # Destroys coloring. changed = original != s if changed: body.onBodyChanged(undoType, oldSel=oldSel) # Advance to the next paragraph. ins += 1 # Move past the selection. while ins < len(s): i, j = g.getLine(s, ins) line = s[i:j] if line.isspace(): ins = j + 1 else: ins = i break c.recolor() # Required. w.setSelectionRange(ins, ins, insert=ins) # More useful than for reformat-paragraph. w.see(ins) # Make sure we never scroll horizontally. w.setXScrollPosition(0) #@+node:ekr.20180410054716.1: ** c_ec: insert-jupyter-toc & insert-markdown-toc @g.commander_command('insert-jupyter-toc') def insertJupyterTOC(self, event=None): """ Insert a Jupyter table of contents at the cursor, replacing any selected text. """ insert_toc(c=self, kind='jupyter') @g.commander_command('insert-markdown-toc') def insertMarkdownTOC(self, event=None): """ Insert a Markdown table of contents at the cursor, replacing any selected text. """ insert_toc(c=self, kind='markdown') #@+node:ekr.20180410074238.1: *3* insert_toc def insert_toc(c, kind): """Insert a table of contents at the cursor.""" undoType = f"Insert {kind.capitalize()} TOC" w = c.frame.body.wrapper if g.app.batchMode: c.notValidInBatchMode(undoType) return oldSel = w.getSelectionRange() w.deleteTextSelection() s = make_toc(c, kind=kind, root=c.p) i = w.getInsertPoint() w.insert(i, s) c.frame.body.onBodyChanged(undoType, oldSel=oldSel) #@+node:ekr.20180410054926.1: *3* make_toc def make_toc(c, kind, root): """Return the toc for root.b as a list of lines.""" def cell_type(p): language = g.getLanguageAtPosition(c, p) return 'markdown' if language in ('jupyter', 'markdown') else 'python' def clean_headline(s): # Surprisingly tricky. This could remove too much, but better to be safe. aList = [ch for ch in s if ch in '-: ' or ch.isalnum()] return ''.join(aList).rstrip('-').strip() result: List[str] = [] stack: List[int] = [] for p in root.subtree(): if cell_type(p) == 'markdown': level = p.level() - root.level() if len(stack) < level: stack.append(1) else: stack = stack[:level] n = stack[-1] stack[-1] = n + 1 # Use bullets title = clean_headline(p.h) url = clean_headline(p.h.replace(' ', '-')) if kind == 'markdown': url = url.lower() line = f"{' ' * 4 * (level - 1)}- [{title}](#{url})\n" result.append(line) if result: result.append('\n') return ''.join(result) #@-others #@-leo
the-stack_106_27364
"""OpenAQ Air Quality Dashboard with Flask.""" from flask import Flask from flask_sqlalchemy import SQLAlchemy import openaq import aq_functions APP = Flask(__name__) APP.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3' DB = SQLAlchemy(APP) class Record(DB.Model): id = DB.Column(DB.Integer, primary_key=True) datetime = DB.Column(DB.String(25)) value = DB.Column(DB.Float, nullable=False) def __repr__(self): return f"<br>Time {self.datetime} --- Value {self.value}" @APP.route('/refresh') def refresh(): """Pull fresh data from Open AQ and replace existing data.""" DB.drop_all() DB.create_all() # Get data from OpenAQ response = aq_functions.get_latest_observations() # Make Record objects with it and add to db for record in response: db_record = Record(datetime=record[0], value=record[1]) DB.session.add(db_record) DB.session.commit() return 'Data refreshed!' @APP.route('/') def root(): """Base view.""" danger = Record.query.filter(Record.value >= 10).all() return str(danger)
the-stack_106_27365
import tensorflow as tf import experience as xp import numpy as np import dqn_model import os class Agent: def __init__(self, env, replay_size, optimizer, batch_size, n_steps, gamma, use_double=True, use_dense=None, dueling=False, use_categorical=False, n_atoms=None, v_min=None, v_max=None, use_priority=False, alpha=0.6, beta=0.4, train_steps=5000000): net = dqn_model.DQN if len(env.observation_space.shape) != 1 else dqn_model.DQNNoConvolution self.env = env self.state = None self.update_count = 0 self.total_reward = 0.0 self.n_steps = n_steps self.use_double = use_double self.n_atoms = n_atoms self.v_min = v_min self.v_max = v_max self.beta = beta self.use_priority = use_priority if use_priority: self.exp_buffer = xp.PriorityBuffer(replay_size, gamma, n_steps, alpha) else: self.exp_buffer = xp.ExperienceBuffer(replay_size, gamma, n_steps) self.net = net(env.observation_space.shape, env.action_space.n, use_dense=use_dense, dueling=dueling, use_distributional=use_categorical, n_atoms=n_atoms, v_min=v_min, v_max=v_max) self.tgt_net = net(env.observation_space.shape, env.action_space.n, use_dense=use_dense, dueling=dueling, use_distributional=use_categorical, n_atoms=n_atoms, v_min=v_min, v_max=v_max) self.params = self.net.trainable_variables self.optimizer = optimizer self.batch_size = batch_size self.use_categorical = use_categorical self.train_steps = train_steps self._reset() def _reset(self): self.state = self.env.reset() self.total_reward = 0.0 def play_step(self, epsilon=0.0): done_reward = None if np.random.random() < epsilon: action = self.env.action_space.sample() else: state_a = np.expand_dims(np.array(self.state, copy=False, dtype=np.float32), 0) / 255.0 state_v = tf.convert_to_tensor(state_a) if self.use_categorical: q_vals_v = self.net.q_values(state_v) else: q_vals_v = self.net(state_v) act_v = tf.math.argmax(q_vals_v, axis=1) action = int(act_v.numpy()[0]) new_state, reward, is_done, _ = self.env.step(action) self.total_reward += reward exp = xp.Experience(self.state, action, reward, is_done) self.exp_buffer.append(exp) self.state = new_state if is_done: done_reward = self.total_reward self._reset() return done_reward def sync_weights(self): self.tgt_net.model.set_weights(self.net.model.get_weights()) def load_checkpoint(self, path): if os.path.exists(path): print('Loading checkpoint') self.net.model.load_weights(path) self.tgt_net.model.set_weights(self.net.model.get_weights()) def save_checkpoint(self, path): self.net.model.save_weights(path) @tf.function def ll(self, gamma, states_t, next_states_t, actions_t, rewards_t, done_mask, weights): if self.use_double: states_t = tf.concat([states_t, next_states_t], 0) net_output = self.net(states_t) # Calculate the current state action values state_action_values = tf.squeeze( tf.gather(net_output[:self.batch_size], tf.expand_dims(actions_t, 1), batch_dims=1), -1) state_action_values = tf.where(done_mask, tf.zeros_like(state_action_values), state_action_values) # Calculate the next state action values if self.use_double: next_state_actions = tf.argmax(net_output[self.batch_size:], axis=1) next_state_values = tf.squeeze( tf.gather(self.tgt_net(next_states_t), tf.expand_dims(next_state_actions, 1), batch_dims=1), -1) else: next_state_values = tf.reduce_max(self.tgt_net(next_states_t), axis=1) next_state_values = tf.stop_gradient(next_state_values) # Bellman equation expected_state_action_values = next_state_values * (gamma ** self.n_steps) + rewards_t # Calculate loss losses = tf.math.squared_difference(expected_state_action_values, state_action_values) losses = tf.math.multiply(weights, losses) return tf.reduce_mean(losses, axis=-1), tf.add(1.0e-5, losses) @tf.function def ll_dist(self, gamma, states_t, next_states_t, actions_t, rewards_t, done_mask, weights): if self.use_double: states_t = tf.concat([states_t, next_states_t], 0) # Calculate current state probabilities net_output = self.net(states_t) state_action_dist = tf.nn.log_softmax(net_output[:self.batch_size], axis=-1) state_action_dist = tf.squeeze(tf.gather(state_action_dist, tf.reshape(actions_t, [-1, 1, 1]), batch_dims=1)) # Calculate next state probabilities target_net_output = tf.nn.softmax(self.tgt_net(next_states_t), axis=-1) if self.use_double: next_state_actions = tf.nn.softmax(net_output[self.batch_size:]) next_best_actions = tf.argmax(tf.reduce_sum(next_state_actions, -1), -1) else: next_best_actions = tf.argmax(tf.reduce_sum(target_net_output, -1), -1) next_state_dist = tf.squeeze(tf.gather(target_net_output, tf.reshape(next_best_actions, [-1, 1, 1]), batch_dims=1)) # Calculate the Bellman operator T to produce Tz delta_z = (self.v_max - self.v_min) / (self.n_atoms - 1) support = tf.linspace(self.v_min, self.v_max, self.n_atoms) Tz = tf.expand_dims(rewards_t, -1) + tf.expand_dims(tf.cast(tf.logical_not(done_mask), tf.float32), -1) * ( gamma ** self.n_steps) * tf.expand_dims(support, 0) Tz = tf.clip_by_value(Tz, self.v_min, self.v_max) b = (Tz - self.v_min) / delta_z l = tf.math.floor(b) u = tf.math.floor(b) # Fix disappearing probability mass eq_mask = tf.equal(l, u) u_greater = tf.greater(u, 0) l_less = tf.less(l, self.n_atoms - 1.0) l = tf.where(tf.logical_and(eq_mask, u_greater), x=l - 1, y=l) u = tf.where(tf.logical_and(eq_mask, l_less), x=u + 1, y=u) m = tf.zeros(self.batch_size * self.n_atoms) offset = tf.linspace(0.0, ((self.batch_size - 1.0) * self.n_atoms), self.batch_size) offset = tf.reshape(tf.tile(tf.expand_dims(offset, -1), [1, self.n_atoms]), [-1, 1]) m = tf.tensor_scatter_nd_add( m, tf.cast(tf.reshape(l, [-1, 1]) + offset, tf.int32), tf.reshape(next_state_dist * (u - b), [-1]) ) m = tf.tensor_scatter_nd_add( m, tf.cast(tf.reshape(u, [-1, 1]) + offset, tf.int32), tf.reshape(next_state_dist * (b - l), [-1]) ) m = tf.reshape(m, [self.batch_size, self.n_atoms]) m = tf.stop_gradient(m) # Calculate loss losses = -tf.reduce_sum(m * state_action_dist, -1) losses = tf.multiply(weights, losses) return tf.reduce_mean(losses, -1), losses def calc_loss(self, batch, gamma): if self.use_priority: states, actions, rewards, dones, next_states, weights = batch[:6] weights_t = tf.convert_to_tensor(weights) else: states, actions, rewards, dones, next_states = batch[:5] weights_t = tf.ones_like(rewards) states_t = tf.convert_to_tensor(states) next_states_t = tf.convert_to_tensor(next_states) actions_t = tf.convert_to_tensor(actions) rewards_t = tf.convert_to_tensor(rewards) done_mask = tf.convert_to_tensor(dones, dtype=bool) if self.use_categorical: return self.ll_dist(gamma, states_t, next_states_t, actions_t, rewards_t, done_mask, weights_t) return self.ll(gamma, states_t, next_states_t, actions_t, rewards_t, done_mask, weights_t) def step(self, gamma, update_exp_weights=True): indices = None beta = min(1.0, self.update_count / (self.train_steps * (1.0 - self.beta)) + self.beta) batch = self.exp_buffer.sample(self.batch_size, beta) if self.use_priority: indices = batch[6] with tf.GradientTape() as tape: loss_t, losses = self.calc_loss(batch, gamma) gradient = tape.gradient(loss_t, self.params) self.optimizer.apply_gradients(zip(gradient, self.params)) if self.use_priority and update_exp_weights: self.exp_buffer.update_weights(indices, losses.numpy()) self.update_count += 1 def buffer_size(self): return len(self.exp_buffer)
the-stack_106_27367
#!/usr/bin/env python3 # Copyright (c) the JPEG XL Project Authors. All rights reserved. # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """build_cleaner.py: Update build files. This tool keeps certain parts of the build files up to date. """ import argparse import collections import locale import os import re import subprocess import sys import tempfile def RepoFiles(src_dir): """Return the list of files from the source git repository""" git_bin = os.environ.get('GIT_BIN', 'git') files = subprocess.check_output([git_bin, '-C', src_dir, 'ls-files']) ret = files.decode(locale.getpreferredencoding()).splitlines() ret.sort() return ret def GetPrefixLibFiles(repo_files, prefix, suffixes=('.h', '.cc', '.ui')): """Gets the library files that start with the prefix and end with source code suffix.""" prefix_files = [ fn for fn in repo_files if fn.startswith(prefix) and any(fn.endswith(suf) for suf in suffixes)] return prefix_files # Type holding the different types of sources in libjxl: # * decoder and common sources, # * encoder-only sources, # * tests-only sources, # * google benchmark sources, # * threads library sources, # * extras library sources, # * libjxl (encoder+decoder) public include/ headers and # * threads public include/ headers. JxlSources = collections.namedtuple( 'JxlSources', ['dec', 'enc', 'test', 'gbench', 'threads', 'extras', 'jxl_public_hdrs', 'threads_public_hdrs']) def SplitLibFiles(repo_files): """Splits the library files into the different groups. """ testonly = ( 'testdata.h', 'test_utils.h', '_test.h', '_test.cc', # _testonly.* files are library code used in tests only. '_testonly.h', '_testonly.cc' ) main_srcs = GetPrefixLibFiles(repo_files, 'lib/jxl/') extras_srcs = GetPrefixLibFiles(repo_files, 'lib/extras/') test_srcs = [fn for fn in main_srcs if any(patt in fn for patt in testonly)] lib_srcs = [fn for fn in main_srcs if not any(patt in fn for patt in testonly)] # Google benchmark sources. gbench_srcs = sorted(fn for fn in lib_srcs + extras_srcs if fn.endswith('_gbench.cc')) lib_srcs = [fn for fn in lib_srcs if fn not in gbench_srcs] # Exclude optional codecs from extras. exclude_extras = ['/codec_gif', '/codec_apng', '/codec_exr'] extras_srcs = [fn for fn in extras_srcs if fn not in gbench_srcs and not any(patt in fn for patt in testonly) and not any(patt in fn for patt in exclude_extras)] enc_srcs = [fn for fn in lib_srcs if os.path.basename(fn).startswith('enc_') or os.path.basename(fn).startswith('butteraugli')] enc_srcs.extend([ "lib/jxl/encode.cc", "lib/jxl/encode_internal.h", "lib/jxl/gaborish.cc", "lib/jxl/gaborish.h", "lib/jxl/huffman_tree.cc", "lib/jxl/huffman_tree.h", # Only the inlines in linalg.h header are used in the decoder. # TODO(deymo): split out encoder only linalg.h functions. "lib/jxl/linalg.cc", "lib/jxl/optimize.cc", "lib/jxl/optimize.h", "lib/jxl/progressive_split.cc", "lib/jxl/progressive_split.h", # TODO(deymo): Add luminance.cc and luminance.h here too. Currently used # by aux_out.h. # dec_file is not intended to be part of the decoder library, so move it # to the encoder source set "lib/jxl/dec_file.cc", "lib/jxl/dec_file.h", ]) # Temporarily remove enc_bit_writer from the encoder sources: a lot of # decoder source code still needs to be split up into encoder and decoder. # Including the enc_bit_writer in the decoder allows to build a working # libjxl_dec library. # TODO(lode): remove the dependencies of the decoder on enc_bit_writer and # remove enc_bit_writer from the dec_srcs again. enc_srcs.remove("lib/jxl/enc_bit_writer.cc") enc_srcs.remove("lib/jxl/enc_bit_writer.h") enc_srcs.sort() enc_srcs_set = set(enc_srcs) lib_srcs = [fn for fn in lib_srcs if fn not in enc_srcs_set] # The remaining of the files are in the dec_library. dec_srcs = lib_srcs thread_srcs = GetPrefixLibFiles(repo_files, 'lib/threads/') thread_srcs = [fn for fn in thread_srcs if not any(patt in fn for patt in testonly)] public_hdrs = GetPrefixLibFiles(repo_files, 'lib/include/jxl/') threads_public_hdrs = [fn for fn in public_hdrs if '_parallel_runner' in fn] jxl_public_hdrs = list(sorted(set(public_hdrs) - set(threads_public_hdrs))) return JxlSources(dec_srcs, enc_srcs, test_srcs, gbench_srcs, thread_srcs, extras_srcs, jxl_public_hdrs, threads_public_hdrs) def CleanFile(args, filename, pattern_data_list): """Replace a pattern match with new data in the passed file. Given a regular expression pattern with a single () match, it runs the regex over the passed filename and replaces the match () with the new data. If args.update is set, it will update the file with the new contents, otherwise it will return True when no changes were needed. Multiple pairs of (regular expression, new data) can be passed to the pattern_data_list parameter and will be applied in order. The regular expression must match at least once in the file. """ filepath = os.path.join(args.src_dir, filename) with open(filepath, 'r') as f: src_text = f.read() if not pattern_data_list: return True new_text = src_text for pattern, data in pattern_data_list: offset = 0 chunks = [] for match in re.finditer(pattern, new_text): chunks.append(new_text[offset:match.start(1)]) offset = match.end(1) chunks.append(data) if not chunks: raise Exception('Pattern not found for %s: %r' % (filename, pattern)) chunks.append(new_text[offset:]) new_text = ''.join(chunks) if new_text == src_text: return True if args.update: print('Updating %s' % filename) with open(filepath, 'w') as f: f.write(new_text) return True else: with tempfile.NamedTemporaryFile( mode='w', prefix=os.path.basename(filename)) as new_file: new_file.write(new_text) new_file.flush() subprocess.call( ['diff', '-u', filepath, '--label', 'a/' + filename, new_file.name, '--label', 'b/' + filename]) return False def BuildCleaner(args): repo_files = RepoFiles(args.src_dir) ok = True # jxl version with open(os.path.join(args.src_dir, 'lib/CMakeLists.txt'), 'r') as f: cmake_text = f.read() gni_patterns = [] for varname in ('JPEGXL_MAJOR_VERSION', 'JPEGXL_MINOR_VERSION', 'JPEGXL_PATCH_VERSION'): # Defined in CMakeLists.txt as "set(varname 1234)" match = re.search(r'set\(' + varname + r' ([0-9]+)\)', cmake_text) version_value = match.group(1) gni_patterns.append((r'"' + varname + r'=([0-9]+)"', version_value)) jxl_src = SplitLibFiles(repo_files) # libjxl jxl_cmake_patterns = [] jxl_cmake_patterns.append( (r'set\(JPEGXL_INTERNAL_SOURCES_DEC\n([^\)]+)\)', ''.join(' %s\n' % fn[len('lib/'):] for fn in jxl_src.dec))) jxl_cmake_patterns.append( (r'set\(JPEGXL_INTERNAL_SOURCES_ENC\n([^\)]+)\)', ''.join(' %s\n' % fn[len('lib/'):] for fn in jxl_src.enc))) ok = CleanFile( args, 'lib/jxl.cmake', jxl_cmake_patterns) and ok ok = CleanFile( args, 'lib/jxl_benchmark.cmake', [(r'set\(JPEGXL_INTERNAL_SOURCES_GBENCH\n([^\)]+)\)', ''.join(' %s\n' % fn[len('lib/'):] for fn in jxl_src.gbench))]) and ok gni_patterns.append(( r'libjxl_dec_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.dec))) gni_patterns.append(( r'libjxl_enc_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.enc))) gni_patterns.append(( r'libjxl_gbench_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.gbench))) tests = [fn[len('lib/'):] for fn in jxl_src.test if fn.endswith('_test.cc')] testlib = [fn[len('lib/'):] for fn in jxl_src.test if not fn.endswith('_test.cc')] gni_patterns.append(( r'libjxl_tests_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn for fn in tests))) gni_patterns.append(( r'libjxl_testlib_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn for fn in testlib))) # libjxl_threads ok = CleanFile( args, 'lib/jxl_threads.cmake', [(r'set\(JPEGXL_THREADS_SOURCES\n([^\)]+)\)', ''.join(' %s\n' % fn[len('lib/'):] for fn in jxl_src.threads))]) and ok gni_patterns.append(( r'libjxl_threads_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.threads))) # libjxl_extras ok = CleanFile( args, 'lib/jxl_extras.cmake', [(r'set\(JPEGXL_EXTRAS_SOURCES\n([^\)]+)\)', ''.join(' %s\n' % fn[len('lib/'):] for fn in jxl_src.extras))]) and ok gni_patterns.append(( r'libjxl_extras_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.extras))) # libjxl_profiler profiler_srcs = [fn[len('lib/'):] for fn in repo_files if fn.startswith('lib/profiler')] ok = CleanFile( args, 'lib/jxl_profiler.cmake', [(r'set\(JPEGXL_PROFILER_SOURCES\n([^\)]+)\)', ''.join(' %s\n' % fn for fn in profiler_srcs))]) and ok gni_patterns.append(( r'libjxl_profiler_sources = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn for fn in profiler_srcs))) # Public headers. gni_patterns.append(( r'libjxl_public_headers = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.jxl_public_hdrs))) gni_patterns.append(( r'libjxl_threads_public_headers = \[\n([^\]]+)\]', ''.join(' "%s",\n' % fn[len('lib/'):] for fn in jxl_src.threads_public_hdrs))) # Update the list of tests. CMake version include test files in other libs, # not just in libjxl. tests = [fn[len('lib/'):] for fn in repo_files if fn.endswith('_test.cc') and fn.startswith('lib/')] ok = CleanFile( args, 'lib/jxl_tests.cmake', [(r'set\(TEST_FILES\n([^\)]+) ### Files before this line', ''.join(' %s\n' % fn for fn in tests))]) and ok ok = CleanFile( args, 'lib/jxl_tests.cmake', [(r'set\(TESTLIB_FILES\n([^\)]+)\)', ''.join(' %s\n' % fn for fn in testlib))]) and ok # Update lib.gni ok = CleanFile(args, 'lib/lib.gni', gni_patterns) and ok return ok def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--src-dir', default=os.path.realpath(os.path.join( os.path.dirname(__file__), '..')), help='path to the build directory') parser.add_argument('--update', default=False, action='store_true', help='update the build files instead of only checking') args = parser.parse_args() if not BuildCleaner(args): print('Build files need update.') sys.exit(2) if __name__ == '__main__': main()
the-stack_106_27368
import torch def unitwise_norm(x, norm_type=2.0): if x.ndim <= 1: return x.norm(norm_type) else: # works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor # might need special cases for other weights (possibly MHA) where this may not be true return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True) def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0): if isinstance(parameters, torch.Tensor): parameters = [parameters] for p in parameters: if p.grad is None: continue p_data = p.detach() g_data = p.grad.detach() max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor) grad_norm = unitwise_norm(g_data, norm_type=norm_type) clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6)) new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad) p.grad.detach().copy_(new_grads)
