filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_27090
#!usr/bin/env python3 # -*- coding: utf-8 -*- """ Simple demo of solution of race conditions with locks. Note that the race conditions in this demo are also amplified by fuzzing technique In order to be away with race conditions, we need to 1. Ensure an explicit ordering of the operations (on the shared resources) All operations (on the shared resources) must be executed in the same order they are received. 2. Restrict access to the shared resource Only one operation can access the shared resource at the same time. During the period of access, no other operations can read or change its value. Specifically for solution with locks, 2. All accesses to the shared resource shall be done using its own lock. """ import random import time from threading import Condition, Thread ##### Fuzzing technique ##### FUZZ = False def fuzz() -> None: """ Fuzzes the program for a random amount of time, if instructed. :return: None """ if fuzz: time.sleep(random.random()) ##### Locks for print()-access & "counter"-access ##### # All accesses to the shared resource shall be done using its own lock. (=> 2) print_lock = Condition() # Lock for print()-access counter = 0 counter_lock = Condition() # Lock for "counter"-access def worker() -> None: """ Thread function that increments "counter" by 1. :return: None """ global counter # Lock on the "counter"-access lock with counter_lock: fuzz() old_val = counter fuzz() counter = old_val + 1 # Lock on the print()-access lock with print_lock: fuzz() print(f'The counter value is {counter}') fuzz() print('----------') # Lock on the print()-access lock with print_lock: print('Starting up') # Create and start 10 worker threads worker_threads = [] for _ in range(10): worker_thread = Thread(target=worker) worker_threads.append(worker_thread) worker_thread.start() fuzz() # Join the 10 worker threads for worker_thread in worker_threads: worker_thread.join() fuzz() # Lock on the print()-access lock with print_lock: print('Finishing up') # Output: # Starting up # The counter value is 1 # ---------- # The counter value is 2 # ---------- # The counter value is 3 # ---------- # The counter value is 4 # ---------- # The counter value is 5 # ---------- # The counter value is 6 # ---------- # The counter value is 7 # ---------- # The counter value is 8 # ---------- # The counter value is 9 # ---------- # The counter value is 10 # ---------- # Finishing up
the-stack_106_27091
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from pyrigidbody3d import quaternion import unittest class QuaternionTest(unittest.TestCase): def test_identity(self): q = quaternion.identity() self.assertLess( np.linalg.norm(q.xyzw - np.array([0.0, 0.0, 0.0, 1.0])), 1e-6) def test_rotate(self): q = quaternion.from_axis_angle(np.array([0.0, 0.0, 1.0]), np.pi / 2) v = np.array([1.0, 0.0, 0.0]) v_rot = quaternion.rotate(q, v) self.assertLess(np.linalg.norm(v_rot - np.array([0.0, 1.0, 0.0])), 1e-6) def test_cross(self): res = np.cross(np.array([1.0, 0.0, 0.0]), np.array([0.0, 1.0, 0.0])) self.assertLess(np.linalg.norm(res - np.array([0.0, 0.0, 1.0])), 1e-6) def test_normalize(self): q = quaternion.Quaternion(0.0, 0.0, 0.0, 2.0) q.normalize() self.assertLess( np.linalg.norm(q.xyzw - np.array([0.0, 0.0, 0.0, 1.0])), 1e-6) if __name__ == '__main__': unittest.main()
the-stack_106_27092
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ PyTorch utils """ import datetime import logging import math import os import platform import subprocess import time from contextlib import contextmanager from copy import deepcopy from pathlib import Path import torch import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torchvision try: import thop # for FLOPs computation except ImportError: thop = None LOGGER = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: dist.barrier(device_ids=[local_rank]) yield if local_rank == 0: dist.barrier(device_ids=[0]) def init_torch_seeds(seed=0): # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html torch.manual_seed(seed) if seed == 0: # slower, more reproducible cudnn.benchmark, cudnn.deterministic = False, True else: # faster, less reproducible cudnn.benchmark, cudnn.deterministic = True, False def date_modified(path=__file__): # return human-readable file modification date, i.e. '2021-3-26' t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) return f'{t.year}-{t.month}-{t.day}' def git_describe(path=Path(__file__).parent): # path must be a directory # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe s = f'git -C {path} describe --tags --long --always' try: return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] except subprocess.CalledProcessError as e: return '' # not a git repository def select_device(device='', batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0' cpu = device == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability cuda = not cpu and torch.cuda.is_available() if cuda: devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 n = len(devices) # device count if n > 1 and batch_size: # check batch_size is divisible by device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * (len(s) + 1) for i, d in enumerate(devices): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB else: s += 'CPU\n' LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_sync(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def profile(input, ops, n=10, device=None): # YOLOv5 speed/memory/FLOPs profiler # # Usage: # input = torch.randn(16, 3, 640, 640) # m1 = lambda x: x * torch.sigmoid(x) # m2 = nn.SiLU() # profile(input, [m1, m2], n=100) # profile over 100 iterations results = [] logging.basicConfig(format="%(message)s", level=logging.INFO) device = device or select_device() print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" f"{'input':>24s}{'output':>24s}") for x in input if isinstance(input, list) else [input]: x = x.to(device) x.requires_grad = True for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m tf, tb, t = 0., 0., [0., 0., 0.] # dt forward, backward try: flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs except: flops = 0 try: for _ in range(n): t[0] = time_sync() y = m(x) t[1] = time_sync() try: _ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward() t[2] = time_sync() except Exception as e: # no backward method print(e) t[2] = float('nan') tf += (t[1] - t[0]) * 1000 / n # ms per op forward tb += (t[2] - t[1]) * 1000 / n # ms per op backward mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') results.append([p, flops, mem, tf, tb, s_in, s_out]) except Exception as e: print(e) results.append(None) torch.cuda.empty_cache() return results def is_parallel(model): # Returns True if model is of type DP or DDP return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) def de_parallel(model): # De-parallelize a model: returns single-GPU model if model is of type DP or DDP return model.module if is_parallel(model) else model def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # Finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def sparsity(model): # Return global model sparsity a, b = 0., 0. for p in model.parameters(): a += p.numel() b += (p == 0).sum() return b / a def prune(model, amount=0.3): # Prune model to requested global sparsity import torch.nn.utils.prune as prune print('Pruning model... ', end='') for name, m in model.named_modules(): if isinstance(m, nn.Conv2d): prune.l1_unstructured(m, name='weight', amount=amount) # prune prune.remove(m, 'weight') # make permanent print(' %.3g global sparsity' % sparsity(model)) def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) # prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False, img_size=640): # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPs from thop import profile stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs except (ImportError, Exception): fs = '' LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output model = torchvision.models.__dict__[name](pretrained=True) # ResNet model properties # input_size = [3, 224, 224] # input_space = 'RGB' # input_range = [0, 1] # mean = [0.485, 0.456, 0.406] # std = [0.229, 0.224, 0.225] # Reshape output to n classes filters = model.fc.weight.shape[1] model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) model.fc.out_features = n return model def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) # scales img(bs,3,y,x) by ratio constrained to gs-multiple if ratio == 1.0: return img else: h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def copy_attr(a, b, include=(), exclude=()): # Copy attributes from b to a, options to only include [...] and to exclude [...] for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) class EarlyStopping: # YOLOv5 simple early stopper def __init__(self, patience=30): self.best_fitness = 0.0 # i.e. mAP self.best_epoch = 0 self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop self.possible_stop = False # possible stop may occur next epoch def __call__(self, epoch, fitness): if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training self.best_epoch = epoch self.best_fitness = fitness delta = epoch - self.best_epoch # epochs without improvement self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch stop = delta >= self.patience # stop training if patience exceeded if stop: LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.') return stop class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__(self, model, decay=0.9999, updates=0): # Create EMA self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA # if next(model.parameters()).device.type != 'cpu': # self.ema.half() # FP16 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay(self.updates) msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): # Update EMA attributes copy_attr(self.ema, model, include, exclude)
the-stack_106_27097
#! python """MS²ReScore: Sensitive PSM rescoring with predicted MS² peak intensities and RTs.""" import logging import os import subprocess import tempfile from multiprocessing import cpu_count from typing import Dict, Optional, Union from ms2rescore import id_file_parser, rescore_core, setup_logging from ms2rescore._exceptions import MS2ReScoreError from ms2rescore._version import __version__ from ms2rescore.config_parser import parse_config from ms2rescore.retention_time import RetentionTimeIntegration from ms2rescore import plotting logger = logging.getLogger(__name__) class MS2ReScore: """ MS²ReScore: Sensitive PSM rescoring with predicted MS² peak intensities and RTs. Parameters ---------- parse_cli_args : bool, optional parse command line arguments, default True configuration : dict, optional dict containing general ms2rescore configuration; should at least contain `identification_file`; required if `parse_cli_args` is False set_logger : bool, optional set custom logger or not, default False """ def __init__( self, parse_cli_args: bool = True, configuration: Optional[Dict] = None, set_logger: bool = False, ) -> None: """Initialize MS2ReScore object.""" self.config = parse_config( parse_cli_args=parse_cli_args, config_class=configuration ) if set_logger: setup_logging.setup_logging(self.config["general"]["log_level"]) self._validate_cli_dependency("percolator -h") self._validate_cli_dependency("ms2pip -h") logger.debug( "Using %i of %i available CPUs.", self.config["general"]["num_cpu"], cpu_count(), ) if not self.config["general"]["tmp_path"]: self.tmp_path = tempfile.mkdtemp() self.config["general"]["tmp_path"] = self.tmp_path else: self.tmp_path = self.config["general"]["tmp_path"] os.makedirs(self.tmp_path, exist_ok=True) self.tmpfile_basepath = os.path.join( self.tmp_path, os.path.basename( os.path.splitext(self.config["general"]["identification_file"])[0] ), ) selected_pipeline = self._select_pipeline() self.pipeline = selected_pipeline(self.config, self.tmpfile_basepath) logger.info("Using %s.", selected_pipeline.__name__) @staticmethod def _validate_cli_dependency(command): """Validate that command returns zero exit status.""" if subprocess.getstatusoutput(command)[0] != 0: logger.critical( "`%s` returned non-zero exit status. Please verify installation.", command, ) exit(1) @staticmethod def _infer_pipeline(identification_file: str): """Infer pipeline from identification file.""" logger.debug("Inferring pipeline from identification filename...") if identification_file.lower().endswith(".pin"): pipeline = id_file_parser.PinPipeline elif identification_file.lower().endswith(".t.xml"): pipeline = id_file_parser.TandemPipeline elif identification_file.endswith("msms.txt"): pipeline = id_file_parser.MaxQuantPipeline elif identification_file.lower().endswith(".mzid"): pipeline = id_file_parser.MSGFPipeline else: raise MS2ReScoreError( "Could not infer pipeline from identification filename. Please specify " "`general` > `pipeline` in your configuration file." ) return pipeline def _select_pipeline(self): """Select specific rescoring pipeline.""" if self.config["general"]["pipeline"] == "infer": pipeline = self._infer_pipeline( self.config["general"]["identification_file"] ) elif self.config["general"]["pipeline"] == "pin": pipeline = id_file_parser.PinPipeline elif self.config["general"]["pipeline"] == "maxquant": pipeline = id_file_parser.MaxQuantPipeline elif self.config["general"]["pipeline"] == "msgfplus": pipeline = id_file_parser.MSGFPipeline elif self.config["general"]["pipeline"] == "tandem": pipeline = id_file_parser.TandemPipeline elif self.config["general"]["pipeline"] == "peptideshaker": pipeline = id_file_parser.PeptideShakerPipeline else: raise NotImplementedError(self.config["general"]["pipeline"]) return pipeline @staticmethod def get_ms2pip_features( ms2pip_config: Dict, peprec_filename: Union[str, os.PathLike], mgf_filename: Union[str, os.PathLike], output_filename: Union[str, os.PathLike], num_cpu: int, ): """Get predicted MS² peak intensities from MS2PIP.""" logger.info("Adding MS2 peak intensity features with MS²PIP.") ms2pip_config_filename = output_filename + "_ms2pip_config.txt" rescore_core.make_ms2pip_config(ms2pip_config, filename=ms2pip_config_filename) # Check if input files exist for f in [peprec_filename, mgf_filename]: if not os.path.isfile(f): raise FileNotFoundError(f) ms2pip_command = "ms2pip {} -c {} -s {} -n {}".format( peprec_filename, ms2pip_config_filename, mgf_filename, num_cpu, ) logger.debug("Running MS2PIP: %s", ms2pip_command) subprocess.run(ms2pip_command, shell=True, check=True) logger.info("Calculating features from predicted spectra") preds_filename = ( peprec_filename.replace(".peprec", "") + "_" + ms2pip_config["model"] + "_pred_and_emp.csv" ) rescore_core.calculate_features( preds_filename, output_filename + "_ms2pipfeatures.csv", num_cpu, ) @staticmethod def get_rt_features( peprec_filename: Union[str, os.PathLike], output_filename: Union[str, os.PathLike], num_cpu: int, ): """Get retention time features with DeepLC.""" logger.info("Adding retention time features with DeepLC.") rt_int = RetentionTimeIntegration( peprec_filename, output_filename + "_rtfeatures.csv", num_cpu=num_cpu, ) rt_int.run() def _run_percolator(self): """Run Percolator with different feature subsets.""" for subset in self.config["general"]["feature_sets"]: subname = ( self.config["general"]["output_filename"] + "_" + "_".join(subset) + "_features" ) percolator_cmd = "percolator " for op in self.config["percolator"].keys(): percolator_cmd = percolator_cmd + "--{} {} ".format( op, self.config["percolator"][op] ) percolator_cmd = ( percolator_cmd + "{} -m {} -M {} -w {} -v 0 -U --post-processing-tdc\n".format( subname + ".pin", subname + ".pout", subname + ".pout_dec", subname + ".weights", ) ) logger.info("Running Percolator: %s", percolator_cmd) subprocess.run(percolator_cmd, shell=True) if not os.path.isfile(subname + ".pout"): logger.error("Error running Percolator") def run(self): """Run MS²ReScore.""" peprec = self.pipeline.get_peprec() peprec_filename = self.tmpfile_basepath + ".peprec" peprec.to_csv(peprec_filename) search_engine_features = self.pipeline.get_search_engine_features() search_engine_features_filename = ( self.tmpfile_basepath + "_search_engine_features.csv" ) search_engine_features.to_csv(search_engine_features_filename, index=False) if any("ms2pip" in fst for fst in self.config["general"]["feature_sets"]): self.get_ms2pip_features( self.config["ms2pip"], peprec_filename, self.pipeline.path_to_mgf_file, self.tmpfile_basepath, self.config["general"]["num_cpu"], ) if any("rt" in fst for fst in self.config["general"]["feature_sets"]): self.get_rt_features( peprec_filename, self.tmpfile_basepath, self.config["general"]["num_cpu"], ) logger.info("Generating PIN files") rescore_core.write_pin_files( peprec_filename, self.config["general"]["output_filename"], searchengine_features_path=search_engine_features_filename, ms2pip_features_path=self.tmpfile_basepath + "_ms2pipfeatures.csv", rt_features_path=self.tmpfile_basepath + "_rtfeatures.csv", feature_sets=self.config["general"]["feature_sets"], ) if self.config["general"]["run_percolator"]: self._run_percolator() logger.info("Generating Rescore plots") if self.config["general"]["plotting"]: plotting.PIN( peprec_filename, self.config["general"]["output_filename"] ) for fset in self.config["general"]["feature_sets"]: pout_file = ( self.config["general"]["output_filename"] + "_" + "_".join(fset) + "_features.pout" ) pout_decoy_file = ( self.config["general"]["output_filename"] + "_" + "_".join(fset) + "_features.pout_dec" ) plotting.POUT( pout_file, pout_decoy_file, self.config["general"]["output_filename"], " ".join(fset) ) plotting.RescoreRecord.save_plots_to_pdf( self.config["general"]["output_filename"] + "_plots.pdf", FDR_thresholds=[0.01, 0.001], ) logger.info("MS²ReScore finished!")
the-stack_106_27099
# coding=utf-8 __author__ = 'jamon' import copy from obespoir.share.ob_log import logger from share.message_ids import * from service.mahjong.models.playeract.base_player_act import BasePlayerAct from service.mahjong.constants.gamedefine import Act, SettleType from service.mahjong.models.actrecord import ActRecord from service.mahjong.models.timermanager import timer_manager_ins class DianHu(BasePlayerAct): def __init__(self, game_data): super(DianHu, self).__init__(game_data=game_data) self.step_handlers = { "param_check": self.param_check, # 参数验证 "clear_other_act": self.clear_other_act, # 清除该玩家其他动作 "set_data": self.set_data, # 设置相应数据 "record": self.record, # 记录玩家动作 "notify_other_player": self.notify_other_player, # 记录玩家动作 } self.seat_id = -1 # 执行胡牌的玩家位置 self.hook_seat_id = -1 # 是否为抢胡, 如抢补杠胡 self.hand_card = None self.dian_hu_card = 0 # 点炮的那张牌 def execute(self, act_params={}): """ 执行点炮胡牌 :param act_params: :return: """ logger.debug(u"点炮胡牌: %s", str(act_params)) for seat_id, params in act_params.items(): for step in self.game_config.player_act_step.get(Act.DIAN_HU): for name, cfg in step.items(): ret = self.step_handlers.get(name)(seat_id=seat_id, params=params, config_params=cfg) if not ret: logger.error("step:%s", step) return if not self.game_config.has_tong_pao: # 如果不能通炮胡,则只取第一个胡牌的玩家 break self.settle(settle_type_list=[SettleType.HU]) if self.game_config.is_hu_end: # 当回合胡牌后结束当局游戏 self.end_game() return 1 def param_check(self, seat_id, params, config_params): # 参数验证 hook_seat_id = params.get("hook_seat_id", -1) if not self.game_data.last_chu_card_val: logger.error("dian_hu params error: %s", str([seat_id, params])) return hand_card_vals = self.players[seat_id].hand_card.hand_card_vals # if 1 != len(hand_card_vals) % 3 or not self.players[seat_id].can_hu_result: if 1 != len(hand_card_vals) % 3: logger.error("dian_hu params error: %s", str([seat_id, params])) return self.seat_id = seat_id self.hook_seat_id = hook_seat_id self.hand_card = self.game_data.players[seat_id].hand_card self.dian_hu_card = self.game_data.last_chu_card_val return 1 def clear_other_act(self, seat_id, params, config_params): # 清除该玩家其他动作 timer_manager_ins.kill_timer(self.desk_id, self.seat_id, is_force=True) return 1 def set_data(self, seat_id, params, config_params): # 设置相应数据 self.players[self.seat_id].hook_hu_seat_id = self.hook_seat_id # 抢胡来源座位id self.players[self.seat_id].hand_card.qiang_gang_hu_seat_id = self.hook_seat_id # 抢胡来源座位id # 将手牌信息保存入 hand_card_for_settle_show self.game_data.players[self.seat_id].hand_card.hand_card_for_settle_show[-1] = [self.game_data.last_chu_card_val] # 储存胡的牌值 self.game_data.players[self.seat_id].hand_card.hu_card_val = self.game_data.last_chu_card_val # 吃碰杠时,移除提供吃碰杠玩家已出牌里面的 那一张 self.players[self.game_data.last_chu_card_seat_id].hand_card.out_card_vals.remove( self.game_data.last_chu_card_val) # 联合手牌 for i in range(self.game_data.max_player_num): self.game_data.players[i].hand_card.union_hand_card() # 计算结算相关数据,用于101006 type_list = self.game_data.hu_manager.check_hu_result(self.hand_card, self.dian_hu_card) self.game_data.hu_player_static[self.seat_id] = { "type_list": type_list, "is_zi_mo": 0, "source_seat_id": self.game_data.last_chu_card_seat_id, "guo_hu_count": self.game_data.players[self.seat_id].hand_card.guo_hu_num, "settle_hand_card": self.game_data.players[self.seat_id].hand_card.hand_card_for_settle_show } # 判断是否是点胡 if self._is_first_chu_card(): self.players[self.seat_id].hand_card.is_ren_hu = 1 return 1 def record(self, seat_id, params, config_params): # 记录玩家动作 act_record = ActRecord(self.seat_id, Act.DIAN_HU, [self.game_data.last_chu_card_val]) self.game_data.act_record_list.append(act_record) self.players[self.seat_id].hand_card.record_dian_hu_card(self.game_data.last_chu_card_seat_id, self.game_data.last_chu_card_val) return 1 def notify_other_player(self, **kwargs): # 通知其他玩家动作已经执行 act_info = {"seat_id": self.seat_id, "act_type": Act.DIAN_HU, "card_list": self.dian_hu_card} self.notify_other_player_act_executed(self.seat_id, act_info=act_info, max_player_num=self.game_data.max_player_num) return 1 def _is_first_chu_card(self): if len(self.game_data.act_record_list) >1 : return False if self.game_data.act_record_list[0].act_type == 10: return True return False
the-stack_106_27100
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, ungrouped-imports """Namespace for supporting Relay operators on VTA.""" from __future__ import absolute_import as _abs import tvm import topi from tvm.relay.op import op as reg from tvm.relay.op import strategy as _strategy from tvm.relay.op.op import OpPattern, OpStrategy from .util import is_packed_layout from .vta_conv2d import conv2d_packed, schedule_conv2d_packed from .vta_conv2d_transpose import conv2d_transpose_packed, schedule_conv2d_transpose_packed from .vta_group_conv2d import group_conv2d_packed, schedule_group_conv2d_packed from .vta_dense import dense_packed, schedule_dense_packed from ..environment import get_env # override to force partition at copy reg.register_pattern("copy", OpPattern.INJECTIVE, level=15) # add clip vta strategy def compute_clip_vta(attrs, inputs, output_type): """ Clip operator. """ x = inputs[0] a_min = attrs.a_min a_max = attrs.a_max const_min = tvm.const(a_min, x.dtype) const_max = tvm.const(a_max, x.dtype) with tvm.tag_scope(topi.tag.ELEMWISE): x = tvm.compute( x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA") x = tvm.compute( x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB") return [x] def clip_strategy_vta(attrs, inputs, out_type, target): strategy = OpStrategy() strategy.add_implementation( compute_clip_vta, _strategy.wrap_topi_schedule(topi.generic.schedule_injective), name="clip.vta") return strategy reg.get("clip").get_attr("FTVMStrategy").register(clip_strategy_vta, "vta") @_strategy.conv2d_strategy.register("vta") def conv2d_strategy_vta(attrs, inputs, out_type, target): """conv2d vta strategy""" strategy = OpStrategy() kernel = inputs[1] dilation = topi.util.get_const_tuple(attrs.dilation) groups = attrs.groups layout = attrs.data_layout assert dilation == (1, 1), "support for dilation limited to (1, 1)" if is_packed_layout(layout): if groups == 1: env = get_env() assert env.LOG_INP_WIDTH == 3, "only support 8bit inp for now" assert env.LOG_WGT_WIDTH == 3, "only support 8bit wgt for now" assert kernel.dtype == "int8" strategy.add_implementation( _strategy.wrap_compute_conv2d(conv2d_packed, True), _strategy.wrap_topi_schedule(schedule_conv2d_packed), name="conv2d_packed.vta") else: # group_conv2d strategy.add_implementation( _strategy.wrap_compute_conv2d(group_conv2d_packed, has_groups=True), _strategy.wrap_topi_schedule(schedule_group_conv2d_packed), name="group_conv2d_packed.vta") return strategy # If it's not packed, run on ARM CPU arm_tgt = tvm.target.arm_cpu(target.model) return _strategy.arm_cpu.conv2d_strategy_arm_cpu(attrs, inputs, out_type, arm_tgt) @_strategy.conv2d_transpose_strategy.register("vta") def conv2d_transpose_strategy_vta(attrs, inputs, out_type, target): """conv2d_transpose vta strategy""" dilation = topi.util.get_const_tuple(attrs.dilation) layout = attrs.data_layout assert dilation == (1, 1), "support for dilation limited to (1, 1)" if is_packed_layout(layout): strategy = OpStrategy() strategy.add_implementation( _strategy.wrap_compute_conv2d_transpose(conv2d_transpose_packed), _strategy.wrap_topi_schedule(schedule_conv2d_transpose_packed), name="conv2d_transpose_packed.vta") return strategy # If it's not packed, run on ARM CPU arm_tgt = tvm.target.arm_cpu(target.model) return _strategy.arm_cpu.conv2d_transpose_strategy_arm_cpu(attrs, inputs, out_type, arm_tgt) @_strategy.dense_strategy.register("vta") def dense_strategy_vta(attrs, inputs, out_type, target): """dense vta strategy""" if inputs[0].shape == 4: # this implies the layout is packed strategy = OpStrategy() strategy.add_implementation( _strategy.wrap_compute_dense(dense_packed), _strategy.wrap_topi_schedule(schedule_dense_packed), name="dense_packed.vta") return strategy # If it's not packed, run on ARM CPU arm_tgt = tvm.target.arm_cpu(target.model) return _strategy.x86.dense_strategy_cpu(attrs, inputs, out_type, arm_tgt)
the-stack_106_27101
# those modules are all taken from ParlAI import numpy as np import numbers import warnings import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Dict, Tuple, Optional from core.modules.treesearch import GreedySearch, BeamSearch, TopKSampling, \ NucleusSampling, DelayedBeamSearch from torch.nn.parameter import Parameter LAYER_NORM_EPS = 1e-5 def neginf(dtype: torch.dtype) -> float: """ Return a representable finite number near -inf for a dtype. """ return -1e20 def _normalize(tensor, norm_layer): """ Broadcast layer norm. """ is_cpu = tensor.device == 'cpu' or tensor.device.type == 'cpu' return norm_layer(tensor) def gelu(tensor): """ Compute gelu function. c.f. https://arxiv.org/abs/1606.08415 """ return 0.5 * tensor * (1.0 + torch.erf(tensor / math.sqrt(2.0))) def create_position_codes(n_pos, dim, out): """ Create positional codes and store them in ``out``. """ position_enc = np.array( [ [pos / np.power(10000, 2 * j / dim) for j in range(dim // 2)] for pos in range(n_pos) ] ) out[:, 0::2] = torch.FloatTensor(np.sin(position_enc)).type_as(out) out[:, 1::2] = torch.FloatTensor(np.cos(position_enc)).type_as(out) out.detach_() out.requires_grad = False class TransformerEncodeDecoderVaswani(nn.Module): def __init__(self, opt, dictionary, embedding_size, embedding_weights=None, pad_idx=None, start_idx=None, end_idx=None, device='cpu'): super(TransformerEncodeDecoderVaswani, self).__init__() self.pad_idx = pad_idx self.end_idx = end_idx self.start_idx = start_idx self.device = device if embedding_weights is None and embedding_size is None: assert IOError, 'Provide pretrained embeddings or an embedding size' if embedding_weights is not None: assert not self.pad_idx, "pad_idx is None" print("Embeddings init with pretrained!") self.embedding = nn.Embedding(len(dictionary), embedding_size, padding_idx=self.pad_idx) self.embedding.weight = nn.Parameter(torch.from_numpy( embedding_weights), requires_grad=opt.learn_embeddings) else: self.embedding = nn.Embedding(len(dictionary), embedding_size, padding_idx=self.pad_idx) print("Embeddings init with normal distr!") nn.init.normal_(self.embedding.weight, 0, embedding_size ** -0.5) self.embedding.weight.requires_grad = opt.learn_embeddings # TODO: fix embeddings if its None!! self.encoder = TransformerEncoder( n_heads=opt.n_heads, n_layers=opt.n_layers, embedding_size=embedding_size, ffn_size=opt.ffn_size, vocabulary_size=len(dictionary), embedding=self.embedding, dropout=opt.dropout, attention_dropout=opt.attention_dropout, relu_dropout=opt.relu_dropout, padding_idx=self.pad_idx, learn_positional_embeddings=opt.learn_positional_embeddings, embeddings_scale=opt.embeddings_scale, reduction_type=None, n_positions=opt.n_positions, n_segments=opt.n_segments, activation=opt.activation, variant=opt.variant, output_scaling=opt.output_scaling) self.decoder = TransformerDecoder( n_heads=opt.n_heads, n_layers=opt.n_layers, embedding_size=embedding_size, ffn_size=opt.ffn_size, vocabulary_size=len(dictionary), embedding=self.embedding, dropout=opt.dropout, attention_dropout=opt.attention_dropout, relu_dropout=opt.relu_dropout, padding_idx=self.pad_idx, learn_positional_embeddings=opt.learn_positional_embeddings, embeddings_scale=opt.embeddings_scale, n_positions=opt.n_positions, activation=opt.activation, variant=opt.variant, n_segments=opt.n_segments) def reorder_encoder_states(self, encoder_states, indices): """ Reorder the encoder states. See ``TorchGeneratorModel.reorder_encoder_states`` for a description. """ enc, mask = encoder_states if not torch.is_tensor(indices): indices = torch.LongTensor(indices).to(enc.device) enc = torch.index_select(enc, 0, indices) mask = torch.index_select(mask, 0, indices) return enc, mask def reorder_decoder_incremental_state( self, incremental_state: Dict[int, dict], inds: torch.Tensor ) -> Dict[int, dict]: """ Reorder the decoder incremental state. See ``TorchGeneratorModel.reorder_decoder_incremental_state`` for a description. Here, incremental_state is a dict whose keys are layer indices and whose values are dicts containing the incremental state for that layer. """ return { idx: layer.reorder_incremental_state(incremental_state[idx], inds) for idx, layer in enumerate(self.decoder.layers) } def output(self, tensor): """ Compute output logits. """ # project back to vocabulary output = F.linear(tensor, self.embedding.weight) # compatibility with fairseq: fairseq sometimes reuses BOS tokens and # we need to force their probability of generation to be 0. #output[:, :, self.start_idx] = neginf(output.dtype) return output def decode_forced(self, encoder_states, targets): """ Decode with a fixed, true sequence, computing loss. Useful for training, or ranking fixed candidates. :param targets: the prediction targets. Contains both the start and end tokens. :type targets: LongTensor[bsz, time] :param encoder_states: Output of the encoder. Model specific types. :type encoder_states: model specific :return: pair (logits, choices) containing the logits and MLE predictions :rtype: (FloatTensor[bsz, targets, vocab], LongTensor[bsz, targets]) """ bsz = targets.size(0) seqlen = targets.size(1) inputs = targets.narrow(1, 0, seqlen - 1) start_idxs = torch.LongTensor([self.start_idx]).expand(bsz, 1) start_idxs = start_idxs.to(self.device) inputs = torch.cat([start_idxs, inputs], dim=1) latent, _ = self.decoder(inputs, encoder_states) logits = self.output(latent) _, preds = logits.max(dim=2) return logits, preds def forward(self, *xs, ys=None, prev_enc=None, maxlen=None, bsz=None): """ Get output predictions from the model. :param xs: input to the encoder :type xs: LongTensor[bsz, seqlen] :param ys: Expected output from the decoder. Used for teacher forcing to calculate loss. :type ys: LongTensor[bsz, outlen] :param prev_enc: if you know you'll pass in the same xs multiple times, you can pass in the encoder output from the last forward pass to skip recalcuating the same encoder output. :param maxlen: max number of tokens to decode. if not set, will use the length of the longest label this model has seen. ignored when ys is not None. :param bsz: if ys is not provided, then you must specify the bsz for greedy decoding. :return: (scores, candidate_scores, encoder_states) tuple - scores contains the model's predicted token scores. (FloatTensor[bsz, seqlen, num_features]) - candidate_scores are the score the model assigned to each candidate. (FloatTensor[bsz, num_cands]) - encoder_states are the output of model.encoder. Model specific types. Feed this back in to skip encoding on the next call. """ assert ys is not None, "Greedy decoding in TGModel.forward no longer supported." # TODO: get rid of longest_label # keep track of longest label we've ever seen # we'll never produce longer ones than that during prediction #self.longest_label = max(self.longest_label, ys.size(1)) # TODO: longest_label how to get rid of it? self.longest_label = ys.size(1) # use cached encoding if available encoder_states = prev_enc if prev_enc is not None else self.encoder(*xs) # use teacher forcing scores, preds = self.decode_forced(encoder_states, ys) return scores, preds, encoder_states def generate(self,*inputs, beam, max_ts,options): """ Generate an output with beam search. Depending on the options, this may perform greedy/topk/nucleus generation. :param Batch batch: Batch structure with input and labels :param int beam_size: Size of each beam during the search :param int max_ts: the maximum length of the decoded sequence :return: tuple (beam_pred_scores, beams) - beam_preds_scores: list of (prediction, score) pairs for each sample in Batch - beams :list of Beam instances defined in Beam class, can be used for any following postprocessing, e.g. dot logging. """ bsz = inputs[0].shape[0] encoder_states = self.encoder(*inputs) beams = [self.treesearch_factory() for i in range(bsz)] def _treesearch_factory(self, opt): method = opt.method beam_size = opt.beam_size if method == 'greedy': return GreedySearch( beam_size, min_length=0, block_ngram=opt.beam_block_ngram, context_block_ngram=opt.beam_context_block_ngram, length_penalty=opt.beam_length_penalty, padding_token=self.NULL_IDX, bos_token=self.START_IDX, eos_token=self.END_IDX, device=self.device, ) elif method == 'beam': return BeamSearch( beam_size, min_length=opt.beam_min_length, block_ngram=opt.beam_block_ngram, context_block_ngram=opt.beam_context_block_ngram, length_penalty=opt.beam_length_penalty, padding_token=self.NULL_IDX, bos_token=self.START_IDX, eos_token=self.END_IDX, device=self.device, ) elif method == 'delayedbeam': return DelayedBeamSearch( opt.topk, opt.beam_delay, beam_size, min_length=opt.beam_min_length, block_ngram=opt.beam_block_ngram, context_block_ngram=opt.beam_context_block_ngram, length_penalty=opt.beam_length_penalty, padding_token=self.NULL_IDX, bos_token=self.START_IDX, eos_token=self.END_IDX, device=self.device, ) elif method == 'topk': return TopKSampling( opt.topk, beam_size, min_length=opt.beam_min_length, block_ngram=opt.beam_block_ngram, context_block_ngram=opt.beam_context_block_ngram, length_penalty=opt.beam_length_penalty, padding_token=self.NULL_IDX, bos_token=self.START_IDX, eos_token=self.END_IDX, device=self.device, ) elif method == 'nucleus': return NucleusSampling( opt.topp, beam_size, min_length=opt.beam_min_length, block_ngram=opt.beam_block_ngram, context_block_ngram=opt.beam_context_block_ngram, length_penalty=opt.beam_length_penalty, padding_token=self.NULL_IDX, bos_token=self.START_IDX, eos_token=self.END_IDX, device=self.device, ) else: raise ValueError(f"Can't use inference method {method}") class TransformerEncoder(nn.Module): """ Transformer encoder module. :param int n_heads: the number of multihead attention heads. :param int n_layers: number of transformer layers. :param int embedding_size: the embedding sizes. Must be a multiple of n_heads. :param int ffn_size: the size of the hidden layer in the FFN :param embedding: an embedding matrix for the bottom layer of the transformer. If none, one is created for this encoder. :param float dropout: Dropout used around embeddings and before layer layer normalizations. This is used in Vaswani 2017 and works well on large datasets. :param float attention_dropout: Dropout performed after the multhead attention softmax. This is not used in Vaswani 2017. :param float relu_attention: Dropout used after the ReLU in the FFN. Not used in Vaswani 2017, but used in Tensor2Tensor. :param int padding_idx: Reserved padding index in the embeddings matrix. :param bool learn_positional_embeddings: If off, sinusoidal embeddings are used. If on, position embeddings are learned from scratch. :param bool embeddings_scale: Scale embeddings relative to their dimensionality. Found useful in fairseq. :param bool reduction: If true, returns the mean vector for the entire encoding sequence. :param int n_positions: Size of the position embeddings matrix. :param int n_segments: Number of segments/lang/sentence embeddings. :param activation: Type of nonlinear activation. Can be relu or gelu. :param variant: Which transformer architecture to use. Could be AIAYN or XLM. Future versions may support things like GPT-2, ... :param output_scaling: Scale the outputs by a given scalar """ def __init__( self, n_heads, n_layers, embedding_size, ffn_size, vocabulary_size, embedding=None, dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, padding_idx=0, learn_positional_embeddings=False, embeddings_scale=False, reduction_type='mean', n_positions=1024, activation='relu', variant='aiayn', n_segments=0, output_scaling=1.0, ): super(TransformerEncoder, self).__init__() self.embedding_size = embedding_size self.ffn_size = ffn_size self.n_layers = n_layers self.n_heads = n_heads self.dim = embedding_size self.embeddings_scale = embeddings_scale self.reduction_type = reduction_type self.padding_idx = padding_idx # this is --dropout, not --relu-dropout or --attention-dropout self.dropout_frac = dropout self.dropout = nn.Dropout(p=self.dropout_frac) self.variant = variant self.n_segments = n_segments self.n_positions = n_positions #used for positional embeddings! self.out_dim = embedding_size assert ( embedding_size % n_heads == 0 ), 'Transformer embedding size must be a multiple of n_heads' # check input formats: if embedding is not None: assert ( embedding_size is None or embedding_size == embedding.weight.shape[1] ), "Embedding dim must match the embedding size." if embedding is not None: self.embeddings = embedding else: raise AssertionError( "This code should not execute. Left here in case we want to enable it." ) assert padding_idx is not None self.embeddings = nn.Embedding( vocabulary_size, embedding_size, padding_idx=padding_idx ) nn.init.normal_(self.embeddings.weight, 0, embedding_size ** -0.5) # create the positional embeddings self.position_embeddings = nn.Embedding(n_positions, embedding_size) if not learn_positional_embeddings: create_position_codes( n_positions, embedding_size, out=self.position_embeddings.weight ) else: nn.init.normal_(self.position_embeddings.weight, 0, embedding_size ** -0.5) # embedding normalization if self.variant == 'xlm' or self.variant == 'prelayernorm': self.norm_embeddings = nn.LayerNorm(self.dim, eps=LAYER_NORM_EPS) elif self.variant == 'aiayn': pass else: raise ValueError("Can't handle --variant {}".format(self.variant)) if self.n_segments >= 1: self.segment_embeddings = nn.Embedding(self.n_segments, self.dim) # build the model self.layers = nn.ModuleList() for _ in range(self.n_layers): self.layers.append( TransformerEncoderLayer( n_heads, embedding_size, ffn_size, attention_dropout=attention_dropout, relu_dropout=relu_dropout, dropout=dropout, variant=variant, activation=activation, ) ) self.output_scaling = output_scaling def forward(self, input, positions=None, segments=None): """ Forward pass. :param LongTensor[batch,seqlen] input: The input IDs :param BoolTensor[batch,seqlen] mask: The attention mask; 1 means attend, 0 means ignore. :param LongTensor[batch,seqlen]: If provided, additionally adds ``segments`` as extra embedding features. """ mask = input != self.padding_idx if positions is None: positions = (mask.cumsum(dim=1, dtype=torch.int64) - 1).clamp_(min=0) tensor = self.embeddings(input) if self.embeddings_scale: tensor = tensor * np.sqrt(self.dim) if positions.max().item() > self.n_positions: warnings.warn( 'You are inputting a sequence of {x} length, but only have ' '--n-positions {y}. Set --truncate or increase --n-positions'.format( x=positions.max().item(), y=self.n_positions ) ) position_embs = self.position_embeddings(positions).expand_as(tensor) tensor = tensor + position_embs if self.n_segments >= 1: if segments is None: segments = torch.zeros_like(input) tensor = tensor + self.segment_embeddings(segments) if self.variant == 'xlm': tensor = _normalize(tensor, self.norm_embeddings) # --dropout on the embeddings tensor = self.dropout(tensor) tensor *= mask.unsqueeze(-1).type_as(tensor) if getattr(self.layers, 'is_model_parallel', False): # factored out for readability. It is equivalent to the other # condition tensor = self._apply_model_parallel(tensor, mask) else: for i in range(self.n_layers): tensor = self.layers[i](tensor, mask) if self.variant == 'prelayernorm': tensor = _normalize(tensor, self.norm_embeddings) tensor *= self.output_scaling if self.reduction_type == 'first': return tensor[:, 0, :] elif self.reduction_type == 'max': return tensor.max(dim=1)[0] elif self.reduction_type == 'mean': divisor = mask.float().sum(dim=1).unsqueeze(-1).clamp(min=1).type_as(tensor) output = tensor.sum(dim=1) / divisor return output elif self.reduction_type is None or 'none' in self.reduction_type: return tensor, mask else: raise ValueError( "Can't handle --reduction-type {}".format(self.reduction_type) ) # def _apply_model_parallel(self, tensor, mask): # """ # Pipeline application of model parallelism. # """ # chunks = PipelineHelper.split((tensor, mask)) # work_items = PipelineHelper.schedule_work_items(self.layers, chunks) # # for chunk_idx, layer_nos, next_device in work_items: # s_tensor, s_mask = chunks[chunk_idx] # for layer_no in layer_nos: # s_tensor = self.layers[layer_no](s_tensor, s_mask) # chunks[chunk_idx] = PipelineHelper.chunk_to((s_tensor, s_mask), next_device) # # tensor_out, mask_out = PipelineHelper.join(chunks) # return tensor_out class TransformerEncoderLayer(nn.Module): """ Implements a single Transformer encoder layer. """ def __init__( self, n_heads, embedding_size, ffn_size, attention_dropout=0.0, relu_dropout=0.0, dropout=0.0, activation='relu', variant=None, ): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.activation = activation self.variant = variant self.attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout # --attention-dropout ) self.norm1 = nn.LayerNorm(embedding_size, eps=LAYER_NORM_EPS) self.ffn = TransformerFFN( embedding_size, ffn_size, relu_dropout=relu_dropout, activation=self.activation, ) self.norm2 = nn.LayerNorm(embedding_size, eps=LAYER_NORM_EPS) self.dropout = nn.Dropout(p=dropout) def forward(self, tensor, mask): """ Forward pass. """ residual = tensor if self.variant == 'prelayernorm': tensor = _normalize(tensor, self.norm1) attended_tensor, _ = self.attention(tensor, mask=mask) tensor = residual + self.dropout(attended_tensor) if self.variant == 'aiayn' or self.variant == 'xlm': tensor = _normalize(tensor, self.norm1) residual = tensor if self.variant == 'prelayernorm': tensor = _normalize(tensor, self.norm2) tensor = residual + self.dropout(self.ffn(tensor)) if self.variant == 'aiayn' or self.variant == 'xlm': tensor = _normalize(tensor, self.norm2) tensor *= mask.unsqueeze(-1).type_as(tensor) return tensor class TransformerDecoder(nn.Module): """ Transformer Decoder layer. :param int n_heads: the number of multihead attention heads. :param int n_layers: number of transformer layers. :param int embedding_size: the embedding sizes. Must be a multiple of n_heads. :param int ffn_size: the size of the hidden layer in the FFN :param embedding: an embedding matrix for the bottom layer of the transformer. If none, one is created for this encoder. :param float dropout: Dropout used around embeddings and before layer layer normalizations. This is used in Vaswani 2017 and works well on large datasets. :param float attention_dropout: Dropout performed after the multhead attention softmax. This is not used in Vaswani 2017. :param float relu_attention: Dropout used after the ReLU in the FFN. Not used in Vaswani 2017, but used in Tensor2Tensor. :param int padding_idx: Reserved padding index in the embeddings matrix. :param bool learn_positional_embeddings: If off, sinusoidal embeddings are used. If on, position embeddings are learned from scratch. :param bool embeddings_scale: Scale embeddings relative to their dimensionality. Found useful in fairseq. :param int n_positions: Size of the position embeddings matrix. """ def __init__( self, n_heads, n_layers, embedding_size, ffn_size, vocabulary_size, embedding=None, dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, embeddings_scale=True, learn_positional_embeddings=False, padding_idx=None, n_positions=1024, n_segments=0, variant='aiayn', activation='relu', ): super().__init__() self.embedding_size = embedding_size self.ffn_size = ffn_size self.n_layers = n_layers self.n_heads = n_heads self.dim = embedding_size self.activation = activation self.variant = variant self.embeddings_scale = embeddings_scale self.dropout = nn.Dropout(p=dropout) # --dropout self.n_positions = n_positions self.out_dim = embedding_size assert ( embedding_size % n_heads == 0 ), 'Transformer embedding size must be a multiple of n_heads' self.embeddings = embedding if self.variant == 'xlm' or self.variant == 'prelayernorm': self.norm_embeddings = nn.LayerNorm(self.dim, eps=LAYER_NORM_EPS) elif self.variant == 'aiayn': pass else: raise ValueError("Can't handle --variant {}".format(self.variant)) # create the positional embeddings self.position_embeddings = nn.Embedding(n_positions, embedding_size) if not learn_positional_embeddings: create_position_codes( n_positions, embedding_size, out=self.position_embeddings.weight ) else: nn.init.normal_(self.position_embeddings.weight, 0, embedding_size ** -0.5) # build the model self.layers = nn.ModuleList() for _ in range(self.n_layers): self.layers.append( TransformerDecoderLayer( n_heads, embedding_size, ffn_size, attention_dropout=attention_dropout, relu_dropout=relu_dropout, dropout=dropout, activation=activation, variant=variant, ) ) def forward(self, input, encoder_state, incr_state=None): """ Forward pass. :param LongTensor[batch,seqlen] input: The decoder inputs (partial or full decoded token IDs). :param encoder_state: Output from the encoder module forward pass. :param incr_state: The incremental state: a dictionary whose keys index the layers and whose values contain the incremental state for each layer. """ encoder_output, encoder_mask = encoder_state seq_len = input.size(1) positions = input.new(seq_len).long() positions = torch.arange(seq_len, out=positions).unsqueeze(0) if incr_state is not None: # We're doing incremental decoding, so select only the most recent position input = input[:, -1:] if positions is not None: positions = positions[:, -1:] else: incr_state = {} tensor = self.embeddings(input) if self.embeddings_scale: tensor = tensor * np.sqrt(self.dim) if self.variant == 'xlm': tensor = _normalize(tensor, self.norm_embeddings) if positions.max().item() > self.n_positions: warnings.warn( 'You are inputting a sequence of {x} length, but only have ' '--n-positions {y}. Set --truncate or increase --n-positions'.format( x=positions.max().item(), y=self.n_positions ) ) tensor = tensor + self.position_embeddings(positions).expand_as(tensor) tensor = self.dropout(tensor) # --dropout new_incr_state = {} if getattr(self.layers, 'is_model_parallel', False): tensor, new_incr_state = self._apply_model_parallel( tensor, encoder_output, encoder_mask, incr_state ) else: for idx, layer in enumerate(self.layers): tensor, new_incr_state[idx] = layer( x=tensor, encoder_output=encoder_output, encoder_mask=encoder_mask, incr_state=incr_state.get(idx), ) if self.variant == 'prelayernorm': tensor = _normalize(tensor, self.norm_embeddings) return tensor, new_incr_state # def _apply_model_parallel(self, tensor, encoder_output, encoder_mask, incr_state): # """ # Pipeline application of model parallelism. # """ # chunks = PipelineHelper.split( # (tensor, encoder_output, encoder_mask, incr_state) # ) # work_items = PipelineHelper.schedule_work_items(self.layers, chunks) # # new_incr_state = [{} for _ in chunks] # # for chunk_idx, layer_nos, next_device in work_items: # s_tensor, s_enc_out, s_enc_mask, s_incr_state = chunks[chunk_idx] # for layer_no in layer_nos: # s_tensor, new_incr_state[chunk_idx][layer_no] = self.layers[layer_no]( # x=s_tensor, # encoder_output=s_enc_out, # encoder_mask=s_enc_mask, # incr_state=s_incr_state.get(layer_no), # ) # chunks[chunk_idx] = PipelineHelper.chunk_to( # (s_tensor, s_enc_out, s_enc_mask, s_incr_state), next_device # ) # # tensor_out = PipelineHelper.join([c[0] for c in chunks]) # new_incr_state = PipelineHelper.join(new_incr_state) # # return tensor_out, new_incr_state class TransformerDecoderLayer(nn.Module): """ Implements a single Transformer decoder layer. Decoder layers are similar to encoder layers but: 1. Self-attention is limited in a casaul (auto-regressive) manner. 2. Attend over all of the encoder states. """ def __init__( self, n_heads, embedding_size, ffn_size, attention_dropout=0.0, relu_dropout=0.0, dropout=0.0, activation='relu', variant='aiayn', ): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.variant = variant self.activation = activation self.dropout = nn.Dropout(p=dropout) self.self_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm1 = nn.LayerNorm(embedding_size, eps=LAYER_NORM_EPS) self.encoder_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm2 = nn.LayerNorm(embedding_size, eps=LAYER_NORM_EPS) self.ffn = TransformerFFN( embedding_size, ffn_size, relu_dropout=relu_dropout, activation=activation ) self.norm3 = nn.LayerNorm(embedding_size, eps=LAYER_NORM_EPS) def forward(self, x, encoder_output, encoder_mask, incr_state=None): """ Forward pass. The incremental state is a dict with values for self- and encoder-attention states. """ if incr_state is None: incr_state = {} decoder_mask = self._create_selfattn_mask(x) # first self attn residual = x if self.variant == 'prelayernorm': x = _normalize(x, self.norm1) # don't peak into the future! x, final_self_attn_incr_state = self.self_attention( query=x, mask=decoder_mask, incr_state=incr_state.get('self_attn'), static_kv=False, ) x = self.dropout(x) # --dropout x = x + residual if self.variant == 'aiayn' or self.variant == 'xlm': x = _normalize(x, self.norm1) residual = x # encoder_attn_layer_norm norm 2 if self.variant == 'prelayernorm': x = _normalize(x, self.norm2) x, final_encoder_attn_incr_state = self.encoder_attention( query=x, key=encoder_output, value=encoder_output, mask=encoder_mask, incr_state=incr_state.get('encoder_attn'), static_kv=True, ) x = self.dropout(x) # --dropout x = residual + x if self.variant == 'aiayn' or self.variant == 'xlm': x = _normalize(x, self.norm2) # finally the ffn residual = x if self.variant == 'prelayernorm': x = _normalize(x, self.norm3) x = self.ffn(x) x = self.dropout(x) # --dropout x = residual + x if self.variant == 'aiayn' or self.variant == 'xlm': x = _normalize(x, self.norm3) new_incr_state = { 'self_attn': final_self_attn_incr_state, 'encoder_attn': final_encoder_attn_incr_state, } return x, new_incr_state def _create_selfattn_mask(self, x): # figure out how many timestamps we need bsz = x.size(0) time = x.size(1) # make sure that we don't look into the future mask = torch.tril(x.new(time, time).fill_(1)) # broadcast across batch mask = mask.unsqueeze(0).expand(bsz, -1, -1) return mask def reorder_incremental_state( self, incremental_state: Dict[str, dict], inds: torch.Tensor ) -> Dict[str, dict]: """ Reorder all incremental-state tensors for this layer. """ attn_types = { 'self_attn': self.self_attention, 'encoder_attn': self.encoder_attention, } return { attn_type: attn.reorder_incremental_state( incremental_state[attn_type], inds ) for attn_type, attn in attn_types.items() } class TransformerFFN(nn.Module): """ Implements the FFN part of the transformer. """ def __init__(self, dim, dim_hidden, relu_dropout=0, activation='relu'): super(TransformerFFN, self).__init__() self.relu_dropout = nn.Dropout(p=relu_dropout) if activation == 'relu': self.nonlinear = F.relu elif activation == 'gelu': self.nonlinear = gelu else: raise ValueError( "Don't know how to handle --activation {}".format(activation) ) self.lin1 = nn.Linear(dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, dim) nn.init.xavier_uniform_(self.lin1.weight) nn.init.xavier_uniform_(self.lin2.weight) # TODO: initialize biases to 0 def forward(self, x): """ Forward pass. """ x = self.nonlinear(self.lin1(x)) x = self.relu_dropout(x) # --relu-dropout x = self.lin2(x) return x class BasicAttention(nn.Module): """ Implements simple/classical attention. """ def __init__(self, dim=1, attn='cosine', residual=False, get_weights=True): super().__init__() if attn == 'cosine': self.cosine = nn.CosineSimilarity(dim=dim) self.attn = attn self.dim = dim self.get_weights = get_weights self.residual = residual def forward(self, xs, ys, mask_ys=None, values=None): """ Compute attention. Attend over ys with query xs to obtain weights, then apply weights to values (ys if yalues is None) Args: xs: B x query_len x dim (queries) ys: B x key_len x dim (keys) mask_ys: B x key_len (mask) values: B x value_len x dim (values); if None, default to ys """ bsz = xs.size(0) y_len = ys.size(1) x_len = xs.size(1) if self.attn == 'cosine': l1 = self.cosine(xs, ys).unsqueeze(self.dim - 1) else: l1 = torch.bmm(xs, ys.transpose(1, 2)) if self.attn == 'sqrt': d_k = ys.size(-1) l1 = l1 / math.sqrt(d_k) if mask_ys is not None: attn_mask = (mask_ys == 0).view(bsz, 1, y_len) attn_mask = attn_mask.repeat(1, x_len, 1) l1.masked_fill(attn_mask, neginf(l1.dtype)) l2 = F.softmax(l1, dim=self.dim, dtype=torch.float).type_as(l1) if values is None: values = ys lhs_emb = torch.bmm(l2, values) # # add back the query if self.residual: lhs_emb = lhs_emb.add(xs) if self.get_weights: return lhs_emb.squeeze(self.dim - 1), l2 else: return lhs_emb.squeeze(self.dim - 1) class MultiHeadAttention(nn.Module): """ Implements MultiHeadAttention; this is the core workhorse of the Transformer. See Vaswani (2017) for an extensive description. """ def __init__(self, n_heads, dim, dropout=0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.attn_dropout = nn.Dropout(p=dropout) # --attention-dropout self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) # TODO: merge for the initialization step nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) # and set biases to 0 self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) def forward( # type: ignore # TODO: remove type ignore with pytorch 1.5: # https://github.com/pytorch/pytorch/pull/31057 self, query: torch.Tensor, key: Optional[torch.Tensor] = None, value: Optional[torch.Tensor] = None, mask: torch.Tensor = None, incr_state: Optional[Dict[str, torch.Tensor]] = None, static_kv: bool = False, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Forward pass. :param query: attention query :param key: attention key :param value: attention value :param mask: tensor in which True means that we are allowing attention and False means we are blocking it. Mask is: - [B, key_len] (encoder self-attn and decoder enc/dec attn) - [B, query_len, key_len] (decoder self-attn) - [B, 1, 1] (decoder self-attn with incr_state caching) :param incr_state: dictionary with values representing the previous states of the key, value, and mask :param static_kv: True if the key and value are held constant during decoding (as in encoder/decoder attention) :return: (final attended tensor, new incremental state) """ batch_size, query_len, dim = query.size() assert ( dim == self.dim ), 'Dimensions do not match: {} query vs {} configured'.format(dim, self.dim) assert mask is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) def prepare_head(tensor): # input is [batch_size, seq_len, n_heads * dim_per_head] # output is [batch_size * n_heads, seq_len, dim_per_head] bsz, seq_len, _ = tensor.size() tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head) tensor = ( tensor.transpose(1, 2) .contiguous() .view(batch_size * n_heads, seq_len, dim_per_head) ) return tensor # q, k, v are the transformed values if key is None and value is None: # self attention key = value = query _, _key_len, dim = query.size() elif value is None: # key and value are the same, but query differs # self attention value = key assert key is not None # let mypy know we sorted this _, _key_len, dim = key.size() q = prepare_head(self.q_lin(query)) k = prepare_head(self.k_lin(key)) v = prepare_head(self.v_lin(value)) # Prepend incremental states. For each of the key, value, and mask, see if # a previous incremental state exists, and if so, reshape it to match the shape # of the new state. Concatenate the previous and new states to match what the # full state would have been if we had not cached. (If we are using static_kv, # these three states are unchanging, so just re-use the cached states.) if incr_state is None: incr_state = {} if 'prev_key' in incr_state: prev_key = incr_state['prev_key'].view( batch_size * n_heads, -1, dim_per_head ) if static_kv: k = prev_key else: k = torch.cat([prev_key, k], dim=1) if 'prev_value' in incr_state: prev_value = incr_state['prev_value'].view( batch_size * n_heads, -1, dim_per_head ) if static_kv: v = prev_value else: v = torch.cat([prev_value, v], dim=1) if 'prev_mask' in incr_state: if static_kv: mask = incr_state['prev_mask'] else: mask = torch.cat([incr_state['prev_mask'], mask], dim=2) # Prepend along the key_len dimension (analogous to # incr_state['prev_key']) # Save new incremental states. We reshape to allow for reordering along batch # dimension. new_incr_state = { 'prev_key': k.view(batch_size, n_heads, -1, dim_per_head), 'prev_value': v.view(batch_size, n_heads, -1, dim_per_head), 'prev_mask': mask, } full_key_len = k.size(1) dot_prod = q.div_(scale).bmm(k.transpose(1, 2)) # [B * n_heads, query_len, key_len] attn_mask = ( (mask == 0) .view(batch_size, 1, -1, full_key_len) .repeat(1, n_heads, 1, 1) .expand(batch_size, n_heads, query_len, full_key_len) .view(batch_size * n_heads, query_len, full_key_len) ) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, neginf(dot_prod.dtype)) attn_weights = F.softmax(dot_prod, dim=-1, dtype=torch.float).type_as(query) attn_weights = self.attn_dropout(attn_weights) # --attention-dropout attentioned = attn_weights.bmm(v) attentioned = ( attentioned.type_as(query) .view(batch_size, n_heads, query_len, dim_per_head) .transpose(1, 2) .contiguous() .view(batch_size, query_len, dim) ) out = self.out_lin(attentioned) return out, new_incr_state def reorder_incremental_state( self, incremental_state: Dict[str, torch.Tensor], inds: torch.Tensor ) -> Dict[str, torch.Tensor]: """ Reorder the input incremental-state tensors. """ return { key: torch.index_select(val, 0, inds.to(val.device)).contiguous() for key, val in incremental_state.items() }
the-stack_106_27102
"""Manages Git.""" from __future__ import unicode_literals import os import logging from dvc.utils.compat import str, open from dvc.utils import fix_env from dvc.scm.base import ( Base, SCMError, FileNotInRepoError, FileNotInTargetSubdirError, ) from dvc.scm.git.tree import GitTree logger = logging.getLogger(__name__) DIFF_A_TREE = "a_tree" DIFF_B_TREE = "b_tree" DIFF_A_REF = "a_ref" DIFF_B_REF = "b_ref" DIFF_EQUAL = "equal" class Git(Base): """Class for managing Git.""" GITIGNORE = ".gitignore" GIT_DIR = ".git" def __init__(self, root_dir=os.curdir, repo=None): """Git class constructor. Requires `Repo` class from `git` module (from gitpython package). """ super(Git, self).__init__(root_dir, repo=repo) import git from git.exc import InvalidGitRepositoryError try: self.git = git.Repo(root_dir) except InvalidGitRepositoryError: msg = "{} is not a git repository" raise SCMError(msg.format(root_dir)) # NOTE: fixing LD_LIBRARY_PATH for binary built by PyInstaller. # http://pyinstaller.readthedocs.io/en/stable/runtime-information.html env = fix_env(None) libpath = env.get("LD_LIBRARY_PATH", None) self.git.git.update_environment(LD_LIBRARY_PATH=libpath) self.ignored_paths = [] self.files_to_track = [] @staticmethod def is_repo(root_dir): return os.path.isdir(Git._get_git_dir(root_dir)) @staticmethod def is_submodule(root_dir): return os.path.isfile(Git._get_git_dir(root_dir)) @staticmethod def _get_git_dir(root_dir): return os.path.join(root_dir, Git.GIT_DIR) @property def dir(self): return self.git.git_dir @property def ignore_file(self): return self.GITIGNORE def _get_gitignore(self, path, ignore_file_dir=None): if not ignore_file_dir: ignore_file_dir = os.path.dirname(os.path.realpath(path)) assert os.path.isabs(path) assert os.path.isabs(ignore_file_dir) if not path.startswith(ignore_file_dir): msg = ( "{} file has to be located in one of '{}' subdirectories" ", not outside '{}'" ) raise FileNotInTargetSubdirError( msg.format(self.GITIGNORE, path, ignore_file_dir) ) entry = os.path.relpath(path, ignore_file_dir).replace(os.sep, "/") # NOTE: using '/' prefix to make path unambiguous if len(entry) > 0 and entry[0] != "/": entry = "/" + entry gitignore = os.path.join(ignore_file_dir, self.GITIGNORE) if not gitignore.startswith(os.path.realpath(self.root_dir)): raise FileNotInRepoError(path) return entry, gitignore def ignore(self, path, in_curr_dir=False): base_dir = ( os.path.realpath(os.curdir) if in_curr_dir else os.path.dirname(path) ) entry, gitignore = self._get_gitignore(path, base_dir) ignore_list = [] if os.path.exists(gitignore): with open(gitignore, "r") as f: ignore_list = f.readlines() if any(filter(lambda x: x.strip() == entry.strip(), ignore_list)): return msg = "Adding '{}' to '{}'.".format( os.path.relpath(path), os.path.relpath(gitignore) ) logger.info(msg) self._add_entry_to_gitignore(entry, gitignore, ignore_list) self.track_file(os.path.relpath(gitignore)) self.ignored_paths.append(path) @staticmethod def _add_entry_to_gitignore(entry, gitignore, ignore_list): content = entry if ignore_list: content = "\n" + content with open(gitignore, "a", encoding="utf-8") as fobj: fobj.write(content) def ignore_remove(self, path): entry, gitignore = self._get_gitignore(path) if not os.path.exists(gitignore): return with open(gitignore, "r") as fobj: lines = fobj.readlines() filtered = list(filter(lambda x: x.strip() != entry.strip(), lines)) with open(gitignore, "w") as fobj: fobj.writelines(filtered) self.track_file(os.path.relpath(gitignore)) def add(self, paths): # NOTE: GitPython is not currently able to handle index version >= 3. # See https://github.com/iterative/dvc/issues/610 for more details. try: self.git.index.add(paths) except AssertionError: msg = ( "failed to add '{}' to git. You can add those files" " manually using 'git add'." " See 'https://github.com/iterative/dvc/issues/610'" " for more details.".format(str(paths)) ) logger.exception(msg) def commit(self, msg): self.git.index.commit(msg) def checkout(self, branch, create_new=False): if create_new: self.git.git.checkout("HEAD", b=branch) else: self.git.git.checkout(branch) def branch(self, branch): self.git.git.branch(branch) def tag(self, tag): self.git.git.tag(tag) def untracked_files(self): files = self.git.untracked_files return [os.path.join(self.git.working_dir, fname) for fname in files] def is_tracked(self, path): # it is equivalent to `bool(self.git.git.ls_files(path))` by # functionality, but ls_files fails on unicode filenames path = os.path.relpath(path, self.root_dir) return path in [i[0] for i in self.git.index.entries] def is_dirty(self): return self.git.is_dirty() def active_branch(self): return self.git.active_branch.name def list_branches(self): return [h.name for h in self.git.heads] def list_tags(self): return [t.name for t in self.git.tags] def _install_hook(self, name, cmd): command = "dvc {}".format(cmd) hook = os.path.join(self.root_dir, self.GIT_DIR, "hooks", name) if os.path.isfile(hook): with open(hook, "r+") as fobj: if command not in fobj.read(): fobj.write("exec {command}\n".format(command=command)) else: with open(hook, "w+") as fobj: fobj.write( "#!/bin/sh\n" "exec {command}\n".format(command=command) ) os.chmod(hook, 0o777) def install(self): self._install_hook("post-checkout", "checkout") self._install_hook("pre-commit", "status") self._install_hook("pre-push", "push") def cleanup_ignores(self): for path in self.ignored_paths: self.ignore_remove(path) self.reset_ignores() def reset_ignores(self): self.ignored_paths = [] def remind_to_track(self): if not self.files_to_track: return logger.info( "\n" "To track the changes with git run:\n" "\n" "\tgit add {files}".format(files=" ".join(self.files_to_track)) ) def track_file(self, path): self.files_to_track.append(path) def belongs_to_scm(self, path): basename = os.path.basename(path) path_parts = os.path.normpath(path).split(os.path.sep) return basename == self.ignore_file or Git.GIT_DIR in path_parts def get_tree(self, rev): return GitTree(self.git, rev) def _get_diff_trees(self, a_ref, b_ref): """Private method for getting the trees and commit hashes of 2 git references. Requires `gitdb` module (from gitpython package). Args: a_ref(str) - git reference b_ref(str) - second git reference. If None, uses HEAD Returns: tuple - tuple with elements: (trees, commits) """ from gitdb.exc import BadObject, BadName trees = {DIFF_A_TREE: None, DIFF_B_TREE: None} commits = [] if b_ref is None: b_ref = self.git.head.commit try: a_commit = self.git.git.rev_parse(a_ref, short=True) b_commit = self.git.git.rev_parse(b_ref, short=True) # See https://gitpython.readthedocs.io # /en/2.1.11/reference.html#git.objects.base.Object.__str__ commits.append(a_commit) commits.append(b_commit) trees[DIFF_A_TREE] = self.get_tree(commits[0]) trees[DIFF_B_TREE] = self.get_tree(commits[1]) except (BadName, BadObject) as e: raise SCMError("git problem", cause=e) return trees, commits def get_diff_trees(self, a_ref, b_ref=None): """Method for getting two repo trees between two git tag commits. Returns the dvc hash names of changed file/directory Args: a_ref(str) - git reference b_ref(str) - optional second git reference, default None Returns: dict - dictionary with keys: (a_tree, b_tree, a_ref, b_ref, equal) """ diff_dct = {DIFF_EQUAL: False} trees, commits = self._get_diff_trees(a_ref, b_ref) diff_dct[DIFF_A_REF] = commits[0] diff_dct[DIFF_B_REF] = commits[1] if commits[0] == commits[1]: diff_dct[DIFF_EQUAL] = True return diff_dct diff_dct[DIFF_A_TREE] = trees[DIFF_A_TREE] diff_dct[DIFF_B_TREE] = trees[DIFF_B_TREE] return diff_dct
the-stack_106_27104
import tensorflow as tf import os import numpy as np from model.postprocess import postprocess from tensorflow.keras import callbacks from utils.coco_eval import CocoEvalidation from model.nms import yolov4_nms from tqdm import tqdm class CocoMapCallback(callbacks.Callback): def __init__(self, pred_generator,model,args,mAP_writer): self.args = args self.pred_generator = pred_generator self.model = model self.mAP_writer = mAP_writer self.max_coco_map = -1 self.max_coco_map_epoch = -1 self.best_weight_path = '' groundtruth_boxes = [] groundtruth_classes = [] groundtruth_valids = [] print("loading dataset...") with open(os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))),os.path.join('dataset',args.class_names))) as f: class_names = [name.strip() for name in f.readlines()] pred_generator_tqdm = tqdm(self.pred_generator, total=len(self.pred_generator)) for batch_img, batch_boxes, batch_valids in pred_generator_tqdm: groundtruth_boxes.append(batch_boxes[..., 0:4]) groundtruth_classes.append(batch_boxes[..., 4]) groundtruth_valids.append(batch_valids) groundtruth_boxes = np.concatenate(groundtruth_boxes, axis=0) groundtruth_classes = np.concatenate(groundtruth_classes, axis=0) groundtruth_valids = np.concatenate(groundtruth_valids, axis=0) self.coco = CocoEvalidation(groundtruth_boxes,groundtruth_classes,groundtruth_valids,class_names) def on_train_begin(self, logs={}): pass def on_epoch_end(self, epoch, logs=None): if epoch < self.args.start_eval_epoch or epoch % self.args.eval_epoch_interval != 0: return detection_boxes = [] detection_scores = [] detection_classes = [] detection_valids = [] pred_generator_tqdm = tqdm(self.pred_generator, total=len(self.pred_generator)) for batch_img, _, _ in pred_generator_tqdm: model_outputs = self.model.predict(batch_img) pre_nms_decoded_boxes, pre_nms_scores = postprocess(model_outputs, self.args) pre_nms_decoded_boxes = pre_nms_decoded_boxes.numpy() pre_nms_scores = pre_nms_scores.numpy() boxes, scores, classes, valid_detections = yolov4_nms(self.args)(pre_nms_decoded_boxes, pre_nms_scores, self.args) detection_boxes.append(boxes) detection_scores.append(scores) detection_classes.append(classes) detection_valids.append(valid_detections) pred_generator_tqdm.set_description("Evaluation...") detection_boxes = np.concatenate(detection_boxes, axis=0) detection_scores = np.concatenate(detection_scores, axis=0) detection_classes = np.concatenate(detection_classes, axis=0) detection_valids = np.concatenate(detection_valids, axis=0) summary_metrics = self.coco.get_coco_mAP(detection_boxes, detection_scores, detection_classes, detection_valids) if summary_metrics['Precision/[email protected]'] > self.max_coco_map: self.max_coco_map = summary_metrics['Precision/[email protected]'] self.max_coco_map_epoch = epoch self.best_weight_path = os.path.join(self.args.checkpoints_dir, 'best_weight_{}_{}_{:.3f}'.format(self.args.model_type,self.max_coco_map_epoch, self.max_coco_map)) self.model.save_weights(self.best_weight_path) print("max_coco_map:{},epoch:{}".format(self.max_coco_map, self.max_coco_map_epoch)) with self.mAP_writer.as_default(): tf.summary.scalar("[email protected]", summary_metrics['Precision/[email protected]'], step=epoch) self.mAP_writer.flush()
the-stack_106_27105
import transaction from datetime import timedelta from pyramid.exceptions import ConfigurationConflictError from ptah.testing import PtahTestCase class TestTokenType(PtahTestCase): _init_ptah = False _auto_commit = False def test_token(self): from ptah import token tt = token.TokenType('unique-id', timedelta(minutes=20)) self.init_ptah() t = token.service.generate(tt, 'data') transaction.commit() self.assertEqual(token.service.get(t), 'data') self.assertEqual(token.service.get_bydata(tt, 'data'), t) token.service.remove(t) self.assertEqual(token.service.get(t), None) def test_token_type(self): from ptah import token token.TokenType('unique-id', timedelta(minutes=20)) token.TokenType('unique-id', timedelta(minutes=20)) self.assertRaises(ConfigurationConflictError, self.init_ptah) def test_token_remove_expired(self): pass
the-stack_106_27106
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pickle from fvcore.common.checkpoint import Checkpointer from fvcore.common.file_io import PathManager import detectron2.utils.comm as comm from .c2_model_loading import align_and_update_state_dicts class DetectionCheckpointer(Checkpointer): """ Same as :class:`Checkpointer`, but is able to handle models in detectron & detectron2 model zoo, and apply conversions for legacy models. """ def __init__(self, model, save_dir="", is_base_model=False, *, save_to_disk=None, **checkpointables): is_main_process = comm.is_main_process() super().__init__( model, save_dir, save_to_disk=is_main_process if save_to_disk is None else save_to_disk, **checkpointables, ) self.is_base_model = is_base_model def _load_file(self, filename): if filename.endswith(".pkl"): with PathManager.open(filename, "rb") as f: data = pickle.load(f, encoding="latin1") if "model" in data and "__author__" in data: # file is in Detectron2 model zoo format self.logger.info("Reading a file from '{}'".format(data["__author__"])) return data else: # assume file is from Caffe2 / Detectron1 model zoo if "blobs" in data: # Detection models have "blobs", but ImageNet models don't data = data["blobs"] data = {k: v for k, v in data.items() if not k.endswith("_momentum")} return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} loaded = super()._load_file(filename) # load native pth checkpoint if "model" not in loaded: loaded = {"model": loaded} return loaded def _load_model(self, checkpoint): if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", is_base_model=self.is_base_model ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it super()._load_model(checkpoint)
the-stack_106_27107
#!/usr/bin/python3 import json from argparse import ArgumentParser def get_args(): p = ArgumentParser(description='Merge CLOSURE xdconf.ini files') p.add_argument('-f', '--files', required=True, type=str, help='Input files') p.add_argument('-o', '--outfile', required=False, type=str, default='xdconf.ini', help='Output file') return p.parse_args() def main(): args = get_args() print('Options selected:') for x in vars(args).items(): print(' %s: %s' % x) files=args.files.split(' ') if len(files) < 1: print('Require at least one file to merge') return data = {'enclaves': []} for f in files: with open(f,'r') as inf: cur = json.load(inf) enc = cur['enclaves'] for e in enc: # find matching enclave e1 in data['enclaves'] found = False; for e1 in data['enclaves']: if e['enclave'] == e1['enclave']: found = True; break; # if e not in data['enclaves'], simply add enclave to data['enclaves'] if not found: data['enclaves'].append(e) else: if e['inuri'] != e1['inuri'] or e['outuri'] != e1['outuri']: print('URI do not match, merge not possible') exit # XXX: need to check for duplicates print("Warning: Not checking for duplicate halmaps") e1['halmaps'].extend(e['halmaps']) with open(args.outfile, 'w') as outf: json.dump(data,outf,indent=2) if __name__ == '__main__': main()
the-stack_106_27108
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os from setuptools import find_packages, setup from url_filter import __author__, __version__ def read(fname): with open(os.path.join(os.path.dirname(__file__), fname), "rb") as fid: return fid.read().decode("utf-8") authors = read("AUTHORS.rst") history = read("HISTORY.rst").replace(".. :changelog:", "") licence = read("LICENSE.rst") readme = read("README.rst") req = read("requirements.txt").splitlines() dev_req = read("requirements-dev.txt").splitlines()[2:] requirements = req + ["setuptools"] test_requirements = req + dev_req setup( name="django-url-filter", version=__version__, author=__author__, description="Django URL Filter provides a safe way to filter data via human-friendly URLs.", long_description="\n\n".join([readme, history, authors, licence]), url="https://github.com/miki725/django-url-filter", license="MIT", packages=find_packages(exclude=["test_project*", "tests*"]), install_requires=requirements, test_suite="tests", tests_require=test_requirements, keywords=" ".join(["django django-rest-framework"]), classifiers=[ "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Development Status :: 2 - Pre-Alpha", ], )
the-stack_106_27109
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Creating the task and start trainer. Supported modes: train, eval, train_and_eval, continuous_eval The ProgressiveMaskedLM class is a subclass of ProgressivePolicy. This means that a progressive trainer instead of a base trainer. """ # pylint: enable=line-too-long # Lint as: python3 from absl import app from absl import flags import dataclasses import gin from grow_bert.progressive import masked_lm from grow_bert.progressive import utils from official.common import flags as tfm_flags from official.modeling import optimization from official.modeling.hyperparams import config_definitions as cfg from official.modeling.progressive import train_lib from official.modeling.progressive import trainer as prog_trainer_lib from official.nlp.data import pretrain_dataloader from official.utils.misc import distribution_utils FLAGS = flags.FLAGS AdamWeightDecay = optimization.AdamWeightDecayConfig PolynomialLr = optimization.PolynomialLrConfig PolynomialWarmupConfig = optimization.PolynomialWarmupConfig @dataclasses.dataclass class BertOptimizationConfig(optimization.OptimizationConfig): """Bert optimization config.""" optimizer: optimization.OptimizerConfig = optimization.OptimizerConfig( type='adamw', adamw=AdamWeightDecay( weight_decay_rate=0.01, exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])) learning_rate: optimization.LrConfig = optimization.LrConfig( type='polynomial', polynomial=PolynomialLr( initial_learning_rate=1e-4, decay_steps=1000000, end_learning_rate=0.0)) warmup: optimization.WarmupConfig = optimization.WarmupConfig( type='polynomial', polynomial=PolynomialWarmupConfig(warmup_steps=10000)) def get_exp_config(): """Get ExperimentConfig.""" params = cfg.ExperimentConfig( task=masked_lm.MaskedLMConfig( train_data=pretrain_dataloader.BertPretrainDataConfig(), small_train_data=pretrain_dataloader.BertPretrainDataConfig(), validation_data=pretrain_dataloader.BertPretrainDataConfig( is_training=False)), trainer=prog_trainer_lib.ProgressiveTrainerConfig( progressive=masked_lm.ProgStackingConfig(), optimizer_config=BertOptimizationConfig(), train_steps=1000000), restrictions=[ 'task.train_data.is_training != None', 'task.validation_data.is_training != None' ]) return utils.config_override(params, FLAGS) def main(_): gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params) params = get_exp_config() distribution_strategy = distribution_utils.get_distribution_strategy( distribution_strategy=params.runtime.distribution_strategy, all_reduce_alg=params.runtime.all_reduce_alg, num_gpus=params.runtime.num_gpus, tpu_address=params.runtime.tpu) with distribution_strategy.scope(): task = masked_lm.ProgressiveMaskedLM( strategy=distribution_strategy, progressive_config=params.trainer.progressive, optimizer_config=params.trainer.optimizer_config, train_data_config=params.task.train_data, small_train_data_config=params.task.small_train_data, task_config=params.task) train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode=FLAGS.mode, params=params, model_dir=FLAGS.model_dir) if __name__ == '__main__': tfm_flags.define_flags() app.run(main)
the-stack_106_27110
"""Tools for helping with ANSI color codes.""" import re import sys import warnings import builtins import typing as tp from xonsh.platform import HAS_PYGMENTS from xonsh.lazyasd import LazyDict, lazyobject from xonsh.color_tools import ( RE_XONSH_COLOR, BASE_XONSH_COLORS, make_palette, find_closest_color, rgb2short, rgb_to_256, short_to_ints, iscolor, warn_deprecated_no_color, ) from xonsh.tools import FORMATTER # pygments modifier to ANSI escape code mapping _PART_STYLE_CODE_MAPPING = { "bold": "1", "nobold": "21", "italic": "3", "noitalic": "23", "underline": "4", "nounderline": "24", "blink": "5", "noblink": "25", "reverse": "7", "noreverse": "27", "hidden": "8", "nohidden": "28", } def _ensure_color_map(style="default", cmap=None): if cmap is not None: pass elif style in ANSI_STYLES: cmap = ANSI_STYLES[style] else: try: # dynamically loading the style cmap = ansi_style_by_name(style) except Exception: msg = "Could not find color style {0!r}, using default." print(msg.format(style), file=sys.stderr) builtins.__xonsh__.env["XONSH_COLOR_STYLE"] = "default" cmap = ANSI_STYLES["default"] return cmap @lazyobject def ANSI_ESCAPE_MODIFIERS(): return { "BOLD": "1", "FAINT": "2", "ITALIC": "3", "UNDERLINE": "4", "SLOWBLINK": "5", "FASTBLINK": "6", "INVERT": "7", "CONCEAL": "8", "STRIKETHROUGH": "9", "BOLDOFF": "21", "FAINTOFF": "22", "ITALICOFF": "23", "UNDERLINEOFF": "24", "BLINKOFF": "25", "INVERTOFF": "27", "REVEALOFF": "28", "STRIKETHROUGHOFF": "29", } def ansi_color_name_to_escape_code(name, style="default", cmap=None): """Converts a color name to the inner part of an ANSI escape code""" cmap = _ensure_color_map(style=style, cmap=cmap) if name in cmap: return cmap[name] m = RE_XONSH_COLOR.match(name) if m is None: raise ValueError("{!r} is not a color!".format(name)) parts = m.groupdict() # convert regex match into actual ANSI colors if parts["reset"] is not None: if parts["reset"] == "NO_COLOR": warn_deprecated_no_color() res = "0" elif parts["bghex"] is not None: res = "48;5;" + rgb_to_256(parts["bghex"][3:])[0] elif parts["background"] is not None: color = parts["color"] if "#" in color: res = "48;5;" + rgb_to_256(color[1:])[0] else: fgcolor = cmap[color] if fgcolor.isdecimal(): res = str(int(fgcolor) + 10) elif fgcolor.startswith("38;"): res = "4" + fgcolor[1:] elif fgcolor == "DEFAULT": res = "39" else: msg = ( "when converting {!r}, did not recognize {!r} within " "the following color map as a valid color:\n\n{!r}" ) raise ValueError(msg.format(name, fgcolor, cmap)) else: # have regular, non-background color mods = parts["modifiers"] if mods is None: mods = [] else: mods = mods.strip("_").split("_") mods = [ANSI_ESCAPE_MODIFIERS[mod] for mod in mods] color = parts["color"] if "#" in color: mods.append("38;5;" + rgb_to_256(color[1:])[0]) elif color == "DEFAULT": res = "39" else: mods.append(cmap[color]) res = ";".join(mods) cmap[name] = res return res def ansi_partial_color_format(template, style="default", cmap=None, hide=False): """Formats a template string but only with respect to the colors. Another template string is returned, with the color values filled in. Parameters ---------- template : str The template string, potentially with color names. style : str, optional Style name to look up color map from. cmap : dict, optional A color map to use, this will prevent the color map from being looked up via the style name. hide : bool, optional Whether to wrap the color codes in the \\001 and \\002 escape codes, so that the color codes are not counted against line length. Returns ------- A template string with the color values filled in. """ try: return _ansi_partial_color_format_main( template, style=style, cmap=cmap, hide=hide ) except Exception: return template def _ansi_partial_color_format_main(template, style="default", cmap=None, hide=False): cmap = _ensure_color_map(style=style, cmap=cmap) overrides = builtins.__xonsh__.env["XONSH_STYLE_OVERRIDES"] if overrides: cmap.update(_style_dict_to_ansi(overrides)) esc = ("\001" if hide else "") + "\033[" m = "m" + ("\002" if hide else "") bopen = "{" bclose = "}" colon = ":" expl = "!" toks = [] for literal, field, spec, conv in FORMATTER.parse(template): toks.append(literal) if field is None: pass elif field in cmap: toks.extend([esc, cmap[field], m]) elif iscolor(field): color = ansi_color_name_to_escape_code(field, cmap=cmap) cmap[field] = color toks.extend([esc, color, m]) elif field is not None: toks.append(bopen) toks.append(field) if conv is not None and len(conv) > 0: toks.append(expl) toks.append(conv) if spec is not None and len(spec) > 0: toks.append(colon) toks.append(spec) toks.append(bclose) return "".join(toks) def ansi_color_style_names(): """Returns an iterable of all ANSI color style names.""" return ANSI_STYLES.keys() def ansi_color_style(style="default"): """Returns the current color map.""" if style in ANSI_STYLES: cmap = ANSI_STYLES[style] else: msg = "Could not find color style {0!r}, using default.".format(style) warnings.warn(msg, RuntimeWarning) cmap = ANSI_STYLES["default"] return cmap def ansi_reverse_style(style="default", return_style=False): """Reverses an ANSI color style mapping so that escape codes map to colors. Style may either be string or mapping. May also return the style it looked up. """ style = ansi_style_by_name(style) if isinstance(style, str) else style reversed_style = {v: k for k, v in style.items()} # add keys to make this more useful updates = { "1": "BOLD_", "2": "FAINT_", "3": "ITALIC_", "4": "UNDERLINE_", "5": "SLOWBLINK_", "6": "FASTBLINK_", "7": "INVERT_", "8": "CONCEAL_", "9": "STRIKETHROUGH_", "21": "BOLDOFF_", "22": "FAINTOFF_", "23": "ITALICOFF_", "24": "UNDERLINEOFF_", "25": "BLINKOFF_", "27": "INVERTOFF_", "28": "REVEALOFF_", "29": "STRIKETHROUGHOFF_", "38": "SET_FOREGROUND_", "48": "SET_BACKGROUND_", "38;2": "SET_FOREGROUND_FAINT_", "48;2": "SET_BACKGROUND_FAINT_", "38;5": "SET_FOREGROUND_SLOWBLINK_", "48;5": "SET_BACKGROUND_SLOWBLINK_", } for ec, name in reversed_style.items(): no_left_zero = ec.lstrip("0") if no_left_zero.startswith(";"): updates[no_left_zero[1:]] = name elif no_left_zero != ec: updates[no_left_zero] = name reversed_style.update(updates) # return results if return_style: return style, reversed_style else: return reversed_style @lazyobject def ANSI_ESCAPE_CODE_RE(): return re.compile(r"\001?(\033\[)?([0-9;]+)m?\002?") @lazyobject def ANSI_COLOR_NAME_SET_3INTS_RE(): return re.compile(r"(\w+_)?SET_(FORE|BACK)GROUND_FAINT_(\d+)_(\d+)_(\d+)") @lazyobject def ANSI_COLOR_NAME_SET_SHORT_RE(): return re.compile(r"(\w+_)?SET_(FORE|BACK)GROUND_SLOWBLINK_(\d+)") def _color_name_from_ints(ints, background=False, prefix=None): name = find_closest_color(ints, BASE_XONSH_COLORS) if background: name = "BACKGROUND_" + name name = name if prefix is None else prefix + name return name _ANSI_COLOR_ESCAPE_CODE_TO_NAME_CACHE: tp.Dict[str, tp.Tuple[str, ...]] = {} def ansi_color_escape_code_to_name(escape_code, style, reversed_style=None): """Converts an ANSI color code escape sequence to a tuple of color names in the provided style ('default' should almost be the style). For example, '0' becomes ('RESET',) and '32;41' becomes ('GREEN', 'BACKGROUND_RED'). The style keyword may either be a string, in which the style is looked up, or an actual style dict. You can also provide a reversed style mapping, too, which is just the keys/values of the style dict swapped. If reversed style is not provided, it is computed. """ key = (escape_code, style) # todo: see the cache ever used? if key in _ANSI_COLOR_ESCAPE_CODE_TO_NAME_CACHE: return _ANSI_COLOR_ESCAPE_CODE_TO_NAME_CACHE[key] if reversed_style is None: style, reversed_style = ansi_reverse_style(style, return_style=True) # strip some actual escape codes, if needed. match = ANSI_ESCAPE_CODE_RE.match(escape_code) if not match: msg = 'Invalid ANSI color sequence "{0}", using "RESET" instead.'.format( escape_code ) warnings.warn(msg, RuntimeWarning) return ("RESET",) ec = match.group(2) names = [] n_ints = 0 seen_set_foreback = False for e in ec.split(";"): no_left_zero = e.lstrip("0") if len(e) > 1 else e if seen_set_foreback and n_ints > 0: names.append(e) n_ints -= 1 if n_ints == 0: seen_set_foreback = False continue else: names.append(reversed_style.get(no_left_zero, no_left_zero)) # set the flags for next time if "38" == e or "48" == e: seen_set_foreback = True elif seen_set_foreback and "2" == e: n_ints = 3 elif seen_set_foreback and "5" == e: n_ints = 1 # normalize names n = "" norm_names = [] prefixes = "" for name in names: if name in ("RESET", "NO_COLOR"): # skip most '0' entries continue elif "BACKGROUND_" in name and n: prefixes += n n = "" n = n + name if n else name if n.endswith("_"): continue elif ANSI_COLOR_NAME_SET_SHORT_RE.match(n) is not None: pre, fore_back, short = ANSI_COLOR_NAME_SET_SHORT_RE.match(n).groups() n = _color_name_from_ints( short_to_ints(short), background=(fore_back == "BACK"), prefix=pre ) elif ANSI_COLOR_NAME_SET_3INTS_RE.match(n) is not None: pre, fore_back, r, g, b = ANSI_COLOR_NAME_SET_3INTS_RE.match(n).groups() n = _color_name_from_ints( (int(r), int(g), int(b)), background=(fore_back == "BACK"), prefix=pre ) elif "GROUND_FAINT_" in n: # have 1 or 2, but not 3 ints n += "_" continue # error check if not iscolor(n): msg = ( "Could not translate ANSI color code {escape_code!r} " "into a known color in the palette. Specifically, the {n!r} " "portion of {name!r} in {names!r} seems to missing." ) raise ValueError( msg.format(escape_code=escape_code, names=names, name=name, n=n) ) norm_names.append(n) n = "" # check if we have pre- & post-fixes to apply to the last, non-background element prefixes += n if prefixes.endswith("_"): for i in range(-1, -len(norm_names) - 1, -1): if "BACKGROUND_" not in norm_names[i]: norm_names[i] = prefixes + norm_names[i] break else: # only have background colors, so select WHITE as default color norm_names.append(prefixes + "WHITE") # return if len(norm_names) == 0: return ("RESET",) else: return tuple(norm_names) def _bw_style(): style = { "RESET": "0", "BLACK": "0;30", "BLUE": "0;37", "CYAN": "0;37", "GREEN": "0;37", "PURPLE": "0;37", "RED": "0;37", "WHITE": "0;37", "YELLOW": "0;37", "BACKGROUND_BLACK": "40", "BACKGROUND_RED": "47", "BACKGROUND_GREEN": "47", "BACKGROUND_YELLOW": "47", "BACKGROUND_BLUE": "47", "BACKGROUND_PURPLE": "47", "BACKGROUND_CYAN": "47", "BACKGROUND_WHITE": "47", "INTENSE_BLACK": "0;90", "INTENSE_BLUE": "0;97", "INTENSE_CYAN": "0;97", "INTENSE_GREEN": "0;97", "INTENSE_PURPLE": "0;97", "INTENSE_RED": "0;97", "INTENSE_WHITE": "0;97", "INTENSE_YELLOW": "0;97", } return style def _default_style(): style = { # Reset "RESET": "0", # Text Reset # Regular Colors "BLACK": "30", # BLACK "RED": "31", # RED "GREEN": "32", # GREEN "YELLOW": "33", # YELLOW "BLUE": "34", # BLUE "PURPLE": "35", # PURPLE "CYAN": "36", # CYAN "WHITE": "37", # WHITE # Background "BACKGROUND_BLACK": "40", # BLACK "BACKGROUND_RED": "41", # RED "BACKGROUND_GREEN": "42", # GREEN "BACKGROUND_YELLOW": "43", # YELLOW "BACKGROUND_BLUE": "44", # BLUE "BACKGROUND_PURPLE": "45", # PURPLE "BACKGROUND_CYAN": "46", # CYAN "BACKGROUND_WHITE": "47", # WHITE # High Intensity "INTENSE_BLACK": "90", # BLACK "INTENSE_RED": "91", # RED "INTENSE_GREEN": "92", # GREEN "INTENSE_YELLOW": "93", # YELLOW "INTENSE_BLUE": "94", # BLUE "INTENSE_PURPLE": "95", # PURPLE "INTENSE_CYAN": "96", # CYAN "INTENSE_WHITE": "97", # WHITE # High Intensity backgrounds "BACKGROUND_INTENSE_BLACK": "100", # BLACK "BACKGROUND_INTENSE_RED": "101", # RED "BACKGROUND_INTENSE_GREEN": "102", # GREEN "BACKGROUND_INTENSE_YELLOW": "103", # YELLOW "BACKGROUND_INTENSE_BLUE": "104", # BLUE "BACKGROUND_INTENSE_PURPLE": "105", # PURPLE "BACKGROUND_INTENSE_CYAN": "106", # CYAN "BACKGROUND_INTENSE_WHITE": "107", # WHITE } return style def _monokai_style(): style = { "RESET": "0", "BLACK": "38;5;16", "BLUE": "38;5;63", "CYAN": "38;5;81", "GREEN": "38;5;40", "PURPLE": "38;5;89", "RED": "38;5;124", "WHITE": "38;5;188", "YELLOW": "38;5;184", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;20", "INTENSE_CYAN": "38;5;44", "INTENSE_GREEN": "38;5;148", "INTENSE_PURPLE": "38;5;141", "INTENSE_RED": "38;5;197", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;186", } return style #################################### # Auto-generated below this line # #################################### def _algol_style(): style = { "BLACK": "38;5;59", "BLUE": "38;5;59", "CYAN": "38;5;59", "GREEN": "38;5;59", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;102", "INTENSE_CYAN": "38;5;102", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;102", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;102", "INTENSE_YELLOW": "38;5;102", "RESET": "0", "PURPLE": "38;5;59", "RED": "38;5;09", "WHITE": "38;5;102", "YELLOW": "38;5;09", } return style def _algol_nu_style(): style = { "BLACK": "38;5;59", "BLUE": "38;5;59", "CYAN": "38;5;59", "GREEN": "38;5;59", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;102", "INTENSE_CYAN": "38;5;102", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;102", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;102", "INTENSE_YELLOW": "38;5;102", "RESET": "0", "PURPLE": "38;5;59", "RED": "38;5;09", "WHITE": "38;5;102", "YELLOW": "38;5;09", } return style def _autumn_style(): style = { "BLACK": "38;5;18", "BLUE": "38;5;19", "CYAN": "38;5;37", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;33", "INTENSE_CYAN": "38;5;33", "INTENSE_GREEN": "38;5;64", "INTENSE_PURPLE": "38;5;217", "INTENSE_RED": "38;5;130", "INTENSE_WHITE": "38;5;145", "INTENSE_YELLOW": "38;5;217", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;130", } return style def _borland_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;18", "CYAN": "38;5;30", "GREEN": "38;5;28", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;21", "INTENSE_CYAN": "38;5;194", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;188", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;224", "INTENSE_YELLOW": "38;5;188", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;124", } return style def _colorful_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;20", "CYAN": "38;5;31", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;61", "INTENSE_CYAN": "38;5;145", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;217", "INTENSE_RED": "38;5;166", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;217", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;130", } return style def _emacs_style(): style = { "BLACK": "38;5;28", "BLUE": "38;5;18", "CYAN": "38;5;26", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;26", "INTENSE_CYAN": "38;5;145", "INTENSE_GREEN": "38;5;34", "INTENSE_PURPLE": "38;5;129", "INTENSE_RED": "38;5;167", "INTENSE_WHITE": "38;5;145", "INTENSE_YELLOW": "38;5;145", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;130", } return style def _friendly_style(): style = { "BLACK": "38;5;22", "BLUE": "38;5;18", "CYAN": "38;5;31", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;74", "INTENSE_CYAN": "38;5;74", "INTENSE_GREEN": "38;5;71", "INTENSE_PURPLE": "38;5;134", "INTENSE_RED": "38;5;167", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;145", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;166", } return style def _fruity_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;32", "CYAN": "38;5;32", "GREEN": "38;5;28", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;33", "INTENSE_CYAN": "38;5;33", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;198", "INTENSE_RED": "38;5;202", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;187", "RESET": "0", "PURPLE": "38;5;198", "RED": "38;5;09", "WHITE": "38;5;187", "YELLOW": "38;5;202", } return style def _igor_style(): style = { "BLACK": "38;5;34", "BLUE": "38;5;21", "CYAN": "38;5;30", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;30", "INTENSE_BLUE": "38;5;21", "INTENSE_CYAN": "38;5;30", "INTENSE_GREEN": "38;5;34", "INTENSE_PURPLE": "38;5;163", "INTENSE_RED": "38;5;166", "INTENSE_WHITE": "38;5;163", "INTENSE_YELLOW": "38;5;166", "RESET": "0", "PURPLE": "38;5;163", "RED": "38;5;166", "WHITE": "38;5;163", "YELLOW": "38;5;166", } return style def _lovelace_style(): style = { "BLACK": "38;5;59", "BLUE": "38;5;25", "CYAN": "38;5;29", "GREEN": "38;5;65", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;25", "INTENSE_CYAN": "38;5;102", "INTENSE_GREEN": "38;5;29", "INTENSE_PURPLE": "38;5;133", "INTENSE_RED": "38;5;131", "INTENSE_WHITE": "38;5;102", "INTENSE_YELLOW": "38;5;136", "RESET": "0", "PURPLE": "38;5;133", "RED": "38;5;124", "WHITE": "38;5;102", "YELLOW": "38;5;130", } return style def _manni_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;18", "CYAN": "38;5;30", "GREEN": "38;5;40", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;105", "INTENSE_CYAN": "38;5;45", "INTENSE_GREEN": "38;5;113", "INTENSE_PURPLE": "38;5;165", "INTENSE_RED": "38;5;202", "INTENSE_WHITE": "38;5;224", "INTENSE_YELLOW": "38;5;221", "RESET": "0", "PURPLE": "38;5;165", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;166", } return style def _murphy_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;18", "CYAN": "38;5;31", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;63", "INTENSE_CYAN": "38;5;86", "INTENSE_GREEN": "38;5;86", "INTENSE_PURPLE": "38;5;213", "INTENSE_RED": "38;5;209", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;222", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;166", } return style def _native_style(): style = { "BLACK": "38;5;52", "BLUE": "38;5;67", "CYAN": "38;5;31", "GREEN": "38;5;64", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;68", "INTENSE_CYAN": "38;5;87", "INTENSE_GREEN": "38;5;70", "INTENSE_PURPLE": "38;5;188", "INTENSE_RED": "38;5;160", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;214", "RESET": "0", "PURPLE": "38;5;59", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;124", } return style def _paraiso_dark_style(): style = { "BLACK": "38;5;95", "BLUE": "38;5;97", "CYAN": "38;5;39", "GREEN": "38;5;72", "INTENSE_BLACK": "38;5;95", "INTENSE_BLUE": "38;5;97", "INTENSE_CYAN": "38;5;79", "INTENSE_GREEN": "38;5;72", "INTENSE_PURPLE": "38;5;188", "INTENSE_RED": "38;5;203", "INTENSE_WHITE": "38;5;188", "INTENSE_YELLOW": "38;5;220", "RESET": "0", "PURPLE": "38;5;97", "RED": "38;5;203", "WHITE": "38;5;79", "YELLOW": "38;5;214", } return style def _paraiso_light_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;16", "CYAN": "38;5;39", "GREEN": "38;5;72", "INTENSE_BLACK": "38;5;16", "INTENSE_BLUE": "38;5;97", "INTENSE_CYAN": "38;5;79", "INTENSE_GREEN": "38;5;72", "INTENSE_PURPLE": "38;5;97", "INTENSE_RED": "38;5;203", "INTENSE_WHITE": "38;5;79", "INTENSE_YELLOW": "38;5;220", "RESET": "0", "PURPLE": "38;5;97", "RED": "38;5;16", "WHITE": "38;5;102", "YELLOW": "38;5;214", } return style def _pastie_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;20", "CYAN": "38;5;25", "GREEN": "38;5;28", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;61", "INTENSE_CYAN": "38;5;194", "INTENSE_GREEN": "38;5;34", "INTENSE_PURPLE": "38;5;188", "INTENSE_RED": "38;5;172", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;188", "RESET": "0", "PURPLE": "38;5;125", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;130", } return style def _perldoc_style(): style = { "BLACK": "38;5;18", "BLUE": "38;5;18", "CYAN": "38;5;31", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;134", "INTENSE_CYAN": "38;5;145", "INTENSE_GREEN": "38;5;28", "INTENSE_PURPLE": "38;5;134", "INTENSE_RED": "38;5;167", "INTENSE_WHITE": "38;5;188", "INTENSE_YELLOW": "38;5;188", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;166", } return style def _rrt_style(): style = { "BLACK": "38;5;09", "BLUE": "38;5;117", "CYAN": "38;5;117", "GREEN": "38;5;46", "INTENSE_BLACK": "38;5;117", "INTENSE_BLUE": "38;5;117", "INTENSE_CYAN": "38;5;122", "INTENSE_GREEN": "38;5;46", "INTENSE_PURPLE": "38;5;213", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;188", "INTENSE_YELLOW": "38;5;222", "RESET": "0", "PURPLE": "38;5;213", "RED": "38;5;09", "WHITE": "38;5;117", "YELLOW": "38;5;09", } return style def _tango_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;20", "CYAN": "38;5;61", "GREEN": "38;5;34", "INTENSE_BLACK": "38;5;24", "INTENSE_BLUE": "38;5;62", "INTENSE_CYAN": "38;5;15", "INTENSE_GREEN": "38;5;64", "INTENSE_PURPLE": "38;5;15", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;15", "INTENSE_YELLOW": "38;5;178", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;15", "YELLOW": "38;5;94", } return style def _trac_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;18", "CYAN": "38;5;30", "GREEN": "38;5;100", "INTENSE_BLACK": "38;5;59", "INTENSE_BLUE": "38;5;60", "INTENSE_CYAN": "38;5;194", "INTENSE_GREEN": "38;5;102", "INTENSE_PURPLE": "38;5;188", "INTENSE_RED": "38;5;137", "INTENSE_WHITE": "38;5;224", "INTENSE_YELLOW": "38;5;188", "RESET": "0", "PURPLE": "38;5;90", "RED": "38;5;124", "WHITE": "38;5;145", "YELLOW": "38;5;100", } return style def _vim_style(): style = { "BLACK": "38;5;18", "BLUE": "38;5;18", "CYAN": "38;5;44", "GREEN": "38;5;40", "INTENSE_BLACK": "38;5;60", "INTENSE_BLUE": "38;5;68", "INTENSE_CYAN": "38;5;44", "INTENSE_GREEN": "38;5;40", "INTENSE_PURPLE": "38;5;164", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;188", "INTENSE_YELLOW": "38;5;184", "RESET": "0", "PURPLE": "38;5;164", "RED": "38;5;160", "WHITE": "38;5;188", "YELLOW": "38;5;160", } return style def _vs_style(): style = { "BLACK": "38;5;28", "BLUE": "38;5;21", "CYAN": "38;5;31", "GREEN": "38;5;28", "INTENSE_BLACK": "38;5;31", "INTENSE_BLUE": "38;5;31", "INTENSE_CYAN": "38;5;31", "INTENSE_GREEN": "38;5;31", "INTENSE_PURPLE": "38;5;31", "INTENSE_RED": "38;5;09", "INTENSE_WHITE": "38;5;31", "INTENSE_YELLOW": "38;5;31", "RESET": "0", "PURPLE": "38;5;124", "RED": "38;5;124", "WHITE": "38;5;31", "YELLOW": "38;5;124", } return style def _xcode_style(): style = { "BLACK": "38;5;16", "BLUE": "38;5;20", "CYAN": "38;5;60", "GREEN": "38;5;28", "INTENSE_BLACK": "38;5;60", "INTENSE_BLUE": "38;5;20", "INTENSE_CYAN": "38;5;60", "INTENSE_GREEN": "38;5;60", "INTENSE_PURPLE": "38;5;126", "INTENSE_RED": "38;5;160", "INTENSE_WHITE": "38;5;60", "INTENSE_YELLOW": "38;5;94", "RESET": "0", "PURPLE": "38;5;126", "RED": "38;5;160", "WHITE": "38;5;60", "YELLOW": "38;5;94", } return style ANSI_STYLES = LazyDict( { "algol": _algol_style, "algol_nu": _algol_nu_style, "autumn": _autumn_style, "borland": _borland_style, "bw": _bw_style, "colorful": _colorful_style, "default": _default_style, "emacs": _emacs_style, "friendly": _friendly_style, "fruity": _fruity_style, "igor": _igor_style, "lovelace": _lovelace_style, "manni": _manni_style, "monokai": _monokai_style, "murphy": _murphy_style, "native": _native_style, "paraiso-dark": _paraiso_dark_style, "paraiso-light": _paraiso_light_style, "pastie": _pastie_style, "perldoc": _perldoc_style, "rrt": _rrt_style, "tango": _tango_style, "trac": _trac_style, "vim": _vim_style, "vs": _vs_style, "xcode": _xcode_style, }, globals(), "ANSI_STYLES", ) del ( _algol_style, _algol_nu_style, _autumn_style, _borland_style, _bw_style, _colorful_style, _default_style, _emacs_style, _friendly_style, _fruity_style, _igor_style, _lovelace_style, _manni_style, _monokai_style, _murphy_style, _native_style, _paraiso_dark_style, _paraiso_light_style, _pastie_style, _perldoc_style, _rrt_style, _tango_style, _trac_style, _vim_style, _vs_style, _xcode_style, ) # # Dynamically generated styles # def make_ansi_style(palette): """Makes an ANSI color style from a color palette""" style = {"RESET": "0"} for name, t in BASE_XONSH_COLORS.items(): closest = find_closest_color(t, palette) if len(closest) == 3: closest = "".join([a * 2 for a in closest]) short = rgb2short(closest)[0] style[name] = "38;5;" + short return style def _pygments_to_ansi_style(style): """Tries to convert the given pygments style to ANSI style. Parameters ---------- style : pygments style value Returns ------- ANSI style """ ansi_style_list = [] parts = style.split(" ") for part in parts: if part in _PART_STYLE_CODE_MAPPING: ansi_style_list.append(_PART_STYLE_CODE_MAPPING[part]) elif part[:3] == "bg:": ansi_style_list.append("48;5;" + rgb2short(part[3:])[0]) else: ansi_style_list.append("38;5;" + rgb2short(part)[0]) return ";".join(ansi_style_list) def _style_dict_to_ansi(styles): """Converts pygments like style dict to ANSI rules""" ansi_style = {} for token, style in styles.items(): token = str(token) # convert pygments token to str parts = token.split(".") if len(parts) == 1 or parts[-2] == "Color": ansi_style[parts[-1]] = _pygments_to_ansi_style(style) return ansi_style def register_custom_ansi_style(name, styles, base="default"): """Register custom ANSI style. Parameters ---------- name : str Style name. styles : dict Token (or str) -> style mapping. base : str, optional Base style to use as default. """ base_style = ANSI_STYLES[base].copy() base_style.update(_style_dict_to_ansi(styles)) ANSI_STYLES[name] = base_style def ansi_style_by_name(name): """Gets or makes an ANSI color style by name. If the styles does not exist, it will look for a style using the pygments name. """ if name in ANSI_STYLES: return ANSI_STYLES[name] elif not HAS_PYGMENTS: raise KeyError("could not find style {0!r}".format(name)) from xonsh.pygments_cache import get_style_by_name pstyle = get_style_by_name(name) palette = make_palette(pstyle.styles.values()) astyle = make_ansi_style(palette) ANSI_STYLES[name] = astyle return astyle
the-stack_106_27111
#!/usr/bin/env python """ Created on Thu Jun 18 10:42:49 2015 Author: Oren Freifeld Email: [email protected] """ from of.utils import ObsoleteError raise ObsoleteError("Moved to Tessellation.py") import numpy as np from itertools import product # since we have an unknown number of lists from numpy import binary_repr from of.utils import ipshell def create_cells(nCs,nC,XMINS,XMAXS,tess='II'): N = len(nCs) if len(XMINS)!=N: raise ValueError(XMINS) if len(XMAXS)!=N: raise ValueError(XMAXS) if tess != 'II': raise ValueError(tess) if np.prod(nCs) != nC: raise ValueError(tess,np.prod(nCs), nCs) nCs = map(int,nCs) Vs = [np.linspace(m,M,nc+1) for (m,M,nc) in zip(XMINS,XMAXS,nCs)] cells_verts=[] cells_multiidx=[] lists = map(range,nCs) lists = lists[::-1] Vs=Vs[::-1] brs = [binary_repr(i,N) for i in range(2**N)] for idx, items in enumerate(product(*lists)): # print idx,'---',items items=np.asarray(items) verts_of_this_cell =[] for i in range(2**N): inc = np.asarray(map(int,brs[i])) indices = items+inc tmp = [Vs[j][indices[j]] for j in range(N)][::-1] verts_of_this_cell.append(tmp+[1]) cells_multiidx.append( tuple(items.tolist())) verts_of_this_cell = map(tuple,verts_of_this_cell) verts_of_this_cell = tuple(verts_of_this_cell) cells_verts.append(verts_of_this_cell) # ipshell('hi') # 2/0 if len(cells_multiidx) != nC: raise ValueError( len(cells_multiidx) , nC) if len(cells_verts) != nC: raise ValueError( len(cells_verts) , nC) if tess == 'II': # every cell should be made of 8 vertices (cube) if not all([x==2**N for x in map(len,map(set,cells_verts))]): raise ValueError else: raise ValueError(tess) return cells_multiidx,cells_verts
the-stack_106_27113
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import msrest.serialization class AccessPolicyResponse(msrest.serialization.Model): """Get Data Plane read only token response definition. :param policy: The user access policy. :type policy: ~dfaz_management_client.models.UserAccessPolicy :param access_token: Data Plane read only access token. :type access_token: str :param data_plane_url: Data Plane service base URL. :type data_plane_url: str """ _attribute_map = { 'policy': {'key': 'policy', 'type': 'UserAccessPolicy'}, 'access_token': {'key': 'accessToken', 'type': 'str'}, 'data_plane_url': {'key': 'dataPlaneUrl', 'type': 'str'}, } def __init__( self, **kwargs ): super(AccessPolicyResponse, self).__init__(**kwargs) self.policy = kwargs.get('policy', None) self.access_token = kwargs.get('access_token', None) self.data_plane_url = kwargs.get('data_plane_url', None) class Trigger(msrest.serialization.Model): """Azure data factory nested object which contains information about creating pipeline run. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ChainingTrigger, MultiplePipelineTrigger, RerunTumblingWindowTrigger, TumblingWindowTrigger. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, } _subtype_map = { 'type': {'ChainingTrigger': 'ChainingTrigger', 'MultiplePipelineTrigger': 'MultiplePipelineTrigger', 'RerunTumblingWindowTrigger': 'RerunTumblingWindowTrigger', 'TumblingWindowTrigger': 'TumblingWindowTrigger'} } def __init__( self, **kwargs ): super(Trigger, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.type = 'Trigger' # type: str self.description = kwargs.get('description', None) self.runtime_state = None self.annotations = kwargs.get('annotations', None) class MultiplePipelineTrigger(Trigger): """Base class for all triggers that support one to many model for trigger to pipeline. You probably want to use the sub-classes and not this class directly. Known sub-classes are: BlobEventsTrigger, BlobTrigger, ScheduleTrigger. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipelines: Pipelines that need to be started. :type pipelines: list[~dfaz_management_client.models.TriggerPipelineReference] """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipelines': {'key': 'pipelines', 'type': '[TriggerPipelineReference]'}, } _subtype_map = { 'type': {'BlobEventsTrigger': 'BlobEventsTrigger', 'BlobTrigger': 'BlobTrigger', 'ScheduleTrigger': 'ScheduleTrigger'} } def __init__( self, **kwargs ): super(MultiplePipelineTrigger, self).__init__(**kwargs) self.type = 'MultiplePipelineTrigger' # type: str self.pipelines = kwargs.get('pipelines', None) class BlobEventsTrigger(MultiplePipelineTrigger): """Trigger that runs every time a Blob event occurs. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipelines: Pipelines that need to be started. :type pipelines: list[~dfaz_management_client.models.TriggerPipelineReference] :param blob_path_begins_with: The blob path must begin with the pattern provided for trigger to fire. For example, '/records/blobs/december/' will only fire the trigger for blobs in the december folder under the records container. At least one of these must be provided: blobPathBeginsWith, blobPathEndsWith. :type blob_path_begins_with: str :param blob_path_ends_with: The blob path must end with the pattern provided for trigger to fire. For example, 'december/boxes.csv' will only fire the trigger for blobs named boxes in a december folder. At least one of these must be provided: blobPathBeginsWith, blobPathEndsWith. :type blob_path_ends_with: str :param ignore_empty_blobs: If set to true, blobs with zero bytes will be ignored. :type ignore_empty_blobs: bool :param events: Required. The type of events that cause this trigger to fire. :type events: list[str or ~dfaz_management_client.models.BlobEventTypes] :param scope: Required. The ARM resource ID of the Storage Account. :type scope: str """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'events': {'required': True}, 'scope': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipelines': {'key': 'pipelines', 'type': '[TriggerPipelineReference]'}, 'blob_path_begins_with': {'key': 'typeProperties.blobPathBeginsWith', 'type': 'str'}, 'blob_path_ends_with': {'key': 'typeProperties.blobPathEndsWith', 'type': 'str'}, 'ignore_empty_blobs': {'key': 'typeProperties.ignoreEmptyBlobs', 'type': 'bool'}, 'events': {'key': 'typeProperties.events', 'type': '[str]'}, 'scope': {'key': 'typeProperties.scope', 'type': 'str'}, } def __init__( self, **kwargs ): super(BlobEventsTrigger, self).__init__(**kwargs) self.type = 'BlobEventsTrigger' # type: str self.blob_path_begins_with = kwargs.get('blob_path_begins_with', None) self.blob_path_ends_with = kwargs.get('blob_path_ends_with', None) self.ignore_empty_blobs = kwargs.get('ignore_empty_blobs', None) self.events = kwargs['events'] self.scope = kwargs['scope'] class BlobTrigger(MultiplePipelineTrigger): """Trigger that runs every time the selected Blob container changes. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipelines: Pipelines that need to be started. :type pipelines: list[~dfaz_management_client.models.TriggerPipelineReference] :param folder_path: Required. The path of the container/folder that will trigger the pipeline. :type folder_path: str :param max_concurrency: Required. The max number of parallel files to handle when it is triggered. :type max_concurrency: int :param linked_service: Required. The Azure Storage linked service reference. :type linked_service: ~dfaz_management_client.models.LinkedServiceReference """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'folder_path': {'required': True}, 'max_concurrency': {'required': True}, 'linked_service': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipelines': {'key': 'pipelines', 'type': '[TriggerPipelineReference]'}, 'folder_path': {'key': 'typeProperties.folderPath', 'type': 'str'}, 'max_concurrency': {'key': 'typeProperties.maxConcurrency', 'type': 'int'}, 'linked_service': {'key': 'typeProperties.linkedService', 'type': 'LinkedServiceReference'}, } def __init__( self, **kwargs ): super(BlobTrigger, self).__init__(**kwargs) self.type = 'BlobTrigger' # type: str self.folder_path = kwargs['folder_path'] self.max_concurrency = kwargs['max_concurrency'] self.linked_service = kwargs['linked_service'] class ChainingTrigger(Trigger): """Trigger that allows the referenced pipeline to depend on other pipeline runs based on runDimension Name/Value pairs. Upstream pipelines should declare the same runDimension Name and their runs should have the values for those runDimensions. The referenced pipeline run would be triggered if the values for the runDimension match for all upstream pipeline runs. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipeline: Required. Pipeline for which runs are created when all upstream pipelines complete successfully. :type pipeline: ~dfaz_management_client.models.TriggerPipelineReference :param depends_on: Required. Upstream Pipelines. :type depends_on: list[~dfaz_management_client.models.PipelineReference] :param run_dimension: Required. Run Dimension property that needs to be emitted by upstream pipelines. :type run_dimension: str """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'pipeline': {'required': True}, 'depends_on': {'required': True}, 'run_dimension': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipeline': {'key': 'pipeline', 'type': 'TriggerPipelineReference'}, 'depends_on': {'key': 'typeProperties.dependsOn', 'type': '[PipelineReference]'}, 'run_dimension': {'key': 'typeProperties.runDimension', 'type': 'str'}, } def __init__( self, **kwargs ): super(ChainingTrigger, self).__init__(**kwargs) self.type = 'ChainingTrigger' # type: str self.pipeline = kwargs['pipeline'] self.depends_on = kwargs['depends_on'] self.run_dimension = kwargs['run_dimension'] class CloudError(msrest.serialization.Model): """The object that defines the structure of an Azure Data Factory error response. All required parameters must be populated in order to send to Azure. :param code: Required. Error code. :type code: str :param message: Required. Error message. :type message: str :param target: Property name/path in request associated with error. :type target: str :param details: Array with additional error details. :type details: list[~dfaz_management_client.models.CloudError] """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'code': {'key': 'error.code', 'type': 'str'}, 'message': {'key': 'error.message', 'type': 'str'}, 'target': {'key': 'error.target', 'type': 'str'}, 'details': {'key': 'error.details', 'type': '[CloudError]'}, } def __init__( self, **kwargs ): super(CloudError, self).__init__(**kwargs) self.code = kwargs['code'] self.message = kwargs['message'] self.target = kwargs.get('target', None) self.details = kwargs.get('details', None) class CustomSetupBase(msrest.serialization.Model): """The base definition of the custom setup. You probably want to use the sub-classes and not this class directly. Known sub-classes are: CmdkeySetup, ComponentSetup, EnvironmentVariableSetup. All required parameters must be populated in order to send to Azure. :param type: Required. The type of custom setup.Constant filled by server. :type type: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, } _subtype_map = { 'type': {'CmdkeySetup': 'CmdkeySetup', 'ComponentSetup': 'ComponentSetup', 'EnvironmentVariableSetup': 'EnvironmentVariableSetup'} } def __init__( self, **kwargs ): super(CustomSetupBase, self).__init__(**kwargs) self.type = None # type: Optional[str] class CmdkeySetup(CustomSetupBase): """The custom setup of running cmdkey commands. All required parameters must be populated in order to send to Azure. :param type: Required. The type of custom setup.Constant filled by server. :type type: str :param target_name: Required. The server name of data source access. :type target_name: object :param user_name: Required. The user name of data source access. :type user_name: object :param password: Required. The password of data source access. :type password: ~dfaz_management_client.models.SecretBase """ _validation = { 'type': {'required': True}, 'target_name': {'required': True}, 'user_name': {'required': True}, 'password': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'target_name': {'key': 'typeProperties.targetName', 'type': 'object'}, 'user_name': {'key': 'typeProperties.userName', 'type': 'object'}, 'password': {'key': 'typeProperties.password', 'type': 'SecretBase'}, } def __init__( self, **kwargs ): super(CmdkeySetup, self).__init__(**kwargs) self.type = 'CmdkeySetup' # type: str self.target_name = kwargs['target_name'] self.user_name = kwargs['user_name'] self.password = kwargs['password'] class ComponentSetup(CustomSetupBase): """The custom setup of installing 3rd party components. All required parameters must be populated in order to send to Azure. :param type: Required. The type of custom setup.Constant filled by server. :type type: str :param component_name: Required. The name of the 3rd party component. :type component_name: str :param license_key: The license key to activate the component. :type license_key: ~dfaz_management_client.models.SecretBase """ _validation = { 'type': {'required': True}, 'component_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'component_name': {'key': 'typeProperties.componentName', 'type': 'str'}, 'license_key': {'key': 'typeProperties.licenseKey', 'type': 'SecretBase'}, } def __init__( self, **kwargs ): super(ComponentSetup, self).__init__(**kwargs) self.type = 'ComponentSetup' # type: str self.component_name = kwargs['component_name'] self.license_key = kwargs.get('license_key', None) class CreateLinkedIntegrationRuntimeRequest(msrest.serialization.Model): """The linked integration runtime information. :param name: The name of the linked integration runtime. :type name: str :param subscription_id: The ID of the subscription that the linked integration runtime belongs to. :type subscription_id: str :param data_factory_name: The name of the data factory that the linked integration runtime belongs to. :type data_factory_name: str :param data_factory_location: The location of the data factory that the linked integration runtime belongs to. :type data_factory_location: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'subscription_id': {'key': 'subscriptionId', 'type': 'str'}, 'data_factory_name': {'key': 'dataFactoryName', 'type': 'str'}, 'data_factory_location': {'key': 'dataFactoryLocation', 'type': 'str'}, } def __init__( self, **kwargs ): super(CreateLinkedIntegrationRuntimeRequest, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.subscription_id = kwargs.get('subscription_id', None) self.data_factory_name = kwargs.get('data_factory_name', None) self.data_factory_location = kwargs.get('data_factory_location', None) class DependencyReference(msrest.serialization.Model): """Referenced dependency. You probably want to use the sub-classes and not this class directly. Known sub-classes are: SelfDependencyTumblingWindowTriggerReference, TriggerDependencyReference. All required parameters must be populated in order to send to Azure. :param type: Required. The type of dependency reference.Constant filled by server. :type type: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, } _subtype_map = { 'type': {'SelfDependencyTumblingWindowTriggerReference': 'SelfDependencyTumblingWindowTriggerReference', 'TriggerDependencyReference': 'TriggerDependencyReference'} } def __init__( self, **kwargs ): super(DependencyReference, self).__init__(**kwargs) self.type = None # type: Optional[str] class EntityReference(msrest.serialization.Model): """The entity reference. :param type: The type of this referenced entity. Possible values include: "IntegrationRuntimeReference", "LinkedServiceReference". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeEntityReferenceType :param reference_name: The name of this referenced entity. :type reference_name: str """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, } def __init__( self, **kwargs ): super(EntityReference, self).__init__(**kwargs) self.type = kwargs.get('type', None) self.reference_name = kwargs.get('reference_name', None) class EnvironmentVariableSetup(CustomSetupBase): """The custom setup of setting environment variable. All required parameters must be populated in order to send to Azure. :param type: Required. The type of custom setup.Constant filled by server. :type type: str :param variable_name: Required. The name of the environment variable. :type variable_name: str :param variable_value: Required. The value of the environment variable. :type variable_value: str """ _validation = { 'type': {'required': True}, 'variable_name': {'required': True}, 'variable_value': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'variable_name': {'key': 'typeProperties.variableName', 'type': 'str'}, 'variable_value': {'key': 'typeProperties.variableValue', 'type': 'str'}, } def __init__( self, **kwargs ): super(EnvironmentVariableSetup, self).__init__(**kwargs) self.type = 'EnvironmentVariableSetup' # type: str self.variable_name = kwargs['variable_name'] self.variable_value = kwargs['variable_value'] class Resource(msrest.serialization.Model): """Azure Data Factory top-level resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The resource identifier. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :param location: The resource location. :type location: str :param tags: A set of tags. The resource tags. :type tags: dict[str, str] :ivar e_tag: Etag identifies change in the resource. :vartype e_tag: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'e_tag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'e_tag': {'key': 'eTag', 'type': 'str'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.location = kwargs.get('location', None) self.tags = kwargs.get('tags', None) self.e_tag = None class Factory(Resource): """Factory resource type. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The resource identifier. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :param location: The resource location. :type location: str :param tags: A set of tags. The resource tags. :type tags: dict[str, str] :ivar e_tag: Etag identifies change in the resource. :vartype e_tag: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar provisioning_state: Factory provisioning state, example Succeeded. :vartype provisioning_state: str :ivar create_time: Time the factory was created in ISO8601 format. :vartype create_time: ~datetime.datetime :ivar version: Version of the factory. :vartype version: str :param repo_configuration: Git repo information of the factory. :type repo_configuration: ~dfaz_management_client.models.FactoryRepoConfiguration :param fake_identity: This is only for az test. :type fake_identity: ~dfaz_management_client.models.FakeFactoryIdentity :param zones: This is only for az test. :type zones: list[str] :param type_identity_type: The identity type. Currently the only supported type is 'SystemAssigned'. Possible values include: "SystemAssigned". :type type_identity_type: str or ~dfaz_management_client.models.FactoryIdentityType :ivar principal_id: The principal id of the identity. :vartype principal_id: str :ivar tenant_id: The client tenant id of the identity. :vartype tenant_id: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'e_tag': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'create_time': {'readonly': True}, 'version': {'readonly': True}, 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'e_tag': {'key': 'eTag', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'create_time': {'key': 'properties.createTime', 'type': 'iso-8601'}, 'version': {'key': 'properties.version', 'type': 'str'}, 'repo_configuration': {'key': 'properties.repoConfiguration', 'type': 'FactoryRepoConfiguration'}, 'fake_identity': {'key': 'properties.fakeIdentity', 'type': 'FakeFactoryIdentity'}, 'zones': {'key': 'properties.zones', 'type': '[str]'}, 'type_identity_type': {'key': 'identity.type', 'type': 'str'}, 'principal_id': {'key': 'identity.principalId', 'type': 'str'}, 'tenant_id': {'key': 'identity.tenantId', 'type': 'str'}, } def __init__( self, **kwargs ): super(Factory, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.provisioning_state = None self.create_time = None self.version = None self.repo_configuration = kwargs.get('repo_configuration', None) self.fake_identity = kwargs.get('fake_identity', None) self.zones = kwargs.get('zones', None) self.type_identity_type = kwargs.get('type_identity_type', None) self.principal_id = None self.tenant_id = None class FactoryRepoConfiguration(msrest.serialization.Model): """Factory's git repo information. You probably want to use the sub-classes and not this class directly. Known sub-classes are: FactoryGitHubConfiguration, FactoryVstsConfiguration. All required parameters must be populated in order to send to Azure. :param type: Required. Type of repo configuration.Constant filled by server. :type type: str :param account_name: Required. Account name. :type account_name: str :param repository_name: Required. Repository name. :type repository_name: str :param collaboration_branch: Required. Collaboration branch. :type collaboration_branch: str :param root_folder: Required. Root folder. :type root_folder: str :param last_commit_id: Last commit id. :type last_commit_id: str """ _validation = { 'type': {'required': True}, 'account_name': {'required': True}, 'repository_name': {'required': True}, 'collaboration_branch': {'required': True}, 'root_folder': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'account_name': {'key': 'accountName', 'type': 'str'}, 'repository_name': {'key': 'repositoryName', 'type': 'str'}, 'collaboration_branch': {'key': 'collaborationBranch', 'type': 'str'}, 'root_folder': {'key': 'rootFolder', 'type': 'str'}, 'last_commit_id': {'key': 'lastCommitId', 'type': 'str'}, } _subtype_map = { 'type': {'FactoryGitHubConfiguration': 'FactoryGitHubConfiguration', 'FactoryVSTSConfiguration': 'FactoryVstsConfiguration'} } def __init__( self, **kwargs ): super(FactoryRepoConfiguration, self).__init__(**kwargs) self.type = None # type: Optional[str] self.account_name = kwargs['account_name'] self.repository_name = kwargs['repository_name'] self.collaboration_branch = kwargs['collaboration_branch'] self.root_folder = kwargs['root_folder'] self.last_commit_id = kwargs.get('last_commit_id', None) class FactoryGitHubConfiguration(FactoryRepoConfiguration): """Factory's GitHub repo information. All required parameters must be populated in order to send to Azure. :param type: Required. Type of repo configuration.Constant filled by server. :type type: str :param account_name: Required. Account name. :type account_name: str :param repository_name: Required. Repository name. :type repository_name: str :param collaboration_branch: Required. Collaboration branch. :type collaboration_branch: str :param root_folder: Required. Root folder. :type root_folder: str :param last_commit_id: Last commit id. :type last_commit_id: str :param host_name: GitHub Enterprise host name. For example: https://github.mydomain.com. :type host_name: str """ _validation = { 'type': {'required': True}, 'account_name': {'required': True}, 'repository_name': {'required': True}, 'collaboration_branch': {'required': True}, 'root_folder': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'account_name': {'key': 'accountName', 'type': 'str'}, 'repository_name': {'key': 'repositoryName', 'type': 'str'}, 'collaboration_branch': {'key': 'collaborationBranch', 'type': 'str'}, 'root_folder': {'key': 'rootFolder', 'type': 'str'}, 'last_commit_id': {'key': 'lastCommitId', 'type': 'str'}, 'host_name': {'key': 'hostName', 'type': 'str'}, } def __init__( self, **kwargs ): super(FactoryGitHubConfiguration, self).__init__(**kwargs) self.type = 'FactoryGitHubConfiguration' # type: str self.host_name = kwargs.get('host_name', None) class FactoryListResponse(msrest.serialization.Model): """A list of factory resources. All required parameters must be populated in order to send to Azure. :param value: Required. List of factories. :type value: list[~dfaz_management_client.models.Factory] :param next_link: The link to the next page of results, if any remaining results exist. :type next_link: str """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Factory]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(FactoryListResponse, self).__init__(**kwargs) self.value = kwargs['value'] self.next_link = kwargs.get('next_link', None) class FactoryRepoUpdate(msrest.serialization.Model): """Factory's git repo information. :param factory_resource_id: The factory resource id. :type factory_resource_id: str :param repo_configuration: Git repo information of the factory. :type repo_configuration: ~dfaz_management_client.models.FactoryRepoConfiguration """ _attribute_map = { 'factory_resource_id': {'key': 'factoryResourceId', 'type': 'str'}, 'repo_configuration': {'key': 'repoConfiguration', 'type': 'FactoryRepoConfiguration'}, } def __init__( self, **kwargs ): super(FactoryRepoUpdate, self).__init__(**kwargs) self.factory_resource_id = kwargs.get('factory_resource_id', None) self.repo_configuration = kwargs.get('repo_configuration', None) class FactoryUpdateParameters(msrest.serialization.Model): """Parameters for updating a factory resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param tags: A set of tags. The resource tags. :type tags: dict[str, str] :param type: Required. The identity type. Currently the only supported type is 'SystemAssigned'. Possible values include: "SystemAssigned". :type type: str or ~dfaz_management_client.models.FactoryIdentityType :ivar principal_id: The principal id of the identity. :vartype principal_id: str :ivar tenant_id: The client tenant id of the identity. :vartype tenant_id: str """ _validation = { 'type': {'required': True}, 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, } _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, 'type': {'key': 'identity.type', 'type': 'str'}, 'principal_id': {'key': 'identity.principalId', 'type': 'str'}, 'tenant_id': {'key': 'identity.tenantId', 'type': 'str'}, } def __init__( self, **kwargs ): super(FactoryUpdateParameters, self).__init__(**kwargs) self.tags = kwargs.get('tags', None) self.type = kwargs['type'] self.principal_id = None self.tenant_id = None class FactoryVstsConfiguration(FactoryRepoConfiguration): """Factory's VSTS repo information. All required parameters must be populated in order to send to Azure. :param type: Required. Type of repo configuration.Constant filled by server. :type type: str :param account_name: Required. Account name. :type account_name: str :param repository_name: Required. Repository name. :type repository_name: str :param collaboration_branch: Required. Collaboration branch. :type collaboration_branch: str :param root_folder: Required. Root folder. :type root_folder: str :param last_commit_id: Last commit id. :type last_commit_id: str :param project_name: Required. VSTS project name. :type project_name: str :param tenant_id: VSTS tenant id. :type tenant_id: str """ _validation = { 'type': {'required': True}, 'account_name': {'required': True}, 'repository_name': {'required': True}, 'collaboration_branch': {'required': True}, 'root_folder': {'required': True}, 'project_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'account_name': {'key': 'accountName', 'type': 'str'}, 'repository_name': {'key': 'repositoryName', 'type': 'str'}, 'collaboration_branch': {'key': 'collaborationBranch', 'type': 'str'}, 'root_folder': {'key': 'rootFolder', 'type': 'str'}, 'last_commit_id': {'key': 'lastCommitId', 'type': 'str'}, 'project_name': {'key': 'projectName', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, } def __init__( self, **kwargs ): super(FactoryVstsConfiguration, self).__init__(**kwargs) self.type = 'FactoryVSTSConfiguration' # type: str self.project_name = kwargs['project_name'] self.tenant_id = kwargs.get('tenant_id', None) class FakeFactoryIdentity(msrest.serialization.Model): """This is only for az test. All required parameters must be populated in order to send to Azure. :param name: Required. .. :type name: str :param zones_inside: sample of simple array. :type zones_inside: list[str] """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'zones_inside': {'key': 'zonesInside', 'type': '[str]'}, } def __init__( self, **kwargs ): super(FakeFactoryIdentity, self).__init__(**kwargs) self.name = kwargs['name'] self.zones_inside = kwargs.get('zones_inside', None) class GitHubAccessTokenRequest(msrest.serialization.Model): """Get GitHub access token request definition. All required parameters must be populated in order to send to Azure. :param git_hub_access_code: Required. GitHub access code. :type git_hub_access_code: str :param git_hub_client_id: GitHub application client ID. :type git_hub_client_id: str :param git_hub_access_token_base_url: Required. GitHub access token base URL. :type git_hub_access_token_base_url: str """ _validation = { 'git_hub_access_code': {'required': True}, 'git_hub_access_token_base_url': {'required': True}, } _attribute_map = { 'git_hub_access_code': {'key': 'gitHubAccessCode', 'type': 'str'}, 'git_hub_client_id': {'key': 'gitHubClientId', 'type': 'str'}, 'git_hub_access_token_base_url': {'key': 'gitHubAccessTokenBaseUrl', 'type': 'str'}, } def __init__( self, **kwargs ): super(GitHubAccessTokenRequest, self).__init__(**kwargs) self.git_hub_access_code = kwargs['git_hub_access_code'] self.git_hub_client_id = kwargs.get('git_hub_client_id', None) self.git_hub_access_token_base_url = kwargs['git_hub_access_token_base_url'] class GitHubAccessTokenResponse(msrest.serialization.Model): """Get GitHub access token response definition. :param git_hub_access_token: GitHub access token. :type git_hub_access_token: str """ _attribute_map = { 'git_hub_access_token': {'key': 'gitHubAccessToken', 'type': 'str'}, } def __init__( self, **kwargs ): super(GitHubAccessTokenResponse, self).__init__(**kwargs) self.git_hub_access_token = kwargs.get('git_hub_access_token', None) class IntegrationRuntime(msrest.serialization.Model): """Azure Data Factory nested object which serves as a compute resource for activities. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ManagedIntegrationRuntime, SelfHostedIntegrationRuntime. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :param description: Integration runtime description. :type description: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } _subtype_map = { 'type': {'Managed': 'ManagedIntegrationRuntime', 'SelfHosted': 'SelfHostedIntegrationRuntime'} } def __init__( self, **kwargs ): super(IntegrationRuntime, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.type = 'IntegrationRuntime' # type: str self.description = kwargs.get('description', None) class IntegrationRuntimeAuthKeys(msrest.serialization.Model): """The integration runtime authentication keys. :param auth_key1: The primary integration runtime authentication key. :type auth_key1: str :param auth_key2: The secondary integration runtime authentication key. :type auth_key2: str """ _attribute_map = { 'auth_key1': {'key': 'authKey1', 'type': 'str'}, 'auth_key2': {'key': 'authKey2', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeAuthKeys, self).__init__(**kwargs) self.auth_key1 = kwargs.get('auth_key1', None) self.auth_key2 = kwargs.get('auth_key2', None) class IntegrationRuntimeComputeProperties(msrest.serialization.Model): """The compute resource properties for managed integration runtime. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param location: The location for managed integration runtime. The supported regions could be found on https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-movement- activities. :type location: str :param node_size: The node size requirement to managed integration runtime. :type node_size: str :param number_of_nodes: The required number of nodes for managed integration runtime. :type number_of_nodes: int :param max_parallel_executions_per_node: Maximum parallel executions count per node for managed integration runtime. :type max_parallel_executions_per_node: int :param data_flow_properties: Data flow properties for managed integration runtime. :type data_flow_properties: ~dfaz_management_client.models.IntegrationRuntimeDataFlowProperties :param v_net_properties: VNet properties for managed integration runtime. :type v_net_properties: ~dfaz_management_client.models.IntegrationRuntimeVNetProperties """ _validation = { 'number_of_nodes': {'minimum': 1}, 'max_parallel_executions_per_node': {'minimum': 1}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'location': {'key': 'location', 'type': 'str'}, 'node_size': {'key': 'nodeSize', 'type': 'str'}, 'number_of_nodes': {'key': 'numberOfNodes', 'type': 'int'}, 'max_parallel_executions_per_node': {'key': 'maxParallelExecutionsPerNode', 'type': 'int'}, 'data_flow_properties': {'key': 'dataFlowProperties', 'type': 'IntegrationRuntimeDataFlowProperties'}, 'v_net_properties': {'key': 'vNetProperties', 'type': 'IntegrationRuntimeVNetProperties'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeComputeProperties, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.location = kwargs.get('location', None) self.node_size = kwargs.get('node_size', None) self.number_of_nodes = kwargs.get('number_of_nodes', None) self.max_parallel_executions_per_node = kwargs.get('max_parallel_executions_per_node', None) self.data_flow_properties = kwargs.get('data_flow_properties', None) self.v_net_properties = kwargs.get('v_net_properties', None) class IntegrationRuntimeConnectionInfo(msrest.serialization.Model): """Connection information for encrypting the on-premises data source credentials. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar service_token: The token generated in service. Callers use this token to authenticate to integration runtime. :vartype service_token: str :ivar identity_cert_thumbprint: The integration runtime SSL certificate thumbprint. Click-Once application uses it to do server validation. :vartype identity_cert_thumbprint: str :ivar host_service_uri: The on-premises integration runtime host URL. :vartype host_service_uri: str :ivar version: The integration runtime version. :vartype version: str :ivar public_key: The public key for encrypting a credential when transferring the credential to the integration runtime. :vartype public_key: str :ivar is_identity_cert_exprired: Whether the identity certificate is expired. :vartype is_identity_cert_exprired: bool """ _validation = { 'service_token': {'readonly': True}, 'identity_cert_thumbprint': {'readonly': True}, 'host_service_uri': {'readonly': True}, 'version': {'readonly': True}, 'public_key': {'readonly': True}, 'is_identity_cert_exprired': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'service_token': {'key': 'serviceToken', 'type': 'str'}, 'identity_cert_thumbprint': {'key': 'identityCertThumbprint', 'type': 'str'}, 'host_service_uri': {'key': 'hostServiceUri', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'public_key': {'key': 'publicKey', 'type': 'str'}, 'is_identity_cert_exprired': {'key': 'isIdentityCertExprired', 'type': 'bool'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeConnectionInfo, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.service_token = None self.identity_cert_thumbprint = None self.host_service_uri = None self.version = None self.public_key = None self.is_identity_cert_exprired = None class IntegrationRuntimeCustomSetupScriptProperties(msrest.serialization.Model): """Custom setup script properties for a managed dedicated integration runtime. :param blob_container_uri: The URI of the Azure blob container that contains the custom setup script. :type blob_container_uri: str :param sas_token: The SAS token of the Azure blob container. :type sas_token: ~dfaz_management_client.models.SecureString """ _attribute_map = { 'blob_container_uri': {'key': 'blobContainerUri', 'type': 'str'}, 'sas_token': {'key': 'sasToken', 'type': 'SecureString'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeCustomSetupScriptProperties, self).__init__(**kwargs) self.blob_container_uri = kwargs.get('blob_container_uri', None) self.sas_token = kwargs.get('sas_token', None) class IntegrationRuntimeDataFlowProperties(msrest.serialization.Model): """Data flow properties for managed integration runtime. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param compute_type: Compute type of the cluster which will execute data flow job. Possible values include: "General", "MemoryOptimized", "ComputeOptimized". :type compute_type: str or ~dfaz_management_client.models.DataFlowComputeType :param core_count: Core count of the cluster which will execute data flow job. Supported values are: 8, 16, 32, 48, 80, 144 and 272. :type core_count: int :param time_to_live: Time to live (in minutes) setting of the cluster which will execute data flow job. :type time_to_live: int """ _validation = { 'time_to_live': {'minimum': 0}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'compute_type': {'key': 'computeType', 'type': 'str'}, 'core_count': {'key': 'coreCount', 'type': 'int'}, 'time_to_live': {'key': 'timeToLive', 'type': 'int'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeDataFlowProperties, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.compute_type = kwargs.get('compute_type', None) self.core_count = kwargs.get('core_count', None) self.time_to_live = kwargs.get('time_to_live', None) class IntegrationRuntimeDataProxyProperties(msrest.serialization.Model): """Data proxy properties for a managed dedicated integration runtime. :param connect_via: The self-hosted integration runtime reference. :type connect_via: ~dfaz_management_client.models.EntityReference :param staging_linked_service: The staging linked service reference. :type staging_linked_service: ~dfaz_management_client.models.EntityReference :param path: The path to contain the staged data in the Blob storage. :type path: str """ _attribute_map = { 'connect_via': {'key': 'connectVia', 'type': 'EntityReference'}, 'staging_linked_service': {'key': 'stagingLinkedService', 'type': 'EntityReference'}, 'path': {'key': 'path', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeDataProxyProperties, self).__init__(**kwargs) self.connect_via = kwargs.get('connect_via', None) self.staging_linked_service = kwargs.get('staging_linked_service', None) self.path = kwargs.get('path', None) class IntegrationRuntimeListResponse(msrest.serialization.Model): """A list of integration runtime resources. All required parameters must be populated in order to send to Azure. :param value: Required. List of integration runtimes. :type value: list[~dfaz_management_client.models.IntegrationRuntimeResource] :param next_link: The link to the next page of results, if any remaining results exist. :type next_link: str """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[IntegrationRuntimeResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeListResponse, self).__init__(**kwargs) self.value = kwargs['value'] self.next_link = kwargs.get('next_link', None) class IntegrationRuntimeMonitoringData(msrest.serialization.Model): """Get monitoring data response. :param name: Integration runtime name. :type name: str :param nodes: Integration runtime node monitoring data. :type nodes: list[~dfaz_management_client.models.IntegrationRuntimeNodeMonitoringData] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'nodes': {'key': 'nodes', 'type': '[IntegrationRuntimeNodeMonitoringData]'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeMonitoringData, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.nodes = kwargs.get('nodes', None) class IntegrationRuntimeNodeIpAddress(msrest.serialization.Model): """The IP address of self-hosted integration runtime node. Variables are only populated by the server, and will be ignored when sending a request. :ivar ip_address: The IP address of self-hosted integration runtime node. :vartype ip_address: str """ _validation = { 'ip_address': {'readonly': True}, } _attribute_map = { 'ip_address': {'key': 'ipAddress', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeNodeIpAddress, self).__init__(**kwargs) self.ip_address = None class IntegrationRuntimeNodeMonitoringData(msrest.serialization.Model): """Monitoring data for integration runtime node. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar node_name: Name of the integration runtime node. :vartype node_name: str :ivar available_memory_in_mb: Available memory (MB) on the integration runtime node. :vartype available_memory_in_mb: int :ivar cpu_utilization: CPU percentage on the integration runtime node. :vartype cpu_utilization: int :ivar concurrent_jobs_limit: Maximum concurrent jobs on the integration runtime node. :vartype concurrent_jobs_limit: int :ivar concurrent_jobs_running: The number of jobs currently running on the integration runtime node. :vartype concurrent_jobs_running: int :ivar max_concurrent_jobs: The maximum concurrent jobs in this integration runtime. :vartype max_concurrent_jobs: int :ivar sent_bytes: Sent bytes on the integration runtime node. :vartype sent_bytes: float :ivar received_bytes: Received bytes on the integration runtime node. :vartype received_bytes: float """ _validation = { 'node_name': {'readonly': True}, 'available_memory_in_mb': {'readonly': True}, 'cpu_utilization': {'readonly': True}, 'concurrent_jobs_limit': {'readonly': True}, 'concurrent_jobs_running': {'readonly': True}, 'max_concurrent_jobs': {'readonly': True}, 'sent_bytes': {'readonly': True}, 'received_bytes': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'node_name': {'key': 'nodeName', 'type': 'str'}, 'available_memory_in_mb': {'key': 'availableMemoryInMB', 'type': 'int'}, 'cpu_utilization': {'key': 'cpuUtilization', 'type': 'int'}, 'concurrent_jobs_limit': {'key': 'concurrentJobsLimit', 'type': 'int'}, 'concurrent_jobs_running': {'key': 'concurrentJobsRunning', 'type': 'int'}, 'max_concurrent_jobs': {'key': 'maxConcurrentJobs', 'type': 'int'}, 'sent_bytes': {'key': 'sentBytes', 'type': 'float'}, 'received_bytes': {'key': 'receivedBytes', 'type': 'float'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeNodeMonitoringData, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.node_name = None self.available_memory_in_mb = None self.cpu_utilization = None self.concurrent_jobs_limit = None self.concurrent_jobs_running = None self.max_concurrent_jobs = None self.sent_bytes = None self.received_bytes = None class IntegrationRuntimeReference(msrest.serialization.Model): """Integration runtime reference type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. Type of integration runtime. Default value: "IntegrationRuntimeReference". :vartype type: str :param reference_name: Required. Reference integration runtime name. :type reference_name: str :param parameters: Arguments for integration runtime. :type parameters: dict[str, object] """ _validation = { 'type': {'required': True, 'constant': True}, 'reference_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{object}'}, } type = "IntegrationRuntimeReference" def __init__( self, **kwargs ): super(IntegrationRuntimeReference, self).__init__(**kwargs) self.reference_name = kwargs['reference_name'] self.parameters = kwargs.get('parameters', None) class IntegrationRuntimeRegenerateKeyParameters(msrest.serialization.Model): """Parameters to regenerate the authentication key. :param key_name: The name of the authentication key to regenerate. Possible values include: "authKey1", "authKey2". :type key_name: str or ~dfaz_management_client.models.IntegrationRuntimeAuthKeyName """ _attribute_map = { 'key_name': {'key': 'keyName', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeRegenerateKeyParameters, self).__init__(**kwargs) self.key_name = kwargs.get('key_name', None) class SubResource(msrest.serialization.Model): """Azure Data Factory nested resource, which belongs to a factory. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The resource identifier. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :ivar etag: Etag identifies change in the resource. :vartype etag: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__( self, **kwargs ): super(SubResource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.etag = None class IntegrationRuntimeResource(SubResource): """Integration runtime resource type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: The resource identifier. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :ivar etag: Etag identifies change in the resource. :vartype etag: str :param properties: Required. Integration runtime properties. :type properties: ~dfaz_management_client.models.IntegrationRuntime """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, 'properties': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'IntegrationRuntime'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeResource, self).__init__(**kwargs) self.properties = kwargs['properties'] class IntegrationRuntimeSsisCatalogInfo(msrest.serialization.Model): """Catalog information for managed dedicated integration runtime. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param catalog_server_endpoint: The catalog database server URL. :type catalog_server_endpoint: str :param catalog_admin_user_name: The administrator user name of catalog database. :type catalog_admin_user_name: str :param catalog_admin_password: The password of the administrator user account of the catalog database. :type catalog_admin_password: ~dfaz_management_client.models.SecureString :param catalog_pricing_tier: The pricing tier for the catalog database. The valid values could be found in https://azure.microsoft.com/en-us/pricing/details/sql-database/. Possible values include: "Basic", "Standard", "Premium", "PremiumRS". :type catalog_pricing_tier: str or ~dfaz_management_client.models.IntegrationRuntimeSsisCatalogPricingTier """ _validation = { 'catalog_admin_user_name': {'max_length': 128, 'min_length': 1}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'catalog_server_endpoint': {'key': 'catalogServerEndpoint', 'type': 'str'}, 'catalog_admin_user_name': {'key': 'catalogAdminUserName', 'type': 'str'}, 'catalog_admin_password': {'key': 'catalogAdminPassword', 'type': 'SecureString'}, 'catalog_pricing_tier': {'key': 'catalogPricingTier', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeSsisCatalogInfo, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.catalog_server_endpoint = kwargs.get('catalog_server_endpoint', None) self.catalog_admin_user_name = kwargs.get('catalog_admin_user_name', None) self.catalog_admin_password = kwargs.get('catalog_admin_password', None) self.catalog_pricing_tier = kwargs.get('catalog_pricing_tier', None) class IntegrationRuntimeSsisProperties(msrest.serialization.Model): """SSIS properties for managed integration runtime. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param catalog_info: Catalog information for managed dedicated integration runtime. :type catalog_info: ~dfaz_management_client.models.IntegrationRuntimeSsisCatalogInfo :param license_type: License type for bringing your own license scenario. Possible values include: "BasePrice", "LicenseIncluded". :type license_type: str or ~dfaz_management_client.models.IntegrationRuntimeLicenseType :param custom_setup_script_properties: Custom setup script properties for a managed dedicated integration runtime. :type custom_setup_script_properties: ~dfaz_management_client.models.IntegrationRuntimeCustomSetupScriptProperties :param data_proxy_properties: Data proxy properties for a managed dedicated integration runtime. :type data_proxy_properties: ~dfaz_management_client.models.IntegrationRuntimeDataProxyProperties :param edition: The edition for the SSIS Integration Runtime. Possible values include: "Standard", "Enterprise". :type edition: str or ~dfaz_management_client.models.IntegrationRuntimeEdition :param express_custom_setup_properties: Custom setup without script properties for a SSIS integration runtime. :type express_custom_setup_properties: list[~dfaz_management_client.models.CustomSetupBase] :param package_stores: Package stores for the SSIS Integration Runtime. :type package_stores: list[~dfaz_management_client.models.PackageStore] """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'catalog_info': {'key': 'catalogInfo', 'type': 'IntegrationRuntimeSsisCatalogInfo'}, 'license_type': {'key': 'licenseType', 'type': 'str'}, 'custom_setup_script_properties': {'key': 'customSetupScriptProperties', 'type': 'IntegrationRuntimeCustomSetupScriptProperties'}, 'data_proxy_properties': {'key': 'dataProxyProperties', 'type': 'IntegrationRuntimeDataProxyProperties'}, 'edition': {'key': 'edition', 'type': 'str'}, 'express_custom_setup_properties': {'key': 'expressCustomSetupProperties', 'type': '[CustomSetupBase]'}, 'package_stores': {'key': 'packageStores', 'type': '[PackageStore]'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeSsisProperties, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.catalog_info = kwargs.get('catalog_info', None) self.license_type = kwargs.get('license_type', None) self.custom_setup_script_properties = kwargs.get('custom_setup_script_properties', None) self.data_proxy_properties = kwargs.get('data_proxy_properties', None) self.edition = kwargs.get('edition', None) self.express_custom_setup_properties = kwargs.get('express_custom_setup_properties', None) self.package_stores = kwargs.get('package_stores', None) class IntegrationRuntimeStatus(msrest.serialization.Model): """Integration runtime status. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ManagedIntegrationRuntimeStatus, SelfHostedIntegrationRuntimeStatus. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :ivar data_factory_name: The data factory name which the integration runtime belong to. :vartype data_factory_name: str :ivar state: The state of integration runtime. Possible values include: "Initial", "Stopped", "Started", "Starting", "Stopping", "NeedRegistration", "Online", "Limited", "Offline", "AccessDenied". :vartype state: str or ~dfaz_management_client.models.IntegrationRuntimeState """ _validation = { 'type': {'required': True}, 'data_factory_name': {'readonly': True}, 'state': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'data_factory_name': {'key': 'dataFactoryName', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, } _subtype_map = { 'type': {'Managed': 'ManagedIntegrationRuntimeStatus', 'SelfHosted': 'SelfHostedIntegrationRuntimeStatus'} } def __init__( self, **kwargs ): super(IntegrationRuntimeStatus, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.type = 'IntegrationRuntimeStatus' # type: str self.data_factory_name = None self.state = None class IntegrationRuntimeStatusListResponse(msrest.serialization.Model): """A list of integration runtime status. All required parameters must be populated in order to send to Azure. :param value: Required. List of integration runtime status. :type value: list[~dfaz_management_client.models.IntegrationRuntimeStatusResponse] :param next_link: The link to the next page of results, if any remaining results exist. :type next_link: str """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[IntegrationRuntimeStatusResponse]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeStatusListResponse, self).__init__(**kwargs) self.value = kwargs['value'] self.next_link = kwargs.get('next_link', None) class IntegrationRuntimeStatusResponse(msrest.serialization.Model): """Integration runtime status response. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar name: The integration runtime name. :vartype name: str :param properties: Required. Integration runtime properties. :type properties: ~dfaz_management_client.models.IntegrationRuntimeStatus """ _validation = { 'name': {'readonly': True}, 'properties': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'IntegrationRuntimeStatus'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeStatusResponse, self).__init__(**kwargs) self.name = None self.properties = kwargs['properties'] class IntegrationRuntimeVNetProperties(msrest.serialization.Model): """VNet properties for managed integration runtime. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param v_net_id: The ID of the VNet that this integration runtime will join. :type v_net_id: str :param subnet: The name of the subnet this integration runtime will join. :type subnet: str :param public_i_ps: Resource IDs of the public IP addresses that this integration runtime will use. :type public_i_ps: list[str] """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'v_net_id': {'key': 'vNetId', 'type': 'str'}, 'subnet': {'key': 'subnet', 'type': 'str'}, 'public_i_ps': {'key': 'publicIPs', 'type': '[str]'}, } def __init__( self, **kwargs ): super(IntegrationRuntimeVNetProperties, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.v_net_id = kwargs.get('v_net_id', None) self.subnet = kwargs.get('subnet', None) self.public_i_ps = kwargs.get('public_i_ps', None) class LinkedIntegrationRuntime(msrest.serialization.Model): """The linked integration runtime information. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The name of the linked integration runtime. :vartype name: str :ivar subscription_id: The subscription ID for which the linked integration runtime belong to. :vartype subscription_id: str :ivar data_factory_name: The name of the data factory for which the linked integration runtime belong to. :vartype data_factory_name: str :ivar data_factory_location: The location of the data factory for which the linked integration runtime belong to. :vartype data_factory_location: str :ivar create_time: The creating time of the linked integration runtime. :vartype create_time: ~datetime.datetime """ _validation = { 'name': {'readonly': True}, 'subscription_id': {'readonly': True}, 'data_factory_name': {'readonly': True}, 'data_factory_location': {'readonly': True}, 'create_time': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'subscription_id': {'key': 'subscriptionId', 'type': 'str'}, 'data_factory_name': {'key': 'dataFactoryName', 'type': 'str'}, 'data_factory_location': {'key': 'dataFactoryLocation', 'type': 'str'}, 'create_time': {'key': 'createTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(LinkedIntegrationRuntime, self).__init__(**kwargs) self.name = None self.subscription_id = None self.data_factory_name = None self.data_factory_location = None self.create_time = None class LinkedIntegrationRuntimeType(msrest.serialization.Model): """The base definition of a linked integration runtime. You probably want to use the sub-classes and not this class directly. Known sub-classes are: LinkedIntegrationRuntimeKeyAuthorization, LinkedIntegrationRuntimeRbacAuthorization. All required parameters must be populated in order to send to Azure. :param authorization_type: Required. The authorization type for integration runtime sharing.Constant filled by server. :type authorization_type: str """ _validation = { 'authorization_type': {'required': True}, } _attribute_map = { 'authorization_type': {'key': 'authorizationType', 'type': 'str'}, } _subtype_map = { 'authorization_type': {'Key': 'LinkedIntegrationRuntimeKeyAuthorization', 'RBAC': 'LinkedIntegrationRuntimeRbacAuthorization'} } def __init__( self, **kwargs ): super(LinkedIntegrationRuntimeType, self).__init__(**kwargs) self.authorization_type = None # type: Optional[str] class LinkedIntegrationRuntimeKeyAuthorization(LinkedIntegrationRuntimeType): """The key authorization type integration runtime. All required parameters must be populated in order to send to Azure. :param authorization_type: Required. The authorization type for integration runtime sharing.Constant filled by server. :type authorization_type: str :param key: Required. The key used for authorization. :type key: ~dfaz_management_client.models.SecureString """ _validation = { 'authorization_type': {'required': True}, 'key': {'required': True}, } _attribute_map = { 'authorization_type': {'key': 'authorizationType', 'type': 'str'}, 'key': {'key': 'key', 'type': 'SecureString'}, } def __init__( self, **kwargs ): super(LinkedIntegrationRuntimeKeyAuthorization, self).__init__(**kwargs) self.authorization_type = 'Key' # type: str self.key = kwargs['key'] class LinkedIntegrationRuntimeRbacAuthorization(LinkedIntegrationRuntimeType): """The role based access control (RBAC) authorization type integration runtime. All required parameters must be populated in order to send to Azure. :param authorization_type: Required. The authorization type for integration runtime sharing.Constant filled by server. :type authorization_type: str :param resource_id: Required. The resource identifier of the integration runtime to be shared. :type resource_id: str """ _validation = { 'authorization_type': {'required': True}, 'resource_id': {'required': True}, } _attribute_map = { 'authorization_type': {'key': 'authorizationType', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, } def __init__( self, **kwargs ): super(LinkedIntegrationRuntimeRbacAuthorization, self).__init__(**kwargs) self.authorization_type = 'RBAC' # type: str self.resource_id = kwargs['resource_id'] class LinkedIntegrationRuntimeRequest(msrest.serialization.Model): """Data factory name for linked integration runtime request. All required parameters must be populated in order to send to Azure. :param linked_factory_name: Required. The data factory name for linked integration runtime. :type linked_factory_name: str """ _validation = { 'linked_factory_name': {'required': True}, } _attribute_map = { 'linked_factory_name': {'key': 'factoryName', 'type': 'str'}, } def __init__( self, **kwargs ): super(LinkedIntegrationRuntimeRequest, self).__init__(**kwargs) self.linked_factory_name = kwargs['linked_factory_name'] class LinkedServiceReference(msrest.serialization.Model): """Linked service reference type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. Linked service reference type. Default value: "LinkedServiceReference". :vartype type: str :param reference_name: Required. Reference LinkedService name. :type reference_name: str :param parameters: Arguments for LinkedService. :type parameters: dict[str, object] """ _validation = { 'type': {'required': True, 'constant': True}, 'reference_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{object}'}, } type = "LinkedServiceReference" def __init__( self, **kwargs ): super(LinkedServiceReference, self).__init__(**kwargs) self.reference_name = kwargs['reference_name'] self.parameters = kwargs.get('parameters', None) class ManagedIntegrationRuntime(IntegrationRuntime): """Managed integration runtime, including managed elastic and managed dedicated integration runtimes. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :param description: Integration runtime description. :type description: str :ivar state: Integration runtime state, only valid for managed dedicated integration runtime. Possible values include: "Initial", "Stopped", "Started", "Starting", "Stopping", "NeedRegistration", "Online", "Limited", "Offline", "AccessDenied". :vartype state: str or ~dfaz_management_client.models.IntegrationRuntimeState :param repo_configuration: Git repo information of the factory. :type repo_configuration: ~dfaz_management_client.models.FactoryRepoConfiguration :param fake_identity: This is only for az test. :type fake_identity: ~dfaz_management_client.models.FakeFactoryIdentity :param zones: This is only for az test. :type zones: list[str] :param compute_properties: The compute resource for managed integration runtime. :type compute_properties: ~dfaz_management_client.models.IntegrationRuntimeComputeProperties :param ssis_properties: SSIS properties for managed integration runtime. :type ssis_properties: ~dfaz_management_client.models.IntegrationRuntimeSsisProperties """ _validation = { 'type': {'required': True}, 'state': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, 'repo_configuration': {'key': 'repoConfiguration', 'type': 'FactoryRepoConfiguration'}, 'fake_identity': {'key': 'fakeIdentity', 'type': 'FakeFactoryIdentity'}, 'zones': {'key': 'zones', 'type': '[str]'}, 'compute_properties': {'key': 'typeProperties.computeProperties', 'type': 'IntegrationRuntimeComputeProperties'}, 'ssis_properties': {'key': 'typeProperties.ssisProperties', 'type': 'IntegrationRuntimeSsisProperties'}, } def __init__( self, **kwargs ): super(ManagedIntegrationRuntime, self).__init__(**kwargs) self.type = 'Managed' # type: str self.state = None self.repo_configuration = kwargs.get('repo_configuration', None) self.fake_identity = kwargs.get('fake_identity', None) self.zones = kwargs.get('zones', None) self.compute_properties = kwargs.get('compute_properties', None) self.ssis_properties = kwargs.get('ssis_properties', None) class ManagedIntegrationRuntimeError(msrest.serialization.Model): """Error definition for managed integration runtime. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar time: The time when the error occurred. :vartype time: ~datetime.datetime :ivar code: Error code. :vartype code: str :ivar parameters: Managed integration runtime error parameters. :vartype parameters: list[str] :ivar message: Error message. :vartype message: str """ _validation = { 'time': {'readonly': True}, 'code': {'readonly': True}, 'parameters': {'readonly': True}, 'message': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'time': {'key': 'time', 'type': 'iso-8601'}, 'code': {'key': 'code', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '[str]'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, **kwargs ): super(ManagedIntegrationRuntimeError, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.time = None self.code = None self.parameters = None self.message = None class ManagedIntegrationRuntimeNode(msrest.serialization.Model): """Properties of integration runtime node. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar node_id: The managed integration runtime node id. :vartype node_id: str :ivar status: The managed integration runtime node status. Possible values include: "Starting", "Available", "Recycling", "Unavailable". :vartype status: str or ~dfaz_management_client.models.ManagedIntegrationRuntimeNodeStatus :param errors: The errors that occurred on this integration runtime node. :type errors: list[~dfaz_management_client.models.ManagedIntegrationRuntimeError] """ _validation = { 'node_id': {'readonly': True}, 'status': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'node_id': {'key': 'nodeId', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'errors': {'key': 'errors', 'type': '[ManagedIntegrationRuntimeError]'}, } def __init__( self, **kwargs ): super(ManagedIntegrationRuntimeNode, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.node_id = None self.status = None self.errors = kwargs.get('errors', None) class ManagedIntegrationRuntimeOperationResult(msrest.serialization.Model): """Properties of managed integration runtime operation result. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar type: The operation type. Could be start or stop. :vartype type: str :ivar start_time: The start time of the operation. :vartype start_time: ~datetime.datetime :ivar result: The operation result. :vartype result: str :ivar error_code: The error code. :vartype error_code: str :ivar parameters: Managed integration runtime error parameters. :vartype parameters: list[str] :ivar activity_id: The activity id for the operation request. :vartype activity_id: str """ _validation = { 'type': {'readonly': True}, 'start_time': {'readonly': True}, 'result': {'readonly': True}, 'error_code': {'readonly': True}, 'parameters': {'readonly': True}, 'activity_id': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'result': {'key': 'result', 'type': 'str'}, 'error_code': {'key': 'errorCode', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '[str]'}, 'activity_id': {'key': 'activityId', 'type': 'str'}, } def __init__( self, **kwargs ): super(ManagedIntegrationRuntimeOperationResult, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.type = None self.start_time = None self.result = None self.error_code = None self.parameters = None self.activity_id = None class ManagedIntegrationRuntimeStatus(IntegrationRuntimeStatus): """Managed integration runtime status. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :ivar data_factory_name: The data factory name which the integration runtime belong to. :vartype data_factory_name: str :ivar state: The state of integration runtime. Possible values include: "Initial", "Stopped", "Started", "Starting", "Stopping", "NeedRegistration", "Online", "Limited", "Offline", "AccessDenied". :vartype state: str or ~dfaz_management_client.models.IntegrationRuntimeState :ivar create_time: The time at which the integration runtime was created, in ISO8601 format. :vartype create_time: ~datetime.datetime :ivar nodes: The list of nodes for managed integration runtime. :vartype nodes: list[~dfaz_management_client.models.ManagedIntegrationRuntimeNode] :ivar other_errors: The errors that occurred on this integration runtime. :vartype other_errors: list[~dfaz_management_client.models.ManagedIntegrationRuntimeError] :ivar last_operation: The last operation result that occurred on this integration runtime. :vartype last_operation: ~dfaz_management_client.models.ManagedIntegrationRuntimeOperationResult """ _validation = { 'type': {'required': True}, 'data_factory_name': {'readonly': True}, 'state': {'readonly': True}, 'create_time': {'readonly': True}, 'nodes': {'readonly': True}, 'other_errors': {'readonly': True}, 'last_operation': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'data_factory_name': {'key': 'dataFactoryName', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, 'create_time': {'key': 'typeProperties.createTime', 'type': 'iso-8601'}, 'nodes': {'key': 'typeProperties.nodes', 'type': '[ManagedIntegrationRuntimeNode]'}, 'other_errors': {'key': 'typeProperties.otherErrors', 'type': '[ManagedIntegrationRuntimeError]'}, 'last_operation': {'key': 'typeProperties.lastOperation', 'type': 'ManagedIntegrationRuntimeOperationResult'}, } def __init__( self, **kwargs ): super(ManagedIntegrationRuntimeStatus, self).__init__(**kwargs) self.type = 'Managed' # type: str self.create_time = None self.nodes = None self.other_errors = None self.last_operation = None class PackageStore(msrest.serialization.Model): """Package store for the SSIS integration runtime. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the package store. :type name: str :param package_store_linked_service: Required. The package store linked service reference. :type package_store_linked_service: ~dfaz_management_client.models.EntityReference """ _validation = { 'name': {'required': True}, 'package_store_linked_service': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'package_store_linked_service': {'key': 'packageStoreLinkedService', 'type': 'EntityReference'}, } def __init__( self, **kwargs ): super(PackageStore, self).__init__(**kwargs) self.name = kwargs['name'] self.package_store_linked_service = kwargs['package_store_linked_service'] class PipelineReference(msrest.serialization.Model): """Pipeline reference type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. Pipeline reference type. Default value: "PipelineReference". :vartype type: str :param reference_name: Required. Reference pipeline name. :type reference_name: str :param name: Reference name. :type name: str """ _validation = { 'type': {'required': True, 'constant': True}, 'reference_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } type = "PipelineReference" def __init__( self, **kwargs ): super(PipelineReference, self).__init__(**kwargs) self.reference_name = kwargs['reference_name'] self.name = kwargs.get('name', None) class RecurrenceSchedule(msrest.serialization.Model): """The recurrence schedule. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param minutes: The minutes. :type minutes: list[int] :param hours: The hours. :type hours: list[int] :param week_days: The days of the week. :type week_days: list[str or ~dfaz_management_client.models.DaysOfWeek] :param month_days: The month days. :type month_days: list[int] :param monthly_occurrences: The monthly occurrences. :type monthly_occurrences: list[~dfaz_management_client.models.RecurrenceScheduleOccurrence] """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'minutes': {'key': 'minutes', 'type': '[int]'}, 'hours': {'key': 'hours', 'type': '[int]'}, 'week_days': {'key': 'weekDays', 'type': '[str]'}, 'month_days': {'key': 'monthDays', 'type': '[int]'}, 'monthly_occurrences': {'key': 'monthlyOccurrences', 'type': '[RecurrenceScheduleOccurrence]'}, } def __init__( self, **kwargs ): super(RecurrenceSchedule, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.minutes = kwargs.get('minutes', None) self.hours = kwargs.get('hours', None) self.week_days = kwargs.get('week_days', None) self.month_days = kwargs.get('month_days', None) self.monthly_occurrences = kwargs.get('monthly_occurrences', None) class RecurrenceScheduleOccurrence(msrest.serialization.Model): """The recurrence schedule occurrence. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param day: The day of the week. Possible values include: "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday". :type day: str or ~dfaz_management_client.models.DayOfWeek :param occurrence: The occurrence. :type occurrence: int """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'day': {'key': 'day', 'type': 'str'}, 'occurrence': {'key': 'occurrence', 'type': 'int'}, } def __init__( self, **kwargs ): super(RecurrenceScheduleOccurrence, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.day = kwargs.get('day', None) self.occurrence = kwargs.get('occurrence', None) class RerunTumblingWindowTrigger(Trigger): """Trigger that schedules pipeline reruns for all fixed time interval windows from a requested start time to requested end time. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param parent_trigger: Required. The parent trigger reference. :type parent_trigger: object :param requested_start_time: Required. The start time for the time period for which restatement is initiated. Only UTC time is currently supported. :type requested_start_time: ~datetime.datetime :param requested_end_time: Required. The end time for the time period for which restatement is initiated. Only UTC time is currently supported. :type requested_end_time: ~datetime.datetime :param rerun_concurrency: Required. The max number of parallel time windows (ready for execution) for which a rerun is triggered. :type rerun_concurrency: int """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'parent_trigger': {'required': True}, 'requested_start_time': {'required': True}, 'requested_end_time': {'required': True}, 'rerun_concurrency': {'required': True, 'maximum': 50, 'minimum': 1}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'parent_trigger': {'key': 'typeProperties.parentTrigger', 'type': 'object'}, 'requested_start_time': {'key': 'typeProperties.requestedStartTime', 'type': 'iso-8601'}, 'requested_end_time': {'key': 'typeProperties.requestedEndTime', 'type': 'iso-8601'}, 'rerun_concurrency': {'key': 'typeProperties.rerunConcurrency', 'type': 'int'}, } def __init__( self, **kwargs ): super(RerunTumblingWindowTrigger, self).__init__(**kwargs) self.type = 'RerunTumblingWindowTrigger' # type: str self.parent_trigger = kwargs['parent_trigger'] self.requested_start_time = kwargs['requested_start_time'] self.requested_end_time = kwargs['requested_end_time'] self.rerun_concurrency = kwargs['rerun_concurrency'] class RetryPolicy(msrest.serialization.Model): """Execution policy for an activity. :param count: Maximum ordinary retry attempts. Default is 0. Type: integer (or Expression with resultType integer), minimum: 0. :type count: object :param interval_in_seconds: Interval between retries in seconds. Default is 30. :type interval_in_seconds: int """ _validation = { 'interval_in_seconds': {'maximum': 86400, 'minimum': 30}, } _attribute_map = { 'count': {'key': 'count', 'type': 'object'}, 'interval_in_seconds': {'key': 'intervalInSeconds', 'type': 'int'}, } def __init__( self, **kwargs ): super(RetryPolicy, self).__init__(**kwargs) self.count = kwargs.get('count', None) self.interval_in_seconds = kwargs.get('interval_in_seconds', None) class ScheduleTrigger(MultiplePipelineTrigger): """Trigger that creates pipeline runs periodically, on schedule. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipelines: Pipelines that need to be started. :type pipelines: list[~dfaz_management_client.models.TriggerPipelineReference] :param recurrence: Required. Recurrence schedule configuration. :type recurrence: ~dfaz_management_client.models.ScheduleTriggerRecurrence """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'recurrence': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipelines': {'key': 'pipelines', 'type': '[TriggerPipelineReference]'}, 'recurrence': {'key': 'typeProperties.recurrence', 'type': 'ScheduleTriggerRecurrence'}, } def __init__( self, **kwargs ): super(ScheduleTrigger, self).__init__(**kwargs) self.type = 'ScheduleTrigger' # type: str self.recurrence = kwargs['recurrence'] class ScheduleTriggerRecurrence(msrest.serialization.Model): """The workflow trigger recurrence. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param frequency: The frequency. Possible values include: "NotSpecified", "Minute", "Hour", "Day", "Week", "Month", "Year". :type frequency: str or ~dfaz_management_client.models.RecurrenceFrequency :param interval: The interval. :type interval: int :param start_time: The start time. :type start_time: ~datetime.datetime :param end_time: The end time. :type end_time: ~datetime.datetime :param time_zone: The time zone. :type time_zone: str :param schedule: The recurrence schedule. :type schedule: ~dfaz_management_client.models.RecurrenceSchedule """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'frequency': {'key': 'frequency', 'type': 'str'}, 'interval': {'key': 'interval', 'type': 'int'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, 'time_zone': {'key': 'timeZone', 'type': 'str'}, 'schedule': {'key': 'schedule', 'type': 'RecurrenceSchedule'}, } def __init__( self, **kwargs ): super(ScheduleTriggerRecurrence, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.frequency = kwargs.get('frequency', None) self.interval = kwargs.get('interval', None) self.start_time = kwargs.get('start_time', None) self.end_time = kwargs.get('end_time', None) self.time_zone = kwargs.get('time_zone', None) self.schedule = kwargs.get('schedule', None) class SecretBase(msrest.serialization.Model): """The base definition of a secret type. You probably want to use the sub-classes and not this class directly. Known sub-classes are: SecureString. All required parameters must be populated in order to send to Azure. :param type: Required. Type of the secret.Constant filled by server. :type type: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, } _subtype_map = { 'type': {'SecureString': 'SecureString'} } def __init__( self, **kwargs ): super(SecretBase, self).__init__(**kwargs) self.type = None # type: Optional[str] class SecureString(SecretBase): """Azure Data Factory secure string definition. The string value will be masked with asterisks '*' during Get or List API calls. All required parameters must be populated in order to send to Azure. :param type: Required. Type of the secret.Constant filled by server. :type type: str :param value: Required. Value of secure string. :type value: str """ _validation = { 'type': {'required': True}, 'value': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__( self, **kwargs ): super(SecureString, self).__init__(**kwargs) self.type = 'SecureString' # type: str self.value = kwargs['value'] class SelfDependencyTumblingWindowTriggerReference(DependencyReference): """Self referenced tumbling window trigger dependency. All required parameters must be populated in order to send to Azure. :param type: Required. The type of dependency reference.Constant filled by server. :type type: str :param offset: Required. Timespan applied to the start time of a tumbling window when evaluating dependency. :type offset: str :param size: The size of the window when evaluating the dependency. If undefined the frequency of the tumbling window will be used. :type size: str """ _validation = { 'type': {'required': True}, 'offset': {'required': True, 'max_length': 15, 'min_length': 8, 'pattern': r'-((\d+)\.)?(\d\d):(60|([0-5][0-9])):(60|([0-5][0-9]))'}, 'size': {'max_length': 15, 'min_length': 8, 'pattern': r'((\d+)\.)?(\d\d):(60|([0-5][0-9])):(60|([0-5][0-9]))'}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'offset': {'key': 'offset', 'type': 'str'}, 'size': {'key': 'size', 'type': 'str'}, } def __init__( self, **kwargs ): super(SelfDependencyTumblingWindowTriggerReference, self).__init__(**kwargs) self.type = 'SelfDependencyTumblingWindowTriggerReference' # type: str self.offset = kwargs['offset'] self.size = kwargs.get('size', None) class SelfHostedIntegrationRuntime(IntegrationRuntime): """Self-hosted integration runtime. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :param description: Integration runtime description. :type description: str :param linked_info: The base definition of a linked integration runtime. :type linked_info: ~dfaz_management_client.models.LinkedIntegrationRuntimeType """ _validation = { 'type': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'linked_info': {'key': 'typeProperties.linkedInfo', 'type': 'LinkedIntegrationRuntimeType'}, } def __init__( self, **kwargs ): super(SelfHostedIntegrationRuntime, self).__init__(**kwargs) self.type = 'SelfHosted' # type: str self.linked_info = kwargs.get('linked_info', None) class SelfHostedIntegrationRuntimeNode(msrest.serialization.Model): """Properties of Self-hosted integration runtime node. Variables are only populated by the server, and will be ignored when sending a request. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :ivar node_name: Name of the integration runtime node. :vartype node_name: str :ivar machine_name: Machine name of the integration runtime node. :vartype machine_name: str :ivar host_service_uri: URI for the host machine of the integration runtime. :vartype host_service_uri: str :ivar status: Status of the integration runtime node. Possible values include: "NeedRegistration", "Online", "Limited", "Offline", "Upgrading", "Initializing", "InitializeFailed". :vartype status: str or ~dfaz_management_client.models.SelfHostedIntegrationRuntimeNodeStatus :ivar capabilities: The integration runtime capabilities dictionary. :vartype capabilities: dict[str, str] :ivar version_status: Status of the integration runtime node version. :vartype version_status: str :ivar version: Version of the integration runtime node. :vartype version: str :ivar register_time: The time at which the integration runtime node was registered in ISO8601 format. :vartype register_time: ~datetime.datetime :ivar last_connect_time: The most recent time at which the integration runtime was connected in ISO8601 format. :vartype last_connect_time: ~datetime.datetime :ivar expiry_time: The time at which the integration runtime will expire in ISO8601 format. :vartype expiry_time: ~datetime.datetime :ivar last_start_time: The time the node last started up. :vartype last_start_time: ~datetime.datetime :ivar last_stop_time: The integration runtime node last stop time. :vartype last_stop_time: ~datetime.datetime :ivar last_update_result: The result of the last integration runtime node update. Possible values include: "None", "Succeed", "Fail". :vartype last_update_result: str or ~dfaz_management_client.models.IntegrationRuntimeUpdateResult :ivar last_start_update_time: The last time for the integration runtime node update start. :vartype last_start_update_time: ~datetime.datetime :ivar last_end_update_time: The last time for the integration runtime node update end. :vartype last_end_update_time: ~datetime.datetime :ivar is_active_dispatcher: Indicates whether this node is the active dispatcher for integration runtime requests. :vartype is_active_dispatcher: bool :ivar concurrent_jobs_limit: Maximum concurrent jobs on the integration runtime node. :vartype concurrent_jobs_limit: int :ivar max_concurrent_jobs: The maximum concurrent jobs in this integration runtime. :vartype max_concurrent_jobs: int """ _validation = { 'node_name': {'readonly': True}, 'machine_name': {'readonly': True}, 'host_service_uri': {'readonly': True}, 'status': {'readonly': True}, 'capabilities': {'readonly': True}, 'version_status': {'readonly': True}, 'version': {'readonly': True}, 'register_time': {'readonly': True}, 'last_connect_time': {'readonly': True}, 'expiry_time': {'readonly': True}, 'last_start_time': {'readonly': True}, 'last_stop_time': {'readonly': True}, 'last_update_result': {'readonly': True}, 'last_start_update_time': {'readonly': True}, 'last_end_update_time': {'readonly': True}, 'is_active_dispatcher': {'readonly': True}, 'concurrent_jobs_limit': {'readonly': True}, 'max_concurrent_jobs': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'node_name': {'key': 'nodeName', 'type': 'str'}, 'machine_name': {'key': 'machineName', 'type': 'str'}, 'host_service_uri': {'key': 'hostServiceUri', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'capabilities': {'key': 'capabilities', 'type': '{str}'}, 'version_status': {'key': 'versionStatus', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'register_time': {'key': 'registerTime', 'type': 'iso-8601'}, 'last_connect_time': {'key': 'lastConnectTime', 'type': 'iso-8601'}, 'expiry_time': {'key': 'expiryTime', 'type': 'iso-8601'}, 'last_start_time': {'key': 'lastStartTime', 'type': 'iso-8601'}, 'last_stop_time': {'key': 'lastStopTime', 'type': 'iso-8601'}, 'last_update_result': {'key': 'lastUpdateResult', 'type': 'str'}, 'last_start_update_time': {'key': 'lastStartUpdateTime', 'type': 'iso-8601'}, 'last_end_update_time': {'key': 'lastEndUpdateTime', 'type': 'iso-8601'}, 'is_active_dispatcher': {'key': 'isActiveDispatcher', 'type': 'bool'}, 'concurrent_jobs_limit': {'key': 'concurrentJobsLimit', 'type': 'int'}, 'max_concurrent_jobs': {'key': 'maxConcurrentJobs', 'type': 'int'}, } def __init__( self, **kwargs ): super(SelfHostedIntegrationRuntimeNode, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.node_name = None self.machine_name = None self.host_service_uri = None self.status = None self.capabilities = None self.version_status = None self.version = None self.register_time = None self.last_connect_time = None self.expiry_time = None self.last_start_time = None self.last_stop_time = None self.last_update_result = None self.last_start_update_time = None self.last_end_update_time = None self.is_active_dispatcher = None self.concurrent_jobs_limit = None self.max_concurrent_jobs = None class SelfHostedIntegrationRuntimeStatus(IntegrationRuntimeStatus): """Self-hosted integration runtime status. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Type of integration runtime.Constant filled by server. Possible values include: "Managed", "SelfHosted". :type type: str or ~dfaz_management_client.models.IntegrationRuntimeType :ivar data_factory_name: The data factory name which the integration runtime belong to. :vartype data_factory_name: str :ivar state: The state of integration runtime. Possible values include: "Initial", "Stopped", "Started", "Starting", "Stopping", "NeedRegistration", "Online", "Limited", "Offline", "AccessDenied". :vartype state: str or ~dfaz_management_client.models.IntegrationRuntimeState :ivar create_time: The time at which the integration runtime was created, in ISO8601 format. :vartype create_time: ~datetime.datetime :ivar task_queue_id: The task queue id of the integration runtime. :vartype task_queue_id: str :ivar internal_channel_encryption: It is used to set the encryption mode for node-node communication channel (when more than 2 self-hosted integration runtime nodes exist). Possible values include: "NotSet", "SslEncrypted", "NotEncrypted". :vartype internal_channel_encryption: str or ~dfaz_management_client.models.IntegrationRuntimeInternalChannelEncryptionMode :ivar version: Version of the integration runtime. :vartype version: str :param nodes: The list of nodes for this integration runtime. :type nodes: list[~dfaz_management_client.models.SelfHostedIntegrationRuntimeNode] :ivar scheduled_update_date: The date at which the integration runtime will be scheduled to update, in ISO8601 format. :vartype scheduled_update_date: ~datetime.datetime :ivar update_delay_offset: The time in the date scheduled by service to update the integration runtime, e.g., PT03H is 3 hours. :vartype update_delay_offset: str :ivar local_time_zone_offset: The local time zone offset in hours. :vartype local_time_zone_offset: str :ivar capabilities: Object with additional information about integration runtime capabilities. :vartype capabilities: dict[str, str] :ivar service_urls: The URLs for the services used in integration runtime backend service. :vartype service_urls: list[str] :ivar auto_update: Whether Self-hosted integration runtime auto update has been turned on. Possible values include: "On", "Off". :vartype auto_update: str or ~dfaz_management_client.models.IntegrationRuntimeAutoUpdate :ivar version_status: Status of the integration runtime version. :vartype version_status: str :param links: The list of linked integration runtimes that are created to share with this integration runtime. :type links: list[~dfaz_management_client.models.LinkedIntegrationRuntime] :ivar pushed_version: The version that the integration runtime is going to update to. :vartype pushed_version: str :ivar latest_version: The latest version on download center. :vartype latest_version: str :ivar auto_update_eta: The estimated time when the self-hosted integration runtime will be updated. :vartype auto_update_eta: ~datetime.datetime """ _validation = { 'type': {'required': True}, 'data_factory_name': {'readonly': True}, 'state': {'readonly': True}, 'create_time': {'readonly': True}, 'task_queue_id': {'readonly': True}, 'internal_channel_encryption': {'readonly': True}, 'version': {'readonly': True}, 'scheduled_update_date': {'readonly': True}, 'update_delay_offset': {'readonly': True}, 'local_time_zone_offset': {'readonly': True}, 'capabilities': {'readonly': True}, 'service_urls': {'readonly': True}, 'auto_update': {'readonly': True}, 'version_status': {'readonly': True}, 'pushed_version': {'readonly': True}, 'latest_version': {'readonly': True}, 'auto_update_eta': {'readonly': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'data_factory_name': {'key': 'dataFactoryName', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, 'create_time': {'key': 'typeProperties.createTime', 'type': 'iso-8601'}, 'task_queue_id': {'key': 'typeProperties.taskQueueId', 'type': 'str'}, 'internal_channel_encryption': {'key': 'typeProperties.internalChannelEncryption', 'type': 'str'}, 'version': {'key': 'typeProperties.version', 'type': 'str'}, 'nodes': {'key': 'typeProperties.nodes', 'type': '[SelfHostedIntegrationRuntimeNode]'}, 'scheduled_update_date': {'key': 'typeProperties.scheduledUpdateDate', 'type': 'iso-8601'}, 'update_delay_offset': {'key': 'typeProperties.updateDelayOffset', 'type': 'str'}, 'local_time_zone_offset': {'key': 'typeProperties.localTimeZoneOffset', 'type': 'str'}, 'capabilities': {'key': 'typeProperties.capabilities', 'type': '{str}'}, 'service_urls': {'key': 'typeProperties.serviceUrls', 'type': '[str]'}, 'auto_update': {'key': 'typeProperties.autoUpdate', 'type': 'str'}, 'version_status': {'key': 'typeProperties.versionStatus', 'type': 'str'}, 'links': {'key': 'typeProperties.links', 'type': '[LinkedIntegrationRuntime]'}, 'pushed_version': {'key': 'typeProperties.pushedVersion', 'type': 'str'}, 'latest_version': {'key': 'typeProperties.latestVersion', 'type': 'str'}, 'auto_update_eta': {'key': 'typeProperties.autoUpdateETA', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(SelfHostedIntegrationRuntimeStatus, self).