the-stack_106_27369
import json from django.contrib import messages class AjaxMessagesMiddleware(object): """ Middleware to handle messages for AJAX requests. If the AJAX response is already JSON, add a "messages" key to it (or append to an existing "messages" key) a list of messages (each message is an object with "level", "message", and "tags" keys). If the AJAX response is currently html, turn it into JSON and stuff the HTML content into the "html" key, adding a "messages" key as well. If the AJAX response is neither json nor html, return it as-is (with no messages attached, and without iterating over messages). If the AJAX response has a status code other than 200, or has an attribute ``no_messages`` that is ``True``, it will not be modified (and messages will not be read). """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) handle_response = ( request.is_ajax() and response.status_code == 200 and not getattr(response, 'no_messages', False) ) if handle_response: content_type = response.get('content-type', 'None').split(";")[0] content = response.content.decode('utf-8') if content_type == "application/json": data = json.loads(content) elif content_type == "text/html": data = {"html": content} else: return response messagelist = data.setdefault("messages", []) for message in messages.get_messages(request): messagelist.append({ "level": message.level, "message": str(message.message), "tags": message.tags, }) response.content = json.dumps(data) response["content-type"] = "application/json" response["content-length"] = len(response.content) return response
the-stack_106_27373
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Maintain moving averages of parameters.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.training import slot_creator # TODO(touts): switch to variables.Variable. def assign_moving_average(variable, value, decay, name=None): """Compute the moving average of a variable. The moving average of 'variable' updated with 'value' is: variable * decay + value * (1 - decay) The returned Operation sets 'variable' to the newly computed moving average. The new value of 'variable' can be set with the 'AssignSub' op as: variable -= (1 - decay) * (variable - value) Args: variable: A Variable. value: A tensor with the same shape as 'variable' decay: A float Tensor or float value. The moving average decay. name: Optional name of the returned operation. Returns: An Operation that updates 'variable' with the newly computed moving average. """ with ops.op_scope([variable, value, decay], name, "AssignMovingAvg") as scope: with ops.device(variable.device): decay = ops.convert_to_tensor(1.0 - decay, name="decay") if decay.dtype != variable.dtype.base_dtype: decay = math_ops.cast(decay, variable.dtype.base_dtype) return state_ops.assign_sub(variable, (variable - value) * decay, name=scope) class ExponentialMovingAverage(object): """Maintains moving averages of variables by employing an exponential decay. When training a model, it is often beneficial to maintain moving averages of the trained parameters. Evaluations that use averaged parameters sometimes produce significantly better results than the final trained values. The `apply()` method adds shadow copies of trained variables and add ops that maintain a moving average of the trained variables in their shadow copies. It is used when building the training model. The ops that maintain moving averages are typically run after each training step. The `average()` and `average_name()` methods give access to the shadow variables and their names. They are useful when building an evaluation model, or when restoring a model from a checkpoint file. They help use the moving averages in place of the last trained values for evaluations. The moving averages are computed using exponential decay. You specify the decay value when creating the `ExponentialMovingAverage` object. The shadow variables are initialized with the same initial values as the trained variables. When you run the ops to maintain the moving averages, each shadow variable is updated with the formula: `shadow_variable -= (1 - decay) * (shadow_variable - variable)` This is mathematically equivalent to the classic formula below, but the use of an `assign_sub` op (the `"-="` in the formula) allows concurrent lockless updates to the variables: `shadow_variable = decay * shadow_variable + (1 - decay) * variable` Reasonable values for `decay` are close to 1.0, typically in the multiple-nines range: 0.999, 0.9999, etc. Example usage when creating a training model: ```python # Create variables. var0 = tf.Variable(...) var1 = tf.Variable(...) # ... use the variables to build a training model... ... # Create an op that applies the optimizer. This is what we usually # would use as a training op. opt_op = opt.minimize(my_loss, [var0, var1]) # Create an ExponentialMovingAverage object ema = tf.train.ExponentialMovingAverage(decay=0.9999) # Create the shadow variables, and add ops to maintain moving averages # of var0 and var1. maintain_averages_op = ema.apply([var0, var1]) # Create an op that will update the moving averages after each training # step. This is what we will use in place of the usuall trainig op. with tf.control_dependencies([opt_op]): training_op = tf.group(maintain_averages_op) ...train the model by running training_op... ``` There are two ways to use the moving averages for evaluations: * Build a model that uses the shadow variables instead of the variables. For this, use the `average()` method which returns the shadow variable for a given variable. * Build a model normally but load the checkpoint files to evaluate by using the shadow variable names. For this use the `average_name()` method. See the [Saver class](../../api_docs/python/train.md#Saver) for more information on restoring saved variables. Example of restoring the shadow variable values: ```python # Create a Saver that loads variables from their saved shadow values. shadow_var0_name = ema.average_name(var0) shadow_var1_name = ema.average_name(var1) saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1}) saver.restore(...checkpoint filename...) # var0 and var1 now hold the moving average values ``` @@__init__ @@apply @@average_name @@average @@variables_to_restore """ def __init__(self, decay, num_updates=None, name="ExponentialMovingAverage"): """Creates a new ExponentialMovingAverage object. The `Apply()` method has to be called to create shadow variables and add ops to maintain moving averages. The optional `num_updates` parameter allows one to tweak the decay rate dynamically. . It is typical to pass the count of training steps, usually kept in a variable that is incremented at each step, in which case the decay rate is lower at the start of training. This makes moving averages move faster. If passed, the actual decay rate used is: `min(decay, (1 + num_updates) / (10 + num_updates))` Args: decay: Float. The decay to use. num_updates: Optional count of number of updates applied to variables. name: String. Optional prefix name to use for the name of ops added in `Apply()`. """ self._decay = decay self._num_updates = num_updates self._name = name self._averages = {} def apply(self, var_list=None): """Maintains moving averages of variables. `var_list` must be a list of `Variable` or `Tensor` objects. This method creates shadow variables for all elements of `var_list`. Shadow variables for `Variable` objects are initialized to the variable's initial value. They will be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection. For `Tensor` objects, the shadow variables are initialized to 0. shadow variables are created with `trainable=False` and added to the `GraphKeys.ALL_VARIABLES` collection. They will be returned by calls to `tf.all_variables()`. Returns an op that updates all shadow variables as described above. Note that `apply()` can be called multiple times with different lists of variables. Args: var_list: A list of Variable or Tensor objects. The variables and Tensors must be of types float32 or float64. Returns: An Operation that updates the moving averages. Raises: TypeError: If the arguments are not all float32 or float64. ValueError: If the moving average of one of the variables is already being computed. """ # TODO(touts): op_scope if var_list is None: var_list = variables.trainable_variables() for var in var_list: if var.dtype.base_dtype not in [dtypes.float32, dtypes.float64]: raise TypeError("The variables must be float or double: %s" % var) if var in self._averages: raise ValueError("Moving average already computed for: %s" % var) # For variables: to lower communication bandwidth across devices we keep # the moving averages on the same device as the variables. For other # tensors, we rely on the existing device allocation mechanism. with ops.control_dependencies(None): if isinstance(var, variables.Variable): avg = slot_creator.create_slot( var, var.initialized_value(), self._name, colocate_with_primary=True) else: avg = slot_creator.create_zeros_slot( var, self._name, colocate_with_primary=(var.op.type == "Variable")) self._averages[var] = avg ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var) with ops.name_scope(self._name) as scope: decay = ops.convert_to_tensor(self._decay, name="decay") if self._num_updates is not None: num_updates = math_ops.cast(self._num_updates, dtypes.float32, name="num_updates") decay = math_ops.minimum(decay, (1.0 + num_updates) / (10.0 + num_updates)) updates = [] for var in var_list: updates.append(assign_moving_average(self._averages[var], var, decay)) return control_flow_ops.group(*updates, name=scope) def average(self, var): """Returns the `Variable` holding the average of `var`. Args: var: A `Variable` object. Returns: A `Variable` object or `None` if the moving average of `var` is not maintained.. """ return self._averages.get(var, None) def average_name(self, var): """Returns the name of the `Variable` holding the average for `var`. The typical scenario for `ExponentialMovingAverage` is to compute moving averages of variables during training, and restore the variables from the computed moving averages during evaluations. To restore variables, you have to know the name of the shadow variables. That name and the original variable can then be passed to a `Saver()` object to restore the variable from the moving average value with: `saver = tf.train.Saver({ema.average_name(var): var})` `average_name()` can be called whether or not `apply()` has been called. Args: var: A `Variable` object. Returns: A string: the name of the variable that will be used or was used by the `ExponentialMovingAverage class` to hold the moving average of `var`. """ return var.op.name + "/" + self._name def variables_to_restore(self): """Returns a map of names to `Variables` to restore. If a variable has a moving average, use the moving average variable name as the restore name; otherwise, use the variable name. For example, ```python variables_to_restore = ema.variables_to_restore() saver = tf.train.Saver(variables_to_restore) ``` Below is an example of such mapping: ``` conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma, conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params, global_step: global_step ``` Returns: A map from restore_names to variables. The restore_name can be the moving_average version of the variable name if it exist, or the original variable name. """ name_map = {} # Collect all the variables with moving average, including all # the trainable variables and variables which have been explicitly # added to the collection. moving_avg_variables = list(set(variables.moving_average_variables() + variables.trainable_variables())) for v in moving_avg_variables: name_map[self.average_name(v)] = v # Make sure we restore variables without moving average as well. for v in list(set(variables.all_variables()) - set(moving_avg_variables)): if v.op.name not in name_map: name_map[v.op.name] = v return name_map
the-stack_106_27374
import pytest from unittest import mock import json from django.core.exceptions import ValidationError from awx.main.models import ( UnifiedJob, InventoryUpdate, Inventory, Credential, CredentialType, InventorySource, ) def test_cancel(mocker): with mock.patch.object(UnifiedJob, 'cancel', return_value=True) as parent_cancel: iu = InventoryUpdate() iu.save = mocker.MagicMock() build_job_explanation_mock = mocker.MagicMock() iu._build_job_explanation = mocker.MagicMock(return_value=build_job_explanation_mock) iu.cancel() parent_cancel.assert_called_with(is_chain=False, job_explanation=None) def test__build_job_explanation(): iu = InventoryUpdate(id=3, name='I_am_an_Inventory_Update') job_explanation = iu._build_job_explanation() assert job_explanation == 'Previous Task Canceled: {"job_type": "%s", "job_name": "%s", "job_id": "%s"}' % ( 'inventory_update', 'I_am_an_Inventory_Update', 3, ) def test_valid_clean_insights_credential(): cred_type = CredentialType.defaults['insights']() insights_cred = Credential(credential_type=cred_type) inv = Inventory(insights_credential=insights_cred) inv.clean_insights_credential() def test_invalid_clean_insights_credential(): cred_type = CredentialType.defaults['scm']() cred = Credential(credential_type=cred_type) inv = Inventory(insights_credential=cred) with pytest.raises(ValidationError) as e: inv.clean_insights_credential() assert json.dumps(str(e.value)) == json.dumps(str([u"Credential kind must be 'insights'."])) def test_valid_kind_clean_insights_credential(): inv = Inventory(kind='smart') inv.clean_insights_credential() def test_invalid_kind_clean_insights_credential(): cred_type = CredentialType.defaults['insights']() insights_cred = Credential(credential_type=cred_type) inv = Inventory(kind='smart', insights_credential=insights_cred) with pytest.raises(ValidationError) as e: inv.clean_insights_credential() assert json.dumps(str(e.value)) == json.dumps(str([u'Assignment not allowed for Smart Inventory'])) class TestControlledBySCM: def test_clean_source_path_valid(self): inv_src = InventorySource(source_path='/not_real/', source='scm') inv_src.clean_source_path() @pytest.mark.parametrize( 'source', [ 'ec2', 'manual', ], ) def test_clean_source_path_invalid(self, source): inv_src = InventorySource(source_path='/not_real/', source=source) with pytest.raises(ValidationError): inv_src.clean_source_path() def test_clean_update_on_launch_update_on_project_update(self): inv_src = InventorySource(update_on_project_update=True, update_on_launch=True, source='scm') with pytest.raises(ValidationError): inv_src.clean_update_on_launch()
the-stack_106_27377
from typing import List, Tuple, Type, Union, Callable, Optional, Dict, Any import torch as th import torch.nn.functional as F import numpy as np from stable_baselines3.common import logger from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback from stable_baselines3.common.noise import ActionNoise from stable_baselines3.sac.policies import SACPolicy class SAC(OffPolicyAlgorithm): """ Soft Actor-Critic (SAC) Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, This implementation borrows code from original implementation (https://github.com/haarnoja/sac) from OpenAI Spinning Up (https://github.com/openai/spinningup), from the softlearning repo (https://github.com/rail-berkeley/softlearning/) and from Stable Baselines (https://github.com/hill-a/stable-baselines) Paper: https://arxiv.org/abs/1801.01290 Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html Note: we use double q target and not value target as discussed in https://github.com/hill-a/stable-baselines/issues/270 :param policy: (SACPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, ...) :param env: (GymEnv or str) The environment to learn from (if registered in Gym, can be str) :param learning_rate: (float or callable) learning rate for adam optimizer, the same learning rate will be used for all networks (Q-Values, Actor and Value function) it can be a function of the current progress remaining (from 1 to 0) :param buffer_size: (int) size of the replay buffer :param learning_starts: (int) how many steps of the model to collect transitions for before learning starts :param batch_size: (int) Minibatch size for each gradient update :param tau: (float) the soft update coefficient ("Polyak update", between 0 and 1) :param gamma: (float) the discount factor :param train_freq: (int) Update the model every ``train_freq`` steps. :param gradient_steps: (int) How many gradient update after each step :param n_episodes_rollout: (int) Update the model every ``n_episodes_rollout`` episodes. Note that this cannot be used at the same time as ``train_freq`` :param action_noise: (ActionNoise) the action noise type (None by default), this can help for hard exploration problem. Cf common.noise for the different action noise type. :param optimize_memory_usage: (bool) Enable a memory efficient variant of the replay buffer at a cost of more complexity. See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195 :param ent_coef: (str or float) Entropy regularization coefficient. (Equivalent to inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off. Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value) :param target_update_interval: (int) update the target network every ``target_network_update_freq`` gradient steps. :param target_entropy: (str or float) target entropy when learning ``ent_coef`` (``ent_coef = 'auto'``) :param use_sde: (bool) Whether to use generalized State Dependent Exploration (gSDE) instead of action noise exploration (default: False) :param sde_sample_freq: (int) Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param use_sde_at_warmup: (bool) Whether to use gSDE instead of uniform sampling during the warm up phase (before learning starts) :param create_eval_env: (bool) Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation :param verbose: (int) the verbosity level: 0 no output, 1 info, 2 debug :param seed: (int) Seed for the pseudo random generators :param device: (str or th.device) Device (cpu, cuda, ...) on which the code should be run. Setting it to auto, the code will be run on the GPU if possible. :param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance """ def __init__(self, policy: Union[str, Type[SACPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Callable] = 3e-4, buffer_size: int = int(1e6), learning_starts: int = 100, batch_size: int = 256, tau: float = 0.005, gamma: float = 0.99, train_freq: int = 1, gradient_steps: int = 1, n_episodes_rollout: int = -1, action_noise: Optional[ActionNoise] = None, optimize_memory_usage: bool = False, ent_coef: Union[str, float] = 'auto', target_update_interval: int = 1, target_entropy: Union[str, float] = 'auto', use_sde: bool = False, sde_sample_freq: int = -1, use_sde_at_warmup: bool = False, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Dict[str, Any] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = 'auto', _init_setup_model: bool = True): super(SAC, self).