__init__(**kwargs) self.type = 'SelfHosted' # type: str self.create_time = None self.task_queue_id = None self.internal_channel_encryption = None self.version = None self.nodes = kwargs.get('nodes', None) self.scheduled_update_date = None self.update_delay_offset = None self.local_time_zone_offset = None self.capabilities = None self.service_urls = None self.auto_update = None self.version_status = None self.links = kwargs.get('links', None) self.pushed_version = None self.latest_version = None self.auto_update_eta = None class SsisObjectMetadata(msrest.serialization.Model): """SSIS object metadata. You probably want to use the sub-classes and not this class directly. Known sub-classes are: SsisEnvironment, SsisFolder, SsisPackage, SsisProject. All required parameters must be populated in order to send to Azure. :param type: Required. Type of metadata.Constant filled by server. Possible values include: "Folder", "Project", "Package", "Environment". :type type: str or ~dfaz_management_client.models.SsisObjectMetadataType :param id: Metadata id. :type id: long :param name: Metadata name. :type name: str :param description: Metadata description. :type description: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } _subtype_map = { 'type': {'Environment': 'SsisEnvironment', 'Folder': 'SsisFolder', 'Package': 'SsisPackage', 'Project': 'SsisProject'} } def __init__( self, **kwargs ): super(SsisObjectMetadata, self).__init__(**kwargs) self.type = None # type: Optional[str] self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) self.description = kwargs.get('description', None) class SsisEnvironment(SsisObjectMetadata): """Ssis environment. All required parameters must be populated in order to send to Azure. :param type: Required. Type of metadata.Constant filled by server. Possible values include: "Folder", "Project", "Package", "Environment". :type type: str or ~dfaz_management_client.models.SsisObjectMetadataType :param id: Metadata id. :type id: long :param name: Metadata name. :type name: str :param description: Metadata description. :type description: str :param folder_id: Folder id which contains environment. :type folder_id: long :param variables: Variable in environment. :type variables: list[~dfaz_management_client.models.SsisVariable] """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'folder_id': {'key': 'folderId', 'type': 'long'}, 'variables': {'key': 'variables', 'type': '[SsisVariable]'}, } def __init__( self, **kwargs ): super(SsisEnvironment, self).__init__(**kwargs) self.type = 'Environment' # type: str self.folder_id = kwargs.get('folder_id', None) self.variables = kwargs.get('variables', None) class SsisEnvironmentReference(msrest.serialization.Model): """Ssis environment reference. :param id: Environment reference id. :type id: long :param environment_folder_name: Environment folder name. :type environment_folder_name: str :param environment_name: Environment name. :type environment_name: str :param reference_type: Reference type. :type reference_type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'long'}, 'environment_folder_name': {'key': 'environmentFolderName', 'type': 'str'}, 'environment_name': {'key': 'environmentName', 'type': 'str'}, 'reference_type': {'key': 'referenceType', 'type': 'str'}, } def __init__( self, **kwargs ): super(SsisEnvironmentReference, self).__init__(**kwargs) self.id = kwargs.get('id', None) self.environment_folder_name = kwargs.get('environment_folder_name', None) self.environment_name = kwargs.get('environment_name', None) self.reference_type = kwargs.get('reference_type', None) class SsisFolder(SsisObjectMetadata): """Ssis folder. All required parameters must be populated in order to send to Azure. :param type: Required. Type of metadata.Constant filled by server. Possible values include: "Folder", "Project", "Package", "Environment". :type type: str or ~dfaz_management_client.models.SsisObjectMetadataType :param id: Metadata id. :type id: long :param name: Metadata name. :type name: str :param description: Metadata description. :type description: str """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, **kwargs ): super(SsisFolder, self).__init__(**kwargs) self.type = 'Folder' # type: str class SsisObjectMetadataListResponse(msrest.serialization.Model): """A list of SSIS object metadata. :param value: List of SSIS object metadata. :type value: list[~dfaz_management_client.models.SsisObjectMetadata] :param next_link: The link to the next page of results, if any remaining results exist. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[SsisObjectMetadata]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(SsisObjectMetadataListResponse, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = kwargs.get('next_link', None) class SsisPackage(SsisObjectMetadata): """Ssis Package. All required parameters must be populated in order to send to Azure. :param type: Required. Type of metadata.Constant filled by server. Possible values include: "Folder", "Project", "Package", "Environment". :type type: str or ~dfaz_management_client.models.SsisObjectMetadataType :param id: Metadata id. :type id: long :param name: Metadata name. :type name: str :param description: Metadata description. :type description: str :param folder_id: Folder id which contains package. :type folder_id: long :param project_version: Project version which contains package. :type project_version: long :param project_id: Project id which contains package. :type project_id: long :param parameters: Parameters in package. :type parameters: list[~dfaz_management_client.models.SsisParameter] """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'folder_id': {'key': 'folderId', 'type': 'long'}, 'project_version': {'key': 'projectVersion', 'type': 'long'}, 'project_id': {'key': 'projectId', 'type': 'long'}, 'parameters': {'key': 'parameters', 'type': '[SsisParameter]'}, } def __init__( self, **kwargs ): super(SsisPackage, self).__init__(**kwargs) self.type = 'Package' # type: str self.folder_id = kwargs.get('folder_id', None) self.project_version = kwargs.get('project_version', None) self.project_id = kwargs.get('project_id', None) self.parameters = kwargs.get('parameters', None) class SsisParameter(msrest.serialization.Model): """Ssis parameter. :param id: Parameter id. :type id: long :param name: Parameter name. :type name: str :param description: Parameter description. :type description: str :param data_type: Parameter type. :type data_type: str :param required: Whether parameter is required. :type required: bool :param sensitive: Whether parameter is sensitive. :type sensitive: bool :param design_default_value: Design default value of parameter. :type design_default_value: str :param default_value: Default value of parameter. :type default_value: str :param sensitive_default_value: Default sensitive value of parameter. :type sensitive_default_value: str :param value_type: Parameter value type. :type value_type: str :param value_set: Parameter value set. :type value_set: bool :param variable: Parameter reference variable. :type variable: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'data_type': {'key': 'dataType', 'type': 'str'}, 'required': {'key': 'required', 'type': 'bool'}, 'sensitive': {'key': 'sensitive', 'type': 'bool'}, 'design_default_value': {'key': 'designDefaultValue', 'type': 'str'}, 'default_value': {'key': 'defaultValue', 'type': 'str'}, 'sensitive_default_value': {'key': 'sensitiveDefaultValue', 'type': 'str'}, 'value_type': {'key': 'valueType', 'type': 'str'}, 'value_set': {'key': 'valueSet', 'type': 'bool'}, 'variable': {'key': 'variable', 'type': 'str'}, } def __init__( self, **kwargs ): super(SsisParameter, self).__init__(**kwargs) self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) self.description = kwargs.get('description', None) self.data_type = kwargs.get('data_type', None) self.required = kwargs.get('required', None) self.sensitive = kwargs.get('sensitive', None) self.design_default_value = kwargs.get('design_default_value', None) self.default_value = kwargs.get('default_value', None) self.sensitive_default_value = kwargs.get('sensitive_default_value', None) self.value_type = kwargs.get('value_type', None) self.value_set = kwargs.get('value_set', None) self.variable = kwargs.get('variable', None) class SsisProject(SsisObjectMetadata): """Ssis project. All required parameters must be populated in order to send to Azure. :param type: Required. Type of metadata.Constant filled by server. Possible values include: "Folder", "Project", "Package", "Environment". :type type: str or ~dfaz_management_client.models.SsisObjectMetadataType :param id: Metadata id. :type id: long :param name: Metadata name. :type name: str :param description: Metadata description. :type description: str :param folder_id: Folder id which contains project. :type folder_id: long :param version: Project version. :type version: long :param environment_refs: Environment reference in project. :type environment_refs: list[~dfaz_management_client.models.SsisEnvironmentReference] :param parameters: Parameters in project. :type parameters: list[~dfaz_management_client.models.SsisParameter] """ _validation = { 'type': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'folder_id': {'key': 'folderId', 'type': 'long'}, 'version': {'key': 'version', 'type': 'long'}, 'environment_refs': {'key': 'environmentRefs', 'type': '[SsisEnvironmentReference]'}, 'parameters': {'key': 'parameters', 'type': '[SsisParameter]'}, } def __init__( self, **kwargs ): super(SsisProject, self).__init__(**kwargs) self.type = 'Project' # type: str self.folder_id = kwargs.get('folder_id', None) self.version = kwargs.get('version', None) self.environment_refs = kwargs.get('environment_refs', None) self.parameters = kwargs.get('parameters', None) class SsisVariable(msrest.serialization.Model): """Ssis variable. :param id: Variable id. :type id: long :param name: Variable name. :type name: str :param description: Variable description. :type description: str :param data_type: Variable type. :type data_type: str :param sensitive: Whether variable is sensitive. :type sensitive: bool :param value: Variable value. :type value: str :param sensitive_value: Variable sensitive value. :type sensitive_value: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'long'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'data_type': {'key': 'dataType', 'type': 'str'}, 'sensitive': {'key': 'sensitive', 'type': 'bool'}, 'value': {'key': 'value', 'type': 'str'}, 'sensitive_value': {'key': 'sensitiveValue', 'type': 'str'}, } def __init__( self, **kwargs ): super(SsisVariable, self).__init__(**kwargs) self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) self.description = kwargs.get('description', None) self.data_type = kwargs.get('data_type', None) self.sensitive = kwargs.get('sensitive', None) self.value = kwargs.get('value', None) self.sensitive_value = kwargs.get('sensitive_value', None) class TriggerDependencyReference(DependencyReference): """Trigger referenced dependency. You probably want to use the sub-classes and not this class directly. Known sub-classes are: TumblingWindowTriggerDependencyReference. All required parameters must be populated in order to send to Azure. :param type: Required. The type of dependency reference.Constant filled by server. :type type: str :param reference_trigger: Required. Referenced trigger. :type reference_trigger: ~dfaz_management_client.models.TriggerReference """ _validation = { 'type': {'required': True}, 'reference_trigger': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_trigger': {'key': 'referenceTrigger', 'type': 'TriggerReference'}, } _subtype_map = { 'type': {'TumblingWindowTriggerDependencyReference': 'TumblingWindowTriggerDependencyReference'} } def __init__( self, **kwargs ): super(TriggerDependencyReference, self).__init__(**kwargs) self.type = 'TriggerDependencyReference' # type: str self.reference_trigger = kwargs['reference_trigger'] class TriggerFilterParameters(msrest.serialization.Model): """Query parameters for triggers. :param continuation_token: The continuation token for getting the next page of results. Null for first page. :type continuation_token: str :param parent_trigger_name: The name of the parent TumblingWindowTrigger to get the child rerun triggers. :type parent_trigger_name: str """ _attribute_map = { 'continuation_token': {'key': 'continuationToken', 'type': 'str'}, 'parent_trigger_name': {'key': 'parentTriggerName', 'type': 'str'}, } def __init__( self, **kwargs ): super(TriggerFilterParameters, self).__init__(**kwargs) self.continuation_token = kwargs.get('continuation_token', None) self.parent_trigger_name = kwargs.get('parent_trigger_name', None) class TriggerListResponse(msrest.serialization.Model): """A list of trigger resources. All required parameters must be populated in order to send to Azure. :param value: Required. List of triggers. :type value: list[~dfaz_management_client.models.TriggerResource] :param next_link: The link to the next page of results, if any remaining results exist. :type next_link: str """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[TriggerResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(TriggerListResponse, self).__init__(**kwargs) self.value = kwargs['value'] self.next_link = kwargs.get('next_link', None) class TriggerPipelineReference(msrest.serialization.Model): """Pipeline that needs to be triggered with the given parameters. :param pipeline_reference: Pipeline reference. :type pipeline_reference: ~dfaz_management_client.models.PipelineReference :param parameters: Pipeline parameters. :type parameters: dict[str, object] """ _attribute_map = { 'pipeline_reference': {'key': 'pipelineReference', 'type': 'PipelineReference'}, 'parameters': {'key': 'parameters', 'type': '{object}'}, } def __init__( self, **kwargs ): super(TriggerPipelineReference, self).__init__(**kwargs) self.pipeline_reference = kwargs.get('pipeline_reference', None) self.parameters = kwargs.get('parameters', None) class TriggerQueryResponse(msrest.serialization.Model): """A query of triggers. All required parameters must be populated in order to send to Azure. :param value: Required. List of triggers. :type value: list[~dfaz_management_client.models.TriggerResource] :param continuation_token: The continuation token for getting the next page of results, if any remaining results exist, null otherwise. :type continuation_token: str """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[TriggerResource]'}, 'continuation_token': {'key': 'continuationToken', 'type': 'str'}, } def __init__( self, **kwargs ): super(TriggerQueryResponse, self).__init__(**kwargs) self.value = kwargs['value'] self.continuation_token = kwargs.get('continuation_token', None) class TriggerReference(msrest.serialization.Model): """Trigger reference type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. Trigger reference type. Default value: "TriggerReference". :vartype type: str :param reference_name: Required. Reference trigger name. :type reference_name: str """ _validation = { 'type': {'required': True, 'constant': True}, 'reference_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, } type = "TriggerReference" def __init__( self, **kwargs ): super(TriggerReference, self).__init__(**kwargs) self.reference_name = kwargs['reference_name'] class TriggerResource(SubResource): """Trigger resource type. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: The resource identifier. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :ivar etag: Etag identifies change in the resource. :vartype etag: str :param properties: Required. Properties of the trigger. :type properties: ~dfaz_management_client.models.Trigger """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'etag': {'readonly': True}, 'properties': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'Trigger'}, } def __init__( self, **kwargs ): super(TriggerResource, self).__init__(**kwargs) self.properties = kwargs['properties'] class TriggerSubscriptionOperationStatus(msrest.serialization.Model): """Defines the response of a trigger subscription operation. Variables are only populated by the server, and will be ignored when sending a request. :ivar trigger_name: Trigger name. :vartype trigger_name: str :ivar status: Event Subscription Status. Possible values include: "Enabled", "Provisioning", "Deprovisioning", "Disabled", "Unknown". :vartype status: str or ~dfaz_management_client.models.EventSubscriptionStatus """ _validation = { 'trigger_name': {'readonly': True}, 'status': {'readonly': True}, } _attribute_map = { 'trigger_name': {'key': 'triggerName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, } def __init__( self, **kwargs ): super(TriggerSubscriptionOperationStatus, self).__init__(**kwargs) self.trigger_name = None self.status = None class TumblingWindowTrigger(Trigger): """Trigger that schedules pipeline runs for all fixed time interval windows from a start time without gaps and also supports backfill scenarios (when start time is in the past). Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param type: Required. Trigger type.Constant filled by server. :type type: str :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: "Started", "Stopped", "Disabled". :vartype runtime_state: str or ~dfaz_management_client.models.TriggerRuntimeState :param annotations: List of tags that can be used for describing the trigger. :type annotations: list[object] :param pipeline: Required. Pipeline for which runs are created when an event is fired for trigger window that is ready. :type pipeline: ~dfaz_management_client.models.TriggerPipelineReference :param frequency: Required. The frequency of the time windows. Possible values include: "Minute", "Hour". :type frequency: str or ~dfaz_management_client.models.TumblingWindowFrequency :param interval: Required. The interval of the time windows. The minimum interval allowed is 15 Minutes. :type interval: int :param start_time: Required. The start time for the time period for the trigger during which events are fired for windows that are ready. Only UTC time is currently supported. :type start_time: ~datetime.datetime :param end_time: The end time for the time period for the trigger during which events are fired for windows that are ready. Only UTC time is currently supported. :type end_time: ~datetime.datetime :param delay: Specifies how long the trigger waits past due time before triggering new run. It doesn't alter window start and end time. The default is 0. Type: string (or Expression with resultType string), pattern: ((\d+).)?(\d\d):(60|([0-5][0-9])):(60|([0-5][0-9])). :type delay: object :param max_concurrency: Required. The max number of parallel time windows (ready for execution) for which a new run is triggered. :type max_concurrency: int :param retry_policy: Retry policy that will be applied for failed pipeline runs. :type retry_policy: ~dfaz_management_client.models.RetryPolicy :param depends_on: Triggers that this trigger depends on. Only tumbling window triggers are supported. :type depends_on: list[~dfaz_management_client.models.DependencyReference] """ _validation = { 'type': {'required': True}, 'runtime_state': {'readonly': True}, 'pipeline': {'required': True}, 'frequency': {'required': True}, 'interval': {'required': True}, 'start_time': {'required': True}, 'max_concurrency': {'required': True, 'maximum': 50, 'minimum': 1}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'type': {'key': 'type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'pipeline': {'key': 'pipeline', 'type': 'TriggerPipelineReference'}, 'frequency': {'key': 'typeProperties.frequency', 'type': 'str'}, 'interval': {'key': 'typeProperties.interval', 'type': 'int'}, 'start_time': {'key': 'typeProperties.startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'typeProperties.endTime', 'type': 'iso-8601'}, 'delay': {'key': 'typeProperties.delay', 'type': 'object'}, 'max_concurrency': {'key': 'typeProperties.maxConcurrency', 'type': 'int'}, 'retry_policy': {'key': 'typeProperties.retryPolicy', 'type': 'RetryPolicy'}, 'depends_on': {'key': 'typeProperties.dependsOn', 'type': '[DependencyReference]'}, } def __init__( self, **kwargs ): super(TumblingWindowTrigger, self).__init__(**kwargs) self.type = 'TumblingWindowTrigger' # type: str self.pipeline = kwargs['pipeline'] self.frequency = kwargs['frequency'] self.interval = kwargs['interval'] self.start_time = kwargs['start_time'] self.end_time = kwargs.get('end_time', None) self.delay = kwargs.get('delay', None) self.max_concurrency = kwargs['max_concurrency'] self.retry_policy = kwargs.get('retry_policy', None) self.depends_on = kwargs.get('depends_on', None) class TumblingWindowTriggerDependencyReference(TriggerDependencyReference): """Referenced tumbling window trigger dependency. All required parameters must be populated in order to send to Azure. :param type: Required. The type of dependency reference.Constant filled by server. :type type: str :param reference_trigger: Required. Referenced trigger. :type reference_trigger: ~dfaz_management_client.models.TriggerReference :param offset: Timespan applied to the start time of a tumbling window when evaluating dependency. :type offset: str :param size: The size of the window when evaluating the dependency. If undefined the frequency of the tumbling window will be used. :type size: str """ _validation = { 'type': {'required': True}, 'reference_trigger': {'required': True}, 'offset': {'max_length': 15, 'min_length': 8, 'pattern': r'-?((\d+)\.)?(\d\d):(60|([0-5][0-9])):(60|([0-5][0-9]))'}, 'size': {'max_length': 15, 'min_length': 8, 'pattern': r'((\d+)\.)?(\d\d):(60|([0-5][0-9])):(60|([0-5][0-9]))'}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'reference_trigger': {'key': 'referenceTrigger', 'type': 'TriggerReference'}, 'offset': {'key': 'offset', 'type': 'str'}, 'size': {'key': 'size', 'type': 'str'}, } def __init__( self, **kwargs ): super(TumblingWindowTriggerDependencyReference, self).__init__(**kwargs) self.type = 'TumblingWindowTriggerDependencyReference' # type: str self.offset = kwargs.get('offset', None) self.size = kwargs.get('size', None) class UpdateIntegrationRuntimeRequest(msrest.serialization.Model): """Update integration runtime request. :param auto_update: Enables or disables the auto-update feature of the self-hosted integration runtime. See https://go.microsoft.com/fwlink/?linkid=854189. Possible values include: "On", "Off". :type auto_update: str or ~dfaz_management_client.models.IntegrationRuntimeAutoUpdate :param update_delay_offset: The time offset (in hours) in the day, e.g., PT03H is 3 hours. The integration runtime auto update will happen on that time. :type update_delay_offset: str """ _attribute_map = { 'auto_update': {'key': 'autoUpdate', 'type': 'str'}, 'update_delay_offset': {'key': 'updateDelayOffset', 'type': 'str'}, } def __init__( self, **kwargs ): super(UpdateIntegrationRuntimeRequest, self).__init__(**kwargs) self.auto_update = kwargs.get('auto_update', None) self.update_delay_offset = kwargs.get('update_delay_offset', None) class UserAccessPolicy(msrest.serialization.Model): """Get Data Plane read only token request definition. :param permissions: The string with permissions for Data Plane access. Currently only 'r' is supported which grants read only access. :type permissions: str :param access_resource_path: The resource path to get access relative to factory. Currently only empty string is supported which corresponds to the factory resource. :type access_resource_path: str :param profile_name: The name of the profile. Currently only the default is supported. The default value is DefaultProfile. :type profile_name: str :param start_time: Start time for the token. If not specified the current time will be used. :type start_time: str :param expire_time: Expiration time for the token. Maximum duration for the token is eight hours and by default the token will expire in eight hours. :type expire_time: str """ _attribute_map = { 'permissions': {'key': 'permissions', 'type': 'str'}, 'access_resource_path': {'key': 'accessResourcePath', 'type': 'str'}, 'profile_name': {'key': 'profileName', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'str'}, 'expire_time': {'key': 'expireTime', 'type': 'str'}, } def __init__( self, **kwargs ): super(UserAccessPolicy, self).__init__(**kwargs) self.permissions = kwargs.get('permissions', None) self.access_resource_path = kwargs.get('access_resource_path', None) self.profile_name = kwargs.get('profile_name', None) self.start_time = kwargs.get('start_time', None) self.expire_time = kwargs.get('expire_time', None)
the-stack_106_27116
#!/usr/bin/env python """ Plots related to the response matrix. .. codeauthor:: Raymond Ehlers <[email protected]>, Yale University """ import logging import ctypes import matplotlib import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns from typing import Any, cast, Dict, Iterator, Mapping, Sequence, Tuple, TYPE_CHECKING, Union import pachyderm.fit from pachyderm import histogram from pachyderm import utils from jet_hadron.base import analysis_objects from jet_hadron.base import labels from jet_hadron.base import params from jet_hadron.base.typing_helpers import Hist from jet_hadron.plot import base as plot_base import ROOT if TYPE_CHECKING: from jet_hadron.analysis import pt_hard_analysis # noqa: F401 from jet_hadron.analysis import response_matrix logger = logging.getLogger(__name__) Analyses = Dict[Any, "response_matrix.ResponseMatrix"] AnalysesBase = Dict[Any, "response_matrix.ResponseMatrixBase"] def plot_particle_level_spectra(ep_analyses_iter: Iterator[Tuple[Any, "response_matrix.ResponseMatrixBase"]], output_info: analysis_objects.PlottingOutputWrapper, plot_with_ROOT: bool = False) -> None: """ Plot the particle level spectra associated with the response. Args: ep_analyses: The event plane dependent final response matrices. output_info: Output information. plot_with_ROOT: True if the plot should be done via ROOT. Default: False Returns: None. The spectra are plotted and saved. """ # Pull out the dict because we need to grab individual analyses for some labeling information, which doesn't # play well with generators (the generator will be exhausted). ep_analyses = dict(ep_analyses_iter) # Determine the general and plot labels # First, we need some variables to define the general labels, so we retrieve the inclusive analysis. # All of the parameters retrieved here are shared by all analyses. inclusive = next(iter(ep_analyses.values())) # Then we define some additional helper variables particle_level_spectra_bin = inclusive.task_config["particle_level_spectra"]["particle_level_spectra_bin"] embedded_additional_label = inclusive.event_activity.display_str() # General labels general_labels = { "alice_and_collision_energy": rf"{inclusive.alice_label.display_str()}\:{inclusive.collision_energy.display_str()}", "collision_system_and_event_activity": rf"{inclusive.collision_system.display_str(embedded_additional_label = embedded_additional_label)}", "detector_pt_range": labels.pt_range_string( particle_level_spectra_bin, lower_label = "T,jet", upper_label = "det", ), "constituent_cuts": labels.constituent_cuts(additional_label = "det"), "leading_hadron_bias": inclusive.leading_hadron_bias.display_str(additional_label = "det"), "jet_finding": labels.jet_finding(), } # Ensure that each line is a valid latex line. # The heuristic is roughly that full statements (such as jet_finding) are already wrapped in "$", # while partial statements, such as the leading hadron bias, event activity, etc are not wrapped in "$". # This is due to the potential for such "$" to interfere with including those partial statements in other # statements. As an example, it would be impossible to use the ``embedded_additional_label`` above if the # ``event_activity`` included "$". for k, v in general_labels.items(): general_labels[k] = labels.make_valid_latex_string(v) # Plot labels y_label = r"\mathrm{d}N/\mathrm{d}p_{\mathrm{T}}" if inclusive.task_config["particle_level_spectra"]["normalize_by_n_jets"]: y_label = r"(1/N_{\mathrm{jets}})" + y_label if inclusive.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_bin"]: # Assumes that we'll never set an upper bound. values = inclusive.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_values"] y_label = r"(1/N_{\text{jets}}^{p_{\text{T}} > " + fr"{values.min}\:{labels.momentum_units_label_gev()}" + r"})" + y_label # Add y_label units y_label += fr"\:({labels.momentum_units_label_gev()})^{{-1}}" plot_labels = plot_base.PlotLabels( title = "", x_label = fr"${labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})$", y_label = labels.make_valid_latex_string(y_label), ) # Finally, we collect our arguments for the plotting functions. kwargs: Dict[str, Any] = { "ep_analyses": ep_analyses, "output_name": "particle_level_spectra", "output_info": output_info, "general_labels": general_labels, "plot_labels": plot_labels, } if plot_with_ROOT: _plot_particle_level_spectra_with_ROOT(**kwargs) else: _plot_particle_level_spectra_with_matplotlib(**kwargs) def _plot_particle_level_spectra_with_matplotlib(ep_analyses: AnalysesBase, output_name: str, output_info: analysis_objects.PlottingOutputWrapper, general_labels: Dict[str, str], plot_labels: plot_base.PlotLabels) -> None: """ Plot the particle level spectra with matplotlib. Args: ep_analyses: The final event plane dependent response matrix analysis objects. output_name: Name of the output plot. output_info: Output information. general_labels: General informational labels for the plot (ALICE, collision system, etc). plot_labels: plot and axis titles. Returns: None. The created canvas is plotted and saved. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # Diamond, square, up triangle, circle markers = ["D", "s", "^", "o"] colors = ["black", "blue", "green", "red"] # Label axes plot_labels.apply_labels(ax) # Plot the actual hists. The inclusive orientation will be plotted first. particle_level_max_pt = 0 for analysis, color, marker in zip(ep_analyses.values(), colors, markers): # Store this value for convenience. It is the same for all orientations. particle_level_max_pt = analysis.task_config["particle_level_spectra"]["particle_level_max_pt"] # For inclusive, use open markers that are plotted on top of all points. additional_args = {} if analysis.reaction_plane_orientation == params.ReactionPlaneOrientation.inclusive: additional_args.update({ "fillstyle": "none", "zorder": 10, }) # Convert and plot hist h = histogram.Histogram1D.from_existing_hist(analysis.particle_level_spectra) ax.errorbar( h.x, h.y, xerr = (h.bin_edges[1:] - h.bin_edges[:-1]) / 2, yerr = h.errors, label = analysis.reaction_plane_orientation.display_str(), color = color, marker = marker, linestyle = "", **additional_args ) # Final presentation settings # Axis ticks ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(base = 10)) ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(base = 2)) tick_shared_args = { "axis": "both", "bottom": True, "left": True, } ax.tick_params( which = "major", # Size of the axis mark labels labelsize = 15, length = 8, **tick_shared_args, ) ax.tick_params( which = "minor", length = 4, **tick_shared_args, ) # Limits ax.set_xlim(0, particle_level_max_pt) # Unfortunately, MPL doesn't calculate restricted log limits very nicely, so we # we have to set the values by hand. # We grab the value from the last analysis object - the value will be the same for all of them. y_limits = analysis.task_config["particle_level_spectra"]["y_limits"] ax.set_ylim(y_limits[0], y_limits[1]) ax.set_yscale("log") # Legend ax.legend( loc = "lower left", frameon = False, fontsize = 18, ) # Combine the general labels and then plot them. label = "\n".join(general_labels.values()) # The label is anchored in the upper right corner. ax.text(0.95, 0.95, s = label, horizontalalignment = "right", verticalalignment = "top", multialignment = "right", fontsize = 18, transform = ax.transAxes) fig.tight_layout() # Finally, save and cleanup output_name += "_mpl" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def _plot_particle_level_spectra_with_ROOT(ep_analyses: AnalysesBase, output_name: str, output_info: analysis_objects.PlottingOutputWrapper, general_labels: Dict[str, str], plot_labels: plot_base.PlotLabels) -> None: """ Plot the particle level spectra with ROOT. Args: ep_analyses: The final event plane dependent response matrix analysis objects. output_name: Name of the output plot. output_info: Output information. general_labels: General informational labels for the plot (ALICE, collision system, etc). plot_labels: plot and axis titles. Returns: None. The created canvas is plotted and saved. """ # Setup # Aesthetics # Colors and markers are from Joel's plots. colors = [ROOT.kBlack, ROOT.kBlue - 7, 8, ROOT.kRed - 4] markers = [ROOT.kFullDiamond, ROOT.kFullSquare, ROOT.kFullTriangleUp, ROOT.kFullCircle] # Diamond: 1.6 # Triangle: 1.2 marker_sizes = [1.6, 1.1, 1.2, 1.1] # Canvas canvas = ROOT.TCanvas("canvas", "canvas") canvas.SetTopMargin(0.04) canvas.SetLeftMargin(0.14) canvas.SetRightMargin(0.04) canvas.SetBottomMargin(0.15) # These are spectra, so it makes sense to draw it in a log scale. canvas.SetLogy(True) # Legend legend = ROOT.TLegend(0.14, 0.17, 0.42, 0.47) # Remove border legend.SetBorderSize(0) # Increase text size legend.SetTextSize(0.06) # Make the legend transparent legend.SetFillStyle(0) # Main labeling latex_labels = [] # ALICE + collision energy latex_labels.append(ROOT.TLatex( 0.5675, 0.90, labels.use_label_with_root(general_labels["alice_and_collision_energy"]) )) # Collision system + event activity # We want the centrality to appear between the cross symbol and Pb--Pb # NOTE: The y value is minimally adjusted down from the constant 0.06 decrease because the sqrt extends far down. latex_labels.append(ROOT.TLatex( 0.5375, 0.825, labels.use_label_with_root(general_labels["collision_system_and_event_activity"]), )) # Particle level spectra range in detector pt. latex_labels.append(ROOT.TLatex( 0.605, 0.75, labels.use_label_with_root(general_labels["detector_pt_range"]), )) # Constituent cuts latex_labels.append(ROOT.TLatex( 0.5675, 0.675, labels.use_label_with_root(general_labels["constituent_cuts"]), )) # Leading hadron bias # The x position of this label depends on the value. # We need some additional parameters to determine the position, so we retrieve the inclusive analysis. # All of the parameters retrieved here are shared by all analyses. inclusive = next(iter(ep_analyses.values())) # We start we a semi-reasonable position with the expectation that we will usually overwrite it. leading_hadron_bias_label_x_position = 0.6 # Track bias if inclusive.leading_hadron_bias.type == params.LeadingHadronBiasType.track: leading_hadron_bias_label_x_position = 0.6025 # Cluster bias if inclusive.leading_hadron_bias.type == params.LeadingHadronBiasType.cluster and \ inclusive.leading_hadron_bias.value < 10: leading_hadron_bias_label_x_position = 0.633 latex_labels.append(ROOT.TLatex( leading_hadron_bias_label_x_position, 0.60, # Replace necessary because ROOT LaTeX support sux... # Includes "d" in finding the space because there is another space that's rendered properly # later in the string... labels.use_label_with_root(general_labels["leading_hadron_bias"]).replace(r"d\:", "d "), )) # Jet finding latex_labels.append(ROOT.TLatex(0.71, 0.525, labels.use_label_with_root(general_labels["jet_finding"]))) # Plot the actual hists. The inclusive orientation will be plotted first. for i, (analysis, color, marker, marker_size) in enumerate(zip(ep_analyses.values(), colors, markers, marker_sizes)): # The hist to be plotted. We explicitly retrieve it for convenience. hist = analysis.particle_level_spectra # Set the titles plot_labels.apply_labels(hist) # Style each individual hist. In principle, we could do this for only one hist and then set the # axis labels to empty for the rest, but then we would have to empty out the labels. This is just, # as easy, and then we don't have to deal with changing the labels. # Enlarge axis title size hist.GetXaxis().SetTitleSize(0.055) hist.GetYaxis().SetTitleSize(0.055) # Ensure there is enough space hist.GetXaxis().SetTitleOffset(1.15) hist.GetYaxis().SetTitleOffset(1.22) # Enlarge axis label size hist.GetXaxis().SetLabelSize(0.06) hist.GetYaxis().SetLabelSize(0.06) # Center axis title hist.GetXaxis().CenterTitle(True) hist.GetYaxis().CenterTitle(True) # View the interesting range # Note that this must be set after removing any bins that we might want to remove, # so we set it when plotting. hist.GetXaxis().SetRangeUser(0, analysis.task_config["particle_level_spectra"]["particle_level_max_pt"]) # Set histogram aesthetics hist.SetLineColor(color) hist.SetMarkerColor(color) hist.SetMarkerStyle(marker) # Increase marker size slightly hist.SetMarkerSize(marker_size) # Could increase the line width if the inclusive angle was closed, but # the open marker doesn't look very good... #hist.SetLineWidth(2) # Offset points # See: https://root.cern.ch/root/roottalk/roottalk03/2765.html if analysis.task_config["particle_level_spectra"]["plot_points_with_offset"]: shift = i * 0.1 * hist.GetBinWidth(1) xAxis = hist.GetXaxis() xAxis.SetLimits(xAxis.GetXmin() + shift, xAxis.GetXmax() + shift) # Store hist in legend # Remap "inclusive" -> "all" for prior consistency. label = analysis.reaction_plane_orientation.display_str() if analysis.reaction_plane_orientation == params.ReactionPlaneOrientation.inclusive: label = "All" legend.AddEntry(hist, label) # Last, we draw the actual hist. hist.Draw("same") # Redraw the inclusive hist so that it's on top. inclusive.particle_level_spectra.Draw("same") # Draw all of the labels and the legend. for tex in latex_labels: tex.SetNDC(True) tex.Draw() legend.Draw() # Finally, save the plot output_name += "_ROOT" plot_base.save_plot(output_info, canvas, output_name) # Also save the plot as a c macro canvas.SaveAs(os.path.join(output_info.output_prefix, output_name + ".C")) def particle_level_spectra_ratios(ep_analyses_iter: Iterator[Tuple[Any, "response_matrix.ResponseMatrixBase"]], output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Create ratios relative to the particle level spectra and plot them. Args: ep_analyses: The event plane dependent final response matrices. output_info: Output information. Returns: None. The spectra are plotted and saved. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # Diamond, square, up triangle, circle markers = ["D", "s", "^", "o"] colors = ["black", "blue", "green", "red"] # Pull out the dict because we need to grab individual analyses for some labeling information, which doesn't # play well with generators (the generator will be exhausted). ep_analyses = dict(ep_analyses_iter) # First, we need the inclusive analysis spectra to define the ratio. inclusive = next(iter(ep_analyses.values())) inclusive_hist = histogram.Histogram1D.from_existing_hist(inclusive.particle_level_spectra) # Setup rank 1 polynomial fit (not really the right place, but it's quick and fine # for these purposees). def degree_1_polynomial(x: float, const: float, slope: float) -> float: """ Degree 1 polynomial. Args: x: Independent variable. const: Constant offset. slope: Coefficient for 1st degree term. Returns: Calculated first degree polynomial. """ return const + x * slope class Polynomial(pachyderm.fit.Fit): """ Fit a degree-1 to the background dominated region of a delta eta hist. The initial value of the fit will be determined by the minimum y value of the histogram. Attributes: fit_range: Range used for fitting the data. Values inside of this range will be used. user_arguments: User arguments for the fit. Default: None. fit_function: Function to be fit. fit_result: Result of the fit. Only valid after the fit has been performed. """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) # Finally, setup the fit function self.fit_function = degree_1_polynomial def _post_init_validation(self) -> None: """ Validate that the fit object was setup properly. This can be any method that the user devises to ensure that all of the information needed for the fit is available. Args: None. Returns: None. """ fit_range = self.fit_options.get("range", None) # Check that the fit range is specified if fit_range is None: raise ValueError("Fit range must be provided in the fit options.") # Check that the fit range is a SelectedRange (this isn't really suitable for duck typing) if not isinstance(fit_range, params.SelectedRange): raise ValueError("Must provide fit range with a selected range or a set of two values") def _setup(self, h: histogram.Histogram1D) -> Tuple[histogram.Histogram1D, pachyderm.fit.T_FitArguments]: """ Setup the histogram and arguments for the fit. Args: h: Background subtracted histogram to be fit. Returns: Histogram to use for the fit, default arguments for the fit. Note that the histogram may be range restricted or otherwise modified here. """ fit_range = self.fit_options["range"] # Restrict the range so that we only fit within the desired input. restricted_range = (h.x > fit_range.min) & (h.x < fit_range.max) restricted_hist = histogram.Histogram1D( # We need the bin edges to be inclusive. # Need the +/- epsilons here to be extra safe, because apparently some of the <= and >= can fail # (as might be guessed with floats, but I hadn't observed until now). We don't do this above # because we don't want to be inclusive on the edges. bin_edges = h.bin_edges[(h.bin_edges >= (fit_range.min - utils.epsilon)) & (h.bin_edges <= (fit_range.max + utils.epsilon))], y = h.y[restricted_range], errors_squared = h.errors_squared[restricted_range] ) # Default arguments # Use the minimum of the histogram as the starting value. arguments: pachyderm.fit.T_FitArguments = { "slope": 0, "error_slope": 0.005, "const": 1, "error_const": 0.005, "limit_slope": (-100, 100), "limit_const": (-10, 10), } return restricted_hist, arguments for analysis, color, marker in zip(ep_analyses.values(), colors, markers): # For inclusive, use open markers that are plotted on top of all points. additional_args = {} if analysis.reaction_plane_orientation == params.ReactionPlaneOrientation.inclusive: additional_args.update({ "fillstyle": "none", "zorder": 10, }) # Convert and plot hist h = histogram.Histogram1D.from_existing_hist(analysis.particle_level_spectra) h /= inclusive_hist ax.errorbar( h.x, h.y, xerr = (h.bin_edges[1:] - h.bin_edges[:-1]) / 2, yerr = h.errors, label = analysis.reaction_plane_orientation.display_str(), color = color, marker = marker, linestyle = "", **additional_args ) # Fit to a degree-1 polynomial and plot fit_object = Polynomial( use_log_likelihood = False, fit_options = {"range": analysis.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_values"]} ) fit_result = fit_object.fit(h = h) fit_object.fit_result = fit_result values = fit_object(fit_result.x, *fit_result.values_at_minimum.values()) # Plot the values ax.plot( fit_result.x, values, label = rf"Fit, {fit_result.values_at_minimum['const']:.2f} $\pm$ {fit_result.errors_on_parameters['const']:.2f} + " + rf"{fit_result.values_at_minimum['slope']:.1e} $\pm$ {fit_result.errors_on_parameters['slope']:.1e} " + rf"* ${labels.jet_pt_display_label()}$", color = color, ) # And the error bands ax.fill_between( fit_result.x, values - fit_result.errors, values + fit_result.errors, facecolor = color, alpha = 0.5, ) # Final presentation settings # Legend ax.legend( # Here, we specify the location of the upper right corner of the legend box. loc = "upper right", bbox_to_anchor = (0.99, 0.99), borderaxespad = 0, fontsize = 14, ncol = 2, ) plot_labels = plot_base.PlotLabels( title = "", x_label = fr"${labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})$", y_label = "Ratio to inclusive", ) plot_labels.apply_labels(ax) # Use the same xlimits as for the particle level spectra ax.set_xlim(0, inclusive.task_config["particle_level_spectra"]["particle_level_max_pt"]) # Should be centered around 1. ax.set_ylim(0.5, 1.5) fig.tight_layout() # Finally, save and cleanup output_name = "particle_level_ratios" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def compare_STAR_and_ALICE(star_final_response_task: "response_matrix.ResponseMatrixBase", alice_particle_level_spectra: Dict[params.CollisionEnergy, Hist], output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Compare STAR and ALICE particle level spectra. Args: star_final_response_task: STAR response matrix. alice_particle_level_spectra: The ALICE particle level spectra to plot. output_info: Output information. Returns: None. The comparison is plotted. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # First, plot the STAR points star_centrality_map = { params.EventActivity.semi_central: r"20 \textendash 50 \%", } star_hist = histogram.Histogram1D.from_existing_hist(star_final_response_task.particle_level_spectra) star_label = f"STAR ${star_final_response_task.collision_energy.display_str()}$ hard-core jets" star_label += "\n" + f"PYTHIA with ${star_centrality_map[star_final_response_task.event_activity]}$ ${star_final_response_task.collision_system.display_str()}$ det. conditions" ax.errorbar( star_hist.x, star_hist.y, xerr = (star_hist.bin_edges[1:] - star_hist.bin_edges[:-1]) / 2, yerr = star_hist.errors, label = star_label, color = "blue", marker = "s", linestyle = "", ) # Convert and plot hist # Markers are for 2.76, 5.02 TeV markers = ["D", "o"] fill_styles = ["none", "full"] for (collision_energy, part_level_hist), marker, fill_style in zip(alice_particle_level_spectra.items(), markers, fill_styles): alice_label = f"ALICE ${collision_energy.display_str()}$ biased jets" alice_label += "\n" + f"${params.CollisionSystem.embedPythia.display_str(embedded_additional_label = star_final_response_task.event_activity.display_str())}$" h = histogram.Histogram1D.from_existing_hist(part_level_hist) ax.errorbar( h.x, h.y, xerr = (h.bin_edges[1:] - h.bin_edges[:-1]) / 2, yerr = h.errors, label = alice_label, color = "red", marker = marker, fillstyle = fill_style, linestyle = "", ) # Label axes y_label = r"\text{d}N/\text{d}p_{\text{T}}" if star_final_response_task.task_config["particle_level_spectra"]["normalize_by_n_jets"]: y_label = r"(1/N_{\text{jets}})" + y_label if star_final_response_task.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_bin"]: # Assumes that we'll never set an upper bound. values = star_final_response_task.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_values"] y_label = r"(1/N_{\text{jets}}^{p_{\text{T}} > " + fr"{values.min}\:{labels.momentum_units_label_gev()}" + r"})" + y_label # Add y_label units y_label += fr"\:({labels.momentum_units_label_gev()})^{{-1}}" plot_labels = plot_base.PlotLabels( title = "", x_label = fr"${labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})$", y_label = labels.make_valid_latex_string(y_label), ) # Apply labels individually so we can increase the font size... ax.set_xlabel(plot_labels.x_label, fontsize = 16) ax.set_ylabel(plot_labels.y_label, fontsize = 16) ax.set_title("") # Final presentation settings # Axis ticks ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(base = 10)) ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(base = 2)) tick_shared_args = { "axis": "both", "bottom": True, "left": True, } ax.tick_params( which = "major", # Size of the axis mark labels labelsize = 15, length = 8, **tick_shared_args, ) ax.tick_params( which = "minor", length = 4, **tick_shared_args, ) # Limits ax.set_xlim(0, star_final_response_task.task_config["particle_level_spectra"]["particle_level_max_pt"]) # Unfortunately, MPL doesn't calculate restricted log limits very nicely, so we we have to set the values by hand. # We grab the value from the configuration y_limits = star_final_response_task.task_config["particle_level_spectra"]["y_limits"] ax.set_ylim(y_limits[0], y_limits[1]) ax.set_yscale("log") # Legend ax.legend( # Here, we specify the location of the upper right corner of the legend box. loc = "upper right", bbox_to_anchor = (0.99, 0.99), borderaxespad = 0, frameon = True, fontsize = 13.5, ) ax.text(0.99, 0.66, s = "Inclusive event plane orientation", horizontalalignment = "right", verticalalignment = "top", multialignment = "right", fontsize = 13.5, transform = ax.transAxes) fig.tight_layout() # Finally, save and cleanup output_name = "particle_level_comparison_STAR_ALICE" output_name += "_mpl" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def compare_min_constituent_cut(obj: "response_matrix.ResponseMatrixBase", min_constituent_hist: Hist, output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Compare the constituent cut against the minimum constituent cut. Args: obj: The response matrix analysis object. min_constituent_hist: Particle level spectra generated with a minimum constituent cut. output_info: Output information. Returns: None. The comparison is plotted. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # Plot the standard constituent cut. particle_level_hist = histogram.Histogram1D.from_existing_hist(obj.particle_level_spectra) label = f"Jets, {labels.constituent_cuts(additional_label = ' part,det')}" ax.errorbar( particle_level_hist.x, particle_level_hist.y, xerr = particle_level_hist.bin_widths / 2, yerr = particle_level_hist.errors, label = label, marker = "s", linestyle = "", ) # Plot the min constituent cut spectra label = f"Jets, {labels.constituent_cuts(min_track_pt = 0.15, min_cluster_pt = 0.30, additional_label = ' part,det')}" h = histogram.Histogram1D.from_existing_hist(min_constituent_hist) ax.errorbar( h.x, h.y, xerr = h.bin_widths / 2, yerr = h.errors, label = label, marker = "s", linestyle = "", ) # Label axes y_label = r"\text{d}N/\text{d}p_{\text{T}}" if obj.task_config["particle_level_spectra"]["normalize_by_n_jets"]: y_label = r"(1/N_{\text{jets}})" + y_label if obj.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_bin"]: # Assumes that we'll never set an upper bound. values = obj.task_config["particle_level_spectra"]["normalize_at_selected_jet_pt_values"] y_label = r"(1/N_{\text{jets}}^{p_{\text{T}} > " + fr"{values.min}\:{labels.momentum_units_label_gev()}" + r"})" + y_label # Add y_label units y_label += fr"\:({labels.momentum_units_label_gev()})^{{-1}}" plot_labels = plot_base.PlotLabels( title = "", x_label = fr"${labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})$", y_label = labels.make_valid_latex_string(y_label), ) # Apply labels individually so we can increase the font size... ax.set_xlabel(plot_labels.x_label, fontsize = 16) ax.set_ylabel(plot_labels.y_label, fontsize = 16) ax.set_title("") # Final presentation settings # Axis ticks ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(base = 10)) ax.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(base = 2)) tick_shared_args = { "axis": "both", "bottom": True, "left": True, } ax.tick_params( which = "major", # Size of the axis mark labels labelsize = 15, length = 8, **tick_shared_args, ) ax.tick_params( which = "minor", length = 4, **tick_shared_args, ) # Limits ax.set_xlim(0, obj.task_config["particle_level_spectra"]["particle_level_max_pt"]) # Unfortunately, MPL doesn't calculate restricted log limits very nicely, so we # we have to set the values by hand. # We grab the value from the last analysis object - the value will be the same for all of them. y_limits = obj.task_config["particle_level_spectra"]["y_limits"] ax.set_ylim(y_limits[0], y_limits[1]) ax.set_yscale("log") # Legend ax.legend( loc = "lower left", fontsize = 16, frameon = False, ) # General labels label = f"${obj.alice_label.display_str()}$, ${obj.collision_energy.display_str()}$" label += "\n" + f"${params.CollisionSystem.embedPythia.display_str(embedded_additional_label = obj.event_activity.display_str())}$" label += "\n" + "Inclusive event plane orientation" ax.text(0.99, 0.99, s = label, horizontalalignment = "right", verticalalignment = "top", multialignment = "right", fontsize = 16, transform = ax.transAxes) fig.tight_layout() # Finally, save and cleanup output_name = "particle_level_comparison_constituent_cut" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def plot_response_matrix_and_errors(obj: "response_matrix.ResponseMatrixBase", plot_with_ROOT: bool = False) -> None: """ Plot the 2D response matrix and response matrix errors hists using ROOT. Args: obj: The response matrix analysis object. plot_with_ROOT: True if the plot should be done via ROOT. Default: False Returns: None. The comparison is plotted. """ for hist, plot_errors_hist in [(obj.response_matrix, False), (obj.response_matrix_errors, True)]: # Plot response matrix _plot_response_matrix( hist = hist, plot_errors_hist = plot_errors_hist, output_info = obj.output_info, plot_with_ROOT = plot_with_ROOT, reaction_plane_orientation = obj.reaction_plane_orientation, ) # We also want to plot a final response matrix, with final labeling and rebinning. _plot_final_response_matrix_with_matplotlib( obj = obj, hist = obj.response_matrix, output_info = obj.output_info, ) def _plot_response_matrix(hist: Hist, plot_errors_hist: bool, output_info: analysis_objects.PlottingOutputWrapper, plot_with_ROOT: bool, reaction_plane_orientation: params.ReactionPlaneOrientation) -> None: """ Plot the given response matrix related 2D hist. Args: hist: The response matrix related 2D hist. errors_hist: True if the hist is the response matrix errors hist. output_info: Output information. plot_with_ROOT: True if the plot should be done via ROOT. reaction_plane_orientation: Reaction plane orientation of the plot. Returns: None """ # Determine parameters name = "Response Matrix" if plot_errors_hist: name += " Errors" name += f", {reaction_plane_orientation.display_str()} event plane orientation" output_name = "response_matrix" if plot_errors_hist: output_name += "_errors" x_label = fr"{labels.jet_pt_display_label(upper_label = 'hybrid')}\:({labels.momentum_units_label_gev()})" y_label = fr"{labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})" # Determine args and call args = { "name": name, "x_label": labels.make_valid_latex_string(x_label), "y_label": labels.make_valid_latex_string(y_label), "output_name": output_name, "hist": hist, "plot_errors_hist": plot_errors_hist, "output_info": output_info, } if plot_with_ROOT: _plot_response_matrix_with_ROOT(**args) else: _plot_response_matrix_with_matplotlib(**args) def _plot_response_matrix_with_matplotlib(name: str, x_label: str, y_label: str, output_name: str, hist: Hist, plot_errors_hist: bool, output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Underlying function to actually plot a response matrix with matplotlib. Args: name: Name of the histogram. x_label: X axis label. y_label: Y axis label. output_name: Output name of the histogram. hist: The response matrix related 2D hist. errors_hist: True if the hist is the response matrix errors hist. output_info: Output information. Returns: None """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # Convert the histogram X, Y, hist_array = histogram.get_array_from_hist2D( hist = hist, set_zero_to_NaN = True, return_bin_edges = True, ) # Determine and fill args kwargs = {} # Create a log z axis heat map. kwargs["norm"] = matplotlib.colors.LogNorm(vmin = np.nanmin(hist_array), vmax = np.nanmax(hist_array)) logger.debug(f"min: {np.nanmin(hist_array)}, max: {np.nanmax(hist_array)}") # The colormap that we use is the default from sns.heatmap kwargs["cmap"] = plot_base.prepare_colormap(sns.cm.rocket) # Label is included so we could use a legend if we want kwargs["label"] = name logger.debug("kwargs: {}".format(kwargs)) # Determine the edges extent = [ np.amin(X), np.amax(X), np.amin(Y), np.amax(Y) ] # Finally, create the plot ax_from_imshow = ax.imshow( hist_array.T, extent = extent, interpolation = "nearest", aspect = "auto", origin = "lower", **kwargs ) # Add colorbar # It needs to be defined on the figure because it is stored in a separate axis. fig.colorbar(ax_from_imshow, ax = ax) # Final styling ax.set_title(name) ax.set_xlabel(x_label) ax.set_ylabel(y_label) fig.tight_layout() # Save and cleanup output_name += "_mpl" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def _plot_response_matrix_with_ROOT(name: str, x_label: str, y_label: str, output_name: str, hist: Hist, plot_errors_hist: bool, output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Underlying function to actually plot a response matrix with ROOT. Args: name: Name of the histogram. x_label: X axis label. y_label: Y axis label. output_name: Output name of the histogram. hist: The response matrix related 2D hist. errors_hist: True if the hist is the response matrix errors hist. output_info: Output information. Returns: None """ # Setup canvas = ROOT.TCanvas("canvas", "canvas") canvas.SetLogz(True) # Plot the histogram hist.SetTitle(name) hist.GetXaxis().SetTitle(labels.use_label_with_root(x_label)) hist.GetYaxis().SetTitle(labels.use_label_with_root(y_label)) hist.Draw("colz") # Set the final axis ranges. # Z axis min_val = ctypes.c_double(0) max_val = ctypes.c_double(0) hist.GetMinimumAndMaximum(min_val, max_val) # * 1.1 to put it slightly above the max value # min_val doesn't work here, because there are some entries at 0 hist.GetZaxis().SetRangeUser(10e-7, max_val.value * 1.1) # Save output_name += "_ROOT" plot_base.save_plot(output_info, canvas, output_name) def _plot_final_response_matrix_with_matplotlib(obj: "response_matrix.ResponseMatrixBase", hist: Hist, output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Underlying function to actually plot the final response matrix with matplotlib. It also rebins a clone of the histogram so it's presentable. Args: obj: Response matrix object. hist: The response matrix related 2D hist. output_info: Output information. Returns: None """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) # Convert the histogram # First, we clone and rebin for presentation purposes response = hist.Clone(f"{hist.GetName()}_rebin_temp") response.Rebin2D(5, 5) X, Y, hist_array = histogram.get_array_from_hist2D( hist = response, set_zero_to_NaN = True, return_bin_edges = True, ) # Determine and fill args kwargs = {} # Create a log z axis heat map. kwargs["norm"] = matplotlib.colors.LogNorm(vmin = np.nanmin(hist_array), vmax = np.nanmax(hist_array)) logger.debug(f"min: {np.nanmin(hist_array)}, max: {np.nanmax(hist_array)}") # The colormap that we use is the default from sns.heatmap kwargs["cmap"] = "viridis" # Label is included so we could use a legend if we want kwargs["label"] = "response" logger.debug("kwargs: {}".format(kwargs)) # Determine the edges extent = [ np.amin(X), np.amax(X), np.amin(Y), np.amax(Y) ] # Finally, create the plot ax_from_imshow = ax.imshow( hist_array.T, extent = extent, interpolation = "nearest", aspect = "auto", origin = "lower", **kwargs ) # Add colorbar # It needs to be defined on the figure because it is stored in a separate axis. fig.colorbar(ax_from_imshow, ax = ax) # Add labeling embedded_additional_label = obj.event_activity.display_str() general_labels = { "alice_and_collision_energy": rf"{obj.alice_label.display_str()}\:{obj.collision_energy.display_str()}", "collision_system_and_event_activity": rf"{obj.collision_system.display_str(embedded_additional_label = embedded_additional_label)}", "constituent_cuts": labels.constituent_cuts(additional_label = "det"), "leading_hadron_bias": obj.leading_hadron_bias.display_str(additional_label = "det"), "jet_finding": labels.jet_finding(), } # Ensure that each line is a valid latex line. # The heuristic is roughly that full statements (such as jet_finding) are already wrapped in "$", # while partial statements, such as the leading hadron bias, event activity, etc are not wrapped in "$". # This is due to the potential for such "$" to interfere with including those partial statements in other # statements. As an example, it would be impossible to use the ``embedded_additional_label`` above if the # ``event_activity`` included "$". for k, v in general_labels.items(): general_labels[k] = labels.make_valid_latex_string(v) label = "\n".join(reversed(list(general_labels.values()))) ax.text(0.99, 0.01, s = label, horizontalalignment = "right", verticalalignment = "bottom", multialignment = "right", transform = ax.transAxes, # We need a slightly smaller font size to fit everything... fontsize = 15) # Axis labels x_label = labels.make_valid_latex_string( fr"{labels.jet_pt_display_label(upper_label = 'hybrid')}\:({labels.momentum_units_label_gev()})" ) y_label = labels.make_valid_latex_string( fr"{labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})" ) ax.set_title("") ax.set_xlabel(x_label) ax.set_ylabel(y_label) # Final styling fig.tight_layout() # Save and cleanup output_name = "response_matrix_final_mpl" plot_base.save_plot(output_info, fig, output_name) plt.close(fig) def plot_response_spectra(plot_labels: plot_base.PlotLabels, output_name: str, merged_analysis: analysis_objects.JetHBase, pt_hard_analyses: Mapping[Any, Union["pt_hard_analysis.PtHardAnalysis", "response_matrix.ResponseMatrixBase"]], hist_attribute_name: str, plot_with_ROOT: bool = False) -> None: """ Plot 1D response spectra. Args: plot_labels: Labels for the plot. output_name: Name under which the plot should be stored. merged_analysis: Full merged together analysis object. pt_hard_analyses: Pt hard dependent analysis objects to be plotted. hist_attribute_name: Name of the attribute under which the histogram is stored. plot_with_ROOT: True if the plot should be done via ROOT. """ # Setup # NOTE: "husl" is also a good option. colors = sns.color_palette( palette = "Blues_d", n_colors = len(pt_hard_analyses) ) # Update the plot labels as appropriate using the reaction plane orientation information # Help out mypy.... assert plot_labels.title is not None # The pt hard spectra doesn't have a reaction plane orientation, so add it to the title if the # attribute is available if hasattr(merged_analysis, "reaction_plane_orientation"): # Help out mypy merged_analysis = cast(analysis_objects.JetHReactionPlane, merged_analysis) plot_labels.title = plot_labels.title + f", {merged_analysis.reaction_plane_orientation.display_str()} reaction plane orientation" kwargs = { "plot_labels": plot_labels, "output_name": output_name, "merged_analysis": merged_analysis, "pt_hard_analyses": pt_hard_analyses, "hist_attribute_name": hist_attribute_name, "colors": colors, } if plot_with_ROOT: _plot_response_spectra_with_ROOT(**kwargs) else: _plot_response_spectra_with_matplotlib(**kwargs) def _plot_response_spectra_with_matplotlib(plot_labels: plot_base.PlotLabels, output_name: str, merged_analysis: analysis_objects.JetHBase, pt_hard_analyses: Mapping[Any, Union["pt_hard_analysis.PtHardAnalysis", "response_matrix.ResponseMatrixBase"]], hist_attribute_name: str, colors: Sequence[Tuple[float, float, float]]) -> None: """ Plot 1D response spectra with matplotlib. Args: plot_labels: Labels for the plot. output_name: Name under which the plot should be stored. merged_analysis: Full merged together analysis object. pt_hard_analyses: Pt hard dependent analysis objects to be plotted. hist_attribute_name: Name of the attribute under which the histogram is stored. colors: List of colors to be used for plotting the pt hard spectra. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) plot_labels.apply_labels(ax) # First, we plot the merged analysis. This is the sum of the various pt hard bin contributions. merged_hist = utils.recursive_getattr(merged_analysis, hist_attribute_name) merged_hist = histogram.Histogram1D.from_existing_hist(merged_hist) ax.errorbar( merged_hist.x, merged_hist.y, yerr = merged_hist.errors, label = "Merged", color = "black", marker = ".", linestyle = "", ) # Now, we plot the pt hard dependent hists for (key_index, analysis), color in zip(pt_hard_analyses.items(), colors): # Determine the proper label. label = labels.pt_range_string( pt_bin = key_index.pt_hard_bin, lower_label = "T", upper_label = "hard", only_show_lower_value_for_last_bin = True, ) # Plot the histogram. hist = utils.recursive_getattr(analysis, hist_attribute_name) h = histogram.Histogram1D.from_existing_hist(hist) ax.errorbar( h.x, h.y, yerr = h.errors, label = label, color = color, marker = ".", linestyle = "", ) # Final presentation settings # Ensure that the max is never beyond 300 for better presentation. max_limit = np.max(merged_hist.x) if max_limit > 300: max_limit = 300 ax.set_xlim(0, max_limit) ax.set_yscale("log") ax.legend(loc = "best", frameon = False, ncol = 2, fontsize = 11) fig.tight_layout() # Save and cleanup output_name += "_mpl" plot_base.save_plot(merged_analysis.output_info, fig, output_name) plt.close(fig) def _plot_response_spectra_with_ROOT(plot_labels: plot_base.PlotLabels, output_name: str, merged_analysis: analysis_objects.JetHBase, pt_hard_analyses: Mapping[Any, Union["pt_hard_analysis.PtHardAnalysis", "response_matrix.ResponseMatrixBase"]], hist_attribute_name: str, colors: Sequence[Tuple[float, float, float]]) -> None: """ Plot 1D response spectra with ROOT. Args: plot_labels: Labels for the plot. output_name: Name under which the plot should be stored. merged_analysis: Full merged together analysis object. pt_hard_analyses: Pt hard dependent analysis objects to be plotted. hist_attribute_name: Name of the attribute under which the histogram is stored. colors: List of colors to be used for plotting the pt hard spectra. """ # Setup canvas = ROOT.TCanvas("canvas", "canvas") canvas.SetLogy(True) # Legend legend = ROOT.TLegend(0.37, 0.55, 0.9, 0.9) legend.SetHeader(r"p_{\mathrm{T}}\:\mathrm{bins}", "C") # Increase text size legend.SetTextSize(0.025) # Use two columns because we have a lot of entries. legend.SetNColumns(2) # Remove the legend border legend.SetBorderSize(0) # Make the legend transparent legend.SetFillStyle(0) # First, we plot the merged analysis. This is the sum of the various pt hard bin contributions. merged_hist = utils.recursive_getattr(merged_analysis, hist_attribute_name) # Apply axis labels (which must be set on the hist) plot_labels.apply_labels(merged_hist) # Style the merged hist to ensure that it is possible to see the points merged_hist.SetMarkerStyle(ROOT.kFullCircle) merged_hist.SetMarkerSize(1) merged_hist.SetMarkerColor(ROOT.kBlack) merged_hist.SetLineColor(ROOT.kBlack) # Ensure that the max is never beyond 300 for better presentation. max_limit = merged_hist.GetXaxis().GetXmax() if max_limit > 300: max_limit = 300 merged_hist.GetXaxis().SetRangeUser(0, max_limit) # Label and draw legend.AddEntry(merged_hist, "Merged") merged_hist.Draw("same") # Now, we plot the pt hard dependent hists for i, ((key_index, analysis), color) in enumerate(zip(pt_hard_analyses.items(), colors)): # Setup color = ROOT.TColor.GetColor(*color) # Determine the proper label. label = labels.pt_range_string( pt_bin = key_index.pt_hard_bin, lower_label = "T", upper_label = "hard", only_show_lower_value_for_last_bin = True, ) # Retrieve and style the hist hist = utils.recursive_getattr(analysis, hist_attribute_name) hist.SetMarkerStyle(ROOT.kFullCircle + i) hist.SetMarkerSize(1) hist.SetMarkerColor(color) hist.SetLineColor(color) # Label and draw legend.AddEntry(hist, labels.use_label_with_root(label)) hist.Draw("same") # Final presentation settings legend.Draw() # Save and cleanup output_name += "_ROOT" plot_base.save_plot(merged_analysis.output_info, canvas, output_name) def plot_particle_level_spectra_agreement(difference: Hist, absolute_value_of_difference: Hist, output_info: analysis_objects.PlottingOutputWrapper) -> None: """ Plot the agreement of the particle level spectra between the inclusive and sum of all EP orientations. Args: difference: Hist of the sum of the EP orientations spectra minus the inclusive spectra. absolute_value_of_difference: Same as the difference hist, but having taken the absolute value. This allows us to plot the difference on a log scale (which is useful if the differences are small). output_info: Output information. Returns: None. """ # Setup output_name = "difference_of_sum_EP_orientations_vs_inclusive" canvas = ROOT.TCanvas("canvas", "canvas") # Labeling x_label = labels.use_label_with_root( fr"{labels.jet_pt_display_label(upper_label = 'part')}\:({labels.momentum_units_label_gev()})" ) y_label = r"\mathrm{d}N/\mathrm{d}p_{\mathrm{T}}" # Apply settings to hists for h in [difference, absolute_value_of_difference]: # Labeling h.GetXaxis().SetTitle(x_label) h.GetYaxis().SetTitle(y_label) # Center axis title h.GetXaxis().CenterTitle(True) h.GetYaxis().CenterTitle(True) # Draw and save the difference histogram. difference.Draw() plot_base.save_plot(output_info, canvas, output_name) # Draw and save the absolute value of the difference histogram. absolute_value_of_difference.Draw() canvas.SetLogy(True) output_name += "_abs" plot_base.save_plot(output_info, canvas, output_name) def matched_jet_energy_scale(plot_labels: plot_base.PlotLabels, output_name: str, output_info: analysis_objects.PlottingOutputWrapper, obj: "response_matrix.ResponseMatrixBase") -> None: # Setup canvas = ROOT.TCanvas("canvas", "canvas") canvas.SetLogz(True) hist = obj.matched_jet_pt_difference logger.debug(f"hist: {hist}") # Plot the histogram plot_labels.apply_labels(hist) hist.Draw("colz") # Axis ranges hist.GetXaxis().SetRangeUser(0, 150) # Scale Z axis. Otherwise, we won't see much. min_val = ctypes.c_double(0) max_val = ctypes.c_double(0) hist.GetMinimumAndMaximum(min_val, max_val) # * 1.1 to put it slightly above the max value # min_val doesn't work here, because there are some entries at 0 hist.GetZaxis().SetRangeUser(10e-7, max_val.value * 1.1) # Save plot_base.save_plot(output_info, canvas, output_name)
the-stack_106_27117
import enum import logging from typing import Optional, Union, Tuple, Iterable import numpy as np from .azimuthalcurve import AzimuthalCurve from .curve import Curve from .header import Header from ..algorithms.matrixaverager import ErrorPropagationMethod, MatrixAverager from ..algorithms.radavg import radavg, autoq, azimavg logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class QRangeMethod(enum.Enum): """Methods for spacing q-bins""" Linear = 1 Logarithmic = 0 Square = 2 Square_root = 3 class Exposure: intensity: np.ndarray mask: np.ndarray # 1: valid: 0: invalid uncertainty: np.ndarray header: Header def __init__(self, intensity: np.ndarray, header: Header, uncertainty: Optional[np.ndarray] = None, mask: Optional[np.ndarray] = None): self.intensity = intensity if uncertainty is None: uncertainty = np.zeros_like(self.intensity) if mask is None: mask = np.ones(self.intensity.shape, np.uint8) else: mask = mask.astype(np.uint8) if (intensity.shape != uncertainty.shape) or (intensity.shape != mask.shape): raise ValueError('Shape mismatch') self.mask = mask self.uncertainty = uncertainty self.header = header def radial_average(self, qbincenters: Optional[Union[np.ndarray, int, Tuple[QRangeMethod, int]]] = None, errorprop: ErrorPropagationMethod = ErrorPropagationMethod.Gaussian, qerrorprop: ErrorPropagationMethod = ErrorPropagationMethod.Gaussian) -> Curve: if (qbincenters is None) or isinstance(qbincenters, int): qbincenters = autoq( self.mask, self.header.wavelength[0], self.header.distance[0], self.header.pixelsize[0], self.header.beamposrow[0], self.header.beamposcol[0], linspacing=1, N=-1 if qbincenters is None else qbincenters) elif isinstance(qbincenters, tuple) and (len(qbincenters) == 2) and isinstance(qbincenters[0], QRangeMethod): qbincenters = autoq( self.mask, self.header.wavelength[0], self.header.distance[0], self.header.pixelsize[0], self.header.beamposrow[0], self.header.beamposcol[0], linspacing=qbincenters[0].value, N=-1 if (qbincenters[1]<1) else qbincenters[1]) elif not isinstance(qbincenters, np.ndarray): raise TypeError(f'Invalid type for parameter `qbincenters`: {type(qbincenters)}') q, intensity, uncertainty, quncertainty, binarea, pixel = radavg( self.intensity, self.uncertainty, self.mask, self.header.wavelength[0], self.header.wavelength[1], self.header.distance[0], self.header.distance[1], self.header.pixelsize[0], self.header.pixelsize[1], self.header.beamposrow[0], self.header.beamposrow[1], self.header.beamposcol[0], self.header.beamposcol[1], qbincenters, errorprop.value, qerrorprop.value ) return Curve.fromVectors(q, intensity, uncertainty, quncertainty, binarea, pixel) def azim_average(self, count=100, errorprop: ErrorPropagationMethod = ErrorPropagationMethod.Conservative, qerrorprop: ErrorPropagationMethod = ErrorPropagationMethod.Conservative) -> AzimuthalCurve: phi, intensity, uncertainty, phiuncertainty, binarea, qmean, qstd = azimavg( self.intensity, self.uncertainty, self.mask, self.header.wavelength[0], # self.header.wavelength[1], self.header.distance[0], # self.header.distance[1], self.header.pixelsize[0], # self.header.pixelsize[1], self.header.beamposrow[0], self.header.beamposrow[1], self.header.beamposcol[0], self.header.beamposcol[1], count, errorprop.value, qerrorprop.value ) return AzimuthalCurve.fromVectors(phi, intensity, uncertainty, phiuncertainty, binarea, qmean, qstd) @property def size(self) -> int: return self.intensity.size @property def shape(self) -> Tuple[int, ...]: return self.intensity.shape def radius_pixel(self) -> Tuple[np.ndarray, np.ndarray]: row = np.arange(self.intensity.shape[0])[:, np.newaxis] - self.header.beamposrow[0] drow = self.header.beamposrow[1] col = np.arange(self.intensity.shape[1])[np.newaxis, :] - self.header.beamposcol[0] dcol = self.header.beamposcol[1] radius = (row ** 2 + col ** 2) ** 0.5 dradius = (row ** 2 * drow ** 2 + col ** 2 * dcol ** 2) ** 0.5 / radius return radius, dradius def radius_distance(self) -> Tuple[np.ndarray, np.ndarray]: r, dr = self.radius_pixel() return (r * self.header.pixelsize[0], (dr ** 2 * self.header.pixelsize[0] ** 2 + r ** 2 * self.header.pixelsize[1] ** 2) ** 0.5) def twotheta(self) -> Tuple[np.ndarray, np.ndarray]: r, dr = self.radius_distance() tan2th = ( r / self.header.distance[0], (r ** 2 * self.header.distance[1] ** 2 / self.header.distance[0] ** 4 + dr ** 2 / self.header.distance[ 0] ** 2) ** 0.5 ) return (np.arctan(tan2th[0]), np.abs(tan2th[1] / (1 + tan2th[0] ** 2))) def q(self) -> Tuple[np.ndarray, np.ndarray]: tth, dtth = self.twotheta() th, dth = 0.5 * tth, 0.5 * dtth sinth = np.sin(th), np.abs(dth * np.cos(th)) return (4 * np.pi * sinth[0] / self.header.wavelength[0], 4 * np.pi * ( sinth[1] ** 2 / self.header.wavelength[0] + sinth[0] ** 2 * self.header.wavelength[1] ** 2 / self.header.wavelength[0] ** 4) ** 0.5) def save(self, filename: str): np.savez_compressed(filename, Intensity=self.intensity, Error=self.uncertainty, mask=self.mask) @classmethod def average(cls, exposures: Iterable["Exposure"], errorpropagation: ErrorPropagationMethod) -> "Exposure": avgintensity = MatrixAverager(errorpropagation) mask = None headers = [] for ex in exposures: assert ex.intensity is not None assert ex.uncertainty is not None avgintensity.add(ex.intensity, ex.uncertainty) if mask is None: mask = ex.mask else: mask = np.logical_and(mask > 0, ex.mask > 0) headers.append(ex.header) intensity, uncertainty = avgintensity.get() return Exposure(intensity, Header.average(*headers), uncertainty, mask) def qtopixel(self, q: Union[float, np.ndarray]) -> Union[float, np.ndarray]: return np.tan(2 * np.arcsin(q / 4 / np.pi * self.header.wavelength[0])) * self.header.distance[0] / \ self.header.pixelsize[0] def pixeltoq(self, pixel: Union[float, np.ndarray]) -> Union[float, np.ndarray]: return 4 * np.pi * np.sin(0.5 * np.arctan(pixel * self.header.pixelsize[0] / self.header.distance[0])) / \ self.header.wavelength[0]
the-stack_106_27119
""" Build statically rendered files. SPDX-FileCopyrightText: 2021 Birger Schacht <[email protected]>, Mikk Margus Möll <[email protected]>, Sebastian Wagner <[email protected]> SPDX-License-Identifier: AGPL-3.0-or-later """ import argparse import pathlib import shutil from mako.lookup import TemplateLookup def render_page(pagename: str, **template_args) -> str: template_dir = pathlib.Path(__file__).parent / 'templates' template_lookup = TemplateLookup(directories=[template_dir], default_filters=["h"], input_encoding='utf8') template = template_lookup.get_template(f'{pagename}.mako') return template.render(pagename=pagename, **template_args) def buildhtml(outputdir: pathlib.Path = pathlib.Path('html')): outputdir.mkdir(parents=True, exist_ok=True) htmlfiles = ["configs", "management", "monitor", "check", "about", "index"] for filename in htmlfiles: print(f"Rendering {filename}.html") html = render_page(filename) outputdir.joinpath(f"{filename}.html").write_text(html) staticfiles = ["css", "images", "js", "plugins", "less"] for filename in staticfiles: print(f"Copying {filename} recursively") src = pathlib.Path(__file__).parent / 'static' / filename dst = outputdir / filename if dst.exists(): shutil.rmtree(dst) shutil.copytree(src, dst) print('rendering dynvar.js') rendered = render_page('dynvar', allowed_path='/opt/intelmq/var/lib/bots/', controller_cmd='intelmq') outputdir.joinpath('js/dynvar.js').write_text(rendered) def main(): parser = argparse.ArgumentParser( prog='intelmq-manager-build', description='Build statically rendered files for intelmq-manager.', epilog='This command renders and saves all files required for IntelMQ Manager at the given directory, which can be served by Webservers statically', formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('--output-dir', '-o', default='html', type=pathlib.Path, help='The destination directory, will be created if needed.') args = parser.parse_args() buildhtml(outputdir=args.output_dir) if __name__ == '__main__': main()
the-stack_106_27120
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from six import moves from tempest_lib import exceptions as lib_exc from tempest.api.identity import base from tempest.common.utils import data_utils from tempest import test class ServicesTestJSON(base.BaseIdentityV2AdminTest): def _del_service(self, service_id): # Deleting the service created in this method self.client.delete_service(service_id) # Checking whether service is deleted successfully self.assertRaises(lib_exc.NotFound, self.client.show_service, service_id) @test.idempotent_id('84521085-c6e6-491c-9a08-ec9f70f90110') def test_create_get_delete_service(self): # GET Service # Creating a Service name = data_utils.rand_name('service') type = data_utils.rand_name('type') description = data_utils.rand_name('description') service_data = self.client.create_service( name, type, description=description)['OS-KSADM:service'] self.assertFalse(service_data['id'] is None) self.addCleanup(self._del_service, service_data['id']) # Verifying response body of create service self.assertIn('id', service_data) self.assertIn('name', service_data) self.assertEqual(name, service_data['name']) self.assertIn('type', service_data) self.assertEqual(type, service_data['type']) self.assertIn('description', service_data) self.assertEqual(description, service_data['description']) # Get service fetched_service = (self.client.show_service(service_data['id']) ['OS-KSADM:service']) # verifying the existence of service created self.assertIn('id', fetched_service) self.assertEqual(fetched_service['id'], service_data['id']) self.assertIn('name', fetched_service) self.assertEqual(fetched_service['name'], service_data['name']) self.assertIn('type', fetched_service) self.assertEqual(fetched_service['type'], service_data['type']) self.assertIn('description', fetched_service) self.assertEqual(fetched_service['description'], service_data['description']) @test.idempotent_id('5d3252c8-e555-494b-a6c8-e11d7335da42') def test_create_service_without_description(self): # Create a service only with name and type name = data_utils.rand_name('service') type = data_utils.rand_name('type') service = self.client.create_service(name, type)['OS-KSADM:service'] self.assertIn('id', service) self.addCleanup(self._del_service, service['id']) self.assertIn('name', service) self.assertEqual(name, service['name']) self.assertIn('type', service) self.assertEqual(type, service['type']) @test.attr(type='smoke') @test.idempotent_id('34ea6489-012d-4a86-9038-1287cadd5eca') def test_list_services(self): # Create, List, Verify and Delete Services services = [] for _ in moves.xrange(3): name = data_utils.rand_name('service') type = data_utils.rand_name('type') description = data_utils.rand_name('description') service = self.client.create_service( name, type, description=description)['OS-KSADM:service'] services.append(service) service_ids = map(lambda x: x['id'], services) def delete_services(): for service_id in service_ids: self.client.delete_service(service_id) self.addCleanup(delete_services) # List and Verify Services body = self.client.list_services()['OS-KSADM:services'] found = [serv for serv in body if serv['id'] in service_ids] self.assertEqual(len(found), len(services), 'Services not found')
the-stack_106_27122
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'MyMoney' copyright = '2018, Yannick Chabbert' author = 'Yannick Chabbert' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'MyMoneydoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'MyMoney.tex', 'MyMoney Documentation', 'Yannick Chabbert', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mymoney', 'MyMoney Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'MyMoney', 'MyMoney Documentation', author, 'MyMoney', 'One line description of project.', 'Miscellaneous'), ] locale_dirs = ['locale/'] gettext_compact = False
the-stack_106_27124
import torch import torch.nn as nn from torchstat import ModelHook from collections import OrderedDict from torchstat import StatTree, StatNode, report_format def get_parent_node(root_node, stat_node_name): assert isinstance(root_node, StatNode) node = root_node names = stat_node_name.split('.') for i in range(len(names) - 1): node_name = '.'.join(names[0:i+1]) child_index = node.find_child_index(node_name) assert child_index != -1 node = node.children[child_index] return node def convert_leaf_modules_to_stat_tree(leaf_modules): assert isinstance(leaf_modules, OrderedDict) create_index = 1 root_node = StatNode(name='root', parent=None) for leaf_module_name, leaf_module in leaf_modules.items(): names = leaf_module_name.split('.') for i in range(len(names)): create_index += 1 stat_node_name = '.'.join(names[0:i+1]) parent_node = get_parent_node(root_node, stat_node_name) node = StatNode(name=stat_node_name, parent=parent_node) parent_node.add_child(node) if i == len(names) - 1: # leaf module itself input_shape = leaf_module.input_shape.numpy().tolist() output_shape = leaf_module.output_shape.numpy().tolist() node.input_shape = input_shape node.output_shape = output_shape node.parameter_quantity = leaf_module.parameter_quantity.numpy()[0] node.inference_memory = leaf_module.inference_memory.numpy()[0] node.MAdd = leaf_module.MAdd.numpy()[0] node.Flops = leaf_module.Flops.numpy()[0] node.duration = leaf_module.duration.numpy()[0] node.Memory = leaf_module.Memory.numpy().tolist() return StatTree(root_node) class ModelStat(object): def __init__(self, model, input_size, query_granularity=1): assert isinstance(model, nn.Module) assert isinstance(input_size, (tuple, list)) and len(input_size) == 3 self._model = model self._input_size = input_size self._query_granularity = query_granularity def _analyze_model(self): model_hook = ModelHook(self._model, self._input_size) leaf_modules = model_hook.retrieve_leaf_modules() stat_tree = convert_leaf_modules_to_stat_tree(leaf_modules) collected_nodes = stat_tree.get_collected_stat_nodes(self._query_granularity) return collected_nodes def show_report(self): collected_nodes = self._analyze_model() report = report_format(collected_nodes) print(report) def stat(model, input_size, query_granularity=1): ms = ModelStat(model, input_size, query_granularity) ms.show_report()
the-stack_106_27125
# Copyright 2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib from abc import ABCMeta, abstractmethod from dataclasses import dataclass from enum import Enum from typing import Dict, Optional, Sequence, Tuple, Union import numpy as np import nnabla as nn from nnabla_rl.configuration import Configuration from nnabla_rl.environments.environment_info import EnvironmentInfo from nnabla_rl.models import Model from nnabla_rl.utils.data import convert_to_list_if_not_list from nnabla_rl.utils.misc import retrieve_internal_states @contextlib.contextmanager def rnn_support(model: Model, prev_rnn_states: Dict[str, Dict[str, nn.Variable]], train_rnn_states: Dict[str, Dict[str, nn.Variable]], training_variables: 'TrainingVariables', config: 'TrainerConfig'): def stop_backprop(rnn_states): for value in rnn_states.values(): value.need_grad = False try: if model.is_recurrent(): scope_name = model.scope_name internal_states = retrieve_internal_states( scope_name, prev_rnn_states, train_rnn_states, training_variables, config.reset_on_terminal) model.set_internal_states(internal_states) yield finally: if model.is_recurrent(): rnn_states = model.get_internal_states() if training_variables.step_index() < config.burn_in_steps: stop_backprop(rnn_states) prev_rnn_states[model.scope_name] = rnn_states class LossIntegration(Enum): ALL_TIMESTEPS = 1, 'Computed loss is summed over all timesteps' LAST_TIMESTEP_ONLY = 2, 'Only the last timestep\'s loss is used.' @dataclass class TrainerConfig(Configuration): """Configuration class for ModelTrainer """ unroll_steps: int = 1 burn_in_steps: int = 0 reset_on_terminal: bool = True # Reset internal rnn state to given state if previous state is terminal. loss_integration: LossIntegration = LossIntegration.ALL_TIMESTEPS def __post_init__(self): super(TrainerConfig, self).__post_init__() self._assert_positive(self.unroll_steps, 'unroll_steps') self._assert_positive_or_zero(self.burn_in_steps, 'burn_in_steps') class TrainingBatch(): """Mini-Batch class for train Args: batch_size (int): the size of mini-batch s_current (Optional[np.ndarray]): the current state array a_current (Optional[np.ndarray]): the current action array reward (Optional[np.ndarray]): the reward value array gamma (Optional[float]): gamma value non_terminal (Optional[np.ndarray]): the non_terminal flag array s_next (Optional[np.ndarray]): the next state array weight (Optional[np.ndarray]): the weight of loss array extra (Dict[str, np.ndarray]): the extra information next_step_batch (Optional[:py:class:`TrainingBatch <nnabla_rl.model_trainers.model_trainer.TrainingBatch>`]):\ the mini-batch for next step (used in n-step learning) rnn_states (Dict[str, Dict[str, np.array]]): the rnn internal state values """ batch_size: int s_current: Union[np.ndarray, Tuple[np.ndarray, ...]] a_current: np.ndarray reward: np.ndarray gamma: float non_terminal: np.ndarray s_next: Union[np.ndarray, Tuple[np.ndarray, ...]] weight: np.ndarray extra: Dict[str, np.ndarray] # Used in n-step/rnn learning next_step_batch: Optional['TrainingBatch'] rnn_states: Dict[str, Dict[str, np.ndarray]] def __init__(self, batch_size: int, s_current: Optional[Union[np.ndarray, Tuple[np.ndarray, ...]]] = None, a_current: Optional[np.ndarray] = None, reward: Optional[np.ndarray] = None, gamma: Optional[float] = None, non_terminal: Optional[np.ndarray] = None, s_next: Optional[Union[np.ndarray, Tuple[np.ndarray, ...]]] = None, weight: Optional[np.ndarray] = None, extra: Dict[str, np.ndarray] = {}, next_step_batch: Optional['TrainingBatch'] = None, rnn_states: Dict[str, Dict[str, np.ndarray]] = {}): assert 0 < batch_size self.batch_size = batch_size if s_current is not None: self.s_current = s_current if a_current is not None: self.a_current = a_current if reward is not None: self.reward = reward if gamma is not None: self.gamma = gamma if non_terminal is not None: self.non_terminal = non_terminal if s_next is not None: self.s_next = s_next if weight is not None: self.weight = weight self.extra: Dict[str, np.ndarray] = extra self.next_step_batch = next_step_batch self.rnn_states = rnn_states def __getitem__(self, index): num_steps = len(self) if num_steps <= index: raise IndexError batch = self for _ in range(index): batch = batch.next_step_batch return batch def __iter__(self): batch = self while batch is not None: yield batch batch = batch.next_step_batch def __len__(self): num_steps = 1 batch = self.next_step_batch while batch is not None: num_steps += 1 batch = batch.next_step_batch return num_steps class TrainingVariables(): batch_size: int s_current: Union[nn.Variable, Tuple[nn.Variable, ...]] a_current: nn.Variable reward: nn.Variable gamma: nn.Variable non_terminal: nn.Variable s_next: Union[nn.Variable, Tuple[nn.Variable, ...]] weight: nn.Variable extra: Dict[str, nn.Variable] rnn_states: Dict[str, Dict[str, nn.Variable]] # Used in rnn learning _next_step_variables: Optional['TrainingVariables'] _prev_step_variables: Optional['TrainingVariables'] def __init__(self, batch_size: int, s_current: Optional[Union[nn.Variable, Tuple[nn.Variable, ...]]] = None, a_current: Optional[nn.Variable] = None, reward: Optional[nn.Variable] = None, gamma: Optional[nn.Variable] = None, non_terminal: Optional[nn.Variable] = None, s_next: Optional[Union[nn.Variable, Tuple[nn.Variable, ...]]] = None, weight: Optional[nn.Variable] = None, extra: Dict[str, nn.Variable] = {}, next_step_variables: Optional[nn.Variable] = None, rnn_states: Dict[str, Dict[str, nn.Variable]] = {}): assert 0 < batch_size self.batch_size = batch_size if s_current is not None: self.s_current = s_current if a_current is not None: self.a_current = a_current if reward is not None: self.reward = reward if gamma is not None: self.gamma = gamma if non_terminal is not None: self.non_terminal = non_terminal if s_next is not None: self.s_next = s_next if weight is not None: self.weight = weight self.extra: Dict[str, nn.Variable] = extra self.next_step_variables = next_step_variables self.prev_step_variables = None self.rnn_states = rnn_states @property def next_step_variables(self): return self._next_step_variables @next_step_variables.setter def next_step_variables(self, value): self._next_step_variables = value if self._next_step_variables is None: return if self._next_step_variables.prev_step_variables is not self: self._next_step_variables.prev_step_variables = self @property def prev_step_variables(self): return self._prev_step_variables @prev_step_variables.setter def prev_step_variables(self, value): self._prev_step_variables = value if self._prev_step_variables is None: return if self._prev_step_variables.next_step_variables is not self: self._prev_step_variables.next_step_variables = self def __getitem__(self, item): num_steps = len(self) if num_steps <= item: raise IndexError variable = self for _ in range(item): variable = variable.next_step_variables return variable def __iter__(self): variable = self while variable is not None: yield variable variable = variable.next_step_variables def __len__(self): num_steps = 1 variable = self.next_step_variables while variable is not None: num_steps += 1 variable = variable.next_step_variables return num_steps def is_initial_step(self) -> bool: return self.prev_step_variables is None def step_index(self): if self._prev_step_variables is None: return 0 else: return 1 + self._prev_step_variables.step_index() class ModelTrainer(metaclass=ABCMeta): # type declarations to type check with mypy # NOTE: declared variables are instance variable and NOT class variable, unless it is marked with ClassVar # See https://mypy.readthedocs.io/en/stable/class_basics.html for details _env_info: EnvironmentInfo _config: TrainerConfig _models: Sequence[Model] _solvers: Dict[str, nn.solver.Solver] _train_count: int _training_variables: TrainingVariables def __init__(self, models: Union[Model, Sequence[Model]], solvers: Dict[str, nn.solver.Solver], env_info: EnvironmentInfo, config: TrainerConfig): self._env_info = env_info self._config = config self._train_count = 0 self._models = convert_to_list_if_not_list(models) self._assert_no_duplicate_model(self._models) if self._need_rnn_support(self._models) and not self.support_rnn(): raise NotImplementedError(f'{self.__name__} does not support RNN models!') self._solvers = solvers # Initially create training variables with batch_size 1. # The batch_size will be updated later depending on the given experience data # This procedure is a workaround to initialize model parameters (it it is not created). total_timesteps = self._config.unroll_steps + self._config.burn_in_steps next_step_variables = None for _ in range(total_timesteps): training_variables = self._setup_training_variables(1) training_variables.next_step_variables = next_step_variables next_step_variables = training_variables self._training_variables = training_variables self._assert_variable_length_equals_total_timesteps() self._build_training_graph(self._models, self._training_variables) self._setup_solver() @property def __name__(self): return self.__class__.__name__ def train(self, batch: TrainingBatch, **kwargs) -> Dict[str, np.ndarray]: if self._models is None: raise RuntimeError('Call setup_training() first. Model is not set!') self._train_count += 1 batch = self._setup_batch(batch) new_batch_size = batch.batch_size prev_batch_size = self._training_variables.batch_size if new_batch_size != prev_batch_size: total_timesteps = self._config.unroll_steps + self._config.burn_in_steps assert 0 < total_timesteps next_step_variables = None for _ in range(total_timesteps): training_variables = self._setup_training_variables(new_batch_size) training_variables.next_step_variables = next_step_variables next_step_variables = training_variables self._training_variables = training_variables self._assert_variable_length_equals_total_timesteps() self._build_training_graph(self._models, self._training_variables) trainer_state = self._update_model(self._models, self._solvers, batch, self._training_variables, **kwargs) return trainer_state def set_learning_rate(self, new_learning_rate): for solver in self._solvers.values(): solver.set_learning_rate(new_learning_rate) def support_rnn(self) -> bool: return False def _setup_batch(self, training_batch: TrainingBatch) -> TrainingBatch: return training_batch @abstractmethod def _update_model(self, models: Sequence[Model], solvers: Dict[str, nn.solver.Solver], batch: TrainingBatch, training_variables: TrainingVariables, **kwargs) -> Dict[str, np.ndarray]: raise NotImplementedError @abstractmethod def _build_training_graph(self, models: Sequence[Model], training_variables: TrainingVariables): raise NotImplementedError @abstractmethod def _setup_training_variables(self, batch_size) -> TrainingVariables: raise NotImplementedError def _setup_solver(self): for model in self._models: if model.scope_name in self._solvers.keys(): solver = self._solvers[model.scope_name] # Set retain_state = True and prevent overwriting loaded state (If it is loaded) solver.set_parameters(model.get_parameters(), reset=False, retain_state=True) def _assert_variable_length_equals_total_timesteps(self): total_timesptes = self._config.unroll_steps + self._config.burn_in_steps if len(self._training_variables) != total_timesptes: raise RuntimeError(f'Training variables length and rnn unroll + burn-in steps does not match!. \ {len(self._training_variables)} != {total_timesptes}. \ Check that the training method supports recurrent networks.') @classmethod def _assert_no_duplicate_model(cls, models): scope_names = set() for model in models: scope_name = model.scope_name assert scope_name not in scope_names scope_names.add(scope_name) def _need_rnn_support(self, models: Sequence[Model]): for model in models: if model.is_recurrent(): return True return False
the-stack_106_27126
''' Take picture ============ .. author:: Mathieu Virbel <[email protected]> Little example to demonstrate how to start an Intent, and get the result. When you use the Android.startActivityForResult(), the result will be dispatched into onActivityResult. You can catch the event with the android.activity API from python-for-android project. If you want to compile it, don't forget to add the CAMERA permission:: ./build.py --name 'TakePicture' --package org.test.takepicture \ --permission CAMERA --version 1 \ --private ~/code/kivy/examples/android/takepicture \ debug installd ''' __version__ = '0.1' from kivy.app import App from os.path import exists from jnius import autoclass, cast from android import activity from functools import partial from kivy.clock import Clock from kivy.uix.scatter import Scatter from kivy.properties import StringProperty Intent = autoclass('android.content.Intent') PythonActivity = autoclass('org.renpy.android.PythonActivity') MediaStore = autoclass('android.provider.MediaStore') Uri = autoclass('android.net.Uri') class Picture(Scatter): source = StringProperty(None) class TakePictureApp(App): def build(self): self.index = 0 activity.bind(on_activity_result=self.on_activity_result) def get_filename(self): while True: self.index += 1 fn = '/sdcard/takepicture{}.png'.format(self.index) if not exists(fn): return fn def take_picture(self): intent = Intent(MediaStore.ACTION_IMAGE_CAPTURE) self.last_fn = self.get_filename() self.uri = Uri.parse('file://' + self.last_fn) self.uri = cast('android.os.Parcelable', self.uri) intent.putExtra(MediaStore.EXTRA_OUTPUT, self.uri) PythonActivity.mActivity.startActivityForResult(intent, 0x123) def on_activity_result(self, requestCode, resultCode, intent): if requestCode == 0x123: Clock.schedule_once(partial(self.add_picture, self.last_fn), 0) def add_picture(self, fn, *args): self.root.add_widget(Picture(source=fn, center=self.root.center)) def on_pause(self): return True TakePictureApp().run()
the-stack_106_27127
# Copyright 2014 - Rackspace Hosting # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from solum.i18n import _ from solum.tests import base from solum.tests import utils from solum.tests.worker.handlers import test_shell from solum.worker.handlers import noop as noop_handler class HandlerTest(base.BaseTestCase): def setUp(self): super(HandlerTest, self).setUp() self.ctx = utils.dummy_context() @mock.patch('solum.worker.handlers.noop.LOG') def test_echo(self, fake_LOG): noop_handler.Handler().echo({}, 'foo') fake_LOG.debug.assert_called_once_with(_('%s') % 'foo') @mock.patch('solum.worker.handlers.noop.LOG') def test_build(self, fake_LOG): git_info = test_shell.mock_git_info() args = [5, git_info, 'new_app', '1-2-3-4', 'heroku', 'docker', 44, None, None] noop_handler.Handler().build(self.ctx, *args) message = 'Build ' + ', '.join([str(a) for a in args]) fake_LOG.debug.assert_called_once_with(_("%s") % message) @mock.patch('solum.worker.handlers.noop.LOG') def test_unittest(self, fake_LOG): git_info = test_shell.mock_git_info() args = [5, git_info, 'new_app', '1-2-3-4', 'heroku', 'docker', 44, 'pep8'] noop_handler.Handler().unittest(self.ctx, *args) message = 'Unittest ' + ', '.join([str(a) for a in args]) fake_LOG.debug.assert_called_once_with(_("%s") % message)
the-stack_106_27128
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="update_camera_offset-SamGoodwin", # Replace with your own username version="0.0.1", author="Sam Goodwin + Bob Dimmock", author_email="[email protected]", description="Snap alignment of prop object attached to a calibrated SDI camera in Shogun Live 1.6", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Sam-Goods/update_camera_offset.git", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.9.1', )
the-stack_106_27129
""" The MIT License (MIT) Copyright (c) 2017-2020 TwitchIO Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import asyncio import enum import logging import sanic from sanic import request from sanic import response from twitchio.ext.webhooks.utils import Topic, StreamChangedNotification, UserChangedNotification, \ UserFollowsNotification log = logging.getLogger(__name__) NOTIFICATION_TYPE_BY_TOPIC = { Topic.stream_changed: StreamChangedNotification, Topic.user_changed: UserChangedNotification, Topic.user_follows: UserFollowsNotification } class WebhookEventDispatcher: __instances = set() __dispatcher = None def __init__(self, loop: asyncio.AbstractEventLoop = None): self.__instances.add(self) self.loop = loop or asyncio.get_event_loop() def __init_subclass__(cls, **kwargs): cls._registered_dispatcher(cls) @classmethod def _registered_dispatcher(cls, new_cls=None): if new_cls: WebhookEventDispatcher.__dispatcher = new_cls return WebhookEventDispatcher.__dispatcher @staticmethod def accept_subscription(request: request.Request, topic: enum.Enum): """Handle Twitch challenge requests. Accept Twitch subscriptions by responding the request with the provided challenge string. Parameters ---------- request: sanic.request.Request The challenge request received from Twitch topic: enum.Enum The topic being subscribed to Returns ------- response.HTTPResponse status code: 200 if the request has correctly been processed status code: 400 otherwise """ try: mode = request.args['hub.mode'][0] if mode == 'subscribe' or mode == 'unsubscribe': return response.HTTPResponse(body=request.args['hub.challenge'][0], status=200) elif mode == 'denied': reason = request.args.get('hub.reason', 'no reason') log.warning(f'{topic.name} webhook subscribe request denied ({request.args}) , reason: {reason}.') return response.HTTPResponse(status=200) except KeyError: return response.HTTPResponse(status=400) @classmethod async def bulk_process_notification(cls, request: request.Request, topic: enum.Enum): """Process the received notification. - Check if the related topic is supported. - Pass the notification info to the dispatchers. Parameters ---------- request: sanic.request.Request The challenge request received from Twitch topic: enum.Enum Topic whose notification is being processed Returns ------- response.HTTPResponse status code: 202 if the request has correctly been processed status code: 400 otherwise """ if topic not in NOTIFICATION_TYPE_BY_TOPIC: log.error(f'Invalid topic "{topic.name}", the notification has been ignored') return try: params = {param: request.args.get(param) for param in NOTIFICATION_TYPE_BY_TOPIC[topic].valid_params} data = request.json['data'][0] if request.json['data'] else {} for instance in cls.__instances: await instance.process_notification(data, topic, params) return response.HTTPResponse(status=202) except KeyError: return response.HTTPResponse(status=400) async def process_notification(self, data: dict, topic: enum.Enum, params: dict): """Filter the notification and call the related callback. Parameters ---------- data: dict Notification content topic: enum.Enum Topic whose notification is being processed params: dict Topic parameters """ try: cls = NOTIFICATION_TYPE_BY_TOPIC[topic] notification = cls(**data) if cls == StreamChangedNotification: if data: await self.event_stream_updated(params, notification) else: await self.event_stream_offline(params, notification) elif cls == UserChangedNotification: await self.event_user_updated(params, notification) elif cls == UserFollowsNotification: if not params['from_id']: await self.event_following_user(params, notification) else: await self.event_followed_by_user(params, notification) except Exception as error: await self.webhook_notification_error(topic, data, params, error) async def webhook_notification_error(self, topic: enum.Enum, data: dict, params: dict, error: Exception): """Handle the error raised during the notification processing Parameters ---------- topic: enum.Enum Topic whose notification is being processed data: dict Notification content params: dict Topic parameters error: Exception The error being raised """ log.error(f"Exception '{type(error).__name__}' raised for topic '{topic.name}' (params={params})", exc_info=(type(error), error, error.__traceback__)) async def event_stream_updated(self, params: dict, notification: StreamChangedNotification): """Callback called when a user starts or updates a stream. Parameters ---------- params: dict Topic parameters notification: StreamChangedNotification Topic data object """ async def event_stream_offline(self, params: dict, notification: StreamChangedNotification): """Callback called when a user stops a stream. Parameters ---------- params: dict Topic parameters notification: StreamChangedNotification Topic data object """ async def event_user_updated(self, params: dict, notification: UserChangedNotification): """Callback called when a user's data is updated. Parameters ---------- params: dict Topic parameters notification: UserChangedNotification Topic data object """ async def event_following_user(self, params: dict, notification: UserFollowsNotification): """Callback called when a user is being followed by someone Parameters ---------- params: dict Topic parameters notification: UserFollowsNotification Topic data object """ async def event_followed_by_user(self, params: dict, notification: UserFollowsNotification): """Callback called when a user is following someone Parameters ---------- params: dict Topic parameters notification: UserFollowsNotification Topic data object """
the-stack_106_27130
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright: (c) 2017, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: bigip_gtm_monitor_bigip short_description: Manages F5 BIG-IP GTM BIG-IP monitors description: - Manages F5 BIG-IP GTM (now BIG-IP DNS) BIG-IP monitors. This monitor is used by GTM to monitor BIG-IPs themselves. version_added: "1.0.0" options: name: description: - Name of the monitor. type: str required: True parent: description: - The parent template of this monitor template. Once this value has been set, it cannot be changed. By default, this value is the C(bigip) parent on the C(Common) partition. type: str default: "/Common/bigip" ip: description: - IP address part of the IP/port definition. If this parameter is not provided when creating a new monitor, the default value will be '*'. type: str port: description: - Port address part of the IP/port definition. If this parameter is not provided when creating a new monitor, the default value will be '*'. Note that if specifying an IP address, you must use a value between 1 and 65535. type: str interval: description: - Specifies, in seconds, the frequency at which the system issues the monitor check when either the resource is down or the status of the resource is unknown. - When creating a new monitor, if this parameter is not provided, the default value will be C(30). This value B(must) be less than the C(timeout) value. type: int timeout: description: - Specifies the number of seconds the target has in which to respond to the monitor request. - If the target responds within the set time period, it is considered up. - If the target does not respond within the set time period, it is considered down. - When this value is set to 0 (zero), the system uses the interval from the parent monitor. - When creating a new monitor, if this parameter is not provided, the default value will be C(90). type: int ignore_down_response: description: - Specifies the monitor allows more than one probe attempt per interval. - When C(yes), specifies the monitor ignores down responses for the duration of the monitor timeout. Once the monitor timeout is reached without the system receiving an up response, the system marks the object down. - When C(no), specifies the monitor immediately marks an object down when it receives a down response. - When creating a new monitor, if this parameter is not provided, the default value will be C(no). type: bool aggregate_dynamic_ratios: description: - Specifies how the system combines the module values to create the proportion (score) for the load balancing operation. - The score represents the module's estimated capacity for handing traffic. - Averaged values are appropriate for downstream Web Accelerator or Application Security Manager (ASM) virtual servers. - When creating a new monitor, if this parameter is not specified, the default of C(none) is used, meaning the system does not use the scores in the load balancing operation. - When C(none), specifies the monitor ignores the nodes and pool member scores. - When C(average-nodes), specifies the system averages the dynamic ratios on the nodes associated with the monitor's target virtual servers and returns that average as the virtual servers' score. - When C(sum-nodes), specifies the system adds together the scores of the nodes associated with the monitor's target virtual servers and uses that value in the load balancing operation. - When C(average-members), specifies the system averages the dynamic ratios on the pool members associated with the monitor's target virtual servers and returns that average as the virtual servers' score. - When C(sum-members), specifies the system adds together the scores of the pool members associated with the monitor's target virtual servers and uses that value in the load balancing operation. type: str choices: - none - average-nodes - sum-nodes - average-members - sum-members partition: description: - Device partition to manage resources on. type: str default: Common state: description: - When C(present), ensures the monitor exists. - When C(absent), ensures the monitor is removed. type: str choices: - present - absent default: present notes: - Requires BIG-IP software version >= 12 extends_documentation_fragment: f5networks.f5_modules.f5 author: - Tim Rupp (@caphrim007) - Wojciech Wypior (@wojtek0806) ''' EXAMPLES = r''' - name: Create BIG-IP Monitor bigip_gtm_monitor_bigip: state: present ip: 10.10.10.10 name: my_monitor provider: user: admin password: secret server: lb.mydomain.com delegate_to: localhost - name: Remove BIG-IP Monitor bigip_gtm_monitor_bigip: state: absent name: my_monitor provider: user: admin password: secret server: lb.mydomain.com delegate_to: localhost - name: Add BIG-IP monitor for all addresses, port 514 bigip_gtm_monitor_bigip: port: 514 name: my_monitor provider: user: admin password: secret server: lb.mydomain.com delegate_to: localhost ''' RETURN = r''' parent: description: New parent template of the monitor. returned: changed type: str sample: bigip ip: description: The new IP of IP/port definition. returned: changed type: str sample: 10.12.13.14 interval: description: The new interval at which to run the monitor check. returned: changed type: int sample: 2 timeout: description: The new timeout in which the remote system must respond to the monitor. returned: changed type: int sample: 10 aggregate_dynamic_ratios: description: The new aggregate of to the monitor. returned: changed type: str sample: sum-members ignore_down_response: description: Whether to ignore the down response or not. returned: changed type: bool sample: True ''' import os from datetime import datetime from ansible.module_utils.basic import ( AnsibleModule, env_fallback ) from ..module_utils.bigip import F5RestClient from ..module_utils.common import ( F5ModuleError, AnsibleF5Parameters, transform_name, f5_argument_spec ) from ..module_utils.icontrol import ( module_provisioned, tmos_version ) from ..module_utils.ipaddress import is_valid_ip from ..module_utils.teem import send_teem class Parameters(AnsibleF5Parameters): api_map = { 'defaultsFrom': 'parent', 'ignoreDownResponse': 'ignore_down_response', 'aggregateDynamicRatios': 'aggregate_dynamic_ratios', } api_attributes = [ 'defaultsFrom', 'interval', 'timeout', 'destination', 'ignoreDownResponse', 'aggregateDynamicRatios', ] returnables = [ 'parent', 'ip', 'port', 'interval', 'timeout', 'ignore_down_response', 'aggregate_dynamic_ratios', ] updatables = [ 'destination', 'interval', 'timeout', 'ignore_down_response', 'aggregate_dynamic_ratios', ] @property def interval(self): if self._values['interval'] is None: return None if 1 > int(self._values['interval']) > 86400: raise F5ModuleError( "Interval value must be between 1 and 86400" ) return int(self._values['interval']) @property def timeout(self): if self._values['timeout'] is None: return None return int(self._values['timeout']) @property def type(self): return 'bigip' class ApiParameters(Parameters): @property def ip(self): ip, port = self._values['destination'].split(':') return ip @property def port(self): ip, port = self._values['destination'].split(':') return int(port) @property def ignore_down_response(self): if self._values['ignore_down_response'] is None: return None if self._values['ignore_down_response'] == 'disabled': return False return True class ModuleParameters(Parameters): @property def destination(self): if self.ip is None and self.port is None: return None destination = '{0}:{1}'.format(self.ip, self.port) return destination @property def parent(self): if self._values['parent'] is None: return None if self._values['parent'].startswith('/'): parent = os.path.basename(self._values['parent']) result = '/{0}/{1}'.format(self.partition, parent) else: result = '/{0}/{1}'.format(self.partition, self._values['parent']) return result @property def ip(self): if self._values['ip'] is None: return None if self._values['ip'] in ['*', '0.0.0.0']: return '*' elif is_valid_ip(self._values['ip']): return self._values['ip'] else: raise F5ModuleError( "The provided 'ip' parameter is not an IP address." ) @property def port(self): if self._values['port'] is None: return None elif self._values['port'] == '*': return '*' return int(self._values['port']) class Changes(Parameters): def to_return(self): result = {} try: for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) except Exception: raise return result class UsableChanges(Changes): @property def ignore_down_response(self): if self._values['ignore_down_response']: return 'enabled' return 'disabled' class ReportableChanges(Changes): pass class Difference(object): def __init__(self, want, have=None): self.want = want self.have = have def compare(self, param): try: result = getattr(self, param) return result except AttributeError: result = self.__default(param) return result @property def parent(self): if self.want.parent != self.have.parent: raise F5ModuleError( "The parent monitor cannot be changed" ) @property def destination(self): if self.want.ip is None and self.want.port is None: return None if self.want.port is None: self.want.update({'port': self.have.port}) if self.want.ip is None: self.want.update({'ip': self.have.ip}) if self.want.port in [None, '*'] and self.want.ip != '*': raise F5ModuleError( "Specifying an IP address requires that a port number be specified" ) if self.want.destination != self.have.destination: return self.want.destination @property def interval(self): if self.want.timeout is not None and self.want.interval is not None: if self.want.interval >= self.want.timeout: raise F5ModuleError( "Parameter 'interval' must be less than 'timeout'." ) elif self.want.timeout is not None: if self.have.interval >= self.want.timeout: raise F5ModuleError( "Parameter 'interval' must be less than 'timeout'." ) elif self.want.interval is not None: if self.want.interval >= self.have.timeout: raise F5ModuleError( "Parameter 'interval' must be less than 'timeout'." ) if self.want.interval != self.have.interval: return self.want.interval def __default(self, param): attr1 = getattr(self.want, param) try: attr2 = getattr(self.have, param) if attr1 != attr2: return attr1 except AttributeError: return attr1 class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = F5RestClient(**self.module.params) self.have = None self.want = ModuleParameters(params=self.module.params) self.changes = UsableChanges() def _set_changed_options(self): changed = {} for key in Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = UsableChanges(params=changed) def _update_changed_options(self): diff = Difference(self.want, self.have) updatables = Parameters.updatables changed = dict() for k in updatables: change = diff.compare(k) if change is None: continue else: changed[k] = change if changed: self.changes = UsableChanges(params=changed) return True return False def _announce_deprecations(self, result): warnings = result.pop('__warnings', []) for warning in warnings: self.module.deprecate( msg=warning['msg'], version=warning['version'] ) def _set_default_creation_values(self): if self.want.timeout is None: self.want.update({'timeout': 120}) if self.want.interval is None: self.want.update({'interval': 30}) if self.want.ip is None: self.want.update({'ip': '*'}) if self.want.port is None: self.want.update({'port': '*'}) if self.want.ignore_down_response is None: self.want.update({'ignore_down_response': False}) if self.want.aggregate_dynamic_ratios is None: self.want.update({'aggregate_dynamic_ratios': 'none'}) def exec_module(self): start = datetime.now().isoformat() version = tmos_version(self.client) if not module_provisioned(self.client, 'gtm'): raise F5ModuleError( "GTM must be provisioned to use this module." ) changed = False result = dict() state = self.want.state if state in ["present", "disabled"]: changed = self.present() elif state == "absent": changed = self.absent() reportable = ReportableChanges(params=self.changes.to_return()) changes = reportable.to_return() result.update(**changes) result.update(dict(changed=changed)) self._announce_deprecations(result) send_teem(start, self.client, self.module, version) return result def present(self): if self.exists(): return self.update() else: return self.create() def create(self): self._set_changed_options() self._set_default_creation_values() if self.module.check_mode: return True self.create_on_device() return True def should_update(self): result = self._update_changed_options() if result: return True return False def update(self): self.have = self.read_current_from_device() if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def absent(self): if self.exists(): return self.remove() return False def remove(self): if self.module.check_mode: return True self.remove_from_device() if self.exists(): raise F5ModuleError("Failed to delete the monitor.") return True def exists(self): uri = "https://{0}:{1}/mgmt/tm/gtm/monitor/bigip/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status == 404 or 'code' in response and response['code'] == 404: return False if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return True errors = [401, 403, 409, 500, 501, 502, 503, 504] if resp.status in errors or 'code' in response and response['code'] in errors: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) def create_on_device(self): params = self.changes.api_params() params['name'] = self.want.name params['partition'] = self.want.partition uri = "https://{0}:{1}/mgmt/tm/gtm/monitor/bigip/".format( self.client.provider['server'], self.client.provider['server_port'] ) resp = self.client.api.post(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return True raise F5ModuleError(resp.content) def update_on_device(self): params = self.changes.api_params() uri = "https://{0}:{1}/mgmt/tm/gtm/monitor/bigip/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.patch(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return True raise F5ModuleError(resp.content) def remove_from_device(self): uri = "https://{0}:{1}/mgmt/tm/gtm/monitor/bigip/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.delete(uri) if resp.status == 200: return True def read_current_from_device(self): uri = "https://{0}:{1}/mgmt/tm/gtm/monitor/bigip/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return ApiParameters(params=response) raise F5ModuleError(resp.content) class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( name=dict(required=True), parent=dict(default='/Common/bigip'), ip=dict(), port=dict(), interval=dict(type='int'), timeout=dict(type='int'), ignore_down_response=dict(type='bool'), aggregate_dynamic_ratios=dict( choices=[ 'none', 'average-nodes', 'sum-nodes', 'average-members', 'sum-members' ] ), state=dict( default='present', choices=['present', 'absent'] ), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ) ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode, ) try: mm = ModuleManager(module=module) results = mm.exec_module() module.exit_json(**results) except F5ModuleError as ex: module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
the-stack_106_27131
from PIL import Image import os import requests import time # converts the image into a square and converts RGBA to RGB def make_square(im, min_size=0): x, y = im.size size = max(min_size, x, y) new_im = Image.new('RGBA', (size, size), "WHITE") new_im.paste(im, (int((size - x) / 2), int((size - y) / 2)), im) return new_im # uses remove.bg call to remove background from image. Return RGBA image. def remove_background(image_path): response = requests.post( 'https://api.remove.bg/v1.0/removebg', files={'image_file': open(image_path, 'rb')}, data={'size': 'auto'}, headers={'X-Api-Key': 'hcM54vWhAtKudf4pXvyhCvRR'}, ) if response.status_code == requests.codes.ok: with open(image_path, 'wb') as out: out.write(response.content) else: print("Error:", response.status_code, response.text) # function to resize an image and convert RGBA to RGB. Contains flags to execute other functions. def resize_image(dir_path, image_name, image_size=(127, 127), square=False, remove_bg=False): image_path = os.path.join(dir_path, image_name) if remove_bg: remove_background(image_path) im = Image.open(image_path) if square: im = make_square(im) im = im.convert("RGB", palette=Image.ADAPTIVE) im = im.resize(image_size) im.save(image_path) # main function to execute def inference(dir_path): imagelist = [file for file in os.listdir(dir_path) if file.endswith('.png')] # resize and remove background for all images for image in imagelist: resize_image(dir_path, image, square=True, remove_bg=True) time.sleep(0.5)
the-stack_106_27132
import os import sys import glob import argparse from astropy.config import paths import pandas as pd import numpy as np from astropy.wcs import WCS from astropy.io import fits, ascii from astropy.visualization import ImageNormalize, ZScaleInterval import matplotlib.pyplot as plt import datetime as dt import time from tqdm import tqdm from ensemble import proc_time def point_flag_color(x): if x <= 1: return 'red', 'Flag <= 1' elif x <= 5: return 'green', '2 <= Flag <= 5' else: return None, None # 'yellow', 'Flag > 5' def segment_flag_color(x): if x <= 1: return 'blue', 'Flag <= 1' elif x <= 5: return 'green', '2 <= Flag <= 5' else: return None, None # 'yellow', 'Flag > 5' def draw_catalogs(cfile, catalog): cat, fcolor_, fcolor = None, None, None if os.path.exists(cfile): cat = ascii.read(cfile).to_pandas() else: cat = '' if len(cat) > 0: if 'Flags' in cat.columns: flagcols = cat['Flags'] else: flagcols = [c for c in cat.columns if 'Flags' in c] if len(flagcols) > 0: flags = cat.loc[:,flagcols].fillna(100, axis=0, inplace=False).apply(min, axis=1) if catalog == 'point': fcolor_ = flags.apply(point_flag_color) elif catalog == 'segment': fcolor_ = flags.apply(segment_flag_color) fcolor = fcolor_.apply(lambda x: x[0]).values return cat, fcolor_, fcolor def create_image_name(name, dataset, P, S, G, crpt, outpath): if P == 1 and S == 1: catstr = '_source' elif P == 1 and S == 0: catstr = '_point' elif P == 0 and S == 1: catstr = '_segment' elif G == 1: catstr = '_gaia' else: catstr = '' if crpt: sfx = '_'.join(dataset.split('_')[1:]) name = f"{name}_{sfx}" outpath = f'{outpath}/{name}' os.makedirs(outpath, exist_ok=True) imgpath = os.path.join(outpath, f'{name}{catstr}') return imgpath def draw_total_images(input_path, outpath, dataset, P=0, S=0, G=0, figsize=(24,24), crpt=0): """ Opens fits files from local directory path to generate total detection drizzled images aligned to WCS with point/segment/gaia catalog overlay options. Saves figure as png. **args** input_path: path to dataset subdirectories containing total or filter fits files dataset: name of subdirectory containing .fits and .ecsv files **kwargs** output_img: where to save the pngs (path) default='./img' P: draw point catalog references (0=off, 1=on) default is 0 S: draw segment catalog references (0=off, 1=on) default is 0 G: draw GAIA catalog references (0=off, 1=on) default is 0 figsize: size to make the figures (default=24 sets figsize=(24,24)) corrs: determines png file naming convention PNG naming convention is based on fits file unless corrs=1: ./input_path/dataset/filename.fits >> ./img_path/dataset/filename.png catalog overlay pngs have an additional suffix: P=1: _point.png S=1: _segment.png P=1, S=1: _source.png G=1: _gaia.png Normal SVM data (dataset=ib1f0a): ./{input_path}/ib1f0a/hst_11570_0a_wfc3_uvis_total_ib1f0a_drc.fits saves as >> ./{imgdir}/hst_11570_0a_wfc3_uvis_total_ib1f0a/hst_11570_0a_wfc3_uvis_total_ib1f0a.png Corruption SVM data (dataset=ia0m04_f110w_all_stat): ./{input_path}/ia0m04_f110w_all_stoc/hst_11099_04_wfc3_ir_total_ia0m04_drz.fits saves as >> ./{imgdir}/hst_f110w_all_stoc_uvis_total_ib1f0a/hst_f110w_all_stoc_uvis_total_ib1f0a.png """ # allows for corruption subdir names e.g. ia0m04_f110w_all_stat and ia0m04 subdir, dname = f"{input_path}/{dataset}", dataset.split('_')[0] hfiles = glob.glob(f"{subdir}/*total_{dname}_dr?.fits") if len(hfiles) > 0: for hfile in hfiles: name = os.path.basename(hfile).split('.')[0][:-4] detector = name.split('_')[4] ras, decs = np.ndarray((0,)), np.ndarray((0,)) with fits.open(hfile) as ff: hdu = ff[1] wcs = WCS(hdu.header) footprint = wcs.calc_footprint(hdu.header) ras = np.append(ras, footprint[:, 0]) decs = np.append(decs, footprint[:, 1]) ralim = [np.max(ras), np.min(ras)] declim = [np.max(decs), np.min(decs)] radeclim = np.stack([ralim, declim], axis=1) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, projection=wcs, frameon=False) plt.axis(False) interval = ZScaleInterval() _, vmax = interval.get_limits(hdu.data) norm = ImageNormalize(hdu.data, vmin=0, vmax=vmax*2, clip=True) ax.imshow(hdu.data, origin='lower', norm=norm, cmap='gray') if P: p_cat = glob.glob(f"{subdir}/{name}_point-cat.ecsv") if len(p_cat) > 0: point, pfcolor_, pfcolor = draw_catalogs(p_cat[0], 'point') if pfcolor_ is not None: for fcol in pfcolor_.unique(): if fcol is not None: q = pfcolor == fcol[0] ax.scatter(point[q]['RA'], point[q]['DEC'], edgecolor=fcol[0], facecolor='none', transform=ax.get_transform('fk5'), marker='o', s=15, alpha=0.5) # else: # print("Point cat not found: ", dataset) if S: s_cat = glob.glob(f"{subdir}/{name}_segment-cat.ecsv") if len(s_cat) > 0: seg, sfcolor_, sfcolor = draw_catalogs(s_cat[0], 'segment') if sfcolor_ is not None: for fcol in sfcolor_.unique(): if fcol is not None: q = sfcolor == fcol[0] ax.scatter(seg[q]['RA'], seg[q]['DEC'], edgecolor=fcol[0], facecolor='none', transform=ax.get_transform('fk5'), marker='o', s=15, alpha=0.5) # else: # print("Segment cat not found: ", dataset) if G: g_cat = glob.glob(f"{subdir}/*_{detector}_*GAIAeDR3_ref_cat.ecsv") if len(g_cat) > 0: if os.path.exists(g_cat[0]): gaia = ascii.read(g_cat[0]).to_pandas() ax.scatter(gaia['RA'], gaia['DEC'], edgecolor='cyan', facecolor='none', transform=ax.get_transform('fk5'), marker='o', s=15) # else: # print("GAIA cat not found: ", dataset) xlim, ylim = wcs.wcs_world2pix(radeclim, 1).T ax.set_xlim(xlim) ax.set_ylim(ylim) imgpath = create_image_name(name, dataset, P, S, G, crpt, outpath) plt.savefig(imgpath, bbox_inches='tight') plt.close(fig) #print(f"\t{imgpath}.png") else: print(f"{dataset} fits file could not be found") return def list_visits(dataset, outpath): df = pd.read_csv(dataset, index_col="index") idx = list(df.index) datasets = [] skip = 0 for i in idx: impath = os.path.join(outpath, i) visit = i.split('_')[6] if os.path.exists(impath): num = len(glob.glob(f"{impath}/*")) if num < 3: datasets.append(visit) else: skip += 1 else: datasets.append(visit) if skip > 0: print("Skipping pre-existing images: ", skip) return list(set(datasets)) def generate_total_images(input_path, outpath, dataset=None, figsize=(24,24), crpt=0, gen=3): if dataset is not None: if dataset.endswith(".csv"): datasets = list_visits(dataset, outpath) else: datasets = [dataset] else: if crpt == 0: paths = glob.glob(f"{input_path}/??????") else: paths = glob.glob(f"{input_path}/??????_*_???_st??") datasets = [p.split('/')[-1] for p in paths] print(f"\nFound {len(datasets)} datasets.") if len(datasets) == 0: print("Exiting.") sys.exit(1) t_start = time.time() start = dt.datetime.fromtimestamp(t_start).strftime("%m/%d/%Y - %I:%M:%S %p") print(f"\n[i] DRAWING IMAGES ***{start}***") print(f"Generating images for {len(datasets)} datasets.") for dataset in tqdm(datasets): #print(dataset) if gen == 3: # original, point-segment, and GAIA draw_total_images(input_path, outpath, dataset, figsize=figsize, crpt=crpt) draw_total_images(input_path, outpath, dataset, P=1, S=1, figsize=figsize, crpt=crpt) draw_total_images(input_path, outpath, dataset, G=1, figsize=figsize, crpt=crpt) elif gen == 2: # GAIA draw_total_images(input_path, outpath, dataset, G=1, figsize=figsize, crpt=crpt) elif gen == 1: # point-segment draw_total_images(input_path, outpath, dataset, P=1, S=1, figsize=figsize, crpt=crpt) else: # original (0) draw_total_images(input_path, outpath, dataset, figsize=figsize, crpt=crpt) t_end = time.time() end = dt.datetime.fromtimestamp(t_end).strftime("%m/%d/%Y - %I:%M:%S %p") print(f"\n[i] IMAGE GENERATION COMPLETE ***{end}***") proc_time(t_start, t_end) def draw_filter_images(input_path, outpath, dataset, figsize=(24,24), crpt=0): subdir, dname = f"{input_path}/{dataset}", dataset.split('_')[0] filter_files = glob.glob(f"{subdir}/*[!total]_{dname}_dr?.fits") if len(filter_files) > 0: outpath = os.path.join(outpath, dname) os.makedirs(outpath, exist_ok=True) else: print("Filter images missing: ", dataset) return for hfile in filter_files: ras, decs = np.ndarray((0,)), np.ndarray((0,)) with fits.open(hfile) as ff: hdu = ff[1] wcs = WCS(hdu.header) footprint = wcs.calc_footprint(hdu.header) ras = np.append(ras, footprint[:, 0]) decs = np.append(decs, footprint[:, 1]) ralim = [np.max(ras), np.min(ras)] declim = [np.max(decs), np.min(decs)] radeclim = np.stack([ralim, declim], axis=1) fig = plt.figure(figsize=figsize, edgecolor='k', frameon=False) ax = fig.add_subplot(111, projection=wcs, frameon=False) plt.axis(False) interval = ZScaleInterval() vmin, vmax = interval.get_limits(hdu.data) norm = ImageNormalize(hdu.data, vmin=vmin, vmax=vmax*2, clip=True) xlim, ylim = wcs.wcs_world2pix(radeclim, 1) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.imshow(hdu.data, origin='lower', norm=norm, cmap='gray') name = os.path.basename(hfile).split('.')[0][:-4] if crpt: pfx, sfx = '_'.join(dataset.split('_')[1:]), '_'.join(name.split('_')[4:]) name = f"hst_{pfx}_{sfx}" imgpath = os.path.join(outpath, name) plt.savefig(imgpath, bbox_inches='tight') plt.close(fig) print(f"\t{imgpath}.png") def generate_filter_images(input_path, outpath, dataset=None, figsize=(24,24), crpt=0): if dataset is not None: datasets = [dataset] else: if os.path.exists(f'{input_path}/.DS_Store'): # only happens on Mac os.remove(f'{input_path}/.DS_Store') datasets = os.listdir(input_path) for dataset in datasets: print(dataset) draw_filter_images(input_path, outpath, dataset, figsize=figsize, crpt=crpt) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("input_path", type=str, help="path to datasets directory") parser.add_argument("outpath", type=str, help="directory path to save png images") parser.add_argument("-t", "--imgtype", type=str, choices=['total', 'filter'], default='total', help="draw total detection or filter level images") parser.add_argument("-g", "--generator", type=int, choices=[0, 1, 2, 3], default=3, help="0: generate original only; 1: point-segment, 2: gaia; 3: original, point-segment, and gaia (3 separate images)") parser.add_argument("-s", "--size", type=int, default=24, help="figsize") parser.add_argument("-c", "--corruptions", type=int, default=0, help="corrupted datasets (used to format png names)") parser.add_argument("-d", "--dataset", type=str, default=None, help="specify single dataset (default is None to generate images for all dataset subdirectories in input_path") args = parser.parse_args() input_path = args.input_path outpath = args.outpath img_type = args.imgtype gen = args.generator size = (args.size, args.size) crpt = args.corruptions dataset = args.dataset if img_type == 'total': generate_total_images(input_path, outpath, dataset=dataset, figsize=size, crpt=crpt, gen=gen) else: generate_filter_images(input_path, outpath, dataset=dataset, figsize=size, crpt=crpt)
the-stack_106_27133
"""Database backed models for the asset store.""" import json import re import six from flask_sqlalchemy import SQLAlchemy from sqlalchemy import Column, Integer, JSON, String from sqlalchemy.exc import IntegrityError from sqlalchemy_utils import ChoiceType from asset_store.utils import get_choice_list, ResourceConflictError, ValidationError, validate_choice db = SQLAlchemy() class Asset(db.Model): """A model for tracking satellite and antenna assets.""" # TODO: consider using enums # types ANTENNA = 'antenna' SATELLITE = 'satellite' ASSET_TYPES = [(SATELLITE, 'satellite'), (ANTENNA, 'antenna')] # type specific classes DISH = 'dish' YAGI = 'yagi' ANTENNA_CLASSES = [(DISH, 'dish'), (YAGI, 'yagi')] DOVE = 'dove' RAPIDEYE = 'rapideye' SATELLITE_CLASSES = [(DOVE, 'dove'), (RAPIDEYE, 'rapideye')] # all classes ASSET_CLASSES = ANTENNA_CLASSES + SATELLITE_CLASSES # supported keys in the asset_details json blob for dish assets DIAMETER = 'diameter' RADOME = 'radome' DISH_DETAILS = [DIAMETER, RADOME] # supported keys in the asset_details json blob for yagi assets GAIN = 'gain' YAGI_DETAILS = [GAIN] # model fields id = Column(Integer, primary_key=True) asset_name = Column(String(64), nullable=False, unique=True) asset_type = Column(ChoiceType(ASSET_TYPES), nullable=False) asset_class = Column(ChoiceType(ASSET_CLASSES), nullable=False) # store details as a string for now -- consider using a JSON column (requires a sqlite extension) asset_details_json = Column(String) @property def asset_details(self): """Dict of asset details.""" if self.asset_details_json: return json.loads(self.asset_details_json) else: return {} def update_details(self, new_details): """Validate and update asset_details for an asset.""" if not isinstance(new_details, dict): raise ValidationError('Asset details should be a dict.') self._validate_asset_details_for_asset_class(new_details, self.asset_class.value) self.asset_details_json = json.dumps(new_details) db.session.add(self) db.session.commit() @classmethod def create_asset(cls, asset_name, asset_type, asset_class, asset_details=None): """Create a new instance of an Asset. Args: asset_name (string): name of the new asset. Must meet the following constraints: 1. must start with an alphanumeric character 2. can only contain alphanumeric characters, dashses, and underscores 3. can be no longer than 64 characters 4. can be no shorter than 4 characters 5. can not already be used as an existing asset's asset_name asset_type (string): the type of asset. Valid types are 'satellite' and 'antenna' asset_class (string): the class of the asset. Valid classes depend on the asset_type. - Valid classes for 'satellite' asset_type are 'dove' and 'rapideye' - Valid classes for 'antenna' asset_type are 'dish' and 'yagi' Returns: asset: a newly created Asset instance Raises: ValidationError: the provided arguments do not meet validation constraints IntegrityError """ from run import app cls._validate_asset_name(asset_name) cls._validate_asset_type(asset_type) cls._validate_asset_class(asset_class) cls._validate_asset_class_with_asset_type(asset_class, asset_type) if not asset_details: asset_details = {} else: cls._validate_asset_details_for_asset_class(asset_details, asset_class) with app.app_context(): try: asset = Asset(asset_name=asset_name, asset_type=asset_type, asset_class=asset_class, asset_details_json=json.dumps(asset_details)) db.session.add(asset) db.session.commit() return asset except IntegrityError as err: if 'UNIQUE constraint failed: asset.asset_name' in '{}'.format(err): raise ResourceConflictError('There is already an asset with asset_name {}'.format(asset_name)) # The following methods are for validating asset fields. # To better enforce some of the business rules, additional database constraints could be added in the future. @classmethod def _validate_asset_type(cls, asset_type): """Check if an asset_type value is valid. Args: asset_type (str): value representing an asset_type to be validated Returns: valid (bool): True if validation passed Raises: ValidationError: if provided asset_type value is not a valid choice """ return validate_choice('asset_type', asset_type, cls.ASSET_TYPES) @classmethod def _validate_asset_class(cls, asset_class): """Check if an asset_type value is valid. Args: asset_class (str): value representing an asset_class to be validated Returns: valid (bool): True if validation passed Raises: ValidationError: if provided asset_class value is not a valid choice """ return validate_choice('asset_class', asset_class, cls.ASSET_CLASSES) @classmethod def _validate_asset_class_with_asset_type(cls, asset_class, asset_type): """Check if an asset_class value is valid for a given asset_type. Args: asset_type (str): value representing an asset_type to be validated asset_class (str): value representing an asset_class to be validated Returns: valid (bool): True if validation passed Raises: ValidationError: if provided asset_class value is not a valid choice given the provided asset_type """ error_msg = 'Invalid asset_class. For the {} asset_type, valid asset_class values are: {}' if asset_type == cls.ANTENNA: choices = get_choice_list(cls.ANTENNA_CLASSES) error_msg = error_msg.format(cls.ANTENNA, choices) return validate_choice('asset_class', asset_class, cls.ANTENNA_CLASSES, custom_error_msg=error_msg) elif asset_type == cls.SATELLITE: choices = get_choice_list(cls.SATELLITE_CLASSES) error_msg = error_msg.format(cls.SATELLITE, choices) return validate_choice('asset_class', asset_class, cls.SATELLITE_CLASSES, custom_error_msg=error_msg) else: raise ValidationError('Unrecognized asset_type {}'.format(asset_type)) @classmethod def _validate_asset_name(cls, asset_name): """Check if an asset_name value is valid. Args: asset_name (str): value representing an asset_name to be validated Returns: valid (bool): True if validation passed Raises: ValidationError: if provided asset_name has one of the following issues: - is shorter than 4 characters - is longer than 64 characters - has already used by another asset - starts with a '-' or '_' """ if not isinstance(asset_name, six.string_types): raise ValidationError('asset_name must be a string.') length = len(asset_name) if length < 4: raise ValidationError('asset_name must be at least 4 characters in length.') if length > 64: raise ValidationError('asset_name must be at most 64 characters in length.') first_char = asset_name[0] if first_char in ['-', '_']: raise ValidationError('asset_name cannot begin with an underscore or dash.') # should start with an alphanum and all subsequent characters should be alphanum or dashes if re.match('^[0-9a-zA-Z]+[0-9a-zA-Z_-]*$', asset_name) is None: raise ValidationError('asset_name may only contain alphanumeric ascii characters, underscores, and dashes.') return True @classmethod def _get_asset_details_dict(cls, asset_details): try: details = json.loads(asset_details) if not isinstance(details, dict): raise ValidationError('asset_details should be a json object.') return True except: raise ValidationError('asset_details should be a json object.') @classmethod def _check_for_unknown_asset_details_keys(cls, asset_details, asset_class): """Make sure details keys are supported.""" allowed_keys = [] if asset_class == cls.DISH: allowed_keys = cls.DISH_DETAILS if asset_class == cls.YAGI: allowed_keys = cls.YAGI_DETAILS keys = asset_details.keys() for key in keys: if key not in allowed_keys: key_error_msg = 'key {} in asset_details is not supported for asset_class {}. allowed keys are: {}' raise ValidationError(key_error_msg.format(key, asset_class, allowed_keys)) @classmethod def _validate_float_key(cls, name, value): try: float(value) except ValueError: raise ValidationError('{} in asset_details should have a float value'.format(name)) @classmethod def _validate_asset_details_for_asset_class(cls, asset_details, asset_class): """Make sure that the asset_details follow business roles for the provided asset_class. - asset_class dish can have diameter and radome details - asset_class yagi can have gain details """ cls._check_for_unknown_asset_details_keys(asset_details, asset_class) for key, value in asset_details.items(): if key == cls.DIAMETER: cls._validate_float_key(key, value) elif key == cls.RADOME: try: bool(value) except ValueError: raise ValidationError('{} in asset_details should have a boolean value'.format(cls.RADOME)) elif key == cls.GAIN: cls._validate_float_key(key, value)
the-stack_106_27136
import os import string import numpy as np import pandas as pd from .auth import get_config_file from .exceptions import CufflinksError def scattergeo(): """ Returns """ path=os.path.join(os.path.dirname(__file__), '../data/scattergeo.csv') df=pd.read_csv(path) del df['Unnamed: 0'] df['text'] = df['airport'] + ' ' + df['city'] + ', ' + df['state'] + ' ' + 'Arrivals: ' + df['cnt'].astype(str) df=df.rename(columns={'cnt':'z','long':'lon'}) return df def choropleth(): """ Returns """ path=os.path.join(os.path.dirname(__file__), '../data/choropleth.csv') df=pd.read_csv(path) del df['Unnamed: 0'] df['z']=[np.random.randint(0,100) for _ in range(len(df))] return df def scatter3d(n_categories=5,n=10,prefix='category',mode=None): """ Returns a DataFrame with the required format for a scatter3d plot Parameters: ----------- n_categories : int Number of categories n : int Number of points for each trace prefix : string Name for each trace mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] for i in range(n_categories): categories.extend([prefix+str(i+1)]*n) return pd.DataFrame({'x':np.random.randn(n*n_categories), 'y':np.random.randn(n*n_categories), 'z':np.random.randn(n*n_categories), 'text':getName(n*n_categories,mode=mode), 'categories':categories}) def bubble3d(n_categories=5,n=10,prefix='category',mode=None): """ Returns a DataFrame with the required format for a bubble3d plot Parameters: ----------- n_categories : int Number of categories n : int Number of points for each trace prefix : string Name for each trace mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] for i in range(n_categories): categories.extend([prefix+str(i+1)]*n) return pd.DataFrame({'x':np.random.randn(n*n_categories), 'y':np.random.randn(n*n_categories), 'z':np.random.randn(n*n_categories), 'size':np.random.randint(1,100,n*n_categories), 'text':getName(n*n_categories,mode=mode), 'categories':categories}) def bubble(n_categories=5,n=10,prefix='category',mode=None): """ Returns a DataFrame with the required format for a bubble plot Parameters: ----------- n_categories : int Number of categories n : int Number of points for each category prefix : string Name for each category mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] for i in range(n_categories): categories.extend([prefix+str(i+1)]*n) return pd.DataFrame({'x':np.random.randn(n*n_categories), 'y':np.random.randn(n*n_categories), 'size':np.random.randint(1,100,n*n_categories), 'text':getName(n*n_categories,mode=mode), 'categories':categories}) def pie(n_labels=5,mode=None): """ Returns a DataFrame with the required format for a pie plot Parameters: ----------- n_labels : int Number of labels mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ return pd.DataFrame({'values':np.random.randint(1,100,n_labels), 'labels':getName(n_labels,mode=mode)}) def scatter(n_categories=5,n=10,prefix='category',mode=None): """ Returns a DataFrame with the required format for a scatter plot Parameters: ----------- n_categories : int Number of categories n : int Number of points for each category prefix : string Name for each category mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] for i in range(n_categories): categories.extend([prefix+str(i+1)]*n) return pd.DataFrame({'x':np.random.randn(n*n_categories), 'y':np.random.randn(n*n_categories), 'text':getName(n*n_categories,mode=mode), 'categories':categories}) def heatmap(n_x=5,n_y=10): """ Returns a DataFrame with the required format for a heatmap plot Parameters: ----------- n_x : int Number of x categories n_y : int Number of y categories """ x=['x_'+str(_) for _ in range(n_x)] y=['y_'+str(_) for _ in range(n_y)] return pd.DataFrame(surface(n_x-1,n_y-1).values,index=x,columns=y) def lines(n_traces=5,n=100,columns=None,dateIndex=True,mode=None): """ Returns a DataFrame with the required format for a scatter (lines) plot Parameters: ----------- n_traces : int Number of traces n : int Number of points for each trace columns : [str] List of column names dateIndex : bool If True it will return a datetime index if False it will return a enumerated index mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ index=pd.date_range('1/1/15',periods=n) if dateIndex else list(range(n)) df=pd.DataFrame(np.random.randn(n,n_traces),index=index, columns=getName(n_traces,columns=columns,mode=mode)) return df.cumsum() def bars(n=3,n_categories=3,prefix='category',columns=None,mode='abc'): """ Returns a DataFrame with the required format for a bar plot Parameters: ----------- n : int Number of points for each trace n_categories : int Number of categories for each point prefix : string Name for each category columns : [str] List of column names mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] if not columns: columns=getName(n,mode=mode) for i in range(n_categories): categories.extend([prefix+str(i+1)]) data=dict([(x,np.random.randint(1,100,n_categories)) for x in columns]) return pd.DataFrame(data,index=categories) def ohlc(n=100): """ Returns a DataFrame with the required format for a candlestick or ohlc plot df[['open','high','low','close']] Parameters: ----------- n : int Number of ohlc points """ index=pd.date_range('1/1/15',periods=n*288,freq='5min',tz='utc') data=np.random.randn(n*288) data[0]=np.array([100]) df=pd.DataFrame(data,index=index, columns=['a']) df=df.cumsum() df=df.resample('1d').ohlc() df.index=df.index.date df.index=pd.to_datetime(df.index) return df['a'] def ohlcv(n=100): """ Returns a DataFrame with the required format for a candlestick or ohlc plot df[['open','high','low','close','volume'] Parameters: ----------- n : int Number of ohlc points """ df=ohlc(n=n) df['volume']=[np.random.randint(1000,10000) for _ in range(len(df))] return df def box(n_traces=5,n=100,mode=None): """ Returns a DataFrame with the required format for a box plot Parameters: ----------- n_traces : int Number of traces n : int Number of points for each trace mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ df=pd.DataFrame([np.random.chisquare(np.random.randint(2,10),n_traces) for _ in range(n)], columns=getName(n_traces,mode=mode)) return df def histogram(n_traces=1,n=500,dispersion=2,mode=None): """ Returns a DataFrame with the required format for a histogram plot Parameters: ----------- n_traces : int Number of traces n : int Number of points for each trace mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ df=pd.DataFrame(np.transpose([np.random.randn(n)+np.random.randint(-1*dispersion,dispersion) for _ in range(n_traces)]), columns=getName(n_traces,mode=mode)) return df def distplot(n_traces=1,n=500,dispersion=3,mode=None): """ Returns a DataFrame with the required format for a distribution plot (distplot) Parameters: ----------- n_traces : int Number of traces n : int Number of points for each trace mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ return histogram(n_traces,n,dispersion,mode) def violin(n=500,dispersion=3,categories=True,n_categories=5): """ Returns a DataFrame with the required format for a distribution plot (distplot) Parameters: ----------- n : int Number of points categories : bool or int If True, then a column with categories is added n_categories : int Number of categories """ df = histogram(1,n,dispersion,'abc') df=df.rename(columns={'a':'data'}) if categories: df['categories']=['category_{0}'.format(np.random.randint(n_categories)) for _ in range(n)] return df def surface(n_x=20,n_y=20): """ Returns a DataFrame with the required format for a surface plot Parameters: ----------- n_x : int Number of points along the X axis n_y : int Number of points along the Y axis """ x=[float(np.random.randint(0,100))] for i in range(n_x): x.append(x[:1][0]+np.random.randn()*np.random.randint(1,10)) df=pd.DataFrame(x) for i in range(n_y): df[i+1]=df[i].map(lambda x:x+np.random.randn()*np.random.randint(1,10)) return df def sinwave(n=4,inc=.25): """ Returns a DataFrame with the required format for a surface (sine wave) plot Parameters: ----------- n : int Ranges for X and Y axis (-n,n) n_y : int Size of increment along the axis """ x=np.arange(-n,n,inc) y=np.arange(-n,n,inc) X,Y=np.meshgrid(x,y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R)/(.5*R) return pd.DataFrame(Z,index=x,columns=y) def getName(n=1,name=3,exchange=2,columns=None,mode='abc'): if columns: if isinstance(columns,str): columns=[columns] if n != len(columns): raise CufflinksError("Length of column names needs to be the \n" "same length of traces") else: if mode is None: mode=get_config_file()['datagen_mode'] if mode=='abc': def get_abc(n): def _w(n,base=2): _n=1 st=[] while base**_n<=n: _n+=1 for _ in range(_n-1,0,-1): n_st=n//(base**_) st.append(n_st) n=n-n_st*(base**_) st.append(n+1) return st st=_w(n,len(string.ascii_lowercase)) _st='' for _ in st: _st+=string.ascii_lowercase[_-1] return _st columns=[get_abc(_) for _ in range(n)] elif mode=='stocks': columns=[''.join(np.random.choice(list(string.ascii_uppercase),name)) + '.' + ''.join(np.random.choice(list(string.ascii_uppercase),exchange)) for _ in range(n)] else: raise CufflinksError("Unknown mode: {0}".format(mode)) return columns
the-stack_106_27138
from copy import deepcopy import random def find_path(scanner, memory): DIR_reverse = {"N": 'S', "S": 'N', "W": 'E', "E": 'W'} DIR = {"N": (-1, 0), "S": (1, 0), "W": (0, -1), "E": (0, 1)} memory_binary = bin(memory)[2:] memory_binary = '0'*(100-len(memory_binary)) + memory_binary memory_list = [[j for j in memory_binary[i*10:(i+1)*10]] for i in range(10)] memory_list[0][0] = '1' path = [] pool = [] for (direction, distance) in scanner.items(): if distance and memory_list[DIR[direction][0]][DIR[direction][1]] == '0': pool.append([direction,1]) if pool: if len(pool) > 1: random.seed() [final_direction, final_distance] = random.choice(pool) else: final_direction = random.choice([i for i in scanner.keys() if scanner[i]]) final_distance = 1 if final_direction in 'WE': for i in range(1,10): memory_list[0][i] = '0' else: for i in range(1,10): memory_list[i][0] = '0' path += [final_direction]*final_distance for i in range(final_distance): for j, l in enumerate(memory_list): memory_list[j] = l[DIR[final_direction][1]%10:] + l[:DIR[final_direction][1]%10] memory_list = memory_list[DIR[final_direction][0]%10:] + memory_list[:DIR[final_direction][0]%10] memory_binary = ''.join(k for k in [''.join(j) for j in memory_list]) return ''.join(path), int('0b'+memory_binary,2) # for debuging raise ValueError if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing DIR = {"N": (-1, 0), "S": (1, 0), "W": (0, -1), "E": (0, 1)} WALL = "X" EXIT = "E" EMPTY = "." MAX_STEP = 300 def get_visible(maze, player): result = {} for direction, (dr, dc) in DIR.items(): cr, cc = player distance = -1 while maze[cr][cc] != WALL: cr += dr cc += dc distance += 1 result[direction] = distance return result def checker(func, player, maze): step = 0 memory = 0 while True: result, memory = func(get_visible(maze, player), memory) if not isinstance(result, str) or any(ch not in DIR.keys() for ch in result): print("The function should return a string with directions.") return False if not isinstance(memory, int) or memory < 0 or memory >= 2 ** 100: print("The memory number should be an integer from 0 to 2**100.") return False for act in result: if step >= MAX_STEP: print("You are tired and your scanner is off. Bye bye.") return False r, c = player[0] + DIR[act][0], player[1] + DIR[act][1] if maze[r][c] == WALL: print("BAM! You in the wall at {}, {}.".format(r, c)) return False elif maze[r][c] == EXIT: print("GRATZ!") return True else: player = r, c step += 1 assert checker(find_path, (1, 1), [ "XXXXXXXXXXXX", "X..........X", "X.XXXXXXXX.X", "X.X......X.X", "X.X......X.X", "X.X......X.X", "X.X......X.X", "X.X......X.X", "X.X......X.X", "X.XXXXXXXX.X", "X.........EX", "XXXXXXXXXXXX", ]), "Simple" assert checker(find_path, (1, 4), [ "XXXXXXXXXXXX", "XX...X.....X", "X..X.X.X.X.X", "X.XX.X.X.X.X", "X..X.X.X.X.X", "XX.X.X.X.X.X", "X..X.X.X.X.X", "X.XX.X.X.X.X", "X..X.X.X.X.X", "XX.X.X.X.X.X", "XE.X.....X.X", "XXXXXXXXXXXX", ]), "Up Down" assert checker(find_path, (10, 10), [ "XXXXXXXXXXXX", "X..........X", "X.XXXXXXXX.X", "X.X......X.X", "X.X.XX.X.X.X", "X.X......X.X", "X.X......X.X", "X.X..E...X.X", "X.X......X.X", "X.XXXX.XXX.X", "X..........X", "XXXXXXXXXXXX", ]), "Left"
the-stack_106_27139
# -*- coding: utf-8 -*- ''' Data Handler Module This module contains a class for managing a data processing pipeline ''' from time import time from datetime import timedelta import numpy as np import pandas as pd from scipy.stats import mode, skew from scipy.interpolate import interp1d from sklearn.cluster import DBSCAN import cvxpy as cvx import matplotlib.pyplot as plt import matplotlib.cm as cm from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from solardatatools.time_axis_manipulation import make_time_series,\ standardize_time_axis from solardatatools.matrix_embedding import make_2d from solardatatools.data_quality import daily_missing_data_advanced from solardatatools.data_filling import zero_nighttime, interp_missing from solardatatools.clear_day_detection import find_clear_days from solardatatools.plotting import plot_2d from solardatatools.clear_time_labeling import find_clear_times from solardatatools.solar_noon import avg_sunrise_sunset from solardatatools.algorithms import CapacityChange, TimeShift, SunriseSunset class DataHandler(): def __init__(self, data_frame=None, raw_data_matrix=None, datetime_col=None, convert_to_ts=False, aggregate=None, how=lambda x: x.mean()): if data_frame is not None: if convert_to_ts: data_frame, keys = make_time_series(data_frame) self.keys = keys else: self.keys = list(data_frame.columns) self.data_frame_raw = data_frame.copy() if not isinstance(self.data_frame_raw.index, pd.DatetimeIndex): if datetime_col is not None: df = self.data_frame_raw df[datetime_col] = pd.to_datetime(df[datetime_col]) df.set_index(datetime_col, inplace=True) else: e = "Data frame must have a DatetimeIndex or" e += "the user must set the datetime_col kwarg." raise Exception(e) df_index = self.data_frame_raw.index if df_index.tz is not None: df_index = df_index.tz_localize(None) self.data_frame = None if aggregate is not None: new_data = how(self.data_frame_raw.resample(aggregate)) self.data_frame_raw = new_data else: self.data_frame_raw = None self.data_frame = None self.keys = None self.raw_data_matrix = raw_data_matrix if self.raw_data_matrix is not None: self.num_days = self.raw_data_matrix.shape[1] if self.raw_data_matrix.shape[0] <= 1400: self.data_sampling = int(24 * 60 / self.raw_data_matrix.shape[0]) else: self.data_sampling = 24 * 60 / self.raw_data_matrix.shape[0] else: self.num_days = None self.data_sampling = None self.filled_data_matrix = None self.use_column = None self.capacity_estimate = None self.start_doy = None self.day_index = None self.power_units = None # "Extra" data, i.e. additional columns to process from the table self.extra_matrices = {} # Matrix views of extra columns self.extra_quality_scores = {} # Relative quality: fraction of non-NaN values in column during daylight time periods, as defined by the main power columns # Scores for the entire data set self.data_quality_score = None # Fraction of days without data acquisition errors self.data_clearness_score = None # Fraction of days that are approximately clear/sunny # Flags for the entire data set self.inverter_clipping = None # True if there is inverter clipping, false otherwise self.num_clip_points = None # If clipping, the number of clipping set points self.capacity_changes = None # True if the apparent capacity seems to change over the data set self.normal_quality_scores = None # True if clustering of data quality scores are within decision boundaries self.time_shifts = None # True if time shifts detected and corrected in data set self.tz_correction = 0 # TZ correction factor (determined during pipeline run) # Daily scores (floats), flags (booleans), and boolean masks self.daily_scores = DailyScores() # 1D arrays of floats self.daily_flags = DailyFlags() # 1D arrays of Booleans self.boolean_masks = BooleanMasks() # 2D arrays of Booleans # Useful daily signals defined by the data set self.daily_signals = DailySignals() # Algorithm objects self.scsf = None self.capacity_analysis = None self.time_shift_analysis = None self.daytime_analysis = None # Private attributes self._ran_pipeline = False self._error_msg = '' self.__density_lower_threshold = None self.__density_upper_threshold = None self.__linearity_threshold = None self.__recursion_depth = 0 self.__initial_time = None self.__fix_dst_ran = False def run_pipeline(self, power_col=None, min_val=-5, max_val=None, zero_night=True, interp_day=True, fix_shifts=True, density_lower_threshold=0.6, density_upper_threshold=1.05, linearity_threshold=0.1, clear_day_smoothness_param=0.9, clear_day_energy_param=0.8, verbose=True, start_day_ix=None, end_day_ix=None, c1=None, c2=500., solar_noon_estimator='com', correct_tz=True, extra_cols=None, daytime_threshold=0.1, units='W'): self.daily_scores = DailyScores() self.daily_flags = DailyFlags() self.capacity_analysis = None self.time_shift_analysis = None self.extra_matrices = {} # Matrix views of extra columns self.extra_quality_scores = {} self.power_units = units if self.__recursion_depth == 0: self.tz_correction = 0 t = np.zeros(6) ###################################################################### # Preprocessing ###################################################################### t[0] = time() if self.data_frame_raw is not None: self.data_frame = standardize_time_axis(self.data_frame_raw, timeindex=True, verbose=verbose) if self.data_frame is not None: self.make_data_matrix(power_col, start_day_ix=start_day_ix, end_day_ix=end_day_ix) if max_val is not None: mat_copy = np.copy(self.raw_data_matrix) mat_copy[np.isnan(mat_copy)] = -9999 slct = mat_copy > max_val if np.sum(slct) > 0: self.raw_data_matrix[slct] = np.nan if min_val is not None: mat_copy = np.copy(self.raw_data_matrix) mat_copy[np.isnan(mat_copy)] = 9999 slct = mat_copy < min_val if np.sum(slct) > 0: self.raw_data_matrix[slct] = np.nan self.capacity_estimate = np.nanquantile(self.raw_data_matrix, 0.95) if self.capacity_estimate <= 500 and self.power_units == 'W': self.power_units = 'kW' self.boolean_masks.missing_values = np.isnan(self.raw_data_matrix) ss = SunriseSunset() ss.run_optimizer(self.raw_data_matrix, plot=False) self.boolean_masks.daytime = ss.sunup_mask_estimated self.daytime_analysis = ss ### TZ offset detection and correction ### # (1) Determine if there exists a "large" timezone offset error if power_col is None: power_col = self.data_frame.columns[0] if correct_tz: average_day = np.zeros(self.raw_data_matrix.shape[0]) all_nans = np.alltrue(np.isnan(self.raw_data_matrix), axis=1) average_day[~all_nans] = np.nanmean( self.raw_data_matrix[~all_nans, :], axis=1 ) average_day -= np.min(average_day) average_day /= np.max(average_day) ### Troubleshooting code # plt.plot(average_day) # plt.axhline(0.02, color='red', ls='--', linewidth=1) # plt.show() meas_per_hour = np.int(60 / self.data_sampling) cond1 = np.any(average_day[:meas_per_hour] > 0.02) cond2 = np.any(average_day[-meas_per_hour:] > 0.02) cond3 = self.__recursion_depth <= 2 if (cond1 or cond2) and cond3: if verbose: print( 'Warning: power generation at midnight. Attempting to correct...') # Catch values that are more than 4 hours from noon and make a # correction to the time axis (rough correction to avoid days # rolling over) rough_noon_est = np.nanmean( self.data_frame.groupby(pd.Grouper(freq='D')) \ .idxmax()[power_col].dt.time \ .apply(lambda x: 60 * x.hour + x.minute) ) / 60 self.tz_correction = 12 - np.round(rough_noon_est) self.data_frame.index = self.data_frame.index.shift( self.tz_correction, freq='H' ) if verbose: print('Done.\nRestarting the pipeline...') self.__recursion_depth += 1 if self.__initial_time is not None: self.__initial_time = t[0] self.run_pipeline( power_col=power_col, min_val=min_val, max_val=max_val, zero_night=zero_night, interp_day=interp_day, fix_shifts=fix_shifts, density_lower_threshold=density_lower_threshold, density_upper_threshold=density_upper_threshold, linearity_threshold=linearity_threshold, clear_day_smoothness_param=clear_day_smoothness_param, clear_day_energy_param=clear_day_energy_param, verbose=verbose, start_day_ix=start_day_ix, end_day_ix=end_day_ix, c1=c1, c2=c2, solar_noon_estimator=solar_noon_estimator, correct_tz=correct_tz, extra_cols=extra_cols, daytime_threshold=daytime_threshold, units=units ) return ###################################################################### # Cleaning ###################################################################### t[1] = time() self.make_filled_data_matrix(zero_night=zero_night, interp_day=interp_day) num_raw_measurements = np.count_nonzero( np.nan_to_num(self.raw_data_matrix, copy=True, nan=0.)[self.boolean_masks.daytime] ) num_filled_measurements = np.count_nonzero( np.nan_to_num(self.filled_data_matrix, copy=True, nan=0.)[self.boolean_masks.daytime] ) if num_raw_measurements > 0: ratio = num_filled_measurements / num_raw_measurements else: msg = 'Error: data set contains no non-zero values!' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None self.daily_flags = None self.data_quality_score = 0.0 self.data_clearness_score = 0.0 self._ran_pipeline = True return if ratio < 0.9: msg = 'Error: data was lost during NaN filling procedure. ' msg += 'This typically occurs when\nthe time stamps are in the ' msg += 'wrong timezone. Please double check your data table.\n' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None self.daily_flags = None self.data_quality_score = None self.data_clearness_score = None self._ran_pipeline = True return ### TZ offset detection and correction ### # (2) Determine if there is a "small" timezone offset error if correct_tz: average_noon = np.nanmean( avg_sunrise_sunset(self.filled_data_matrix, threshold=0.01) ) tz_offset = int(np.round(12 - average_noon)) if tz_offset != 0: self.tz_correction += tz_offset # Related to this bug fix: # https://github.com/slacgismo/solar-data-tools/commit/ae0037771c09ace08bff5a4904475da606e934da old_index = self.data_frame.index.copy() self.data_frame.index = self.data_frame.index.shift( tz_offset, freq='H' ) self.data_frame = self.data_frame.reindex(index=old_index, method='nearest', limit=1).fillna(0) meas_per_hour = self.filled_data_matrix.shape[0] / 24 roll_by = int(meas_per_hour * tz_offset) self.filled_data_matrix = np.nan_to_num( np.roll(self.filled_data_matrix, roll_by, axis=0), 0 ) self.raw_data_matrix = np.roll( self.raw_data_matrix, roll_by, axis=0 ) self.boolean_masks.daytime = np.roll( self.boolean_masks.daytime, roll_by, axis=0 ) ###################################################################### # Scoring ###################################################################### t[2] = time() t_clean = np.zeros(6) t_clean[0] = time() try: self.get_daily_scores(threshold=0.2) except: msg = 'Daily quality scoring failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None try: self.get_daily_flags(density_lower_threshold=density_lower_threshold, density_upper_threshold=density_upper_threshold, linearity_threshold=linearity_threshold) except: msg = 'Daily quality flagging failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_flags = None t_clean[1] = time() try: self.detect_clear_days(smoothness_threshold=clear_day_smoothness_param, energy_threshold=clear_day_energy_param) except: msg = 'Clear day detection failed.' self._error_msg += '\n' + msg if verbose: print(msg) t_clean[2] = time() try: self.clipping_check() except: msg = 'Clipping check failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.inverter_clipping = None t_clean[3] = time() try: self.score_data_set() except: msg = 'Data set summary scoring failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.data_quality_score = None self.data_clearness_score = None t_clean[4] = time() try: self.capacity_clustering() except TypeError: self.capacity_changes = None t_clean[5] = time() ###################################################################### # Fix Time Shifts ###################################################################### t[3] = time() if fix_shifts: try: self.auto_fix_time_shifts(c1=c1, c2=c2, estimator=solar_noon_estimator, threshold=daytime_threshold, periodic_detector=False) except Exception as e: msg = 'Fix time shift algorithm failed.' self._error_msg += '\n' + msg if verbose: print(msg) print('Error message:', e) print('\n') self.time_shifts = None ###################################################################### # Update daytime detection based on cleaned up data ###################################################################### # self.daytime_analysis.run_optimizer(self.filled_data_matrix, plot=False) self.daytime_analysis.calculate_times(self.filled_data_matrix) self.boolean_masks.daytime = self.daytime_analysis.sunup_mask_estimated ###################################################################### # Process Extra columns ###################################################################### t[4] = time() if extra_cols is not None: freq = int(self.data_sampling * 60) new_index = pd.date_range(start=self.day_index[0].date(), end=self.day_index[-1].date() + timedelta( days=1), freq='{}s'.format(freq))[:-1] if isinstance(extra_cols, str): extra_cols = np.atleast_1d(extra_cols) elif isinstance(extra_cols, tuple): extra_cols = [extra_cols] for col in extra_cols: self.generate_extra_matrix(col, new_index=new_index) t[5] = time() times = np.diff(t, n=1) cleaning_times = np.diff(t_clean, n=1) total_time = t[-1] - t[0] # Cleanup self.__recursion_depth = 0 if verbose: if self.__initial_time is not None: restart_msg = '{:.2f} seconds spent automatically localizing the time zone\n' restart_msg += 'Info for last pipeline run below:\n' restart_msg = restart_msg.format(t[0] - self.__initial_time) print(restart_msg) out = 'total time: {:.2f} seconds\n' out += '--------------------------------\n' out += 'Breakdown\n' out += '--------------------------------\n' out += 'Preprocessing {:.2f}s\n' out += 'Cleaning {:.2f}s\n' out += 'Filtering/Summarizing {:.2f}s\n' out += ' Data quality {:.2f}s\n' out += ' Clear day detect {:.2f}s\n' out += ' Clipping detect {:.2f}s\n' out += ' Capacity change detect {:.2f}s\n' if extra_cols is not None: out += 'Extra Column Processing {:.2f}s' print(out.format( total_time, times[0], times[1] + times[3], times[2], cleaning_times[0], cleaning_times[1], cleaning_times[2], cleaning_times[4], times[4] )) self._ran_pipeline = True return def report(self): try: if self.num_days >= 365: l1 = 'Length: {:.2f} years\n'.format(self.num_days / 365) else: l1 = 'Length: {} days\n'.format(self.num_days) if self.power_units == 'W': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate / 1000) elif self.power_units == 'kW': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate) else: l1_a = 'Capacity estimate: {:.2f} '.format(self.capacity_estimate) l1_a += self.power_units + '\n' if self.raw_data_matrix.shape[0] <= 1440: l2 = 'Data sampling: {} minute\n'.format(self.data_sampling) else: l2 = 'Data sampling: {} second\n'.format(int(self.data_sampling * 60)) l3 = 'Data quality score: {:.1f}%\n'.format(self.data_quality_score * 100) l4 = 'Data clearness score: {:.1f}%\n'.format(self.data_clearness_score * 100) l5 = 'Inverter clipping: {}\n'.format(self.inverter_clipping) l6 = 'Time shifts corrected: {}\n'.format(self.time_shifts) if self.tz_correction != 0: l7 = 'Time zone correction: {} hours'.format(int(self.tz_correction)) else: l7 = 'Time zone correction: None' p_out = l1 + l1_a + l2 + l3 + l4 + l5 + l6 + l7 if self.capacity_changes: p_out += '\nWARNING: Changes in system capacity detected!' if self.num_clip_points > 1: p_out += '\nWARNING: {} clipping set points detected!'.format( self.num_clip_points ) if not self.normal_quality_scores: p_out += '\nWARNING: Abnormal clustering of data quality scores!' print(p_out) return except TypeError: if self._ran_pipeline: m1 = 'Pipeline failed, please check data set.\n' m2 = "Try running: self.plot_heatmap(matrix='raw')\n\n" if self.num_days >= 365: l1 = 'Length: {:.2f} years\n'.format( self.num_days / 365) else: l1 = 'Length: {} days\n'.format( self.num_days) if self.power_units == 'W': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate / 1000) elif self.power_units == 'kW': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate) else: l1_a = 'Capacity estimate: {:.2f} '.format(self.capacity_estimate) l1_a += self.power_units + '\n' if self.raw_data_matrix.shape[0] <= 1440: l2 = 'Data sampling: {} minute\n'.format( self.data_sampling) else: l2 = 'Data sampling: {} second\n'.format( int(self.data_sampling * 60)) p_out = m1 + m2 + l1 + l1_a + l2 print(p_out) print('\nError messages captured from pipeline:' + self._error_msg) else: print('Please run the pipeline first!') return def augment_data_frame(self, boolean_index, column_name): """ Add a column to the data frame (tabular) representation of the data, containing True/False values at each time stamp. Boolean index is a 1-D or 2-D numpy array of True/False values. If 1-D, array should be of length N, where N is the number of days in the data set. If 2-D, the array should be of size M X N where M is the number of measurements each day and N is the number of days. :param boolean_index: Length N or size M X N numpy arrays of booleans :param column_name: Name for column :return: """ if self.data_frame is None: print('This DataHandler object does not contain a data frame.') return if boolean_index is None: print('No mask available for ' + column_name) return m, n = self.raw_data_matrix.shape index_shape = boolean_index.shape cond1 = index_shape == (m, n) cond2 = index_shape == (n ,) if not cond1 and not cond2: print('Boolean index shape does not match the data.') elif cond1: if self.time_shifts: ts = self.time_shift_analysis boolean_index = ts.invert_corrections(boolean_index) start = self.day_index[0] freq = '{}min'.format(self.data_sampling) periods = self.filled_data_matrix.size tindex = pd.date_range(start=start, freq=freq, periods=periods) series = pd.Series(data=boolean_index.ravel(order='F'), index=tindex) series.name = column_name if column_name in self.data_frame.columns: del self.data_frame[column_name] self.data_frame = self.data_frame.join(series) self.data_frame[column_name] = self.data_frame[column_name].fillna(False) elif cond2: slct_dates = self.day_index[boolean_index].date bix = np.isin(self.data_frame.index.date, slct_dates) self.data_frame[column_name] = False self.data_frame.loc[bix, column_name] = True if column_name in self.data_frame_raw.columns: del self.data_frame_raw[column_name] self.data_frame_raw = self.data_frame_raw.join(self.data_frame[column_name]) def fix_dst(self): """ Helper function for fixing data sets with known DST shift. This function works for data recorded anywhere in the United States. The choice of timezone (e.g. 'US/Pacific') does not matter, as long as the dates of the clock changes are the same. :return: """ if not self.__fix_dst_ran: df = self.data_frame_raw df_localized = df.tz_localize('US/Pacific', ambiguous='NaT', nonexistent='NaT') df_localized = df_localized[df_localized.index == df_localized.index] df_localized = df_localized.tz_convert('Etc/GMT+8') df_localized = df_localized.tz_localize(None) self.data_frame_raw = df_localized self.__fix_dst_ran = True return else: print('DST correction already performed on this data set.') return def make_data_matrix(self, use_col=None, start_day_ix=None, end_day_ix=None): df = self.data_frame if use_col is None: use_col = df.columns[0] self.raw_data_matrix, day_index = make_2d(df, key=use_col, return_day_axis=True) self.raw_data_matrix = self.raw_data_matrix[:, start_day_ix:end_day_ix] self.num_days = self.raw_data_matrix.shape[1] if self.raw_data_matrix.shape[0] <= 1400: self.data_sampling = int(24 * 60 / self.raw_data_matrix.shape[0]) else: self.data_sampling = 24 * 60 / self.raw_data_matrix.shape[0] self.use_column = use_col self.day_index = day_index[start_day_ix:end_day_ix] self.start_doy = self.day_index.dayofyear[0] return def make_filled_data_matrix(self, zero_night=True, interp_day=True): self.filled_data_matrix = np.copy(self.raw_data_matrix) if zero_night: self.filled_data_matrix = zero_nighttime(self.raw_data_matrix, night_mask=~self.boolean_masks.daytime) if interp_day: self.filled_data_matrix = interp_missing(self.filled_data_matrix) else: msk = np.isnan(self.filled_data_matrix) self.filled_data_matrix[msk] = 0 self.daily_signals.energy = np.sum(self.filled_data_matrix, axis=0) *\ 24 / self.filled_data_matrix.shape[1] return def generate_extra_matrix(self, column, new_index=None, key=None): if new_index is None: freq = self.data_sampling * 60 end = self.day_index[-1].date() + timedelta(days=1) new_index = pd.date_range(start=self.day_index[0].date(), end=end, freq='{}s'.format(freq))[:-1] num_meas = self.filled_data_matrix.shape[0] new_view = self.data_frame[column].loc[new_index[0]:new_index[-1]] new_view = new_view.values.reshape(num_meas, -1, order='F') if self.time_shifts: ts = self.time_shift_analysis new_view = ts.apply_corrections(new_view) if key is None: key = column self.extra_matrices[key] = new_view self.extra_quality_scores[key] = ( 1 - np.sum(np.isnan(new_view[self.boolean_masks.daytime])) / np.sum(self.boolean_masks.daytime) ) return def get_daily_scores(self, threshold=0.2): self.get_density_scores(threshold=threshold) self.get_linearity_scores() return def get_daily_flags(self, density_lower_threshold=0.6, density_upper_threshold=1.05, linearity_threshold=0.1): self.daily_flags.density = np.logical_and( self.daily_scores.density > density_lower_threshold, self.daily_scores.density < density_upper_threshold ) self.daily_flags.linearity = self.daily_scores.linearity < linearity_threshold self.daily_flags.flag_no_errors() scores = np.c_[self.daily_scores.density, self.daily_scores.linearity] db = DBSCAN(eps=.03, min_samples=max(0.01 * scores.shape[0], 3)).fit(scores) # Count the number of days that cluster to the main group but fall # outside the decision boundaries day_counts = [np.logical_or( self.daily_scores.linearity[db.labels_ == lb] > linearity_threshold, np.logical_or( self.daily_scores.density[db.labels_ == lb] < density_lower_threshold, self.daily_scores.density[db.labels_ == lb] > density_upper_threshold ) ) for lb in set(db.labels_)] self.normal_quality_scores = np.any([ np.sum(day_count) <= max(5e-3 * self.num_days, 1) for day_count in day_counts ]) self.__density_lower_threshold = density_lower_threshold self.__density_upper_threshold = density_upper_threshold self.__linearity_threshold = linearity_threshold self.daily_scores.quality_clustering = db.labels_ def get_density_scores(self, threshold=0.2): if self.raw_data_matrix is None: print('Generate a raw data matrix first.') return self.daily_scores.density, self.daily_signals.density, self.daily_signals.seasonal_density_fit\ = daily_missing_data_advanced( self.raw_data_matrix, threshold=threshold, return_density_signal=True, return_fit=True ) return def get_linearity_scores(self): if self.capacity_estimate is None: self.capacity_estimate = np.quantile(self.filled_data_matrix, 0.95) if self.daily_signals.seasonal_density_fit is None: print('Run the density check first') return temp_mat = np.copy(self.filled_data_matrix) temp_mat[temp_mat < 0.005 * self.capacity_estimate] = np.nan difference_mat = np.round(temp_mat[1:] - temp_mat[:-1], 4) modes, counts = mode(difference_mat, axis=0, nan_policy='omit') n = self.filled_data_matrix.shape[0] - 1 self.daily_scores.linearity = counts.data.squeeze() / (n * self.daily_signals.seasonal_density_fit) # Label detected infill points with a boolean mask infill = np.zeros_like(self.raw_data_matrix, dtype=np.bool) slct = self.daily_scores.linearity >= 0.1 reference_diffs = np.tile(modes[0][slct], (self.filled_data_matrix.shape[0], 1)) found_infill = np.logical_or( np.isclose( np.r_[np.zeros(self.num_days).reshape((1, -1)), difference_mat][ :, slct], reference_diffs), np.isclose( np.r_[difference_mat, np.zeros(self.num_days).reshape((1, -1))][:, slct], reference_diffs), ) infill[:, slct] = found_infill self.boolean_masks.infill = infill return def score_data_set(self): num_days = self.raw_data_matrix.shape[1] try: self.data_quality_score = np.sum(self.daily_flags.no_errors) / num_days except TypeError: self.data_quality_score = None try: self.data_clearness_score = np.sum(self.daily_flags.clear) / num_days except TypeError: self.data_clearness_score = None return def clipping_check(self): max_value = np.max(self.filled_data_matrix) daily_max_val = np.max(self.filled_data_matrix, axis=0) # 1st clipping statistic: ratio of the max value on each day to overall max value clip_stat_1 = daily_max_val / max_value # 2nd clipping statistic: fraction of energy generated each day at or # near that day's max value with np.errstate(divide='ignore', invalid='ignore'): temp = self.filled_data_matrix / daily_max_val temp_msk = temp > 0.995 temp2 = np.zeros_like(temp) temp2[temp_msk] = temp[temp_msk] clip_stat_2 = np.sum(temp2, axis=0) / np.sum(temp, axis=0) clip_stat_2[np.isnan(clip_stat_2)] = 0 # Identify which days have clipping clipped_days = np.logical_and( clip_stat_1 > 0.05, clip_stat_2 > 0.1 ) clipped_days = np.logical_and( self.daily_flags.no_errors, clipped_days ) # clipped days must also be near a peak in the distribution of the # 1st clipping statistic that shows the characteristic, strongly skewed # peak shape point_masses = self.__analyze_distribution(clip_stat_1) try: if len(point_masses) == 0: clipped_days[:] = False else: clipped_days[clipped_days] = np.any( np.array([np.abs(clip_stat_1[clipped_days] - x0) < .02 for x0 in point_masses]), axis=0 ) except IndexError: self.inverter_clipping = False self.num_clip_points = 0 return self.daily_scores.clipping_1 = clip_stat_1 self.daily_scores.clipping_2 = clip_stat_2 self.daily_flags.inverter_clipped = clipped_days if np.sum(clipped_days) > 0.01 * self.num_days: self.inverter_clipping = True self.num_clip_points = len(point_masses) else: self.inverter_clipping = False self.num_clip_points = 0 return def find_clipped_times(self): if self.inverter_clipping: max_value = np.max(self.filled_data_matrix) clip_stat_1 = self.daily_scores.clipping_1 #daily_max_val / max_value point_masses = self.__analyze_distribution(clip_stat_1) mat_normed = self.filled_data_matrix / max_value masks = np.stack([np.abs(mat_normed - x0) < 0.01 for x0 in point_masses]) clipped_time_mask = np.any(masks, axis=0) daily_max_val = np.max(self.filled_data_matrix, axis=0) mat_normed = np.zeros_like(self.filled_data_matrix) msk = daily_max_val != 0 mat_normed[:, msk] = self.filled_data_matrix[:, msk] / daily_max_val[msk] clipped_time_mask = np.logical_and( clipped_time_mask, mat_normed >= 0.98 ) # clipped_days = self.daily_flags.inverter_clipped # clipped_time_mask[:, ~clipped_days] = False self.boolean_masks.clipped_times = clipped_time_mask else: self.boolean_masks.clipped_times = np.zeros_like( self.filled_data_matrix, dtype=np.bool ) def capacity_clustering(self, plot=False, figsize=(8, 6), show_clusters=True): if self.capacity_analysis is None: self.capacity_analysis = CapacityChange() self.capacity_analysis.run( self.filled_data_matrix, filter=self.daily_flags.no_errors, quantile=1.00, c1=15, c2=100, c3=300, reweight_eps=0.5, reweight_niter=5, dbscan_eps=.02, dbscan_min_samples='auto' ) if len(set(self.capacity_analysis.labels)) > 1: #np.max(db.labels_) > 0: self.capacity_changes = True self.daily_flags.capacity_cluster = self.capacity_analysis.labels else: self.capacity_changes = False if plot: metric = self.capacity_analysis.metric s1 = self.capacity_analysis.s1 s2 = self.capacity_analysis.s2 labels = self.capacity_analysis.labels try: xs = self.day_index.to_pydatetime() except AttributeError: xs = np.arange(self.num_days) if show_clusters: fig, ax = plt.subplots(nrows=2, figsize=figsize, sharex=True, gridspec_kw={'height_ratios': [4, 1]}) ax[0].plot(xs, s1, label='capacity change detector') ax[0].plot(xs, s2 + s1, label='signal model') ax[0].plot(xs, metric, alpha=0.3, label='measured signal') ax[0].legend() ax[0].set_title('Detection of system capacity changes') ax[1].set_xlabel('date') ax[0].set_ylabel('normalized daily max power') ax[1].plot(xs, labels, ls='none', marker='.') ax[1].set_ylabel('Capacity clusters') else: fig, ax = plt.subplots(nrows=1, figsize=figsize) ax.plot(xs, s1, label='capacity change detector') ax.plot(xs, s2 + s1, label='signal model') ax.plot(xs, metric, alpha=0.3, label='measured signal') ax.legend() ax.set_title('Detection of system capacity changes') ax.set_ylabel('normalized daily maximum power') ax.set_xlabel('date') return fig def auto_fix_time_shifts(self, c1=5., c2=500., estimator='com', threshold=0.1, periodic_detector=False): self.time_shift_analysis = TimeShift() if self.data_clearness_score > 0.1 and self.num_days > 365 * 2: use_ixs = self.daily_flags.clear else: use_ixs = self.daily_flags.no_errors self.time_shift_analysis.run( self.filled_data_matrix, use_ixs=use_ixs, c1=c1, c2=c2, solar_noon_estimator=estimator, threshold=threshold, periodic_detector=periodic_detector ) self.filled_data_matrix = self.time_shift_analysis.corrected_data if len(self.time_shift_analysis.index_set) == 0: self.time_shifts = False else: self.time_shifts = True # self.filled_data_matrix, shift_ixs = fix_time_shifts( # self.filled_data_matrix, solar_noon_estimator=estimator, c1=c1, c2=c2, # return_ixs=True, verbose=False, use_ixs=None, threshold=threshold # ) # if len(shift_ixs) == 0: # self.time_shifts = False # else: # self.time_shifts = True def detect_clear_days(self, smoothness_threshold=0.9, energy_threshold=0.8): if self.filled_data_matrix is None: print('Generate a filled data matrix first.') return clear_days = find_clear_days(self.filled_data_matrix, smoothness_threshold=smoothness_threshold, energy_threshold=energy_threshold) ### Remove days that are marginally low density, but otherwise pass # the clearness test. Occaisonally, we find an early morning or late # afternoon inverter outage on a clear day is still detected as clear. # Added July 2020 --BM clear_days = np.logical_and( clear_days, self.daily_scores.density > 0.9 ) self.daily_flags.flag_clear_cloudy(clear_days) return def find_clear_times(self, power_hyperparam=0.1, smoothness_hyperparam=0.05, min_length=3): if self.scsf is None: print('No SCSF model detected. Fitting now...') self.fit_statistical_clear_sky_model() clear = self.scsf.estimated_power_matrix clear_times = find_clear_times(self.filled_data_matrix, clear, self.capacity_estimate, th_relative_power=power_hyperparam, th_relative_smoothness=smoothness_hyperparam, min_length=min_length) self.boolean_masks.clear_times = clear_times def fit_statistical_clear_sky_model(self, rank=6, mu_l=None, mu_r=None, tau=None, exit_criterion_epsilon=1e-3, solver_type='MOSEK', max_iteration=10, calculate_degradation=True, max_degradation=None, min_degradation=None, non_neg_constraints=False, verbose=True, bootstraps=None): try: from statistical_clear_sky import SCSF except ImportError: print('Please install statistical-clear-sky package') return scsf = SCSF(data_handler_obj=self, rank_k=rank, solver_type=solver_type) scsf.execute(mu_l=mu_l, mu_r=mu_r, tau=tau, exit_criterion_epsilon=exit_criterion_epsilon, max_iteration=max_iteration, is_degradation_calculated=calculate_degradation, max_degradation=max_degradation, min_degradation=min_degradation, non_neg_constraints=non_neg_constraints, verbose=verbose, bootstraps=bootstraps ) self.scsf = scsf def calculate_scsf_performance_index(self): if self.scsf is None: print('No SCSF model detected. Fitting now...') self.fit_statistical_clear_sky_model() clear = self.scsf.estimated_power_matrix clear_energy = np.sum(clear, axis=0) measured_energy = np.sum(self.filled_data_matrix, axis=0) pi = np.divide(measured_energy, clear_energy) return pi def plot_heatmap(self, matrix='raw', flag=None, figsize=(12, 6), scale_to_kw=True, year_lines=True, units=None): if matrix == 'raw': mat = np.copy(self.raw_data_matrix) elif matrix == 'filled': mat = np.copy(self.filled_data_matrix) elif matrix in self.extra_matrices.keys(): mat = self.extra_matrices[matrix] else: return if units is None: if scale_to_kw and self.power_units == 'W': mat /= 1000 units = 'kW' else: units = self.power_units if flag is None: return plot_2d(mat, figsize=figsize, dates=self.day_index, year_lines=year_lines, units=units) elif flag == 'good': fig = plot_2d(mat, figsize=figsize, clear_days=self.daily_flags.no_errors, dates=self.day_index, year_lines=year_lines, units=units) plt.title('Measured power, good days flagged') return fig elif flag == 'bad': fig = plot_2d(mat, figsize=figsize, clear_days=~self.daily_flags.no_errors, dates=self.day_index, year_lines=year_lines, units=units) plt.title('Measured power, bad days flagged') return fig elif flag in ['clear', 'sunny']: fig = plot_2d(mat, figsize=figsize, clear_days=self.daily_flags.clear, dates=self.day_index, year_lines=year_lines, units=units) plt.title('Measured power, clear days flagged') return fig elif flag == 'cloudy': fig = plot_2d(mat, figsize=figsize, clear_days=self.daily_flags.cloudy, dates=self.day_index, year_lines=year_lines, units=units) plt.title('Measured power, cloudy days flagged') return fig elif flag == 'clipping': fig = plot_2d(mat, figsize=figsize, clear_days=self.daily_flags.inverter_clipped, dates=self.day_index, year_lines=year_lines, units=units) plt.title('Measured power, days with inverter clipping flagged') return fig else: print('Unknown daily flag. Please use one of the following:') print('good, bad, sunny, cloudy, clipping') return def plot_daily_signals(self, boolean_index=None, start_day=0, num_days=5, filled=True, ravel=True, figsize=(12, 6), color=None, alpha=None, label=None, boolean_mask=None, mask_label=None, show_clear_model=True, show_legend=False, marker=None): if type(start_day) is not int: try: loc = self.day_index == start_day start_day = np.arange(self.num_days)[loc][0] except IndexError: print("Please use an integer or a date string for 'start_day'") return if boolean_index is None: boolean_index = np.s_[:] i = start_day j = start_day + num_days slct = np.s_[np.arange(self.num_days)[boolean_index][i:j]] if filled: plot_data = self.filled_data_matrix[:, slct] else: plot_data = self.raw_data_matrix[:, slct] if ravel: plot_data = plot_data.ravel(order='F') fig = plt.figure(figsize=figsize) kwargs = {} if color is not None: kwargs['color'] = color if alpha is not None: kwargs['alpha'] = alpha if marker is not None: kwargs['marker'] = marker if self.day_index is not None: start = self.day_index[start_day] freq = '{}min'.format(self.data_sampling) periods = len(plot_data) xs = pd.date_range(start=start, freq=freq, periods=periods) else: xs = np.arange(len(plot_data)) if label is None: label = 'measured power' plt.plot(xs, plot_data, linewidth=1, **kwargs, label=label) if boolean_mask is not None: if mask_label is None: mask_label = 'boolean mask' m, n = self.raw_data_matrix.shape index_shape = boolean_mask.shape cond1 = index_shape == (m, n) cond2 = index_shape == (n,) if cond1: plot_flags = boolean_mask[:, slct].ravel(order='F') elif cond2: temp_bool = np.tile(boolean_mask, (m, 1)) plot_flags = temp_bool[:, slct].ravel(order='F') plt.plot(xs[plot_flags], plot_data[plot_flags], ls='none', marker='.', color='red', label=mask_label) if show_clear_model and self.scsf is not None: plot_model = self.scsf.estimated_power_matrix[:, slct].ravel(order='F') plt.plot(xs, plot_model, color='orange', linewidth=1, label='clear sky model') if show_legend: plt.legend() return fig def plot_density_signal(self, flag=None, show_fit=False, figsize=(8, 6)): if self.daily_signals.density is None: return fig = plt.figure(figsize=figsize) try: xs = self.day_index.to_pydatetime() except AttributeError: xs = np.arange(len(self.daily_signals.density)) plt.plot(xs, self.daily_signals.density, linewidth=1) title = 'Daily signal density' if flag == 'density': plt.plot(xs[~self.daily_flags.density], self.daily_signals.density[~self.daily_flags.density], ls='none', marker='.', color='red') title += ', density outlier days flagged' if flag == 'good': plt.plot(xs[self.daily_flags.no_errors], self.daily_signals.density[self.daily_flags.no_errors], ls='none', marker='.', color='red') title += ', good days flagged' elif flag == 'bad': plt.plot(xs[~self.daily_flags.no_errors], self.daily_signals.density[~self.daily_flags.no_errors], ls='none', marker='.', color='red') title += ', bad days flagged' elif flag in ['clear', 'sunny']: plt.plot(xs[self.daily_flags.clear], self.daily_signals.density[self.daily_flags.clear], ls='none', marker='.', color='red') title += ', clear days flagged' elif flag == 'cloudy': plt.plot(xs[self.daily_flags.cloudy], self.daily_signals.density[self.daily_flags.cloudy], ls='none', marker='.', color='red') title += ', cloudy days flagged' if np.logical_and(show_fit, self.daily_signals.seasonal_density_fit is not None): plt.plot(xs, self.daily_signals.seasonal_density_fit, color='orange') plt.plot(xs, 0.6 * self.daily_signals.seasonal_density_fit, color='green', linewidth=1, ls='--') plt.plot(xs, 1.05 * self.daily_signals.seasonal_density_fit, color='green', linewidth=1, ls='--') plt.title(title) plt.gcf().autofmt_xdate() plt.ylabel('Fraction non-zero values') plt.xlabel('Date') return fig def plot_data_quality_scatter(self, figsize=(6,5)): fig = plt.figure(figsize=figsize) labels = self.daily_scores.quality_clustering for lb in set(labels): plt.scatter(self.daily_scores.density[labels == lb], self.daily_scores.linearity[labels == lb], marker='.', label=lb) plt.xlabel('density score') plt.ylabel('linearity score') plt.axhline(self.