__init__(policy, env, SACPolicy, learning_rate, buffer_size, learning_starts, batch_size, tau, gamma, train_freq, gradient_steps, n_episodes_rollout, action_noise, policy_kwargs=policy_kwargs, tensorboard_log=tensorboard_log, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, use_sde=use_sde, sde_sample_freq=sde_sample_freq, use_sde_at_warmup=use_sde_at_warmup, optimize_memory_usage=optimize_memory_usage) self.target_entropy = target_entropy self.log_ent_coef = None # type: Optional[th.Tensor] # Entropy coefficient / Entropy temperature # Inverse of the reward scale self.ent_coef = ent_coef self.target_update_interval = target_update_interval self.ent_coef_optimizer = None if _init_setup_model: self._setup_model() def _setup_model(self) -> None: super(SAC, self)._setup_model() self._create_aliases() assert self.critic.n_critics == 2, "SAC only supports `n_critics=2` for now" # Target entropy is used when learning the entropy coefficient if self.target_entropy == 'auto': # automatically set target entropy if needed self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32) else: # Force conversion # this will also throw an error for unexpected string self.target_entropy = float(self.target_entropy) # The entropy coefficient or entropy can be learned automatically # see Automating Entropy Adjustment for Maximum Entropy RL section # of https://arxiv.org/abs/1812.05905 if isinstance(self.ent_coef, str) and self.ent_coef.startswith('auto'): # Default initial value of ent_coef when learned init_value = 1.0 if '_' in self.ent_coef: init_value = float(self.ent_coef.split('_')[1]) assert init_value > 0., "The initial value of ent_coef must be greater than 0" # Note: we optimize the log of the entropy coeff which is slightly different from the paper # as discussed in https://github.com/rail-berkeley/softlearning/issues/37 self.log_ent_coef = th.log(th.ones(1, device=self.device) * init_value).requires_grad_(True) self.ent_coef_optimizer = th.optim.Adam([self.log_ent_coef], lr=self.lr_schedule(1)) else: # Force conversion to float # this will throw an error if a malformed string (different from 'auto') # is passed self.ent_coef_tensor = th.tensor(float(self.ent_coef)).to(self.device) def _create_aliases(self) -> None: self.actor = self.policy.actor self.critic = self.policy.critic self.critic_target = self.policy.critic_target def train(self, gradient_steps: int, batch_size: int = 64) -> None: # Update optimizers learning rate optimizers = [self.actor.optimizer, self.critic.optimizer] if self.ent_coef_optimizer is not None: optimizers += [self.ent_coef_optimizer] # Update learning rate according to lr schedule self._update_learning_rate(optimizers) ent_coef_losses, ent_coefs = [], [] actor_losses, critic_losses = [], [] for gradient_step in range(gradient_steps): # Sample replay buffer replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env) # We need to sample because `log_std` may have changed between two gradient steps if self.use_sde: self.actor.reset_noise() # Action by the current actor for the sampled state actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations) log_prob = log_prob.reshape(-1, 1) ent_coef_loss = None if self.ent_coef_optimizer is not None: # Important: detach the variable from the graph # so we don't change it with other losses # see https://github.com/rail-berkeley/softlearning/issues/60 ent_coef = th.exp(self.log_ent_coef.detach()) ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean() ent_coef_losses.append(ent_coef_loss.item()) else: ent_coef = self.ent_coef_tensor ent_coefs.append(ent_coef.item()) # Optimize entropy coefficient, also called # entropy temperature or alpha in the paper if ent_coef_loss is not None: self.ent_coef_optimizer.zero_grad() ent_coef_loss.backward() self.ent_coef_optimizer.step() with th.no_grad(): # Select action according to policy next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations) # Compute the target Q value target_q1, target_q2 = self.critic_target(replay_data.next_observations, next_actions) target_q = th.min(target_q1, target_q2) - ent_coef * next_log_prob.reshape(-1, 1) # td error + entropy term q_backup = replay_data.rewards + (1 - replay_data.dones) * self.gamma * target_q # Get current Q estimates # using action from the replay buffer current_q1, current_q2 = self.critic(replay_data.observations, replay_data.actions) # Compute critic loss critic_loss = 0.5 * (F.mse_loss(current_q1, q_backup) + F.mse_loss(current_q2, q_backup)) critic_losses.append(critic_loss.item()) # Optimize the critic self.critic.optimizer.zero_grad() critic_loss.backward() self.critic.optimizer.step() # Compute actor loss # Alternative: actor_loss = th.mean(log_prob - qf1_pi) qf1_pi, qf2_pi = self.critic.forward(replay_data.observations, actions_pi) min_qf_pi = th.min(qf1_pi, qf2_pi) actor_loss = (ent_coef * log_prob - min_qf_pi).mean() actor_losses.append(actor_loss.item()) # Optimize the actor self.actor.optimizer.zero_grad() actor_loss.backward() self.actor.optimizer.step() # Update target networks if gradient_step % self.target_update_interval == 0: for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) self._n_updates += gradient_steps logger.record("train/n_updates", self._n_updates, exclude='tensorboard') logger.record("train/ent_coef", np.mean(ent_coefs)) logger.record("train/actor_loss", np.mean(actor_losses)) logger.record("train/critic_loss", np.mean(critic_losses)) if len(ent_coef_losses) > 0: logger.record("train/ent_coef_loss", np.mean(ent_coef_losses)) def learn(self, total_timesteps: int, callback: MaybeCallback = None, log_interval: int = 4, eval_env: Optional[GymEnv] = None, eval_freq: int = -1, n_eval_episodes: int = 5, tb_log_name: str = "SAC", eval_log_path: Optional[str] = None, reset_num_timesteps: bool = True) -> OffPolicyAlgorithm: return super(SAC, self).learn(total_timesteps=total_timesteps, callback=callback, log_interval=log_interval, eval_env=eval_env, eval_freq=eval_freq, n_eval_episodes=n_eval_episodes, tb_log_name=tb_log_name, eval_log_path=eval_log_path, reset_num_timesteps=reset_num_timesteps) def excluded_save_params(self) -> List[str]: """ Returns the names of the parameters that should be excluded by default when saving the model. :return: (List[str]) List of parameters that should be excluded from save """ # Exclude aliases return super(SAC, self).excluded_save_params() + ["actor", "critic", "critic_target"] def get_torch_variables(self) -> Tuple[List[str], List[str]]: """ cf base class """ state_dicts = ["policy", "actor.optimizer", "critic.optimizer"] saved_tensors = ['log_ent_coef'] if self.ent_coef_optimizer is not None: state_dicts.append('ent_coef_optimizer') else: saved_tensors.append('ent_coef_tensor') return state_dicts, saved_tensors
the-stack_106_27380
""" For each train, we check all the other trains to check how many collide, and we choose the case where there is maximum collision. """ def minimumPlatform(n,arr,dep): ''' :param n: number of activities :param arr: arrival time of trains :param dep: corresponding departure time of trains :return: Integer, minimum number of platforms needed ''' ma = 0 for i in range(n) : clash = 1 for j in range(n) : if i != j : if (arr[i] <= arr[j] <= dep[i]) or (arr[i] <= dep[j] <= dep[i]) or ((arr[i] >= arr[j]) and (dep[i] <= dep[j])) : clash += 1 if clash > ma : ma = clash return ma import atexit import io import sys if __name__ == '__main__': test_cases = int(input()) for cases in range(test_cases) : n = int(input()) arrival = list(map(str,input().strip().split())) departure = list(map(str,input().strip().split())) print(minimumPlatform(n,arrival,departure))
the-stack_106_27381
from __future__ import absolute_import, print_function, unicode_literals import inspect from wolframclient.utils.functional import flatten # original idea by Guido in person. # https://www.artima.com/weblogs/viewpost.jsp?thread=101605 class Dispatch(object): """ A method dispatcher class allowing for multiple implementations of a function. Each implementation is associated to a specific input type. Implementations are registered with the annotation :meth:`~wolframclient.utils.dispatch.Dispatch.dispatch`. The Dispatch class is callable, it behaves as a function that uses the implementation corresponding to the input parameter. When a type is a subtype, the type and its parents are checked in the order given by :data:`__mro__` (method resolution order). *Example:* method :meth:`~wolframclient.utils.dispatch.Dispatch.resolve` applied to an instance of :class:`collections.OrderedDict`, check for the first implementation to match with :class:`collections.OrderedDict`, then with :class:`dict`, and ultimately to :data:`object`. Once the mapping is determined, it is cached for later use. """ def __init__(self): self.clear() def dispatch(self, *args, **opts): """ Annotate a function and map it to a given set of type(s). Declare an implementation to use on :data:`bytearray` input:: @dispatcher.dispatch(bytearray) def my_func(...) The default implementation is associated with :data:`object`. Set a default:: @dispatcher.dispatch(object) def my_default_func(...) A tuple can be used as input to associate more than one type with a function. Declare a function used for both :data:`bytes` and :data:`bytearray`:: @dispatcher.dispatch((bytes, bytearray)) def my_func(...) Implementation must be unique. By default, registering the same combination of types will raise an error. Set `replace_existing` to :data:`True` to update the current mapping. Or, set `keep_existing` to :data:`True` to ignore duplicate registration and keep the existing mapping. """ def register(func): return self.register(func, *args, **opts) return register def update(self, dispatch, **opts): """ Update current mapping with the one from `dispatch`. `dispatch` can be a Dispatch instance or a :class:`dict`. `**opts` are passed to :meth:`~wolframclient.utils.dispatch.Dispatch.register` """ if isinstance(dispatch, Dispatch): dispatchmapping = dispatch.dispatch_dict elif isinstance(dispatch, dict): dispatchmapping = dispatch else: raise ValueError("%s is not an instance of Dispatch" % dispatch) for t, function in dispatchmapping.items(): self.register(function, t, **opts) def validate_types(self, types): for t in frozenset(flatten(types)): if not inspect.isclass(t): raise ValueError("%s is not a class" % t) yield t def register(self, function, types=object, keep_existing=False, replace_existing=False): """ Equivalent to annotation :meth:`~wolframclient.utils.dispatch.Dispatch.dispatch` but as a function. """ if not callable(function): raise ValueError("Function %s is not callable" % function) if keep_existing and replace_existing: raise ValueError( "Option values keep_existing and replace_existing cannot be both True." ) self.clear_cache() for t in self.validate_types(types): if replace_existing: self.dispatch_dict[t] = function elif t in self.dispatch_dict: if not keep_existing: raise TypeError("Duplicated registration for input type(s): %s" % (t,)) else: self.dispatch_dict[t] = function return function def unregister(self, types=object): """ Remove implementations associated with types. """ self.clear_cache() for t in self.validate_types(types): try: del self.dispatch_dict[t] except KeyError: pass def clear(self): """ Reset the dispatcher to its initial state. """ self.dispatch_dict = dict() self.dispatch_dict_cache = dict() def clear_cache(self): if self.dispatch_dict_cache: self.dispatch_dict_cache = dict() def resolve(self, arg): """ Return the implementation better matching the type the argument type. """ for t in arg.__class__.__mro__: try: return self.dispatch_dict_cache[t] except KeyError: impl = self.dispatch_dict.get(t, None) if impl: self.dispatch_dict_cache[t] = impl return impl return self.default_function def default_function(self, *args, **opts): """ Ultimately called when no type was found. """ raise ValueError("Unable to handle args") def __call__(self, arg, *args, **opts): return self.resolve(arg)(arg, *args, **opts) def as_method(self): """ Return the dispatch as a class method. Create a new dispatcher:: dispatch = Dispatcher() Use the dispatcher as a class method:: class MyClass(object): myMethod = dispatch.as_method() Call the class method:: o = MyClass() o.myMethod(arg, *args, **kwargs) """ def method(instance, arg, *args, **opts): return self.resolve(arg)(instance, arg, *args, **opts) return method
the-stack_106_27384
import logging import operator import os from collections import namedtuple import numpy as np import gc import torch import torch.nn as nn import torch.utils import torch.nn.functional as F import torchvision.datasets as dset from torch.utils.tensorboard import SummaryWriter import utils as project_utils import nasws.cnn.utils from nasws.cnn.search_space.nasbench101.util import change_model_spec from nasws.cnn.search_space.nasbench101.model import NasBenchNet import nasws.cnn.policy.nao_policy.utils as nao_utils from nasws.cnn.policy.nao_policy.utils_for_nasbench import NASBench101NAOParsing, NASBench101NAOParsing_v1 from visualization.process_data import tensorboard_summarize_list from nasws.cnn.procedures.train_search_procedure import nao_model_validation_nasbench from ..cnn_general_search_policies import CNNSearchPolicy from .model import NASNetworkCIFAR from .model_search import NASWSNetworkCIFAR from .model_search_nasbench import NasBenchNetSearchNAO from .controller import NAO_Darts, NAO_Nasbench Rank = namedtuple('Rank', 'valid_acc valid_obj geno_id gt_rank') class NAONasBenchSearch(CNNSearchPolicy): top_K_complete_evaluate = 100 # nao_search_config def wrap_nao_search_config(self): for k, v in self.args.nao_search_config.__dict__.items(): self.args.__dict__[k] = v def initialize_model(self): """ Initialize model, may change across different model. :return: """ parallel_model, optimizer, scheduler = super().initialize_model() args = self.args if self.args.search_space == 'nasbench': utils = NASBench101NAOParsing_v1() # utils = nao_nasbench_utils nao = NAO_Nasbench( args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length, args=args, ) else: utils = nao_utils nao = NAO_Darts( args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length, ) nao = nao.cuda() logging.info("Encoder-Predictor-Decoder param size = %fMB", utils.count_parameters_in_MB(nao)) self.controller = nao return model, optimizer, scheduler, nao def run(self): args = self.args self.utils = nao_nasbench_utils if args.search_space == 'nasbench' else nao_utils utils = self.utils self.nao_search_config = args.nao_search_config self.wrap_nao_search_config() train_queue, valid_queue, test_queue, train_criterion, eval_criterion = self.initialize_run() args.steps = int(np.ceil(45000 / args.child_batch_size)) * args.child_epochs if args.child_arch_pool is not None: logging.info('Architecture pool is provided, loading') with open(args.child_arch_pool) as f: archs = f.read().splitlines() archs = list(map(self.utils.build_dag, archs)) child_arch_pool = archs elif os.path.exists(os.path.join(self.exp_dir, 'arch_pool')): logging.info('Architecture pool is founded, loading') with open(os.path.join(self.exp_dir, 'arch_pool')) as f: archs = f.read().splitlines() archs = list(map(self.utils.build_dag, archs)) child_arch_pool = archs else: child_arch_pool = None child_eval_epochs = eval(args.child_eval_epochs) # build the functions. args = self.args model, optimizer, scheduler, nao = self.initialize_model() fitness_dict = {} self.optimizer = optimizer self.scheduler = scheduler # Train child model if child_arch_pool is None: logging.info('Architecture pool is not provided, randomly generating now') child_arch_pool = self.generate_new_arch(args.controller_seed_arch) child_arch_pool_prob = self.child_arch_pool_prob(child_arch_pool) eval_points = self.utils.generate_eval_points(child_eval_epochs, 0, args.child_epochs) logging.info("eval epochs = %s", eval_points) step = 0 # Begin the full loop for epoch in range(args.epochs): scheduler.step() lr = scheduler.get_lr()[0] logging.info('epoch %d lr %e', epoch, lr) # sample an arch to train train_acc, train_obj, step = self.child_train(train_queue, model, optimizer, step, child_arch_pool, child_arch_pool_prob, train_criterion) if self.writer: self.writer.add_scalar(f'train/loss', train_obj, epoch) self.writer.add_scalar(f'train/top_1_acc', train_acc, epoch) logging.info('train_acc %f', train_acc) if epoch not in eval_points: # Continue training the architectures continue # Evaluate seed archs valid_accuracy_list = self.child_valid(valid_queue, model, child_arch_pool, eval_criterion) # Output archs and evaluated error rate old_archs = child_arch_pool old_archs_perf = valid_accuracy_list old_archs_sorted_indices = np.argsort(old_archs_perf)[::-1] old_archs = [old_archs[i] for i in old_archs_sorted_indices] old_archs_perf = [old_archs_perf[i] for i in old_archs_sorted_indices] with open(os.path.join(self.exp_dir, 'arch_pool.{}'.format(epoch)), 'w') as fa: with open(os.path.join(self.exp_dir, 'arch_pool.perf.{}'.format(epoch)), 'w') as fp: with open(os.path.join(self.exp_dir, 'arch_pool'), 'w') as fa_latest: with open(os.path.join(self.exp_dir, 'arch_pool.perf'), 'w') as fp_latest: for arch, perf in zip(old_archs, old_archs_perf): arch = self.process_archname(arch) fa.write('{}\n'.format(arch)) fa_latest.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf)) fp_latest.write('{}\n'.format(perf)) if epoch == args.child_epochs: break # Train Encoder-Predictor-Decoder logging.info('Training Encoder-Predictor-Decoder') min_val = min(old_archs_perf) max_val = max(old_archs_perf) encoder_target = [(i - min_val) / (max_val - min_val) for i in old_archs_perf] encoder_input = self.process_arch_to_seq(old_archs) if args.controller_expand is not None: train_encoder_input, train_encoder_target, valid_encoder_input, valid_encoder_target = \ self.expand_controller(encoder_input, encoder_target) else: train_encoder_input = encoder_input train_encoder_target = encoder_target valid_encoder_input = encoder_input valid_encoder_target = encoder_target logging.info('Train data: {}\tValid data: {}'.format(len(train_encoder_input), len(valid_encoder_input))) # gerenrate NAO dataset. nao_train_dataset = utils.NAODataset(train_encoder_input, train_encoder_target, True, swap=True if args.controller_expand is None else False) nao_valid_dataset = utils.NAODataset(valid_encoder_input, valid_encoder_target, False) nao_train_queue = torch.utils.data.DataLoader( nao_train_dataset, batch_size=args.controller_batch_size, shuffle=True, pin_memory=True) nao_valid_queue = torch.utils.data.DataLoader( nao_valid_dataset, batch_size=args.controller_batch_size, shuffle=False, pin_memory=True) nao_optimizer = torch.optim.Adam(nao.parameters(), lr=args.controller_lr, weight_decay=args.controller_l2_reg) # train the sampler. for nao_epoch in range(1, args.controller_epochs + 1): nao_loss, nao_mse, nao_ce = self.nao_train(nao_train_queue, nao, nao_optimizer) logging.info("epoch %04d train loss %.6f mse %.6f ce %.6f", nao_epoch, nao_loss, nao_mse, nao_ce) if nao_epoch % 100 == 0: pa, hs = self.nao_valid(nao_valid_queue, nao) logging.info("Evaluation on valid data") logging.info('epoch %04d pairwise accuracy %.6f hamming distance %.6f', epoch, pa, hs) self.writer.add_scalar(f'valid/hamming_distance', hs, epoch) self.writer.add_scalar(f'valid/pairwise_acc', pa, epoch) # Generate new archs new_archs = [] max_step_size = 50 predict_step_size = 0 top100_archs = self.process_arch_to_seq(old_archs[:100]) nao_infer_dataset = utils.NAODataset(top100_archs, None, False) nao_infer_queue = torch.utils.data.DataLoader( nao_infer_dataset, batch_size=len(nao_infer_dataset), shuffle=False, pin_memory=True) while len(new_archs) < args.controller_new_arch: predict_step_size += 1 logging.info('Generate new architectures with step size %d', predict_step_size) new_arch = self.nao_infer(nao_infer_queue, nao, predict_step_size, direction='+') for arch in new_arch: if arch not in encoder_input and arch not in new_archs: new_archs.append(arch) if len(new_archs) >= args.controller_new_arch: break logging.info('%d new archs generated now', len(new_archs)) if predict_step_size > max_step_size: break # new_archs = list(map(lambda x: utils.parse_seq_to_arch(x, 2), new_archs)) new_archs = self.process_seq_to_arch(new_archs) num_new_archs = len(new_archs) logging.info("Generate %d new archs", num_new_archs) # replace bottom archs if args.controller_replace: new_arch_pool = old_archs[:len(old_archs) - (num_new_archs + args.controller_random_arch)] + \ new_archs + self.generate_new_arch(args.controller_random_arch) # discard all archs except top k elif args.controller_discard: new_arch_pool = old_archs[:100] + new_archs + self.generate_new_arch(args.controller_random_arch) # use all else: new_arch_pool = old_archs + new_archs + self.generate_new_arch(args.controller_random_arch) logging.info("Totally %d architectures now to train", len(new_arch_pool)) child_arch_pool = new_arch_pool with open(os.path.join(self.exp_dir, 'arch_pool'), 'w') as f: for arch in new_arch_pool: f.write('{}\n'.format(self.process_archname(arch))) child_arch_pool_prob = self.child_arch_pool_prob(child_arch_pool) if epoch % self.args.save_every_epoch == 0: project_utils.save_checkpoint(model, optimizer, epoch, self.exp_dir) # add later, return the model specs that is evaluated across the time. # Process the ranking in the end, return the best of training. # IPython.embed(header="Pause for nothing.") fitness_dict = self.evaluate(epoch, test_queue, fitnesses_dict=fitness_dict, arch_pool=child_arch_pool, train_queue=train_queue, criterion=eval_criterion) project_utils.save_checkpoint(model, optimizer, epoch, self.exp_dir) self.save_results(epoch, rank_details=True) ep_k = [k for k in self.ranking_per_epoch.keys()][-1] best_id = self.ranking_per_epoch[ep_k][-1][1].geno_id return best_id, self.nasbench_model_specs[best_id] def child_train(self, train_queue, model, optimizer, global_step, arch_pool, arch_pool_prob, criterion): utils = self.utils objs = nasws.cnn.utils.AverageMeter() top1 = nasws.cnn.utils.AverageMeter() top5 = nasws.cnn.utils.AverageMeter() model.train() for step, (input, target) in enumerate(train_queue): if self.args.debug: if step > 10: print("Break after 10 batch") break input = input.cuda().requires_grad_() target = target.cuda() optimizer.zero_grad() # sample an arch to train arch = utils.sample_arch(arch_pool, arch_pool_prob) arch_l = arch arch = self.process_arch(arch) logits, aux_logits = model(input, arch, global_step, bn_train=False) global_step += 1 loss = criterion(logits, target) if aux_logits is not None: aux_loss = criterion(aux_logits, target) loss += 0.4 * aux_loss loss.backward() nn.utils.clip_grad_norm_(model.parameters(), self.args.child_grad_bound) optimizer.step() prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.data, n) top1.update(prec1.data, n) top5.update(prec5.data, n) if (step + 1) % 100 == 0: logging.info('Train %03d loss %e top1 %f top5 %f', step + 1, objs.avg, top1.avg, top5.avg) logging.info('Arch: %s', self.process_archname(arch_l)) return top1.avg, objs.avg, global_step def child_valid(self,valid_queue, model, arch_pool, criterion): valid_acc_list = [] with torch.no_grad(): model.eval() for i, arch in enumerate(arch_pool): # for step, (inputs, targets) in enumerate(valid_queue): inputs, targets = next(iter(valid_queue)) inputs = inputs.cuda() targets = targets.cuda() arch_l = arch arch = self.process_arch(arch) logits, _ = model(inputs, arch, bn_train=True) loss = criterion(logits, targets) prec1, prec5 = self.utils.accuracy(logits, targets, topk=(1, 5)) valid_acc_list.append(prec1.data / 100) if (i + 1) % 100 == 0: logging.info('Valid arch %s\n loss %.2f top1 %f top5 %f', self.process_archname(arch_l), loss, prec1, prec5) return valid_acc_list def nao_train(self, train_queue, model, optimizer): args = self.args objs = nasws.cnn.utils.AverageMeter() mse = nasws.cnn.utils.AverageMeter() nll = nasws.cnn.utils.AverageMeter() model.train() for step, sample in enumerate(train_queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_input = sample['decoder_input'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda().requires_grad_() decoder_input = decoder_input.cuda() decoder_target = decoder_target.cuda() optimizer.zero_grad() predict_value, log_prob, arch = model(encoder_input, decoder_input) loss_1 = F.mse_loss(predict_value.squeeze(), encoder_target.squeeze()) loss_2 = F.nll_loss(log_prob.contiguous().view(-1, log_prob.size(-1)), decoder_target.view(-1)) loss = args.controller_trade_off * loss_1 + (1 - args.controller_trade_off) * loss_2 loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.controller_grad_bound) optimizer.step() n = encoder_input.size(0) objs.update(loss.data, n) mse.update(loss_1.data, n) nll.update(loss_2.data, n) return objs.avg, mse.avg, nll.avg @staticmethod def nao_valid(queue, model): pa = nasws.cnn.utils.AverageMeter() hs = nasws.cnn.utils.AverageMeter() with torch.no_grad(): model.eval() for step, sample in enumerate(queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda() decoder_target = decoder_target.cuda() predict_value, logits, arch = model(encoder_input) n = encoder_input.size(0) pairwise_acc = nao_utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(), predict_value.data.squeeze().tolist()) hamming_dis = nao_utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist()) pa.update(pairwise_acc, n) hs.update(hamming_dis, n) return pa.avg, hs.avg @staticmethod def nao_infer(queue, model, step, direction='+'): new_arch_list = [] model.eval() for i, sample in enumerate(queue): encoder_input = sample['encoder_input'] encoder_input = encoder_input.cuda() model.zero_grad() new_arch = model.generate_new_arch(encoder_input, step, direction=direction) new_arch_list.extend(new_arch.data.squeeze().tolist()) return new_arch_list def expand_controller(self, encoder_input, encoder_target): args = self.args dataset = list(zip(encoder_input, encoder_target)) n = len(dataset) split = int(n * args.ratio) np.random.shuffle(dataset) encoder_input, encoder_target = list(zip(*dataset)) train_encoder_input = list(encoder_input[:split]) train_encoder_target = list(encoder_target[:split]) valid_encoder_input = list(encoder_input[split:]) valid_encoder_target = list(encoder_target[split:]) if args.search_space == 'nasbench': for _ in range(args.controller_expand - 1): for src, tgt in zip(encoder_input[:split], encoder_target[:split]): train_encoder_input.append(src) train_encoder_target.append(tgt) else: for _ in range(args.controller_expand - 1): # TODO what is controller expand????? for src, tgt in zip(encoder_input[:split], encoder_target[:split]): a = np.random.randint(0, args.child_nodes) b = np.random.randint(0, args.child_nodes) src = src[:4 * a] + src[4 * a + 2:4 * a + 4] + \ src[4 * a:4 * a + 2] + src[4 * (a + 1):20 + 4 * b] + \ src[20 + 4 * b + 2:20 + 4 * b + 4] + src[20 + 4 * b:20 + 4 * b + 2] + \ src[20 + 4 * (b + 1):] train_encoder_input.append(src) train_encoder_target.append(tgt) return train_encoder_input, train_encoder_target, valid_encoder_input, valid_encoder_target # def process_arch(self,arch): # if self.args.search_space == 'nasbench': # matrix, ops = nao_nasbench_utils.parse_arch_to_model_spec_matrix_op(arch, self.args.child_nodes) # model_spec = ModelSpec_v2(matrix, ops) # return model_spec # else: # return arch def process_arch_to_seq(self, old_archs): if self.args.search_space =='nasbench': encoder_input =list(map(lambda x: self.utils.parse_arch_to_seq(x, 2, self.args.child_nodes), old_archs)) else: encoder_input = list( map(lambda x: self.utils.parse_arch_to_seq(x[0], 2) + self.utils.parse_arch_to_seq(x[1], 2), old_archs)) return encoder_input def process_seq_to_arch(self, old_archs): if self.args.search_space =='nasbench': encoder_input =list(map(lambda x: self.utils.parse_seq_to_arch(x, 2, self.args.child_nodes), old_archs)) else: encoder_input = list( map(lambda x: self.utils.parse_seq_to_arch(x[0], 2) + self.utils.parse_seq_to_arch(x[1], 2), old_archs)) return encoder_input def process_archname(self, arch): if self.args.search_space == 'nasbench': return ' '.join(map(str, arch)) else: return ' '.join(map(str, arch[0] + arch[1])) def generate_new_arch(self, num_new): num_ops = 3 if self.args.search_space == 'nasbench' else 5 child_arch_pool = self.utils.generate_arch(num_new, self.args.child_nodes, num_ops) return child_arch_pool def evaluate(self, epoch, data_source, arch_pool=None, fitnesses_dict=None, train_queue=None, criterion=None): """ Full evaluation of all possible models. :param epoch: :param data_source: :param fitnesses_dict: Store the model_spec_id -> accuracy :return: """ fitnesses_dict = fitnesses_dict or {} total_avg_acc = 0 total_avg_obj = 0 # rank dict for the possible solutions model_specs_rank = {} model_specs_rank_before = {} queries = {} # as backup ind = 0 eval_result = {} # let us sample 200 architecture to evaluate. # just keep the top K. clean_arch_pool = self.clean_arch_pool(arch_pool)[:self.top_K_complete_evaluate] while ind < len(clean_arch_pool): # get this id if self.args.debug and ind > 10: break arch = clean_arch_pool[ind] new_model_spec = self.utils.parse_arch_to_model_spec(clean_arch_pool[ind]) ind += 1 # increment this. try: model_spec_id = self.nasbench_hashs.index(new_model_spec.hash_spec()) except Exception as e: logging.error(e) continue query = {'test accuracy':self.search_space.nasbench.perf_rank[model_spec_id]} # selecting the current subDAG in our DAG to train change_model_spec(self.parallel_model, new_model_spec) # Reset the weights. # evaluate before train self.logger.info('evaluate the model spec id: {}'.format(model_spec_id)) _avg_val_acc, _avg_val_acc5, _avg_val_obj = self.child_test(data_source, self.parallel_model, arch, criterion=criterion) eval_result[model_spec_id] = _avg_val_acc, _avg_val_obj logging.info("Query: {}".format(query)) # update the total loss. total_avg_acc += _avg_val_acc total_avg_obj += _avg_val_obj # saving the particle fit in our dictionaries fitnesses_dict[model_spec_id] = _avg_val_acc ms_hash = self.nasbench_hashs[model_spec_id] model_specs_rank[ms_hash] = Rank(_avg_val_acc, _avg_val_obj, model_spec_id, self.search_space.rank_by_mid[model_spec_id]) queries[ms_hash] = query gc.collect() # save the ranking, according to their GENOTYPE but not particle id rank_gens = sorted(model_specs_rank.items(), key=operator.itemgetter(1)) self.ranking_per_epoch[epoch] = rank_gens self.eval_result[epoch] = eval_result # IPython.embed(header="Check evaluation result") self.logger.info('VALIDATION RANKING OF PARTICLES') for pos, elem in enumerate(rank_gens): self.logger.info(f'particle gen id: {elem[1].geno_id}, acc: {elem[1].valid_acc}, obj {elem[1].valid_obj}, ' f'hash: {elem[0]}, pos {pos}') if self.writer: # process data into list. accs_after, objs_after = zip(*eval_result.values()) tensorboard_summarize_list(accs_after, writer=self.writer, key='neweval_after/acc', step=epoch, ascending=False) tensorboard_summarize_list(objs_after, writer=self.writer, key='neweval_after/obj', step=epoch) return fitnesses_dict def process_nasbench(self): super(NAONasBenchSearch, self).process_nasbench(only_hash=False) def child_test(self, test_queue, model, arch, criterion, verbose=True): utils = self.utils objs = nasws.cnn.utils.AverageMeter() top1 = nasws.cnn.utils.AverageMeter() top5 = nasws.cnn.utils.AverageMeter() model.eval() # arch_l = arch arch = self.utils.parse_arch_to_model_spec(arch) with torch.no_grad(): for step, (input, target) in enumerate(test_queue): if self.args.debug: if step > 10: print("Break after 10 batch") break input = input.cuda() target = target.cuda() logits, _ = model(input, arch, bn_train=False) loss = criterion(logits, target) prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.item(), n) top1.update(prec1.item(), n) top5.update(prec5.item(), n) if step % self.args.report_freq == 0 and step > 0 and verbose: logging.info('test | step %03d | loss %e | acc %f | acc-5 %f', step, objs.avg, top1.avg, top5.avg) return top1.avg, top5.avg, objs.avg def clean_arch_pool(self, arch_pool): new_arch_pool = [] for i in arch_pool: if not i in new_arch_pool: new_arch_pool.append(i) return new_arch_pool def child_arch_pool_prob(self, child_arch_pool): # raise NotImplementedError('do not support params for now ...') args = self.args if args.child_sample_policy == 'params': child_arch_pool_prob = [] print('num is %d', len(child_arch_pool)) for arch in child_arch_pool: # just to count the parameters and use as prob, kind of a biased sampling. # use model hash to query. if self.args.search_space == 'nasbench': tmp_model = self.fixmodel_fn(3, self.process_arch(arch), args.nasbench_config) else: tmp_model = self.fixmodel_fn(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append(self.utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None return child_arch_pool_prob
the-stack_106_27385
import os import errno import pytest from dvc.cache import NamedCache from dvc.path_info import PathInfo from dvc.remote.local import RemoteLOCAL def test_status_download_optimization(mocker): """When comparing the status to pull a remote cache, And the desired files to fetch are already on the local cache, Don't check the existence of the desired files on the remote cache """ remote = RemoteLOCAL(None, {}) infos = NamedCache() infos.add("local", "acbd18db4cc2f85cedef654fccc4a4d8", "foo") infos.add("local", "37b51d194a7513e45b56f6524f2d51f2", "bar") local_exists = list(infos["local"]) mocker.patch.object(remote, "cache_exists", return_value=local_exists) other_remote = mocker.Mock() other_remote.url = "other_remote" other_remote.cache_exists.return_value = [] remote.status(infos, other_remote, download=True) assert other_remote.cache_exists.call_count == 0 @pytest.mark.parametrize("link_name", ["hardlink", "symlink"]) def test_is_protected(tmp_dir, link_name): remote = RemoteLOCAL(None, {}) link_method = getattr(remote, link_name) (tmp_dir / "foo").write_text("foo") foo = PathInfo(tmp_dir / "foo") link = PathInfo(tmp_dir / "link") link_method(foo, link) assert not remote.is_protected(foo) assert not remote.is_protected(link) remote.protect(foo) assert remote.is_protected(foo) assert remote.is_protected(link) remote.unprotect(link) assert not remote.is_protected(link) if link_name == "symlink" and os.name == "nt": # NOTE: Windows symlink perms don't propagate to the target assert remote.is_protected(foo) else: assert not remote.is_protected(foo) @pytest.mark.parametrize("err", [errno.EPERM, errno.EACCES]) def test_protect_ignore_errors(tmp_dir, mocker, err): tmp_dir.gen("foo", "foo") foo = PathInfo("foo") remote = RemoteLOCAL(None, {}) remote.protect(foo) mock_chmod = mocker.patch( "os.chmod", side_effect=OSError(err, "something") ) remote.protect(foo) assert mock_chmod.called def test_protect_ignore_erofs(tmp_dir, mocker): tmp_dir.gen("foo", "foo") foo = PathInfo("foo") remote = RemoteLOCAL(None, {}) mock_chmod = mocker.patch( "os.chmod", side_effect=OSError(errno.EROFS, "read-only fs") ) remote.protect(foo) assert mock_chmod.called
the-stack_106_27388
import unittest import struct from zttf.utils import fixed_version, binary_search_parameters, ttf_checksum, glyph_more_components, glyf_skip_format class TestUtils(unittest.TestCase): def test_fixed_version(self): cases = [ (0x00005000, 0.5), (0x00010000, 1.0), (0x00035000, 3.5), (0x00105000, 10.5) ] for case in cases: self.assertEqual(fixed_version(case[0]), case[1]) def test_binary_parameters(self): cases = { 39: (32, 5), 10: (8, 3), 19: (16, 4) } for n, result in cases.items(): self.assertEqual(binary_search_parameters(n), result) def test_checksum(self): data = struct.pack(">12I", *range(0, 12)) self.assertEqual(len(data), 48) self.assertEqual(ttf_checksum(data), 66) self.assertEqual(ttf_checksum(struct.pack(">12I", *range(1000, 13000, 1000))), 78000) self.assertEqual(ttf_checksum(struct.pack(">512I", *range(1024, 1024 * 2048, 4096))), 0x1FF80000) def test_component_flag(self): self.assertTrue(glyph_more_components((1 << 5))) self.assertFalse(glyph_more_components((1 << 4))) def test_skip_format(self): self.assertEqual(glyf_skip_format((1 << 0)), ">I") self.assertEqual(glyf_skip_format(0), ">H") self.assertEqual(glyf_skip_format((1 << 3)), ">HH") self.assertEqual(glyf_skip_format((1 << 3) | (1 << 0)), ">IH") self.assertEqual(glyf_skip_format((1 << 7)), ">HII")
the-stack_106_27390
import _plotly_utils.basevalidators class TicklenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='ticklen', parent_name='splom.marker.colorbar', **kwargs ): super(TicklenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'colorbars'), min=kwargs.pop('min', 0), role=kwargs.pop('role', 'style'), **kwargs )
the-stack_106_27391
import json from dataclasses import dataclass from datetime import datetime, timedelta from enum import Enum from typing import Dict, List, Optional, Tuple, Union import requests from model.track import Track class Groups(Enum): """Enum for group domains.""" JAZZVE = 'jazzve' SOUNDFIELDS = 'soundfields' GLBDOM = 'glbdom' RADIANT_SOUND = 'radiant_sound_home' CRAFT_MUSIC = 'craftmusique' class GroupsIDs(Enum): """Enum for group ids.""" JAZZVE = 79069156 SOUNDFIELDS = 5124202 GLBDOM = 152579809 RADIANT_SOUND = 32159054 CRAFT_MUSIC = 40030199 @dataclass class VKAPIController: _vk_api_token: str _api_version: float = 5.131 _desired_genres: tuple = ('house', 'funk', 'disco', 'soul') @staticmethod def _check_date(post_date_ms: int) -> bool: """Check if the post was published yesterday. Otherwise, return False.""" post_date = datetime.fromtimestamp(post_date_ms).date() yesterday_date = (datetime.today() - timedelta(days=1)).date() return post_date == yesterday_date def _request_posts(self, group_domain: str) -> List: """Send HTTP-request to VK API to get last 20 posts for 'group_domain'.""" url = 'https://api.vk.com/method/wall.get' params: Dict[str, Union[int, str, float]] = { 'domain': group_domain, 'count': 20, 'access_token': self._vk_api_token, 'v': self._api_version } response = requests.get(url, params=params) assert response.status_code == 200, (f'Request failed to get posts from {group_domain} ' f'with {response.status_code}. Reason: {response.reason}') return json.loads(response.text)['response']['items'] @staticmethod def _compose_full_name(audio: Dict) -> str: """Compose full track name.""" subtitle = audio.get('subtitle') title = audio['title'] if subtitle: return f'{title} {subtitle}' return title def _get_yesterday_posts(self, group_domain: str) -> List[Dict]: """Get posts that were published yesterday for given VK 'group_domain'.""" all_posts = self._request_posts(group_domain) yesterday_posts = [post for post in all_posts if self._check_date(post['date'])] return yesterday_posts # Not being used for now def _get_group_id(self, group_domain: str) -> int: """Get group id by its domain.""" url = 'https://api.vk.com/method/utils.resolveScreenName' params: Dict[str, Union[float, str]] = { 'screen_name': group_domain, 'access_token': self._vk_api_token, 'v': self._api_version } response = requests.get(url=url, params=params) assert response.status_code == 200 return response.json()['response']['object_id'] # Not being used for now def _get_post_url(self, group_id: int, post_id: int) -> str: """Get post url based on group and post ids.""" url = 'https://api.vk.com/method/wall.getById' params: Dict[str, Union[str, float, List[str]]] = { 'posts': [f'{group_id}_{post_id}'], 'access_token': self._vk_api_token, 'v': self._api_version } response = requests.get(url=url, params=params) return response.json() def _process_post(self, post: Dict, group_id: int) -> Tuple[List[Track], Optional[str]]: """Process a certain post.""" tracks: List[Track] = [] # if post is a repost if post.get('copy_history'): repost = post['copy_history'][0] if not repost.get('attachments'): return [], None tracks_from_post = [ attch['audio'] for attch in repost['attachments'] if attch['type'] == 'audio' ] # just a usual post else: if not post.get('attachments'): return [], None tracks_from_post = [attch['audio'] for attch in post['attachments'] if attch['type'] == 'audio'] # If there are no tracks in a post, it means that it is a VK-playlist which can't be parsed playlist_post_url = None if not tracks_from_post: playlist_post_url = f'vk.com/wall-{group_id}_{post["id"]}' for track_from_post in tracks_from_post: artist = Track.compose_artist_name(track_from_post['artist']) full_name = Track.compose_full_name(track_from_post) alternative_name = track_from_post['title'] post_url = f'vk.com/wall-{group_id}_{post["id"]}' tracks.append(Track(artist, full_name, alternative_name, post_url)) return tracks, playlist_post_url def _check_genres(self, post_genres: List[str]) -> bool: """Check if post genres intersect with desired genres.""" if set(post_genres).intersection(self._desired_genres): return True return False def process_groups(self) -> Tuple[List[Track], List[str]]: """ Process all yesterday posts in all groups presented in Groups class. ------- Returns Tuple[List[Track], List[str]] First element of tuple is a list of yesterday tracks from all the groups presented in 'Groups' class. Second element of tuple is a list of VK urls which consists of playlists which can't be parsed. """ tracks: List[Track] = [] playlist_post_urls: List[str] = [] for group in Groups: yesterday_posts = self._get_yesterday_posts(group.value) for post in yesterday_posts: if group is Groups.RADIANT_SOUND: if not post.get('text'): continue genres = post['text'].split('\n')[1].split('/') if not self._check_genres(genres): continue if group is Groups.SOUNDFIELDS: if post['text'] not in ('#somegoods', '#qweektunes'): genres = post['text'].split('\n')[-1].replace('#', '').split(' ') if not self._check_genres(genres): continue found_tracks, playlist_post_url = self._process_post(post, GroupsIDs[group.name].value) tracks.extend(found_tracks) if playlist_post_url: playlist_post_urls.append(playlist_post_url) return tracks, playlist_post_urls
the-stack_106_27395