__linearity_threshold, linewidth=1, color='red', ls=':', label='decision boundary') plt.axvline(self.__density_upper_threshold, linewidth=1, color='red', ls=':') plt.axvline(self.__density_lower_threshold, linewidth=1, color='red', ls=':') plt.legend() return fig def plot_daily_energy(self, flag=None, figsize=(8, 6), units='Wh'): if self.filled_data_matrix is None: return fig = plt.figure(figsize=figsize) energy = np.copy(self.daily_signals.energy) if np.max(energy) > 1000: energy /= 1000 units = 'kWh' try: xs = self.day_index.to_pydatetime() except AttributeError: xs = np.arange(len(self.daily_signals.density)) plt.plot(xs, energy, linewidth=1) title = 'Daily energy production' if flag == 'good': plt.plot(xs[self.daily_flags.no_errors], energy[self.daily_flags.no_errors], ls='none', marker='.', color='red') title += ', good days flagged' elif flag == 'bad': plt.plot(xs[~self.daily_flags.no_errors], energy[~self.daily_flags.no_errors], ls='none', marker='.', color='red') title += ', bad days flagged' elif flag in ['clear', 'sunny']: plt.plot(xs[self.daily_flags.clear], energy[self.daily_flags.clear], ls='none', marker='.', color='red') title += ', clear days flagged' elif flag == 'cloudy': plt.plot(xs[self.daily_flags.cloudy], energy[self.daily_flags.cloudy], ls='none', marker='.', color='red') title += ', cloudy days flagged' plt.title(title) plt.gcf().autofmt_xdate() plt.xlabel('Date') plt.ylabel('Energy ({})'.format(units)) return fig def plot_clipping(self, figsize=(10, 8)): if self.daily_scores is None: return if self.daily_scores.clipping_1 is None: return fig, ax = plt.subplots(nrows=2, figsize=figsize, sharex=True) clip_stat_1 = self.daily_scores.clipping_1 clip_stat_2 = self.daily_scores.clipping_2 clipped_days = self.daily_flags.inverter_clipped try: xs = self.day_index.to_pydatetime() except AttributeError: xs = np.arange(len(self.daily_signals.density)) ax[0].plot(xs, clip_stat_1) ax[1].plot(xs, clip_stat_2) if self.inverter_clipping: ax[0].plot(xs[clipped_days], clip_stat_1[clipped_days], ls='none', marker='.', color='red', label='days with inverter clipping') ax[1].plot(xs[clipped_days], clip_stat_2[clipped_days], ls='none', marker='.', color='red') ax[0].legend() ax[0].set_title('Clipping Score 1: ratio of daily max to overal max') ax[1].set_title('Clipping Score 2: fraction of daily energy generated at daily max power') ax[1].set_xlabel('Date') plt.gcf().autofmt_xdate() return fig def plot_daily_max_pdf(self, figsize=(8, 6)): fig = self.__analyze_distribution(self.daily_scores.clipping_1, plot='pdf', figsize=figsize) plt.title('Distribution of normalized daily maximum values') plt.xlabel('Normalized daily max power') plt.ylabel('Count') plt.legend() return fig def plot_daily_max_cdf(self, figsize=(10, 6)): fig = self.__analyze_distribution(self.daily_scores.clipping_1, plot='cdf', figsize=figsize) plt.title('Cumulative density function of\nnormalized daily maximum values') plt.xlabel('Normalized daily max power') plt.ylabel('Cumulative occurance probability') plt.legend() ax = plt.gca() ax.set_aspect('equal') return fig def plot_daily_max_cdf_and_pdf(self, figsize=(10, 6)): fig = self.__analyze_distribution(self.daily_scores.clipping_1, plot='both', figsize=figsize) return fig def plot_cdf_analysis(self, figsize=(12, 6)): fig = self.__analyze_distribution(self.daily_scores.clipping_1, plot='diffs', figsize=figsize) return fig def plot_capacity_change_analysis(self, figsize=(8, 6), show_clusters=True): fig = self.capacity_clustering(plot=True, figsize=figsize, show_clusters=show_clusters) return fig def plot_time_shift_analysis_results(self, figsize=(8, 6)): if self.time_shift_analysis is not None: use_ixs = self.time_shift_analysis.use_ixs plt.figure(figsize=figsize) plt.plot(self.day_index, self.time_shift_analysis.metric, linewidth=1, alpha=0.6, label='daily solar noon') plt.plot(self.day_index[use_ixs], self.time_shift_analysis.metric[use_ixs], linewidth=1, alpha=0.6, color='orange', marker='.', ls='none', label='filtered days') plt.plot(self.day_index, self.time_shift_analysis.s1, color='green', label='shift detector') plt.plot(self.day_index, self.time_shift_analysis.s1 + self.time_shift_analysis.s2, color='red', label='signal model', ls='--') # plt.ylim(11, 13) plt.legend() fig = plt.gcf() return fig else: print('Please run pipeline first.') def plot_circ_dist(self, flag='good', num_bins=12*4, figsize=(8,8)): title = 'Calendar distribution of ' if flag == 'good': slct = self.daily_flags.no_errors title += 'good days' elif flag == 'bad': slct = ~self.daily_flags.no_errors title += 'bad days' elif flag in ['clear', 'sunny']: slct = self.daily_flags.clear title += 'clear days' elif flag == 'cloudy': slct = self.daily_flags.cloudy title += 'cloudy days' circ_data = (self.start_doy + np.arange(self.num_days)[slct]) % 365 \ * 2 * np.pi / 365 circ_hist = np.histogram(circ_data, bins=num_bins) fig = plt.figure(figsize=figsize) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True) start = (circ_hist[1][0] + circ_hist[1][1]) / 2 end = (circ_hist[1][-1] + circ_hist[1][-2]) / 2 theta = np.linspace(start, end, num_bins) radii = circ_hist[0] width = 2 * np.pi / num_bins bars = ax.bar(theta, radii, width=width, bottom=0.0, edgecolor='none') for r, bar in zip(radii, bars): bar.set_facecolor(cm.magma(r / np.max(circ_hist[0]))) bar.set_alpha(0.75) ax.set_theta_zero_location('N') ax.set_theta_direction(-1) ax.set_rorigin(-2.) ax.set_rlabel_position(0) ax.set_xticks(np.linspace(0, 2 * np.pi, 12, endpoint=False)) ax.set_xticklabels( ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] ) ax.set_title(title) # print(np.sum(circ_hist[0] <= 1)) return fig def __analyze_distribution(self, data, plot=None, figsize=(8, 6)): # Calculate empirical CDF x = np.sort(np.copy(data)) x = x[x > 0] x = np.concatenate([[0.], x, [1.]]) y = np.linspace(0, 1, len(x)) # Resample the CDF to get an even spacing of points along the x-axis f = interp1d(x, y) x_rs = np.linspace(0, 1, 5000) y_rs = f(x_rs) # Fit statistical model to resampled CDF that has sparse 2nd order difference y_hat = cvx.Variable(len(y_rs)) mu = cvx.Parameter(nonneg=True) mu.value = 1e1 error = cvx.sum_squares(y_rs - y_hat) reg = cvx.norm(cvx.diff(y_hat, k=2), p=1) objective = cvx.Minimize(error + mu * reg) constraints = [ y_rs[0] == y_hat[0], y[-1] == y_hat[-1] ] problem = cvx.Problem(objective, constraints) problem.solve(solver='MOSEK') # Look for outliers in the 2nd order difference to identify point masses from clipping local_curv = cvx.diff(y_hat, k=2).value ref_slope = cvx.diff(y_hat, k=1).value[:-1] threshold = -0.5 # metric = local_curv / ref_slope metric = np.min([ local_curv / ref_slope, np.concatenate([ (local_curv[:-1] + local_curv[1:]) / ref_slope[:-1], [local_curv[-1] / ref_slope[-1]] ]), np.concatenate([ (local_curv[:-2] + local_curv[1:-1] + local_curv[2:]) / ref_slope[:-2], [local_curv[-2:] / ref_slope[-2:]] ], axis=None) ], axis=0) point_masses = np.concatenate( [[False], np.logical_and(metric <= threshold, ref_slope > 3e-4), # looking for drops of more than 65% [False]]) # Catch if the PDF ends in a point mass at the high value if np.logical_or(cvx.diff(y_hat, k=1).value[-1] > 1e-3, np.allclose(cvx.diff(y_hat, k=1).value[-1], np.max(cvx.diff(y_hat, k=1).value))): point_masses[-2] = True # Reduce clusters of detected points to single points pm_reduce = np.zeros_like(point_masses, dtype=np.bool) for ix in range(len(point_masses) - 1): if ~point_masses[ix] and point_masses[ix + 1]: begin_cluster = ix + 1 elif point_masses[ix] and ~point_masses[ix + 1]: end_cluster = ix try: ix_select = np.argmax(metric[begin_cluster:end_cluster + 1]) except ValueError: pm_reduce[begin_cluster] = True else: pm_reduce[begin_cluster + ix_select] = True point_masses = pm_reduce point_mass_values = x_rs[point_masses] if plot is None: return point_mass_values elif plot == 'pdf': fig = plt.figure(figsize=figsize) plt.hist(data[data > 0], bins=100, alpha=0.5, label='histogram') scale = np.histogram(data[data > 0], bins=100)[0].max() \ / cvx.diff(y_hat, k=1).value.max() plt.plot(x_rs[:-1], scale * cvx.diff(y_hat, k=1).value, color='orange', linewidth=1, label='piecewise constant PDF estimate') for count, val in enumerate(point_mass_values): if count == 0: plt.axvline(val, linewidth=1, linestyle=':', color='green', label='detected point mass') else: plt.axvline(val, linewidth=1, linestyle=':', color='green') return fig elif plot == 'cdf': fig = plt.figure(figsize=figsize) plt.plot(x_rs, y_rs, linewidth=1, label='empirical CDF') plt.plot(x_rs, y_hat.value, linewidth=3, color='orange', alpha=0.57, label='estimated CDF') if len(point_mass_values) > 0: plt.scatter(x_rs[point_masses], y_rs[point_masses], color='red', marker='o', label='detected point mass') return fig elif plot == 'diffs': fig, ax = plt.subplots(nrows=2, sharex=True, figsize=figsize) y1 = cvx.diff(y_hat, k=1).value y2 = metric ax[0].plot(x_rs[:-1], y1) ax[1].plot(x_rs[1:-1], y2) ax[1].axhline(threshold, linewidth=1, color='r', ls=':', label='decision boundary') if len(point_mass_values) > 0: ax[0].scatter(x_rs[point_masses], y1[point_masses[1:]], color='red', marker='o', label='detected point mass') ax[1].scatter(x_rs[point_masses], y2[point_masses[1:-1]], color='red', marker='o', label='detected point mass') ax[0].set_title('1st order difference of CDF fit') ax[1].set_title('2nd order difference of CDF fit') ax[1].legend() plt.tight_layout() return fig elif plot == 'both': fig = plt.figure(figsize=figsize) gs = fig.add_gridspec(nrows=1, ncols=2, width_ratios=[2, 1]) ax1 = fig.add_subplot(gs[0, 0]) ax1.plot(y_rs, x_rs, linewidth=1, label='empirical CDF') ax1.plot(y_hat.value, x_rs, linewidth=3, color='orange', alpha=0.57, label='estimated CDF') if len(point_mass_values) > 0: ax1.scatter(y_rs[point_masses], x_rs[point_masses], color='red', marker='o', label='detected point mass') ax1.set_title( 'Cumulative density function of\nnormalized daily maximum values') ax1.set_ylabel('Normalized daily max power') ax1.set_xlabel('Cumulative occurance probability') ax1.legend() ax2 = fig.add_subplot(gs[0, 1]) ax2.hist(data[data > 0], bins=100, alpha=0.5, label='histogram', orientation='horizontal') scale = np.histogram(data[data > 0], bins=100)[0].max() \ / cvx.diff(y_hat, k=1).value.max() ax2.plot(scale * cvx.diff(y_hat, k=1).value, x_rs[:-1], color='orange', linewidth=1, label='piecewise constant fit') for count, val in enumerate(point_mass_values): if count == 0: plt.axhline(val, linewidth=1, linestyle=':', color='green', label='detected point mass') else: plt.axhline(val, linewidth=1, linestyle=':', color='green') ax2.set_title('Distribution of normalized\ndaily maximum values') # ax2.set_ylabel('Normalized daily max power') ax2.set_xlabel('Count') ax2.legend(loc=(.15, .02)) #-0.4 return fig class DailyScores(): def __init__(self): self.density = None self.linearity = None self.clipping_1 = None self.clipping_2 = None self.quality_clustering = None class DailyFlags(): def __init__(self): self.density = None self.linearity = None self.no_errors = None self.clear = None self.cloudy = None self.inverter_clipped = None self.capacity_cluster = None def flag_no_errors(self): self.no_errors = np.logical_and(self.density, self.linearity) def flag_clear_cloudy(self, clear_days): self.clear = np.logical_and(clear_days, self.no_errors) self.cloudy = np.logical_and(~self.clear, self.no_errors) class DailySignals(): def __init__(self): self.density = None self.seasonal_density_fit = None self.energy = None class BooleanMasks(): """ Boolean masks are used to identify time periods corresponding to elements in the data matrix. The masks have the same shape as the data matrix. The masks can be used to select data according to certain rules, generate the associated time stamp values, or perform other data maniuplation. See, for example: https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html """ def __init__(self): self.clear_times = None self.clipped_times = None self.daytime = None self.missing_values = None self.infill = None
the-stack_106_27141
# -*- coding: utf-8 from __future__ import unicode_literals, absolute_import import django DEBUG = True USE_TZ = True # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "ok!d=o_mv%g^s+!y65w32dtc2-mz#j-@kxk)hfm*)y5-)^l=q)" DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } } ROOT_URLCONF = "" INSTALLED_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sites", "awesome_django_timezones", ] SITE_ID = 1 if django.VERSION >= (1, 10): MIDDLEWARE = () else: MIDDLEWARE_CLASSES = ()
the-stack_106_27142
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, models, modules class Users(models.Model): _name = 'res.users' _inherit = ['res.users'] @api.model def systray_get_activities(self): """ Update the systray icon of res.partner activities to use the contact application one instead of base icon. """ activities = super(Users, self).systray_get_activities() for activity in activities: if activity['model'] != 'res.partner': continue activity['icon'] = modules.module.get_module_icon('contacts') return activities
the-stack_106_27143
import os import pickle osp = os.path import numpy as np import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions tfk = tf.keras from rlfd import memory, normalizer, policies from rlfd.agents import agent, sac, sac_networks class CQL(sac.SAC): """Default online training algorithm of CQL is SAC. """ def __init__( self, # environment configuration dims, max_u, eps_length, gamma, # training offline_batch_size, online_batch_size, online_sample_ratio, fix_T, # normalize norm_obs_online, norm_obs_offline, norm_eps, norm_clip, # networks layer_sizes, q_lr, pi_lr, action_l2, # sac specific auto_alpha, alpha, # cql specific cql_tau, auto_cql_alpha, cql_log_alpha, cql_alpha_lr, cql_weight_decay_factor, # double q soft_target_tau, target_update_freq, # online training plus offline data use_pretrained_actor, use_pretrained_critic, use_pretrained_alpha, online_data_strategy, # replay buffer buffer_size, info): agent.Agent.__init__(self, locals()) self.dims = dims self.dimo = self.dims["o"] self.dimu = self.dims["u"] self.max_u = max_u self.fix_T = fix_T self.eps_length = eps_length self.gamma = gamma self.offline_batch_size = offline_batch_size self.online_batch_size = online_batch_size self.online_sample_ratio = online_sample_ratio self.buffer_size = buffer_size self.auto_alpha = auto_alpha self.alpha = tf.constant(alpha, dtype=tf.float32) self.alpha_lr = 3e-4 self.auto_cql_alpha = auto_cql_alpha self.cql_log_alpha = tf.constant(cql_log_alpha, dtype=tf.float32) self.cql_alpha_lr = cql_alpha_lr self.cql_tau = cql_tau self.cql_weight = tf.Variable(1.0, dtype=tf.float32, trainable=False) self.cql_weight_decay_factor = cql_weight_decay_factor self.layer_sizes = layer_sizes self.q_lr = q_lr self.pi_lr = pi_lr self.action_l2 = action_l2 self.soft_target_tau = soft_target_tau self.target_update_freq = target_update_freq self.norm_obs_online = norm_obs_online self.norm_obs_offline = norm_obs_offline self.norm_eps = norm_eps self.norm_clip = norm_clip self.use_pretrained_actor = use_pretrained_actor self.use_pretrained_critic = use_pretrained_critic self.use_pretrained_alpha = use_pretrained_alpha self.online_data_strategy = online_data_strategy assert self.online_data_strategy in ["None", "BC", "Shaping"] self.info = info self._create_memory() self._create_model() self._initialize_training_steps() def _create_model(self): self._initialize_actor() self._initialize_critic() # For BC initialization self._bc_optimizer = tfk.optimizers.Adam(learning_rate=self.pi_lr) # Losses self._huber_loss = tfk.losses.Huber(delta=10.0, reduction=tfk.losses.Reduction.NONE) # Entropy regularizer if self.auto_alpha: self.log_alpha = tf.Variable(0., dtype=tf.float32) self.alpha = tf.Variable(0., dtype=tf.float32) self.alpha.assign(tf.exp(self.log_alpha)) self.target_alpha = -np.prod(self.dimu) self._alpha_optimizer = tfk.optimizers.Adam(learning_rate=self.alpha_lr) self.save_var({"alpha": self.alpha, "log_alpha": self.log_alpha}) if self.auto_cql_alpha: self.cql_log_alpha = tf.Variable(0.0, dtype=tf.float32) self._cql_alpha_optimizer = tfk.optimizers.Adam( learning_rate=self.cql_alpha_lr) # Generate policies def process_observation_expl(o): return self._actor_o_norm(o) self._expl_policy = policies.Policy( self.dimo, self.dimu, get_action=lambda o: self._actor([o], sample=True)[0], process_observation=process_observation_expl) def process_observation_eval(o): self._policy_inspect_graph(o) return self._actor_o_norm(o) self._eval_policy = policies.Policy( self.dimo, self.dimu, get_action=lambda o: self._actor([o], sample=False)[0], process_observation=process_observation_eval) def _cql_criticq_loss_graph(self, o, o_2, u, r, done, step): pi_2, logprob_pi_2 = self._actor([self._actor_o_norm(o_2)]) # Immediate reward target_q = r # Shaping reward if self.online_data_strategy == "Shaping": potential_curr = self.shaping.potential(o=o, u=u) potential_next = self.shaping.potential(o=o_2, u=pi_2) target_q += (1.0 - done) * self.gamma * potential_next - potential_curr # Q value from next state target_next_q1 = self._criticq1_target([self._critic_o_norm(o_2), pi_2]) target_next_q2 = self._criticq2_target([self._critic_o_norm(o_2), pi_2]) target_next_min_q = tf.minimum(target_next_q1, target_next_q2) target_q += ((1.0 - done) * self.gamma * (target_next_min_q - self.alpha * logprob_pi_2)) target_q = tf.stop_gradient(target_q) td_loss_q1 = self._huber_loss(target_q, self._criticq1([self._critic_o_norm(o), u])) td_loss_q2 = self._huber_loss(target_q, self._criticq2([self._critic_o_norm(o), u])) td_loss = td_loss_q1 + td_loss_q2 # Being Conservative (Eqn.4) critic_o = self._critic_o_norm(o) # second term max_term_q1 = self._criticq1([critic_o, u]) max_term_q2 = self._criticq2([critic_o, u]) # first term (uniform) num_samples = 10 tiled_critic_o = tf.tile(tf.expand_dims(critic_o, axis=1), [1, num_samples] + [1] * len(self.dimo)) uni_u_dist = tfd.Uniform(low=-self.max_u * tf.ones(self.dimu), high=self.max_u * tf.ones(self.dimu)) uni_u = uni_u_dist.sample((tf.shape(u)[0], num_samples)) logprob_uni_u = tf.reduce_sum(uni_u_dist.log_prob(uni_u), axis=list(range(2, 2 + len(self.dimu))), keepdims=True) uni_q1 = self._criticq1([tiled_critic_o, uni_u]) uni_q2 = self._criticq2([tiled_critic_o, uni_u]) uni_q1_logprob_uni_u = uni_q1 - logprob_uni_u uni_q2_logprob_uni_u = uni_q2 - logprob_uni_u # first term (policy) actor_o = self._actor_o_norm(o) tiled_actor_o = tf.tile(tf.expand_dims(actor_o, axis=1), [1, num_samples] + [1] * len(self.dimo)) pi, logprob_pi = self._actor([tiled_actor_o]) pi_q1 = self._criticq1([tiled_critic_o, pi]) pi_q2 = self._criticq2([tiled_critic_o, pi]) pi_q1_logprob_pi = pi_q1 - logprob_pi pi_q2_logprob_pi = pi_q2 - logprob_pi # Note: log(2N) not included in this case since it is constant. log_sum_exp_q1 = tf.math.reduce_logsumexp(tf.concat( (uni_q1_logprob_uni_u, pi_q1_logprob_pi), axis=1), axis=1) log_sum_exp_q2 = tf.math.reduce_logsumexp(tf.concat( (uni_q2_logprob_uni_u, pi_q2_logprob_pi), axis=1), axis=1) cql_loss_q1 = (tf.exp(self.cql_log_alpha) * (log_sum_exp_q1 - max_term_q1 - self.cql_tau)) cql_loss_q2 = (tf.exp(self.cql_log_alpha) * (log_sum_exp_q2 - max_term_q2 - self.cql_tau)) cql_loss = cql_loss_q1 + cql_loss_q2 criticq_loss = (tf.reduce_mean(td_loss) + self.cql_weight * tf.reduce_mean(cql_loss)) tf.summary.scalar(name='criticq_loss vs {}'.format(step.name), data=criticq_loss, step=step) return criticq_loss @tf.function def _train_offline_graph(self, o, o_2, u, r, done): # Train critic q criticq_trainable_weights = (self._criticq1.trainable_weights + self._criticq2.trainable_weights) with tf.GradientTape(watch_accessed_variables=False, persistent=True) as tape: tape.watch(criticq_trainable_weights) if self.auto_cql_alpha: tape.watch([self.cql_log_alpha]) with tf.name_scope('OfflineLosses/'): criticq_loss = self._cql_criticq_loss_graph(o, o_2, u, r, done, self.offline_training_step) cql_alpha_loss = -criticq_loss criticq_grads = tape.gradient(criticq_loss, criticq_trainable_weights) self._criticq_optimizer.apply_gradients( zip(criticq_grads, criticq_trainable_weights)) if self.auto_cql_alpha: cql_alpha_grads = tape.gradient(cql_alpha_loss, [self.cql_log_alpha]) self._cql_alpha_optimizer.apply_gradients( zip(cql_alpha_grads, [self.cql_log_alpha])) # clip for numerical stability self.cql_log_alpha.assign(tf.clip_by_value(self.cql_log_alpha, -20., 40.)) with tf.name_scope('OfflineLosses/'): tf.summary.scalar(name='cql alpha vs {}'.format( self.offline_training_step.name), data=self.cql_log_alpha, step=self.offline_training_step) # Train actor actor_trainable_weights = self._actor.trainable_weights with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(actor_trainable_weights) with tf.name_scope('OfflineLosses/'): actor_loss = self._sac_actor_loss_graph(o, u, self.offline_training_step) actor_grads = tape.gradient(actor_loss, actor_trainable_weights) self._actor_optimizer.apply_gradients( zip(actor_grads, actor_trainable_weights)) # Train alpha (entropy weight) if self.auto_alpha: with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(self.log_alpha) with tf.name_scope('OfflineLosses/'): alpha_loss = self._alpha_loss_graph(o, self.offline_training_step) alpha_grad = tape.gradient(alpha_loss, [self.log_alpha]) self._alpha_optimizer.apply_gradients(zip(alpha_grad, [self.log_alpha])) self.alpha.assign(tf.exp(self.log_alpha)) self.offline_training_step.assign_add(1) def train_offline(self): with tf.summary.record_if(lambda: self.offline_training_step % 1000 == 0): batch = self.offline_buffer.sample(self.offline_batch_size) o_tf = tf.convert_to_tensor(batch["o"], dtype=tf.float32) o_2_tf = tf.convert_to_tensor(batch["o_2"], dtype=tf.float32) u_tf = tf.convert_to_tensor(batch["u"], dtype=tf.float32) r_tf = tf.convert_to_tensor(batch["r"], dtype=tf.float32) done_tf = tf.convert_to_tensor(batch["done"], dtype=tf.float32) self._train_offline_graph(o_tf, o_2_tf, u_tf, r_tf, done_tf) if self.offline_training_step % self.target_update_freq == 0: self._copy_weights(self._criticq1, self._criticq1_target) self._copy_weights(self._criticq2, self._criticq2_target)
the-stack_106_27145
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from monai.data import list_data_collate, worker_init_fn class DataLoader(torch.utils.data.DataLoader): """Generates images/labels for train/validation/testing from dataset. It inherits from PyTorch DataLoader and adds callbacks for `collate` and `worker_fn`. Args: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per batch to load (default: ``1``). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). sampler (Sampler, optional): defines the strategy to draw samples from the dataset. If specified, :attr:`shuffle` must be ``False``. batch_sampler (Sampler, optional): like :attr:`sampler`, but returns a batch of indices at a time. Mutually exclusive with :attr:`batch_size`, :attr:`shuffle`, :attr:`sampler`, and :attr:`drop_last`. num_workers (int, optional): how many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process. (default: ``0``) pin_memory (bool, optional): If ``True``, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, see the example below. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: ``False``) timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: ``0``) multiprocessing_context (callable, optional): specify a valid start method for multi-processing. """ def __init__( self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, pin_memory=False, drop_last=False, timeout=0, multiprocessing_context=None, ): super().__init__( dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=list_data_collate, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, multiprocessing_context=multiprocessing_context, )
the-stack_106_27146
from exetera.core.utils import Timer from exetera.core import fields as fld def merge_daily_assessments_v1(s, src_group, dest_group, overrides=None): """ Organize the assessment dataset to group record of patients in each day. :param s: The Exetera session instance. :param src_group: The source dataframe that contains the dataset. :param dest_group: The destination dataframe to write the result to. :param overrides: The group function to apply to different columns, e.g. latest datetime for 'updated_at' column, or concat for text columns. """ print("generate daily assessments") patient_ids_ = s.get(src_group['patient_id']).data[:] created_at_days_ = s.get(src_group['created_at_day']).data[:] with Timer("calculating spans", new_line=True): patient_id_index_spans = s.get_spans(fields=(patient_ids_, created_at_days_)) with Timer("applying spans", new_line=True): if overrides is None: overrides = { 'id': s.apply_spans_last, 'patient_id': s.apply_spans_last, 'patient_index': s.apply_spans_last, 'created_at': s.apply_spans_last, 'created_at_day': s.apply_spans_last, 'updated_at': s.apply_spans_last, 'updated_at_day': s.apply_spans_last, 'version': s.apply_spans_max, 'country_code': s.apply_spans_first, 'date_test_occurred': None, 'date_test_occurred_guess': None, 'date_test_occurred_day': None, 'date_test_occurred_set': None, } for k in src_group.keys(): with Timer("merging '{}'".format(k), new_line=True): reader = s.get(src_group[k]) if k in overrides: fn = overrides[k] else: if isinstance(reader, fld.CategoricalField): fn = s.apply_spans_max elif isinstance(reader, fld.IndexedStringField): fn = s.apply_spans_concat elif isinstance(reader, fld.NumericField): fn = s.apply_spans_max else: fn = None if fn is None: print(" Skipping field '{k'}") else: with Timer(" Merging field '{k}"): fn(patient_id_index_spans, reader, reader.create_like(dest_group, k))
the-stack_106_27148
#!/usr/bin/env python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example creates an OAuth 2.0 refresh token for the Google Ads API. This illustrates how to step through the OAuth 2.0 native / installed application flow. It is intended to be run from the command line and requires user input. """ import argparse from google_auth_oauthlib.flow import InstalledAppFlow SCOPE = "https://www.googleapis.com/auth/adwords" def main(client_secrets_path, scopes): flow = InstalledAppFlow.from_client_secrets_file( client_secrets_path, scopes=scopes ) flow.run_console() print("Access token: %s" % flow.credentials.token) print("Refresh token: %s" % flow.credentials.refresh_token) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generates OAuth 2.0 credentials with the specified " "client secrets file." ) # The following argument(s) should be provided to run the example. parser.add_argument( "--client_secrets_path", required=True, help=( "Path to the client secrets JSON file from the " "Google Developers Console that contains your " "client ID and client secret." ), ) parser.add_argument( "--additional_scopes", default=None, help=( "Additional scopes to apply when generating the " "refresh token. Each scope should be separated " "by a comma." ), ) args = parser.parse_args() configured_scopes = [SCOPE] if args.additional_scopes: configured_scopes.extend( args.additional_scopes.replace(" ", "").split(",") ) main(args.client_secrets_path, configured_scopes)
the-stack_106_27152
""" Problem 46: https://projecteuler.net/problem=46 It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 2 × 12 15 = 7 + 2 × 22 21 = 3 + 2 × 32 25 = 7 + 2 × 32 27 = 19 + 2 × 22 33 = 31 + 2 × 12 It turns out that the conjecture was false. What is the smallest odd composite that cannot be written as the sum of a prime and twice a square? """ from __future__ import annotations seive = [True] * 100001 i = 2 while i * i <= 100000: if seive[i]: for j in range(i * i, 100001, i): seive[j] = False i += 1 def is_prime(n: int) -> bool: """ Returns True if n is prime, False otherwise, for 2 <= n <= 100000 >>> is_prime(87) False >>> is_prime(23) True >>> is_prime(25363) False """ return seive[n] odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)] def compute_nums(n: int) -> list[int]: """ Returns a list of first n odd composite numbers which do not follow the conjecture. >>> compute_nums(1) [5777] >>> compute_nums(2) [5777, 5993] >>> compute_nums(0) Traceback (most recent call last): ... ValueError: n must be >= 0 >>> compute_nums("a") Traceback (most recent call last): ... ValueError: n must be an integer >>> compute_nums(1.1) Traceback (most recent call last): ... ValueError: n must be an integer """ if not isinstance(n, int): raise ValueError("n must be an integer") if n <= 0: raise ValueError("n must be >= 0") list_nums = [] for num in range(len(odd_composites)): i = 0 while 2 * i * i <= odd_composites[num]: rem = odd_composites[num] - 2 * i * i if is_prime(rem): break i += 1 else: list_nums.append(odd_composites[num]) if len(list_nums) == n: return list_nums return [] def solution() -> int: """Return the solution to the problem""" return compute_nums(1)[0] if __name__ == "__main__": print(f"{solution() = }")
the-stack_106_27153
from rest_framework import viewsets, permissions, status from rest_framework.decorators import action from rest_framework.response import Response from longclaw.contrib.productrequests.serializers import ProductRequestSerializer from longclaw.contrib.productrequests.models import ProductRequest from longclaw.utils import ProductVariant, maybe_get_product_model class ProductRequestViewSet(viewsets.ModelViewSet): """create/list/get product requests """ serializer_class = ProductRequestSerializer permission_classes = (permissions.AllowAny,) queryset = ProductRequest.objects.all() def create(self, request): """Create a new product request """ variant_id = request.data.get("variant_id", None) if variant_id is not None: variant = ProductVariant.objects.get(id=variant_id) product_request = ProductRequest(variant=variant) product_request.save() serializer = self.serializer_class(product_request) response = Response(data=serializer.data, status=status.HTTP_201_CREATED) else: response = Response( {"message": "Missing 'variant_id'"}, status=status.HTTP_400_BAD_REQUEST) return response @action(detail=False, methods=['get']) def requests_for_variant(self, request, variant_id=None): """Get all the requests for a single variant """ requests = ProductRequest.objects.filter(variant__id=variant_id) serializer = self.serializer_class(requests, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK)
the-stack_106_27154
""" Astra-Viso star camera module. """ from __future__ import division import numpy as np from astraviso import worldobject from astraviso import starmap from astraviso import imageutils from astraviso import projectionutils class StarCam(worldobject.WorldObject): """ Star camera class. """ def __init__(self): """ StarCam initialization. Parameters ---------- None Returns ------- starcam : StarCam Default StarCam object. """ # Internal settings self.__settings = {} self.__settings["resolution"] = 1024 self.__settings["max_angle_step"] = 1e-4 self.__settings["integration_steps"] = 1000 # Set psf size self.setpsf(7, 1) # To be removed... # Internal function variables self.sensitivity_fcn = None self.projection_fcn = None self.quantum_efficiency_fcn = None self.noise_fcn = None self.saturation_fcn = None # Set star catalog defaults self.star_catalog = starmap.StarMap() self.star_catalog.load_preset("random", 10000) # Set sensor pointing default worldobject.WorldObject.__init__(self) self.set_pointing_preset("kinematic", initial_quaternion=np.array([0, 0, 0, 1]), \ initial_angular_rate=np.array([0, 0, 0])) # Set position model default self.set_position_preset("kinematic", initial_position=np.array([0, 0, 0]), \ initial_velocity=np.array([0, 0, 0])) # Projection model defaults self.set_projection_preset("pinhole", focal_len=93, pixel_size=0.016, resolution=1024) # Set CCD defaults self.set_saturation_preset("no_bleed", bit_depth=16) self.set_quantum_efficiency_preset("constant", quantum_efficiency=0.22) self.set_noise_preset("poisson", dark_current=1200, read_noise=200) self.set_sensitivity_preset("default", aperture=1087, mv0_flux=19000) # External objects self.external_objects = [] def setpsf(self, size, sigma): """ Set PSF to Gaussian kernel. In the future should have a separate function to handle explicit PSF definitions. """ # Enforce odd dimensions if size % 2 == 0: size = size + 1 # Allocate variables halfwidth = (size-1)/2 kernel = np.zeros((size, size)) # Create kernel for row in range(size): for col in range(size): kernel[row, col] = np.exp(-0.5 * ((row-halfwidth)**2 + \ (col-halfwidth)**2) / sigma**2) # Normalize and return self.psf = kernel / np.sum(kernel) def add_worldobject(self, obj=None): """ Add new or existing WorldObject to the external object catalog. Parameters ---------- obj : WorldObject, optional An existing WorldObject instance. If obj is not defined, a new WorldObject instance will be created. Returns ------- None Notes ----- The user can manage elements in the external object catalog directly through the external_objects property of the StarCam class. Examples -------- >>> cam = StarCam() >>> obj1 = WorldObject() >>> cam.add_worldobject(obj1) >>> cam.external_objects [<astraviso.worldobject.WorldObject object at 0x000001A4C8AA6438>] >>> cam.external_objects[0].set_pointing_preset("kinematic", \ np.array([0,0,0,1,0,0,0])) """ # Append input WorldObject if isinstance(obj, worldobject.WorldObject): self.external_objects.append(obj) # Append new WorldObject elif obj is None: self.external_objects.append(worldobject.WorldObject()) # Handle invalid input else: raise ValueError("Input must either be an existing WorldObject or None.") def delete_worldobject(self, index): """ Clear a WorldObject from the external object catalog. Parameters ---------- index : int Index of the WorldObject catalog element to remove. Returns ------- None Notes ----- The user can manage elements in the external object catalog directly through the external_objects property of the StarCam class. Examples -------- >>> cam = StarCam() >>> obj1 = WorldObject() >>> cam.add_worldobject(obj1) >>> cam.external_objects [<astraviso.worldobject.WorldObject object at 0x000001A4C8AA6438>] >>> cam.delete_worldobject(0) >>> cam.external_objects [] """ # Delete object del self.external_objects[index] def integrate(self, time, delta_t): """ Compute CCD pixel values after set exposure time. Parameters ---------- time : float Time to begin exposure. Measured in seconds from epoch. delta_t : float Desired exposure time. Measured in seconds. Returns ------- img : ndarray Resulting CCD array values. Each element contains a photon count. Examples -------- >>> cam = StarCam() >>> cam.integrate(1) array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.]]) """ # Determine step size # Temporary solution... steps = self.__settings["integration_steps"] step_size = delta_t / steps angle = 0 # Extract subset of stars from catalog # Also a temporary solution... field_of_view = 45 boresight = np.dot([0, 0, 1], self.get_pointing(time, mode="dcm").T) stars = self.star_catalog.get_region(boresight, np.rad2deg(angle)+field_of_view/2) # Extract and scale magnitudes mag = self.get_photons(stars["magnitude"], delta_t) / steps # Allocate image img = np.zeros((self.__settings["resolution"], self.__settings["resolution"])) # Integrate star signals for step in range(steps): # Apply sensor rotation dcm = self.get_pointing(time+step_size*step, mode="dcm") vis = np.dot(stars["catalog"], dcm) # Project stars img_x, img_y = self.get_projection(vis) # Shift y-axis origin to upper left corner img_y = self.__settings["resolution"] - img_y - 1 # Check for stars in image bounds in_img = [idx for idx in range(len(img_x)) if (img_x[idx] > 0 and img_x[idx] < self.__settings["resolution"]-1 and img_y[idx] > 0 and img_y[idx] < self.__settings["resolution"]-1)] # Create image # *** This will eventually be replaced by self.psf_fcn for idx in in_img: xidx = img_x[idx] - np.floor(img_x[idx]) yidx = img_y[idx] - np.floor(img_y[idx]) img[int(np.ceil(img_y[idx])), int(np.ceil(img_x[idx]))] += mag[idx]*xidx*yidx img[int(np.floor(img_y[idx])), int(np.ceil(img_x[idx]))] += mag[idx]*xidx*(1-yidx) img[int(np.ceil(img_y[idx])), int(np.floor(img_x[idx]))] += mag[idx]*(1-xidx)*yidx img[int(np.floor(img_y[idx])), int(np.floor(img_x[idx]))] += \ mag[idx]*(1-xidx)*(1-yidx) # Integrate external object signals for object in self.external_objects: for step in range(steps): # Compute current time current_time = time + step_size*step # Compute relative position in camera frame vis = object.in_frame_of(self, current_time) # If object is colocated with camera, skip iteration if np.isclose(vis[2], 0): continue # Project object img_x, img_y = self.get_projection(vis) # Shift y-axis origin to upper left corner img_y = self.__settings["resolution"] - img_y - 1 # If object is in image frame, add to image if img_x > 0 and img_y > 0 and img_x < self.__settings["resolution"]-1 \ and img_y < self.__settings["resolution"]-1: # Get photon count mag = self.get_photons(object.get_vismag(current_time, \ self.get_position(current_time)), step_size) # Add to image xidx = img_x - np.floor(img_x) yidx = img_y - np.floor(img_y) img[int(np.ceil(img_y)), int(np.ceil(img_x))] += mag*xidx*yidx img[int(np.floor(img_y)), int(np.ceil(img_x))] += mag*xidx*(1-yidx) img[int(np.ceil(img_y)), int(np.floor(img_x))] += mag*(1-xidx)*yidx img[int(np.floor(img_y)), int(np.floor(img_x))] += mag*(1-xidx)*(1-yidx) # Return result return img def snap(self, time, delta_t): """ Create finished image with specified exposure time. Parameters ---------- time : float Time to begin exposure. Measured in seconds from epoch. delta_t : float Desired exposure time. Measured in seconds. Returns ------- image : ndarray Resulting image array. Each pixel contains an integer value. Examples -------- >>> cam = StarCam() >>> cam.snap(1) array([[1427, 1408, 1429, ..., 1381, 1414, 1404], [1418, 1370, 1400, ..., 1389, 1395, 1445], [1390, 1445, 1323, ..., 1369, 1408, 1417], ..., [1372, 1469, 1393, ..., 1356, 1468, 1412], [1324, 1437, 1496, ..., 1419, 1399, 1360], [1412, 1450, 1371, ..., 1376, 1367, 1421]]) """ # Integrate photons image = self.integrate(time, delta_t) # Defocus image image = imageutils.conv2(image, self.psf) # Convert to photoelectrons image = self.get_photoelectrons(image) # Add noise image = self.add_noise(image, delta_t) # Saturate image = self.get_saturation(image) # Return return image def set_noise_fcn(self, fcn): """ Set internal noise function. Parameters ---------- fcn : function Input noise function. Output image must be the same size as input. See notes for details about the required function format. Returns ------- None See Also -------- StarCam.set_noise_preset, StarCam.add_noise Notes ----- Function must be of the form noisy_image = f(image, delta_t). Below are two valid function definition templates. def user_fcn(image, delta_t): ... return noisy_image user_fcn = lambda image, delta_t: ... Examples -------- >>> cam = StarCam() >>> fcn = lambda image, delta_t: image+np.random.rand(*image.shape) >>> cam.set_noise_fcn(fcn) """ # Validate input if not callable(fcn): raise ValueError("Must provide callable function.") if fcn(np.zeros(16), 0).shape != (16,): raise ValueError("Function output must be the same size as input.") # Set function self.noise_fcn = fcn def set_noise_preset(self, preset, **kwargs): """ Choose preset noise model & assign noise values. Current options are: "poisson" -- Poisson-distributed noise. "gaussian" -- Gaussian approximation to poisson noise. "off" -- Turn image noise off. Parameters ---------- preset : str Name of chosen preset. dark_current : float, optional Sensor dark current noise level. Measured in photoelectrons per second. Required for "gaussian" and "poisson" presets. read_noise : float, optional Sensor read noise. Measured in photoelectrons. Required for "gaussian" and "poisson" presets. Returns ------- None See Also -------- StarCam.set_noise_fcn, StarCam.add_noise Notes ----- The default noise for the StarCam object is poisson noise with dark_current=1200 and read_noise=200. Examples -------- >>> cam = StarCam() >>> cam.set_noise_preset("poisson", dark_current=1200, read_noise=200) """ # Poisson model if preset.lower() == "poisson": # Check input if "dark_current" not in kwargs or "read_noise" not in kwargs: raise ValueError("Must provide the following keyword arguments for poisson- \ type noise: 'dark_current', 'read_noise'") # Set function noise_fcn = lambda image, delta_t: imageutils.poisson_noise(image, delta_t, \ kwargs["dark_current"], kwargs["read_noise"]) self.set_noise_fcn(noise_fcn) # Gaussian model elif preset.lower() == "gaussian": if "dark_current" not in kwargs or "read_noise" not in kwargs: raise ValueError("Must provide the following keyword arguments for poisson- \ type noise: 'dark_current', 'read_noise'") # Set function noise_fcn = lambda image, delta_t: imageutils.gaussian_noise(image, delta_t, \ kwargs["dark_current"], kwargs["read_noise"]) self.set_noise_fcn(noise_fcn) elif preset.lower() == "off": # Set function self.set_noise_fcn(lambda image, delta_t: image) # Invalid input else: raise NotImplementedError("Invalid noise preset. Available options are: poisson, \ gaussian.") def add_noise(self, image, delta_t): """ Add noise to image using internal noise model. Parameters ---------- image : ndarray Input image array. All values should be measured in photoelectrons. delta_t : float Exposure time in seconds. Returns ------- None See Also -------- StarCam.set_noise_fcn, StarCam.set_noise_preset Examples -------- >>> cam = StarCam() >>> cam.set_noise_preset("poisson", dark_current=1200, read_noise=200) >>> cam.add_noise(np.zeros((4,4)), 1) array([[1398, 1459, 1369, 1466], [1375, 1302, 1416, 1465], [1370, 1434, 1375, 1463], [1491, 1400, 1384, 1381]]) """ # Check if noise function is set return self.noise_fcn(image, delta_t) def set_sensitivity_fcn(self, fcn): """ Set internal conversion between visible magnitudes and photon counts. Parameters ---------- fcn : function Input photon function. Output must be the same size as input. See notes for details about the required function format. Returns ------- None See Also -------- StarCam.set_sensitivity_preset, StarCam.get_photons Notes ----- Function must be of the form photon_count = f(magnitude, delta_t). Below are two valid function definition templates. def user_fcn(magnitude, delta_t): ... return photon_count user_fcn = lambda magnitude, delta_t: ... Examples -------- >>> cam = StarCam() >>> fcn = lambda vismags, delta_t: 100*vismags >>> cam.set_sensitivity_fcn(fcn) """ # Check for valid input if not callable(fcn): raise ValueError("Must provide callable function.") # Check that input function supports multiple inputs if len(fcn([1, 2], 1)) != 2: raise ValueError("Input function must support multiple inputs and return an equivalent \ number of values.") # Set function self.sensitivity_fcn = fcn def set_sensitivity_preset(self, preset, **kwargs): """ Choose preset sensitivity model & assign values. This model defines the internal conversion between visible magnitudes and photon counts Current options are: "default" -- A log-scale magnitude to photon conversion. Parameters ---------- preset : str Name of chosen preset. aperture : float, optional Aperture area in mm^2. Required for "default" preset. mv0_flux : float, optional Photoelectrons per second per mm^2 of aperture area. Required for "default" preset. Returns ------- None See Also -------- StarCam.set_sensitivity_fcn, StarCam.get_photons, imageutils.vismag2photon Notes ----- The default values for the StarCam object are 1087 mm^2 aperture area and 19,000 photons per mm^2 of aperture area per second. Examples -------- >>> cam = StarCam() >>> cam.set_sensitivity_preset("default", aperture=1087, mv0_flux=19000) """ # Set default option if preset.lower() == "default": # Check input if "aperture" not in kwargs or "mv0_flux" not in kwargs: raise ValueError("Must provide the following keyword arguments for this preset: \ 'aperture', 'mv0_flux'") # Build function & set sensitivity_fcn = lambda vismags, delta_t: imageutils.vismag2photon(vismags, delta_t, \ kwargs["aperture"], kwargs["mv0_flux"]) self.set_sensitivity_fcn(sensitivity_fcn) # Handle invalid option else: raise NotImplementedError("Invalid preset option.") def get_photons(self, magnitudes, delta_t): """ Convert array of visible magnitudes to photoelectron counts using the internally-defined sensitivity model. Parameters ---------- magnitudes : ndarray Array of visible magnitudes to be converted. delta_t : float Sensor exposure time in seconds. Returns ------- photon_count : ndarray Total photon count for each input visible magnitude. See Also -------- StarCam.set_sensitivity_fcn, StarCam.set_sensitivity_preset Examples -------- >>> cam = StarCam() >>> cam.set_sensitivity_preset("default", aperture=1087, mv0_flux=19000) >>> cam.get_photons(7, 0.1) 3383.7875200000003 """ # Compute photon count return self.sensitivity_fcn(magnitudes, delta_t) def set_projection_fcn(self, fcn, resolution): """ Set internal projection model for incoming photons. Parameters ---------- fcn : function Input projection function. Output must be the same size as input. See notes for details about the required function format. resolution : int Resolution of the sensor. Returns ------- None See Also -------- StarCam.set_projection_preset, StarCam.get_projection Notes ----- Function must be of the form img_x, img_y = f(vectors) where vectors is an Nx3 array of unit vectors describing visible objects. Function must return image-plane (x,y) coordinate in two separate vectors. Below is a valid function definition templates. def user_fcn(vectors): ... return img_x, img_y Examples -------- >>> cam = StarCam() >>> def proj_fcn(vectors): ... img_x = np.divide(vectors[:, 0], vectors[:, 2]) ... img_y = np.divide(vectors[:, 1], vectors[:, 2]) ... return img_x, img_y ... >>> cam.set_projection_fcn(proj_fcn, resolution=1024) >>> cam.projection_fcn(np.array([[0, 0, 1]])) (array([ 0.]), array([ 0.])) """ # Check for valid resolution if resolution <= 0 or not isinstance(resolution, int): raise ValueError("Resolution must be integer-valued and positive.") # Check for valid function if not callable(fcn): raise ValueError("Must provide callable function.") # Set function self.__settings["resolution"] = resolution self.projection_fcn = fcn def set_projection_preset(self, preset, **kwargs): """ Choose preset projection model & assign values. Current options are: "pinhole" -- Pinhole projection model. Parameters ---------- preset : str Name of chosen preset. focal_len : float, optional Focal length of the sensor in mm. Required as keyword argument for "pinhole" preset. pixel_size : float, optional Physical pixel size in mm. Pixels are assume square. Required as keyword argument for "pinhole" preset. resolution : int, optional Resolution of the sensor. Default is a square 1024x1024 image. Returns ------- None See Also -------- StarCam.set_projection_fcn, StarCam.get_projection, Notes ----- The default setting for the StarCam object is the "pinhole" model with a focal length of 93 mm, 0.016 mm pixels, and a resolution of 512x512. Examples -------- >>> cam = StarCam() >>> cam.set_projection_preset("pinhole", focal_len=93, pixel_size=0.016) >>> cam.projection_fcn(np.array([[0, 0, 1]])) (array([ 512.5]), array([ 512.5])) """ # Set default resolution if "resolution" not in kwargs: kwargs["resolution"] = 1024 # Handle pinhole option if preset.lower() == "pinhole": # Check input if "focal_len" not in kwargs or "pixel_size" not in kwargs: raise ValueError("Must provide the following keyword arguments for this preset: \ 'focal_len', 'pixel_size'") # Build function & set proj_fcn = lambda vectors: projectionutils.pinhole_project(vectors, \ kwargs["focal_len"], kwargs["pixel_size"], kwargs["resolution"]) self.set_projection_fcn(proj_fcn, kwargs["resolution"]) # Handle invalid option else: raise NotImplementedError("Invalid preset option.") def get_projection(self, vectors): """ Get projected image-plane coordinates for an input vector using the internal projection model. Parameters ---------- vectors : ndarray Body vectors to be projected into the image plane. Array should be Nx3 where N is the number of vectors. Returns ------- img_x : ndarray Array of x-coordinates (N elements). img_y : ndarray Array of y-coordinates (N elements). See Also -------- StarCam.set_projection_fcn, StarCam.set_projection_preset Examples -------- >>> cam = StarCam() >>> cam.set_projection_preset("pinhole", focal_len=93, pixel_size=0.016) >>> cam.get_projection(np.array([[0, 0, 1]])) (array([ 512.5]), array([ 512.5])) """ # Compute projection return self.projection_fcn(vectors) def set_quantum_efficiency_fcn(self, fcn): """ Set function to simulate CCD quantum efficiency. Parameters ---------- fcn : function Input quantum efficiency function. Function should convert from a continous photon count to a discrete photoelectron count. See notes for details about the required function format. Returns ------- None See Also -------- StarCam.set_quantum_efficiency_preset, StarCam.get_photoelectrons Notes ----- Function must be of the form photoelectron_count = f(image). Below are two valid function definition templates. def user_fcn(image): ... return photoelectron_count user_fcn = lambda image: ... Examples -------- >>> cam = StarCam() >>> fcn = lambda image: np.floor(image * 0.22) >>> cam.set_quantum_efficiency_fcn(fcn) """ # Check function validity if not callable(fcn): raise ValueError("Must provide callable function.") if fcn(np.zeros((16, 32))).shape != (16, 32): raise ValueError("Saturation function output size must be equal to input.") # Set function self.quantum_efficiency_fcn = fcn def set_quantum_efficiency_preset(self, preset, **kwargs): """ Choose preset quantum efficiency model & assign values. Current options are: "constant" -- Equal quantum efficiency for every pixel. "gaussian" -- Gaussian-distributed quantum efficiency values for each pixel. Parameters ---------- preset : str Name of chosen preset. quantum_efficiency : float, optional Relationship between photons and photoelectrons. Measured as the number of photoelectrons per photon. Required for "constant" preset. sigma : float, optional Desired standard deviation of random values. Required for "gaussian" preset. seed : float, optional Random number generator seed. Optional for "gaussian" preset. Returns ------- None See Also -------- StarCam.set_quantum_efficiency_fcn, StarCam.get_photoelectrons Notes ----- The StarCam object uses the 'constant' preset by default with a quantum efficiency parameter of 0.22. Examples -------- >>> cam = StarCam() >>> cam.set_quantum_efficiency_preset("constant", 0.22) """ # Set default option if preset.lower() == "constant": # Check input if "quantum_efficiency" not in kwargs: raise ValueError("Must provide the following keyword arguments for this preset: \ 'quantum_efficiency'") # Build function & set qe_fcn = lambda image: imageutils.apply_constant_quantum_efficiency(image, \ kwargs["quantum_efficiency"]) self.set_quantum_efficiency_fcn(qe_fcn) # Set gaussian option elif preset.lower() == "gaussian": # Check input if "quantum_efficiency" not in kwargs or "sigma" not in kwargs: raise ValueError("Must provide the following keyword arguments for this preset: \ 'quantum_efficiency', 'sigma'") # Set seed, if necessary if "seed" not in kwargs: kwargs["seed"] = np.random.rand() # Build function & set qe_fcn = lambda image: imageutils.apply_gaussian_quantum_efficiency(image, \ kwargs["quantum_efficiency"], kwargs["sigma"], kwargs["seed"]) self.set_quantum_efficiency_fcn(qe_fcn) # Handle invalid option else: raise NotImplementedError("Invalid preset option.") def get_photoelectrons(self, photon_image): """ Get photoelectron count from photon count with internal quantum efficiency model. Parameters ---------- photon_image : ndarray Input image where each pixel contains a total photon count. Returns ------- photoelectron_image : ndarray Scaled, discrete-valued image where each pixel contains a photo- electron count. See Also -------- StarCam.set_quantum_efficiency_fcn, StarCam.set_quantum_efficiency_preset Examples -------- >>> cam = StarCam() >>> cam.set_quantum_efficiency_preset("constant", quantum_efficiency=0.2) >>> cam.get_saturation(5*np.ones((4,4))) array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]]) """ # Compute photoelectron count return self.quantum_efficiency_fcn(photon_image) def set_saturation_fcn(self, fcn): """ Set function to simulate sensor-level saturation thresholding. Parameters ---------- fcn : function Input saturation function. Must be of the form f(image). Output must be the same size as input. Returns ------- None See Also -------- StarCam.set_saturation_preset, StarCam.get_saturation Notes ----- Function must be of the form saturated_image = f(image). Below are two valid function definition templates. def user_fcn(image): ... return saturated_image user_fcn = lambda image: ... Examples -------- >>> cam = StarCam() >>> fcn = lambda image: np.floor(image) >>> cam.set_saturation_fcn(fcn) """ # Check function validity if not callable(fcn): raise ValueError("Must provide callable function.") if fcn(np.zeros((16, 32))).shape != (16, 32): raise ValueError("Saturation function output size must be equal to input.") # Set function self.saturation_fcn = fcn def set_saturation_preset(self, preset, **kwargs): """ Choose preset pixel saturation model & assign values. Current options are: "no_bleed" -- Saturation with no cross-pixel bleed. "off" -- No saturation. Parameters ---------- preset : str Name of chosen preset. bit_depth : int, optional Number of bits used to store each pixel. Required for "no_bleed" preset. Maximum value for a pixel is 2**bit_depth - 1. Returns ------- None See Also -------- StarCam.set_saturation_fcn, StarCam.get_saturation Notes ----- The StarCam object uses the 'no_bleed' preset by default with a bit depth of 16. Examples -------- >>> cam = StarCam() >>> cam.set_saturation_preset("no_bleed", bit_depth=16) """ # Set default option if preset.lower() == "no_bleed": # Check input if "bit_depth" not in kwargs: raise ValueError("Must provide the following keyword arguments for this preset: \ 'bit_depth'") # Build function & set saturation_fcn = lambda image: imageutils.saturate(image, kwargs["bit_depth"]) self.set_saturation_fcn(saturation_fcn) elif preset.lower() == "off": # Set function self.set_saturation_fcn(lambda image: image) # Handle invalid option else: raise NotImplementedError("Invalid preset option.") def get_saturation(self, image): """ Saturate image input with internal pixel saturation model. Parameters ---------- image : ndarray Input image where each pixel contains a total photoelectron count. Returns ------- saturated_image : ndarray Saturated image. Output image is the same size as the input. See Also -------- StarCam.set_saturation_fcn, StarCam.set_saturation_preset Examples -------- >>> cam = StarCam() >>> cam.set_saturation_preset("no_bleed", bit_depth=2) >>> cam.get_saturation(16*np.ones((4,4))) array([[ 3., 3., 3., 3.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.], [ 3., 3., 3., 3.]]) """ # Saturate image return self.saturation_fcn(image)
the-stack_106_27155
#!/usr/bin/env python # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2010 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Installation script for Trove's development virtualenv """ from __future__ import print_function import os import subprocess import sys ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) VENV = os.path.join(ROOT, '.venv') PIP_REQUIRES = os.path.join(ROOT, 'requirements.txt') TEST_REQUIRES = os.path.join(ROOT, 'test-requirements.txt') PY_VERSION = "python%s.%s" % (sys.version_info[0], sys.version_info[1]) def die(message, *args): print(message % args, file=sys.stderr) sys.exit(1) def check_python_version(): if sys.version_info < (2, 7): die("Need Python Version >= 2.7") def run_command(cmd, redirect_output=True, check_exit_code=True): """ Runs a command in an out-of-process shell, returning the output of that command. Working directory is ROOT. """ if redirect_output: stdout = subprocess.PIPE else: stdout = None proc = subprocess.Popen(cmd, cwd=ROOT, stdout=stdout) output = proc.communicate()[0] if check_exit_code and proc.returncode != 0: die('Command "%s" failed.\n%s', ' '.join(cmd), output) return output HAS_EASY_INSTALL = bool(run_command(['which', 'easy_install'], check_exit_code=False).strip()) HAS_VIRTUALENV = bool(run_command(['which', 'virtualenv'], check_exit_code=False).strip()) def check_dependencies(): """Make sure virtualenv is in the path.""" if not HAS_VIRTUALENV: print('not found.') # Try installing it via easy_install... if HAS_EASY_INSTALL: print('Installing virtualenv via easy_install...'), if not (run_command(['which', 'easy_install']) and run_command(['easy_install', 'virtualenv'])): die('ERROR: virtualenv not found.\n\Trove development' ' requires virtualenv, please install it using your' ' favorite package management tool') print('done.') print('done.') def create_virtualenv(venv=VENV): """Creates the virtual environment and installs PIP only into the virtual environment """ print('Creating venv...'), run_command(['virtualenv', '-q', '--no-site-packages', VENV]) print('done.') print('Installing pip in virtualenv...'), if not run_command(['tools/with_venv.sh', 'easy_install', 'pip']).strip(): die("Failed to install pip.") print('done.') def install_dependencies(venv=VENV): print('Installing dependencies with pip (this can take a while)...') # Install greenlet by hand - just listing it in the requires file does not # get it in stalled in the right order run_command(['tools/with_venv.sh', '-E', venv, 'pip', 'install', 'greenlet'], redirect_output=False) for requires in (PIP_REQUIRES, TEST_REQUIRES): run_command(['tools/with_venv.sh', '-E', venv, 'pip', 'install', '-r', requires], redirect_output=False) # Tell the virtual env how to "import trove" pthfile = os.path.join(venv, "lib", PY_VERSION, "site-packages", "trove.pth") f = open(pthfile, 'w') f.write("%s\n" % ROOT) def print_help(): help = """ Trove development environment setup is complete. Trove development uses virtualenv to track and manage Python dependencies while in development and testing. To activate the Trove virtualenv for the extent of your current shell session you can run: $ source .venv/bin/activate Or, if you prefer, you can run commands in the virtualenv on a case by case basis by running: $ tools/with_venv.sh <your command> Also, make test will automatically use the virtualenv. """ print(help) def main(argv): check_python_version() check_dependencies() create_virtualenv() install_dependencies() print_help() if __name__ == '__main__': main(sys.argv)
the-stack_106_27156
import requests import json from bs4 import BeautifulSoup class RAWG: def __init__(self): self.base_url = 'https://api.rawg.io/api' self.session = requests.Session() def get_game(self, name): game = {} id = self.__request_id(name) if not id: return game res = self.__request_game(id) game['Name'] = res['name'] game['RawgID'] = res['id'] game['Metacritic'] = res['metacritic'] game['Presence'] = self.__parse_precense(res) game['Presence'] = self.__score_precense(game['Presence']) game['Platform'] = self.__parse_platforms(res['platforms']) game['RatingsBreakdown'] = self.__parse_ratings(res['ratings']) game['ReleaseDate'] = res['released'] game['ESRB'] = self.__parse_esrb(res['esrb_rating']) game['Achievements'] = res['achievements_count'] game['CreatorsCount'] = res['creators_count'] game['Description'] = self.__parse_description(res['description']) return game def __request_id(self, name): params = { 'search': name } try: res = self.session.get(f'{self.base_url}/games', params=params) if res.content: res = json.loads(res.content) if len(res['results']): return res['results'][0]['id'] except: return None def __request_game(self, id): res = self.session.get(f'{self.base_url}/games/{id}') res = json.loads(res.content) return res def __parse_description(self, description): soup = BeautifulSoup(description) return soup.get_text() def __parse_precense(self, social_media): keys = [ 'reddit_count', 'twitch_count', 'youtube_count', 'reviews_text_count', 'ratings_count', 'suggestions_count'] vals = [] for key in keys: vals.append(social_media[key]) return dict(zip(keys, vals)) def __score_precense(self, precense): score = 0 for site in precense: score += precense[site] return score def __parse_platforms(self, platforms): platforms = [ platform['platform']['name'] for platform in platforms ] return ', '.join(platforms ) def __parse_ratings(self, ratings): shortened_ratings = [ f"{rating['title']}: {rating['count']}" for rating in ratings ] return ', '.join(shortened_ratings) def __parse_esrb(self, esrb_rating): if esrb_rating: return esrb_rating['name']
the-stack_106_27157
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from dora import Explorer import treetable as tt class MyExplorer(Explorer): def get_grid_metrics(self): return [ tt.leaf("train", ".3f"), tt.leaf("test", ".3f"), tt.leaf("correct", ".1f"), ] @MyExplorer def explorer(launcher): for bs in [32, 64, 128]: launcher(batch_size=bs) for hidden_dim in [512, 1024]: # here we get a sub launcher with `bind()`. All XPs scheduled with it # will retain the bound params but it won't impact the parent launcher. sub = launcher.bind({"model.hidden_dim": hidden_dim}) # Or, the two are equivalent # sub = launcher.bind([f"model.hidden_dim={hidden_dim}"]) sub() sub(gamma=0.6) sub({'+new_param': 'whatever'}) # you can define extra keys with '+' if required launcher.bind_(gamma=0.6) launcher.slurm_(mem_per_gpu=20) launcher() launcher(lr=0.01) with launcher.job_array(): for seed in range(1234, 1234 + 8): launcher(seed=seed)
the-stack_106_27158
import asyncio async def foo(): for i in range(5): print("foo") await asyncio.sleep(1) async def bar(): for i in range(10): print("bar") await asyncio.sleep(1) loop = asyncio.get_event_loop() # The event loop is executed until the task is completed. loop.run_until_complete(foo()) loop.run_until_complete(bar()) loop.close()
the-stack_106_27159
import os import os.path as osp import sys import pdb import argparse import librosa import natsort import numpy as np import mmcv import random from mir_eval.separation import bss_eval_sources from glob import glob from tqdm import tqdm import h5py from PIL import Image import subprocess from options.test_options import TestOptions import torchvision.transforms as transforms import torch import torchvision from data.sep_dataset import generate_spectrogram from models.networks import VisualNet, VisualNetDilated, AudioNet, AssoConv, APNet, weights_init, Rearrange def audio_empty(wav): flag = np.sum(np.abs(wav)) < 1e-3 return flag def audio_normalize(samples, desired_rms = 0.1, eps = 1e-4): rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return rms / desired_rms, samples def separation_metrics(pred_left, pred_right, gt_left, gt_right, mix): if audio_empty(gt_left) or audio_empty(gt_right) or audio_empty(pred_right) or audio_empty(pred_left) or audio_empty(mix): print("----------- Empty -----------") return None sdr, sir, sar, _ = bss_eval_sources(np.asarray([gt_left, gt_right]), np.asarray([pred_left, pred_right]), False) sdr_mix, _, _, _ = bss_eval_sources(np.asarray([gt_left, gt_right]), np.asarray([mix, mix]), False) return sdr.mean(), sir.mean(), sar.mean(), sdr_mix.mean() def main(): #load test arguments opt = TestOptions().parse() opt.device = torch.device("cuda") # visual net original_resnet = torchvision.models.resnet18(pretrained=True) if opt.visual_model == 'VisualNet': net_visual = VisualNet(original_resnet) elif opt.visual_model == 'VisualNetDilated': net_visual = VisualNetDilated(original_resnet) else: raise TypeError("please input correct visual model type") if len(opt.weights_visual) > 0: print('Loading weights for visual stream') net_visual.load_state_dict(torch.load(opt.weights_visual), strict=True) # audio net net_audio = AudioNet( ngf=opt.unet_ngf, input_nc=opt.unet_input_nc, output_nc=opt.unet_output_nc, ) net_audio.apply(weights_init) if len(opt.weights_audio) > 0: print('Loading weights for audio stream') net_audio.load_state_dict(torch.load(opt.weights_audio), strict=True) # fusion net if opt.fusion_model == 'none': net_fusion = None elif opt.fusion_model == 'AssoConv': net_fusion = AssoConv() elif opt.fusion_model == 'APNet': net_fusion = APNet() else: raise TypeError("Please input correct fusion model type") if net_fusion is not None and len(opt.weights_fusion) > 0: print('Loading weights for fusion stream') net_fusion.load_state_dict(torch.load(opt.weights_fusion), strict=True) net_visual.to(opt.device) net_audio.to(opt.device) net_visual.eval() net_audio.eval() if net_fusion is not None: net_fusion.to(opt.device) net_fusion.eval() # rearrange module net_rearrange = Rearrange() net_rearrange.to(opt.device) net_rearrange.eval() val_list_file = 'data/dummy_MUSIC_split/val.csv' sample_list = mmcv.list_from_file(val_list_file) # ensure output dir if not osp.exists(opt.output_dir_root): os.mkdir(opt.output_dir_root) #define the transformation to perform on visual frames vision_transform_list = [transforms.Resize((224,448)), transforms.ToTensor()] vision_transform_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) vision_transform = transforms.Compose(vision_transform_list) chosen_audio_len = opt.audio_sampling_rate * 6 total_metrics = {'sdr':[], 'sir':[], 'sar':[], 'sdr_m':[]} for global_idx, sample in enumerate(sample_list): N = 2 chosen_samples = [sample] # avoid repeat sample for i in range(1, N): while True: new_sample = random.choice(sample_list) if new_sample not in chosen_samples: chosen_samples.append(new_sample) break audio_margin = 6 audio_list = [] frame_idx_list = [] frame_list = [] cur_output_dir_root = [] for idx, chosen_sample in enumerate(chosen_samples): input_audio_path, img_folder, _, cate = chosen_sample.split(',') cur_output_dir_root.append('_'.join([cate, img_folder[-4:]])) #load the audio to perform separation audio, audio_rate = librosa.load(input_audio_path, sr=opt.audio_sampling_rate, mono=True) #randomly get a start time for 6s audio segment audio_len = len(audio) / audio_rate audio_start_time = random.uniform(audio_margin, audio_len - 6 - audio_margin) audio_end_time = audio_start_time + 6 audio_start = int(audio_start_time * opt.audio_sampling_rate) audio_end = audio_start + chosen_audio_len audio = audio[audio_start:audio_end] audio_list.append(audio) #lock the frame idx range frame_list.append(natsort.natsorted(glob(osp.join(img_folder, '*.jpg')))) frame_idx_list.append(int((audio_start_time + audio_end_time) / 2 * 10)) #perform spatialization over the whole audio using a sliding window approach overlap_count = np.zeros(chosen_audio_len) #count the number of times a data point is calculated pred_left = np.zeros(chosen_audio_len) pred_right = np.zeros(chosen_audio_len) #perform spatialization over the whole spectrogram in a siliding-window fashion sliding_window_start = 0 sliding_idx = 0 data = {} samples_per_window = int(opt.audio_length * opt.audio_sampling_rate) while sliding_window_start + samples_per_window < chosen_audio_len: sliding_window_end = sliding_window_start + samples_per_window normalizer1, audio_segment1 = audio_normalize(audio_list[0][sliding_window_start:sliding_window_end]) normalizer2, audio_segment2 = audio_normalize(audio_list[1][sliding_window_start:sliding_window_end]) audio_segment_channel1 = audio_segment1 audio_segment_channel2 = audio_segment2 audio_segment_mix = audio_segment_channel1 + audio_segment_channel2 audio_diff = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension audio_mix = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for current window frame_index1 = int(np.clip(frame_idx_list[0] + sliding_idx, 0, len(frame_list[0]) - 1)) frame_index2 = int(np.clip(frame_idx_list[1] + sliding_idx, 0, len(frame_list[1]) - 1)) image1 = Image.open(frame_list[0][frame_index1]).convert('RGB') image2 = Image.open(frame_list[1][frame_index2]).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame1 = vision_transform(image1).unsqueeze(0).to(opt.device) #unsqueeze to add a batch dimension frame2 = vision_transform(image2).unsqueeze(0).to(opt.device) #unsqueeze to add a batch dimension # data to device audio_diff = audio_diff.to(opt.device) audio_mix = audio_mix.to(opt.device) img_feat = net_rearrange(net_visual(frame1), net_visual(frame2)) if net_fusion is not None: upfeatures, output = net_audio(audio_diff, audio_mix, img_feat, return_upfeatures=True) output.update(net_fusion(audio_mix, img_feat, upfeatures)) else: output = net_audio(audio_diff, audio_mix, img_feat, return_upfeatures=False) #ISTFT to convert back to audio if opt.use_fusion_pred: pred_left_spec = output['pred_left'][0,:,:,:].data[:].cpu().numpy() pred_left_spec = pred_left_spec[0,:,:] + 1j * pred_left_spec[1,:,:] reconstructed_signal_left = librosa.istft(pred_left_spec, hop_length=160, win_length=400, center=True, length=samples_per_window) pred_right_spec = output['pred_right'][0,:,:,:].data[:].cpu().numpy() pred_right_spec = pred_right_spec[0,:,:] + 1j * pred_right_spec[1,:,:] reconstructed_signal_right = librosa.istft(pred_right_spec, hop_length=160, win_length=400, center=True, length=samples_per_window) else: predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 pred_left[sliding_window_start:sliding_window_end] = pred_left[sliding_window_start:sliding_window_end] + reconstructed_signal_left * normalizer1 pred_right[sliding_window_start:sliding_window_end] = pred_right[sliding_window_start:sliding_window_end] + reconstructed_signal_right * normalizer2 overlap_count[sliding_window_start:sliding_window_end] = overlap_count[sliding_window_start:sliding_window_end] + 1 sliding_window_start = sliding_window_start + int(opt.hop_size * opt.audio_sampling_rate) sliding_idx += 1 #deal with the last segment normalizer1, audio_segment1 = audio_normalize(audio_list[0][-samples_per_window:]) normalizer2, audio_segment2 = audio_normalize(audio_list[1][-samples_per_window:]) audio_segment_channel1 = audio_segment1 audio_segment_channel2 = audio_segment2 audio_diff = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension audio_mix = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for last window frame_index1 = int(np.clip(frame_idx_list[0] + sliding_idx, 0, len(frame_list[0]) - 1)) frame_index2 = int(np.clip(frame_idx_list[1] + sliding_idx, 0, len(frame_list[1]) - 1)) image1 = Image.open(frame_list[0][frame_index1]).convert('RGB') image2 = Image.open(frame_list[1][frame_index2]).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame1 = vision_transform(image1).unsqueeze(0).to(opt.device) #unsqueeze to add a batch dimension frame2 = vision_transform(image2).unsqueeze(0).to(opt.device) #unsqueeze to add a batch dimension # data to device audio_diff = audio_diff.to(opt.device) audio_mix = audio_mix.to(opt.device) img_feat = net_rearrange(net_visual(frame1), net_visual(frame2)) if net_fusion is not None: upfeatures, output = net_audio(audio_diff, audio_mix, img_feat, return_upfeatures=True) output.update(net_fusion(audio_mix, img_feat, upfeatures)) else: output = net_audio(audio_diff, audio_mix, img_feat, return_upfeatures=False) #ISTFT to convert back to audio if opt.use_fusion_pred: pred_left_spec = output['pred_left'][0,:,:,:].data[:].cpu().numpy() pred_left_spec = pred_left_spec[0,:,:] + 1j * pred_left_spec[1,:,:] reconstructed_signal_left = librosa.istft(pred_left_spec, hop_length=160, win_length=400, center=True, length=samples_per_window) pred_right_spec = output['pred_right'][0,:,:,:].data[:].cpu().numpy() pred_right_spec = pred_right_spec[0,:,:] + 1j * pred_right_spec[1,:,:] reconstructed_signal_right = librosa.istft(pred_right_spec, hop_length=160, win_length=400, center=True, length=samples_per_window) else: predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 pred_left[-samples_per_window:] = pred_left[-samples_per_window:] + reconstructed_signal_left * normalizer1 pred_right[-samples_per_window:] = pred_right[-samples_per_window:] + reconstructed_signal_right * normalizer2 #add the spatialized audio to reconstructed_binaural overlap_count[-samples_per_window:] = overlap_count[-samples_per_window:] + 1 #divide aggregated predicted audio by their corresponding counts pred_left = np.divide(pred_left, overlap_count) pred_right = np.divide(pred_right, overlap_count) gt_left, gt_right = audio_list mix_audio = (gt_left + gt_right) / 2 sep_results = separation_metrics(pred_left, pred_right, gt_left, gt_right, mix_audio) if sep_results is not None and global_idx % 20 == 0: sdr, sir, sar, sdr_m = sep_results print("index: {}, sdr: {}, sir: {}, sar: {}, sdr_m: {}\n".format(global_idx, sdr, sir, sar, sdr_m)) total_metrics['sdr'].append(sdr) total_metrics['sir'].append(sir) total_metrics['sar'].append(sar) total_metrics['sdr_m'].append(sdr_m) #check output directory cur_output_dir_root = osp.join(opt.output_dir_root, '+'.join(cur_output_dir_root)) if not os.path.isdir(cur_output_dir_root): os.mkdir(cur_output_dir_root) librosa.output.write_wav(osp.join(cur_output_dir_root, 'pred_left.wav'), pred_left, sr=opt.audio_sampling_rate) librosa.output.write_wav(osp.join(cur_output_dir_root, 'pred_right.wav'), pred_right, sr=opt.audio_sampling_rate) librosa.output.write_wav(osp.join(cur_output_dir_root, 'gt_left.wav'), gt_left, sr=opt.audio_sampling_rate) librosa.output.write_wav(osp.join(cur_output_dir_root, 'gt_right.wav'), gt_right, sr=opt.audio_sampling_rate) librosa.output.write_wav(osp.join(cur_output_dir_root, 'mix.wav'), mix_audio, sr=opt.audio_sampling_rate) print_content = "----- sdr: {}, sir: {}, sar: {}, sdr_m: {} -----\n".format( sum(total_metrics['sdr']) / len(total_metrics['sdr']), sum(total_metrics['sir']) / len(total_metrics['sir']), sum(total_metrics['sar']) / len(total_metrics['sar']), sum(total_metrics['sdr_m']) / len(total_metrics['sdr_m']) ) print(print_content) if __name__ == '__main__': random.seed(1234) torch.manual_seed(1234) main()
the-stack_106_27164
import asyncio import awaitwhat.blocker from awaitwhat.stack import task_get_stack async def a(): await asyncio.gather(asyncio.sleep(0.01), asyncio.sleep(999 + 1)) def fixme_dont_test_sleep(): async def test(): t = asyncio.create_task(a()) try: await asyncio.sleep(0.11) stack = task_get_stack(t, None) # assert awaitwhat.sleep.mine(stack[-2]) # text = awaitwhat.sleep.decode(stack[-2]) # assert "asyncio.sleep" in text # assert "scheduled" in text # assert "delay 42" in text # assert "remaining 41.8" in text finally: t.cancel() asyncio.run(test()) def test_blockers(): async def test(): t = asyncio.create_task(a()) try: await asyncio.sleep(0.11) text = str(awaitwhat.blocker.blockers(t)) assert "Task finished" in text assert "Task pending" in text finally: t.cancel() asyncio.run(test())
the-stack_106_27167
import numpy as np from pycocotools.coco import COCO from .custom import CustomDataset from .registry import DATASETS @DATASETS.register_module class CocoDataset(CustomDataset): CLASSES = ('plane', 'ship', 'storage tank', 'baseball diamond', 'tennis court', 'basketball court', 'ground track field', 'harbor', 'bridge', 'large vehicle', 'small vehicle', 'helicopter', 'roundabout', 'soccer ball field', 'swimming pool') def load_annotations(self, ann_file): self.coco = COCO(ann_file) self.cat_ids = self.coco.getCatIds() self.cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids) } self.img_ids = self.coco.getImgIds() img_infos = [] for i in self.img_ids: info = self.coco.loadImgs([i])[0] info['filename'] = info['file_name'] img_infos.append(info) return img_infos def get_ann_info(self, idx): img_id = self.img_infos[idx]['id'] ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) return self._parse_ann_info(self.img_infos[idx], ann_info) def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) for i, img_info in enumerate(self.img_infos): if self.filter_empty_gt and self.img_ids[i] not in ids_with_ann: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, seg_map. "masks" are raw annotations and not decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann['segmentation']) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann
the-stack_106_27168
from __future__ import unicode_literals import re from .common import InfoExtractor from ..compat import ( compat_str, ) from ..utils import ( ExtractorError, clean_html, ) class MovieClipsIE(InfoExtractor): _VALID_URL = r'https?://movieclips\.com/(?P<id>[\da-zA-Z]+)(?:-(?P<display_id>[\da-z-]+))?' _TEST = { 'url': 'http://movieclips.com/Wy7ZU-my-week-with-marilyn-movie-do-you-love-me/', 'info_dict': { 'id': 'Wy7ZU', 'display_id': 'my-week-with-marilyn-movie-do-you-love-me', 'ext': 'mp4', 'title': 'My Week with Marilyn - Do You Love Me?', 'description': 'md5:e86795bd332fe3cff461e7c8dc542acb', 'thumbnail': 're:^https?://.*\.jpg$', }, 'params': { # rtmp download 'skip_download': True, } } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('id') display_id = mobj.group('display_id') show_id = display_id or video_id config = self._download_xml( 'http://config.movieclips.com/player/config/%s' % video_id, show_id, 'Downloading player config') if config.find('./country-region').text == 'false': raise ExtractorError( '%s said: %s' % (self.IE_NAME, config.find('./region_alert').text), expected=True) properties = config.find('./video/properties') smil_file = properties.attrib['smil_file'] smil = self._download_xml(smil_file, show_id, 'Downloading SMIL') base_url = smil.find('./head/meta').attrib['base'] formats = [] for video in smil.findall('./body/switch/video'): vbr = int(video.attrib['system-bitrate']) / 1000 src = video.attrib['src'] formats.append({ 'url': base_url, 'play_path': src, 'ext': src.split(':')[0], 'vbr': vbr, 'format_id': '%dk' % vbr, }) self._sort_formats(formats) title = '%s - %s' % (properties.attrib['clip_movie_title'], properties.attrib['clip_title']) description = clean_html(compat_str(properties.attrib['clip_description'])) thumbnail = properties.attrib['image'] categories = properties.attrib['clip_categories'].split(',') return { 'id': video_id, 'display_id': display_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'categories': categories, 'formats': formats, }
the-stack_106_27169
""" A minimal character-based 2-layer Vanilla RNN model. This is derived from the following scripts: - https://gist.github.com/karpathy/d4dee566867f8291f086 - https://github.com/eliben/deep-learning-samples/blob/master/min-char-rnn/min-char-rnn.py And you might find the following materials helpful: - http://karpathy.github.io/2015/05/21/rnn-effectiveness/ - http://arxiv.org/abs/1506.00019 To run: $ python min_char_rnn_two_layers.py <text file> ---- BSD License """ from __future__ import print_function import numpy as np import sys # Make it possible to provide input file as a command-line argument; input.txt # is still the default. if len(sys.argv) > 1: filename = sys.argv[1] else: filename = 'input.txt' with open(filename, 'r') as f: data = f.read() # All unique characters / entities in the data set. chars = list(set(data)) chars.sort() data_size, vocab_size = len(data), len(chars) print('data has %d characters, %d unique.' % (data_size, vocab_size)) # Each character in the vocabulary gets a unique integer index assigned, in the # half-open interval [0:N). These indices are useful to create one-hot encoded # vectors that represent characters in numerical computations. char_to_ix = {ch: i for i, ch in enumerate(chars)} ix_to_char = {i: ch for i, ch in enumerate(chars)} print('char_to_ix', char_to_ix) print('ix_to_char', ix_to_char) # Hyperparameters hidden_size = 512 # size of hidden layer of neurons seq_length = 16 # number of steps to unroll the RNN for learning_rate = 1e-2 # Stop when processed this much data MAX_DATA = 100000 MAX_ITER = 200000 # Model parameters/weights -- these are shared among all steps. Weights # initialized randomly; biases initialized to 0. # Inputs are characters one-hot encoded in a vocab-sized vector. # Dimensions: H = hidden_size, V = vocab_size Wxh = np.random.randn(hidden_size, vocab_size) * 0.01 # input to hidden Whh1 = np.random.randn(hidden_size, hidden_size) * 0.01 # hidden to hidden in layer one Whh2 = np.random.randn(hidden_size, hidden_size) * 0.01 # hidden to hidden in layer two Wh1h2 = np.random.randn(hidden_size, hidden_size) * 0.01 # hidden to hidden from layer one to layer two Why = np.random.randn(vocab_size, hidden_size) * 0.01 # hidden to output bh1 = np.zeros((hidden_size, 1)) # hidden bias bh2 = np.zeros((hidden_size, 1)) # hidden bias from layer one to layer two by = np.zeros((vocab_size, 1)) # output bias def lossFun(inputs, targets, hprev): """Runs forward and backward passes through the RNN. inputs, targets: Lists of integers. For some i, inputs[i] is the input character (encoded as an index into the ix_to_char map) and targets[i] is the corresponding next character in the training data (similarly encoded). hprev: Hx2 array of initial hidden state returns: loss, gradients on model parameters, and last hidden state """ # Caches that keep values computed in the forward pass at each time step, to # be reused in the backward pass. xs, h1s, h2s, ys, ps = {}, {}, {}, {}, {} # Initial incoming state. h1s[-1] = np.expand_dims(np.copy(hprev[:, 0]), 1) h2s[-1] = np.expand_dims(np.copy(hprev[:, 1]), 1) loss = 0 # Forward pass for t in range(len(inputs)): # Input at time step t is xs[t]. Prepare a one-hot encoded vector of shape # (V, 1). inputs[t] is the index where the 1 goes. xs[t] = np.zeros((vocab_size, 1)) # encode in 1-of-k representation xs[t][inputs[t]] = 1 # Compute h1[t], h2[t] from h1[t-1], h2[t-1] and x[t] h1s[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh1, h1s[t-1]) + bh1) h2s[t] = np.tanh(np.dot(Wh1h2, h1s[t]) + np.dot(Whh2, h2s[t-1]) + bh2) # Compute ps[t] - softmax probabilities for output. ys[t] = np.dot(Why, h2s[t]) + by ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # Cross-entropy loss for two probability distributions p and q is defined as # follows: # # xent(q, p) = -Sum q(k)log(p(k)) # k # # Where k goes over all the possible values of the random variable p and q # are defined for. # In our case taking q is the "real answer" which is 1-hot encoded; p is the # result of softmax (ps). targets[t] has the only index where q is not 0, # so the sum simply becomes log of ps at that index. loss += -np.log(ps[t][targets[t], 0]) # Backward pass: compute gradients going backwards. # Gradients are initialized to 0s, and every time step contributes to them. dWxh, dWhh1, dWhh2, dWh1h2, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh1), np.zeros_like(Whh2), np.zeros_like(Wh1h2), np.zeros_like(Why) dbh1, dbh2, dby = np.zeros_like(bh1), np.zeros_like(bh2), np.zeros_like(by) # Initialize the incoming gradient of h to zero; this is a safe assumption for # a sufficiently long unrolling. dh1next = np.zeros_like(h1s[0]) dh2next = np.zeros_like(h2s[0]) # The backwards pass iterates over the input sequence backwards. for t in reversed(range(len(inputs))): # Backprop through the gradients of loss and softmax. dy = np.copy(ps[t]) dy[targets[t]] -= 1 # Compute gradients for the Why and by parameters. dWhy += np.dot(dy, h2s[t].T) dby += dy # Backprop through the fully-connected layer (Why, by) to h2. Also add up the # incoming gradient for h2 from the next cell. # Note: proper Jacobian matmul here would be dy.dot(Why), that would give # a [1,T] vector. Since we need [T,1] for h, we flip the dot (we could have # transposed after everything, too) dh2 = np.dot(Why.T, dy) + dh2next # Backprop through the tanh in layer two. dh2raw = (1 - h2s[t] * h2s[t]) * dh2 # Compute gradients for the dbh2, dWh1h2, Whh2 parameters. dbh2 += dh2raw dWh1h2 += np.dot(dh2raw, h1s[t].T) dWhh2 += np.dot(dh2raw, h2s[t-1].T) # Backprop through the fully-connected layer (Wh1h2, dbh1) to h1. Also add up the # incoming gradient for h1 from the next cell. dh1 = np.dot(Wh1h2.T, dh2raw) + dh1next dh1raw = (1 - h1s[t] * h1s[t]) * dh1 # Compute dbh1 += dh1raw dWxh += np.dot(dh1raw, xs[t].T) dWhh1 += np.dot(dh1raw, h1s[t-1].T) # Backprop the gradient to the incoming h, which will be used in the # previous time step. dh2next = np.dot(Whh2.T, dh2raw) dh1next = np.dot(Whh1.T, dh1raw) # Gradient clipping to the range [-5, 5]. for dparam in [dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby]: np.clip(dparam, -5, 5, out=dparam) return loss, dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby, np.concatenate((h1s[len(inputs) - 1], h2s[len(inputs)-1]), axis=1) def sample(h, seed_ix, n): """Sample a sequence of integers from the model. Runs the RNN in forward mode for n steps; seed_ix is the seed letter for the first time step, and h is the memory state. Returns a sequence of letters produced by the model (indices). """ # Create a one-hot vector to represent the input. x = np.zeros((vocab_size, 1)) x[seed_ix] = 1 ixes = [] h1 = np.expand_dims(np.copy(h[:, 0]), 1) h2 = np.expand_dims(np.copy(h[:, 1]), 1) for t in range(n): # Run the forward pass only. h1 = np.tanh(np.dot(Wxh, x) + np.dot(Whh1, h1) + bh1) h2 = np.tanh(np.dot(Wh1h2, h1) + np.dot(Whh2, h2) + bh2) y = np.dot(Why, h2) + by p = np.exp(y) / np.sum(np.exp(y)) # Sample from the distribution produced by softmax. ix = np.random.choice(range(vocab_size), p=p.ravel()) # Prepare input for the next cell. x = np.zeros((vocab_size, 1)) x[ix] = 1 ixes.append(ix) return ixes # Gradient checking (from karpathy's own comment on the gist) from random import uniform def gradCheck(inputs, targets, hprev): global Wxh, Whh1, Whh2, Wh1h2, Why, bh1, bh2, by num_checks, delta = 30, 1e-5 _, dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby, _ = lossFun(inputs, targets, hprev) for param, dparam, name in zip([Wxh, Whh1, Whh2, Wh1h2, Why, bh1, bh2, by], [dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby], ['Wxh', 'Whh1', 'Whh2', 'Wh1h2', 'Why', 'bh', 'bhh', 'by']): s0 = dparam.shape s1 = param.shape assert s0 == s1, 'Error dims dont match: %s and %s.' % (s0, s1) print(name) for i in range(num_checks): ri = int(uniform(0, param.size)) # evaluate cost at [x + delta] and [x - delta] old_val = param.flat[ri] param.flat[ri] = old_val + delta cg0, _, _, _, _, _, _, _, _, _ = lossFun(inputs, targets, hprev) param.flat[ri] = old_val - delta cg1, _, _, _, _, _, _, _, _, _ = lossFun(inputs, targets, hprev) param.flat[ri] = old_val # reset old value for this parameter # fetch both numerical and analytic gradient grad_analytic = dparam.flat[ri] grad_numerical = (cg0 - cg1) / (2 * delta) rel_error = abs(grad_analytic - grad_numerical) / abs(grad_numerical + grad_analytic) print('%f, %f => %e ' % (grad_numerical, grad_analytic, rel_error)) # rel_error should be on order of 1e-7 or less # This function invokes gradCheck with all the parameters properly set up. def basicGradCheck(): inputs = [char_to_ix[ch] for ch in data[:seq_length]] targets = [char_to_ix[ch] for ch in data[1:seq_length + 1]] hprev = np.zeros((hidden_size, 2)) # reset RNN memory gradCheck(inputs, targets, hprev) # Uncomment this to run a basic gradient check. # basicGradCheck() # n is the iteration counter; p is the input sequence pointer, at the beginning # of each step it points at the sequence in the input that will be used for # training this iteration. n, p = 0, 0 # Memory variables for Adagrad. mWxh, mWhh1, mWhh2, mWh1h2, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh1), np.zeros_like(Whh2), np.zeros_like(Wh1h2), np.zeros_like(Why) mbh1, mbh2, mby = np.zeros_like(bh1), np.zeros_like(bh2), np.zeros_like(by) smooth_loss = -np.log(1.0 / vocab_size) * seq_length while n < MAX_ITER: # Prepare inputs (we're sweeping from left to right in steps seq_length long) if p + seq_length + 1 >= len(data) or n == 0: hprev = np.zeros((hidden_size, 2)) # reset RNN memory p = 0 # go from start of data # In each step we unroll the RNN for seq_length cells, and present it with # seq_length inputs and seq_length target outputs to learn. inputs = [char_to_ix[ch] for ch in data[p:p + seq_length]] targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]] # gradCheck(inputs, targets, hprev) # break # Sample from the model now and then. if n % 1000 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print('----\n %s \n----' % (txt,)) # Forward seq_length characters through the net and fetch gradient loss, dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 200 == 0: print('iter %d (p=%d), loss: %f' % (n, p, smooth_loss)) # Perform parameter update with Adagrad for param, dparam, mem in zip([Wxh, Whh1, Whh2, Wh1h2, Why, bh1, bh2, by], [dWxh, dWhh1, dWhh2, dWh1h2, dWhy, dbh1, dbh2, dby], [mWxh, mWhh1, mWhh2, mWh1h2, mWhy, mbh1, mbh2, mby]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) p += seq_length n += 1
the-stack_106_27173