import numpy as np import torch from torch import nn from collections import OrderedDict import torchvision class Resnet18(nn.Module): def __init__(self, bottleneck_connection_channel=32): """ bottleneck_connection_channel: connection channel for VOneBlock """ super(Resnet18, self).__init__() self.customized_layer = nn.Sequential( nn.Conv2d(bottleneck_connection_channel, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) self.origin_layer = nn.Sequential( *list(torchvision.models.resnet18(pretrained=False).children())[4:-1] ) self.fc_layer = nn.Sequential( nn.Linear(in_features=512, out_features=1000, bias=True) ) def forward(self, x): # print(x.shape) out = self.customized_layer(x) out = self.origin_layer(out) # print(out.shape) out = torch.flatten(out, start_dim=1) out = self.fc_layer(out) return out class Resnet50(nn.Module): def __init__(self, bottleneck_connection_channel=32, n_classes=1000): """ bottleneck_connection_channel: connection channel for VOneBlock """ super(Resnet50, self).__init__() self.bottleneck = nn.Conv2d(bottleneck_connection_channel, 64, stride=1, kernel_size=(1, 1)) self.layers = nn.Sequential ( *list(torchvision.models.resnet50(pretrained=False).children())[1:-2] ) self.flatten = nn.Sequential( nn.Conv2d(2048, n_classes, stride=1, kernel_size=(2, 2)) ) def forward(self, x): out = self.bottleneck(x) out = self.layers(out) out = self.flatten(out) out = out.view(out.shape[0], -1) return out # AlexNet Back-End architecture # Based on Torchvision implementation in # https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py class AlexNetBackEnd(nn.Module): def __init__(self, num_classes=10): super().__init__() self.features = nn.Sequential( nn.Conv2d(32, 192, kernel_size=5, stride=2, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x # ResNet Back-End architecture # Based on Torchvision implementation in # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class Identity(nn.Module): def forward(self, x): return x def forward(self, inp): x = self.conv_input(inp) for t in range(self.times): if t == 0: skip = self.norm_skip(self.skip(x)) self.conv2.stride = (2, 2) else: skip = x self.conv2.stride = (1, 1) x = self.conv1(x) x = getattr(self, f'norm1_{t}')(x) x = self.nonlin1(x) x = self.conv2(x) x = getattr(self, f'norm2_{t}')(x) x = self.nonlin2(x) x = self.conv3(x) x = getattr(self, f'norm3_{t}')(x) x += skip x = self.nonlin3(x) output = self.output(x) return output import torch.functional as F class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() # For the sake of studying ML, I will use deeper network self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=1) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=1) self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), stride=(2, 2), padding=1) self.pool = nn.MaxPool2d(kernel_size=3, stride=3) self.fc1 = nn.Sequential( nn.Linear(512, 512), # nn.ReLU(inplace=8 nn.ReLU(inplace=True) ) self.fc2 = nn.Sequential( nn.Linear(512, 512), nn.ReLU(inplace=True) # nn.Tanh() ) self.fc3 = nn.Linear(512, 10) self.relu = nn.ReLU(inplace=True) def forward(self, x): # print(x.shape) x = self.pool(self.relu(self.conv1(x))) # Batch Normalization(x) x = self.pool(self.relu(self.conv2(x))) x = self.conv3(x) # Flattening before_fc = x.size(0) x = x.view(x.size(0), -1) # print(x.shape) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x class Basic_Linear_Regression(nn.Module): def __init__(self): super(Basic_Linear_Regression, self).__init__() self.voneblock_connector = nn.Linear(32 * 28 * 28, 28 * 28, bias=True) self.fc1 = nn.Linear(28 * 28, 28 * 28, bias=True) self.fc2 = nn.Linear(28 * 28, 10, bias=True) self.relu = nn.ReLU(inplace=True) self.flatten = nn.Flatten() def forward(self, x): x = self.flatten(x) # for VOneBlock x = self.voneblock_connector(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class Basic_CNN(nn.Module): def __init__(self): super(Basic_CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.layer2 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc = nn.Linear(7 * 7 * 64, 10, bias=True) nn.init.xavier_uniform(self.fc.weight) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.view(out.size(0), -1) out = self.fc(out) return out
the-stack_106_27408
import Cifras.bases_numericas as bases_numericas import dicionarios def codificar_texto_para_UTF8(texto): if not texto: return dicionarios.retorna_erro_mensagem() codigo_final_utf8 = '' for caractere in texto: num_binario = bases_numericas.converter_decimal_para_binario(ord(caractere)) if len(num_binario) <= 7: codigo_final_utf8 += transformar_7bits_UTF8(num_binario) elif len(num_binario) <= 11: codigo_final_utf8 += transformar_11bits_UTF8(num_binario) elif len(num_binario) <= 16: codigo_final_utf8 += transformar_16bits_UTF8(num_binario) elif len(num_binario) <= 21: codigo_final_utf8 += transformar_21bits_UTF8(num_binario) else: # "Passou do limite do programa" (é possível ler mais bytes, mas nesse programa não será lido...) return dicionarios.retorna_erro_mensagem() return codigo_final_utf8 def decodificar_UTF8_para_texto(codigo_UTF8): tamanho_codigo_UTF8 = len(codigo_UTF8) if not codigo_UTF8 or tamanho_codigo_UTF8 % 8 != 0: return dicionarios.retorna_erro_mensagem() texto_decodicado = '' i = 0 while i < tamanho_codigo_UTF8: if codigo_UTF8[i:i+5] == '11110': bin_atual = codigo_UTF8[i+5:i+8] + codigo_UTF8[i+10:i+16] + codigo_UTF8[i+18:i+24] + codigo_UTF8[i+26:i+32] i += 32 elif codigo_UTF8[i:i+4] == '1110': bin_atual = codigo_UTF8[i+4:i+8] + codigo_UTF8[i+10:i+16] + codigo_UTF8[i+18:i+24] i += 24 elif codigo_UTF8[i:i+3] == '110': bin_atual = codigo_UTF8[i+3:i+8] + codigo_UTF8[i+10:i+16] i += 16 elif codigo_UTF8[i] == '0': bin_atual = codigo_UTF8[i+1:i+8] i += 8 else: return dicionarios.retorna_erro_mensagem() UNICODE_novo_caractere = bases_numericas.converter_binario_para_decimal(bin_atual, tirar_zeros_esq=False) if not UNICODE_novo_caractere: return dicionarios.retorna_erro_mensagem() texto_decodicado += chr(bases_numericas.converter_binario_para_decimal(bin_atual, tirar_zeros_esq=False)) return texto_decodicado def transformar_7bits_UTF8(num_binario): return '0' * (8 - len(num_binario)) + num_binario def transformar_11bits_UTF8(num_binario): num_binario = '0' * (11 - len(num_binario)) + num_binario return '110' + num_binario[:5] + '10' + num_binario[5:] def transformar_16bits_UTF8(num_binario): num_binario = '0' * (16 - len(num_binario)) + num_binario return '1110' + num_binario[:4] + '10' + num_binario[4:10] + '10' + num_binario[10:] def transformar_21bits_UTF8(num_binario): num_binario = '0' * (21 - len(num_binario)) + num_binario return '11110' + num_binario[:3] + '10' + num_binario[3:9] + '10' + num_binario[9:15] + '10' + num_binario[15:]
the-stack_106_27409
# Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests the gce module.""" from __future__ import print_function import os from chromite.lib import cros_test_lib from chromite.lib import gce from chromite.lib import osutils from googleapiclient.errors import HttpError from googleapiclient.http import HttpMockSequence from oauth2client.client import GoogleCredentials class GceTest(cros_test_lib.MockTempDirTestCase): """Unit tests for the gce module.""" _PROJECT = 'foo-project' _ZONE = 'foo-zone' def setUp(self): self.json_key_file = os.path.join(self.tempdir, 'service_account.json') osutils.Touch(self.json_key_file) for cmd in ('from_stream', 'create_scoped'): self.PatchObject(GoogleCredentials, cmd, autospec=True) self.PatchObject(gce.GceContext, 'GetZoneRegion', autospec=True, return_value=self._ZONE) @cros_test_lib.NetworkTest() def testGetImage(self): """Tests that GetImage returns the correct image.""" good_http = HttpMockSequence([ ({'status': '200',}, '{"name": "foo-image"}',), ]) # Assert that GetImage does not complain if an image is found. self.PatchObject(gce.GceContext, '_BuildRetriableRequest', autospec=True, side_effect=self._MockOutBuildRetriableRequest(good_http)) gce_context = gce.GceContext.ForServiceAccount(self._PROJECT, self._ZONE, self.json_key_file) self.assertDictEqual(gce_context.GetImage('foo-image'), dict(name='foo-image')) @cros_test_lib.NetworkTest() def testGetImageRaisesIfImageNotFound(self): """Tests that GetImage raies exception when image is not found.""" bad_http = HttpMockSequence([ ({'status': '404',}, 'Image not found.',), ]) # Assert that GetImage raises if image is not found. self.PatchObject(gce.GceContext, '_BuildRetriableRequest', autospec=True, side_effect=self._MockOutBuildRetriableRequest(bad_http)) gce_context = gce.GceContext.ForServiceAccount(self._PROJECT, self._ZONE, self.json_key_file) with self.assertRaises(gce.ResourceNotFoundError): gce_context.GetImage('not-exising-image') @cros_test_lib.NetworkTest() def testRetryOnServerErrorHttpRequest(self): """Tests that 500 erros are retried.""" # Fake http sequence that does not return 200 until the third trial. mock_http = HttpMockSequence([ ({'status': '502'}, 'Server error'), ({'status': '502'}, 'Server error'), ({'status': '200'}, '{"name":"foo-image"}'), ]) self.PatchObject(gce.GceContext, '_BuildRetriableRequest', autospec=True, side_effect=self._MockOutBuildRetriableRequest(mock_http)) # Disable retry and expect the request to fail. gce.GceContext.RETRIES = 0 gce_context = gce.GceContext.ForServiceAccount(self._PROJECT, self._ZONE, self.json_key_file) with self.assertRaises(HttpError): gce_context.GetImage('foo-image') # Enable retry and expect the request to succeed. gce.GceContext.RETRIES = 2 gce_context = gce.GceContext.ForServiceAccount(self._PROJECT, self._ZONE, self.json_key_file) self.assertDictEqual(gce_context.GetImage('foo-image'), dict(name='foo-image')) def _MockOutBuildRetriableRequest(self, mock_http): """Returns a mock closure of _BuildRetriableRequest. Fake a GceContext._BuildRetriableRequest() that always uses |mock_http| as transport. """ def _BuildRetriableRequest(_self, num_retries, _http, _thread_safe, _credentials, *args, **kwargs): return gce.RetryOnServerErrorHttpRequest(num_retries, mock_http, *args, **kwargs) return _BuildRetriableRequest
the-stack_106_27410
""" FIN module customisations for RLPPTM License: MIT """ from collections import OrderedDict from gluon import current, A, DIV, IS_EMPTY_OR, IS_INT_IN_RANGE, TAG from core import FS, IS_ONE_OF, s3_str ISSUER_ORG_TYPE = "pe_id$pe_id:org_organisation.org_organisation_organisation_type.organisation_type_id" # ------------------------------------------------------------------------- def fin_voucher_resource(r, tablename): T = current.T auth = current.auth has_role = auth.s3_has_role s3db = current.s3db table = s3db.fin_voucher # Determine form mode resource = r.resource group_voucher = resource.tablename == "fin_voucher" and \ r.get_vars.get("g") == "1" # Customise fields field = table.pe_id field.label = T("Issuer##fin") from core import WithAdvice field = table.bearer_dob if group_voucher: label = T("Group Representative Date of Birth") intro = "GroupDoBIntro" else: label = T("Beneficiary Date of Birth") intro = "BearerDoBIntro" field.label = label field.widget = WithAdvice(field.widget, text = ("fin", "voucher", intro), ) if not has_role("VOUCHER_ISSUER"): field.readable = field.writable = False field = table.initial_credit field.label = T("Number of Beneficiaries") if group_voucher: field.default = None field.requires = IS_INT_IN_RANGE(1, 51, error_message = T("Enter the number of beneficiaries (max %(max)s)"), ) field.readable = field.writable = True field = table.comments field.label = T("Memoranda") field.comment = DIV(_class="tooltip", _title="%s|%s" % (T("Memoranda"), T("Notes of the Issuer"), ), ) if not has_role("VOUCHER_PROVIDER"): field.readable = field.writable = False # Custom list fields if has_role("VOUCHER_ISSUER"): list_fields = ["program_id", "signature", (T("Beneficiary/Representative Date of Birth"), "bearer_dob"), "initial_credit", "credit_spent", (T("Status"), "status"), "date", #"valid_until", "comments", ] else: list_fields = ["program_id", "signature", (T("Status"), "status"), "pe_id", #(T("Issuer Type"), ISSUER_ORG_TYPE), "eligibility_type_id", "initial_credit", "credit_spent", "date", #"valid_until", ] # Report Options if r.method == "report": facts = ((T("Credit Redeemed"), "sum(credit_spent)"), (T("Credit Issued"), "sum(initial_credit)"), (T("Remaining Credit"), "sum(balance)"), (T("Number of Vouchers"), "count(id)"), ) axes = [ISSUER_ORG_TYPE, "eligibility_type_id", "program_id", "status", "pe_id", ] report_options = { "rows": axes, "cols": axes, "fact": facts, "defaults": {"rows": axes[0], "cols": axes[1], "fact": facts[0], "totals": True, }, } s3db.configure("fin_voucher", report_options = report_options, ) s3db.configure("fin_voucher", list_fields = list_fields, orderby = "fin_voucher.date desc", ) # ------------------------------------------------------------------------- def fin_voucher_controller(**attr): T = current.T s3 = current.response.s3 settings = current.deployment_settings # Enable bigtable features settings.base.bigtable = True # Custom prep standard_prep = s3.prep def prep(r): # Call standard prep result = standard_prep(r) if callable(standard_prep) else True # Restrict data formats settings.ui.export_formats = None representation = r.representation ALLOWED_FORMATS = ("html", "iframe", "popup", "aadata", "json") if representation not in ALLOWED_FORMATS and \ not(r.record and representation == "card"): r.error(403, current.ERROR.NOT_PERMITTED) is_program_manager = current.auth.s3_has_role("PROGRAM_MANAGER") db = current.db s3db = current.s3db # Check which programs and organisations the user can issue vouchers for program_ids, org_ids, pe_ids = s3db.fin_voucher_permitted_programs(mode="issuer") resource = r.resource table = resource.table if program_ids and org_ids: etypes = s3db.fin_voucher_eligibility_types(program_ids, org_ids) program_ids = list(etypes.keys()) if not program_ids or not org_ids: # User is not permitted to issue vouchers for any programs/issuers resource.configure(insertable = False) else: # Limit the program selector to permitted+active programs field = table.program_id ptable = s3db.fin_voucher_program dbset = db(ptable.id.belongs(program_ids)) field.requires = IS_ONE_OF(dbset, "fin_voucher_program.id", field.represent, sort = True, ) # Default the program selector if only one program can be chosen if len(program_ids) == 1: program_id = program_ids[0] field.default = program_id field.writable = False # Limit the eligibility type selector to applicable types allow_empty = False if len(program_ids) == 1: etype_ids = etypes[program_ids[0]] else: etype_ids = [] for item in etypes.values(): if item: etype_ids += item else: allow_empty = True etype_ids = list(set(etype_ids)) if etype_ids else None field = table.eligibility_type_id if etype_ids is None: # No selectable eligibility types => hide selector field.readable = field.writable = False elif len(etype_ids) == 1 and not allow_empty: # Only one type selectable => default field.default = etype_ids[0] field.writable = False else: # Multiple types selectable ttable = s3db.fin_voucher_eligibility_type etset = db(ttable.id.belongs(etype_ids)) field.requires = IS_ONE_OF(etset, "fin_voucher_eligibility_type.id", field.represent, sort = True, ) if allow_empty: field.requires = IS_EMPTY_OR(field.requires) # Limit the issuer selector to permitted entities etable = s3db.pr_pentity field = table.pe_id dbset = db(etable.pe_id.belongs(pe_ids)) field.requires = IS_ONE_OF(dbset, "pr_pentity.pe_id", field.represent, ) # Hide the issuer selector if only one entity can be chosen if len(pe_ids) == 1: field.default = pe_ids[0] field.readable = field.writable = False if r.interactive: if r.get_vars.get("g") == "1": s3.crud_strings["fin_voucher"]["label_create"] = T("Create Group Voucher") # Hide valid_until from create-form (will be set onaccept) field = table.valid_until field.readable = bool(r.record) field.writable = False # Always show number of beneficiaries if r.record: field = table.initial_credit field.readable = True # Filter Widgets from core import DateFilter, TextFilter text_fields = ["signature", "comments", "program_id$name"] if is_program_manager: text_fields.append("pe_id$pe_id:org_organisation.name") filter_widgets = [ TextFilter(text_fields, label = T("Search"), ), DateFilter("date", ), ] if is_program_manager: from core import OptionsFilter, get_filter_options filter_widgets.extend([ OptionsFilter("eligibility_type_id", hidden = True, label = T("Type of Eligibility"), ), OptionsFilter(ISSUER_ORG_TYPE, hidden = True, label = T("Issuer Type"), options = lambda: get_filter_options("org_organisation_type"), ), ]) resource.configure(filter_widgets = filter_widgets, ) elif r.representation == "card": # Configure ID card layout from ..vouchers import VoucherCardLayout resource.configure(pdf_card_layout = VoucherCardLayout, pdf_card_suffix = lambda record: \ s3_str(record.signature) \ if record and record.signature else None, ) return result s3.prep = prep standard_postp = s3.postp def custom_postp(r, output): # Call standard postp if callable(standard_postp): output = standard_postp(r, output) if not r.component and isinstance(output, dict): if r.record and r.method in (None, "update", "read"): # Custom CRUD buttons if "buttons" not in output: buttons = output["buttons"] = {} else: buttons = output["buttons"] # PDF-button pdf_download = A(T("Download PDF"), _href = "/%s/fin/voucher/%s.card" % (r.application, r.record.id), _class="action-btn", ) # Render in place of the delete-button buttons["delete_btn"] = TAG[""](pdf_download, ) return output s3.postp = custom_postp # Custom rheader from ..rheaders import rlpptm_fin_rheader attr["rheader"] = rlpptm_fin_rheader return attr # ------------------------------------------------------------------------- def fin_voucher_debit_resource(r, tablename): T = current.T auth = current.auth has_role = auth.s3_has_role s3db = current.s3db table = s3db.fin_voucher_debit # Determine form mode resource = r.resource group_voucher = resource.tablename == "fin_voucher_debit" and \ r.get_vars.get("g") == "1" # Customise fields field = table.comments field.label = T("Memoranda") field.comment = DIV(_class="tooltip", _title="%s|%s" % (T("Memoranda"), T("Notes of the Provider"), ), ) if not has_role("VOUCHER_PROVIDER"): field.readable = field.writable = False field = table.bearer_dob if group_voucher: label = T("Group Representative Date of Birth") else: label = T("Beneficiary Date of Birth") field.label = label if not has_role("VOUCHER_PROVIDER"): field.readable = field.writable = False field = table.quantity if group_voucher: field.default = None field.requires = IS_INT_IN_RANGE(1, error_message = T("Enter the service quantity"), ) field.readable = field.writable = True field = table.balance field.label = T("Remaining Compensation Claims") # Custom list_fields list_fields = [(T("Date"), "date"), "program_id", "voucher_id$signature", "quantity", "status", ] if current.auth.s3_has_roles(("PROGRAM_MANAGER", "PROGRAM_ACCOUNTANT")): # Include issuer and provider list_fields[3:3] = ["voucher_id$pe_id", "pe_id", ] if has_role("VOUCHER_PROVIDER"): # Include provider notes list_fields.append("comments") s3db.configure("fin_voucher_debit", list_fields = list_fields, ) # Filters if r.interactive: from core import DateFilter, TextFilter filter_widgets = [TextFilter(["program_id$name", "signature", ], label = T("Search"), ), DateFilter("date", label = T("Date"), ), ] s3db.configure("fin_voucher_debit", filter_widgets = filter_widgets, ) # Report options if r.method == "report": field = table.created_by field.represent = s3db.auth_UserRepresent(show_name = True, show_email = False, ) facts = ((T("Total Services Rendered"), "sum(quantity)"), (T("Number of Accepted Vouchers"), "count(id)"), (T("Remaining Compensation Claims"), "sum(balance)"), ) axes = ["program_id", "status", ] has_role = auth.s3_has_role if has_role("PROGRAM_MANAGER"): axes.insert(0, "pe_id") if has_role("VOUCHER_PROVIDER"): axes.append((T("User"), "created_by")) report_options = { "rows": axes, "cols": axes, "fact": facts, "defaults": {"rows": axes[0], "cols": None, "fact": facts[0], "totals": True, }, } s3db.configure("fin_voucher_debit", report_options = report_options, ) # ------------------------------------------------------------------------- def fin_voucher_debit_controller(**attr): T = current.T s3 = current.response.s3 # Enable bigtable features current.deployment_settings.base.bigtable = True # Custom prep standard_prep = s3.prep def prep(r): # Call standard prep result = standard_prep(r) if callable(standard_prep) else True db = current.db s3db = current.s3db resource = r.resource # Catch inappropriate cancel-attempts record = r.record if record and not r.component and r.method == "cancel": from ..helpers import can_cancel_debit if not can_cancel_debit(record): r.unauthorised() has_role = current.auth.s3_has_role if has_role("PROGRAM_ACCOUNTANT") and not has_role("PROGRAM_MANAGER"): # PROGRAM_ACCOUNTANT can only see debits where they are assigned # for the billing process from ..helpers import get_role_realms role_realms = get_role_realms("PROGRAM_ACCOUNTANT") if role_realms is not None: query = FS("billing_id$organisation_id$pe_id").belongs(role_realms) resource.add_filter(query) # PROGRAM_ACCOUNTANT does not (need to) see cancelled debits resource.add_filter(FS("cancelled") == False) # Check which programs and organisations the user can accept vouchers for program_ids, org_ids, pe_ids = s3db.fin_voucher_permitted_programs( mode = "provider", partners_only = True, ) table = resource.table if not program_ids or not org_ids: # User is not permitted to accept vouchers for any programs/providers resource.configure(insertable = False) else: # Limit the program selector to permitted programs field = table.program_id ptable = s3db.fin_voucher_program dbset = db(ptable.id.belongs(program_ids)) field.requires = IS_ONE_OF(dbset, "fin_voucher_program.id", field.represent, sort = True, ) # Hide the program selector if only one program can be chosen rows = dbset.select(ptable.id, limitby=(0, 2)) if len(rows) == 1: field.default = rows.first().id field.writable = False # Limit the provider selector to permitted entities etable = s3db.pr_pentity field = table.pe_id dbset = db(etable.pe_id.belongs(pe_ids)) field.requires = IS_ONE_OF(dbset, "pr_pentity.pe_id", field.represent, ) # Hide the provider selector if only one entity can be chosen rows = dbset.select(etable.pe_id, limitby=(0, 2)) if len(rows) == 1: field.default = rows.first().pe_id field.readable = field.writable = False # Always show quantity if record: field = table.quantity field.readable = True if r.interactive: if r.get_vars.get("g") == "1": s3.crud_strings["fin_voucher_debit"]["label_create"] = T("Accept Group Voucher") return result s3.prep = prep # Custom rheader from ..rheaders import rlpptm_fin_rheader attr["rheader"] = rlpptm_fin_rheader return attr # ------------------------------------------------------------------------- def fin_voucher_program_resource(r, tablename): T = current.T table = current.s3db.fin_voucher_program represent = lambda v, row=None: -v if v else current.messages["NONE"] field = table.credit field.label = T("Pending Credits") field.represent = represent field = table.compensation field.label = T("Pending Compensation Claims") field.represent = represent # ------------------------------------------------------------------------- def fin_voucher_program_controller(**attr): s3 = current.response.s3 # Enable bigtable features current.deployment_settings.base.bigtable = True # Custom prep standard_prep = s3.prep def prep(r): # Call standard prep result = standard_prep(r) if callable(standard_prep) else True resource = r.resource has_role = current.auth.s3_has_role if has_role("PROGRAM_ACCOUNTANT") and not has_role("PROGRAM_MANAGER"): # PROGRAM_ACCOUNTANT can only see programs where they are # assigned for a billing process from ..helpers import get_role_realms role_realms = get_role_realms("PROGRAM_ACCOUNTANT") if role_realms is not None: query = FS("voucher_billing.organisation_id$pe_id").belongs(role_realms) resource.add_filter(query) return result s3.prep = prep return attr # ------------------------------------------------------------------------- def billing_onaccept(form): """ Custom onaccept of billing: - make sure all invoices are owned by the accountant organisation (as long as they are the accountants in charge) """ # Get record ID form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: return db = current.db s3db = current.s3db # Get the billing/program organisations table = s3db.fin_voucher_billing ptable = s3db.fin_voucher_program left = ptable.on((ptable.id == table.program_id) & \ (ptable.deleted == False)) query = (table.id == record_id) row = db(query).select(table.id, table.organisation_id, ptable.organisation_id, left = left, limitby = (0, 1), ).first() if not row: return # Identify the organisation to own the invoices under this process billing = row.fin_voucher_billing organisation_id = billing.organisation_id if not organisation_id: organisation_id = row.fin_voucher_program.organisation_id # Update the realm entity as needed if organisation_id: pe_id = s3db.pr_get_pe_id("org_organisation", organisation_id) itable = s3db.fin_voucher_invoice query = (itable.billing_id == billing.id) & \ (itable.realm_entity != pe_id) & \ (itable.deleted == False) current.auth.set_realm_entity(itable, query, entity = pe_id, force_update = True, ) # Re-assign pending invoices from ..helpers import assign_pending_invoices assign_pending_invoices(billing.id, organisation_id = organisation_id, ) # ------------------------------------------------------------------------- def fin_voucher_billing_resource(r, tablename): s3db = current.s3db table = current.s3db.fin_voucher_billing # Color-coded representation of billing process status field = table.status from core import S3PriorityRepresent status_opts = s3db.fin_voucher_billing_status_opts field.represent = S3PriorityRepresent(status_opts, {"SCHEDULED": "lightblue", "IN PROGRESS": "amber", "ABORTED": "black", "COMPLETE": "green", }).represent # Custom onaccept to maintain realm-assignment of invoices # when accountant organisation changes s3db.add_custom_callback("fin_voucher_billing", "onaccept", billing_onaccept, ) # ------------------------------------------------------------------------- def claim_create_onaccept(form): """ Custom create-onaccept for claim to notify the provider accountant about the new claim """ # Get record ID form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: return T = current.T db = current.db s3db = current.s3db table = s3db.fin_voucher_claim btable = s3db.fin_voucher_billing ptable = s3db.fin_voucher_program join = [ptable.on(ptable.id == table.program_id), btable.on(btable.id == table.billing_id), ] query = (table.id == record_id) row = db(query).select(table.id, table.program_id, table.billing_id, table.pe_id, table.status, btable.date, ptable.name, ptable.organisation_id, join = join, limitby = (0, 1), ).first() if not row: return program = row.fin_voucher_program billing = row.fin_voucher_billing claim = row.fin_voucher_claim if claim.status != "NEW": return error = None # Look up the provider organisation pe_id = claim.pe_id otable = s3db.org_organisation provider = db(otable.pe_id == pe_id).select(otable.id, otable.name, limitby = (0, 1), ).first() from ..helpers import get_role_emails provider_accountants = get_role_emails("PROVIDER_ACCOUNTANT", pe_id) if not provider_accountants: error = "No provider accountant found" if not error: # Lookup the template variables base_url = current.deployment_settings.get_base_public_url() appname = current.request.application data = {"program": program.name, "date": btable.date.represent(billing.date), "organisation": provider.name, "url": "%s/%s/fin/voucher_claim/%s" % (base_url, appname, claim.id), } # Send the email notification from ..notifications import CMSNotifications error = CMSNotifications.send(provider_accountants, "ClaimNotification", data, module = "fin", resource = "voucher_claim", ) if error: # Inform the program manager that the provider could not be notified msg = T("%(name)s could not be notified of new compensation claim: %(error)s") % \ {"name": provider.name, "error": error} program_managers = get_role_emails("PROGRAM_MANAGER", organisation_id = program.organisation_id, ) if program_managers: current.msg.send_email(to = program_managers, subject = T("Provider Notification Failed"), message = msg, ) current.log.error(msg) else: current.log.debug("Provider '%s' notified about new compensation claim" % provider.name) # ------------------------------------------------------------------------- def fin_voucher_claim_resource(r, tablename): T = current.T auth = current.auth s3db = current.s3db table = s3db.fin_voucher_claim is_provider_accountant = auth.s3_has_role("PROVIDER_ACCOUNTANT") if not is_provider_accountant: # Hide comments field = table.comments field.readable = field.writable = False # Color-coded representation of claim status field = table.status from core import S3PriorityRepresent status_opts = s3db.fin_voucher_claim_status_opts field.represent = S3PriorityRepresent(status_opts, {"NEW": "lightblue", "CONFIRMED": "blue", "INVOICED": "amber", "PAID": "green", }).represent # Custom list fields list_fields = [#"refno", "date", "program_id", #"pe_id", "vouchers_total", "quantity_total", "amount_receivable", "currency", "status", ] if is_provider_accountant: list_fields.insert(0, "refno") text_fields = ["refno", "comments", ] else: list_fields.insert(2, "pe_id") text_fields = ["pe_id$pe_id:org_organisation.name", ] # Filter widgets from core import TextFilter, OptionsFilter, get_filter_options filter_widgets = [TextFilter(text_fields, label = T("Search"), ), OptionsFilter("program_id", options = lambda: get_filter_options("fin_voucher_program"), ), ] s3db.configure("fin_voucher_claim", filter_widgets = filter_widgets, list_fields = list_fields, ) # PDF export method from ..helpers import ClaimPDF s3db.set_method("fin_voucher_claim", method = "record", action = ClaimPDF, ) s3db.add_custom_callback("fin_voucher_claim", "onaccept", claim_create_onaccept, method = "create", ) # ------------------------------------------------------------------------- def fin_voucher_claim_controller(**attr): T = current.T s3 = current.response.s3 s3db = current.s3db # Custom prep standard_prep = s3.prep def prep(r): # Block all non-interactive update attempts if not r.interactive and r.http != "GET": r.error(403, current.ERROR.NOT_PERMITTED) # Call standard prep result = standard_prep(r) if callable(standard_prep) else True # Check which programs and organisations the user can accept vouchers for program_ids, org_ids = s3db.fin_voucher_permitted_programs(mode = "provider", partners_only = True, c = "fin", f = "voucher_debit", )[:2] if not program_ids or not org_ids: s3db.configure("fin_voucher_debit", insertable = False, ) return result s3.prep = prep standard_postp = s3.postp def custom_postp(r, output): # Call standard postp if callable(standard_postp): output = standard_postp(r, output) if not r.component and isinstance(output, dict): record = r.record if record and r.method in (None, "update", "read"): # Hint that the user need to confirm the claim if record.status == "NEW" and \ all(record[fn] for fn in ("account_holder", "account_number")): current.response.warning = T('You must change the status to "confirmed" before an invoice can be issued') # Custom CRUD buttons if "buttons" not in output: buttons = output["buttons"] = {} else: buttons = output["buttons"] # PDF-button pdf_download = A(T("Download PDF"), _href = "/%s/fin/voucher_claim/%s/record.pdf" % \ (r.application, record.id), _class="action-btn", ) # Render in place of the delete-button buttons["delete_btn"] = TAG[""](pdf_download, ) return output s3.postp = custom_postp return attr # ------------------------------------------------------------------------- def invoice_onsettled(invoice): """ Callback to notify the provider that an invoice has been settled Args: invoice: the invoice (Row) """ db = current.db s3db = current.s3db # Look up claim, invoice number, program and billing btable = s3db.fin_voucher_billing ctable = s3db.fin_voucher_claim itable = s3db.fin_voucher_invoice ptable = s3db.fin_voucher_program join = [ptable.on(ptable.id == ctable.program_id), btable.on(btable.id == ctable.billing_id), itable.on(itable.id == ctable.invoice_id), ] query = (ctable.invoice_id == invoice.id) & \ (ctable.deleted == False) row = db(query).select(ctable.id, ctable.program_id, ctable.billing_id, ctable.pe_id, btable.date, itable.invoice_no, ptable.name, ptable.organisation_id, join = join, limitby = (0, 1), ).first() if not row: return program = row.fin_voucher_program billing = row.fin_voucher_billing claim = row.fin_voucher_claim invoice_no = row.fin_voucher_invoice.invoice_no error = None # Look up the provider organisation pe_id = claim.pe_id otable = s3db.org_organisation provider = db(otable.pe_id == pe_id).select(otable.id, otable.name, limitby = (0, 1), ).first() from ..helpers import get_role_emails provider_accountants = get_role_emails("PROVIDER_ACCOUNTANT", pe_id) if not provider_accountants: error = "No provider accountant found" if not error: # Lookup the template variables base_url = current.deployment_settings.get_base_public_url() appname = current.request.application data = {"program": program.name, "date": btable.date.represent(billing.date), "invoice": invoice_no, "organisation": provider.name, "url": "%s/%s/fin/voucher_claim/%s" % (base_url, appname, claim.id), } # Send the email notification from ..notifications import CMSNotifications error = CMSNotifications.send(provider_accountants, "InvoiceSettled", data, module = "fin", resource = "voucher_invoice", ) if error: msg = "%s could not be notified about invoice settlement: %s" current.log.error(msg % (provider.name, error)) else: msg = "%s notified about invoice settlement" current.log.debug(msg % provider.name) # ------------------------------------------------------------------------- def invoice_create_onaccept(form): """ Custom create-onaccept to assign a new invoice to an accountant """ # Get record ID form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: return # Look up the billing ID table = current.s3db.fin_voucher_invoice query = (table.id == record_id) invoice = current.db(query).select(table.billing_id, limitby = (0, 1), ).first() if invoice: # Assign the invoice from ..helpers import assign_pending_invoices assign_pending_invoices(invoice.billing_id, invoice_id = record_id, ) # ------------------------------------------------------------------------- def fin_voucher_invoice_resource(r, tablename): T = current.T auth = current.auth s3db = current.s3db table = s3db.fin_voucher_invoice # Color-coded representation of invoice status from core import S3PriorityRepresent field = table.status try: status_opts = field.requires.options() except AttributeError: status_opts = [] else: field.represent = S3PriorityRepresent(status_opts, {"NEW": "lightblue", "APPROVED": "blue", "REJECTED": "red", "PAID": "green", }) is_accountant = auth.s3_has_role("PROGRAM_ACCOUNTANT") # Personal work list? if is_accountant and r.get_vars.get("mine") == "1": title_list = T("My Work List") default_status = ["NEW", "REJECTED"] default_hr = current.auth.s3_logged_in_human_resource() else: title_list = T("All Invoices") default_status = default_hr = None current.response.s3.crud_strings["fin_voucher_invoice"].title_list = title_list # Lookup method for HR filter options if is_accountant: def hr_filter_opts(): hresource = s3db.resource("hrm_human_resource") rows = hresource.select(["id", "person_id"], represent=True).rows return {row["hrm_human_resource.id"]: row["hrm_human_resource.person_id"] for row in rows} else: hr_filter_opts = None # Filter widgets from core import DateFilter, OptionsFilter, TextFilter if r.interactive: filter_widgets = [TextFilter(["invoice_no", "refno", ], label = T("Search"), ), OptionsFilter("status", default = default_status, options = OrderedDict(status_opts), sort = False, ), OptionsFilter("human_resource_id", default = default_hr, options = hr_filter_opts, ), DateFilter("date", hidden = True, ), OptionsFilter("pe_id", hidden = True, ), OptionsFilter("pe_id$pe_id:org_organisation.facility.location_id$L2", hidden = True, ), ] s3db.configure("fin_voucher_invoice", filter_widgets = filter_widgets, ) # Custom create-onaccept to assign the invoice s3db.add_custom_callback("fin_voucher_invoice", "onaccept", invoice_create_onaccept, method = "create", ) # PDF export method from ..helpers import InvoicePDF s3db.set_method("fin_voucher_invoice", method = "record", action = InvoicePDF, ) # Callback when invoice is settled s3db.configure("fin_voucher_invoice", onsettled = invoice_onsettled, ) # ------------------------------------------------------------------------- def fin_voucher_invoice_controller(**attr): T = current.T s3 = current.response.s3 # Enable bigtable features current.deployment_settings.base.bigtable = True standard_postp = s3.postp def custom_postp(r, output): # Call standard postp if callable(standard_postp): output = standard_postp(r, output) if not r.component and isinstance(output, dict): if r.record and r.method in (None, "update", "read"): # Custom CRUD buttons if "buttons" not in output: buttons = output["buttons"] = {} else: buttons = output["buttons"] # PDF-button pdf_download = A(T("Download PDF"), _href = "/%s/fin/voucher_invoice/%s/record.pdf" % \ (r.application, r.record.id), _class="action-btn", ) # Render in place of the delete-button buttons["delete_btn"] = TAG[""](pdf_download, ) return output s3.postp = custom_postp # Custom rheader from ..rheaders import rlpptm_fin_rheader attr["rheader"] = rlpptm_fin_rheader return attr # END =========================================================================
the-stack_106_27412
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu Nguyen" at 14:50, 20/04/2020 % # % # Email: [email protected] % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % #-------------------------------------------------------------------------------------------------------% from opfunu.cec.cec2005.root import Root from numpy import dot, max, abs, array from pandas import read_csv class Model(Root): def __init__(self, f_name="Schwefel's Problem 2.6 with Global Optimum on Bounds", f_shift_data_file="data_schwefel_206", f_ext='.txt', f_bias=-310): Root.__init__(self, f_name, f_shift_data_file, f_ext, f_bias) def load_shift_data(self): data = read_csv(self.support_path_data + self.f_shift_data_file + self.f_ext, delimiter='\s+', index_col=False, header=None) data = data.values shift_data = data[:1, :] matrix_data = data[1:, :] return shift_data, matrix_data def _main__(self, solution=None): problem_size = len(solution) if problem_size > 100: print("CEC 2005 not support for problem size > 100") return 1 shift_data, matrix_data = self.load_shift_data() shift_data = shift_data.reshape(-1)[:problem_size] t1 = int(0.25 * problem_size) + 1 t2 = int(0.75 * problem_size) shift_data[:t1] = -100 shift_data[t2:] = 100 matrix_data = matrix_data[:problem_size, :problem_size] result = [] for i in range(0, problem_size): temp = abs(dot(matrix_data[i], solution) - dot(matrix_data[i], shift_data)) result.append(temp) return max(array(result)) + self.f_bias
the-stack_106_27414
# Implements a quick and dirty genetic algorithm to search hyperparameters # Would be better (and more general) with object-oriented re-implementation # each hyperparameter is its own class with methods on how it varies, is randomly generated, etc # overall hyperparameters class that has a dictionary of its hyperparameters # Uses pandas dataframe import pandas as pd import numpy as np from numpy import random import tensorflow as tf import deepchem as dc from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score from math import ceil, log # set global variables for min/max for each parameter N_HIDDEN = [10, 80] N_LAYERS = [1, 7] LEARNING_RATE = [-3, 0] LEARNING_RATE_TYPE = 'log_uniform' DROPOUT_PROB = [0.2, 0.8] N_EPOCHS = [10, 80] BATCH_SIZE = [8, 1024] def import_dc_data(): """import the deepchem data, delete additional task labels, export train/validation/test sets""" _, (train, valid, test), _ = dc.molnet.load_tox21() train_X, train_y, train_w = train.X, train.y, train.w valid_X, valid_y, valid_w = valid.X, valid.y, valid.w test_X, test_y, test_w = test.X, test.y, test.w # Remove extra tasks train_y = train_y[:, 0] valid_y = valid_y[:, 0] test_y = test_y[:, 0] train_w = train_w[:, 0] valid_w = valid_w[:, 0] test_w = test_w[:, 0] # return the data as a dictionary dc_data = {'train_X': train_X, 'valid_X': valid_X, 'test_X': test_X, 'train_y': train_y, 'valid_y': valid_y, 'test_y': test_y, 'train_w': train_w, 'valid_w': valid_w, 'test_w': test_w} return dc_data def eval_tox21_hyperparams(dc_data, n_hidden=50, n_layers=1, learning_rate=.001, dropout_prob=0.5, n_epochs=45, batch_size=100, weight_positives=True): d = 1024 graph = tf.Graph() with graph.as_default(): # Generate tensorflow graph with tf.name_scope("placeholders"): x = tf.placeholder(tf.float32, (None, d)) y = tf.placeholder(tf.float32, (None,)) w = tf.placeholder(tf.float32, (None,)) keep_prob = tf.placeholder(tf.float32) for layer in range(n_layers): with tf.name_scope("layer-%d" % layer): W = tf.Variable(tf.random_normal((d, n_hidden))) b = tf.Variable(tf.random_normal((n_hidden,))) x_hidden = tf.nn.relu(tf.matmul(x, W) + b) # Apply dropout x_hidden = tf.nn.dropout(x_hidden, keep_prob) with tf.name_scope("output"): W = tf.Variable(tf.random_normal((n_hidden, 1))) b = tf.Variable(tf.random_normal((1,))) y_logit = tf.matmul(x_hidden, W) + b # the sigmoid gives the class probability of 1 y_one_prob = tf.sigmoid(y_logit) # Rounding P(y=1) will give the correct prediction. y_pred = tf.round(y_one_prob) with tf.name_scope("loss"): # Compute the cross-entropy term for each datapoint y_expand = tf.expand_dims(y, 1) entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y_expand) # Multiply by weights if weight_positives: w_expand = tf.expand_dims(w, 1) entropy = w_expand * entropy # Sum all contributions l = tf.reduce_sum(entropy) with tf.name_scope("optim"): train_op = tf.train.AdamOptimizer(learning_rate).minimize(l) with tf.name_scope("summaries"): tf.summary.scalar("loss", l) merged = tf.summary.merge_all() # For tensorboard visualization # hyperparam_str = "d-%d-hidden-%d-lr-%f-n_epochs-%d-batch_size-%d-weight_pos-%s" % ( # d, n_hidden, learning_rate, n_epochs, batch_size, str(weight_positives)) # train_writer = tf.summary.FileWriter('/tmp/fcnet-func-' + hyperparam_str, # tf.get_default_graph()) N = dc_data['train_X'].shape[0] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 for epoch in range(n_epochs): pos = 0 while pos < N: batch_X = dc_data['train_X'][pos:pos+batch_size] batch_y = dc_data['train_y'][pos:pos+batch_size] batch_w = dc_data['train_w'][pos:pos+batch_size] feed_dict = {x: batch_X, y: batch_y, w: batch_w, keep_prob: dropout_prob} _, summary, loss = sess.run([train_op, merged, l], feed_dict=feed_dict) # print("epoch %d, step %d, loss: %f" % (epoch, step, loss)) # train_writer.add_summary(summary, step) step += 1 pos += batch_size # Make Predictions (set keep_prob to 1.0 for predictions) valid_y_pred = sess.run(y_pred, feed_dict={x: dc_data['valid_X'], keep_prob: 1.0}) valid_y = dc_data['valid_y'] # get labels acc = accuracy_score(valid_y, valid_y_pred, sample_weight=dc_data['valid_w']) prec = precision_score(valid_y, valid_y_pred) # can't weight? recall = recall_score(valid_y, valid_y_pred) # can't weight? roc_auc = roc_auc_score(valid_y, valid_y_pred) return (acc, prec, recall, roc_auc) # build a dataframe with for model hyperparameters and evaluation metrics def eval_log(name=None, n_hidden=50, n_layers=1, learning_rate=.001, dropout_prob=0.5, n_epochs=45, batch_size=100, weight_positives=True): """ Evaluates the model on the hyperparameters supplied as arguments, returns the results as a pd.Series """ # run the model (acc, prec, rec, auc) = eval_tox21_hyperparams(dc_data, n_hidden=n_hidden, n_layers=n_layers, learning_rate=learning_rate, dropout_prob=dropout_prob, n_epochs=n_epochs, batch_size=batch_size, weight_positives=weight_positives) # create a dict hparams = {'n_hidden': n_hidden, 'n_layers': n_layers, 'learning_rate': learning_rate, 'dropout_prob': dropout_prob, 'batch_size': batch_size, 'weight_positives': weight_positives, 'accuracy_score': acc, 'precision_score': prec, 'recall_score': rec, 'auc': auc} return pd.Series(hparams, name=name, index=hparams.keys()) def get_random_hparams(n, n_hidden=N_HIDDEN, n_layers=N_LAYERS, learning_rate=LEARNING_RATE, learning_rate_type=LEARNING_RATE_TYPE, dropout_prob=DROPOUT_PROB, n_epochs=N_EPOCHS, batch_size=BATCH_SIZE): """ creates n sets of hyperparameters randomly. default arguments represent random bounds. weight_positives is probability of True""" arr_n_hidden = random.randint(n_hidden[0], n_hidden[1], size=n, dtype=int) arr_n_layers = random.randint(n_layers[0], n_layers[1], size=n, dtype=int) rand_lr = min(learning_rate) + ((learning_rate[1] - learning_rate[0]) * random.rand(n)) if learning_rate_type == 'log_uniform': arr_learning_rate = np.power(10, rand_lr) else: arr_learning_rate = rand_lr arr_dropout_prob = min(dropout_prob) + ((dropout_prob[1] - dropout_prob[0]) * random.rand(n)) arr_n_epochs = random.randint(n_epochs[0], n_epochs[1], size=n, dtype=int) arr_batch_size = random.randint(batch_size[0], batch_size[1], size=n, dtype=int) arr_weight_positives = random.choice([True, False], size=n) return (arr_n_hidden, arr_n_layers, arr_learning_rate, arr_dropout_prob, arr_n_epochs, arr_batch_size, arr_weight_positives) def run_n_models(dc_data, hparams_tuple): """ takes a dictionary of hyperparameters (each is an array) and runs the model on all the params in the array. returns a dictionary of arrays with output metrics """ (arr_n_hidden, arr_n_layers, arr_learning_rate, arr_dropout_prob, arr_n_epochs, arr_batch_size, arr_weight_positives) = hparams_tuple # create empty arrays for output metrics n = len(arr_n_hidden) acc = np.zeros(n) prec = np.zeros(n) rec = np.zeros(n) auc = np.zeros(n) # use a dirty for loop for now for i in range(n): (acc[i], prec[i], rec[i], auc[i]) = eval_tox21_hyperparams(dc_data, n_hidden=arr_n_hidden[i], n_layers=arr_n_layers[i], learning_rate=arr_learning_rate[i], dropout_prob=arr_dropout_prob[i], n_epochs=arr_n_epochs[i], batch_size=arr_batch_size[i], weight_positives=arr_weight_positives[i]) # return tuple of arrays return (acc, prec, rec, auc) def eval_n_models(dc_data, n=5, generation=None, init="random", hparams=None): """evaluates n different models. Generates hyperparameters randomly if not specified.""" if init == 'hparams': params = hparams # default to init='random' else: params = get_random_hparams(n) (acc, prec, rec, auc) = run_n_models(dc_data, params) # if epoch is specified, write it as a column dict = {'generation': pd.Series(np.full(n, generation)), 'n_hidden': pd.Series(params[0]), 'n_layers': pd.Series(params[1]), 'learning_rate': pd.Series(params[2]), 'dropout_prob': pd.Series(params[3]), 'n_epochs': pd.Series(params[4]), 'batch_size': pd.Series(params[5]), 'weight_positives': pd.Series(params[6]), 'acc': pd.Series(acc), 'prec': pd.Series(prec), 'rec': pd.Series(rec), 'auc': pd.Series(auc)} df = pd.DataFrame.from_dict(dict) return df def get_hparams_from_dataframe(df): """ gets the hparams from the supplied dataframe and returns them as a tuple of numpy arrays """ arr_n_hidden = np.asarray(df.loc[:, 'n_hidden']) arr_n_layers = np.asarray(df.loc[:, 'n_layers']) arr_learning_rate = np.asarray(df.loc[:, 'learning_rate']) arr_dropout_prob = np.asarray(df.loc[:, 'dropout_prob']) arr_n_epochs = np.asarray(df.loc[:, 'n_epochs']) arr_batch_size = np.asarray(df.loc[:, 'batch_size']) arr_weight_positives = np.asarray(df.loc[:, 'weight_positives']) return (arr_n_hidden, arr_n_layers, arr_learning_rate, arr_dropout_prob, arr_n_epochs, arr_batch_size, arr_weight_positives) def ga_calc_next_gen(prev_generation, generation_size, metric='auc'): """ calculates the hyperparameters for the next generation""" # initialize empty arrays for next generation arr_n_hidden = np.zeros(generation_size, dtype=int) arr_n_layers = np.zeros(generation_size, dtype=int) arr_learning_rate = np.zeros(generation_size, dtype=np.float32) arr_dropout_prob = np.zeros(generation_size, dtype=np.float32) arr_n_epochs = np.zeros(generation_size, dtype=int) arr_batch_size = np.zeros(generation_size, dtype=int) arr_weight_positives = np.zeros(generation_size, dtype=bool) # sort the previous generation by desired metric sortd = prev_generation.sort_values(metric, ascending=False) # split the previous generaton into quartiles q1 = ceil(generation_size * 0.25) q2 = ceil(generation_size * 0.50) q3 = ceil(generation_size * 0.75) # top quartile go straight through arr_n_hidden[0:q1] = sortd.iloc[0:q1].loc[:, 'n_hidden'] arr_n_layers[0:q1] = sortd.iloc[0:q1].loc[:, 'n_layers'] arr_learning_rate[0:q1] = sortd.iloc[0:q1].loc[:, 'learning_rate'] arr_dropout_prob[0:q1] = sortd.iloc[0:q1].loc[:, 'dropout_prob'] arr_n_epochs[0:q1] = sortd.iloc[0:q1].loc[:, 'n_epochs'] arr_batch_size[0:q1] = sortd.iloc[0:q1].loc[:, 'batch_size'] arr_weight_positives[0:q1] = sortd.iloc[0:q1].loc[:, 'weight_positives'] # second quartile are crossed from first quartile # get a shuffled view of the top quartile shuf = np.arange(q1) np.random.shuffle(shuf) # shuffle in place shuffled = sortd.iloc[0:q1].iloc[shuf] for i in range(q2 - q1): arr_n_hidden[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['n_hidden'], shuffled.iloc[i].loc['n_hidden']])) arr_n_layers[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['n_layers'], shuffled.iloc[i].loc['n_layers']])) arr_learning_rate[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['learning_rate'], shuffled.iloc[i].loc['learning_rate']])) arr_dropout_prob[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['dropout_prob'], shuffled.iloc[i].loc['dropout_prob']])) arr_n_epochs[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['n_epochs'], shuffled.iloc[i].loc['n_epochs']])) arr_batch_size[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['batch_size'], shuffled.iloc[i].loc['batch_size']])) arr_weight_positives[q1 + i] = np.random.choice(np.asarray([sortd.iloc[i].loc['weight_positives'], shuffled.iloc[i].loc['weight_positives']])) # third quartile are mutations of first quartile for i in range(q3 - q2): arr_n_hidden[q2 + i] = int(np.random.normal(loc=sortd.iloc[i].loc['n_hidden'], scale=sortd.loc[:, 'n_hidden'].std())) arr_n_layers[q2 + i] = int(np.random.normal(loc=sortd.iloc[i].loc['n_layers'], scale=sortd.loc[:, 'n_layers'].std())) # Learning rate is exponential so this needs to be a log normal dist lr_log = np.log10(sortd.iloc[i].loc['learning_rate']) # get log10 of the learning rate # get std of the log10 learning rates lr_log_std = np.log10(sortd.loc[:, 'learning_rate']).std() print("log lr = ", lr_log, "lr_log_std", lr_log_std) arr_learning_rate[q2 + i] = np.power(10, np.random.normal(loc=lr_log, scale=lr_log_std)) # arr_learning_rate[q2 + i] = np.random.normal(loc=sortd.iloc[i].loc['learning_rate'], # scale=sortd.loc[:, 'learning_rate'].std()) arr_dropout_prob[q2 + i] = np.random.normal(loc=sortd.iloc[i].loc['dropout_prob'], scale=sortd.loc[:, 'dropout_prob'].std()) arr_n_epochs[q2 + i] = int(np.random.normal(loc=sortd.iloc[i].loc['n_epochs'], scale=sortd.loc[:, 'n_epochs'].std())) arr_batch_size[q2 + i] = int(np.random.normal(loc=sortd.iloc[i].loc['batch_size'], scale=sortd.loc[:, 'batch_size'].std())) # randomly flip weight_positives with probability 0.25 t = sortd.iloc[i].loc['weight_positives'] arr_weight_positives[q2 + i] = np.random.choice([t, 1-t], p=[0.75, 0.25]) # clip third quartile to within sensible bounds np.clip(arr_n_hidden[q2:q3], N_HIDDEN[0], N_HIDDEN[1], out=arr_n_hidden[q2:q3]) np.clip(arr_n_layers[q2:q3], N_LAYERS[0], N_LAYERS[1], out=arr_n_layers[q2:q3]) # learning rate varies as exp, clip between 0 and 1 should be fine np.clip(arr_learning_rate[q2:q3], 0, 1, out=arr_learning_rate[q2:q3]) np.clip(arr_dropout_prob[q2:q3], DROPOUT_PROB[0], DROPOUT_PROB[1], out=arr_dropout_prob[q2:q3]) np.clip(arr_n_epochs[q2:q3], N_EPOCHS[0], N_EPOCHS[1], out=arr_n_epochs[q2:q3]) np.clip(arr_batch_size[q2:q3], BATCH_SIZE[0], BATCH_SIZE[1], out=arr_batch_size[q2:q3]) # fourth quartile are randomly generated (rand_n_hidden, rand_n_layers, rand_learning_rate, rand_dropout_prob, rand_n_epochs, rand_batch_size, rand_weight_positives) = get_random_hparams(n=generation_size-q3) arr_n_hidden[q3:generation_size] = rand_n_hidden arr_n_layers[q3:generation_size] = rand_n_layers arr_learning_rate[q3:generation_size] = rand_learning_rate arr_dropout_prob[q3:generation_size] = rand_dropout_prob arr_n_epochs[q3:generation_size] = rand_n_epochs arr_batch_size[q3:generation_size] = rand_batch_size arr_weight_positives[q3:generation_size] = rand_weight_positives return (arr_n_hidden, arr_n_layers, arr_learning_rate, arr_dropout_prob, arr_n_epochs, arr_batch_size, arr_weight_positives) def ga_run_generation(df, dc_data, generation_size=8): """ Run a single generation""" # get the generation number for the previous generation n_prev = max(df['generation']) # slice the df to get just the last generation prev = df.loc[df.loc[:, 'generation'] == n_prev] # compute the parameters for the next generation next_params = ga_calc_next_gen(prev, generation_size=generation_size, metric='auc') # run the next generation and return it next = eval_n_models(dc_data, n=generation_size, generation=n_prev + 1, init='hparams', hparams=next_params) return next def ga_run(dc_data, seed=False, seed_pop=None, generation_size=20, n_generations=5): """ Run the genetic algorithm for n_generations""" # if no seed generation is supplied, create one if seed: pop = seed_pop else: pop = eval_n_models(dc_data, n=generation_size, generation=0) print("Generation 0 (seed):\n", pop.sort_values('auc', ascending=False)) for g in range(1, n_generations): # run the next generation next = ga_run_generation(pop, dc_data, generation_size=generation_size) next = next.sort_values('auc', ascending=False) print("Generation ", g, ":") print("next:", next) pop = pop.append(next) return pop if __name__ == "__main__": # Code here to execute, might be better in an ipynb? dc_data = import_dc_data() # create a dataframe by running eval_n_models df_genetic = ga_run(dc_data, generation_size=20, n_generations=10)
the-stack_106_27416
from subprocess import call from subprocess import check_output def find_group_id() -> str: """ Finds primay group ID and returns as string """ cmd = 'dscl . -list /groups PrimaryGroupID|grep staff|tr -s [:space:]' out = check_output([cmd], shell=True) res = out.decode('UTF-8').strip('\n').split(' ') return res[1] def find_user_id() -> str: """ Find out the next available user ID """ cmd = "dscl . -list /Users UniqueID|awk '{{print $2}}'|sort -ug|tail -1" out = check_output([cmd], shell=True) # Decode from bytes to string, remove newline and convert to int max = int(out.decode('UTF-8').strip('\n')) return str(max + 1) class OSX: """ Class for executing OSX utilities commands """ def __init__(self, utility, user, shell='/usr/bin/false', group='staff'): """ Class constructor """ self.utility = utility # self.password = password self.user = user self.shell = shell self.group = group self.base_cmd = '' def execute(self): """ Executes commands """ if self.utility == 'useradd': self.call_useradd() elif self.utility == 'userdel': self.call_userdel() else: print("Command not recognized") def osx_call(self, command): """ Real execution of terminal command """ call('sudo -S {}'.format(command), shell=True) def call_useradd(self): """ Adds a new user """ base_cmd = 'dscl . -create /Users/{}'.format(self.user) self.osx_call(base_cmd) userid = base_cmd + ' UniqueID {}'.format(find_user_id()) self.osx_call(userid) group = base_cmd + ' PrimaryGroupID {}'.format(find_group_id()) self.osx_call(group) def call_userdel(self): """ Deletes user """ self.delete_from_groups() userdel = 'dscl . -delete /Users/{}'.format(self.user) self.osx_call(userdel) def delete_from_groups(self): """ Deletes user from his groups """ out = check_output(['groups', '{}'.format(self.user)], shell=True) groups = out.decode('UTF-8').strip('\n').split(' ') for group in groups: cmd = 'dseditgroup -o edit -d {} -t user {}'.format(self.user, group) self.osx_call(cmd)
the-stack_106_27417
import logging import time from abc import abstractmethod, ABC, ABCMeta from spaceone.core import config, utils, cache from spaceone.core.manager import BaseManager from spaceone.core.auth.jwt.jwt_util import JWTUtil from spaceone.identity.error.error_authentication import * __all__ = ['TokenManager', 'JWTManager'] _LOGGER = logging.getLogger(__name__) class TokenManager(BaseManager, ABC): is_authenticated = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._load_conf() @abstractmethod def issue_token(self, **kwargs): pass @abstractmethod def refresh_token(self, user_id, domain_id, **kwargs): pass @abstractmethod def authenticate(self, user_id, domain_id, credentials): pass @abstractmethod def check_refreshable(self, key, ttl): pass def _load_conf(self): identity_conf = config.get_global('IDENTITY') or {} token_conf = identity_conf.get('token', {}) self.CONST_TOKEN_TIMEOUT = token_conf.get('token_timeout', 1800) self.CONST_REFRESH_TIMEOUT = token_conf.get('refresh_timeout', 3600) self.CONST_REFRESH_TTL = token_conf.get('refresh_ttl', -1) self.CONST_REFRESH_ONCE = token_conf.get('refresh_once', True) class JWTManager(TokenManager, metaclass=ABCMeta): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.old_refresh_key = None def issue_token(self, **kwargs): raise NotImplementedError('TokenManager.issue_token not implemented!') def refresh_token(self, user_id, domain_id, **kwargs): raise NotImplementedError('TokenManager.refresh_token not implemented!') def authenticate(self, user_id, domain_id, credentials): raise NotImplementedError('TokenManager.authenticate not implemented!') def check_refreshable(self, refresh_key, ttl): if self.CONST_REFRESH_ONCE: if cache.is_set() and cache.get(f'refresh-token:{refresh_key}') is None: raise ERROR_INVALID_REFRESH_TOKEN() if ttl == 0: raise ERROR_REFRESH_COUNT() self.is_authenticated = True self.old_refresh_key = refresh_key def issue_access_token(self, user_type, user_id, domain_id, **kwargs): private_jwk = self._get_private_jwk(kwargs) timeout = kwargs.get('timeout', self.CONST_TOKEN_TIMEOUT) if user_id == '[email protected]': timeout = 60 payload = { 'cat': 'ACCESS_TOKEN', 'user_type': user_type, 'did': domain_id, 'aud': user_id, 'iat': int(time.time()), 'exp': int(time.time() + timeout) } encoded = JWTUtil.encode(payload, private_jwk) return encoded def issue_refresh_token(self, user_type, user_id, domain_id, **kwargs): refresh_private_jwk = self._get_refresh_private_jwk(kwargs) ttl = kwargs.get('ttl', self.CONST_REFRESH_TTL) timeout = kwargs.get('timeout', self.CONST_REFRESH_TIMEOUT) refresh_key = self._generate_refresh_key() if user_id == '[email protected]': timeout = 120 payload = { 'cat': 'REFRESH_TOKEN', 'user_type': user_type, 'did': domain_id, 'aud': user_id, 'iat': int(time.time()), 'exp': int(time.time() + timeout), "key": refresh_key, 'ttl': ttl } encoded = JWTUtil.encode(payload, refresh_private_jwk) if self.CONST_REFRESH_ONCE: self._set_refresh_token_cache(refresh_key) return encoded @staticmethod def _generate_refresh_key(): return utils.random_string(16) @staticmethod def _get_private_jwk(kwargs): if 'private_jwk' not in kwargs: raise ERROR_NOT_FOUND_PRIVATE_KEY(purpose='Access Token') return kwargs['private_jwk'] @staticmethod def _get_refresh_private_jwk(kwargs): if 'refresh_private_jwk' not in kwargs: raise ERROR_NOT_FOUND_PRIVATE_KEY(purpose='Refresh Token') return kwargs['refresh_private_jwk'] def _set_refresh_token_cache(self, new_refresh_key): if cache.is_set(): if self.old_refresh_key: cache.delete(f'refresh-token:{self.old_refresh_key}') cache.set(f'refresh-token:{new_refresh_key}', '', expire=self.CONST_REFRESH_TIMEOUT)
the-stack_106_27419
import logging import os import tempfile from contextlib import contextmanager from typing import TYPE_CHECKING, Optional from funcy import cached_property, first from dvc.exceptions import DvcException from dvc.utils import dict_sha256, relpath if TYPE_CHECKING: from dvc.objects.db.base import ObjectDB logger = logging.getLogger(__name__) class RunCacheNotFoundError(DvcException): def __init__(self, stage): super().__init__(f"No run-cache for {stage.addressing}") def _get_cache_hash(cache, key=False): from dvc.data.meta import Meta if key: cache["outs"] = [out["path"] for out in cache.get("outs", [])] return dict_sha256(cache, exclude=[Meta.PARAM_SIZE, Meta.PARAM_NFILES]) def _can_hash(stage): if stage.is_callback or stage.always_changed: return False if not all([stage.cmd, stage.deps, stage.outs]): return False for dep in stage.deps: if not (dep.scheme == "local" and dep.def_path and dep.get_hash()): return False for out in stage.outs: if out.scheme != "local" or not out.def_path or out.persist: return False return True def _get_stage_hash(stage): from .serialize import to_single_stage_lockfile assert _can_hash(stage) return _get_cache_hash(to_single_stage_lockfile(stage), key=True) class StageCache: def __init__(self, repo): self.repo = repo @cached_property def cache_dir(self): return os.path.join(self.repo.odb.local.cache_dir, "runs") def _get_cache_dir(self, key): return os.path.join(self.cache_dir, key[:2], key) def _get_cache_path(self, key, value): return os.path.join(self._get_cache_dir(key), value) def _load_cache(self, key, value): from voluptuous import Invalid from dvc.schema import COMPILED_LOCK_FILE_STAGE_SCHEMA from dvc.utils.serialize import YAMLFileCorruptedError, load_yaml path = self._get_cache_path(key, value) try: return COMPILED_LOCK_FILE_STAGE_SCHEMA(load_yaml(path)) except FileNotFoundError: return None except (YAMLFileCorruptedError, Invalid): logger.warning("corrupted cache file '%s'.", relpath(path)) os.unlink(path) return None def _load(self, stage): key = _get_stage_hash(stage) if not key: return None cache_dir = self._get_cache_dir(key) if not os.path.exists(cache_dir): return None for value in os.listdir(cache_dir): cache = self._load_cache(key, value) if cache: return cache return None def _create_stage(self, cache, wdir=None): from . import PipelineStage, create_stage from .loader import StageLoader stage = create_stage( PipelineStage, repo=self.repo, path="dvc.yaml", cmd=cache["cmd"], wdir=wdir, outs=[out["path"] for out in cache["outs"]], external=True, ) StageLoader.fill_from_lock(stage, cache) return stage @contextmanager def _cache_type_copy(self): cache_types = self.repo.odb.local.cache_types self.repo.odb.local.cache_types = ["copy"] try: yield finally: self.repo.odb.local.cache_types = cache_types def _uncached_outs(self, stage, cache): # NOTE: using temporary stage to avoid accidentally modifying original # stage and to workaround `commit/checkout` not working for uncached # outputs. cached_stage = self._create_stage(cache, wdir=stage.wdir) outs_no_cache = [ out.def_path for out in stage.outs if not out.use_cache ] # NOTE: using copy link to make it look like a git-tracked file with self._cache_type_copy(): for out in cached_stage.outs: if out.def_path in outs_no_cache: yield out def save(self, stage): from .serialize import to_single_stage_lockfile if not _can_hash(stage): return cache_key = _get_stage_hash(stage) cache = to_single_stage_lockfile(stage) cache_value = _get_cache_hash(cache) existing_cache = self._load_cache(cache_key, cache_value) cache = existing_cache or cache for out in self._uncached_outs(stage, cache): out.commit() if existing_cache: return from dvc.schema import COMPILED_LOCK_FILE_STAGE_SCHEMA from dvc.utils.serialize import dump_yaml # sanity check COMPILED_LOCK_FILE_STAGE_SCHEMA(cache) path = self._get_cache_path(cache_key, cache_value) parent = self.repo.odb.local.fs.path.parent(path) self.repo.odb.local.makedirs(parent) tmp = tempfile.NamedTemporaryFile(delete=False, dir=parent).name assert os.path.exists(parent) assert os.path.isdir(parent) dump_yaml(tmp, cache) self.repo.odb.local.move(tmp, path) def restore(self, stage, run_cache=True, pull=False): from .serialize import to_single_stage_lockfile if not _can_hash(stage): raise RunCacheNotFoundError(stage) if ( not stage.changed_stage() and stage.deps_cached() and all(bool(out.hash_info) for out in stage.outs) ): cache = to_single_stage_lockfile(stage) else: if not run_cache: # backward compatibility raise RunCacheNotFoundError(stage) stage.save_deps() cache = self._load(stage) if not cache: raise RunCacheNotFoundError(stage) cached_stage = self._create_stage(cache, wdir=stage.wdir) if pull: for objs in cached_stage.get_used_objs().values(): self.repo.cloud.pull(objs) if not cached_stage.outs_cached(): raise RunCacheNotFoundError(stage) logger.info( "Stage '%s' is cached - skipping run, checking out outputs", stage.addressing, ) cached_stage.checkout() @staticmethod def _transfer(func, from_remote, to_remote): ret = [] runs = from_remote.fs.path.join(from_remote.fs_path, "runs") if not from_remote.fs.exists(runs): return [] from_path = from_remote.fs.path for src in from_remote.fs.find(runs): rel = from_path.relpath(src, from_remote.fs_path) dst = to_remote.fs.path.join(to_remote.fs_path, rel) key = to_remote.fs.path.parent(dst) # check if any build cache already exists for this key # TODO: check if MaxKeys=1 or something like that applies # or otherwise this will take a lot of time! if to_remote.fs.exists(key) and first(to_remote.fs.find(key)): continue func(src, dst) ret.append( (from_path.name(from_path.parent(src)), from_path.name(src)) ) return ret def push(self, remote: Optional[str], odb: Optional["ObjectDB"] = None): from dvc.data.transfer import _log_exceptions if odb is None: odb = self.repo.cloud.get_remote_odb(remote) return self._transfer( _log_exceptions(odb.fs.upload), self.repo.odb.local, odb, ) def pull(self, remote: Optional[str]): from dvc.data.transfer import _log_exceptions odb = self.repo.cloud.get_remote_odb(remote) return self._transfer( _log_exceptions(odb.fs.download), odb, self.repo.odb.local, ) def get_used_objs(self, used_run_cache, *args, **kwargs): """Return used cache for the specified run-cached stages.""" from collections import defaultdict used_objs = defaultdict(set) for key, value in used_run_cache: entry = self._load_cache(key, value) if not entry: continue stage = self._create_stage(entry) for odb, objs in stage.get_used_objs(*args, **kwargs).items(): used_objs[odb].update(objs) return used_objs