# -*- coding: utf-8 -*- from python_pachyderm.client.pps import pps_pb2 as proto from python_pachyderm.client.pps import pps_pb2_grpc as grpc from python_pachyderm.util import commit_from, get_address, get_metadata class PpsClient(object): def __init__(self, host=None, port=None, auth_token=None, root_certs=None): """ Creates a client to connect to PPS. host: The pachd host. Default is 'localhost'. port: The port to connect to. Default is 30650. auth_token: The authentication token; used if authentication is enabled on the cluster. Default to `None`. root_certs: The PEM-encoded root certificates as byte string. """ address = get_address(host, port) self.metadata = get_metadata(auth_token) if root_certs: ssl_channel_credentials = grpc.grpc.ssl_channel_credentials ssl = ssl_channel_credentials(root_certificates=root_certs) self.channel = grpc.grpc.secure_channel(address, ssl) else: self.channel = grpc.grpc.insecure_channel(address) self.stub = grpc.APIStub(self.channel) def inspect_job(self, job_id, block_state=None, output_commit=None): """ Inspects a job with a given ID. Returns a `JobInfo`. Params: * job_id: The ID of the job to inspect. * block_state: If true, block until the job completes. * output_commit: An optional tuple, string, or `Commit` object representing an output commit to filter on. """ output_commit = commit_from(output_commit) if output_commit is not None else None req = proto.InspectJobRequest(job=proto.Job(id=job_id), block_state=block_state, output_commit=output_commit) return self.stub.InspectJob(req, metadata=self.metadata) def list_job(self, pipeline_name=None, input_commit=None, output_commit=None, history=None): """ Lists jobs. Yields `JobInfo` objects. Params: * pipeline_name: An optional string representing a pipeline name to filter on. * input_commit: An optional list of tuples, strings, or `Commit` objects representing input commits to filter on. * output_commit: An optional tuple, string, or `Commit` object representing an output commit to filter on. * history: An optional int that indicates to return jobs from historical versions of pipelines. Semantics are: 0: Return jobs from the current version of the pipeline or pipelines. 1: Return the above and jobs from the next most recent version 2: etc. -1: Return jobs from all historical versions. """ pipeline = proto.Pipeline(name=pipeline_name) if pipeline_name is not None else None if isinstance(input_commit, list): input_commit = [commit_from(ic) for ic in input_commit] elif input_commit is not None: input_commit = [commit_from(input_commit)] output_commit = commit_from(output_commit) if output_commit is not None else None req = proto.ListJobRequest(pipeline=pipeline, input_commit=input_commit, output_commit=output_commit, history=history) return self.stub.ListJobStream(req, metadata=self.metadata) def flush_job(self, commits, pipeline_names=None): """ Blocks until all of the jobs which have a set of commits as provenance have finished. Yields `JobInfo` objects. Params: * commits: A list of tuples, strings, or `Commit` objects representing the commits to flush. * pipeline_names: An optional list of strings specifying pipeline names. If specified, only jobs within these pipelines will be flushed. """ commits = [commit_from(c) for c in commits] pipelines = [proto.Pipeline(name=name) for name in pipeline_names] if pipeline_names is not None else None req = proto.FlushJobRequest(commits=commits, to_pipelines=pipelines) return self.stub.FlushJob(req) def delete_job(self, job_id): """ Deletes a job by its ID. Params: * job_id: The ID of the job to delete. """ req = proto.DeleteJobRequest(job=proto.Job(id=job_id)) self.stub.DeleteJob(req, metadata=self.metadata) def stop_job(self, job_id): """ Stops a job by its ID. Params: * job_id: The ID of the job to stop. """ req = proto.StopJobRequest(job=proto.Job(id=job_id)) self.stub.StopJob(req, metadata=self.metadata) def inspect_datum(self, job_id, datum_id): """ Inspects a datum. Returns a `DatumInfo` object. Params: * job_id: The ID of the job. * datum_id: The ID of the datum. """ req = proto.InspectDatumRequest(datum=proto.Datum(id=datum_id, job=proto.Job(id=job_id))) return self.stub.InspectDatum(req, metadata=self.metadata) def list_datum(self, job_id, page_size=None, page=None): """ Lists datums. Yields `ListDatumStreamResponse` objects. Params: * job_id: The ID of the job. * page_size: An optional int specifying the size of the page. * page: An optional int specifying the page number. """ req = proto.ListDatumRequest(job=proto.Job(id=job_id), page_size=page_size, page=page) return self.stub.ListDatumStream(req, metadata=self.metadata) def restart_datum(self, job_id, data_filters=None): """ Restarts a datum. Params: * job_id: The ID of the job. * data_filters: An optional iterable of strings. """ req = proto.RestartDatumRequest(job=proto.Job(id=job_id), data_filters=data_filters) self.stub.RestartDatum(req, metadata=self.metadata) def create_pipeline(self, pipeline_name, transform=None, parallelism_spec=None, hashtree_spec=None, egress=None, update=None, output_branch=None, scale_down_threshold=None, resource_requests=None, resource_limits=None, input=None, description=None, cache_size=None, enable_stats=None, reprocess=None, batch=None, max_queue_size=None, service=None, chunk_spec=None, datum_timeout=None, job_timeout=None, salt=None, standby=None, datum_tries=None, scheduling_spec=None, pod_patch=None): """ Creates a pipeline. For more info, please refer to the pipeline spec document: http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html Params: * pipeline_name: A string representing the pipeline name. * transform: An optional `Transform` object. * parallelism_spec: An optional `ParallelismSpec` object. * hashtree_spec: An optional `HashtreeSpec` object. * egress: An optional `Egress` object. * update: An optional bool specifying whether this should behave as an upsert. * output_branch: An optional string representing the branch to output results on. * scale_down_threshold: An optional protobuf `Duration` object. * resource_requests: An optional `ResourceSpec` object. * resource_limits: An optional `ResourceSpec` object. * input: An optional `Input` object. * description: An optional string describing the pipeline. * cache_size: An optional string. * enable_stats: An optional bool. * reprocess: An optional bool. If true, pachyderm forces the pipeline to reprocess all datums. It only has meaning if `update` is `True`. * batch: An optional bool. * max_queue_size: An optional int. * service: An optional `Service` object. * chunk_spec: An optional `ChunkSpec` object. * datum_timeout: An optional protobuf `Duration` object. * job_timeout: An optional protobuf `Duration` object. * salt: An optional stirng. * standby: An optional bool. * datum_tries: An optional int. * scheduling_spec: An optional `SchedulingSpec` object. * pod_patch: An optional string. """ req = proto.CreatePipelineRequest( pipeline=proto.Pipeline(name=pipeline_name), transform=transform, parallelism_spec=parallelism_spec, hashtree_spec=hashtree_spec, egress=egress, update=update, output_branch=output_branch, scale_down_threshold=scale_down_threshold, resource_requests=resource_requests, resource_limits=resource_limits, input=input, description=description, cache_size=cache_size, enable_stats=enable_stats, reprocess=reprocess, batch=batch, max_queue_size=max_queue_size, service=service, chunk_spec=chunk_spec, datum_timeout=datum_timeout, job_timeout=job_timeout, salt=salt, standby=standby, datum_tries=datum_tries, scheduling_spec=scheduling_spec, pod_patch=pod_patch ) self.stub.CreatePipeline(req, metadata=self.metadata) def inspect_pipeline(self, pipeline_name, history=None): """ Inspects a pipeline. Returns a `PipelineInfo` object. Params: * pipeline_name: A string representing the pipeline name. * history: An optional int that indicates to return jobs from historical versions of pipelines. Semantics are: 0: Return jobs from the current version of the pipeline or pipelines. 1: Return the above and jobs from the next most recent version 2: etc. -1: Return jobs from all historical versions. """ pipeline = proto.Pipeline(name=pipeline_name) if history is None: req = proto.InspectPipelineRequest(pipeline=pipeline) return self.stub.InspectPipeline(req, metadata=self.metadata) else: # `InspectPipeline` doesn't support history, but `ListPipeline` # with a pipeline filter does, so we use that here req = proto.ListPipelineRequest(pipeline=pipeline, history=history) pipelines = self.stub.ListPipeline(req, metadata=self.metadata).pipeline_info assert len(pipelines) <= 1 return pipelines[0] if len(pipelines) else None def list_pipeline(self, history=None): """ Lists pipelines. Returns a `PipelineInfos` object. Params: * pipeline_name: A string representing the pipeline name. * history: An optional int that indicates to return jobs from historical versions of pipelines. Semantics are: 0: Return jobs from the current version of the pipeline or pipelines. 1: Return the above and jobs from the next most recent version 2: etc. -1: Return jobs from all historical versions. """ req = proto.ListPipelineRequest(history=history) return self.stub.ListPipeline(req, metadata=self.metadata) def delete_pipeline(self, pipeline_name, force=None): """ Deletes a pipeline. Params: * pipeline_name: A string representing the pipeline name. * force: Whether to force delete. """ req = proto.DeletePipelineRequest(pipeline=proto.Pipeline(name=pipeline_name), force=force) self.stub.DeletePipeline(req, metadata=self.metadata) def delete_all_pipelines(self, force=None): """ Deletes all pipelines. Params: * force: Whether to force delete. """ req = proto.DeletePipelineRequest(all=True, force=force) self.stub.DeletePipeline(req, metadata=self.metadata) def start_pipeline(self, pipeline_name): """ Starts a pipeline. Params: * pipeline_name: A string representing the pipeline name. """ req = proto.StartPipelineRequest(pipeline=proto.Pipeline(name=pipeline_name)) self.stub.StartPipeline(req, metadata=self.metadata) def stop_pipeline(self, pipeline_name): """ Stops a pipeline. Params: * pipeline_name: A string representing the pipeline name. """ req = proto.StopPipelineRequest(pipeline=proto.Pipeline(name=pipeline_name)) self.stub.StopPipeline(req, metadata=self.metadata) def run_pipeline(self, pipeline_name, provenance=None): """ Runs a pipeline. Params: * pipeline_name: A string representing the pipeline name. * provenance: An optional iterable of `CommitProvenance` objects representing the pipeline execution provenance. """ req = proto.RunPipelineRequest( pipeline=proto.Pipeline(name=pipeline_name), provenance=provenance, ) self.stub.RunPipeline(req, metadata=self.metadata) def delete_all(self): """ Deletes everything in pachyderm. """ req = proto.google_dot_protobuf_dot_empty__pb2.Empty() self.stub.DeleteAll(req, metadata=self.metadata) def get_pipeline_logs(self, pipeline_name, data_filters=None, master=None, datum=None, follow=None, tail=None): """ Gets logs for a pipeline. Yields `LogMessage` objects. Params: * pipeline_name: A string representing a pipeline to get logs of. * data_filters: An optional iterable of strings specifying the names of input files from which we want processing logs. This may contain multiple files, to query pipelines that contain multiple inputs. Each filter may be an absolute path of a file within a pps repo, or it may be a hash for that file (to search for files at specific versions.) * master: An optional bool. * datum: An optional `Datum` object. * follow: An optional bool specifying whether logs should continue to stream forever. * tail: An optional int. If nonzero, the number of lines from the end of the logs to return. Note: tail applies per container, so you will get tail * <number of pods> total lines back. """ req = proto.GetLogsRequest( pipeline=proto.Pipeline(name=pipeline_name), data_filters=data_filters, master=master, datum=datum, follow=follow, tail=tail, ) return self.stub.GetLogs(req, metadata=self.metadata) def get_job_logs(self, job_id, data_filters=None, datum=None, follow=None, tail=None): """ Gets logs for a job. Yields `LogMessage` objects. Params: * job_id: A string representing a job to get logs of. * data_filters: An optional iterable of strings specifying the names of input files from which we want processing logs. This may contain multiple files, to query pipelines that contain multiple inputs. Each filter may be an absolute path of a file within a pps repo, or it may be a hash for that file (to search for files at specific versions.) * datum: An optional `Datum` object. * follow: An optional bool specifying whether logs should continue to stream forever. * tail: An optional int. If nonzero, the number of lines from the end of the logs to return. Note: tail applies per container, so you will get tail * <number of pods> total lines back. """ req = proto.GetLogsRequest( job=proto.Job(id=job_id), data_filters=data_filters, datum=datum, follow=follow, tail=tail, ) return self.stub.GetLogs(req, metadata=self.metadata) def garbage_collect(self): """ Runs garbage collection. """ return self.stub.GarbageCollect(proto.GarbageCollectRequest(), metadata=self.metadata)
the-stack_106_27175
import tensorflow as tf from functools import reduce from operator import mul from string import ascii_lowercase import numpy as np import tensorflow as tf from ordered_set import OrderedSet # These are constants: # max k = 9 ascii_chi = ascii_lowercase[:9] ascii_f = ascii_lowercase[9:18] # max feature vector dimensions = 8 ascii_feature_vector = ascii_lowercase[18:] def alternativePermutationMatrix_AToB(a, b): return np.array(np.apply_along_axis(lambda x, y: np.in1d(y, x), 0, np.expand_dims(a, 0), np.expand_dims(b, 0)), dtype=int) # a function that returns appropriate promotion einsum expression for a given k and feature vector shape def getEinsumExpression(k, feature_vector_shape): # if k==1: # return 'ai,if->af' # if k==2: # return 'ai,bj,ijf->abf' str_to_join = [] for i in range(k): str_to_join.append(ascii_chi[i]) str_to_join.append(ascii_f[i]) str_to_join.append(',') for i in range(k): str_to_join.append(ascii_f[i]) for i in range(len(feature_vector_shape)): str_to_join.append(ascii_feature_vector[i]) str_to_join.append('->') for i in range(k): str_to_join.append(ascii_chi[i]) for i in range(len(feature_vector_shape)): str_to_join.append(ascii_feature_vector[i]) return ''.join(str_to_join) # THIS IS NOT IMPLEMENTED YET # Check tests/testing.py class CCN_Layer(tf.keras.layers.Layer): def __init__(self): super(CCN_Layer, self).__init__() self.k = 2 self.feature_vector_shape = [3] self.permutationFunction = alternativePermutationMatrix_AToB # Choose which permutation function to use (same results) self.einsum_expr = getEinsumExpression(self.k, self.feature_vector_shape) # promotion expression def build(self, input_shape): # add weights pass #raise NotImplementedError # self.kernel = self.add_variable("kernel", # shape=[int(input_shape[-1]), # self.num_outputs]) @tf.function def call(self, input): # Organizing inputs # only the first (tensors) should pass gradients to update W's # only the first and the third (tensors, parts) will change when propagating throughout network # parts will accumulate with receptive fields # tensors are activations from previous layer # adjM is constant 2D square matrix - used to retrieve number of neurons by its size # and to gather neurons to define new layer parts based on children parts tensors, adjM, parts = input # extract number of neurons from adjM number of rows (adjM is 2D square matrix) # this is here for option to decrease number of neurons in the following layers by shrinking adjM # e.g. neurons over leaf nodes in graph num_neurons = len(adjM) # contains information which neurons to gather signal from (for every neuron list) receptive_fields = [tf.where(adjM[i] == 1)[:, 0] for i in range(num_neurons)] # new, cumulative receptive fields (parts) based on adjM (for every neuron in current layer) # for every neuron i; # parts of every neuron in the receptive field of 'i' are reduced with union to get cumulative receptive fields new_parts = [reduce(OrderedSet.union, [parts[tensor_child_index] for tensor_child_index in receptive_fields[i]]) for i in range(num_neurons)] a_tensor = tf.convert_to_tensor(self.permutationFunction(parts[0], new_parts[0]), dtype=tf.float32) one_prom = tf.einsum(self.einsum_expr, *([a_tensor] * k + [tensors[0]])) # for every neuron i; # create promotion chi matrix for every neuron/node in i's receptive field chis = [{tensor_child_index.numpy(): tf.convert_to_tensor( self.permutationFunction(parts[tensor_child_index], new_parts[i]), dtype=tf.float32) for tensor_child_index in receptive_fields[i]} for i in range(num_neurons)] # for every neuron i; # promote every activation of nodes in i's receptive field # IMPORTANT: # (probably) This is where tf functions should start to be used because new structures are formed based on previous ones # and these new structures will ultimately 'transform' and mix with W to create activations promotions = [ [tf.einsum(self.einsum_expr, *([chis[i][tensor_child_index.numpy()]] * k + [tensors[tensor_child_index]])) for tensor_child_index in receptive_fields[i]] for i in range(num_neurons)] # print(promotions) return [promotions, adjM, new_parts]
the-stack_106_27176
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import io import os import setuptools # type: ignore version = "1.0.0" package_root = os.path.abspath(os.path.dirname(__file__)) readme_filename = os.path.join(package_root, "README.rst") with io.open(readme_filename, encoding="utf-8") as readme_file: readme = readme_file.read() setuptools.setup( name="google-cloud-compute", version=version, long_description=readme, author="Google LLC", author_email="[email protected]", license="Apache 2.0", url="https://github.com/googleapis/python-compute", packages=[ package for package in setuptools.PEP420PackageFinder.find() if package.startswith("google") ], namespace_packages=("google", "google.cloud"), platforms="Posix; MacOS X; Windows", include_package_data=True, install_requires=( "google-api-core[grpc] >= 2.2.0, <3.0.0dev", "proto-plus >= 1.19.7", "dataclasses >= 0.6; python_version < '3.7'", ), python_requires=">=3.6", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Internet", "Topic :: Software Development :: Libraries :: Python Modules", ], zip_safe=False, )
the-stack_106_27179
def double_sort(lst): """this sorting algorithm sorts an array using the principle of bubble sort, but does it both from left to right and right to left, hence i decided to call it "double sort" :param collection: mutable ordered sequence of elements :return: the same collection in ascending order Examples: >>> double_sort([-1 ,-2 ,-3 ,-4 ,-5 ,-6 ,-7]) [-7, -6, -5, -4, -3, -2, -1] >>> double_sort([]) [] >>> double_sort([-1 ,-2 ,-3 ,-4 ,-5 ,-6]) [-6, -5, -4, -3, -2, -1] >>> double_sort([-3, 10, 16, -42, 29]) == sorted([-3, 10, 16, -42, 29]) True """ no_of_elements = len(lst) for i in range( 0, int(((no_of_elements - 1) / 2) + 1) ): # we don't need to traverse to end of list as for j in range(0, no_of_elements - 1): if ( lst[j + 1] < lst[j] ): # applying bubble sort algorithm from left to right (or forwards) temp = lst[j + 1] lst[j + 1] = lst[j] lst[j] = temp if ( lst[no_of_elements - 1 - j] < lst[no_of_elements - 2 - j] ): # applying bubble sort algorithm from right to left (or backwards) temp = lst[no_of_elements - 1 - j] lst[no_of_elements - 1 - j] = lst[no_of_elements - 2 - j] lst[no_of_elements - 2 - j] = temp return lst if __name__ == "__main__": print("enter the list to be sorted") lst = [int(x) for x in input().split()] # inputing elements of the list in one line sorted_lst = double_sort(lst) print("the sorted list is") print(sorted_lst)
the-stack_106_27180
#encoding=utf8 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import collections from argparse import ArgumentParser import logging from pathlib import Path from functools import reduce, partial from operator import getitem from datetime import datetime import paddle.distributed as dist from logger import setup_logging from utils import read_json, write_json class ConfigParser: def __init__(self, config, resume=None, modification=None, run_id=None): """ class to parse configuration json file. Handles hyperparameters for training, initializations of modules, checkpoint saving and logging module. :param config: Dict containing configurations, hyperparameters for training. contents of `config.json` file for example. :param resume: String, path to the checkpoint being loaded. :param modification: Dict keychain:value, specifying position values to be replaced from config dict. :param run_id: Unique Identifier for training processes. Used to save checkpoints and training log. Timestamp is being used as default """ # load config file and apply modification self._config = _update_config(config, modification) self.resume = resume # str to bool, from modification or from default json file self.update_config('distributed', (self.config['distributed'] == 'true') or self.config['distributed'] is True) self.update_config('finetune', (self.config['finetune'] == 'true') or self.config['finetune'] is True) if (self.config['local_rank'] == 0 and self.config['distributed']) \ or (not self.config['distributed']): # only local master process create saved output dir # set save_dir where trained model and log will be saved. save_dir = Path(self.config['trainer']['save_dir']) log_dir = Path(self.config['trainer']['log_dir']) exper_name = self.config['name'] if run_id is None: # use timestamp as default run-id run_id = datetime.now().strftime(r'%m%d_%H%M%S') else: run_id = run_id + '_' + datetime.now().strftime(r'%m%d_%H%M%S') self._save_dir = save_dir / 'models' / exper_name / run_id if self.config['distributed']: self._log_dir = log_dir else: self._log_dir = save_dir / 'log' / exper_name / run_id # make directory for saving checkpoints and log. exist_ok = run_id == '' self.save_dir.mkdir(parents=False, exist_ok=True) self.log_dir.mkdir(parents=False, exist_ok=True) # save updated config file to the checkpoint dir, only local master save file write_json(self.config, self.save_dir / 'config.json') # configure logging module, only local master setup logging setup_logging(self.log_dir) self.log_levels = { 0: logging.WARNING, 1: logging.INFO, 2: logging.DEBUG } @classmethod def from_args(cls, args: ArgumentParser, options: collections.namedtuple = ''): """ Initialize this class from some cli arguments. Used in train, test. """ for opt in options: args.add_argument(*opt.flags, default=opt.default, type=opt.type, help=opt.help) if not isinstance(args, tuple): args = args.parse_args() if args.device is not None: os.environ["CUDA_VISIBLE_DEVICES"] = args.device if args.resume is not None: resume = Path(args.resume) if args.config is None: config_file_path = resume.parent / 'config.json' else: config_file_path = args.config else: msg_no_cfg = "Configuration file need to be specified. Add '-c config.json', for example." assert args.config is not None, msg_no_cfg resume = None config_file_path = Path(args.config) config = read_json(config_file_path) if args.config and resume and args.finetune == 'false': # update new config for resume (continue train), finetune mode will don not use previous config config.update(read_json(args.config)) try: if args.distributed is not None: config['distributed'] = (args.distributed == 'true') if not config['distributed']: # change to one gpu or cpu mode if not distributed setting. config['local_world_size'] = 1 if args.finetune is not None: config['finetune'] = (args.finetune == 'true') except Exception: pass # parse custom cli options into dictionary modification = {opt.target: getattr(args, _get_opt_name(opt.flags)) for opt in options} return cls(config, resume, modification, config['run_id']) def init_obj(self, name, module, *args, **kwargs): """ Finds a function handle with the name given as 'type' in config, and returns the instance initialized with corresponding arguments given. `object = config.init_obj('name', module, a, b=1)` is equivalent to `object = module.name(a, b=1)` """ module_name = self[name]['type'] module_args = dict(self[name]['args']) # assert all([k not in module_args for k in kwargs]), 'Overwriting kwargs given in config file is not allowed' module_args.update(kwargs) return getattr(module, module_name)(*args, **module_args) def init_ftn(self, name, module, *args, **kwargs): """ Finds a function handle with the name given as 'type' in config, and returns the function with given arguments fixed with functools.partial. `function = config.init_ftn('name', module, a, b=1)` is equivalent to `function = lambda *args, **kwargs: module.name(a, *args, b=1, **kwargs)`. """ module_name = self[name]['type'] module_args = dict(self[name]['args']) assert all([k not in module_args for k in kwargs]), 'Overwriting kwargs given in config file is not allowed' module_args.update(kwargs) return partial(getattr(module, module_name), *args, **module_args) def __getitem__(self, name): """Access items like ordinary dict.""" return self.config[name] def update_config(self, key, value): """Set config value ike ordinary dict. """ self.config[key] = value def get_logger(self, name, verbosity=2): msg_verbosity = 'verbosity option {} is invalid. Valid options are {}.'.format(verbosity, self.log_levels.keys()) assert verbosity in self.log_levels, msg_verbosity logger = logging.getLogger(name) logger.setLevel(self.log_levels[verbosity]) return logger # setting read-only attributes @property def config(self): return self._config @property def save_dir(self): return self._save_dir @property def log_dir(self): return self._log_dir # @property # def log_levels(self): # return self._log_levels # helper functions to update config dict with custom cli options def _update_config(config, modification): if modification is None: return config for k, v in modification.items(): if v is not None: _set_by_path(config, k, v) return config def _get_opt_name(flags): for flg in flags: if flg.startswith('--'): return flg.replace('--', '') return flags[0].replace('--', '') def _set_by_path(tree, keys, value): """Set a value in a nested object in tree by sequence of keys.""" keys = keys.split(';') _get_by_path(tree, keys[:-1])[keys[-1]] = value def _get_by_path(tree, keys): """Access a nested object in tree by sequence of keys.""" return reduce(getitem, keys, tree)
the-stack_106_27183
import numpy as np from scipy.linalg import orth from sklearn.preprocessing import normalize def gen_union_of_subspaces(ambient_dim, subspace_dim, num_subspaces, num_points_per_subspace, noise_level=0.0): """This funtion generates a union of subspaces under random model, i.e., subspaces are independently and uniformly distributed in the ambient space, data points are independently and uniformly distributed on the unit sphere of each subspace Parameters ----------- ambient_dim : int Dimention of the ambient space subspace_dim : int Dimension of each subspace (all subspaces have the same dimension) num_subspaces : int Number of subspaces to be generated num_points_per_subspace : int Number of data points from each of the subspaces noise_level : float Amount of Gaussian noise on data Returns ------- data : shape (num_subspaces * num_points_per_subspace) by ambient_dim Data matrix containing points drawn from a union of subspaces as its rows label : shape (num_subspaces * num_points_per_subspace) Membership of each data point to the subspace it lies in """ data = np.empty((num_points_per_subspace* num_subspaces, ambient_dim)) label = np.empty(num_points_per_subspace * num_subspaces, dtype=int) for i in range(num_subspaces): basis = np.random.normal(size=(ambient_dim, subspace_dim)) basis = orth(basis) coeff = np.random.normal(size=(subspace_dim, num_points_per_subspace)) coeff = normalize(coeff, norm='l2', axis=0, copy=False) data_per_subspace = np.matmul(basis, coeff).T base_index = i*num_points_per_subspace data[(0+base_index):(num_points_per_subspace+base_index), :] = data_per_subspace label[0+base_index:num_points_per_subspace+base_index,] = i data += np.random.normal(size=(num_points_per_subspace * num_subspaces, ambient_dim)) * noise_level return data, label
the-stack_106_27184
"""Depth Measures Module. This module includes different methods to order functional data, from the center (larger values) outwards(smaller ones).""" import itertools import scipy.integrate import numpy as np from . import multivariate from .multivariate import Depth __author__ = "Amanda Hernando Bernabé" __email__ = "[email protected]" class IntegratedDepth(Depth): r""" Functional depth as the integral of a multivariate depth. Args: multivariate_depth (Depth): Multivariate depth to integrate. By default it is the one used by Fraiman and Muniz, that is, .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.IntegratedDepth() >>> depth(fd) array([ 0.5 , 0.75 , 0.925, 0.875]) References: Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10(2), 419–440. https://doi.org/10.1007/BF02595706 """ def __init__(self, *, multivariate_depth=multivariate._UnivariateFraimanMuniz()): self.multivariate_depth = multivariate_depth def fit(self, X, y=None): self._domain_range = X.domain_range self._grid_points = X.grid_points self.multivariate_depth.fit(X.data_matrix) return self def predict(self, X): pointwise_depth = self.multivariate_depth.predict(X.data_matrix) interval_len = (self._domain_range[0][1] - self._domain_range[0][0]) integrand = pointwise_depth for d, s in zip(X.domain_range, X.grid_points): integrand = scipy.integrate.simps(integrand, x=s, axis=1) interval_len = d[1] - d[0] integrand /= interval_len return integrand @property def max(self): return self.multivariate_depth.max @property def min(self): return self.multivariate_depth.min class ModifiedBandDepth(IntegratedDepth): r""" Implementation of Modified Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of time its graph is contained in the bands determined by two sample curves. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.ModifiedBandDepth() >>> values = depth(fd) >>> values.round(2) array([ 0.5 , 0.83, 0.73, 0.67]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def __init__(self): super().__init__(multivariate_depth=multivariate.SimplicialDepth()) class BandDepth(Depth): r""" Implementation of Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of the bands determined by two sample curves containing the whole graph of the first one. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.BandDepth() >>> depth(fd) array([ 0.5 , 0.83333333, 0.5 , 0.5 ]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def fit(self, X, y=None): if X.dim_codomain != 1: raise NotImplementedError("Band depth not implemented for vector " "valued functions") self._distribution = X return self def predict(self, X): num_in = 0 n_total = 0 for f1, f2 in itertools.combinations(self._distribution, 2): between_range_1 = (f1.data_matrix <= X.data_matrix) & ( X.data_matrix <= f2.data_matrix) between_range_2 = (f2.data_matrix <= X.data_matrix) & ( X.data_matrix <= f1.data_matrix) between_range = between_range_1 | between_range_2 num_in += np.all(between_range, axis=tuple(range(1, X.data_matrix.ndim))) n_total += 1 return num_in / n_total
the-stack_106_27186
# -*- coding: UTF-8 -*- # A part of NonVisual Desktop Access (NVDA) # Copyright (C) 2007-2019 NV Access Limited, Peter Vágner, Renaud Paquay, Babbage B.V. # This file is covered by the GNU General Public License. # See the file COPYING for more details. import os import queue from ctypes import ( c_short, c_long, c_int, c_int64, c_bool, c_float, c_char, c_wchar, c_wchar_p, c_void_p, Structure, POINTER, byref, cdll, windll, CFUNCTYPE, WinError, create_string_buffer, create_unicode_buffer ) from ctypes.wintypes import BOOL, HWND, WCHAR import time import queueHandler from logHandler import log import winUser import api import eventHandler import controlTypes import NVDAObjects.JAB import core import textUtils import NVDAHelper import config import globalVars #: The path to the user's .accessibility.properties file, used #: to enable JAB. A11Y_PROPS_PATH = os.path.expanduser(r"~\.accessibility.properties") #: The content of ".accessibility.properties" when JAB is enabled. A11Y_PROPS_CONTENT = ( "assistive_technologies=com.sun.java.accessibility.AccessBridge\n" "screen_magnifier_present=true\n" ) #Some utility functions to help with function defines def _errcheck(res, func, args): if not res: raise RuntimeError("Result %s" % res) return res def _fixBridgeFunc(restype,name,*argtypes,**kwargs): try: func=getattr(bridgeDll,name) except AttributeError: log.warning("%s not found in Java Access Bridge dll"%name) return func.restype=restype func.argtypes=argtypes if kwargs.get('errcheck'): func.errcheck=_errcheck bridgeDll = None #Definitions of access bridge types, structs and prototypes jchar=c_wchar jint=c_int jfloat=c_float jboolean=c_bool class JOBJECT64(c_int64): pass AccessibleTable=JOBJECT64 MAX_STRING_SIZE=1024 SHORT_STRING_SIZE=256 class AccessBridgeVersionInfo(Structure): _fields_=[ ('VMVersion',WCHAR*SHORT_STRING_SIZE), ('bridgeJavaClassVersion',WCHAR*SHORT_STRING_SIZE), ('bridgeJavaDLLVersion',WCHAR*SHORT_STRING_SIZE), ('bridgeWinDLLVersion',WCHAR*SHORT_STRING_SIZE), ] class AccessibleContextInfo(Structure): _fields_=[ ('name',WCHAR*MAX_STRING_SIZE), ('description',WCHAR*MAX_STRING_SIZE), ('role',WCHAR*SHORT_STRING_SIZE), ('role_en_US',WCHAR*SHORT_STRING_SIZE), ('states',WCHAR*SHORT_STRING_SIZE), ('states_en_US',WCHAR*SHORT_STRING_SIZE), ('indexInParent',jint), ('childrenCount',jint), ('x',jint), ('y',jint), ('width',jint), ('height',jint), ('accessibleComponent',BOOL), ('accessibleAction',BOOL), ('accessibleSelection',BOOL), ('accessibleText',BOOL), ('accessibleValue',BOOL), ] class AccessibleTextInfo(Structure): _fields_=[ ('charCount',jint), ('caretIndex',jint), ('indexAtPoint',jint), ] class AccessibleTextItemsInfo(Structure): _fields_=[ ('letter',WCHAR), ('word',WCHAR*SHORT_STRING_SIZE), ('sentence',WCHAR*MAX_STRING_SIZE), ] class AccessibleTextSelectionInfo(Structure): _fields_=[ ('selectionStartIndex',jint), ('selectionEndIndex',jint), ('selectedText',WCHAR*MAX_STRING_SIZE), ] class AccessibleTextRectInfo(Structure): _fields_=[ ('x',jint), ('y',jint), ('width',jint), ('height',jint), ] class AccessibleTextAttributesInfo(Structure): _fields_=[ ('bold',BOOL), ('italic',BOOL), ('underline',BOOL), ('strikethrough',BOOL), ('superscript',BOOL), ('subscript',BOOL), ('backgroundColor',WCHAR*SHORT_STRING_SIZE), ('foregroundColor',WCHAR*SHORT_STRING_SIZE), ('fontFamily',WCHAR*SHORT_STRING_SIZE), ('fontSize',jint), ('alignment',jint), ('bidiLevel',jint), ('firstLineIndent',jfloat), ('LeftIndent',jfloat), ('rightIndent',jfloat), ('lineSpacing',jfloat), ('spaceAbove',jfloat), ('spaceBelow',jfloat), ('fullAttributesString',WCHAR*MAX_STRING_SIZE), ] MAX_RELATION_TARGETS = 25 MAX_RELATIONS = 5 class AccessibleRelationInfo(Structure): _fields_ = [ ("key", WCHAR * SHORT_STRING_SIZE), ("targetCount", jint), ("targets", JOBJECT64 * MAX_RELATION_TARGETS), ] class AccessibleRelationSetInfo(Structure): _fields_ = [ ("relationCount", jint), ("relations", AccessibleRelationInfo * MAX_RELATIONS), ] MAX_ACTION_INFO = 256 MAX_ACTIONS_TO_DO = 32 class AccessibleActionInfo(Structure): _fields_ = ( ("name", c_wchar * SHORT_STRING_SIZE), ) class AccessibleActions(Structure): _fields_ = ( ("actionsCount", jint), ("actionInfo", AccessibleActionInfo * MAX_ACTION_INFO), ) class AccessibleActionsToDo(Structure): _fields_ = ( ("actionsCount", jint), ("actions", AccessibleActionInfo * MAX_ACTIONS_TO_DO), ) class AccessibleTableInfo(Structure): _fields_=[ ('caption',JOBJECT64), ('summary',JOBJECT64), ('rowCount',jint), ('columnCount',jint), ('accessibleContext',JOBJECT64), ('accessibleTable',JOBJECT64), ] class AccessibleTableCellInfo(Structure): _fields_=[ ('accessibleContext',JOBJECT64), ('index',jint), ('row',jint), ('column',jint), ('rowExtent',jint), ('columnExtent',jint), ('isSelected',jboolean), ] MAX_KEY_BINDINGS=50 ACCESSIBLE_SHIFT_KEYSTROKE=1 ACCESSIBLE_CONTROL_KEYSTROKE=2 ACCESSIBLE_META_KEYSTROKE=4 ACCESSIBLE_ALT_KEYSTROKE=8 ACCESSIBLE_ALT_GRAPH_KEYSTROKE=16 ACCESSIBLE_BUTTON1_KEYSTROKE=32 ACCESSIBLE_BUTTON2_KEYSTROKE=64 ACCESSIBLE_BUTTON3_KEYSTROKE=128 class AccessibleKeyBindingInfo(Structure): _fields_=[ ('character',jchar), ('modifiers',jint), ] class AccessibleKeyBindings(Structure): _fields_=[ ('keyBindingsCount',c_int), ('keyBindingInfo',AccessibleKeyBindingInfo*MAX_KEY_BINDINGS), ] AccessBridge_FocusGainedFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64) AccessBridge_PropertyNameChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,c_wchar_p,c_wchar_p) AccessBridge_PropertyDescriptionChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,c_wchar_p,c_wchar_p) AccessBridge_PropertyValueChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,c_wchar_p,c_wchar_p) AccessBridge_PropertyStateChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,c_wchar_p,c_wchar_p) AccessBridge_PropertyCaretChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,c_int,c_int) AccessBridge_PropertyActiveDescendentChangeFP=CFUNCTYPE(None,c_long,JOBJECT64,JOBJECT64,JOBJECT64,JOBJECT64) def _fixBridgeFuncs(): """Appropriately set the return and argument types of all the access bridge dll functions """ _fixBridgeFunc(None,'Windows_run') _fixBridgeFunc(None,'setFocusGainedFP',c_void_p) _fixBridgeFunc(None,'setPropertyNameChangeFP',c_void_p) _fixBridgeFunc(None,'setPropertyDescriptionChangeFP',c_void_p) _fixBridgeFunc(None,'setPropertyValueChangeFP',c_void_p) _fixBridgeFunc(None,'setPropertyStateChangeFP',c_void_p) _fixBridgeFunc(None,'setPropertyCaretChangeFP',c_void_p) _fixBridgeFunc(None,'setPropertyActiveDescendentChangeFP',c_void_p) _fixBridgeFunc(None,'releaseJavaObject',c_long,JOBJECT64) _fixBridgeFunc(BOOL,'getVersionInfo',POINTER(AccessBridgeVersionInfo),errcheck=True) _fixBridgeFunc(BOOL,'isJavaWindow',HWND) _fixBridgeFunc(BOOL,'isSameObject',c_long,JOBJECT64,JOBJECT64) _fixBridgeFunc(BOOL,'getAccessibleContextFromHWND',HWND,POINTER(c_long),POINTER(JOBJECT64),errcheck=True) _fixBridgeFunc(HWND,'getHWNDFromAccessibleContext',c_long,JOBJECT64,errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleContextAt',c_long,JOBJECT64,jint,jint,POINTER(JOBJECT64),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleContextWithFocus',HWND,POINTER(c_long),POINTER(JOBJECT64),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleContextInfo',c_long,JOBJECT64,POINTER(AccessibleContextInfo),errcheck=True) _fixBridgeFunc(JOBJECT64,'getAccessibleChildFromContext',c_long,JOBJECT64,jint,errcheck=True) _fixBridgeFunc(JOBJECT64,'getAccessibleParentFromContext',c_long,JOBJECT64) _fixBridgeFunc(JOBJECT64,'getParentWithRole',c_long,JOBJECT64,POINTER(c_wchar)) _fixBridgeFunc(BOOL,'getAccessibleRelationSet',c_long,JOBJECT64,POINTER(AccessibleRelationSetInfo),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTextInfo',c_long,JOBJECT64,POINTER(AccessibleTextInfo),jint,jint,errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTextItems',c_long,JOBJECT64,POINTER(AccessibleTextItemsInfo),jint,errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTextSelectionInfo',c_long,JOBJECT64,POINTER(AccessibleTextSelectionInfo),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTextAttributes',c_long,JOBJECT64,jint,POINTER(AccessibleTextAttributesInfo),errcheck=True) _fixBridgeFunc( BOOL, 'getAccessibleTextRect', c_long, JOBJECT64, POINTER(AccessibleTextRectInfo), jint, errcheck=True ) _fixBridgeFunc(BOOL,'getAccessibleTextLineBounds',c_long,JOBJECT64,jint,POINTER(jint),POINTER(jint),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTextRange',c_long,JOBJECT64,jint,jint,POINTER(c_char),c_short,errcheck=True) _fixBridgeFunc(BOOL,'getCurrentAccessibleValueFromContext',c_long,JOBJECT64,POINTER(c_wchar),c_short,errcheck=True) _fixBridgeFunc(BOOL,'selectTextRange',c_long,JOBJECT64,c_int,c_int,errcheck=True) _fixBridgeFunc(BOOL,'getTextAttributesInRange',c_long,JOBJECT64,c_int,c_int,POINTER(AccessibleTextAttributesInfo),POINTER(c_short),errcheck=True) _fixBridgeFunc(JOBJECT64,'getTopLevelObject',c_long,JOBJECT64,errcheck=True) _fixBridgeFunc(c_int,'getObjectDepth',c_long,JOBJECT64) _fixBridgeFunc(JOBJECT64,'getActiveDescendent',c_long,JOBJECT64) _fixBridgeFunc(BOOL,'requestFocus',c_long,JOBJECT64,errcheck=True) _fixBridgeFunc(BOOL,'setCaretPosition',c_long,JOBJECT64,c_int,errcheck=True) _fixBridgeFunc(BOOL,'getCaretLocation',c_long,JOBJECT64,POINTER(AccessibleTextRectInfo),jint,errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleActions',c_long,JOBJECT64,POINTER(AccessibleActions),errcheck=True) _fixBridgeFunc(BOOL,'doAccessibleActions',c_long,JOBJECT64,POINTER(AccessibleActionsToDo),POINTER(jint),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTableInfo',c_long,JOBJECT64,POINTER(AccessibleTableInfo)) _fixBridgeFunc(BOOL,'getAccessibleTableCellInfo',c_long,AccessibleTable,jint,jint,POINTER(AccessibleTableCellInfo),errcheck=True) _fixBridgeFunc(BOOL,'getAccessibleTableRowHeader',c_long,JOBJECT64,POINTER(AccessibleTableInfo)) _fixBridgeFunc(BOOL,'getAccessibleTableColumnHeader',c_long,JOBJECT64,POINTER(AccessibleTableInfo)) _fixBridgeFunc(JOBJECT64,'getAccessibleTableRowDescription',c_long,JOBJECT64,jint) _fixBridgeFunc(JOBJECT64,'getAccessibleTableColumnDescription',c_long,JOBJECT64,jint) _fixBridgeFunc(jint,'getAccessibleTableRow',c_long,AccessibleTable,jint) _fixBridgeFunc(jint,'getAccessibleTableColumn',c_long,AccessibleTable,jint) _fixBridgeFunc(jint,'getAccessibleTableIndex',c_long,AccessibleTable,jint,jint) _fixBridgeFunc(BOOL,'getAccessibleKeyBindings',c_long,JOBJECT64,POINTER(AccessibleKeyBindings),errcheck=True) #NVDA specific code isRunning=False # Cache of the last active window handle for a given JVM ID. In theory, this # cache should not be needed, as it should always be possible to retrieve the # window handle of a given accessible context by calling getTopLevelObject then # getHWNDFromAccessibleContext. However, getTopLevelObject sometimes returns # accessible contexts that make getHWNDFromAccessibleContext fail. To workaround # the issue, we use this cache as a fallback when either getTopLevelObject or # getHWNDFromAccessibleContext fails. vmIDsToWindowHandles={} internalFunctionQueue=queue.Queue(1000) internalFunctionQueue.__name__="JABHandler.internalFunctionQueue" def internalQueueFunction(func,*args,**kwargs): internalFunctionQueue.put_nowait((func,args,kwargs)) core.requestPump() def internal_getWindowHandleFromAccContext(vmID,accContext): try: topAC=bridgeDll.getTopLevelObject(vmID,accContext) try: return bridgeDll.getHWNDFromAccessibleContext(vmID,topAC) finally: bridgeDll.releaseJavaObject(vmID,topAC) except: return None def getWindowHandleFromAccContext(vmID,accContext): hwnd=internal_getWindowHandleFromAccContext(vmID,accContext) if hwnd: vmIDsToWindowHandles[vmID]=hwnd return hwnd else: return vmIDsToWindowHandles.get(vmID) class JABContext(object): def __init__(self,hwnd=None,vmID=None,accContext=None): if hwnd and not vmID: vmID=c_long() accContext=JOBJECT64() bridgeDll.getAccessibleContextFromHWND(hwnd,byref(vmID),byref(accContext)) #Record this vm ID and window handle for later use with other objects vmID=vmID.value vmIDsToWindowHandles[vmID]=hwnd elif vmID and not hwnd: hwnd = getWindowHandleFromAccContext(vmID,accContext) self.hwnd=hwnd self.vmID=vmID self.accContext=accContext def __del__(self): if isRunning: try: bridgeDll.releaseJavaObject(self.vmID,self.accContext) except: log.debugWarning("Error releasing java object",exc_info=True) def __eq__(self,jabContext): if self.vmID==jabContext.vmID and bridgeDll.isSameObject(self.vmID,self.accContext,jabContext.accContext): return True else: return False # As __eq__ was defined on this class, we must provide __hash__ to remain hashable. # The default hash implementation is fine for our purposes. def __hash__(self): return super().__hash__() def __ne__(self,jabContext): if self.vmID!=jabContext.vmID or not bridgeDll.isSameObject(self.vmID,self.accContext,jabContext.accContext): return True else: return False def getVersionInfo(self): info=AccessBridgeVersionInfo() bridgeDll.getVersionInfo(self.vmID,byref(info)) return info def getObjectDepth(self): return bridgeDll.getObjectDepth(self.vmID,self.accContext) def getAccessibleContextInfo(self): info=AccessibleContextInfo() bridgeDll.getAccessibleContextInfo(self.vmID,self.accContext,byref(info)) return info def getAccessibleTextInfo(self,x,y): textInfo=AccessibleTextInfo() bridgeDll.getAccessibleTextInfo(self.vmID,self.accContext,byref(textInfo),x,y) return textInfo def getAccessibleTextItems(self,index): textItemsInfo=AccessibleTextItemsInfo() bridgeDll.getAccessibleTextItems(self.vmID,self.accContext,byref(textItemsInfo),index) return textItemsInfo def getAccessibleTextSelectionInfo(self): textSelectionInfo=AccessibleTextSelectionInfo() bridgeDll.getAccessibleTextSelectionInfo(self.vmID,self.accContext,byref(textSelectionInfo)) return textSelectionInfo def getAccessibleTextRange(self,start,end): length=((end+1)-start) if length<=0: return u"" # Use a string buffer, as from an unicode buffer, we can't get the raw data. buf = create_string_buffer((length +1) * 2) bridgeDll.getAccessibleTextRange(self.vmID, self.accContext, start, end, buf, length) return textUtils.getTextFromRawBytes(buf.raw, numChars=length, encoding=textUtils.WCHAR_ENCODING) def getAccessibleTextLineBounds(self,index): index=max(index,0) log.debug("lineBounds: index %s"%index) #Java returns end as the last character, not end as past the last character startIndex=c_int() endIndex=c_int() bridgeDll.getAccessibleTextLineBounds(self.vmID,self.accContext,index,byref(startIndex),byref(endIndex)) start=startIndex.value end=endIndex.value log.debug("line bounds: start %s, end %s"%(start,end)) if end<start or start<0: # Invalid or empty line. return (0,-1) ok=False # OpenOffice sometimes returns offsets encompassing more than one line, so try to narrow them down. # Try to retract the end offset. while not ok: bridgeDll.getAccessibleTextLineBounds(self.vmID,self.accContext,end,byref(startIndex),byref(endIndex)) tempStart=max(startIndex.value,0) tempEnd=max(endIndex.value,0) log.debug("line bounds: tempStart %s, tempEnd %s"%(tempStart,tempEnd)) if tempStart>(index+1): # This line starts after the requested index, so set end to point at the line before. end=tempStart-1 else: ok=True ok=False # Try to retract the start. while not ok: bridgeDll.getAccessibleTextLineBounds(self.vmID,self.accContext,start,byref(startIndex),byref(endIndex)) tempStart=max(startIndex.value,0) tempEnd=max(endIndex.value,0) log.debug("line bounds: tempStart %s, tempEnd %s"%(tempStart,tempEnd)) if tempEnd<(index-1): # This line ends before the requested index, so set start to point at the line after. start=tempEnd+1 else: ok=True log.debug("line bounds: returning %s, %s"%(start,end)) return (start,end) def getAccessibleParentFromContext(self): accContext=bridgeDll.getAccessibleParentFromContext(self.vmID,self.accContext) if accContext: return self.__class__(self.hwnd,self.vmID,accContext) else: return None def getAccessibleParentWithRole(self, role): accContext=bridgeDll.getParentWithRole(self.vmID,self.accContext, role) if accContext: return self.__class__(self.hwnd,self.vmID,accContext) else: return None def getAccessibleChildFromContext(self,index): accContext=bridgeDll.getAccessibleChildFromContext(self.vmID,self.accContext,index) if accContext: return self.__class__(self.hwnd,self.vmID,accContext) else: return None def getActiveDescendent(self): accContext=bridgeDll.getActiveDescendent(self.vmID,self.accContext) if accContext: return self.__class__(self.hwnd,self.vmID,accContext) else: return None def getAccessibleContextAt(self,x,y): newAccContext=JOBJECT64() res=bridgeDll.getAccessibleContextAt(self.vmID,self.accContext,x,y,byref(newAccContext)) if not res or not newAccContext: return None if not bridgeDll.isSameObject(self.vmID,newAccContext,self.accContext): return self.__class__(self.hwnd,self.vmID,newAccContext) elif newAccContext!=self.accContext: bridgeDll.releaseJavaObject(self.vmID,newAccContext) return None def getCurrentAccessibleValueFromContext(self): buf=create_unicode_buffer(SHORT_STRING_SIZE+1) bridgeDll.getCurrentAccessibleValueFromContext(self.vmID,self.accContext,buf,SHORT_STRING_SIZE) return buf.value def selectTextRange(self,start,end): bridgeDll.selectTextRange(start,end) def setCaretPosition(self,offset): bridgeDll.setCaretPosition(self.vmID,self.accContext,offset) def getTextAttributesInRange(self, startIndex, endIndex): attributes = AccessibleTextAttributesInfo() length = c_short() bridgeDll.getTextAttributesInRange(self.vmID, self.accContext, startIndex, endIndex, byref(attributes), byref(length)) return attributes, length.value def getAccessibleTextRect(self, index): rect = AccessibleTextRectInfo() bridgeDll.getAccessibleTextRect(self.vmID, self.accContext, byref(rect), index) return rect def getAccessibleRelationSet(self): relations = AccessibleRelationSetInfo() bridgeDll.getAccessibleRelationSet(self.vmID, self.accContext, byref(relations)) return relations def getAccessibleTableInfo(self): info=AccessibleTableInfo() if bridgeDll.getAccessibleTableInfo(self.vmID,self.accContext,byref(info)): # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. info.jabCaption=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.caption) if info.caption else None info.jabSummary=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.summary) if info.summary else None info.jabContext=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleContext) if info.accessibleContext else None info.jabTable=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleTable) if info.accessibleTable else None return info def getAccessibleTableCellInfo(self,row,col): info=AccessibleTableCellInfo() if bridgeDll.getAccessibleTableCellInfo(self.vmID,self.accContext,row,col,byref(info)): # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. info.jabContext=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleContext) if info.accessibleContext else None return info def getAccessibleTableRow(self,index): return bridgeDll.getAccessibleTableRow(self.vmID,self.accContext,index) def getAccessibleTableColumn(self,index): return bridgeDll.getAccessibleTableColumn(self.vmID,self.accContext,index) def getAccessibleTableRowHeader(self): info=AccessibleTableInfo() if bridgeDll.getAccessibleTableRowHeader(self.vmID,self.accContext,byref(info)): # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. info.jabCaption=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.caption) if info.caption else None info.jabSummary=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.summary) if info.summary else None info.jabContext=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleContext) if info.accessibleContext else None info.jabTable=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleTable) if info.accessibleTable else None return info def getAccessibleTableRowDescription(self,row): accContext=bridgeDll.getAccessibleTableRowDescription(self.vmID,self.accContext,row) if accContext: # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. return JABContext(hwnd=self.hwnd, vmID=self.vmID, accContext=accContext) def getAccessibleTableColumnHeader(self): info=AccessibleTableInfo() if bridgeDll.getAccessibleTableColumnHeader(self.vmID,self.accContext,byref(info)): # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. info.jabCaption=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.caption) if info.caption else None info.jabSummary=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.summary) if info.summary else None info.jabContext=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleContext) if info.accessibleContext else None info.jabTable=JABContext(hwnd=self.hwnd,vmID=self.vmID,accContext=info.accessibleTable) if info.accessibleTable else None return info def getAccessibleTableColumnDescription(self,column): accContext=bridgeDll.getAccessibleTableColumnDescription(self.vmID,self.accContext,column) if accContext: # #6992: Querying the hwnd for table related objects can cause the app to crash. # A table is almost certainly contained within a single hwnd, # so just pass the hwnd for the querying object. return JABContext(hwnd=self.hwnd, vmID=self.vmID, accContext=accContext) def getAccessibleKeyBindings(self): bindings=AccessibleKeyBindings() if bridgeDll.getAccessibleKeyBindings(self.vmID,self.accContext,byref(bindings)): return bindings @AccessBridge_FocusGainedFP def internal_event_focusGained(vmID, event,source): hwnd=getWindowHandleFromAccContext(vmID,source) internalQueueFunction(event_gainFocus,vmID,source,hwnd) bridgeDll.releaseJavaObject(vmID,event) def event_gainFocus(vmID,accContext,hwnd): jabContext=JABContext(hwnd=hwnd,vmID=vmID,accContext=accContext) if not winUser.isDescendantWindow(winUser.getForegroundWindow(),jabContext.hwnd): return focus=eventHandler.lastQueuedFocusObject if (isinstance(focus,NVDAObjects.JAB.JAB) and focus.jabContext==jabContext): return obj=NVDAObjects.JAB.JAB(jabContext=jabContext) if obj.role==controlTypes.ROLE_UNKNOWN: return eventHandler.queueEvent("gainFocus",obj) @AccessBridge_PropertyActiveDescendentChangeFP def internal_event_activeDescendantChange(vmID, event,source,oldDescendant,newDescendant): hwnd=getWindowHandleFromAccContext(vmID,source) internalQueueFunction(event_gainFocus,vmID,newDescendant,hwnd) for accContext in [event,oldDescendant]: bridgeDll.releaseJavaObject(vmID,accContext) @AccessBridge_PropertyNameChangeFP def event_nameChange(vmID,event,source,oldVal,newVal): jabContext=JABContext(vmID=vmID,accContext=source) focus=api.getFocusObject() if isinstance(focus, NVDAObjects.JAB.JAB) and focus.jabContext == jabContext: obj = focus else: obj = NVDAObjects.JAB.JAB(jabContext=jabContext) if obj: eventHandler.queueEvent("nameChange", obj) bridgeDll.releaseJavaObject(vmID,event) @AccessBridge_PropertyDescriptionChangeFP def event_descriptionChange(vmID,event,source,oldVal,newVal): jabContext=JABContext(vmID=vmID,accContext=source) focus=api.getFocusObject() if isinstance(focus, NVDAObjects.JAB.JAB) and focus.jabContext == jabContext: obj = focus else: obj = NVDAObjects.JAB.JAB(jabContext=jabContext) if obj: eventHandler.queueEvent("descriptionChange", obj) bridgeDll.releaseJavaObject(vmID,event) @AccessBridge_PropertyValueChangeFP def event_valueChange(vmID,event,source,oldVal,newVal): jabContext=JABContext(vmID=vmID,accContext=source) focus=api.getFocusObject() if isinstance(focus, NVDAObjects.JAB.JAB) and focus.jabContext == jabContext: obj = focus else: obj = NVDAObjects.JAB.JAB(jabContext=jabContext) if obj: eventHandler.queueEvent("valueChange", obj) bridgeDll.releaseJavaObject(vmID,event) @AccessBridge_PropertyStateChangeFP def internal_event_stateChange(vmID,event,source,oldState,newState): internalQueueFunction(event_stateChange,vmID,source,oldState,newState) bridgeDll.releaseJavaObject(vmID,event) def event_stateChange(vmID,accContext,oldState,newState): jabContext=JABContext(vmID=vmID,accContext=accContext) focus=api.getFocusObject() #For broken tabs and menus, we need to watch for things being selected and pretend its a focus change stateList=newState.split(',') if "focused" in stateList or "selected" in stateList: obj=NVDAObjects.JAB.JAB(jabContext=jabContext) if not obj: return if focus!=obj and eventHandler.lastQueuedFocusObject!=obj and obj.role in (controlTypes.ROLE_MENUITEM,controlTypes.ROLE_TAB,controlTypes.ROLE_MENU): eventHandler.queueEvent("gainFocus",obj) return if isinstance(focus,NVDAObjects.JAB.JAB) and focus.jabContext==jabContext: obj=focus else: obj=NVDAObjects.JAB.JAB(jabContext=jabContext) if not obj: return eventHandler.queueEvent("stateChange",obj) @AccessBridge_PropertyCaretChangeFP def internal_event_caretChange(vmID, event,source,oldPos,newPos): hwnd=getWindowHandleFromAccContext(vmID,source) if oldPos<0 and newPos>=0: internalQueueFunction(event_gainFocus,vmID,source,hwnd) else: internalQueueFunction(event_caret,vmID,source,hwnd) bridgeDll.releaseJavaObject(vmID,event) def event_caret(vmID, accContext, hwnd): jabContext = JABContext(hwnd=hwnd, vmID=vmID, accContext=accContext) focus = api.getFocusObject() if isinstance(focus, NVDAObjects.JAB.JAB) and focus.jabContext == jabContext: obj = focus else: obj = NVDAObjects.JAB.JAB(jabContext=jabContext) if not obj: return eventHandler.queueEvent("caret", obj) def event_enterJavaWindow(hwnd): internalQueueFunction(enterJavaWindow_helper,hwnd) def enterJavaWindow_helper(hwnd): vmID=c_long() accContext=JOBJECT64() timeout=time.time()+0.2 while time.time()<timeout and not eventHandler.isPendingEvents("gainFocus"): try: bridgeDll.getAccessibleContextWithFocus(hwnd,byref(vmID),byref(accContext)) except: pass if vmID and accContext: break time.sleep(0.01) if not vmID or not accContext: try: bridgeDll.getAccessibleContextFromHWND(hwnd,byref(vmID),byref(accContext)) except: return vmID=vmID.value vmIDsToWindowHandles[vmID]=hwnd lastFocus=eventHandler.lastQueuedFocusObject if isinstance(lastFocus,NVDAObjects.JAB.JAB) and lastFocus.windowHandle==hwnd: return event_gainFocus(vmID,accContext,hwnd) def isJavaWindow(hwnd): if not bridgeDll or not isRunning: return False return bridgeDll.isJavaWindow(hwnd) def isBridgeEnabled(): try: data = open(A11Y_PROPS_PATH, "rt").read() except OSError: return False return data == A11Y_PROPS_CONTENT def enableBridge(): try: props = open(A11Y_PROPS_PATH, "wt") props.write(A11Y_PROPS_CONTENT) log.info("Enabled Java Access Bridge for user") except OSError: log.warning("Couldn't enable Java Access Bridge for user", exc_info=True) def initialize(): global bridgeDll, isRunning try: bridgeDll = cdll.LoadLibrary( os.path.join(NVDAHelper.versionedLibPath, "windowsaccessbridge-32.dll")) except WindowsError: raise NotImplementedError("dll not available") _fixBridgeFuncs() if ( not globalVars.appArgs.secure and config.isInstalledCopy() and not isBridgeEnabled() ): enableBridge() # Accept wm_copydata and any wm_user messages from other processes even if running with higher privileges if not windll.user32.ChangeWindowMessageFilter(winUser.WM_COPYDATA, 1): raise WinError() for msg in range(winUser.WM_USER + 1, 0xffff): if not windll.user32.ChangeWindowMessageFilter(msg, 1): raise WinError() bridgeDll.Windows_run() # Register java events bridgeDll.setFocusGainedFP(internal_event_focusGained) bridgeDll.setPropertyActiveDescendentChangeFP(internal_event_activeDescendantChange) bridgeDll.setPropertyNameChangeFP(event_nameChange) bridgeDll.setPropertyDescriptionChangeFP(event_descriptionChange) bridgeDll.setPropertyValueChangeFP(event_valueChange) bridgeDll.setPropertyStateChangeFP(internal_event_stateChange) bridgeDll.setPropertyCaretChangeFP(internal_event_caretChange) isRunning=True def pumpAll(): if isRunning: queueHandler.flushQueue(internalFunctionQueue) def terminate(): global isRunning, bridgeDll if not bridgeDll or not isRunning: return bridgeDll.setFocusGainedFP(None) bridgeDll.setPropertyActiveDescendentChangeFP(None) bridgeDll.setPropertyStateChangeFP(None) bridgeDll.setPropertyCaretChangeFP(None) h=bridgeDll._handle bridgeDll=None windll.kernel32.FreeLibrary(h) isRunning=False
the-stack_106_27188
from __future__ import unicode_literals import os import codecs from subprocess import call from SourceFile import SourceFile class ReconstructionBlock: def __init__(self, name, nextBlock=None): self.name = name self.nextBlock = nextBlock os.makedirs("output/"+self.name) def process(self, project): print("[CON] Making dir: output/%s/%s" % (self.name, project.projectId)) os.makedirs("output/%s/%s" % (self.name, project.projectId)) for f in project.files: if len(f.name.split('/')) > 1: theDir = "output/%s/%s/%s" % (self.name, project.projectId, f.name[:f.name.rfind('/')]) try: os.stat(theDir) except: os.makedirs(theDir) print("[CON] making subdirs %s" % theDir) with codecs.open("output/%s/%s/%s" % (self.name, project.projectId, f.name), "w+", encoding="utf-8") as output: #print("[CON] call print compile output with: src: %s mastereventid: %s" % (str(f.sourceFileId), str(f.masterEventId))) # gives searching rest as content (useless) #call(["/tools/nccb/bin/print-compile-input", "/data/compile-inputs", str(f.sourceFileId), str(f.masterEventId)], stdout=output) # slower but hopefully better print("[CON] call print source state with: src: %s mastereventid: %s" % (str(f.sourceFileId), str(f.masterEventId))) call(["/tools/nccb/bin/print-source-state", str(f.sourceFileId), str(f.masterEventId)], stdout=output) if self.nextBlock is not None: self.nextBlock.process(project)
the-stack_106_27191
# Copyright 2021 solo-learn development team. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import os from pathlib import Path from typing import Callable, Optional, Tuple, Union import torchvision from torch import nn from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets import STL10, ImageFolder def build_custom_pipeline(): """Builds augmentation pipelines for custom data. If you want to do exoteric augmentations, you can just re-write this function. Needs to return a dict with the same structure. """ pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), "T_val": transforms.Compose( [ transforms.Resize(256), # resize shorter transforms.CenterCrop(224), # take center crop transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), } return pipeline def prepare_transforms(dataset: str) -> Tuple[nn.Module, nn.Module]: """Prepares pre-defined train and test transformation pipelines for some datasets. Args: dataset (str): dataset name. Returns: Tuple[nn.Module, nn.Module]: training and validation transformation pipelines. """ cifar_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=32, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ] ), "T_val": transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), ] ), } stl_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=96, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261)), ] ), "T_val": transforms.Compose( [ transforms.Resize((96, 96)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4823, 0.4466), (0.247, 0.243, 0.261)), ] ), } imagenet_pipeline = { "T_train": transforms.Compose( [ transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), "T_val": transforms.Compose( [ transforms.Resize(256), # resize shorter transforms.CenterCrop(224), # take center crop transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.228, 0.224, 0.225)), ] ), } custom_pipeline = build_custom_pipeline() pipelines = { "cifar10": cifar_pipeline, "cifar100": cifar_pipeline, "stl10": stl_pipeline, "imagenet100": imagenet_pipeline, "imagenet": imagenet_pipeline, "custom": custom_pipeline, } assert dataset in pipelines pipeline = pipelines[dataset] T_train = pipeline["T_train"] T_val = pipeline["T_val"] return T_train, T_val def prepare_datasets( dataset: str, T_train: Callable, T_val: Callable, data_dir: Optional[Union[str, Path]] = None, train_dir: Optional[Union[str, Path]] = None, val_dir: Optional[Union[str, Path]] = None, ) -> Tuple[Dataset, Dataset]: """Prepares train and val datasets. Args: dataset (str): dataset name. T_train (Callable): pipeline of transformations for training dataset. T_val (Callable): pipeline of transformations for validation dataset. data_dir Optional[Union[str, Path]]: path where to download/locate the dataset. train_dir Optional[Union[str, Path]]: subpath where the training data is located. val_dir Optional[Union[str, Path]]: subpath where the validation data is located. Returns: Tuple[Dataset, Dataset]: training dataset and validation dataset. """ if data_dir is None: sandbox_dir = Path(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) data_dir = sandbox_dir / "datasets" else: data_dir = Path(data_dir) if train_dir is None: train_dir = Path(f"{dataset}/train") else: train_dir = Path(train_dir) if val_dir is None: val_dir = Path(f"{dataset}/val") else: val_dir = Path(val_dir) assert dataset in ["cifar10", "cifar100", "stl10", "imagenet", "imagenet100", "custom"] if dataset in ["cifar10", "cifar100"]: DatasetClass = vars(torchvision.datasets)[dataset.upper()] train_dataset = DatasetClass( data_dir / train_dir, train=True, download=True, transform=T_train, ) val_dataset = DatasetClass( data_dir / val_dir, train=False, download=True, transform=T_val, ) elif dataset == "stl10": train_dataset = STL10( data_dir / train_dir, split="train", download=True, transform=T_train, ) val_dataset = STL10( data_dir / val_dir, split="test", download=True, transform=T_val, ) elif dataset in ["imagenet", "imagenet100", "custom"]: train_dir = data_dir / train_dir val_dir = data_dir / val_dir train_dataset = ImageFolder(train_dir, T_train) val_dataset = ImageFolder(val_dir, T_val) return train_dataset, val_dataset def prepare_dataloaders( train_dataset: Dataset, val_dataset: Dataset, batch_size: int = 64, num_workers: int = 4 ) -> Tuple[DataLoader, DataLoader]: """Wraps a train and a validation dataset with a DataLoader. Args: train_dataset (Dataset): object containing training data. val_dataset (Dataset): object containing validation data. batch_size (int): batch size. num_workers (int): number of parallel workers. Returns: Tuple[DataLoader, DataLoader]: training dataloader and validation dataloader. """ train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True, ) val_loader = DataLoader( val_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=False, ) return train_loader, val_loader def prepare_data( dataset: str, data_dir: Optional[Union[str, Path]] = None, train_dir: Optional[Union[str, Path]] = None, val_dir: Optional[Union[str, Path]] = None, batch_size: int = 64, num_workers: int = 4, ) -> Tuple[DataLoader, DataLoader]: """Prepares transformations, creates dataset objects and wraps them in dataloaders. Args: dataset (str): dataset name. data_dir (Optional[Union[str, Path]], optional): path where to download/locate the dataset. Defaults to None. train_dir (Optional[Union[str, Path]], optional): subpath where the training data is located. Defaults to None. val_dir (Optional[Union[str, Path]], optional): subpath where the validation data is located. Defaults to None. batch_size (int, optional): batch size. Defaults to 64. num_workers (int, optional): number of parallel workers. Defaults to 4. Returns: Tuple[DataLoader, DataLoader]: prepared training and validation dataloader;. """ T_train, T_val = prepare_transforms(dataset) train_dataset, val_dataset = prepare_datasets( dataset, T_train, T_val, data_dir=data_dir, train_dir=train_dir, val_dir=val_dir, ) train_loader, val_loader = prepare_dataloaders( train_dataset, val_dataset, batch_size=batch_size, num_workers=num_workers, ) return train_loader, val_loader
the-stack_106_27192
""" Data schema, each record represents a file in a google bucket. """ from schemas.fastq_schema import FASTQ_SCHEMA DATA = { 'public_methods': [], 'resource_methods': ['GET'], 'item_methods': ['GET'], 'allowed_roles': ['admin', 'user', 'uploader', 'system'], 'allowed_item_roles': ['admin', 'user', 'uploader', 'system'], 'datasource': { 'source': 'data', 'filter': { 'visibility': True }, }, 'schema': { 'data_format': { "type": "string", "required": True, }, 'file_name': { 'type': 'string', 'required': True, }, 'file_size': { 'type': 'integer', 'required': True }, 'sample_ids': { 'type': 'list', 'schema': { 'type': 'string', 'required': True } }, 'number_of_samples': { 'type': 'integer', 'required': True }, 'trial': { 'type': 'objectid', 'required': True, }, 'trial_name': { 'type': 'string', 'required': True, }, 'gs_uri': { 'type': 'string', 'required': True, }, 'assay': { 'type': 'objectid', 'required': True, }, 'experimental_strategy': { 'type': 'string', 'required': True, }, 'date_created': { 'type': 'string', 'required': True, }, 'analysis_id': { 'type': 'objectid', }, 'mapping': { 'type': 'string', 'required': True, }, 'processed': { 'type': 'boolean' }, 'visibility': { 'type': 'boolean' }, 'uuid_alias': { 'type': 'string', 'required': True, }, 'children': { 'type': 'list', 'schema': { 'type': 'dict', 'schema': { '_id': { 'type': 'objectid', 'required': True }, 'resource': { 'type': 'string', 'required': True } } } }, 'fastq_properties': { 'type': 'dict', 'nullable': True, 'schema': FASTQ_SCHEMA }, 'download_link': { 'type': 'string', 'nullable': True } } } DATA_EDIT = { "public_methods": [], "allowed_roles": ["admin", "system"], "allowed_item_roles": ["admin", "system"], "resource_methods": ["POST"], "item_methods": ["PATCH", "DELETE"], "datasource": { 'source': 'data', }, "schema": DATA["schema"] } DATA_TOGGLE_VIS = { "public_methods": [], "allowed_roles": ["admin", "user", "uploader", "system"], "allowed_item_roles": ["admin", "user", "uploader", "system"], "resource_methods": ["GET"], "item_methods": ["PATCH"], "datasource": { "source": "data", "projection": { "visibility": 1 } }, "schema": { "visibility": { "type": "boolean" } } } DATA_AGG_INPUTS = { 'allowed_roles': ["admin", "system"], 'allowed_item_roles': ["admin", "system"], 'datasource': { 'source': 'data', 'aggregation': { 'pipeline': [ { "$match": { "mapping": { "$in": "$inputs" }, "processed": False, "visibility": True } }, { "$group": { "_id": { "sample_ids": "$sample_ids", "assay": "$assay", "trial": "$trial", "experimental_strategy": "$experimental_strategy", "trial_name": "$trial_name" }, "records": { "$push": { "file_name": "$file_name", "gs_uri": "$gs_uri", "mapping": "$mapping", "data_format": "$data_format", '_id': '$_id' } } } } ] } } }
the-stack_106_27193
import requests from bs4 import BeautifulSoup from re import search from flask import Flask ,jsonify app = Flask(__name__) app.url_map.strict_slashes = False def getNotesAndBooks(title): url = f'https://doku.pub/search/{title}?sort=popular' header = {'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36'} r = requests.get(url, headers=header) soup = BeautifulSoup(r.content,features='lxml') articals = soup.find_all('div', class_ ='col-lg-3 col-md-4 col-sm-6 col-6') complete_json = [] for item in articals: complete_json.append( { 'name':item.find('h5', class_='card-title').text, 'uploadDate':item.find('small', class_='text-muted float-left' ).text, 'imgurl':item.find('img' )['src'], 'dawnloadurl':"https://doku.pub/download/"+item.find('a' )['href'].rsplit('/', 1)[1], # 'documentOpenUrl':BeautifulSoup(requests.get(item.find('a')['href'], headers=header).content,features='lxml').find_all('iframe',id='viewer'), 'url':item.find('a' )['href'], } ) return complete_json @app.route('/') def home_page(): return "Welcome to https://doku.pub/ unofficial API" @app.route('/<query>') def home(query): return jsonify(getNotesAndBooks(query)) if __name__ == "__main__": app.debug = True app.run(port=5000)
the-stack_106_27196
"""Test for tackle.utils.command""" import pytest from tackle.utils.command import unpack_args_kwargs_string, unpack_input_string TEMPLATES = [ ('foo bar baz', 3, 0, 0), ('foo --bar baz bing', 2, 1, 0), ('foo bar --baz foo', 2, 1, 0), ('foo bar --baz foo --bing baz', 2, 2, 0), ('foo --bar baz', 1, 1, 0), ('foo bar --baz', 2, 0, 1), ('foo bar baz --bing', 3, 0, 1), ('foo --bar baz --foo', 1, 1, 1), ('foo bar --foo bar --bing --baz bling', 2, 2, 1), ('foo --bar baz blah --bling', 2, 1, 1), ('this --if "expanded == \'that\'"', 1, 1, 0), ('"{{foo}}" bar baz', 4, 0, 0), ('{{ foo }} bar baz', 4, 0, 0), ('{{ foo }} bar baz bing', 5, 0, 0), ('{{ foo}} bar baz', 4, 0, 0), ('{{foo }} bar baz', 4, 0, 0), ('{{ foo }}-foo bar baz', 4, 0, 0), ('bar-{{ foo }}-foo', 2, 0, 0), ('bar-{{ foo in var }}-foo', 2, 0, 0), ] @pytest.mark.parametrize("template,len_args,len_kwargs,len_flags", TEMPLATES) def test_unpack_args_kwargs(template, len_args, len_kwargs, len_flags): """Validate the count of each input arg/kwarg/flag.""" args, kwargs, flags = unpack_input_string(template) assert len_args == len(args) assert len_kwargs == len(kwargs) assert len_flags == len(flags) FIXTURES = [ ("this --if \"expanded == 'that'\"", ["this"], {"if": "expanded == 'that'"}, []), ( "this that --if \"expanded == 'that'\"", ["this", "that"], {"if": "expanded == 'that'"}, [], ), ] @pytest.mark.parametrize("input_string,args,kwargs,flags", FIXTURES) def test_unpack_input_string(input_string, args, kwargs, flags): """Validate expressions for input strings.""" args_out, kwargs_out, flags_out = unpack_args_kwargs_string(input_string) assert args_out == args assert kwargs_out == kwargs assert flags_out == flags
the-stack_106_27197
# File: P (Python 2.4) from direct.controls.GravityWalker import GravityWalker from direct.showbase.InputStateGlobal import inputState from pandac.PandaModules import * from direct.task.Task import Task class PiratesGravityWalker(GravityWalker): notify = directNotify.newCategory('PiratesGravityWalker') def __init__(self, *args, **kwargs): GravityWalker.__init__(self, *args, **args) self.predicting = 0 def handleAvatarControls(self, task): run = inputState.isSet('run') forward = inputState.isSet('forward') reverse = inputState.isSet('reverse') turnLeft = inputState.isSet('turnLeft') turnRight = inputState.isSet('turnRight') slideLeft = inputState.isSet('slideLeft') slideRight = inputState.isSet('slideRight') jump = inputState.isSet('jump') if base.localAvatar.getAutoRun(): forward = 1 reverse = 0 if (forward or self.avatarControlForwardSpeed) and reverse: pass self.speed = -(self.avatarControlReverseSpeed) if not reverse and slideLeft or -(self.avatarControlReverseSpeed) * 0.75: if not reverse and slideRight or self.avatarControlReverseSpeed * 0.75: if (slideLeft or -(self.avatarControlForwardSpeed) * 0.75) and slideRight: pass self.slideSpeed = self.avatarControlForwardSpeed * 0.75 if (turnLeft or self.avatarControlRotateSpeed) and turnRight: pass self.rotationSpeed = -(self.avatarControlRotateSpeed) if self.speed and self.slideSpeed: self.speed *= GravityWalker.DiagonalFactor self.slideSpeed *= GravityWalker.DiagonalFactor debugRunning = inputState.isSet('debugRunning') if debugRunning: self.speed *= base.debugRunningMultiplier self.slideSpeed *= base.debugRunningMultiplier self.rotationSpeed *= 1.25 if self.needToDeltaPos: self.setPriorParentVector() self.needToDeltaPos = 0 if self.wantDebugIndicator: self.displayDebugInfo() def sendLandMessage(impact): if impact > -15.0: messenger.send('jumpEnd') elif -15.0 >= impact: pass elif impact > -15.0: messenger.send('jumpLand') self.startJumpDelay(0.5) else: messenger.send('jumpLandHard') self.startJumpDelay(0.5) def predictHeightAndVelocity(aheadFrames): dt = globalClock.getDt() vel = self.lifter.getVelocity() height = self.getAirborneHeight() grav = self.lifter.getGravity() dtt = dt * aheadFrames futureHeight = height + vel * dtt + 0.5 * grav * dtt * dtt futureVel = vel - grav * dtt return (futureHeight, futureVel) if self.lifter.isOnGround(): if self.isAirborne: self.isAirborne = 0 self.predicting = 0 impact = self.lifter.getImpactVelocity() sendLandMessage(impact) self.priorParent = Vec3.zero() if jump and self.mayJump: def doJump(task): self.lifter.addVelocity(self.avatarControlJumpForce) self.isAirborne = 1 self.predicting = 1 if not taskMgr.hasTaskNamed('jumpWait'): taskMgr.doMethodLater(0.20000000000000001, doJump, 'jumpWait') messenger.send('jumpStart') elif self.isAirborne and self.predicting: (futureHeight, futureVel) = predictHeightAndVelocity(2) if futureHeight <= 0.0: self.isAirborne = 0 self.predicting = 0 sendLandMessage(futureVel) elif self.getAirborneHeight() > 2.0: self.isAirborne = 1 self.predicting = 1 self._PiratesGravityWalker__oldPosDelta = self.avatarNodePath.getPosDelta(render) self._PiratesGravityWalker__oldDt = ClockObject.getGlobalClock().getDt() dt = self._PiratesGravityWalker__oldDt if not self.speed and self.slideSpeed and self.rotationSpeed: pass self.moving = self.priorParent != Vec3.zero() if self.moving: distance = dt * self.speed slideDistance = dt * self.slideSpeed rotation = dt * self.rotationSpeed if distance and slideDistance or self.priorParent != Vec3.zero(): rotMat = Mat3.rotateMatNormaxis(self.avatarNodePath.getH(), Vec3.up()) if self.isAirborne: forward = Vec3.forward() else: contact = self.lifter.getContactNormal() forward = contact.cross(Vec3.right()) forward.normalize() self.vel = Vec3(forward * distance) if slideDistance: if self.isAirborne: right = Vec3.right() else: right = forward.cross(contact) right.normalize() self.vel = Vec3(self.vel + right * slideDistance) self.vel = Vec3(rotMat.xform(self.vel)) step = self.vel + self.priorParent * dt self.avatarNodePath.setFluidPos(Point3(self.avatarNodePath.getPos() + step)) self.vel /= dt self.avatarNodePath.setH(self.avatarNodePath.getH() + rotation) else: self.vel.set(0.0, 0.0, 0.0) if self.moving or jump: messenger.send('avatarMoving') return task.cont def disableJump(self): if base.localAvatar.controlManager.forceAvJumpToken is None: base.localAvatar.controlManager.disableAvatarJump() def enableJump(self): if base.localAvatar.controlManager.forceAvJumpToken is not None: base.localAvatar.controlManager.enableAvatarJump() def abortJump(self): taskMgr.remove('jumpWait') def reset(self): GravityWalker.reset(self) self.abortJump() def disableAvatarControls(self): GravityWalker.disableAvatarControls(self) self.abortJump()
the-stack_106_27198
""" This module provides the ``FlyteRemote`` object, which is the end-user's main starting point for interacting with a Flyte backend in an interactive and programmatic way. This of this experience as kind of like the web UI but in Python object form. """ from __future__ import annotations import logging import os import time import typing import uuid from collections import OrderedDict from copy import deepcopy from dataclasses import asdict, dataclass from datetime import datetime, timedelta import grpc from flyteidl.core import literals_pb2 as literals_pb2 from flytekit.clients.friendly import SynchronousFlyteClient from flytekit.common import utils as common_utils from flytekit.common.exceptions.user import FlyteEntityAlreadyExistsException, FlyteEntityNotExistException from flytekit.configuration import internal from flytekit.configuration import platform as platform_config from flytekit.configuration import sdk as sdk_config from flytekit.configuration import set_flyte_config_file from flytekit.core import context_manager from flytekit.core.interface import Interface from flytekit.loggers import remote_logger from flytekit.models import filters as filter_models from flytekit.models.admin import common as admin_common_models try: from functools import singledispatchmethod except ImportError: from singledispatchmethod import singledispatchmethod from flytekit.clients.helpers import iterate_node_executions, iterate_task_executions from flytekit.clis.flyte_cli.main import _detect_default_config_file from flytekit.clis.sdk_in_container import serialize from flytekit.common import constants from flytekit.common.exceptions import user as user_exceptions from flytekit.common.translator import FlyteControlPlaneEntity, FlyteLocalEntity, get_serializable from flytekit.configuration import auth as auth_config from flytekit.configuration.internal import DOMAIN, PROJECT from flytekit.core.base_task import PythonTask from flytekit.core.context_manager import FlyteContextManager, ImageConfig, SerializationSettings, get_image_config from flytekit.core.data_persistence import FileAccessProvider from flytekit.core.launch_plan import LaunchPlan from flytekit.core.type_engine import TypeEngine from flytekit.core.workflow import WorkflowBase from flytekit.models import common as common_models from flytekit.models import launch_plan as launch_plan_models from flytekit.models import literals as literal_models from flytekit.models.admin.common import Sort from flytekit.models.core.identifier import Identifier, ResourceType, WorkflowExecutionIdentifier from flytekit.models.core.workflow import NodeMetadata from flytekit.models.execution import ( ExecutionMetadata, ExecutionSpec, NodeExecutionGetDataResponse, NotificationList, WorkflowExecutionGetDataResponse, ) from flytekit.remote.executions import FlyteNodeExecution, FlyteTaskExecution, FlyteWorkflowExecution from flytekit.remote.launch_plan import FlyteLaunchPlan from flytekit.remote.nodes import FlyteNode from flytekit.remote.task import FlyteTask from flytekit.remote.workflow import FlyteWorkflow ExecutionDataResponse = typing.Union[WorkflowExecutionGetDataResponse, NodeExecutionGetDataResponse] MOST_RECENT_FIRST = admin_common_models.Sort("created_at", admin_common_models.Sort.Direction.DESCENDING) @dataclass class ResolvedIdentifiers: project: str domain: str name: str version: str def _get_latest_version(list_entities_method: typing.Callable, project: str, domain: str, name: str): named_entity = common_models.NamedEntityIdentifier(project, domain, name) entity_list, _ = list_entities_method( named_entity, limit=1, sort_by=Sort("created_at", Sort.Direction.DESCENDING), ) admin_entity = None if not entity_list else entity_list[0] if not admin_entity: raise user_exceptions.FlyteEntityNotExistException("Named entity {} not found".format(named_entity)) return admin_entity.id.version def _get_entity_identifier( list_entities_method: typing.Callable, resource_type: int, # from flytekit.models.core.identifier.ResourceType project: str, domain: str, name: str, version: typing.Optional[str] = None, ): return Identifier( resource_type, project, domain, name, version if version is not None else _get_latest_version(list_entities_method, project, domain, name), ) class FlyteRemote(object): """Main entrypoint for programmatically accessing a Flyte remote backend. The term 'remote' is synonymous with 'backend' or 'deployment' and refers to a hosted instance of the Flyte platform, which comes with a Flyte Admin server on some known URI. .. warning:: This feature is in beta. """ @classmethod def from_config( cls, default_project: typing.Optional[str] = None, default_domain: typing.Optional[str] = None, config_file_path: typing.Optional[str] = None, grpc_credentials: typing.Optional[grpc.ChannelCredentials] = None, venv_root: typing.Optional[str] = None, ) -> FlyteRemote: """Create a FlyteRemote object using flyte configuration variables and/or environment variable overrides. :param default_project: default project to use when fetching or executing flyte entities. :param default_domain: default domain to use when fetching or executing flyte entities. :param config_file_path: config file to use when connecting to flyte admin. we will use '~/.flyte/config' by default. :param grpc_credentials: gRPC channel credentials for connecting to flyte admin as returned by :func:`grpc.ssl_channel_credentials` """ if config_file_path is None: _detect_default_config_file() else: set_flyte_config_file(config_file_path) raw_output_data_prefix = auth_config.RAW_OUTPUT_DATA_PREFIX.get() or os.path.join( sdk_config.LOCAL_SANDBOX.get(), "control_plane_raw" ) file_access = FileAccessProvider( local_sandbox_dir=os.path.join(sdk_config.LOCAL_SANDBOX.get(), "control_plane_metadata"), raw_output_prefix=raw_output_data_prefix, ) venv_root = venv_root or serialize._DEFAULT_FLYTEKIT_VIRTUALENV_ROOT entrypoint = context_manager.EntrypointSettings( path=os.path.join(venv_root, serialize._DEFAULT_FLYTEKIT_RELATIVE_ENTRYPOINT_LOC) ) return cls( flyte_admin_url=platform_config.URL.get(), insecure=platform_config.INSECURE.get(), default_project=default_project or PROJECT.get() or None, default_domain=default_domain or DOMAIN.get() or None, file_access=file_access, auth_role=common_models.AuthRole( assumable_iam_role=auth_config.ASSUMABLE_IAM_ROLE.get(), kubernetes_service_account=auth_config.KUBERNETES_SERVICE_ACCOUNT.get(), ), notifications=None, labels=None, annotations=None, image_config=get_image_config(), raw_output_data_config=( common_models.RawOutputDataConfig(raw_output_data_prefix) if raw_output_data_prefix else None ), grpc_credentials=grpc_credentials, entrypoint_settings=entrypoint, ) def __init__( self, flyte_admin_url: str, insecure: bool, default_project: typing.Optional[str] = None, default_domain: typing.Optional[str] = None, file_access: typing.Optional[FileAccessProvider] = None, auth_role: typing.Optional[common_models.AuthRole] = None, notifications: typing.Optional[typing.List[common_models.Notification]] = None, labels: typing.Optional[common_models.Labels] = None, annotations: typing.Optional[common_models.Annotations] = None, image_config: typing.Optional[ImageConfig] = None, raw_output_data_config: typing.Optional[common_models.RawOutputDataConfig] = None, grpc_credentials: typing.Optional[grpc.ChannelCredentials] = None, entrypoint_settings: typing.Optional[context_manager.EntrypointSettings] = None, ): """Initialize a FlyteRemote object. :param flyte_admin_url: url pointing to the remote backend. :param insecure: whether or not the enable SSL. :param default_project: default project to use when fetching or executing flyte entities. :param default_domain: default domain to use when fetching or executing flyte entities. :param file_access: file access provider to use for offloading non-literal inputs/outputs. :param auth_role: auth role config :param notifications: notification config :param labels: label config :param annotations: annotation config :param image_config: image config :param raw_output_data_config: location for offloaded data, e.g. in S3 :param grpc_credentials: gRPC channel credentials for connecting to flyte admin as returned by :func:`grpc.ssl_channel_credentials` :param entrypoint_settings: EntrypointSettings object for use with Spark tasks. If supplied, this will be used when serializing Spark tasks, which need to know the path to the flytekit entrypoint.py file, inside the container. """ remote_logger.warning("This feature is still in beta. Its interface and UX is subject to change.") if flyte_admin_url is None: raise user_exceptions.FlyteAssertion("Cannot find flyte admin url in config file.") self._client = SynchronousFlyteClient(flyte_admin_url, insecure=insecure, credentials=grpc_credentials) # read config files, env vars, host, ssl options for admin client self._flyte_admin_url = flyte_admin_url self._insecure = insecure self._default_project = default_project self._default_domain = default_domain self._image_config = image_config self._auth_role = auth_role self._notifications = notifications self._labels = labels self._annotations = annotations self._raw_output_data_config = raw_output_data_config # Not exposing this as a property for now. self._entrypoint_settings = entrypoint_settings # Save the file access object locally, but also make it available for use from the context. FlyteContextManager.with_context(FlyteContextManager.current_context().with_file_access(file_access).build()) self._file_access = file_access # TODO: Reconsider whether we want this. Probably best to not cache. self._serialized_entity_cache = OrderedDict() @property def client(self) -> SynchronousFlyteClient: """Return a SynchronousFlyteClient for additional operations.""" return self._client @property def default_project(self) -> str: """Default project to use when fetching or executing flyte entities.""" return self._default_project @property def default_domain(self) -> str: """Default project to use when fetching or executing flyte entities.""" return self._default_domain @property def image_config(self) -> ImageConfig: """Image config.""" return self._image_config @property def file_access(self) -> FileAccessProvider: """File access provider to use for offloading non-literal inputs/outputs.""" return self._file_access @property def auth_role(self): """Auth role config.""" return self._auth_role @property def notifications(self): """Notification config.""" return self._notifications @property def labels(self): """Label config.""" return self._labels @property def annotations(self): """Annotation config.""" return self._annotations @property def raw_output_data_config(self): """Location for offloaded data, e.g. in S3""" return self._raw_output_data_config @property def version(self) -> str: """Get a randomly generated version string.""" return uuid.uuid4().hex[:30] + str(int(time.time())) def remote_context(self): """Context manager with remote-specific configuration.""" return FlyteContextManager.with_context( FlyteContextManager.current_context().with_file_access(self.file_access) ) def with_overrides( self, default_project: typing.Optional[str] = None, default_domain: typing.Optional[str] = None, flyte_admin_url: typing.Optional[str] = None, insecure: typing.Optional[bool] = None, file_access: typing.Optional[FileAccessProvider] = None, auth_role: typing.Optional[common_models.AuthRole] = None, notifications: typing.Optional[typing.List[common_models.Notification]] = None, labels: typing.Optional[common_models.Labels] = None, annotations: typing.Optional[common_models.Annotations] = None, image_config: typing.Optional[ImageConfig] = None, raw_output_data_config: typing.Optional[common_models.RawOutputDataConfig] = None, ): """Create a copy of the remote object, overriding the specified attributes.""" new_remote = deepcopy(self) if default_project: new_remote._default_project = default_project if default_domain: new_remote._default_domain = default_domain if flyte_admin_url: new_remote._flyte_admin_url = flyte_admin_url new_remote._client = SynchronousFlyteClient(flyte_admin_url, self._insecure) if insecure: new_remote._insecure = insecure new_remote._client = SynchronousFlyteClient(self._flyte_admin_url, insecure) if file_access: new_remote._file_access = file_access if auth_role: new_remote._auth_role = auth_role if notifications: new_remote._notifications = notifications if labels: new_remote._labels = labels if annotations: new_remote._annotations = annotations if image_config: new_remote._image_config = image_config if raw_output_data_config: new_remote._raw_output_data_config = raw_output_data_config return new_remote def fetch_task(self, project: str = None, domain: str = None, name: str = None, version: str = None) -> FlyteTask: """Fetch a task entity from flyte admin. :param project: fetch entity from this project. If None, uses the default_project attribute. :param domain: fetch entity from this domain. If None, uses the default_domain attribute. :param name: fetch entity with matching name. :param version: fetch entity with matching version. If None, gets the latest version of the entity. :returns: :class:`~flytekit.remote.tasks.task.FlyteTask` :raises: FlyteAssertion if name is None """ if name is None: raise user_exceptions.FlyteAssertion("the 'name' argument must be specified.") task_id = _get_entity_identifier( self.client.list_tasks_paginated, ResourceType.TASK, project or self.default_project, domain or self.default_domain, name, version, ) admin_task = self.client.get_task(task_id) flyte_task = FlyteTask.promote_from_model(admin_task.closure.compiled_task.template) flyte_task._id = task_id return flyte_task def fetch_workflow( self, project: str = None, domain: str = None, name: str = None, version: str = None ) -> FlyteWorkflow: """Fetch a workflow entity from flyte admin. :param project: fetch entity from this project. If None, uses the default_project attribute. :param domain: fetch entity from this domain. If None, uses the default_domain attribute. :param name: fetch entity with matching name. :param version: fetch entity with matching version. If None, gets the latest version of the entity. :raises: FlyteAssertion if name is None """ if name is None: raise user_exceptions.FlyteAssertion("the 'name' argument must be specified.") workflow_id = _get_entity_identifier( self.client.list_workflows_paginated, ResourceType.WORKFLOW, project or self.default_project, domain or self.default_domain, name, version, ) admin_workflow = self.client.get_workflow(workflow_id) compiled_wf = admin_workflow.closure.compiled_workflow node_launch_plans = {} # TODO: Inspect branch nodes for launch plans for node in FlyteWorkflow.get_non_system_nodes(compiled_wf.primary.template.nodes): if node.workflow_node is not None and node.workflow_node.launchplan_ref is not None: node_launch_plans[node.workflow_node.launchplan_ref] = self.client.get_launch_plan( node.workflow_node.launchplan_ref ).spec return FlyteWorkflow.promote_from_closure(compiled_wf, node_launch_plans) def fetch_launch_plan( self, project: str = None, domain: str = None, name: str = None, version: str = None ) -> FlyteLaunchPlan: """Fetch a launchplan entity from flyte admin. :param project: fetch entity from this project. If None, uses the default_project attribute. :param domain: fetch entity from this domain. If None, uses the default_domain attribute. :param name: fetch entity with matching name. :param version: fetch entity with matching version. If None, gets the latest version of the entity. :returns: :class:`~flytekit.remote.launch_plan.FlyteLaunchPlan` :raises: FlyteAssertion if name is None """ if name is None: raise user_exceptions.FlyteAssertion("the 'name' argument must be specified.") launch_plan_id = _get_entity_identifier( self.client.list_launch_plans_paginated, ResourceType.LAUNCH_PLAN, project or self.default_project, domain or self.default_domain, name, version, ) admin_launch_plan = self.client.get_launch_plan(launch_plan_id) flyte_launch_plan = FlyteLaunchPlan.promote_from_model(launch_plan_id, admin_launch_plan.spec) wf_id = flyte_launch_plan.workflow_id workflow = self.fetch_workflow(wf_id.project, wf_id.domain, wf_id.name, wf_id.version) flyte_launch_plan._interface = workflow.interface flyte_launch_plan.guessed_python_interface = Interface( inputs=TypeEngine.guess_python_types(flyte_launch_plan.interface.inputs), outputs=TypeEngine.guess_python_types(flyte_launch_plan.interface.outputs), ) return flyte_launch_plan def fetch_workflow_execution( self, project: str = None, domain: str = None, name: str = None ) -> FlyteWorkflowExecution: """Fetch a workflow execution entity from flyte admin. :param project: fetch entity from this project. If None, uses the default_project attribute. :param domain: fetch entity from this domain. If None, uses the default_domain attribute. :param name: fetch entity with matching name. :returns: :class:`~flytekit.remote.workflow_execution.FlyteWorkflowExecution` :raises: FlyteAssertion if name is None """ if name is None: raise user_exceptions.FlyteAssertion("the 'name' argument must be specified.") return FlyteWorkflowExecution.promote_from_model( self.client.get_execution( WorkflowExecutionIdentifier( project or self.default_project, domain or self.default_domain, name, ) ) ) ###################### # Listing Entities # ###################### def recent_executions( self, project: typing.Optional[str] = None, domain: typing.Optional[str] = None, limit: typing.Optional[int] = 100, ) -> typing.List[FlyteWorkflowExecution]: # Ignore token for now exec_models, _ = self.client.list_executions_paginated( project or self.default_project, domain or self.default_domain, limit, sort_by=MOST_RECENT_FIRST, ) return [FlyteWorkflowExecution.promote_from_model(e) for e in exec_models] def list_tasks_by_version( self, version: str, project: typing.Optional[str] = None, domain: typing.Optional[str] = None, limit: typing.Optional[int] = 100, ) -> typing.List[FlyteTask]: if not version: raise ValueError("Must specify a version") named_entity_id = common_models.NamedEntityIdentifier( project=project or self.default_project, domain=domain or self.default_domain, ) # Ignore token for now t_models, _ = self.client.list_tasks_paginated( named_entity_id, filters=[filter_models.Filter.from_python_std(f"eq(version,{version})")], limit=limit, ) return [FlyteTask.promote_from_model(t.closure.compiled_task.template) for t in t_models] ###################### # Serialize Entities # ###################### @singledispatchmethod def _serialize( self, entity: FlyteLocalEntity, project: str = None, domain: str = None, version: str = None, **kwargs, ) -> FlyteControlPlaneEntity: """Serialize an entity for registration.""" # TODO: Revisit cache return get_serializable( self._serialized_entity_cache, SerializationSettings( project or self.default_project, domain or self.default_domain, version or self.version, self.image_config, # https://github.com/flyteorg/flyte/issues/1359 env={internal.IMAGE.env_var: self.image_config.default_image.full}, entrypoint_settings=self._entrypoint_settings, ), entity=entity, ) ##################### # Register Entities # ##################### @singledispatchmethod def register( self, entity: typing.Union[PythonTask, WorkflowBase, LaunchPlan], project: str = None, domain: str = None, name: str = None, version: str = None, ) -> typing.Union[FlyteTask, FlyteWorkflow, FlyteLaunchPlan]: """Register an entity to flyte admin. :param entity: entity to register. :param project: register entity into this project. If None, uses ``default_project`` attribute :param domain: register entity into this domain. If None, uses ``default_domain`` attribute :param name: register entity with this name. If None, uses ``entity.name`` :param version: register entity with this version. If None, uses auto-generated version. """ raise NotImplementedError(f"entity type {type(entity)} not recognized for registration") @register.register def _( self, entity: PythonTask, project: str = None, domain: str = None, name: str = None, version: str = None ) -> FlyteTask: """Register an @task-decorated function or TaskTemplate task to flyte admin.""" resolved_identifiers = asdict(self._resolve_identifier_kwargs(entity, project, domain, name, version)) self.client.create_task( Identifier(ResourceType.TASK, **resolved_identifiers), task_spec=self._serialize(entity, **resolved_identifiers), ) return self.fetch_task(**resolved_identifiers) @register.register def _( self, entity: WorkflowBase, project: str = None, domain: str = None, name: str = None, version: str = None ) -> FlyteWorkflow: """Register an @workflow-decorated function to flyte admin.""" resolved_identifiers = asdict(self._resolve_identifier_kwargs(entity, project, domain, name, version)) self.client.create_workflow( Identifier(ResourceType.WORKFLOW, **resolved_identifiers), workflow_spec=self._serialize(entity, **resolved_identifiers), ) return self.fetch_workflow(**resolved_identifiers) @register.register def _( self, entity: LaunchPlan, project: str = None, domain: str = None, name: str = None, version: str = None ) -> FlyteLaunchPlan: """Register a LaunchPlan object to flyte admin.""" # See _get_patch_launch_plan_fn for what we need to patch. These are the elements of a launch plan # that are not set at serialization time and are filled in either by flyte-cli register files or flytectl. resolved_identifiers = asdict(self._resolve_identifier_kwargs(entity, project, domain, name, version)) serialized_lp: launch_plan_models.LaunchPlan = self._serialize(entity, **resolved_identifiers) if self.auth_role: serialized_lp.spec._auth_role = common_models.AuthRole( self.auth_role.assumable_iam_role, self.auth_role.kubernetes_service_account ) if self.raw_output_data_config: serialized_lp.spec._raw_output_data_config = common_models.RawOutputDataConfig( self.raw_output_data_config.output_location_prefix ) # Patch in labels and annotations if self.labels: for k, v in self.labels.values.items(): serialized_lp.spec._labels.values[k] = v if self.annotations: for k, v in self.annotations.values.items(): serialized_lp.spec._annotations.values[k] = v self.client.create_launch_plan( Identifier(ResourceType.LAUNCH_PLAN, **resolved_identifiers), launch_plan_spec=serialized_lp.spec, ) return self.fetch_launch_plan(**resolved_identifiers) def _register_entity_if_not_exists(self, entity: WorkflowBase, resolved_identifiers_dict: dict): # Try to register all the entity in WorkflowBase including LaunchPlan, PythonTask, or subworkflow. node_identifiers_dict = deepcopy(resolved_identifiers_dict) for node in entity.nodes: try: node_identifiers_dict["name"] = node.flyte_entity.name if isinstance(node.flyte_entity, WorkflowBase): self._register_entity_if_not_exists(node.flyte_entity, node_identifiers_dict) self.register(node.flyte_entity, **node_identifiers_dict) elif isinstance(node.flyte_entity, PythonTask) or isinstance(node.flyte_entity, LaunchPlan): self.register(node.flyte_entity, **node_identifiers_dict) else: raise NotImplementedError(f"We don't support registering this kind of entity: {node.flyte_entity}") except FlyteEntityAlreadyExistsException: logging.info(f"{entity.name} already exists") except Exception as e: logging.info(f"Failed to register entity {entity.name} with error {e}") #################### # Execute Entities # #################### def _resolve_identifier_kwargs( self, entity, project: typing.Optional[str], domain: typing.Optional[str], name: typing.Optional[str], version: typing.Optional[str], ) -> ResolvedIdentifiers: """ Resolves the identifier attributes based on user input, falling back on the default project/domain and auto-generated version, and ultimately the entity project/domain if entity is a remote flyte entity. """ error_msg = ( "entity {entity} of type {entity_type} is not associated with a {arg_name}. Please specify the {arg_name} " "argument when invoking the FlyteRemote.execute method or a default_{arg_name} value when initializig the " "FlyteRemote object." ) if project: resolved_project, msg_project = project, "execute-method" elif self.default_project: resolved_project, msg_project = self.default_project, "remote" elif hasattr(entity, "id"): resolved_project, msg_project = entity.id.project, "entity" else: raise TypeError(error_msg.format(entity=entity, entity_type=type(entity), arg_name="project")) if domain: resolved_domain, msg_domain = domain, "execute-method" elif self.default_domain: resolved_domain, msg_domain = self.default_domain, "remote" elif hasattr(entity, "id"): resolved_domain, msg_domain = entity.id.domain, "entity" else: raise TypeError(error_msg.format(entity=entity, entity_type=type(entity), arg_name="domain")) remote_logger.debug( f"Using {msg_project}-supplied value for project and {msg_domain}-supplied value for domain." ) return ResolvedIdentifiers( resolved_project, resolved_domain, name or entity.name, version or self.version, ) def _execute( self, entity: typing.Union[FlyteTask, FlyteWorkflow, FlyteLaunchPlan], inputs: typing.Dict[str, typing.Any], project: str, domain: str, execution_name: typing.Optional[str] = None, wait: bool = False, labels: typing.Optional[common_models.Labels] = None, annotations: typing.Optional[common_models.Annotations] = None, auth_role: typing.Optional[common_models.AuthRole] = None, ) -> FlyteWorkflowExecution: """Common method for execution across all entities. :param flyte_id: entity identifier :param inputs: dictionary mapping argument names to values :param project: project on which to execute the entity referenced by flyte_id :param domain: domain on which to execute the entity referenced by flyte_id :param execution_name: name of the execution :param wait: if True, waits for execution to complete :returns: :class:`~flytekit.remote.workflow_execution.FlyteWorkflowExecution` """ execution_name = execution_name or "f" + uuid.uuid4().hex[:19] disable_all = self.notifications == [] if disable_all: notifications = None else: notifications = NotificationList(self.notifications or []) disable_all = None with self.remote_context() as ctx: input_python_types = entity.guessed_python_interface.inputs expected_input = entity.interface.inputs for k, v in inputs.items(): if expected_input.get(k) is None: raise user_exceptions.FlyteValueException( k, f"The {entity.