the-stack_106_27421
"""Test that the horizontal font metrics are calculated correctly. Some text in various fonts will be displayed. Green vertical lines mark the left edge of the text. Blue vertical lines mark the right edge of the text. """ import os import unittest from pyglet.gl import * from pyglet import font from . import base_text base_path = os.path.dirname(__file__) class TEST_HORIZONTAL_METRICS(base_text.TextTestBase): window_size = 400, 250 def render(self): font.add_file(os.path.join(base_path, 'action_man.ttf')) fnt1 = font.load('Action Man', 16) fnt2 = font.load('Arial', 16) fnt3 = font.load('Times New Roman', 16) h = fnt3.ascent - fnt3.descent + 10 self.texts = [ font.Text(fnt1, 'Action Man', 10, h * 1), font.Text(fnt1, 'Action Man longer test with more words', 10, h * 2), font.Text(fnt2, 'Arial', 10, h * 3), font.Text(fnt2, 'Arial longer test with more words', 10, h * 4), font.Text(fnt3, 'Times New Roman', 10, h * 5), font.Text(fnt3, 'Times New Roman longer test with more words', 10, h * 6), ] def draw(self): glPushAttrib(GL_CURRENT_BIT) for text in self.texts: text.draw() glBegin(GL_LINES) glColor3f(0, 1, 0) glVertex2f(text.x, text.y + text.font.descent) glVertex2f(text.x, text.y + text.font.ascent) glColor3f(0, 0, 1) glVertex2f(text.x + text.width, text.y + text.font.descent) glVertex2f(text.x + text.width, text.y + text.font.ascent) glEnd() glPopAttrib()
the-stack_106_27423
import os import logging import json import requests from SPARQLWrapper import JSON, SPARQLWrapper def download(): logging.basicConfig(level=logging.INFO) endpoint = SPARQLWrapper("https://materialsmine.org/wi/sparql") endpoint.setQuery( """ SELECT DISTINCT ?article WHERE { ?doi a <http://nanomine.org/ns/ResearchArticle> . ?doi <http://semanticscience.org/resource/hasPart> ?article . } """ ) endpoint.setReturnFormat(JSON) results = endpoint.query().convert() uris = [r["article"]["value"].replace("http://nanomine.org/sample/", "").replace("-", "_").title() for r in results["results"]["bindings"]] files = [uri + ".xml" for uri in uris] for f in files: if (os.path.exists(f)): logging.info("File " + f + " already exists, skipping") else: logging.debug("Downloading file " + str(f)) r = requests.get("http://nanomine.org/nmr/xml/" + f) try: j = json.loads(r.text) xml_str = j["data"][0]["xml_str"] with open(f, "w") as outfile: outfile.write(xml_str) except Exception as e: logging.error("Something went wrong with file " + f) logging.error(e) if __name__ == "__main__": download()
the-stack_106_27424
import cv2 import numpy as np from datetime import datetime import array import fcntl import os import argparse from utils import ArducamUtils import time def resize(frame, dst_width): width = frame.shape[1] height = frame.shape[0] scale = dst_width * 1.0 / width return cv2.resize(frame, (int(scale * width), int(scale * height))) def display(cap, arducam_utils, fps = False): counter = 0 start_time = datetime.now() frame_count = 0 start = time.time() #f = open("/dev/stdout", "wb") while True: ret, frame = cap.read() counter += 1 frame_count += 1 if arducam_utils.convert2rgb == 0: w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) frame = frame.reshape(int(h), int(w)) frame = arducam_utils.convert(frame) frame = resize(frame, 1280.0) # display cv2.imshow("Arducam", frame) ret = cv2.waitKey(1) # press 'q' to exit. if ret == ord('q'): break if fps and time.time() - start >= 1: print("fps: {}".format(frame_count),end='\r') start = time.time() frame_count = 0 #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420) ## frame.tofile(sys.stdout.buffer) #f.write(frame.data) end_time = datetime.now() elapsed_time = end_time - start_time avgtime = elapsed_time.total_seconds() / counter print ("Average time between frames: " + str(avgtime)) print ("Average FPS: " + str(1/avgtime)) def fourcc(a, b, c, d): return ord(a) | (ord(b) << 8) | (ord(c) << 16) | (ord(d) << 24) def pixelformat(string): if len(string) != 3 and len(string) != 4: msg = "{} is not a pixel format".format(string) raise argparse.ArgumentTypeError(msg) if len(string) == 3: return fourcc(string[0], string[1], string[2], ' ') else: return fourcc(string[0], string[1], string[2], string[3]) def show_info(arducam_utils): _, firmware_version = arducam_utils.read_dev(ArducamUtils.FIRMWARE_VERSION_REG) _, sensor_id = arducam_utils.read_dev(ArducamUtils.FIRMWARE_SENSOR_ID_REG) _, serial_number = arducam_utils.read_dev(ArducamUtils.SERIAL_NUMBER_REG) print("Firmware Version: {}".format(firmware_version)) print("Sensor ID: 0x{:04X}".format(sensor_id)) print("Serial Number: 0x{:08X}".format(serial_number)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Arducam Jetson Nano MIPI Camera Displayer.') parser.add_argument('-d', '--device', default=0, type=int, nargs='?', help='/dev/videoX default is 0') parser.add_argument('-f', '--pixelformat', type=pixelformat, help="set pixelformat") parser.add_argument('--width', type=lambda x: int(x,0), help="set width of image") parser.add_argument('--height', type=lambda x: int(x,0), help="set height of image") parser.add_argument('--fps', action='store_true', help="display fps") args = parser.parse_args() # open camera cap = cv2.VideoCapture(args.device, cv2.CAP_V4L2) # set pixel format if args.pixelformat != None: if not cap.set(cv2.CAP_PROP_FOURCC, args.pixelformat): print("Failed to set pixel format.") arducam_utils = ArducamUtils(args.device) show_info(arducam_utils) # turn off RGB conversion if arducam_utils.convert2rgb == 0: cap.set(cv2.CAP_PROP_CONVERT_RGB, arducam_utils.convert2rgb) # set width if args.width != None: cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.width) # set height if args.height != None: cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.height) # begin display display(cap, arducam_utils, args.fps) # release camera cap.release()
the-stack_106_27425
"""API targets module for rbkcli.""" import copy from rbkcli.base import CONSTANTS, RbkcliBase, RbkcliException from rbkcli.core.handlers.environment import EnvironmentHandler from rbkcli.core.handlers.inputs import InputHandler from rbkcli.core.handlers.outputs import OutputHandler class ApiTarget(RbkcliBase): """Define the Target to which we will request APIs from.""" def __init__(self, ctx, auth=None, env=None): """Initialize Rbkcli Rubrik Cluster.""" self.ctx = self.dot_dict(ctx) # Verify base folder provided. if self.ctx.base_folder == '': self.ctx.base_folder = CONSTANTS.BASE_FOLDER # Make sure the parent init is run. RbkcliBase.__init__(self, user_profile=self.ctx.user_profile, base_folder=self.ctx.base_folder, workflow=self.ctx.workflow) # req is a dict created from te raw input of API request. self.req = {} self.ini_req = {} # Set workflow to instance variable # Load the API target from tools. self.tools = self.tools() if auth in (None, {}): self.auth = self.tools.load_auth() else: self.auth = self.dot_dict(auth) base_kit = self._gen_base_kit() # Load or create environment based on imported apis self.environment = env if self.environment is None: self.environment = EnvironmentHandler(base_kit) # Instantiate operations and api handlers self.operations = self.environment.evaluate() base_kit.target_folder = self.environment.env.folder # Instantiate InpuHandler for future use self.validator = InputHandler(base_kit, self.operations) self.operations.handler.cmdlets.initialize_callbacker(self.operations) self.operations.handler.scripts.initialize_callbacker(self.operations) self.formatter = OutputHandler(base_kit, self.operations) def execute(self, **kwargs): """Call the execute method for the provided request.""" # Generate a dictionary of the data passed for request self._gen_req_dict(kwargs) # Use input handler to validate the data entered. # If any error to be raised related to request inconsistency, # should come from this self.req = self.validator.validate(self.ini_req) # Once input is normalize pass it on to request the operation. return self.operations.execute(self.req) def documentation(self, **kwargs): """Call the documentation method for the provided request.""" # Generate a dictionary of the data passed for request self._gen_req_dict(kwargs) # Use input handler to validate the data entered. # If any error to be raised related to request inconsistency, # should come from this self.req = self.validator.validate(self.ini_req) # Once input is normalize pass it on to request the operation. return self.operations.documentation(self.req) def information(self, **kwargs): """Call the information method for the provided request.""" # Generate a dictionary of the data passed for request self._gen_req_dict(kwargs) # Use input handler to validate the data entered. # If any error to be raised related to request inconsistency, # should come from this self.req = self.validator.validate(self.ini_req) # Once input is normalize pass it on to request the operation. return self.operations.information(self.req) def command(self, **kwargs): """Call the information method for the provided request.""" # Generate a dictionary of the data passed for request self._gen_req_dict(kwargs) result = self.dot_dict() #print(self.req) # Converting endpoint to a list. if isinstance(self.req.api_endpoint, str): self.req.api_endpoint = [self.req.api_endpoint] # Normalizing request dictionary self.req.endpoint = ' '.join(self.req.api_endpoint) self.req.formatt = 'raw' self.req.param = self.req.query self.req.data = self.req.parameter for key, value in self.req.items(): self.ini_req[key] = value # Get the documentation string for every API run. self.req.documentation_objct = self.documentation(args=self.req).text ## FIX # If info requested, only print info. if self.req.info: result = self.information(args=self.req) # If documentation requested, only print documentation. elif self.req.documentation: result.text = self.req.documentation_objct # If available keys requested get the available keys. elif self.req.output_workflow != []: if '?' in self.req.output_workflow[0]['value']: result.text = self.formatter.available_fields(self.req) self.req.output_workflow.pop(0) else: result = self.execute(args=self.req) else: result = self.execute(args=self.req) return self.formatter.outputfy(self.req, result) def _gen_req_dict(self, kwargs): """Generate the request dictionary to be passed.""" # Create the dictionary as a dot ddict for easy access. if self.req == {}: self.req = self.dot_dict() self.ini_req = self.dot_dict() kwargs = kwargs['args'] for key in kwargs.keys(): self.req[key] = kwargs[key] def _gen_base_kit(self): """Generate a shared context to pass to other classes.""" # Create the dictionary as a dot ddict for easy access. base_kit = self.dot_dict() base_kit.config_dict = self.conf_dict base_kit.base_folder = self.ctx.base_folder base_kit.tools = self.tools base_kit.logger = self.rbkcli_logger base_kit.dot_dict = self.dot_dict base_kit.target = self.auth.server base_kit.api_handler = self.api_handler base_kit.discover_fn = self.ctx.discover_fn base_kit.auth = self.auth base_kit.user_profile = self.user_profile base_kit.json_ops = self.json_ops base_kit.workflow = self.ctx.workflow ### Test here callback_kit = self.dot_dict() base_kit.callback_cmd = self.command base_kit.parser = self.ctx.parser return base_kit class RubrikCluster(ApiTarget): """ Class to instanciate a API target. Which is specifically a Rubrik Cluster, has a dicovery_action for the target that could be different per target type. """ def __init__(self, ctx, auth=None, env=None): """Initialize Rbkcli Rubrik Cluster.""" ctx['discover_fn'] = self._discovery_action ApiTarget.__init__(self, ctx, auth=auth, env=env) def _discovery_action(self): """Gather cluster and nodes data, returns list of dict.""" # Declare the target resolution var that will be returned. resolution_data = [] target_resolution = self.dot_dict() # Instantiate the raw Api Requester. requester = self.api_requester(self.auth) # Request the data from the target. cluster_data = requester.demand('get', '/v1/cluster/me') node_data = requester.demand('get', '/internal/cluster/me/node') unauthr_user = str('The request was a legal request, but the server ' 'is refusing to respond to it.') # Verify if the discovery process got necessary data if node_data.status_code == 404: error = str('Unable to discover cluster, discovery APIs returned ' 'status code ' + str(node_data.status_code) + '. Is ' + str(self.auth.server) + ' a valid Rubrik system?\n') raise RbkcliException.ApiRequesterError(error) elif node_data.text == unauthr_user: error = str('Unable to discover cluster, discovery APIs returned ' 'message: \n --> ' + str(node_data.text) + '\nIs ' + str(self.auth.username) + ' a full Rubrik admin?\n') raise RbkcliException.ApiRequesterError(error) # Convert data to usable dict. node_dict = self.tools.json_load(node_data.text) cluster_dict = self.tools.json_load(cluster_data.text) node_dict = node_dict['data'] # Assign value from received data to final dict to be returned. for node in node_dict: target_resolution.envId = cluster_dict['id'] target_resolution.envName = cluster_dict['name'] target_resolution.id = node['id'] target_resolution.ip = node['ipAddress'] resolution_data.append(target_resolution) target_resolution = self.dot_dict() return resolution_data class RbkcliTarget(): """ Class to manage Target Groups. Based on provided configuration, will instantiate multiple RubrikClusters. Verify if their version is compatible and provide the same operations as any other ApiTarget for Cli to be dynamically created. This should be a management layer, to deal with multiple targets and sessions still keeping consistency of the one CLI. Also will normalize multiple API responses into one output, provide access to individual targets and targetGroup Predicted to be implemented in version 1.3 rbk_cli = RbkCliTarget(auth=auth) rbk_cli.add_target(auth=auth1) rbk_cli.add_target(auth=auth2) rbk_cli.target_group.list() rbk_cli.target_group.execute() rbk_cli.target.<server_IP>.execute() """ def __init__(self, ctx, auth=None, env=None): """Initialize RbkcliTarget class.""" # Attribute the to instance var the instantiation of a Cluster. self.target = RubrikCluster(ctx, auth=auth, env=env) def add_target(self): """Future method to dynamically add targets to the rbkcli execution.""" def remove_target(self): """Future method to dynamically rmv targets to the rbkcli execution."""
the-stack_106_27426
import json class ValidationResult(object): ERROR = 1 WARNING = 2 def __init__(self, namespace, classname): super(ValidationResult, self).__init__() self.warnings = [] self.errors = [] self.namespace = namespace self.classname = classname def add_error(self, warning): if warning: if warning.level == ValidationResult.WARNING: self.warnings.append(warning) elif warning.level == ValidationResult.ERROR: self.errors.append(warning) def to_json(self): mapping = self.to_dict() return json.dumps(mapping) def to_dict(self): mapping = {} mapping['warnings'] = [] for warning in self.warnings: mapping['warnings'].append(warning.to_dict()) mapping['errors'] = [] for error in self.errors: mapping['errors'].append(error.to_dict()) mapping['namespace'] = self.namespace mapping['classname'] = self.classname return mapping def __len__(self): return len(self.warnings) + len(self.errors) class ValidationWarning(object): def __init__(self, level, string, line, line_num): super(ValidationWarning, self).__init__() self.level = level self.string = string self.line_num = line_num self.line_text = line def to_dict(self): mapping = {} mapping['level'] = \ "Error" if self.level == ValidationResult.ERROR else "Warning" mapping['string'] = self.string mapping['line'] = self.line_text mapping['num'] = self.line_num return mapping def to_json(self): mapping = self.to_dict() return json.dumps(mapping)
the-stack_106_27428
#!/usr/bin/env python # -*- coding: utf-8 -*- test_data = [12,5,8,10,2,16,259,1] def merge_sort_not_recursion(data): step = 1 while step <= len(data)//2: for i in range(0, len(data), step*2): res = [] left = data[i:min(i+step, len(data))] right = data[min(i+step, len(data)-1):min(i+2*step, len(data))] while left and right: if left[0] < right[0]: res.append(left.pop(0)) else: res.append(right.pop(0)) if left: res += left if right: res += right data[i:i+len(res)] = res step += step return data def merge(left, right): res = [] while left and right: if left[0] < right[0]: res.append(left.pop(0)) else: res.append(right.pop(0)) if left: res += left if right: res += right return res def merge_sort(data): if len(data) <= 1: return data mid = len(data)//2 left, right = data[:mid], data[mid:] left, right = merge_sort(left), merge_sort(right) return merge(left, right) print(test_data) print('递归', merge_sort(test_data)) print('非递归', merge_sort_not_recursion(test_data))
the-stack_106_27429
from typing import List import dask.dataframe as dd from nvtx import annotate from dask_sql.utils import new_temporary_column @annotate("GROUPBY_GET_GROUPBY_WITH_NULL_COLS", color="green", domain="dask_sql_python") def get_groupby_with_nulls_cols( df: dd.DataFrame, group_columns: List[str], additional_column_name: str = None ): """ SQL and dask are treating null columns a bit different: SQL will put them to the front, dask will just ignore them Therefore we use the same trick as fugue does: we will group by both the NaN and the real column value """ if additional_column_name is None: additional_column_name = new_temporary_column(df) group_columns_and_nulls = [] for group_column in group_columns: is_null_column = group_column.isnull() non_nan_group_column = group_column.fillna(0) # split_out doesn't work if both columns have the same name is_null_column.name = f"{is_null_column.name}_{new_temporary_column(df)}" group_columns_and_nulls += [is_null_column, non_nan_group_column] if not group_columns_and_nulls: # This can happen in statements like # SELECT SUM(x) FROM data # without any groupby statement group_columns_and_nulls = [additional_column_name] return group_columns_and_nulls