__class__.__name__} doesn't have this input key." ) literal_inputs = TypeEngine.dict_to_literal_map(ctx, inputs, input_python_types) try: # TODO: re-consider how this works. Currently, this will only execute the flyte entity referenced by # flyte_id in the same project and domain. However, it is possible to execute it in a different project # and domain, which is specified in the first two arguments of client.create_execution. This is useful # in the case that I want to use a flyte entity from e.g. project "A" but actually execute the entity on a # different project "B". For now, this method doesn't support this use case. exec_id = self.client.create_execution( project, domain, execution_name, ExecutionSpec( entity.id, ExecutionMetadata( ExecutionMetadata.ExecutionMode.MANUAL, "placeholder", # TODO: get principle 0, ), notifications=notifications, disable_all=disable_all, labels=labels or self.labels, annotations=annotations or self.annotations, auth_role=auth_role or self.auth_role, ), literal_inputs, ) except user_exceptions.FlyteEntityAlreadyExistsException: exec_id = WorkflowExecutionIdentifier(flyte_id.project, flyte_id.domain, execution_name) execution = FlyteWorkflowExecution.promote_from_model(self.client.get_execution(exec_id)) if wait: return self.wait(execution) return execution @singledispatchmethod def execute( self, entity: typing.Union[FlyteTask, FlyteLaunchPlan, FlyteWorkflow, PythonTask, WorkflowBase, LaunchPlan], inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute a task, workflow, or launchplan. This method supports: - ``Flyte{Task, Workflow, LaunchPlan}`` remote module objects. - ``@task``-decorated functions and ``TaskTemplate`` tasks. - ``@workflow``-decorated functions. - ``LaunchPlan`` objects. :param entity: entity to execute :param inputs: dictionary mapping argument names to values :param project: execute entity in this project. If entity doesn't exist in the project, register the entity first before executing. :param domain: execute entity in this domain. If entity doesn't exist in the domain, register the entity first before executing. :param name: execute entity using this name. If not None, use this value instead of ``entity.name`` :param version: execute entity using this version. If None, uses auto-generated value. :param execution_name: name of the execution. If None, uses auto-generated value. :param wait: if True, waits for execution to complete .. note: The ``name`` and ``version`` arguments do not apply to ``FlyteTask``, ``FlyteLaunchPlan``, and ``FlyteWorkflow`` entity inputs. These values are determined by referencing the entity identifier values. """ raise NotImplementedError(f"entity type {type(entity)} not recognized for execution") # Flyte Remote Entities # --------------------- @execute.register(FlyteTask) @execute.register(FlyteLaunchPlan) def _( self, entity: typing.Union[FlyteTask, FlyteLaunchPlan], inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute a FlyteTask, or FlyteLaunchplan. NOTE: the name and version arguments are currently not used and only there consistency in the function signature """ if name or version: remote_logger.warning(f"The 'name' and 'version' arguments are ignored for entities of type {type(entity)}") resolved_identifiers = self._resolve_identifier_kwargs( entity, project, domain, entity.id.name, entity.id.version ) return self._execute( entity, inputs, project=resolved_identifiers.project, domain=resolved_identifiers.domain, execution_name=execution_name, wait=wait, labels=entity.labels if isinstance(entity, FlyteLaunchPlan) and entity.labels.values else None, annotations=entity.annotations if isinstance(entity, FlyteLaunchPlan) and entity.annotations.values else None, auth_role=entity.auth_role if isinstance(entity, FlyteLaunchPlan) and (entity.auth_role.assumable_iam_role or entity.auth_role.kubernetes_service_account) else None, ) @execute.register def _( self, entity: FlyteWorkflow, inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute a FlyteWorkflow. NOTE: the name and version arguments are currently not used and only there consistency in the function signature """ if name or version: remote_logger.warning(f"The 'name' and 'version' arguments are ignored for entities of type {type(entity)}") resolved_identifiers = self._resolve_identifier_kwargs( entity, project, domain, entity.id.name, entity.id.version ) launch_plan = self.fetch_launch_plan(entity.id.project, entity.id.domain, entity.id.name, entity.id.version) return self.execute( launch_plan, inputs, project=resolved_identifiers.project, domain=resolved_identifiers.domain, execution_name=execution_name, wait=wait, ) # Flytekit Entities # ----------------- @execute.register def _( self, entity: PythonTask, inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute an @task-decorated function or TaskTemplate task.""" resolved_identifiers = self._resolve_identifier_kwargs(entity, project, domain, name, version) resolved_identifiers_dict = asdict(resolved_identifiers) try: flyte_task: FlyteTask = self.fetch_task(**resolved_identifiers_dict) except Exception: flyte_task: FlyteTask = self.register(entity, **resolved_identifiers_dict) flyte_task.guessed_python_interface = entity.python_interface return self.execute( flyte_task, inputs, project=resolved_identifiers.project, domain=resolved_identifiers.domain, execution_name=execution_name, wait=wait, ) @execute.register def _( self, entity: WorkflowBase, inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute an @workflow-decorated function.""" resolved_identifiers = self._resolve_identifier_kwargs(entity, project, domain, name, version) resolved_identifiers_dict = asdict(resolved_identifiers) try: flyte_workflow: FlyteWorkflow = self.fetch_workflow(**resolved_identifiers_dict) except FlyteEntityNotExistException: logging.info("Try to register FlyteWorkflow because it wasn't found in Flyte Admin!") self._register_entity_if_not_exists(entity, resolved_identifiers_dict) flyte_workflow: FlyteWorkflow = self.register(entity, **resolved_identifiers_dict) flyte_workflow.guessed_python_interface = entity.python_interface ctx = context_manager.FlyteContext.current_context() try: self.fetch_launch_plan(**resolved_identifiers_dict) except FlyteEntityNotExistException: logging.info("Try to register default launch plan because it wasn't found in Flyte Admin!") default_lp = LaunchPlan.get_default_launch_plan(ctx, entity) self.register(default_lp, **resolved_identifiers_dict) return self.execute( flyte_workflow, inputs, project=resolved_identifiers.project, domain=resolved_identifiers.domain, execution_name=execution_name, wait=wait, ) @execute.register def _( self, entity: LaunchPlan, inputs: typing.Dict[str, typing.Any], project: str = None, domain: str = None, name: str = None, version: str = None, execution_name: str = None, wait: bool = False, ) -> FlyteWorkflowExecution: """Execute a LaunchPlan object.""" resolved_identifiers = self._resolve_identifier_kwargs(entity, project, domain, name, version) resolved_identifiers_dict = asdict(resolved_identifiers) try: flyte_launchplan: FlyteLaunchPlan = self.fetch_launch_plan(**resolved_identifiers_dict) except Exception: flyte_launchplan: FlyteLaunchPlan = self.register(entity, **resolved_identifiers_dict) flyte_launchplan.guessed_python_interface = entity.python_interface return self.execute( flyte_launchplan, inputs, project=resolved_identifiers.project, domain=resolved_identifiers.domain, execution_name=execution_name, wait=wait, ) ################################### # Wait for Executions to Complete # ################################### def wait( self, execution: FlyteWorkflowExecution, timeout: typing.Optional[timedelta] = None, poll_interval: typing.Optional[timedelta] = None, sync_nodes: bool = True, ) -> FlyteWorkflowExecution: """Wait for an execution to finish. :param execution: execution object to wait on :param timeout: maximum amount of time to wait :param poll_interval: sync workflow execution at this interval :param sync_nodes: passed along to the sync call for the workflow execution """ poll_interval = poll_interval or timedelta(seconds=30) time_to_give_up = datetime.max if timeout is None else datetime.utcnow() + timeout while datetime.utcnow() < time_to_give_up: execution = self.sync_workflow_execution(execution, sync_nodes=sync_nodes) if execution.is_complete: return execution time.sleep(poll_interval.total_seconds()) raise user_exceptions.FlyteTimeout(f"Execution {self} did not complete before timeout.") ######################## # Sync Execution State # ######################## def sync( self, execution: FlyteWorkflowExecution, entity_definition: typing.Union[FlyteWorkflow, FlyteTask] = None, sync_nodes: bool = False, ) -> FlyteWorkflowExecution: """ This function was previously a singledispatchmethod. We've removed that but this function remains so that we don't break people. :param execution: :param entity_definition: :param sync_nodes: By default sync will fetch data on all underlying node executions (recursively, so subworkflows will also get picked up). Set this to False in order to prevent that (which will make this call faster). :return: Returns the same execution object, but with additional information pulled in. """ if not isinstance(execution, FlyteWorkflowExecution): raise ValueError(f"remote.sync should only be called on workflow executions, got {type(execution)}") return self.sync_workflow_execution(execution, entity_definition, sync_nodes) def sync_workflow_execution( self, execution: FlyteWorkflowExecution, entity_definition: typing.Union[FlyteWorkflow, FlyteTask] = None, sync_nodes: bool = False, ) -> FlyteWorkflowExecution: """ Sync a FlyteWorkflowExecution object with its corresponding remote state. """ if entity_definition is not None: raise ValueError("Entity definition arguments aren't supported when syncing workflow executions") # Update closure, and then data, because we don't want the execution to finish between when we get the data, # and then for the closure to have is_complete to be true. execution._closure = self.client.get_execution(execution.id).closure execution_data = self.client.get_execution_data(execution.id) lp_id = execution.spec.launch_plan if sync_nodes: underlying_node_executions = [ FlyteNodeExecution.promote_from_model(n) for n in iterate_node_executions(self.client, execution.id) ] if execution.spec.launch_plan.resource_type == ResourceType.TASK: # This condition is only true for single-task executions flyte_entity = self.fetch_task(lp_id.project, lp_id.domain, lp_id.name, lp_id.version) if sync_nodes: # Need to construct the mapping. There should've been returned exactly three nodes, a start, # an end, and a task node. task_node_exec = [ x for x in filter( lambda x: x.id.node_id != constants.START_NODE_ID and x.id.node_id != constants.END_NODE_ID, underlying_node_executions, ) ] # We need to manually make a map of the nodes since there is none for single task executions # Assume the first one is the only one. node_mapping = ( { task_node_exec[0].id.node_id: FlyteNode( id=flyte_entity.id, upstream_nodes=[], bindings=[], metadata=NodeMetadata(name=""), flyte_task=flyte_entity, ) } if len(task_node_exec) >= 1 else {} # This is for the case where node executions haven't appeared yet ) else: # This is the default case, an execution of a normal workflow through a launch plan wf_id = self.fetch_launch_plan(lp_id.project, lp_id.domain, lp_id.name, lp_id.version).workflow_id flyte_entity = self.fetch_workflow(wf_id.project, wf_id.domain, wf_id.name, wf_id.version) execution._flyte_workflow = flyte_entity node_mapping = flyte_entity._node_map # update node executions (if requested), and inputs/outputs if sync_nodes: node_execs = {} for n in underlying_node_executions: node_execs[n.id.node_id] = self.sync_node_execution(n, node_mapping) execution._node_executions = node_execs return self._assign_inputs_and_outputs(execution, execution_data, flyte_entity.interface) def sync_node_execution( self, execution: FlyteNodeExecution, node_mapping: typing.Dict[str, FlyteNode] ) -> FlyteNodeExecution: """ Get data backing a node execution. These FlyteNodeExecution objects should've come from Admin with the model fields already populated correctly. For purposes of the remote experience, we'd like to supplement the object with some additional fields: - inputs/outputs - task/workflow executions, and/or underlying node executions in the case of parent nodes - TypedInterface (remote wrapper type) A node can have several different types of executions behind it. That is, the node could've run (perhaps multiple times because of retries): - A task - A static subworkflow - A dynamic subworkflow (which in turn may have run additional tasks, subwfs, and/or launch plans) - A launch plan The data model is complicated, so ascertaining which of these happened is a bit tricky. That logic is encapsulated in this function. """ # For single task execution - the metadata spec node id is missing. In these cases, revert to regular node id node_id = execution.metadata.spec_node_id if not node_id: node_id = execution.id.node_id remote_logger.debug(f"No metadata spec_node_id found, using {node_id}") # First see if it's a dummy node, if it is, we just skip it. if constants.START_NODE_ID in node_id or constants.END_NODE_ID in node_id: return execution # Look for the Node object in the mapping supplied if node_id in node_mapping: execution._node = node_mapping[node_id] else: raise Exception(f"Missing node from mapping: {node_id}") # Get the node execution data node_execution_get_data_response = self.client.get_node_execution_data(execution.id) # Calling a launch plan directly case # If a node ran a launch plan directly (i.e. not through a dynamic task or anything) then # the closure should have a workflow_node_metadata populated with the launched execution id. # The parent node flag should not be populated here # This is the simplest case if not execution.metadata.is_parent_node and execution.closure.workflow_node_metadata: launched_exec_id = execution.closure.workflow_node_metadata.execution_id # This is a recursive call, basically going through the same process that brought us here in the first # place, but on the launched execution. launched_exec = self.fetch_workflow_execution( project=launched_exec_id.project, domain=launched_exec_id.domain, name=launched_exec_id.name ) self.sync_workflow_execution(launched_exec) if launched_exec.is_complete: # The synced underlying execution should've had these populated. execution._inputs = launched_exec.inputs execution._outputs = launched_exec.outputs execution._workflow_executions.append(launched_exec) execution._interface = launched_exec._flyte_workflow.interface return execution # If a node ran a static subworkflow or a dynamic subworkflow then the parent flag will be set. if execution.metadata.is_parent_node: # We'll need to query child node executions regardless since this is a parent node child_node_executions = iterate_node_executions( self.client, workflow_execution_identifier=execution.id.execution_id, unique_parent_id=execution.id.node_id, ) child_node_executions = [x for x in child_node_executions] # If this was a dynamic task, then there should be a CompiledWorkflowClosure inside the # NodeExecutionGetDataResponse if node_execution_get_data_response.dynamic_workflow is not None: compiled_wf = node_execution_get_data_response.dynamic_workflow.compiled_workflow node_launch_plans = {} # TODO: Inspect branch nodes for launch plans for node in FlyteWorkflow.get_non_system_nodes(compiled_wf.primary.template.nodes): if ( node.workflow_node is not None and node.workflow_node.launchplan_ref is not None and node.workflow_node.launchplan_ref not in node_launch_plans ): node_launch_plans[node.workflow_node.launchplan_ref] = self.client.get_launch_plan( node.workflow_node.launchplan_ref ).spec dynamic_flyte_wf = FlyteWorkflow.promote_from_closure(compiled_wf, node_launch_plans) execution._underlying_node_executions = [ self.sync_node_execution(FlyteNodeExecution.promote_from_model(cne), dynamic_flyte_wf._node_map) for cne in child_node_executions ] # This is copied from below - dynamic tasks have both task executions (executions of the parent # task) as well as underlying node executions (of the generated subworkflow). Feel free to refactor # if you can think of a better way. execution._task_executions = [ self.sync_task_execution(FlyteTaskExecution.promote_from_model(t)) for t in iterate_task_executions(self.client, execution.id) ] execution._interface = dynamic_flyte_wf.interface else: # If it does not, then it should be a static subworkflow if not isinstance(execution._node.flyte_entity, FlyteWorkflow): remote_logger.error( f"NE {execution} entity should be a workflow, {type(execution._node)}, {execution._node}" ) raise Exception(f"Node entity has type {type(execution._node)}") sub_flyte_workflow = execution._node.flyte_entity sub_node_mapping = {n.id: n for n in sub_flyte_workflow.flyte_nodes} execution._underlying_node_executions = [ self.sync_node_execution(FlyteNodeExecution.promote_from_model(cne), sub_node_mapping) for cne in child_node_executions ] execution._interface = sub_flyte_workflow.interface # This is the plain ol' task execution case else: execution._task_executions = [ self.sync_task_execution(FlyteTaskExecution.promote_from_model(t)) for t in iterate_task_executions(self.client, execution.id) ] execution._interface = execution._node.flyte_entity.interface self._assign_inputs_and_outputs( execution, node_execution_get_data_response, execution.interface, ) return execution def sync_task_execution( self, execution: FlyteTaskExecution, entity_definition: typing.Union[FlyteWorkflow, FlyteTask] = None ) -> FlyteTaskExecution: """Sync a FlyteTaskExecution object with its corresponding remote state.""" if entity_definition is not None: raise ValueError("Entity definition arguments aren't supported when syncing task executions") # sync closure and inputs/outputs execution._closure = self.client.get_task_execution(execution.id).closure execution_data = self.client.get_task_execution_data(execution.id) task_id = execution.id.task_id task = self.fetch_task(task_id.project, task_id.domain, task_id.name, task_id.version) return self._assign_inputs_and_outputs(execution, execution_data, task.interface) ############################# # Terminate Execution State # ############################# def terminate(self, execution: FlyteWorkflowExecution, cause: str): """Terminate a workflow execution. :param execution: workflow execution to terminate :param cause: reason for termination """ self.client.terminate_execution(execution.id, cause) ################## # Helper Methods # ################## def _assign_inputs_and_outputs( self, execution: typing.Union[FlyteWorkflowExecution, FlyteNodeExecution, FlyteTaskExecution], execution_data, interface, ): """Helper for assigning synced inputs and outputs to an execution object.""" with self.remote_context() as ctx: execution._inputs = TypeEngine.literal_map_to_kwargs( ctx=ctx, lm=self._get_input_literal_map(execution_data), python_types=TypeEngine.guess_python_types(interface.inputs), ) if execution.is_complete and not execution.error: execution._outputs = TypeEngine.literal_map_to_kwargs( ctx=ctx, lm=self._get_output_literal_map(execution_data), python_types=TypeEngine.guess_python_types(interface.outputs), ) return execution def _get_input_literal_map(self, execution_data: ExecutionDataResponse) -> literal_models.LiteralMap: # Inputs are returned inline unless they are too big, in which case a url blob pointing to them is returned. if bool(execution_data.full_inputs.literals): return execution_data.full_inputs elif execution_data.inputs.bytes > 0: with self.remote_context() as ctx: tmp_name = os.path.join(ctx.file_access.local_sandbox_dir, "inputs.pb") ctx.file_access.get_data(execution_data.inputs.url, tmp_name) return literal_models.LiteralMap.from_flyte_idl( common_utils.load_proto_from_file(literals_pb2.LiteralMap, tmp_name) ) return literal_models.LiteralMap({}) def _get_output_literal_map(self, execution_data: ExecutionDataResponse) -> literal_models.LiteralMap: # Outputs are returned inline unless they are too big, in which case a url blob pointing to them is returned. if bool(execution_data.full_outputs.literals): return execution_data.full_outputs elif execution_data.outputs.bytes > 0: with self.remote_context() as ctx: tmp_name = os.path.join(ctx.file_access.local_sandbox_dir, "outputs.pb") ctx.file_access.get_data(execution_data.outputs.url, tmp_name) return literal_models.LiteralMap.from_flyte_idl( common_utils.load_proto_from_file(literals_pb2.LiteralMap, tmp_name) ) return literal_models.LiteralMap({})
the-stack_106_27201
import torch import torch.nn as nn from fixed_gru import FixedGru from fixed_rnn import FixedRnn class CharCnnRnn(nn.Module): # Char-cnn-rnn text embedding def __init__(self, rnn_type='fixed_rnn', model_type='cvpr'): super().__init__() if model_type == 'cvpr': rnn_dim = 256 use_maxpool3 = True rnn = FixedRnn rnn_num_steps = 8 else: # icml model type rnn_dim = 512 if rnn_type == 'fixed_rnn': use_maxpool3 = True rnn = FixedRnn rnn_num_steps = 8 else: # Use fixed_gru use_maxpool3 = False rnn = FixedGru rnn_num_steps = 18 self.rnn_type = rnn_type self.model_type = model_type self.use_maxpool3 = use_maxpool3 # network setup # (B, 70, 201) self.conv1 = nn.Conv1d(70, 384, kernel_size=4) self.threshold1 = nn.Threshold(1e-6, 0) self.maxpool1 = nn.MaxPool1d(kernel_size=3, stride=3) # (B, 384, 66) self.conv2 = nn.Conv1d(384, 512, kernel_size=4) self.threshold2 = nn.Threshold(1e-6, 0) self.maxpool2 = nn.MaxPool1d(kernel_size=3, stride=3) # (B, 512, 21) self.conv3 = nn.Conv1d(512, rnn_dim, kernel_size=4) self.threshold3 = nn.Threshold(1e-6, 0) if use_maxpool3: self.maxpool3 = nn.MaxPool1d(kernel_size=3, stride=2) # (B, rnn_dim, rnn_num_steps) self.rnn = rnn(num_steps=rnn_num_steps, emb_dim=rnn_dim) # (B, rnn_dim) self.emb_proj = nn.Linear(rnn_dim, 1024) # (B, 1024) def forward(self, txt): # temporal convolutions out = self.conv1(txt) out = self.threshold1(out) out = self.maxpool1(out) out = self.conv2(out) out = self.threshold2(out) out = self.maxpool2(out) out = self.conv3(out) out = self.threshold3(out) if self.use_maxpool3: out = self.maxpool3(out) # recurrent computation out = out.permute(0, 2, 1) out = self.rnn(out) # linear projection out = self.emb_proj(out) return out def str_to_labelvec(string, max_str_len=201): string = string.lower() alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} " # {'char': num, ...} alpha_to_num = {k: v + 1 for k, v in zip(alphabet, range(len(alphabet)))} labels = torch.zeros(max_str_len, requires_grad=False).long() max_i = min(max_str_len, len(string)) for i in range(max_i): # Append ' ' number if char not found labels[i] = alpha_to_num.get(string[i], alpha_to_num[' ']) return labels def labelvec_to_onehot(labels): labels = torch.LongTensor(labels).unsqueeze(1) one_hot = torch.zeros(labels.size(0), 71, requires_grad=False).scatter_(1, labels, 1.) # Ignore zeros in one-hot mask (position 0 = empty one-hot) one_hot = one_hot[:, 1:] one_hot = one_hot.permute(1, 0) return one_hot def prepare_text(string, max_str_len=201): # Converts a text description from string format to one-hot tensor format. labels = str_to_labelvec(string, max_str_len) one_hot = labelvec_to_onehot(labels) return one_hot
the-stack_106_27202
import asyncio import copy import logging import os import random import shutil import ssl import sys import tempfile import time from argparse import Namespace from dataclasses import replace from pathlib import Path from typing import Callable, Dict, List, Optional, Tuple, Any from blspy import AugSchemeMPL, G1Element, G2Element, PrivateKey from chiabip158 import PyBIP158 from chives.cmds.init_funcs import create_all_ssl, create_default_chives_config from chives.daemon.keychain_proxy import connect_to_keychain_and_validate, wrap_local_keychain from chives.full_node.bundle_tools import ( best_solution_generator_from_template, detect_potential_template_generator, simple_solution_generator, ) from chives.util.errors import Err from chives.full_node.generator import setup_generator_args from chives.full_node.mempool_check_conditions import GENERATOR_MOD from chives.plotting.create_plots import create_plots, PlotKeys from chives.consensus.block_creation import unfinished_block_to_full_block from chives.consensus.block_record import BlockRecord from chives.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from chives.consensus.blockchain_interface import BlockchainInterface from chives.consensus.coinbase import create_puzzlehash_for_pk, create_farmer_coin, create_pool_coin from chives.consensus.condition_costs import ConditionCost from chives.consensus.constants import ConsensusConstants from chives.consensus.default_constants import DEFAULT_CONSTANTS from chives.consensus.deficit import calculate_deficit from chives.consensus.full_block_to_block_record import block_to_block_record from chives.consensus.make_sub_epoch_summary import next_sub_epoch_summary from chives.consensus.pot_iterations import ( calculate_ip_iters, calculate_iterations_quality, calculate_sp_interval_iters, calculate_sp_iters, is_overflow_block, ) from chives.consensus.vdf_info_computation import get_signage_point_vdf_info from chives.full_node.signage_point import SignagePoint from chives.plotting.util import PlotsRefreshParameter, PlotRefreshResult, PlotRefreshEvents, parse_plot_info from chives.plotting.manager import PlotManager from chives.server.server import ssl_context_for_server from chives.types.blockchain_format.classgroup import ClassgroupElement from chives.types.blockchain_format.coin import Coin, hash_coin_list from chives.types.blockchain_format.foliage import Foliage, FoliageBlockData, FoliageTransactionBlock, TransactionsInfo from chives.types.blockchain_format.pool_target import PoolTarget from chives.types.blockchain_format.program import INFINITE_COST from chives.types.blockchain_format.proof_of_space import ProofOfSpace from chives.types.blockchain_format.reward_chain_block import RewardChainBlockUnfinished from chives.types.blockchain_format.sized_bytes import bytes32 from chives.types.blockchain_format.slots import ( ChallengeChainSubSlot, InfusedChallengeChainSubSlot, RewardChainSubSlot, SubSlotProofs, ) from chives.types.blockchain_format.sub_epoch_summary import SubEpochSummary from chives.types.blockchain_format.vdf import VDFInfo, VDFProof from chives.types.end_of_slot_bundle import EndOfSubSlotBundle from chives.types.full_block import FullBlock from chives.types.generator_types import BlockGenerator, CompressorArg from chives.types.spend_bundle import SpendBundle from chives.types.unfinished_block import UnfinishedBlock from chives.util.bech32m import encode_puzzle_hash from chives.util.block_cache import BlockCache from chives.util.condition_tools import ConditionOpcode from chives.util.config import load_config, save_config from chives.util.hash import std_hash from chives.util.ints import uint8, uint16, uint32, uint64, uint128 from chives.util.keychain import Keychain, bytes_to_mnemonic from chives.util.merkle_set import MerkleSet from chives.util.prev_transaction_block import get_prev_transaction_block from chives.util.path import mkdir from chives.util.vdf_prover import get_vdf_info_and_proof from tests.time_out_assert import time_out_assert from tests.wallet_tools import WalletTool from chives.wallet.derive_keys import ( master_sk_to_farmer_sk, master_sk_to_local_sk, master_sk_to_pool_sk, master_sk_to_wallet_sk, ) test_constants = DEFAULT_CONSTANTS.replace( **{ "MIN_PLOT_SIZE": 18, "MIN_BLOCKS_PER_CHALLENGE_BLOCK": 12, "DIFFICULTY_STARTING": 2 ** 12, "DISCRIMINANT_SIZE_BITS": 16, "SUB_EPOCH_BLOCKS": 170, "WEIGHT_PROOF_THRESHOLD": 2, "WEIGHT_PROOF_RECENT_BLOCKS": 380, "DIFFICULTY_CONSTANT_FACTOR": 33554432, "NUM_SPS_SUB_SLOT": 16, # Must be a power of 2 "MAX_SUB_SLOT_BLOCKS": 50, "EPOCH_BLOCKS": 340, "BLOCKS_CACHE_SIZE": 340 + 3 * 50, # Coordinate with the above values "SUB_SLOT_TIME_TARGET": 600, # The target number of seconds per slot, mainnet 600 "SUB_SLOT_ITERS_STARTING": 2 ** 10, # Must be a multiple of 64 "NUMBER_ZERO_BITS_PLOT_FILTER": 1, # H(plot signature of the challenge) must start with these many zeroes "MAX_FUTURE_TIME": 3600 * 24 * 10, # Allows creating blockchains with timestamps up to 10 days in the future, for testing "COST_PER_BYTE": 1337, "MEMPOOL_BLOCK_BUFFER": 6, "NETWORK_TYPE": 1, } ) log = logging.getLogger(__name__) class BlockTools: """ Tools to generate blocks for testing. """ def __init__( self, constants: ConsensusConstants = test_constants, root_path: Optional[Path] = None, const_dict=None, keychain: Optional[Keychain] = None, ): self._tempdir = None if root_path is None: self._tempdir = tempfile.TemporaryDirectory() root_path = Path(self._tempdir.name) self.root_path = root_path self.local_keychain = keychain create_default_chives_config(root_path) create_all_ssl(root_path) self.local_sk_cache: Dict[bytes32, Tuple[PrivateKey, Any]] = {} self._config = load_config(self.root_path, "config.yaml") self._config["logging"]["log_stdout"] = True self._config["selected_network"] = "testnet0" for service in ["harvester", "farmer", "full_node", "wallet", "introducer", "timelord", "pool"]: self._config[service]["selected_network"] = "testnet0" save_config(self.root_path, "config.yaml", self._config) overrides = self._config["network_overrides"]["constants"][self._config["selected_network"]] updated_constants = constants.replace_str_to_bytes(**overrides) if const_dict is not None: updated_constants = updated_constants.replace(**const_dict) self.constants = updated_constants self.refresh_parameter: PlotsRefreshParameter = PlotsRefreshParameter(batch_size=2) self.plot_dir: Path = get_plot_dir() self.temp_dir: Path = get_plot_tmp_dir() mkdir(self.plot_dir) mkdir(self.temp_dir) self.expected_plots: Dict[bytes32, Path] = {} self.total_result = PlotRefreshResult() def test_callback(event: PlotRefreshEvents, update_result: PlotRefreshResult): assert update_result.duration < 5 if event == PlotRefreshEvents.started: self.total_result = PlotRefreshResult() if event == PlotRefreshEvents.batch_processed: self.total_result.loaded += update_result.loaded self.total_result.removed += update_result.removed self.total_result.processed += update_result.processed self.total_result.duration += update_result.duration assert update_result.remaining == len(self.expected_plots) - self.total_result.processed assert update_result.loaded <= self.refresh_parameter.batch_size if event == PlotRefreshEvents.done: assert self.total_result.loaded == update_result.loaded assert self.total_result.removed == update_result.removed assert self.total_result.processed == update_result.processed assert self.total_result.duration == update_result.duration assert update_result.remaining == 0 assert len(self.plot_manager.plots) == len(self.expected_plots) self.plot_manager: PlotManager = PlotManager( self.root_path, refresh_parameter=self.refresh_parameter, refresh_callback=test_callback ) async def setup_keys(self): if self.local_keychain: self.keychain_proxy = wrap_local_keychain(self.local_keychain, log=log) else: self.keychain_proxy = await connect_to_keychain_and_validate( self.root_path, log, user="testing-1.8.0", service="chives-testing-1.8.0" ) await self.keychain_proxy.delete_all_keys() self.farmer_master_sk_entropy = std_hash(b"block_tools farmer key") self.pool_master_sk_entropy = std_hash(b"block_tools pool key") self.farmer_master_sk = await self.keychain_proxy.add_private_key( bytes_to_mnemonic(self.farmer_master_sk_entropy), "" ) self.pool_master_sk = await self.keychain_proxy.add_private_key( bytes_to_mnemonic(self.pool_master_sk_entropy), "" ) self.farmer_pk = master_sk_to_farmer_sk(self.farmer_master_sk).get_g1() self.pool_pk = master_sk_to_pool_sk(self.pool_master_sk).get_g1() self.farmer_ph: bytes32 = create_puzzlehash_for_pk( master_sk_to_wallet_sk(self.farmer_master_sk, uint32(0)).get_g1() ) self.pool_ph: bytes32 = create_puzzlehash_for_pk( master_sk_to_wallet_sk(self.pool_master_sk, uint32(0)).get_g1() ) self.all_sks: List[PrivateKey] = [sk for sk, _ in await self.keychain_proxy.get_all_private_keys()] self.pool_pubkeys: List[G1Element] = [master_sk_to_pool_sk(sk).get_g1() for sk in self.all_sks] self.farmer_pubkeys: List[G1Element] = [master_sk_to_farmer_sk(sk).get_g1() for sk in self.all_sks] if len(self.pool_pubkeys) == 0 or len(self.farmer_pubkeys) == 0: raise RuntimeError("Keys not generated. Run `chives generate keys`") self.plot_manager.set_public_keys(self.farmer_pubkeys, self.pool_pubkeys) def change_config(self, new_config: Dict): self._config = new_config overrides = self._config["network_overrides"]["constants"][self._config["selected_network"]] updated_constants = self.constants.replace_str_to_bytes(**overrides) self.constants = updated_constants save_config(self.root_path, "config.yaml", self._config) async def setup_plots(self): assert len(self.expected_plots) == 0 # OG Plots for i in range(15): await self.new_plot() # Pool Plots for i in range(5): await self.new_plot(self.pool_ph) await self.refresh_plots() async def new_plot( self, pool_contract_puzzle_hash: Optional[bytes32] = None, path: Path = None ) -> Optional[bytes32]: final_dir = self.plot_dir if path is not None: final_dir = path mkdir(final_dir) args = Namespace() # Can't go much lower than 20, since plots start having no solutions and more buggy args.size = 22 # Uses many plots for testing, in order to guarantee proofs of space at every height args.num = 1 args.buffer = 100 args.tmp_dir = self.temp_dir args.tmp2_dir = final_dir args.final_dir = final_dir args.plotid = None args.memo = None args.buckets = 0 args.stripe_size = 2000 args.num_threads = 0 args.nobitfield = False args.exclude_final_dir = False args.list_duplicates = False try: pool_pk: Optional[G1Element] = None pool_address: Optional[str] = None if pool_contract_puzzle_hash is None: pool_pk = self.pool_pk else: pool_address = encode_puzzle_hash(pool_contract_puzzle_hash, "xcc") keys = PlotKeys(self.farmer_pk, pool_pk, pool_address) # No datetime in the filename, to get deterministic filenames and not re-plot created, existed = await create_plots( args, keys, self.root_path, use_datetime=False, test_private_keys=[AugSchemeMPL.key_gen(std_hash(len(self.expected_plots).to_bytes(2, "big")))], ) plot_id_new: Optional[bytes32] = None path_new: Path = Path() if len(created): assert len(existed) == 0 plot_id_new, path_new = list(created.items())[0] if len(existed): assert len(created) == 0 plot_id_new, path_new = list(existed.items())[0] self.expected_plots[plot_id_new] = path_new # create_plots() updates plot_directories. Ensure we refresh our config to reflect the updated value self._config["harvester"]["plot_directories"] = load_config(self.root_path, "config.yaml", "harvester")[ "plot_directories" ] return plot_id_new except KeyboardInterrupt: shutil.rmtree(self.plot_dir, ignore_errors=True) sys.exit(1) async def refresh_plots(self): self.plot_manager.refresh_parameter.batch_size = ( 4 if len(self.expected_plots) % 3 == 0 else 3 ) # Make sure we have at least some batches + a remainder self.plot_manager.trigger_refresh() assert self.plot_manager.needs_refresh() self.plot_manager.start_refreshing() await time_out_assert(10, self.plot_manager.needs_refresh, value=False) self.plot_manager.stop_refreshing() assert not self.plot_manager.needs_refresh() async def delete_plot(self, plot_id: bytes32): assert plot_id in self.expected_plots self.expected_plots[plot_id].unlink() del self.expected_plots[plot_id] await self.refresh_plots() @property def config(self) -> Dict: return copy.deepcopy(self._config) def get_daemon_ssl_context(self) -> Optional[ssl.SSLContext]: crt_path = self.root_path / self.config["daemon_ssl"]["private_crt"] key_path = self.root_path / self.config["daemon_ssl"]["private_key"] ca_cert_path = self.root_path / self.config["private_ssl_ca"]["crt"] ca_key_path = self.root_path / self.config["private_ssl_ca"]["key"] return ssl_context_for_server(ca_cert_path, ca_key_path, crt_path, key_path) def get_plot_signature(self, m: bytes32, plot_pk: G1Element) -> G2Element: """ Returns the plot signature of the header data. """ farmer_sk = master_sk_to_farmer_sk(self.all_sks[0]) for plot_info in self.plot_manager.plots.values(): if plot_pk == plot_info.plot_public_key: # Look up local_sk from plot to save locked memory if plot_info.prover.get_id() in self.local_sk_cache: local_master_sk, pool_pk_or_ph = self.local_sk_cache[plot_info.prover.get_id()] else: pool_pk_or_ph, _, local_master_sk = parse_plot_info(plot_info.prover.get_memo()) self.local_sk_cache[plot_info.prover.get_id()] = (local_master_sk, pool_pk_or_ph) if isinstance(pool_pk_or_ph, G1Element): include_taproot = False else: assert isinstance(pool_pk_or_ph, bytes32) include_taproot = True local_sk = master_sk_to_local_sk(local_master_sk) agg_pk = ProofOfSpace.generate_plot_public_key(local_sk.get_g1(), farmer_sk.get_g1(), include_taproot) assert agg_pk == plot_pk harv_share = AugSchemeMPL.sign(local_sk, m, agg_pk) farm_share = AugSchemeMPL.sign(farmer_sk, m, agg_pk) if include_taproot: taproot_sk: PrivateKey = ProofOfSpace.generate_taproot_sk(local_sk.get_g1(), farmer_sk.get_g1()) taproot_share: G2Element = AugSchemeMPL.sign(taproot_sk, m, agg_pk) else: taproot_share = G2Element() return AugSchemeMPL.aggregate([harv_share, farm_share, taproot_share]) raise ValueError(f"Do not have key {plot_pk}") def get_pool_key_signature(self, pool_target: PoolTarget, pool_pk: Optional[G1Element]) -> Optional[G2Element]: # Returns the pool signature for the corresponding pk. If no pk is provided, returns None. if pool_pk is None: return None for sk in self.all_sks: sk_child = master_sk_to_pool_sk(sk) if sk_child.get_g1() == pool_pk: return AugSchemeMPL.sign(sk_child, bytes(pool_target)) raise ValueError(f"Do not have key {pool_pk}") def get_farmer_wallet_tool(self) -> WalletTool: return WalletTool(self.constants, self.farmer_master_sk) def get_pool_wallet_tool(self) -> WalletTool: return WalletTool(self.constants, self.pool_master_sk) def get_consecutive_blocks( self, num_blocks: int, block_list_input: List[FullBlock] = None, farmer_reward_puzzle_hash: Optional[bytes32] = None, pool_reward_puzzle_hash: Optional[bytes32] = None, transaction_data: Optional[SpendBundle] = None, seed: bytes = b"", time_per_block: Optional[float] = None, force_overflow: bool = False, skip_slots: int = 0, # Force at least this number of empty slots before the first SB guarantee_transaction_block: bool = False, # Force that this block must be a tx block normalized_to_identity_cc_eos: bool = False, normalized_to_identity_icc_eos: bool = False, normalized_to_identity_cc_sp: bool = False, normalized_to_identity_cc_ip: bool = False, current_time: bool = False, previous_generator: CompressorArg = None, genesis_timestamp: Optional[uint64] = None, force_plot_id: Optional[bytes32] = None, ) -> List[FullBlock]: assert num_blocks > 0 if block_list_input is not None: block_list = block_list_input.copy() else: block_list = [] constants = self.constants transaction_data_included = False if time_per_block is None: time_per_block = float(constants.SUB_SLOT_TIME_TARGET) / float(constants.SLOT_BLOCKS_TARGET) if farmer_reward_puzzle_hash is None: farmer_reward_puzzle_hash = self.farmer_ph if len(block_list) == 0: if force_plot_id is not None: raise ValueError("Cannot specify plot_id for genesis block") initial_block_list_len = 0 genesis = self.create_genesis_block( constants, seed, force_overflow=force_overflow, skip_slots=skip_slots, timestamp=(uint64(int(time.time())) if genesis_timestamp is None else genesis_timestamp), ) log.info(f"Created block 0 iters: {genesis.total_iters}") num_empty_slots_added = skip_slots block_list = [genesis] num_blocks -= 1 else: initial_block_list_len = len(block_list) num_empty_slots_added = uint32(0) # Allows forcing empty slots in the beginning, for testing purposes if num_blocks == 0: return block_list height_to_hash, difficulty, blocks = load_block_list(block_list, constants) latest_block: BlockRecord = blocks[block_list[-1].header_hash] curr = latest_block while not curr.is_transaction_block: curr = blocks[curr.prev_hash] start_timestamp = curr.timestamp start_height = curr.height curr = latest_block blocks_added_this_sub_slot = 1 while not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] blocks_added_this_sub_slot += 1 finished_sub_slots_at_sp: List[EndOfSubSlotBundle] = [] # Sub-slots since last block, up to signage point finished_sub_slots_at_ip: List[EndOfSubSlotBundle] = [] # Sub-slots since last block, up to infusion point sub_slot_iters: uint64 = latest_block.sub_slot_iters # The number of iterations in one sub-slot same_slot_as_last = True # Only applies to first slot, to prevent old blocks from being added sub_slot_start_total_iters: uint128 = latest_block.ip_sub_slot_total_iters(constants) sub_slots_finished = 0 pending_ses: bool = False # Start at the last block in block list # Get the challenge for that slot while True: slot_cc_challenge, slot_rc_challenge = get_challenges( constants, blocks, finished_sub_slots_at_sp, latest_block.header_hash, ) prev_num_of_blocks = num_blocks if num_empty_slots_added < skip_slots: # If did not reach the target slots to skip, don't make any proofs for this sub-slot num_empty_slots_added += 1 else: # Loop over every signage point (Except for the last ones, which are used for overflows) for signage_point_index in range(0, constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA): curr = latest_block while curr.total_iters > sub_slot_start_total_iters + calculate_sp_iters( constants, sub_slot_iters, uint8(signage_point_index) ): if curr.height == 0: break curr = blocks[curr.prev_hash] if curr.total_iters > sub_slot_start_total_iters: finished_sub_slots_at_sp = [] if same_slot_as_last: if signage_point_index < latest_block.signage_point_index: # Ignore this signage_point because it's in the past continue signage_point: SignagePoint = get_signage_point( constants, BlockCache(blocks), latest_block, sub_slot_start_total_iters, uint8(signage_point_index), finished_sub_slots_at_sp, sub_slot_iters, normalized_to_identity_cc_sp, ) if signage_point_index == 0: cc_sp_output_hash: bytes32 = slot_cc_challenge else: assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() qualified_proofs: List[Tuple[uint64, ProofOfSpace]] = self.get_pospaces_for_challenge( constants, slot_cc_challenge, cc_sp_output_hash, seed, difficulty, sub_slot_iters, force_plot_id=force_plot_id, ) for required_iters, proof_of_space in sorted(qualified_proofs, key=lambda t: t[0]): if blocks_added_this_sub_slot == constants.MAX_SUB_SLOT_BLOCKS or force_overflow: break if same_slot_as_last: if signage_point_index == latest_block.signage_point_index: # Ignore this block because it's in the past if required_iters <= latest_block.required_iters: continue assert latest_block.header_hash in blocks additions = None removals = None if transaction_data_included: transaction_data = None if transaction_data is not None and not transaction_data_included: additions = transaction_data.additions() removals = transaction_data.removals() assert start_timestamp is not None if proof_of_space.pool_contract_puzzle_hash is not None: if pool_reward_puzzle_hash is not None: # The caller wants to be paid to a specific address, but this PoSpace is tied to an # address, so continue until a proof of space tied to a pk is found continue pool_target = PoolTarget(proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: if pool_reward_puzzle_hash is not None: pool_target = PoolTarget(pool_reward_puzzle_hash, uint32(0)) else: pool_target = PoolTarget(self.pool_ph, uint32(0)) if transaction_data is not None: if previous_generator is not None: block_generator: Optional[BlockGenerator] = best_solution_generator_from_template( previous_generator, transaction_data ) else: block_generator = simple_solution_generator(transaction_data) aggregate_signature = transaction_data.aggregated_signature else: block_generator = None aggregate_signature = G2Element() full_block, block_record = get_full_block_and_block_record( constants, blocks, sub_slot_start_total_iters, uint8(signage_point_index), proof_of_space, slot_cc_challenge, slot_rc_challenge, farmer_reward_puzzle_hash, pool_target, start_timestamp, start_height, time_per_block, block_generator, aggregate_signature, additions, removals, height_to_hash, difficulty, required_iters, sub_slot_iters, self.get_plot_signature, self.get_pool_key_signature, finished_sub_slots_at_ip, signage_point, latest_block, seed, normalized_to_identity_cc_ip, current_time=current_time, ) if block_record.is_transaction_block: transaction_data_included = True else: if guarantee_transaction_block: continue if pending_ses: pending_ses = False block_list.append(full_block) if full_block.transactions_generator is not None: compressor_arg = detect_potential_template_generator( full_block.height, full_block.transactions_generator ) if compressor_arg is not None: previous_generator = compressor_arg blocks_added_this_sub_slot += 1 blocks[full_block.header_hash] = block_record log.info(f"Created block {block_record.height} ove=False, iters " f"{block_record.total_iters}") height_to_hash[uint32(full_block.height)] = full_block.header_hash latest_block = blocks[full_block.header_hash] finished_sub_slots_at_ip = [] num_blocks -= 1 if num_blocks == 0: return block_list # Finish the end of sub-slot and try again next sub-slot # End of sub-slot logic if len(finished_sub_slots_at_ip) == 0: # Block has been created within this sub-slot eos_iters: uint64 = uint64(sub_slot_iters - (latest_block.total_iters - sub_slot_start_total_iters)) cc_input: ClassgroupElement = latest_block.challenge_vdf_output rc_challenge: bytes32 = latest_block.reward_infusion_new_challenge else: # No blocks were successfully created within this sub-slot eos_iters = sub_slot_iters cc_input = ClassgroupElement.get_default_element() rc_challenge = slot_rc_challenge cc_vdf, cc_proof = get_vdf_info_and_proof( constants, cc_input, slot_cc_challenge, eos_iters, ) rc_vdf, rc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, eos_iters, ) eos_deficit: uint8 = ( latest_block.deficit if latest_block.deficit > 0 else constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK ) icc_eos_vdf, icc_ip_proof = get_icc( constants, uint128(sub_slot_start_total_iters + sub_slot_iters), finished_sub_slots_at_ip, latest_block, blocks, sub_slot_start_total_iters, eos_deficit, ) # End of slot vdf info for icc and cc have to be from challenge block or start of slot, respectively, # in order for light clients to validate. cc_vdf = VDFInfo(cc_vdf.challenge, sub_slot_iters, cc_vdf.output) if normalized_to_identity_cc_eos: _, cc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_vdf.challenge, sub_slot_iters, True, ) if pending_ses: sub_epoch_summary: Optional[SubEpochSummary] = None else: sub_epoch_summary = next_sub_epoch_summary( constants, BlockCache(blocks, height_to_hash), latest_block.required_iters, block_list[-1], False, ) pending_ses = True if sub_epoch_summary is not None: ses_hash = sub_epoch_summary.get_hash() new_sub_slot_iters: Optional[uint64] = sub_epoch_summary.new_sub_slot_iters new_difficulty: Optional[uint64] = sub_epoch_summary.new_difficulty log.info(f"Sub epoch summary: {sub_epoch_summary}") else: ses_hash = None new_sub_slot_iters = None new_difficulty = None if icc_eos_vdf is not None: # Icc vdf (Deficit of latest block is <= 4) if len(finished_sub_slots_at_ip) == 0: # This means there are blocks in this sub-slot curr = latest_block while not curr.is_challenge_block(constants) and not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] if curr.is_challenge_block(constants): icc_eos_iters = uint64(sub_slot_start_total_iters + sub_slot_iters - curr.total_iters) else: icc_eos_iters = sub_slot_iters else: # This means there are no blocks in this sub-slot icc_eos_iters = sub_slot_iters icc_eos_vdf = VDFInfo( icc_eos_vdf.challenge, icc_eos_iters, icc_eos_vdf.output, ) if normalized_to_identity_icc_eos: _, icc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), icc_eos_vdf.challenge, icc_eos_iters, True, ) icc_sub_slot: Optional[InfusedChallengeChainSubSlot] = InfusedChallengeChainSubSlot(icc_eos_vdf) assert icc_sub_slot is not None icc_sub_slot_hash = icc_sub_slot.get_hash() if latest_block.deficit == 0 else None cc_sub_slot = ChallengeChainSubSlot( cc_vdf, icc_sub_slot_hash, ses_hash, new_sub_slot_iters, new_difficulty, ) else: # No icc icc_sub_slot = None cc_sub_slot = ChallengeChainSubSlot(cc_vdf, None, ses_hash, new_sub_slot_iters, new_difficulty) finished_sub_slots_at_ip.append( EndOfSubSlotBundle( cc_sub_slot, icc_sub_slot, RewardChainSubSlot( rc_vdf, cc_sub_slot.get_hash(), icc_sub_slot.get_hash() if icc_sub_slot is not None else None, eos_deficit, ), SubSlotProofs(cc_proof, icc_ip_proof, rc_proof), ) ) finished_sub_slots_eos = finished_sub_slots_at_ip.copy() latest_block_eos = latest_block overflow_cc_challenge = finished_sub_slots_at_ip[-1].challenge_chain.get_hash() overflow_rc_challenge = finished_sub_slots_at_ip[-1].reward_chain.get_hash() additions = None removals = None if transaction_data_included: transaction_data = None if transaction_data is not None and not transaction_data_included: additions = transaction_data.additions() removals = transaction_data.removals() sub_slots_finished += 1 log.info( f"Sub slot finished. blocks included: {blocks_added_this_sub_slot} blocks_per_slot: " f"{(len(block_list) - initial_block_list_len)/sub_slots_finished}" ) blocks_added_this_sub_slot = 0 # Sub slot ended, overflows are in next sub slot # Handle overflows: No overflows on new epoch if new_sub_slot_iters is None and num_empty_slots_added >= skip_slots and new_difficulty is None: for signage_point_index in range( constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA, constants.NUM_SPS_SUB_SLOT, ): # note that we are passing in the finished slots which include the last slot signage_point = get_signage_point( constants, BlockCache(blocks), latest_block_eos, sub_slot_start_total_iters, uint8(signage_point_index), finished_sub_slots_eos, sub_slot_iters, normalized_to_identity_cc_sp, ) if signage_point_index == 0: cc_sp_output_hash = slot_cc_challenge else: assert signage_point is not None assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() # If did not reach the target slots to skip, don't make any proofs for this sub-slot qualified_proofs = self.get_pospaces_for_challenge( constants, slot_cc_challenge, cc_sp_output_hash, seed, difficulty, sub_slot_iters, force_plot_id=force_plot_id, ) for required_iters, proof_of_space in sorted(qualified_proofs, key=lambda t: t[0]): if blocks_added_this_sub_slot == constants.MAX_SUB_SLOT_BLOCKS: break assert start_timestamp is not None if proof_of_space.pool_contract_puzzle_hash is not None: if pool_reward_puzzle_hash is not None: # The caller wants to be paid to a specific address, but this PoSpace is tied to an # address, so continue until a proof of space tied to a pk is found continue pool_target = PoolTarget(proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: if pool_reward_puzzle_hash is not None: pool_target = PoolTarget(pool_reward_puzzle_hash, uint32(0)) else: pool_target = PoolTarget(self.pool_ph, uint32(0)) if transaction_data is not None: if previous_generator is not None: block_generator = best_solution_generator_from_template( previous_generator, transaction_data ) else: block_generator = simple_solution_generator(transaction_data) aggregate_signature = transaction_data.aggregated_signature else: block_generator = None aggregate_signature = G2Element() full_block, block_record = get_full_block_and_block_record( constants, blocks, sub_slot_start_total_iters, uint8(signage_point_index), proof_of_space, slot_cc_challenge, slot_rc_challenge, farmer_reward_puzzle_hash, pool_target, start_timestamp, start_height, time_per_block, block_generator, aggregate_signature, additions, removals, height_to_hash, difficulty, required_iters, sub_slot_iters, self.get_plot_signature, self.get_pool_key_signature, finished_sub_slots_at_ip, signage_point, latest_block, seed, overflow_cc_challenge=overflow_cc_challenge, overflow_rc_challenge=overflow_rc_challenge, normalized_to_identity_cc_ip=normalized_to_identity_cc_ip, current_time=current_time, ) if block_record.is_transaction_block: transaction_data_included = True elif guarantee_transaction_block: continue if pending_ses: pending_ses = False block_list.append(full_block) if full_block.transactions_generator is not None: compressor_arg = detect_potential_template_generator( full_block.height, full_block.transactions_generator ) if compressor_arg is not None: previous_generator = compressor_arg blocks_added_this_sub_slot += 1 log.info(f"Created block {block_record.height } ov=True, iters " f"{block_record.total_iters}") num_blocks -= 1 if num_blocks == 0: return block_list blocks[full_block.header_hash] = block_record height_to_hash[uint32(full_block.height)] = full_block.header_hash latest_block = blocks[full_block.header_hash] finished_sub_slots_at_ip = [] finished_sub_slots_at_sp = finished_sub_slots_eos.copy() same_slot_as_last = False sub_slot_start_total_iters = uint128(sub_slot_start_total_iters + sub_slot_iters) if num_blocks < prev_num_of_blocks: num_empty_slots_added += 1 if new_sub_slot_iters is not None: assert new_difficulty is not None sub_slot_iters = new_sub_slot_iters difficulty = new_difficulty def create_genesis_block( self, constants: ConsensusConstants, seed: bytes32 = b"", timestamp: Optional[uint64] = None, force_overflow: bool = False, skip_slots: int = 0, ) -> FullBlock: if timestamp is None: timestamp = uint64(int(time.time())) finished_sub_slots: List[EndOfSubSlotBundle] = [] unfinished_block: Optional[UnfinishedBlock] = None ip_iters: uint64 = uint64(0) sub_slot_total_iters: uint128 = uint128(0) # Keep trying until we get a good proof of space that also passes sp filter while True: cc_challenge, rc_challenge = get_challenges(constants, {}, finished_sub_slots, None) for signage_point_index in range(0, constants.NUM_SPS_SUB_SLOT): signage_point: SignagePoint = get_signage_point( constants, BlockCache({}, {}), None, sub_slot_total_iters, uint8(signage_point_index), finished_sub_slots, constants.SUB_SLOT_ITERS_STARTING, ) if signage_point_index == 0: cc_sp_output_hash: bytes32 = cc_challenge else: assert signage_point is not None assert signage_point.cc_vdf is not None cc_sp_output_hash = signage_point.cc_vdf.output.get_hash() # If did not reach the target slots to skip, don't make any proofs for this sub-slot qualified_proofs: List[Tuple[uint64, ProofOfSpace]] = self.get_pospaces_for_challenge( constants, cc_challenge, cc_sp_output_hash, seed, constants.DIFFICULTY_STARTING, constants.SUB_SLOT_ITERS_STARTING, ) # Try each of the proofs of space for required_iters, proof_of_space in qualified_proofs: sp_iters: uint64 = calculate_sp_iters( constants, uint64(constants.SUB_SLOT_ITERS_STARTING), uint8(signage_point_index), ) ip_iters = calculate_ip_iters( constants, uint64(constants.SUB_SLOT_ITERS_STARTING), uint8(signage_point_index), required_iters, ) is_overflow = is_overflow_block(constants, uint8(signage_point_index)) if force_overflow and not is_overflow: continue if len(finished_sub_slots) < skip_slots: continue unfinished_block = create_test_unfinished_block( constants, sub_slot_total_iters, constants.SUB_SLOT_ITERS_STARTING, uint8(signage_point_index), sp_iters, ip_iters, proof_of_space, cc_challenge, constants.GENESIS_PRE_FARM_FARMER_PUZZLE_HASH, PoolTarget(constants.GENESIS_PRE_FARM_POOL_PUZZLE_HASH, uint32(0)), self.get_plot_signature, self.get_pool_key_signature, signage_point, timestamp, BlockCache({}), seed=seed, finished_sub_slots_input=finished_sub_slots, ) assert unfinished_block is not None if not is_overflow: cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_challenge, ip_iters, ) cc_ip_vdf = replace(cc_ip_vdf, number_of_iterations=ip_iters) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, ip_iters, ) assert unfinished_block is not None total_iters_sp = uint128(sub_slot_total_iters + sp_iters) return unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, None, None, finished_sub_slots, None, BlockCache({}), total_iters_sp, constants.DIFFICULTY_STARTING, ) if signage_point_index == constants.NUM_SPS_SUB_SLOT - constants.NUM_SP_INTERVALS_EXTRA - 1: # Finish the end of sub-slot and try again next sub-slot cc_vdf, cc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_challenge, constants.SUB_SLOT_ITERS_STARTING, ) rc_vdf, rc_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_challenge, constants.SUB_SLOT_ITERS_STARTING, ) cc_slot = ChallengeChainSubSlot(cc_vdf, None, None, None, None) finished_sub_slots.append( EndOfSubSlotBundle( cc_slot, None, RewardChainSubSlot( rc_vdf, cc_slot.get_hash(), None, uint8(constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK), ), SubSlotProofs(cc_proof, None, rc_proof), ) ) if unfinished_block is not None: cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), finished_sub_slots[-1].challenge_chain.get_hash(), ip_iters, ) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), finished_sub_slots[-1].reward_chain.get_hash(), ip_iters, ) total_iters_sp = uint128( sub_slot_total_iters + calculate_sp_iters( self.constants, self.constants.SUB_SLOT_ITERS_STARTING, unfinished_block.reward_chain_block.signage_point_index, ) ) return unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, None, None, finished_sub_slots, None, BlockCache({}), total_iters_sp, constants.DIFFICULTY_STARTING, ) sub_slot_total_iters = uint128(sub_slot_total_iters + constants.SUB_SLOT_ITERS_STARTING) def get_pospaces_for_challenge( self, constants: ConsensusConstants, challenge_hash: bytes32, signage_point: bytes32, seed: bytes, difficulty: uint64, sub_slot_iters: uint64, force_plot_id: Optional[bytes32] = None, ) -> List[Tuple[uint64, ProofOfSpace]]: found_proofs: List[Tuple[uint64, ProofOfSpace]] = [] random.seed(seed) for plot_info in self.plot_manager.plots.values(): plot_id: bytes32 = plot_info.prover.get_id() if force_plot_id is not None and plot_id != force_plot_id: continue if ProofOfSpace.passes_plot_filter(constants, plot_id, challenge_hash, signage_point): new_challenge: bytes32 = ProofOfSpace.calculate_pos_challenge(plot_id, challenge_hash, signage_point) qualities = plot_info.prover.get_qualities_for_challenge(new_challenge) for proof_index, quality_str in enumerate(qualities): required_iters = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, quality_str, plot_info.prover.get_size(), difficulty, signage_point, ) if required_iters < calculate_sp_interval_iters(constants, sub_slot_iters): proof_xs: bytes = plot_info.prover.get_full_proof(new_challenge, proof_index) # Look up local_sk from plot to save locked memory ( pool_public_key_or_puzzle_hash, farmer_public_key, local_master_sk, ) = parse_plot_info(plot_info.prover.get_memo()) local_sk = master_sk_to_local_sk(local_master_sk) if isinstance(pool_public_key_or_puzzle_hash, G1Element): include_taproot = False else: assert isinstance(pool_public_key_or_puzzle_hash, bytes32) include_taproot = True plot_pk = ProofOfSpace.generate_plot_public_key( local_sk.get_g1(), farmer_public_key, include_taproot ) proof_of_space: ProofOfSpace = ProofOfSpace( new_challenge, plot_info.pool_public_key, plot_info.pool_contract_puzzle_hash, plot_pk, plot_info.prover.get_size(), proof_xs, ) found_proofs.append((required_iters, proof_of_space)) random_sample = found_proofs if len(found_proofs) >= 1: if random.random() < 0.1: # Removes some proofs of space to create "random" chains, based on the seed random_sample = random.sample(found_proofs, len(found_proofs) - 1) return random_sample def get_signage_point( constants: ConsensusConstants, blocks: BlockchainInterface, latest_block: Optional[BlockRecord], sub_slot_start_total_iters: uint128, signage_point_index: uint8, finished_sub_slots: List[EndOfSubSlotBundle], sub_slot_iters: uint64, normalized_to_identity_cc_sp: bool = False, ) -> SignagePoint: if signage_point_index == 0: return SignagePoint(None, None, None, None) sp_iters = calculate_sp_iters(constants, sub_slot_iters, signage_point_index) overflow = is_overflow_block(constants, signage_point_index) sp_total_iters = uint128( sub_slot_start_total_iters + calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ) ( cc_vdf_challenge, rc_vdf_challenge, cc_vdf_input, rc_vdf_input, cc_vdf_iters, rc_vdf_iters, ) = get_signage_point_vdf_info( constants, finished_sub_slots, overflow, latest_block, blocks, sp_total_iters, sp_iters, ) cc_sp_vdf, cc_sp_proof = get_vdf_info_and_proof( constants, cc_vdf_input, cc_vdf_challenge, cc_vdf_iters, ) rc_sp_vdf, rc_sp_proof = get_vdf_info_and_proof( constants, rc_vdf_input, rc_vdf_challenge, rc_vdf_iters, ) cc_sp_vdf = replace(cc_sp_vdf, number_of_iterations=sp_iters) if normalized_to_identity_cc_sp: _, cc_sp_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_sp_vdf.challenge, sp_iters, True, ) return SignagePoint(cc_sp_vdf, cc_sp_proof, rc_sp_vdf, rc_sp_proof) def finish_block( constants: ConsensusConstants, blocks: Dict[bytes32, BlockRecord], height_to_hash: Dict[uint32, bytes32], finished_sub_slots: List[EndOfSubSlotBundle], sub_slot_start_total_iters: uint128, signage_point_index: uint8, unfinished_block: UnfinishedBlock, required_iters: uint64, ip_iters: uint64, slot_cc_challenge: bytes32, slot_rc_challenge: bytes32, latest_block: BlockRecord, sub_slot_iters: uint64, difficulty: uint64, normalized_to_identity_cc_ip: bool = False, ) -> Tuple[FullBlock, BlockRecord]: is_overflow = is_overflow_block(constants, signage_point_index) cc_vdf_challenge = slot_cc_challenge if len(finished_sub_slots) == 0: new_ip_iters = unfinished_block.total_iters - latest_block.total_iters cc_vdf_input = latest_block.challenge_vdf_output rc_vdf_challenge = latest_block.reward_infusion_new_challenge else: new_ip_iters = ip_iters cc_vdf_input = ClassgroupElement.get_default_element() rc_vdf_challenge = slot_rc_challenge cc_ip_vdf, cc_ip_proof = get_vdf_info_and_proof( constants, cc_vdf_input, cc_vdf_challenge, new_ip_iters, ) cc_ip_vdf = replace(cc_ip_vdf, number_of_iterations=ip_iters) if normalized_to_identity_cc_ip: _, cc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), cc_ip_vdf.challenge, ip_iters, True, ) deficit = calculate_deficit( constants, uint32(latest_block.height + 1), latest_block, is_overflow, len(finished_sub_slots), ) icc_ip_vdf, icc_ip_proof = get_icc( constants, unfinished_block.total_iters, finished_sub_slots, latest_block, blocks, uint128(sub_slot_start_total_iters + sub_slot_iters) if is_overflow else sub_slot_start_total_iters, deficit, ) rc_ip_vdf, rc_ip_proof = get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), rc_vdf_challenge, new_ip_iters, ) assert unfinished_block is not None sp_total_iters = uint128( sub_slot_start_total_iters + calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ) full_block: FullBlock = unfinished_block_to_full_block( unfinished_block, cc_ip_vdf, cc_ip_proof, rc_ip_vdf, rc_ip_proof, icc_ip_vdf, icc_ip_proof, finished_sub_slots, latest_block, BlockCache(blocks), sp_total_iters, difficulty, ) block_record = block_to_block_record(constants, BlockCache(blocks), required_iters, full_block, None) return full_block, block_record def get_challenges( constants: ConsensusConstants, blocks: Dict[uint32, BlockRecord], finished_sub_slots: List[EndOfSubSlotBundle], prev_header_hash: Optional[bytes32], ) -> Tuple[bytes32, bytes32]: if len(finished_sub_slots) == 0: if prev_header_hash is None: return constants.GENESIS_CHALLENGE, constants.GENESIS_CHALLENGE curr: BlockRecord = blocks[prev_header_hash] while not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] assert curr.finished_challenge_slot_hashes is not None assert curr.finished_reward_slot_hashes is not None cc_challenge = curr.finished_challenge_slot_hashes[-1] rc_challenge = curr.finished_reward_slot_hashes[-1] else: cc_challenge = finished_sub_slots[-1].challenge_chain.get_hash() rc_challenge = finished_sub_slots[-1].reward_chain.get_hash() return cc_challenge, rc_challenge def get_plot_dir() -> Path: cache_path = Path(os.path.expanduser(os.getenv("CHIVES_ROOT", "~/.chives/"))) / "test-plots" mkdir(cache_path) return cache_path def get_plot_tmp_dir(): return get_plot_dir() / "tmp" def load_block_list( block_list: List[FullBlock], constants: ConsensusConstants ) -> Tuple[Dict[uint32, bytes32], uint64, Dict[uint32, BlockRecord]]: difficulty = 0 height_to_hash: Dict[uint32, bytes32] = {} blocks: Dict[uint32, BlockRecord] = {} for full_block in block_list: if full_block.height == 0: difficulty = uint64(constants.DIFFICULTY_STARTING) else: difficulty = full_block.weight - block_list[full_block.height - 1].weight if full_block.reward_chain_block.signage_point_index == 0: challenge = full_block.reward_chain_block.pos_ss_cc_challenge_hash sp_hash = challenge else: assert full_block.reward_chain_block.challenge_chain_sp_vdf is not None challenge = full_block.reward_chain_block.challenge_chain_sp_vdf.challenge sp_hash = full_block.reward_chain_block.challenge_chain_sp_vdf.output.get_hash() quality_str = full_block.reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, challenge, sp_hash ) required_iters: uint64 = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, quality_str, full_block.reward_chain_block.proof_of_space.size, uint64(difficulty), sp_hash, ) blocks[full_block.header_hash] = block_to_block_record( constants, BlockCache(blocks), required_iters, full_block, None, ) height_to_hash[uint32(full_block.height)] = full_block.header_hash return height_to_hash, uint64(difficulty), blocks def get_icc( constants: ConsensusConstants, vdf_end_total_iters: uint128, finished_sub_slots: List[EndOfSubSlotBundle], latest_block: BlockRecord, blocks: Dict[bytes32, BlockRecord], sub_slot_start_total_iters: uint128, deficit: uint8, ) -> Tuple[Optional[VDFInfo], Optional[VDFProof]]: if len(finished_sub_slots) == 0: prev_deficit = latest_block.deficit else: prev_deficit = finished_sub_slots[-1].reward_chain.deficit if deficit == prev_deficit == constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK: # new slot / overflow sb to new slot / overflow sb return None, None if deficit == (prev_deficit - 1) == (constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK - 1): # new slot / overflow sb to challenge sb return None, None if len(finished_sub_slots) != 0: last_ss = finished_sub_slots[-1] assert last_ss.infused_challenge_chain is not None assert finished_sub_slots[-1].reward_chain.deficit <= (constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK - 1) return get_vdf_info_and_proof( constants, ClassgroupElement.get_default_element(), last_ss.infused_challenge_chain.get_hash(), uint64(vdf_end_total_iters - sub_slot_start_total_iters), ) curr = latest_block # curr deficit is 0, 1, 2, 3, or 4 while not curr.is_challenge_block(constants) and not curr.first_in_sub_slot: curr = blocks[curr.prev_hash] icc_iters = uint64(vdf_end_total_iters - latest_block.total_iters) if latest_block.is_challenge_block(constants): icc_input: Optional[ClassgroupElement] = ClassgroupElement.get_default_element() else: icc_input = latest_block.infused_challenge_vdf_output assert icc_input is not None if curr.is_challenge_block(constants): # Deficit 4 icc_challenge_hash = curr.challenge_block_info_hash else: assert curr.finished_infused_challenge_slot_hashes is not None # First block in sub slot has deficit 0,1,2 or 3 icc_challenge_hash = curr.finished_infused_challenge_slot_hashes[-1] return get_vdf_info_and_proof( constants, icc_input, icc_challenge_hash, icc_iters, ) def get_full_block_and_block_record( constants: ConsensusConstants, blocks: Dict[uint32, BlockRecord], sub_slot_start_total_iters: uint128, signage_point_index: uint8, proof_of_space: ProofOfSpace, slot_cc_challenge: bytes32, slot_rc_challenge: bytes32, farmer_reward_puzzle_hash: bytes32, pool_target: PoolTarget, start_timestamp: uint64, start_height: uint32, time_per_block: float, block_generator: Optional[BlockGenerator], aggregate_signature: G2Element, additions: Optional[List[Coin]], removals: Optional[List[Coin]], height_to_hash: Dict[uint32, bytes32], difficulty: uint64, required_iters: uint64, sub_slot_iters: uint64, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], finished_sub_slots: List[EndOfSubSlotBundle], signage_point: SignagePoint, prev_block: BlockRecord, seed: bytes = b"", overflow_cc_challenge: bytes32 = None, overflow_rc_challenge: bytes32 = None, normalized_to_identity_cc_ip: bool = False, current_time: bool = False, ) -> Tuple[FullBlock, BlockRecord]: if current_time is True: if prev_block.timestamp is not None: timestamp = uint64(max(int(time.time()), prev_block.timestamp + int(time_per_block))) else: timestamp = uint64(int(time.time())) else: timestamp = uint64(start_timestamp + int((prev_block.height + 1 - start_height) * time_per_block)) sp_iters = calculate_sp_iters(constants, sub_slot_iters, signage_point_index) ip_iters = calculate_ip_iters(constants, sub_slot_iters, signage_point_index, required_iters) unfinished_block = create_test_unfinished_block( constants, sub_slot_start_total_iters, sub_slot_iters, signage_point_index, sp_iters, ip_iters, proof_of_space, slot_cc_challenge, farmer_reward_puzzle_hash, pool_target, get_plot_signature, get_pool_signature, signage_point, timestamp, BlockCache(blocks), seed, block_generator, aggregate_signature, additions, removals, prev_block, finished_sub_slots, ) if (overflow_cc_challenge is not None) and (overflow_rc_challenge is not None): slot_cc_challenge = overflow_cc_challenge slot_rc_challenge = overflow_rc_challenge full_block, block_record = finish_block( constants, blocks, height_to_hash, finished_sub_slots, sub_slot_start_total_iters, signage_point_index, unfinished_block, required_iters, ip_iters, slot_cc_challenge, slot_rc_challenge, prev_block, sub_slot_iters, difficulty, normalized_to_identity_cc_ip, ) return full_block, block_record def compute_cost_test(generator: BlockGenerator, cost_per_byte: int) -> Tuple[Optional[uint16], uint64]: try: block_program, block_program_args = setup_generator_args(generator) clvm_cost, result = GENERATOR_MOD.run_safe_with_cost(INFINITE_COST, block_program, block_program_args) size_cost = len(bytes(generator.program)) * cost_per_byte condition_cost = 0 for res in result.first().as_iter(): res = res.rest() # skip parent coind id res = res.rest() # skip puzzle hash res = res.rest() # skip amount for cond in res.first().as_iter(): condition = cond.first().as_atom() if condition in [ConditionOpcode.AGG_SIG_UNSAFE, ConditionOpcode.AGG_SIG_ME]: condition_cost += ConditionCost.AGG_SIG.value elif condition == ConditionOpcode.CREATE_COIN: condition_cost += ConditionCost.CREATE_COIN.value return None, uint64(clvm_cost + size_cost + condition_cost) except Exception: return uint16(Err.GENERATOR_RUNTIME_ERROR.value), uint64(0) def create_test_foliage( constants: ConsensusConstants, reward_block_unfinished: RewardChainBlockUnfinished, block_generator: Optional[BlockGenerator], aggregate_sig: G2Element, additions: List[Coin], removals: List[Coin], prev_block: Optional[BlockRecord], blocks: BlockchainInterface, total_iters_sp: uint128, timestamp: uint64, farmer_reward_puzzlehash: bytes32, pool_target: PoolTarget, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], seed: bytes32 = b"", ) -> Tuple[Foliage, Optional[FoliageTransactionBlock], Optional[TransactionsInfo]]: """ Creates a foliage for a given reward chain block. This may or may not be a tx block. In the case of a tx block, the return values are not None. This is called at the signage point, so some of this information may be tweaked at the infusion point. Args: constants: consensus constants being used for this chain reward_block_unfinished: the reward block to look at, potentially at the signage point block_generator: transactions to add to the foliage block, if created aggregate_sig: aggregate of all transctions (or infinity element) prev_block: the previous block at the signage point blocks: dict from header hash to blocks, of all ancestor blocks total_iters_sp: total iters at the signage point timestamp: timestamp to put into the foliage block farmer_reward_puzzlehash: where to pay out farming reward pool_target: where to pay out pool reward get_plot_signature: retrieve the signature corresponding to the plot public key get_pool_signature: retrieve the signature corresponding to the pool public key seed: seed to randomize block """ if prev_block is not None: res = get_prev_transaction_block(prev_block, blocks, total_iters_sp) is_transaction_block: bool = res[0] prev_transaction_block: Optional[BlockRecord] = res[1] else: # Genesis is a transaction block prev_transaction_block = None is_transaction_block = True random.seed(seed) # Use the extension data to create different blocks based on header hash extension_data: bytes32 = random.randint(0, 100000000).to_bytes(32, "big") if prev_block is None: height: uint32 = uint32(0) else: height = uint32(prev_block.height + 1) # Create filter byte_array_tx: List[bytes32] = [] tx_additions: List[Coin] = [] tx_removals: List[bytes32] = [] pool_target_signature: Optional[G2Element] = get_pool_signature( pool_target, reward_block_unfinished.proof_of_space.pool_public_key ) foliage_data = FoliageBlockData( reward_block_unfinished.get_hash(), pool_target, pool_target_signature, farmer_reward_puzzlehash, extension_data, ) foliage_block_data_signature: G2Element = get_plot_signature( foliage_data.get_hash(), reward_block_unfinished.proof_of_space.plot_public_key, ) prev_block_hash: bytes32 = constants.GENESIS_CHALLENGE if height != 0: assert prev_block is not None prev_block_hash = prev_block.header_hash generator_block_heights_list: List[uint32] = [] if is_transaction_block: cost = uint64(0) # Calculate the cost of transactions if block_generator is not None: generator_block_heights_list = block_generator.block_height_list() err, cost = compute_cost_test(block_generator, constants.COST_PER_BYTE) assert err is None removal_amount = 0 addition_amount = 0 for coin in removals: removal_amount += coin.amount for coin in additions: addition_amount += coin.amount spend_bundle_fees = removal_amount - addition_amount # in order to allow creating blocks that mint coins, clamp the fee # to 0, if it ends up being negative if spend_bundle_fees < 0: spend_bundle_fees = 0 else: spend_bundle_fees = 0 reward_claims_incorporated = [] if height > 0: assert prev_transaction_block is not None assert prev_block is not None curr: BlockRecord = prev_block while not curr.is_transaction_block: curr = blocks.block_record(curr.prev_hash) assert curr.fees is not None pool_coin = create_pool_coin( curr.height, curr.pool_puzzle_hash, calculate_pool_reward(curr.height), constants.GENESIS_CHALLENGE ) farmer_coin = create_farmer_coin( curr.height, curr.farmer_puzzle_hash, uint64(calculate_base_farmer_reward(curr.height) + curr.fees), constants.GENESIS_CHALLENGE, ) assert curr.header_hash == prev_transaction_block.header_hash reward_claims_incorporated += [pool_coin, farmer_coin] if curr.height > 0: curr = blocks.block_record(curr.prev_hash) # Prev block is not genesis while not curr.is_transaction_block: pool_coin = create_pool_coin( curr.height, curr.pool_puzzle_hash, calculate_pool_reward(curr.height), constants.GENESIS_CHALLENGE, ) farmer_coin = create_farmer_coin( curr.height, curr.farmer_puzzle_hash, calculate_base_farmer_reward(curr.height), constants.GENESIS_CHALLENGE, ) reward_claims_incorporated += [pool_coin, farmer_coin] curr = blocks.block_record(curr.prev_hash) additions.extend(reward_claims_incorporated.copy()) for coin in additions: tx_additions.append(coin) byte_array_tx.append(bytearray(coin.puzzle_hash)) for coin in removals: tx_removals.append(coin.name()) byte_array_tx.append(bytearray(coin.name())) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded = bytes(bip158.GetEncoded()) removal_merkle_set = MerkleSet() addition_merkle_set = MerkleSet() # Create removal Merkle set for coin_name in tx_removals: removal_merkle_set.add_already_hashed(coin_name) # Create addition Merkle set puzzlehash_coin_map: Dict[bytes32, List[Coin]] = {} for coin in tx_additions: if coin.puzzle_hash in puzzlehash_coin_map: puzzlehash_coin_map[coin.puzzle_hash].append(coin) else: puzzlehash_coin_map[coin.puzzle_hash] = [coin] # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coin_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) additions_root = addition_merkle_set.get_root() removals_root = removal_merkle_set.get_root() generator_hash = bytes32([0] * 32) if block_generator is not None: generator_hash = std_hash(block_generator.program) generator_refs_hash = bytes32([1] * 32) if generator_block_heights_list not in (None, []): generator_ref_list_bytes = b"".join([bytes(i) for i in generator_block_heights_list]) generator_refs_hash = std_hash(generator_ref_list_bytes) filter_hash: bytes32 = std_hash(encoded) transactions_info: Optional[TransactionsInfo] = TransactionsInfo( generator_hash, generator_refs_hash, aggregate_sig, uint64(spend_bundle_fees), cost, reward_claims_incorporated, ) if prev_transaction_block is None: prev_transaction_block_hash: bytes32 = constants.GENESIS_CHALLENGE else: prev_transaction_block_hash = prev_transaction_block.header_hash assert transactions_info is not None foliage_transaction_block: Optional[FoliageTransactionBlock] = FoliageTransactionBlock( prev_transaction_block_hash, timestamp, filter_hash, additions_root, removals_root, transactions_info.get_hash(), ) assert foliage_transaction_block is not None foliage_transaction_block_hash: Optional[bytes32] = foliage_transaction_block.get_hash() foliage_transaction_block_signature: Optional[G2Element] = get_plot_signature( foliage_transaction_block_hash, reward_block_unfinished.proof_of_space.plot_public_key ) assert foliage_transaction_block_signature is not None else: foliage_transaction_block_hash = None foliage_transaction_block_signature = None foliage_transaction_block = None transactions_info = None assert (foliage_transaction_block_hash is None) == (foliage_transaction_block_signature is None) foliage = Foliage( prev_block_hash, reward_block_unfinished.get_hash(), foliage_data, foliage_block_data_signature, foliage_transaction_block_hash, foliage_transaction_block_signature, ) return foliage, foliage_transaction_block, transactions_info def create_test_unfinished_block( constants: ConsensusConstants, sub_slot_start_total_iters: uint128, sub_slot_iters: uint64, signage_point_index: uint8, sp_iters: uint64, ip_iters: uint64, proof_of_space: ProofOfSpace, slot_cc_challenge: bytes32, farmer_reward_puzzle_hash: bytes32, pool_target: PoolTarget, get_plot_signature: Callable[[bytes32, G1Element], G2Element], get_pool_signature: Callable[[PoolTarget, Optional[G1Element]], Optional[G2Element]], signage_point: SignagePoint, timestamp: uint64, blocks: BlockchainInterface, seed: bytes32 = b"", block_generator: Optional[BlockGenerator] = None, aggregate_sig: G2Element = G2Element(), additions: Optional[List[Coin]] = None, removals: Optional[List[Coin]] = None, prev_block: Optional[BlockRecord] = None, finished_sub_slots_input: List[EndOfSubSlotBundle] = None, ) -> UnfinishedBlock: """ Creates a new unfinished block using all the information available at the signage point. This will have to be modified using information from the infusion point. Args: constants: consensus constants being used for this chain sub_slot_start_total_iters: the starting sub-slot iters at the signage point sub-slot sub_slot_iters: sub-slot-iters at the infusion point epoch signage_point_index: signage point index of the block to create sp_iters: sp_iters of the block to create ip_iters: ip_iters of the block to create proof_of_space: proof of space of the block to create slot_cc_challenge: challenge hash at the sp sub-slot farmer_reward_puzzle_hash: where to pay out farmer rewards pool_target: where to pay out pool rewards get_plot_signature: function that returns signature corresponding to plot public key get_pool_signature: function that returns signature corresponding to pool public key signage_point: signage point information (VDFs) timestamp: timestamp to add to the foliage block, if created seed: seed to randomize chain block_generator: transactions to add to the foliage block, if created aggregate_sig: aggregate of all transctions (or infinity element) additions: Coins added in spend_bundle removals: Coins removed in spend_bundle prev_block: previous block (already in chain) from the signage point blocks: dictionary from header hash to SBR of all included SBR finished_sub_slots_input: finished_sub_slots at the signage point Returns: """ if finished_sub_slots_input is None: finished_sub_slots: List[EndOfSubSlotBundle] = [] else: finished_sub_slots = finished_sub_slots_input.copy() overflow: bool = sp_iters > ip_iters total_iters_sp: uint128 = uint128(sub_slot_start_total_iters + sp_iters) is_genesis: bool = prev_block is None new_sub_slot: bool = len(finished_sub_slots) > 0 cc_sp_hash: Optional[bytes32] = slot_cc_challenge # Only enters this if statement if we are in testing mode (making VDF proofs here) if signage_point.cc_vdf is not None: assert signage_point.rc_vdf is not None cc_sp_hash = signage_point.cc_vdf.output.get_hash() rc_sp_hash = signage_point.rc_vdf.output.get_hash() else: if new_sub_slot: rc_sp_hash = finished_sub_slots[-1].reward_chain.get_hash() else: if is_genesis: rc_sp_hash = constants.GENESIS_CHALLENGE else: assert prev_block is not None assert blocks is not None curr = prev_block while not curr.first_in_sub_slot: curr = blocks.block_record(curr.prev_hash) assert curr.finished_reward_slot_hashes is not None rc_sp_hash = curr.finished_reward_slot_hashes[-1] signage_point = SignagePoint(None, None, None, None) cc_sp_signature: Optional[G2Element] = get_plot_signature(cc_sp_hash, proof_of_space.plot_public_key) rc_sp_signature: Optional[G2Element] = get_plot_signature(rc_sp_hash, proof_of_space.plot_public_key) assert cc_sp_signature is not None assert rc_sp_signature is not None assert AugSchemeMPL.verify(proof_of_space.plot_public_key, cc_sp_hash, cc_sp_signature) total_iters = uint128(sub_slot_start_total_iters + ip_iters + (sub_slot_iters if overflow else 0)) rc_block = RewardChainBlockUnfinished( total_iters, signage_point_index, slot_cc_challenge, proof_of_space, signage_point.cc_vdf, cc_sp_signature, signage_point.rc_vdf, rc_sp_signature, ) if additions is None: additions = [] if removals is None: removals = [] (foliage, foliage_transaction_block, transactions_info,) = create_test_foliage( constants, rc_block, block_generator, aggregate_sig, additions, removals, prev_block, blocks, total_iters_sp, timestamp, farmer_reward_puzzle_hash, pool_target, get_plot_signature, get_pool_signature, seed, ) return UnfinishedBlock( finished_sub_slots, rc_block, signage_point.cc_proof, signage_point.rc_proof, foliage, foliage_transaction_block, transactions_info, block_generator.program if block_generator else None, block_generator.block_height_list() if block_generator else [], ) async def create_block_tools_async( constants: ConsensusConstants = test_constants, root_path: Optional[Path] = None, const_dict=None, keychain: Optional[Keychain] = None, ) -> BlockTools: bt = BlockTools(constants, root_path, const_dict, keychain) await bt.setup_keys() await bt.setup_plots() return bt def create_block_tools( constants: ConsensusConstants = test_constants, root_path: Optional[Path] = None, const_dict=None, keychain: Optional[Keychain] = None, ) -> BlockTools: bt = BlockTools(constants, root_path, const_dict, keychain) asyncio.get_event_loop().run_until_complete(bt.setup_keys()) asyncio.get_event_loop().run_until_complete(bt.setup_plots()) return bt
the-stack_106_27203
import logging import math import re import hikari import lightbulb from peacebot.core.utils.embed_colors import EmbedColors logger = logging.getLogger("error_handler") async def on_error(event: lightbulb.CommandErrorEvent) -> None: error = event.exception if isinstance(error, lightbulb.CommandNotFound): return if isinstance(error, lightbulb.BotMissingRequiredPermission): missing = [ perm.replace("_", " ").replace("guild", "server").title() for perm in str(error.missing_perms).split("|") ] if len(missing) > 2: fmt = "{}, and {}".format("**, **".join(missing[:-1]), missing[-1]) else: fmt = " and ".join(missing) _message = f"I need the **{fmt}** permission(s) to run this command." embed = hikari.Embed( title="I am Missing Permissions", color=EmbedColors.ALERT, description=_message, ) return await event.context.respond(embed=embed) if isinstance(error, lightbulb.CommandIsOnCooldown): embed = hikari.Embed( title="Command on Cooldown", color=EmbedColors.ALERT, description=f"This command is on cooldown, please retry in {math.ceil(error.retry_after)}s.", ) return await event.context.respond(embed=embed) if isinstance(error, lightbulb.NotEnoughArguments): return await event.bot.help_command.send_command_help( event.context, event.context.command ) if isinstance(error, lightbulb.MissingRequiredPermission): missing = [ perm.replace("_", " ").replace("guild", "server").title() for perm in str(error.missing_perms).split("|") ] if len(missing) > 2: fmt = "{}, and {}".format("**, **".join(missing[:-1]), missing[-1]) else: fmt = " and ".join(missing) _message = "You need the **{}** permission(s) to use this command.".format(fmt) embed = hikari.Embed( title="You are missing permissions", color=EmbedColors.ALERT, description=_message, ) return await event.context.respond(embed=embed) title = " ".join(re.compile(r"[A-Z][a-z]*").findall(error.__class__.__name__)) await event.context.respond( embed=hikari.Embed(title=title, description=str(error), color=EmbedColors.ALERT) ) raise error
the-stack_106_27204
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('browser', '0024_compare_add_info'), ] operations = [ migrations.RemoveField( model_name='compare', name='add_info', ), migrations.AddField( model_name='compare', name='yearRange', field=models.CharField(default='', max_length=10), preserve_default=False, ), ]
the-stack_106_27205
import sysv_ipc # Create a shared memory segment and write the (English) alphabet to the shared memory. mem = sysv_ipc.SharedMemory(None, sysv_ipc.IPC_CREX, size=sysv_ipc.PAGE_SIZE) ASCII_A = 0x61 alphabet = ''.join([chr(ASCII_A + i) for i in range(26)]) alphabet = bytes(alphabet, 'ASCII') mem.write(alphabet) # Create a bytearray from the SharedMemory. ba = bytearray(mem) # bytearray instances have "most of the usual methods of mutable sequences", such as replace. # https://docs.python.org/3/library/functions.html#func-bytearray ba = ba.replace(b'c', b'x') assert(ba[:4] == b'abxd') # Unlike a memoryview (see below), changes to the bytearray do *not* affect the underlying # SharedMemory -- the bytearray is a copy. assert(mem.read(4) == b'abcd') # Reset the memory to contain the alphabet unmodified. mem.write(alphabet) # Create a memoryview from the SharedMemory. mv = memoryview(mem) # This memoryview has format = 'B', itemsize = 1, shape = (sysv_ipc.PAGE_SIZE, ), ndim = 1, # strides = (1, ), and is read/write. # This shows that you can take slices of a memoryview assert([chr(c) for c in mv[3:6]] == ['d', 'e', 'f']) # This shows that you can write to the memoryview. mv[4] = ord('x') assert([chr(c) for c in mv[3:6]] == ['d', 'x', 'f']) # Changes to the underlying segment are reflected in the memoryview mem.write(b'xxx') assert([chr(c) for c in mv[:6]] == ['x', 'x', 'x', 'd', 'x', 'f']) mem.detach() mem.remove() print('Done!')
the-stack_106_27207
import json from investing_algorithm_framework import OrderSide, \ OrderType, OrderStatus, Order from tests.resources import TestBase, TestOrderAndPositionsObjectsMixin from tests.resources.serialization_dicts import position_serialization_dict class Test(TestBase, TestOrderAndPositionsObjectsMixin): def setUp(self): super(Test, self).setUp() self.start_algorithm() orders = [ Order.from_dict( { "reference_id": 2, "target_symbol": self.TARGET_SYMBOL_A, "trading_symbol": "usdt", "amount_target_symbol": 4, "price": self.get_price(self.TARGET_SYMBOL_A).price, "status": OrderStatus.PENDING.value, "side": OrderSide.BUY.value, "type": OrderType.LIMIT.value } ), Order.from_dict( { "reference_id": 3, "target_symbol": self.TARGET_SYMBOL_B, "trading_symbol": "usdt", "amount_target_symbol": 4, "price": self.get_price(self.TARGET_SYMBOL_A).price, "status": OrderStatus.CLOSED.value, "initial_price": self.get_price( self.TARGET_SYMBOL_A).price, "side": OrderSide.BUY.value, "type": OrderType.LIMIT.value } ) ] self.algo_app.algorithm.add_orders(orders, identifier="default") def tearDown(self): self.algo_app.algorithm.stop() super(Test, self).tearDown() def test(self): query_params = {'identifier': "default"} response = self.client.get("/api/positions", query_string=query_params) self.assert200(response) data = json.loads(response.data.decode()) self.assertEqual(3, len(data["items"])) self.assertEqual( position_serialization_dict, set(data.get("items")[0]) ) def test_list_orders_with_identifier_query_params(self): query_params = { 'identifier': "default" } response = self.client.get("/api/positions", query_string=query_params) self.assert200(response) data = json.loads(response.data.decode()) self.assertEqual(3, len(data["items"])) self.assertEqual( position_serialization_dict, set(data.get("items")[0]) ) query_params = { 'identifier': "random" } response = self.client.get("/api/positions", query_string=query_params) self.assert404(response)
the-stack_106_27208
from datetime import datetime from decimal import Decimal from django.contrib.sites.models import Site from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils import timezone from l10n.utils import moneyfmt from payment.modules.giftcertificate.utils import generate_certificate_code from payment.utils import get_processor_by_key from product.models import Product from satchmo_store.contact.models import Contact from satchmo_store.shop.models import Order import logging GIFTCODE_KEY = 'GIFTCODE' log = logging.getLogger('giftcertificate.models') SATCHMO_PRODUCT = True def get_product_types(): return ("GiftcertificateProduct",) class GiftCertificateManager(models.Manager): def from_order(self, order): code = order.get_variable(GIFTCODE_KEY, "") log.debug("GiftCert.from_order code=%s", code) if code: site = order.site return GiftCertificate.objects.get(code__exact=code.value, valid__exact=True, site=site) raise GiftCertificate.DoesNotExist() class GiftCertificate(models.Model): """A Gift Cert which holds value.""" site = models.ForeignKey(Site, null=True, blank=True, verbose_name=_('Site')) order = models.ForeignKey(Order, null=True, blank=True, related_name="giftcertificates", verbose_name=_('Order')) code = models.CharField(_('Certificate Code'), max_length=100, blank=True, null=True) purchased_by = models.ForeignKey(Contact, verbose_name=_('Purchased by'), blank=True, null=True, related_name='giftcertificates_purchased') date_added = models.DateField(_("Date added"), null=True, blank=True) valid = models.BooleanField(_('Valid'), default=True) message = models.CharField(_('Message'), blank=True, null=True, max_length=255) recipient_email = models.EmailField(_("Email"), blank=True, max_length=75) start_balance = models.DecimalField(_("Starting Balance"), decimal_places=2, max_digits=8) objects = GiftCertificateManager() def balance(self): b = Decimal(self.start_balance) for usage in self.usages.all(): log.info('usage: %s' % usage) b = b - Decimal(usage.balance_used) return b balance = property(balance) def apply_to_order(self, order): """Apply up to the full amount of the balance of this cert to the order. Returns new balance. """ amount = min(order.balance, self.balance) log.info('applying %s from giftcert #%i [%s] to order #%i [%s]', moneyfmt(amount), self.id, moneyfmt(self.balance), order.id, moneyfmt(order.balance)) processor = get_processor_by_key('PAYMENT_GIFTCERTIFICATE') orderpayment = processor.record_payment(order=order, amount=amount) self.orderpayment = orderpayment return self.use(amount, orderpayment=orderpayment) def use(self, amount, notes="", orderpayment=None): """Use some amount of the gift cert, returning the current balance.""" u = GiftCertificateUsage(notes=notes, balance_used = amount, orderpayment=orderpayment, giftcertificate=self) u.save() return self.balance def save(self, **kwargs): if not self.pk: self.date_added = timezone.now() if not self.code: self.code = generate_certificate_code() if not self.site: self.site = Site.objects.get_current() super(GiftCertificate, self).save(**kwargs) def __unicode__(self): sb = moneyfmt(self.start_balance) b = moneyfmt(self.balance) return u"Gift Cert: %s/%s" % (sb, b) class Meta: verbose_name = _("Gift Certificate") verbose_name_plural = _("Gift Certificates") class GiftCertificateUsage(models.Model): """Any usage of a Gift Cert is logged with one of these objects.""" usage_date = models.DateField(_("Date of usage"), null=True, blank=True) notes = models.TextField(_('Notes'), blank=True, null=True) balance_used = models.DecimalField(_("Amount Used"), decimal_places=2, max_digits=8, ) orderpayment = models.ForeignKey('shop.OrderPayment', null=True, verbose_name=_('Order Payment')) used_by = models.ForeignKey(Contact, verbose_name=_('Used by'), blank=True, null=True, related_name='giftcertificates_used') giftcertificate = models.ForeignKey(GiftCertificate, related_name='usages') def __unicode__(self): return u"GiftCertificateUsage: %s" % self.balance_used def save(self, **kwargs): if not self.pk: self.usage_date = timezone.now() super(GiftCertificateUsage, self).save(**kwargs) class GiftCertificateProduct(models.Model): """ The product model for a Gift Certificate """ product = models.OneToOneField(Product, verbose_name=_('Product'), primary_key=True) is_shippable = False discountable = False def __unicode__(self): return u"GiftCertificateProduct: %s" % self.product.name def _get_subtype(self): return 'GiftCertificateProduct' def order_success(self, order, order_item): log.debug("Order success called, creating gift certs on order: %s", order) message = "" email = "" for detl in order_item.orderitemdetail_set.all(): if detl.name == "email": email = detl.value elif detl.name == "message": message = detl.value price=order_item.line_item_price log.debug("Creating gc for %s", price) gc = GiftCertificate( order = order, start_balance= price, purchased_by = order.contact, valid=True, message=message, recipient_email=email ) gc.save() def save(self, **kwargs): if hasattr(self.product,'_sub_types'): del self.product._sub_types super(GiftCertificateProduct, self).save(**kwargs) class Meta: verbose_name = _("Gift certificate product") verbose_name_plural = _("Gift certificate products") import config PAYMENT_PROCESSOR=True
the-stack_106_27210
"""Module containing the attributes for describe-get-system proof of concept module.""" from os import path from textwrap import dedent import yaml import templateapp import regexapp import dlapp import pytest import robot import xmlrunner from dgspoc.utils import File from dgspoc.utils import Misc __version__ = '0.3.10.1' version = __version__ __all__ = [ 'version', 'Data' ] class Data: console_cli_name = 'dgs' console_cli_fullname = 'describe-get-system' console_supported_commands = ['build', 'info', 'report', 'search', 'test', 'version', 'usage'] # app yaml files app_directory = File.get_path('.geekstrident', 'dgspoc', is_home=True) template_storage_filename = File.get_path(app_directory, 'template_storage.yaml') # main app main_app_text = 'dgs v{}'.format(version) # company company = 'Geeks Trident LLC' company_url = 'https://www.geekstrident.com/' # URL repo_url = 'https://github.com/Geeks-Trident-LLC/dgspoc' # TODO: Need to update wiki page for documentation_url instead of README.md. documentation_url = path.join(repo_url, 'blob/develop/README.md') license_url = path.join(repo_url, 'blob/develop/LICENSE') # License years = '2022-2040' license_name = 'BSD 3-Clause License' copyright_text = 'Copyright @ {}'.format(years) license = dedent( """ BSD 3-Clause License Copyright (c) {}, {} All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """.format(years, company) ).strip() @classmethod def get_app_info(cls): from platform import uname as u, python_version as v lst = [cls.main_app_text, 'Project : {}'.format(cls.repo_url), 'License : {}'.format(cls.license_name), 'Platform: {0.system} {0.release} - Python {1}'.format(u(), v()), ] app_info = '\n'.join(lst) return app_info @classmethod def get_dependency(cls): obj = dict( templateapp=dict( package='templateapp v{}'.format(templateapp.version), url='https://pypi.org/project/templateapp/' ), pytest=dict( package='pytest v{}'.format(pytest.__version__), url='https://pypi.org/project/pytest/' ), robotframework=dict( package='robotframework v{}'.format(robot.__version__), url='https://pypi.org/project/robotframework/' ), unittest_xml_reporting=dict( package='unittest-xml-reporting v{}'.format(xmlrunner.__version__), url='https://pypi.org/project/unittest-xml-reporting/' ) ) obj.update(templateapp.config.Data.get_dependency()) obj.update(regexapp.config.Data.get_dependency()) obj.update(dlapp.config.Data.get_dependency()) dependencies = dict(sorted(obj.items(), key=lambda x: str(x[0]))) # noqa return dependencies @classmethod def get_template_storage_info(cls): fn = cls.template_storage_filename generic_fn = File.change_home_dir_to_generic(fn) if File.is_exist(fn): existed = 'Yes' with open(fn) as stream: node = yaml.safe_load(stream) total = len(node) if Misc.is_dict(node) else 0 else: existed = 'No' total = 0 lst = [ 'Template Storage Info:', # ' - Location: {}'.format(fn), ' - Location: {}'.format(generic_fn), ' - Existed: {}'.format(existed), ' - Total Templates: {}'.format(total) ] return '\n'.join(lst)
the-stack_106_27211
import argparse import json from torch.utils.data import DataLoader from utils import google_utils from utils.datasets import * from utils.utils import * def test(data, weights=None, batch_size=16, imgsz=640, conf_thres=0.001, iou_thres=0.6, # for NMS save_json=False, single_cls=False, augment=False, verbose=False, model=None, dataloader=None, merge=False): # Initialize/load model and set device if model is None: training = False device = torch_utils.select_device(opt.device, batch_size=batch_size) half = device.type != 'cpu' # half precision only supported on CUDA # Remove previous for f in glob.glob('test_batch*.jpg'): os.remove(f) # Load model google_utils.attempt_download(weights) model = torch.load(weights, map_location=device)['model'].float() # load to FP32 torch_utils.model_info(model) model.fuse() model.to(device) if half: model.half() # to FP16 # Multi-GPU disabled, incompatible with .half() # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) else: # called by train.py training = True device = next(model.parameters()).device # get model device # half disabled https://github.com/ultralytics/yolov5/issues/99 half = False # device.type != 'cpu' and torch.cuda.device_count() == 1 if half: model.half() # to FP16 # Configure model.eval() with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 # iouv = iouv[0].view(1) # comment for [email protected]:0.95 niou = iouv.numel() # Dataloader if dataloader is None: # not training img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once merge = opt.merge # use Merge NMS path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images dataset = LoadImagesAndLabels(path, imgsz, batch_size, rect=True, # rectangular inference single_cls=opt.single_cls, # single class mode stride=int(max(model.stride)), # model stride pad=0.5) # padding batch_size = min(batch_size, len(dataset)) nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=nw, pin_memory=True, collate_fn=dataset.collate_fn) seen = 0 names = model.names if hasattr(model, 'names') else model.module.names coco91class = coco80_to_coco91_class() s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width whwh = torch.Tensor([width, height, width, height]).to(device) # Disable gradients with torch.no_grad(): # Run model t = torch_utils.time_synchronized() inf_out, train_out = model(img, augment=augment) # inference and training outputs t0 += torch_utils.time_synchronized() - t # Compute loss if training: # if model has loss hyperparameters loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls # Run NMS t = torch_utils.time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge) t1 += torch_utils.time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if pred is None: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Append to text file # with open('test.txt', 'a') as file: # [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred] # Clip boxes to image bounds clip_coords(pred, (height, width)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int(Path(paths[si]).stem.split('_')[-1]) box = pred[:, :4].clone() # xyxy scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape box = xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({'image_id': image_id, 'category_id': coco91class[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5)}) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) * whwh # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices # Append detections for j in (ious > iouv[0]).nonzero(): d = ti[i[j]] # detected target if d not in detected: detected.append(d) correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn if len(detected) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if batch_i < 1: f = 'test_batch%g_gt.jpg' % batch_i # filename plot_images(img, targets, paths, f, names) # ground truth f = 'test_batch%g_pred.jpg' % batch_i plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats): p, r, ap, f1, ap_class = ap_per_class(*stats) p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple if not training: print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) # Save JSON if save_json and map50 and len(jdict): imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files] f = 'detections_val2017_%s_results.json' % \ (weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename print('\nCOCO mAP with pycocotools... saving %s...' % f) with open(f, 'w') as file: json.dump(jdict, file) try: from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api cocoDt = cocoGt.loadRes(f) # initialize COCO pred api cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval.params.imgIds = imgIds # image IDs to evaluate cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() map, map50 = cocoEval.stats[:2] # update results ([email protected]:0.95, [email protected]) except: print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. ' 'See https://github.com/cocodataset/cocoapi/issues/356') # Return results maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t if __name__ == '__main__': parser = argparse.ArgumentParser(prog='test.py') parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') parser.add_argument('--task', default='val', help="'val', 'test', 'study'") parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--merge', action='store_true', help='use Merge NMS') parser.add_argument('--verbose', action='store_true', help='report mAP by class') opt = parser.parse_args() opt.img_size = check_img_size(opt.img_size) opt.save_json = opt.save_json or opt.data.endswith('coco.yaml') opt.data = check_file(opt.data) # check file print(opt) # task = 'val', 'test', 'study' if opt.task in ['val', 'test']: # (default) run normally test(opt.data, opt.weights, opt.batch_size, opt.img_size, opt.conf_thres, opt.iou_thres, opt.save_json, opt.single_cls, opt.augment, opt.verbose) elif opt.task == 'study': # run over a range of settings and save/plot for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']: f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to x = list(range(352, 832, 64)) # x axis y = [] # y axis for i in x: # img-size print('\nRunning %s point %s...' % (f, i)) r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) y.append(r + t) # results and times np.savetxt(f, y, fmt='%10.4g') # save os.system('zip -r study.zip study_*.txt') # plot_study_txt(f, x) # plot
the-stack_106_27214
import tensorflow as tf def init_inputs(num_features, selection_methods): inputs = dict() for selection_method in selection_methods: with tf.name_scope('input_' + selection_method): inputs[selection_method] = tf.placeholder(dtype=tf.float32, shape=[None, num_features], name=selection_method + '_input') return inputs def logits_layer(feed_forward, units): logits_layers = dict() for name, ff in feed_forward.items(): logits_layers[name] = tf.layers.dense(ff, units=units, name=name + '_logits') return logits_layers
the-stack_106_27216
import asyncio, discord try: from _command import Command except: from coms._command import Command import pathlib class Com(Command): def __init__(self): self.usage = "!help" self.description = "Gives some basic help info about kermi" self.keys = ["!help", "bot help", ".help", "!commands", ".commands"] self.permissions = ["*"] async def command(self, client, message, rawtext): msg = "**Kermit's info!**\nTo find out more info about any of the commands below, run them with -help after them.\n*e.g\t\t" msg += "!deepfry -help*\n\n**Commands:**\n" curdir = pathlib.Path('./coms') for command in curdir.iterdir(): if command.name[0] != "_" and command.name[0] != ".": com = __import__("coms") com = getattr(com, command.name[:-3]) comobj = com.Com() if not comobj.keys[0] == "*": msg += comobj.keys[0] + "\n" await self.send(client, message.channel, msg) if __name__ == "__main__": command = Com() print(command.help())
the-stack_106_27222
import pickle import sys def parse(files): parsed = {} binding = {} for fname in files: f = open(fname) for line in f: splitted = line.split('\t') split_size = len(splitted) id = splitted[0] domain = splitted[4] if id in parsed.keys(): parsed[id].append(domain) else: parsed[id] = [domain] binding_sites = [splitted[6], splitted[7]] if id in binding.keys(): binding[id][domain] = binding_sites else: binding[id] = {} binding[id][domain] = binding_sites pickle.dump(parsed, open('tmp/parsed.pickle', 'w')) pickle.dump(binding, open('tmp/binding_sites.pickle', 'w')) if __name__ == "__main__": files = [] if len(sys.argv) > 2: files = sys.argv[1:] else: files = [sys.argv[1]] parse(files)
the-stack_106_27225
#!/usr/bin/env python3 from contextlib import closing import random import subprocess import os from typing import Optional def xclip(*args: list, data: Optional[bytes] = None) -> Optional[str]: base_command = ["xclip", "-selection", "CLIPBOARD", *args] if "-o" in args: with closing( subprocess.Popen(base_command, stdout=subprocess.PIPE).stdout ) as stdout: return stdout.read().decode("UTF-8") else: with closing( subprocess.Popen(base_command, stdin=subprocess.PIPE).stdin ) as stdin: stdin.write(data.encode("UTF-8")) def notify(text: str): subprocess.Popen( ["notify-send", os.path.basename(__file__).removesuffix(".py"), text] ) def get_clipboard_text(): return xclip("-o") def set_clipboard_text(data): xclip(data=data) notify(data) def main(): text = get_clipboard_text() if not text: notify("No text found in clipboard!") return text = "".join( c.upper() if (i % 2 == 0 or random.random() <= 0.3) else c for i, c in enumerate(text.lower()) ) set_clipboard_text(text) if __name__ == "__main__": try: main() except Exception as exc: notify(type(exc).__name__) raise exc
the-stack_106_27226
from django.urls import path from .views import ( # CommentView, CommentListCreateView, CommentRetrieveUpdateDestroyView, BlogListCreateView, BlogRetrieveUpdateDestroyView ) urlpatterns = [ path('post/', BlogListCreateView.as_view()), # path('post/<blog_id>/', BlogRetrieveUpdateDestroyView.as_view()), path('post/<pk>/', BlogRetrieveUpdateDestroyView.as_view()), path('post/<blog_id>/comment/', CommentListCreateView.as_view()), path('comment/<comment_id>/', CommentRetrieveUpdateDestroyView.as_view()), ]
the-stack_106_27228
""" RDS utilities functions for bdd """ # pylint: disable=wrong-import-position,no-value-for-parameter import time import mysql.connector from botocore.exceptions import ClientError from mysql.connector import errorcode from sls.retry.api import retry from sls.utils.exceptions import ClusterExists, DatabaseNotAvailable, InstanceExists from sls.utils.aws_rds import RdsClient def is_db_present(context, rds_client, db_instance_name): try: db_exists = \ rds_client.describe_db_instances(DBInstanceIdentifier=db_instance_name)['DBInstances'][ 0][ 'DBInstanceStatus'] context.logger.info( f"DB instance %s already exists with status %s" % (db_instance_name, db_exists)) return True except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBInstanceNotFound": context.logger.info(f"DB instance %s does not exist" % db_instance_name) return False else: raise boto_client_error def create_rds_instance(context, rds_client, db_instance_name, db_info): if not is_db_present(context, rds_client, db_instance_name): try: res = rds_client.create_db_instance(**db_info) if res['ResponseMetadata']['HTTPStatusCode'] == 200: context.logger.info(f"Successfully initiated create DB instance %s" % db_instance_name) context.logger.info(f"waiting for db instance %s to be available" % db_instance_name) wait_for_instance(rds_client, db_instance_name) return True else: context.logger.info(f"Couldn't create DB instance %s" % db_instance_name) return False except Exception as error: context.logger.error(error) return False return True def wait_for_instance(rds_client, db_instance_name): rds_waiter = rds_client.get_waiter('db_instance_available') rds_waiter.wait( DBInstanceIdentifier=db_instance_name ) def create_rds_cluster(context, rds_client, db_cluster_name, db_info): try: db_exists = \ rds_client.describe_db_clusters(DBClusterIdentifier=db_cluster_name)['DBClusters'][0][ 'Status'] context.logger.info( f"DB cluster %s already exists with status %s" % (db_cluster_name, db_exists)) except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBClusterNotFoundFault": context.logger.info(f"DB cluster %s does not exist" % db_cluster_name) res_c = rds_client.create_db_cluster( VpcSecurityGroupIds=db_info['sg_name'], DBSubnetGroupName=db_info['subnet_name'], BackupRetentionPeriod=1, DBClusterIdentifier=db_cluster_name, Engine=db_info['engine'], EngineVersion=db_info['version'], MasterUsername=db_info['master_user'], MasterUserPassword=db_info['master_pwd'], EngineMode=db_info['mode'] ) if res_c['ResponseMetadata']['HTTPStatusCode'] == 200: context.logger.info( f"Successfully initiated create DB cluster %s" % db_cluster_name) else: context.logger.info(f"Couldn't create DB cluster %s" % db_cluster_name) context.logger.info(f"waiting for db cluster %s to be available" % db_cluster_name) check_cluster_available(db_cluster_name, context) else: raise boto_client_error if db_info['mode'] == 'serverless': return True try: db_details = rds_client.describe_db_clusters(DBClusterIdentifier=db_cluster_name) if len(db_details['DBClusters'][0]['DBClusterMembers']) > 0: context.logger.info(f"DB cluster instance already exists for %s" % db_cluster_name) return True except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBClusterNotFoundFault": context.logger.info(f"DB cluster %s does not exist" % db_cluster_name) return False db_instance_name = db_cluster_name + '-instance' res_i = rds_client.create_db_instance( DBInstanceIdentifier=db_instance_name, DBInstanceClass="db.r4.large", Engine=db_info['engine'], DBClusterIdentifier=db_cluster_name, PubliclyAccessible=False ) if res_i['ResponseMetadata']['HTTPStatusCode'] == 200: context.logger.info( f"Successfully initiated create DB cluster-instance %s" % db_instance_name) else: context.logger.info(f"Couldn't create DB cluster-instance %s" % db_instance_name) context.logger.info(f"waiting for db cluster-instance %s to be available" % db_instance_name) check_instance_available(db_instance_name, context) def delete_rds_cluster(context, rds_client, db_cluster_name): try: db_details = rds_client.describe_db_clusters(DBClusterIdentifier=db_cluster_name) for i in db_details['DBClusters'][0]['DBClusterMembers']: delete_rds_instance(context, rds_client, i['DBInstanceIdentifier']) except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBClusterNotFoundFault": context.logger.info(f"DB cluster %s does not exist" % db_cluster_name) return True res = rds_client.delete_db_cluster( DBClusterIdentifier=db_cluster_name, SkipFinalSnapshot=True) if res['ResponseMetadata']['HTTPStatusCode'] == 200: context.logger.info(f"Successfully initiated delete DB cluster %s" % db_cluster_name) else: context.logger.info(f"Couldn't delete DB cluster %s" % db_cluster_name) context.logger.info(f"waiting for db cluster %s to be deleted" % db_cluster_name) check_cluster_removed(db_cluster_name, context) def delete_rds_instance(context, rds_client, db_instance_name): try: db_status = \ rds_client.describe_db_instances(DBInstanceIdentifier=db_instance_name)['DBInstances'][ 0][ 'DBInstanceStatus'] except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBInstanceNotFound": context.logger.info(f"DB instance %s is already deleted" % db_instance_name) return True try: res = rds_client.delete_db_instance( DBInstanceIdentifier=db_instance_name, SkipFinalSnapshot=True, DeleteAutomatedBackups=True) except ClientError as boto_client_error: if 'NoDeleteAutomatedBackups' in boto_client_error.response["Error"]["Message"]: res = rds_client.delete_db_instance( DBInstanceIdentifier=db_instance_name, SkipFinalSnapshot=True, DeleteAutomatedBackups=False) else: raise boto_client_error if res['ResponseMetadata']['HTTPStatusCode'] == 200: context.logger.info(f"Successfully initiated delete DB instance %s" % db_instance_name) else: context.logger.info(f"Couldn't delete DB instance %s" % db_instance_name) context.logger.info(f"waiting for db instance %s to be deleted" % db_instance_name) check_instance_removed(db_instance_name, context) def get_db_connection(context, rds_client, db_conn_info): """ Function to test DB connection Args: context: pwd: db_name: Returns: """ try: context.logger.info(f"checking connection for %s" % db_conn_info['db_name']) conn_config = {"user": db_conn_info['user_name'], "password": db_conn_info['user_pwd'], "host": db_conn_info['endpoint'], "port": db_conn_info['port']} cnx = mysql.connector.connect(**conn_config) return cnx except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: context.logger.error("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: context.logger.error("Database does not exist") else: context.logger.error(err) raise err @retry(DatabaseNotAvailable, delay=30, tries=30) def check_instance_available(db_instance_name, context): """ Retry loop to ensure instance is available Args: db_instance_name: context: rds_client: Returns: """ rds_client = RdsClient( context.db_creds, context.db_region, context.logger ).client db_status = rds_client.describe_db_instances(DBInstanceIdentifier=db_instance_name)[ "DBInstances" ][0]["DBInstanceStatus"] if db_status == "available": context.logger.info(f"DB instance %s is ready" % db_instance_name) else: raise DatabaseNotAvailable(f"DB instance %s is not ready" % db_instance_name) @retry(DatabaseNotAvailable, delay=30, tries=30) def check_cluster_available(db_cluster_name, context): """ Retry loop to ensure cluster is available Args: db_cluster_name: context: rds_client: Returns: """ rds_client = RdsClient( context.db_creds, context.db_region, context.logger ).client db_status = rds_client.describe_db_clusters(DBClusterIdentifier=db_cluster_name)[ "DBClusters" ][0]["Status"] if db_status == "available": context.logger.info(f"DB cluster %s is ready" % db_cluster_name) else: raise DatabaseNotAvailable(f"DB cluster %s is not ready" % db_cluster_name) @retry(ClusterExists, delay=30, tries=25) def check_cluster_removed(db_cluster_name, context): """ Retry loop to ensure cluster is deleted Args: db_cluster_name: context: Returns: """ try: rds_client = RdsClient( context.db_creds, context.db_region, context.logger ).client db_status = rds_client.describe_db_clusters( DBClusterIdentifier=db_cluster_name )["DBClusters"][0]["Status"] raise ClusterExists(f"DB cluster %s is not deleted" % db_cluster_name) except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBClusterNotFoundFault": context.logger.info(f"DB cluster %s is deleted" % db_cluster_name) else: raise boto_client_error @retry(InstanceExists, delay=30, tries=25) def check_instance_removed(db_instance_name, context): """ Retry loop to ensure instance is deleted Args: db_instance_name: context: Returns: """ try: rds_client = RdsClient( context.instance_creds, context.instance_region, context.logger ).client rds_client.describe_db_instances( DBInstanceIdentifier=db_instance_name )["DBInstances"][0]["DBInstanceStatus"] raise InstanceExists(f"DB instance %s is not deleted" % db_instance_name) except ClientError as boto_client_error: if boto_client_error.response["Error"]["Code"] in "DBInstanceNotFound": context.logger.info(f"DB instance %s is deleted" % db_instance_name) else: raise boto_client_error
the-stack_106_27229
# importing the necessary modules import requests from bs4 import BeautifulSoup import zipfile from io import BytesIO # Creating a new file to store the zip file links newfile = open('zipfiles.txt','w') newdir = "C:/Users/mattp/Desktop/WorkFiles/XMLFiles/2021Tiger/Zip" #Set variable for page to be opened and url to be concatenated page =requests.get('https://www2.census.gov/geo/tiger/TIGER2021/ELSD/') baseurl= 'https://www2.census.gov/' #Use BeautifulSoup to clean up the page soup = BeautifulSoup(page.content) soup.prettify() #Find all the links on the page that end in .zip and write them into the text file for anchor in soup.findAll('a', href=True): links = anchor['href'] if links.endswith('.zip'): newfile.write(links + '\n') newfile.close() #Fetching the links for the zip file and downloading the files with open('zipfiles.txt', 'r') as links: for link in links: if link: filename1= link.split('/')[-1] filename= filename1[:-1] filenameb = newdir +"/" + filename link = baseurl + link print(filename + ' file started to download') response = requests.get(link[:-1]) # Writing the zip file into local file system with open(filenameb,'wb') as output_file: try: output_file.write(response.content) except URLError as e: if hasattr(e, 'reason'): print('We failed to reach a server.') print('Reason: ', e.reason) continue elif hasattr(e, 'code'): print('The server couldn\'t fulfill the request.') print('Error code: ', e.code) continue zipfile = zipfile.ZipFile(BytesIO(response.content)) #zipfile.extractall(output_file) print(filenameb + 'file is downloaded')
the-stack_106_27230
from PySide6.QtWidgets import QMainWindow from monitorcontrol_gui.controller import Controller from monitorcontrol_gui.model import Model, Monitor from monitorcontrol_gui.ui.main_window import Ui_MainWindow class View(QMainWindow): """Class handling the main window of the app.""" def __init__(self, ctrl: Controller, model: Model) -> None: """Initializer of the graphical interface. Setting up the controller and model as well as initializing the actual graphical qt interface. It also queries for monitors using QThread to not block the main thread. Args: ctrl (Controller): _description_ model (Model): _description_ """ super().__init__() self.ctrl = ctrl self.model = model print("Setting up UI") self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.buttonSet.clicked.connect(self.set_button_handler) self.ctrl.query_monitors(self.init_monitor_combobox) def init_monitor_combobox(self, monitors: list[Monitor]) -> None: """Initialize the monitor combobox. Insert all monitors into the combobox. Also adds 'All' with index 0 as the first entry, and also the default. Sets the items from the model using the ID and Model. Sets the current index to 'All'. """ self.ui.monitorComboBox.addItem("0: All") self.ui.monitorComboBox.addItems([ f"{monitor.idx}: {monitor.model}" for monitor in monitors ]) self.ui.monitorComboBox.setCurrentIndex(0) def set_button_handler(self) -> None: """Handler for clicking the setButton. Setting the luminosity of the monitor with the given index of the combo box. Extracts the index from the text value in the combobox. """ value = int(self.ui.luminanceValueLabel.text()) idx = int(self.ui.monitorComboBox.currentText().split(":")[0]) self.ctrl.set_luminosity(value, idx)
the-stack_106_27231
# # (c) Copyright 2015 Hewlett Packard Enterprise Development LP # (c) Copyright 2017-2018 SUSE LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import logging import logging.config from ardana_configurationprocessor.cp.model.ValidatorPlugin \ import ValidatorPlugin from ardana_configurationprocessor.cp.model.CPLogging \ import CPLogging as KenLog LOG = logging.getLogger(__name__) class ServerGroupsValidator(ValidatorPlugin): def __init__(self, instructions, config_files): super(ServerGroupsValidator, self).__init__( 2.0, instructions, config_files, 'server-groups-2.0') self._valid = False LOG.info('%s()' % KenLog.fcn()) def validate(self): LOG.info('%s()' % KenLog.fcn()) version = float(self.version()) input = self._create_content(version, "server-groups") # Server Groups are optional if not input: return True self._valid = self.validate_schema(input, "server_group") if self._valid: server_groups = input['server-groups'] self._validate_names(server_groups) return self._valid def _validate_names(self, server_groups): # # Check each model is only defined once # names = set() for group in server_groups: if group['name'] in names: msg = ("Server Group %s is defined more than once." % (group['name'])) self.add_error(msg) self.valid = False else: names.add(group['name']) @property def instructions(self): return self._instructions def get_dependencies(self): return []
the-stack_106_27232
import unittest from tests.test_base import * from rfho.models import * class TestModelVectorization(unittest.TestCase): def test_augmented_gradient(self): iris, x, y, model, w, model_y, error, accuracy = iris_logistic_regression(2) d = int(w.tensor.get_shape()[0].value/3) self.assertEqual(d, 4*3 + 3) gt = tf.gradients(error, w.tensor) print('gradients w.r.t. augmented state', gt, sep='\n') self.assertFalse(any([g is None for g in gt])) # all gradients are defined (all(gt) rises a tf error grads_intermediate = tf.gradients(error, w._var_list_as_tensors()) print('gradients w.r.t. w, m, p', grads_intermediate, sep='\n') self.assertFalse(any([g is None for g in grads_intermediate])) grads_wrt_single_variables = tf.gradients(error, w._get_base_variable_list()) print('gradients w.r.t. w, m, p', grads_wrt_single_variables, sep='\n') self.assertFalse(any([g is None for g in grads_wrt_single_variables])) fd = {x: iris.train.data, y: iris.train.target} with tf.Session().as_default() as ss: tf.global_variables_initializer().run() print('gradients w.r.t. augmented state', ss.run(gt, feed_dict=fd), sep='\n') print('gradients w.r.t. w, m, p', ss.run(grads_intermediate, feed_dict=fd), sep='\n') print('gradients w.r.t. w, m, p', ss.run(grads_wrt_single_variables, feed_dict=fd), sep='\n') class TestModels(unittest.TestCase): # FIXME (last time error:tensorflow.python.framework.errors_impl.InternalError: Dst tensor is not initialized. # def test_sparse_input_models(self): # import rfho.datasets as ddt # # real_sim = ddt.load_20newsgroup_vectorized(partitions_proportions=[.5, .3]) # # model_train = LinearModel(real_sim.train.data, real_sim.train.dim_data, real_sim.train.dim_target, # init_w=tf.random_normal, init_b=tf.random_normal, benchmark=False) # # model_train2 = model_train.for_input(real_sim.train.data) # # model_valid = model_train.for_input(real_sim.validation.data) # # with tf.Session().as_default(): # tf.global_variables_initializer().run() # self.assertEqual(np.sum(model_train.Ws[0].eval()), np.sum(model_valid.Ws[0].eval())) # self.assertEqual(np.sum(model_train.bs[0].eval()), np.sum(model_valid.bs[0].eval())) # # print(np.sum(model_train.inp[-1].eval() - model_train2.inp[-1].eval())) # print(np.sum(model_train.inp[-1].eval() - model_train2.inp[-1].eval())) # print(np.sum(model_train.inp[-1].eval() - model_train2.inp[-1].eval())) # # print(np.sum(model_train.inp[-1].eval() - model_train.inp[-1].eval())) # print(np.sum(model_train.inp[-1].eval() - model_train.inp[-1].eval())) # # if sparse matmul is used then on gpu these last values are not 0! def test_ffnn(self): x, y = tf.placeholder(tf.float32), tf.placeholder(tf.float32) model = FFNN(x, dims=[10, 123, 89, 47], active_gen_kwargs=( {'activ': mixed_activation(tf.identity, tf.nn.sigmoid)}, {} )) mod_y = model.for_input(y) self.assertEqual(model.var_list, mod_y.var_list) # share variables self.assertNotEqual(model.inp[1:], mod_y.inp[1:]) # various activations are different nodes! def test_simpleCNN(self): x, y = tf.placeholder(tf.float32), tf.placeholder(tf.float32) model = SimpleCNN(tf.reshape(x, [-1, 15, 15, 1]), conv_dims=[ [5, 5, 1, 4], [5, 5, 4, 8], ], ffnn_dims=[20, 10], active_gen_kwargs=( {'activ': mixed_activation(tf.identity, tf.nn.sigmoid)}, {} )) mod_y = model.for_input(tf.reshape(y, [-1, 15, 15, 1])) self.assertEqual(model.ffnn_part.var_list, mod_y.ffnn_part.var_list) self.assertEqual(model.var_list, mod_y.var_list) # share variables self.assertNotEqual(model.inp[1:], mod_y.inp[1:]) # various activations are different nodes! w, out, out_y = vectorize_model(model.var_list, model.inp[-1], mod_y.inp[-1]) self.assertIsNotNone(out) def test_determinitstic_initialization(self): x = tf.constant([[1., 2.]]) mod = FFNN(x, [2, 2, 1], deterministic_initialization=True) with tf.Session().as_default() as ss: mod.initialize() vals = ss.run(mod.Ws) mod.initialize() assert_array_lists_same(ss.run(mod.Ws), vals, test_case=self) print() with tf.Session().as_default() as ss: mod.initialize() assert_array_lists_same(ss.run(mod.Ws), vals, test_case=self) if __name__ == '__main__': unittest.main()
the-stack_106_27238
import requests import ast import json import glob base_url = "https://developers.zomato.com/api/v2.1/" def initialize_app(config): return Zomato(config) class Zomato: def __init__(self, config): self.user_key = config["user_key"] def get_categories(self): """ Takes no input. Returns a dictionary of IDs and their respective category names. """ headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "categories", headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) categories = {} for category in a['categories']: categories.update({category['categories']['id'] : category['categories']['name']}) return categories def get_city_ID(self, city_name): """ Takes City Name as input. Returns the ID for the city given as input. """ if city_name.isalpha() == False: raise ValueError('InvalidCityName') city_name = city_name.split(' ') city_name = '%20'.join(city_name) headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "cities?q=" + city_name, headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) if len(a['location_suggestions']) == 0: raise Exception('invalid_city_name') elif 'name' in a['location_suggestions'][0]: city_name = city_name.replace('%20', ' ') if str(a['location_suggestions'][0]['name']).lower() == str(city_name).lower(): return a['location_suggestions'][0]['id'] else: raise ValueError('InvalidCityId') def get_city_name(self, city_ID): """ Takes City ID as input. Returns the name of the city ID given as input. """ self.is_valid_city_id(city_ID) headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "cities?city_ids=" + str(city_ID), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) if a['location_suggestions'][0]['country_name'] == "": raise ValueError('InvalidCityId') else: temp_city_ID = a['location_suggestions'][0]['id'] if temp_city_ID == str(city_ID): return a['location_suggestions'][0]['name'] def get_collections(self, city_ID, limit=None): """ Takes City ID as input. limit parameter is optional. Returns dictionary of Zomato restaurant collections in a city and their respective URLs. """ #self.is_valid_city_id(city_ID) headers = {'Accept': 'application/json', 'user-key': self.user_key} if limit == None: r = (requests.get(base_url + "collections?city_id=" + str(city_ID), headers=headers).content).decode("utf-8") else: if str(limit).isalpha() == True: raise ValueError('LimitNotInteger') else: r = (requests.get(base_url + "collections?city_id=" + str(city_ID) + "&count=" + str(limit), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) collections = {} for collection in a['collections']: collections.update({collection['collection']['title'] : collection['collection']['url']}) return collections def get_cuisines(self, city_ID): """ Takes City ID as input. Returns a sorted dictionary of all cuisine IDs and their respective cuisine names. """ self.is_valid_city_id(city_ID) headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "cuisines?city_id=" + str(city_ID), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) if len(a['cuisines']) == 0: raise ValueError('InvalidCityId') temp_cuisines = {} cuisines = {} for cuisine in a['cuisines']: temp_cuisines.update({cuisine['cuisine']['cuisine_id'] : cuisine['cuisine']['cuisine_name']}) for cuisine in sorted(temp_cuisines): cuisines.update({cuisine : temp_cuisines[cuisine]}) return cuisines def get_establishment_types(self, city_ID): """ Takes City ID as input. Returns a sorted dictionary of all establishment type IDs and their respective establishment type names. """ self.is_valid_city_id(city_ID) headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "establishments?city_id=" + str(city_ID), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) self.is_key_invalid(a) self.is_rate_exceeded(a) temp_establishment_types = {} establishment_types = {} if 'establishments' in a: for establishment_type in a['establishments']: temp_establishment_types.update({establishment_type['establishment']['id'] : establishment_type['establishment']['name']}) for establishment_type in sorted(temp_establishment_types): establishment_types.update({establishment_type : temp_establishment_types[establishment_type]}) return establishment_types else: raise ValueError('InvalidCityId') def get_nearby_restaurants(self, latitude, longitude): """ Takes the latitude and longitude as inputs. Returns a dictionary of Restaurant IDs and their corresponding Zomato URLs. """ try: float(latitude) float(longitude) except ValueError: raise ValueError('InvalidLatitudeOrLongitude') headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "geocode?lat=" + str(latitude) + "&lon=" + str(longitude), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) nearby_restaurants = {} for nearby_restaurant in a['nearby_restaurants']: nearby_restaurants.update({nearby_restaurant['restaurant']['id'] : nearby_restaurant['restaurant']['url']}) return nearby_restaurants def get_restaurant(self, restaurant_ID): """ Takes Restaurant ID as input. Returns a dictionary of restaurant details. """ self.is_valid_restaurant_id(restaurant_ID) headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "restaurant?res_id=" + str(restaurant_ID), headers=headers).content).decode("utf-8") a = ast.literal_eval(r) if 'code' in a: if a['code'] == 404: raise('InvalidRestaurantId') restaurant_details = {} restaurant_details.update({"name" : a['name']}) restaurant_details.update({"url" : a['url']}) restaurant_details.update({"location" : a['location']['address']}) restaurant_details.update({"city" : a['location']['city']}) restaurant_details.update({"city_ID" : a['location']['city_id']}) restaurant_details.update({"user_rating" : a['user_rating']['aggregate_rating']}) restaurant_details = DotDict(restaurant_details) return restaurant_details def restaurant_search(self, query="", latitude="", longitude="", cuisines="",sort="",order="",limit=10): """ Takes either query, latitude and longitude or cuisine as input. Returns a list of Restaurant IDs. """ cuisines = "%2C".join(cuisines.split(",")) if str(limit).isalpha() == True: raise ValueError('LimitNotInteger') headers = {'Accept': 'application/json', 'user-key': self.user_key} result = [[] for i in range(5)] for i, start in zip(range(0,5, 1), range(0, 100, 20)): r = (requests.get(base_url + "search?q=" + str(query)+ "&start="+str(start) + "&count=20" + "&lat=" + str(latitude) + "&lon=" + str(longitude) + "&cuisines=" + str(cuisines)+"&sort="+str(sort)+"&order="+str(order), headers=headers).content).decode("utf-8") result[i] = r return result#retun list of 5 strings in json format def restaurant_search_by_keyword(self, query="", cuisines="", limit=5): """ Takes either query, latitude and longitude or cuisine as input. Returns a list of Restaurant IDs. """ cuisines = "%2C".join(cuisines.split(",")) if str(limit).isalpha() == True: raise ValueError('LimitNotInteger') headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "search?q=" + str(query) + "&count=" + str(limit) + "&cuisines=" + str(cuisines), headers=headers).content).decode("utf-8") return r def get_location(self, query="", limit=5): """ Takes either query, latitude and longitude or cuisine as input. Returns a list of Restaurant IDs. """ if str(limit).isalpha() == True: raise ValueError('LimitNotInteger') headers = {'Accept': 'application/json', 'user-key': self.user_key} r = (requests.get(base_url + "locations?query=" + str(query) + "&count=" + str(limit), headers=headers).content).decode("utf-8") return r def is_valid_restaurant_id(self, restaurant_ID): """ Checks if the Restaurant ID is valid or invalid. If invalid, throws a InvalidRestaurantId Exception. """ restaurant_ID = str(restaurant_ID) if restaurant_ID.isnumeric() == False: raise ValueError('InvalidRestaurantId') def is_valid_city_id(self, city_ID): """ Checks if the City ID is valid or invalid. If invalid, throws a InvalidCityId Exception. """ city_ID = str(city_ID) if city_ID.isnumeric() == False: return True# raise ValueError('InvalidCityId') def is_key_invalid(self, a): """ Checks if the API key provided is valid or invalid. If invalid, throws a InvalidKey Exception. """ if 'code' in a: if a['code'] == 403: raise ValueError('InvalidKey') def is_rate_exceeded(self, a): """ Checks if the request limit for the API key is exceeded or not. If exceeded, throws a ApiLimitExceeded Exception. """ if 'code' in a: if a['code'] == 440: raise Exception('ApiLimitExceeded') class DotDict(dict): """ Dot notation access to dictionary attributes """ __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__
the-stack_106_27239
dataset_type = 'IcdarDataset' data_root = '/home/atom/Research_STD/Datasets/mmocr/ctw1500' train = dict(type=dataset_type, ann_file=f'{data_root}/instances_training.json', img_prefix=f'{data_root}/imgs', pipeline=None) test = dict(type=dataset_type, ann_file=f'{data_root}/instances_test.json', img_prefix=f'{data_root}/imgs', pipeline=None) train_list = [train] test_list = [test]
the-stack_106_27241
#====================================================================== # # This module contains routines to postprocess the VFI # solutions. # # Simon Scheidegger, 01/19 # Cameron Gordon, 11/21 - updates to Python3 (print statements + pickle) #====================================================================== import numpy as np from parameters import * #import cPickle as pickle import pickle from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel) import nonlinear_solver_iterate as solver import os #====================================================================== # Routine compute the errors def ls_error(n_agents, t1, t2, num_points): file=open('errors.txt', 'w') np.random.seed(0) dim = n_agents k_test = np.random.uniform(k_bar, k_up, (No_samples, dim)) # test target container y_test = np.zeros(No_samples, float) to_print=np.empty((1,5)) for i in range(t1, t2-1): sum_diffs=0 diff = 0 # Load the model from the previous iteration step restart_data = filename + str(i) + ".pcl" with open(restart_data, 'rb') as fd_old: gp_old = pickle.load(fd_old) print("data from iteration step ", i , "loaded from disk") fd_old.close() # Load the model from the previous iteration step restart_data = filename + str(i+1) + ".pcl" with open(restart_data, 'rb') as fd: gp = pickle.load(fd) print("data from iteration step ", i+1 , "loaded from disk") fd.close() mean_old, sigma_old = gp_old.predict(k_test, return_std=True) mean, sigma = gp.predict(k_test, return_std=True) gp_old = gp # solve bellman equations at test points for i in range(len(k_test)): y_test[i] = solver.iterate(k_test[i], n_agents, gp_old)[0] targ_new = y_test # plot predictive mean and 95% quantiles #for j in range(num_points): #print k_test[j], " ",y_pred_new[j], " ",y_pred_new[j] + 1.96*sigma_new[j]," ",y_pred_new[j] - 1.96*sigma_new[j] diff_mean = mean_old - mean max_diff_mean = np.amax(np.fabs(diff_mean)) avg_diff_mean = np.average(np.fabs(diff_mean)) diff_targ = mean - targ_new max_diff_targ = np.amax(np.fabs(diff_targ)) avg_diff_targ = np.average(np.fabs(diff_targ)) to_print[0,0]= i+1 to_print[0,1]= max_diff_mean to_print[0,2]= avg_diff_mean to_print[0,3]= max_diff_targ to_print[0,4]= avg_diff_targ np.savetxt(file, to_print, fmt='%2.16f') msg = "Cauchy:" + str(diff_mean) + ", max = " + str(round(max_diff_mean,3)) msg += os.linesep msg += "Absolute:" + str(diff_targ) + ", max = " + str(round(max_diff_targ,3)) print(msg) print("===================================") file.close() return #======================================================================
the-stack_106_27242
from pytorch_lightning import callbacks import yaml import argparse import numpy as np import cv2 from models import * from experiments.vae_experiment import VAEXperiment from experiments.vae_pix2pix_exp import Pix2pixExperiment import torch.backends.cudnn as cudnn from pytorch_lightning import Trainer from pytorch_lightning.loggers import TestTubeLogger from torch.utils.data import DataLoader from terrain_loader import TerrainDataset from pytorch_lightning.callbacks import ModelCheckpoint parser = argparse.ArgumentParser(description='Generic runner model') parser.add_argument('--config', '-c', dest="filename", metavar='FILE', help = 'path to the config file', default='configs/train.yaml') args = parser.parse_args() with open(args.filename, 'r') as file: try: config = yaml.safe_load(file) except yaml.YAMLError as exc: print(exc) tt_logger = TestTubeLogger( save_dir=config['logging_params']['save_dir'], name=config['logging_params']['name'], debug=False, create_git_tag=False, ) # For reproducibility torch.manual_seed(config['logging_params']['manual_seed']) np.random.seed(config['logging_params']['manual_seed']) cudnn.deterministic = True cudnn.benchmark = False #Vae Model vae_model = vae_models[config['vae_model_params']['name']](**config['vae_model_params']) # pix2pix model gen_model = pix2pix_model[config['pix2pix_model_params']['gen_name']](config['exp_params']['in_channels'],config['exp_params']['out_channels']) disc_model = pix2pix_model[config['pix2pix_model_params']['disc_name']](config['exp_params']['in_channels']) if config['vae_model_params']['load_model']: experiment_vae = VAEXperiment.load_from_checkpoint(config['vae_model_params']['pretrained_model'], vae_model=vae_model,params=config['exp_params']) print("[INFO] Loaded pretrained model") vae_model.eval() experiment = Pix2pixExperiment(gen_model,disc_model,vae_model,config['exp_params']) else: experiment = VAEXperiment(vae_model, config['exp_params']) print("[INFO] Loaded randomly initialized model") checkpoint_callback = ModelCheckpoint( monitor='val_loss', save_last=True, save_top_k=3 ) runner = Trainer(default_root_dir=f"{tt_logger.save_dir}", min_epochs=1, logger=tt_logger, flush_logs_every_n_steps=100, limit_train_batches=1., limit_val_batches=1., num_sanity_val_steps=5, **config['trainer_params']) if config['exp_params']['train']: print(f"======= Training {config['pix2pix_model_params']['name']} =======") runner.fit(experiment) runner.save_checkpoint() else: print(f"======= Testing =======") dataset = TerrainDataset(root = config['exp_params']['data_path'], train=False, hide_green=config['exp_params']['hide_green'], norm=config['exp_params']['norm']) sample_dataloader = DataLoader(dataset, batch_size= 1, num_workers=config['exp_params']['n_workers'], shuffle = False, drop_last=False) def denormalize(result): # minv, maxv = torch.min(result), torch.max(result) new = (result+1)*127.5 return torch.squeeze(new).detach().numpy().transpose((1,2,0)).astype(np.uint8) vae_model.eval() gen_model.eval() for ip, op in sample_dataloader: res = vae_model(ip)[0] vae_res = torch.squeeze(res*255).detach().numpy().transpose((1,2,0)).astype(np.uint8) res = res*2-1 res = gen_model(res) # print(len(res)) res = denormalize(res) op = denormalize(op) cv2.imshow('images/sampled',vae_res) cv2.imshow('images/generated',res) cv2.imshow('images/desired',op) cv2.imwrite('images/sampled.png',vae_res) cv2.imwrite('images/generated.png',res) cv2.imwrite('images/desired.png',op) cv2.waitKey()
the-stack_106_27244
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: lenovo @file: CyclicCoordinate.py @time: 2021/5/22 10:26 """ import math import time import matplotlib.pyplot as plt import numpy as np from matplotlib import ticker def f(x, y): return (1 - x) ** 2 + 100 * (y - x * x) ** 2 def H(x, y): return np.matrix([[1200 * x * x - 400 * y + 2, -400 * x], [-400 * x, 200]]) def grad(x, y): return np.matrix([[2 * x - 2 + 400 * x * (x * x - y)], [200 * (y - x * x)]]) def s(n): if n%2 == 0: return np.matrix([[1],[0]]) else: return np.matrix([[0],[1]]) def advance_retreat_method( x, y, direction: list, step=0, delta=0.1) -> tuple: """ find the initial section of step """ point0 = (x,y) alpha0= step alpha1 = alpha0 + delta point1 = (point0[0]+direction[0]*delta, point0[1]+direction[1]*delta) if f(point0[0],point0[1]) < f(point1[0],point1[1]): while True: delta *= 2 alpha2 = alpha0 - delta point2 = (point0[0] - direction[0] * delta, point0[1] - direction[1] * delta) if f(point2[0],point2[1]) < f(point0[0],point0[1]): alpha1, alpha0 = alpha0, alpha2 point1, point0 = point0, point2 else: return alpha2, alpha1 else: while True: delta *= 2 alpha2 = alpha1 + delta point2 = (point1[0] + direction[0] * delta, point1[1] + direction[1] * delta) if f(point2[0],point2[1]) < f(point1[0],point1[1]): alpha0, alpha1 = alpha1, alpha2 point0, point1 = point1, point2 else: return alpha0, alpha2 def goldsteinsearch(d,x,y, rho): ''' 线性搜索子函数 当前迭代点x,y和当前搜索方向d ''' d = np.squeeze(np.asarray(d)) a,b = advance_retreat_method(x,y,d) golden_num = (math.sqrt(5) - 1) / 2 p,q= a + (1 - golden_num) * (b - a), a + golden_num * (b - a) while abs(b - a) > rho: fp = f(x + p * d[0],y + p * d[1]) fq = f(x + q * d[0],y + q * d[1]) if fp<fq: b,q = q,p p = a + (1 - golden_num) * (b - a) else: a,p = p,q q = a + golden_num * (b - a) alpha = (a+b)/2 return alpha def calLambda(x, y, d): return goldsteinsearch(d,x,y,0.01) def cyc_coo(x,y,n): lambda_ = calLambda(x,y,s(n)) print(lambda_) delta = lambda_ * s(n) return delta # ----- 绘制等高线 ----- # 数据数目 n = 256 # 定义x, y x = np.linspace(-1, 1.1, n) y = np.linspace(-1, 1.1, n) # 生成网格数据 X, Y = np.meshgrid(x, y) plt.figure() # 填充等高线的颜色, 8是等高线分为几部分 plt.contourf(X, Y, f(X, Y), 5, alpha=0, cmap=plt.cm.hot) # 绘制等高线 C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01) # 绘制等高线数据 plt.clabel(C, inline=True, fontsize=10) # --------------------- x = np.matrix([[-0.3], [-0.4]]) tol = 0.01 xv = [x[0, 0]] yv = [x[1, 0]] plt.plot(x[0, 0], x[1, 0], marker='o') start = time.time() for t in range(10000): x = np.matrix([[xv[-1]], [yv[-1]]]) delta = cyc_coo(x[0, 0], x[1, 0],t) x1 = x + delta if np.linalg.norm(grad(x1[0,0],x1[1,0])) < tol: break xv.append(x1[0, 0]) yv.append(x1[1, 0]) end = time.time() print("iteration:" + str(t)) print(xv) print(yv) print(xv[-1]) print(yv[-1]) print("耗时:"+str(end-start)) plt.plot(xv, yv, label='track') # plt.plot(xv, yv, label='track', marker='o') plt.xlabel('x') plt.ylabel('y') plt.title('Cyclic Coordinate\'s Method for Rosenbrock Function') plt.legend() plt.show()
the-stack_106_27246
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from __future__ import absolute_import import shutil import logging import traceback from tg import tmpl_context as c, app_globals as g from ming.odm import session from allura.lib.decorators import task from allura.lib.repository import RepositoryApp from allura.lib.utils import skip_mod_date @task def init(**kwargs): c.app.repo.init() @task def clone(cloned_from_path, cloned_from_name, cloned_from_url): from allura import model as M try: c.app.repo.init_as_clone( cloned_from_path, cloned_from_name, cloned_from_url) M.Notification.post_user( c.user, c.app.repo, 'created', text='Repository %s/%s created' % ( c.project.shortname, c.app.config.options.mount_point)) except Exception: g.post_event('repo_clone_task_failed', cloned_from_url, cloned_from_path, traceback.format_exc()) @task def reclone(*args, **kwargs): from allura import model as M from ming.orm import ThreadLocalORMSession repo = c.app.repo if repo is not None: shutil.rmtree(repo.full_fs_path, ignore_errors=True) M.MergeRequest.query.remove(dict( app_config_id=c.app.config._id)) ThreadLocalORMSession.flush_all() clone(*args, **kwargs) @task def refresh(**kwargs): from allura import model as M log = logging.getLogger(__name__) # don't create multiple refresh tasks q = { 'task_name': 'allura.tasks.repo_tasks.refresh', 'state': {'$in': ['busy', 'ready']}, 'context.app_config_id': c.app.config._id, 'context.project_id': c.project._id, } refresh_tasks_count = M.MonQTask.query.find(q).count() if refresh_tasks_count <= 1: # only this task c.app.repo.refresh() # checking if we have new commits arrived # during refresh and re-queue task if so new_commit_ids = c.app.repo.unknown_commit_ids() if len(new_commit_ids) > 0: refresh.post() log.info('New refresh task is queued due to new commit(s).') else: log.info('Refresh task for %s:%s skipped due to backlog', c.project.shortname, c.app.config.options.mount_point) @task def uninstall(**kwargs): from allura import model as M repo = c.app.repo if repo is not None: shutil.rmtree(repo.full_fs_path, ignore_errors=True) repo.delete() M.MergeRequest.query.remove(dict( app_config_id=c.app.config._id)) super(RepositoryApp, c.app).uninstall(c.project) from ming.orm import ThreadLocalORMSession ThreadLocalORMSession.flush_all() @task def nop(): log = logging.getLogger(__name__) log.info('nop') @task def reclone_repo(*args, **kwargs): from allura import model as M try: nbhd = M.Neighborhood.query.get(url_prefix='/%s/' % kwargs['prefix']) c.project = M.Project.query.get( shortname=kwargs['shortname'], neighborhood_id=nbhd._id) c.app = c.project.app_instance(kwargs['mount_point']) source_url = c.app.config.options.get('init_from_url') source_path = c.app.config.options.get('init_from_path') c.app.repo.init_as_clone(source_path, None, source_url) M.Notification.post_user( c.user, c.app.repo, 'created', text='Repository %s/%s created' % ( c.project.shortname, c.app.config.options.mount_point)) except Exception: g.post_event('repo_clone_task_failed', source_url, source_path, traceback.format_exc()) @task def tarball(revision, path): log = logging.getLogger(__name__) if revision: repo = c.app.repo status = repo.get_tarball_status(revision, path) if status == 'complete': log.info( 'Skipping snapshot for repository: %s:%s rev %s because it is already %s' % (c.project.shortname, c.app.config.options.mount_point, revision, status)) else: try: repo.tarball(revision, path) except: log.error( 'Could not create snapshot for repository: %s:%s revision %s path %s' % (c.project.shortname, c.app.config.options.mount_point, revision, path), exc_info=True) raise else: log.warn( 'Skipped creation of snapshot: %s:%s because revision is not specified' % (c.project.shortname, c.app.config.options.mount_point)) @task def merge(merge_request_id): from allura import model as M mr = M.MergeRequest.query.get(_id=merge_request_id) mr.app.repo.merge(mr) mr.add_meta_post(changes={'Status': [mr.status, 'merged']}) mr.status = 'merged' g.director.create_activity(c.user, 'merged', mr, related_nodes=[c.project], tags=['merge-request']) session(mr).flush(mr) @task def can_merge(merge_request_id): from allura import model as M mr = M.MergeRequest.query.get(_id=merge_request_id) result = mr.app.repo.can_merge(mr) mr.set_can_merge_cache(result) @task def determine_mr_commits(merge_request_id): from allura import model as M mr = M.MergeRequest.query.get(_id=merge_request_id) mr.commits # build & cache the commits
the-stack_106_27248
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Any, Callable, Dict, List, Mapping, Optional, Sequence from airflow.sensors.base import BaseSensorOperator from airflow.utils.context import Context, context_merge from airflow.utils.operator_helpers import determine_kwargs class PythonSensor(BaseSensorOperator): """ Waits for a Python callable to return True. User could put input argument in templates_dict e.g ``templates_dict = {'start_ds': 1970}`` and access the argument by calling ``kwargs['templates_dict']['start_ds']`` in the callable :param python_callable: A reference to an object that is callable :type python_callable: python callable :param op_kwargs: a dictionary of keyword arguments that will get unpacked in your function :type op_kwargs: dict :param op_args: a list of positional arguments that will get unpacked when calling your callable :type op_args: list :param templates_dict: a dictionary where the values are templates that will get templated by the Airflow engine sometime between ``__init__`` and ``execute`` takes place and are made available in your callable's context after the template has been applied. :type templates_dict: dict of str """ template_fields: Sequence[str] = ('templates_dict', 'op_args', 'op_kwargs') def __init__( self, *, python_callable: Callable, op_args: Optional[List] = None, op_kwargs: Optional[Mapping[str, Any]] = None, templates_dict: Optional[Dict] = None, **kwargs, ): super().__init__(**kwargs) self.python_callable = python_callable self.op_args = op_args or [] self.op_kwargs = op_kwargs or {} self.templates_dict = templates_dict def poke(self, context: Context) -> bool: context_merge(context, self.op_kwargs, templates_dict=self.templates_dict) self.op_kwargs = determine_kwargs(self.python_callable, self.op_args, context) self.log.info("Poking callable: %s", str(self.python_callable)) return_value = self.python_callable(*self.op_args, **self.op_kwargs) return bool(return_value)
the-stack_106_27250
from time import time import os _startTime = None def loadInput(day): global _startTime day = str(day) filename = "input" + day.zfill(2) + ".txt" filepath = os.path.join("inputs", filename) with open(filepath) as f: content = [l.rstrip("\n") for l in f.readlines()] _startTime = time() if len(content) == 1: try: return int(content[0]) except: try: return [int(i) for i in content[0].split()] except: return content[0] else: try: return [int(i) for i in content] except: return content def printTimeTaken(): global _startTime _endTime = time() print("Time: {:.3f}s".format(_endTime - _startTime))
the-stack_106_27251
import os import shlex import subprocess import sys import parse from PySide2.QtCore import QFile, QObject, QTimer from PySide2.QtUiTools import QUiLoader from PySide2.QtWidgets import QApplication, QGraphicsScene, QLabel from . import xrandr from .monitor_item import MonitorItem class Window(QObject): def __init__(self, ui): super().__init__() self.ui = ui ui.show() self.ui.setWindowTitle("Display Configuration") self.ui.screenCombo.currentTextChanged.connect(self.monitor_selected) self.ui.replicaOf.currentTextChanged.connect(self.replica_changed) self.ui.orientationCombo.currentIndexChanged.connect(self.orientation_changed) self.get_xrandr_info() self.fill_ui() self.ui.horizontalScale.valueChanged.connect(self.scale_changed) self.ui.verticalScale.valueChanged.connect(self.scale_changed) self.ui.modes.currentTextChanged.connect(self.mode_changed) self.ui.applyButton.clicked.connect(self.do_apply) self.ui.okButton.clicked.connect(self.do_ok) self.ui.resetButton.clicked.connect(self.do_reset) self.ui.cancelButton.clicked.connect(self.ui.reject) self.ui.scaleModeCombo.currentTextChanged.connect(self.scale_mode_changed) self.ui.primary.stateChanged.connect(self.primary_changed) self.ui.enabled.stateChanged.connect(self.enabled_changed) self.pos_label = QLabel(self.ui.sceneView) self.pos_label.move(5, 5) def enabled_changed(self): mon = self.ui.screenCombo.currentText() enabled = self.ui.enabled.isChecked() print(f"Setting {mon} enabled status to {enabled}") monitor = self.screen.monitors[mon] monitor.enabled = enabled if enabled and not monitor.get_current_mode(): # Choose a mode self.ui.modes.setCurrentText(str(monitor.get_preferred_mode())) self.mode_changed() self.screen.update_replica_of() for mon in self.screen.monitors.values(): mon.item.update_visuals(mon) self.adjust_view() def primary_changed(self): mon_name = self.ui.screenCombo.currentText() primary = self.ui.primary.isChecked() if primary: self.screen.set_primary(mon_name) else: self.screen.set_primary("foobar") # no primary for monitor in self.screen.monitors.values(): monitor.item.update_visuals(monitor) def scale_mode_changed(self): mon = self.ui.screenCombo.currentText() scale_mode = self.ui.scaleModeCombo.currentText() print(f"Set {mon} scale mode to {scale_mode}") if scale_mode == "Manual": self.ui.horizontalScale.setEnabled(True) self.ui.verticalScale.setEnabled(True) try: self.ui.horizontalScale.valueChanged.disconnect( self.ui.verticalScale.setValue ) except RuntimeError: # Not connected pass elif scale_mode == "Disabled (1x1)": self.ui.verticalScale.setEnabled(False) self.ui.horizontalScale.setEnabled(False) self.ui.horizontalScale.setValue(1000) self.ui.verticalScale.setValue(1000) try: self.ui.horizontalScale.valueChanged.disconnect( self.ui.verticalScale.setValue ) except RuntimeError: # Not connected pass elif scale_mode == "Automatic: physical dimensions": # Calculate scale factors so that the logical pixels will be the same # size as in the primary window if self.ui.primary.isChecked(): print("Has no effect on primary display.") return # Find the primary monitor primary = self.screen.get_primary() if not primary: print("Oops, no primary!") return monitor = self.screen.monitors[mon] prim_density_x = primary.res_x / primary.w_in_mm prim_density_y = primary.res_y / primary.h_in_mm dens_x = monitor.res_x / monitor.w_in_mm dens_y = monitor.res_y / monitor.h_in_mm try: self.ui.horizontalScale.valueChanged.disconnect( self.ui.verticalScale.setValue ) except RuntimeError: # Not connected pass self.ui.horizontalScale.setEnabled(False) self.ui.verticalScale.setEnabled(False) self.ui.horizontalScale.setValue(prim_density_x / dens_x * 1000) self.ui.verticalScale.setValue(prim_density_y / dens_y * 1000) elif scale_mode == "Manual, same in both dimensions": self.ui.horizontalScale.setEnabled(True) self.ui.verticalScale.setEnabled(False) self.ui.horizontalScale.valueChanged.connect(self.ui.verticalScale.setValue) self.ui.verticalScale.setValue(self.ui.horizontalScale.value()) def replica_changed(self): mon_name = self.ui.screenCombo.currentText() replicate = self.ui.replicaOf.currentText() mon = self.screen.monitors[mon_name] if replicate in ("None", "", None): print(f"Making {mon_name} NOT a replica") mon.pos_x += 300 else: replicate = self.screen.monitors[replicate] print(f"Making {mon_name} a replica of {replicate}") # Making a replica implies: # Set the same position mon.pos_x = replicate.pos_x mon.pos_y = replicate.pos_y # Set the same mode if possible matching_mode = mon.get_matching_mode(replicate.get_current_mode()) if matching_mode: mon.set_current_mode(matching_mode.name) else: # Keep the current mode, and change scaling so it # has the same effective size as the desired mode c_mode = mon.get_current_mode() mod_x, mod_y = c_mode.res_x, c_mode.res_y r_mode = replicate.get_current_mode target_x, target_y = r_mode.res_x, r_mode.res_y scale_x = 1000 * target_x / mod_x scale_y = 1000 * target_y / mod_y self.ui.horizontalScale.setValue(scale_x) self.ui.verticalScale.setValue(scale_y) self.screen.update_replica_of() for mon in self.screen.monitors.values(): mon.item.update_visuals(mon) def run(self, commands): for i, cmd in enumerate(commands, 1): print(f"Running {cmd} [{i}/{len(commands)}]") subprocess.check_call(shlex.split(cmd)) def do_reset(self): self.run(self.reset_screen.generate()) self.fill_ui() def do_ok(self): self.do_apply() self.ui.accept() def do_apply(self): cli = self.screen.generate() self.run(cli) def fill_ui(self): """Configure UI out of our screen data.""" self.scene = QGraphicsScene(self) self.ui.sceneView.setScene(self.scene) self.ui.screenCombo.clear() for name, monitor in self.screen.monitors.items(): self.ui.screenCombo.addItem(name) mon_item = MonitorItem( data=monitor, window=self, name=name, ) self.scene.addItem(mon_item) monitor.item = mon_item self.ui.screenCombo.setCurrentText(self.screen.choose_a_monitor()) self.adjust_view() # self.scale_changed() # Trigger scale labels update def orientation_changed(self): mon_name = self.ui.screenCombo.currentText() orientation = self.ui.orientationCombo.currentText().split()[0].lower() self.screen.monitors[mon_name].orientation = orientation self.mode_changed() def mode_changed(self): mon = self.ui.screenCombo.currentText() mode = parse.search("({mode_name})", self.ui.modes.currentText())["mode_name"] if not mode: return print(f"Changing {mon} to {mode}") monitor = self.screen.monitors[mon] monitor.set_current_mode(mode) mode_x, mode_y = ( monitor.get_current_mode().res_x, monitor.get_current_mode().res_y, ) # use resolution via scaling if monitor.orientation in ("normal", "inverted"): monitor.res_x = int(mode_x * self.ui.horizontalScale.value() / 1000) monitor.res_y = int(mode_y * self.ui.verticalScale.value() / 1000) else: monitor.res_x = int(mode_y * self.ui.horizontalScale.value() / 1000) monitor.res_y = int(mode_x * self.ui.verticalScale.value() / 1000) monitor.item.update_visuals(monitor) def show_pos(self, x, y): self.pos_label.setText(f"{x},{y}") self.pos_label.resize(self.pos_label.sizeHint()) def monitor_moved(self): "Update screen with new monitor positions" for mon in self.screen.monitors.values(): item = mon.item mon.pos_x = item.x() mon.pos_y = item.y() self.screen.update_replica_of() for mon in self.screen.monitors.values(): mon.item.update_visuals(mon) # Adjust view a little later QTimer.singleShot(0, self.adjust_view) def possible_snaps(self, name): """Return two lists of values to which the x and y position of monitor "name" could snap to.""" snaps_x = [] snaps_y = [] for output, monitor in self.screen.monitors.items(): if output == name: continue else: mode = monitor.get_current_mode() mod_x, mod_y = mode.res_x, mode.res_y snaps_x.append(monitor.pos_x) snaps_x.append(monitor.pos_x + mod_x) snaps_y.append(monitor.pos_y) snaps_y.append(monitor.pos_y + mod_y) return snaps_x, snaps_y def adjust_view(self): print("Adjusting view") self.ui.sceneView.resetTransform() self.ui.sceneView.ensureVisible(self.scene.sceneRect(), 100, 100) try: scale_factor = 0.8 * min( self.ui.sceneView.width() / self.scene.sceneRect().width(), self.ui.sceneView.height() / self.scene.sceneRect().height(), ) self.ui.sceneView.scale(scale_factor, scale_factor) except ZeroDivisionError: # Don't worry pass def get_xrandr_info(self): _xrandr_data = xrandr.read_data() self.screen = xrandr.parse_data(_xrandr_data) self.screen.update_replica_of() self.reset_screen = xrandr.parse_data(_xrandr_data) def monitor_selected(self, name): if not name: return # needed so we don't flip through all modes as they are added self.ui.modes.blockSignals(True) self.ui.primary.blockSignals(True) # Show modes self.ui.modes.clear() monitor = self.screen.monitors[name] for _, mode in monitor.modes.items(): self.ui.modes.addItem(str(mode)) mode = monitor.get_current_mode() self.ui.modes.setCurrentText(str(mode)) if monitor.orientation in ("normal", "inverted"): h_scale = monitor.res_x / mode.res_x v_scale = monitor.res_y / mode.res_y else: h_scale = monitor.res_y / mode.res_x v_scale = monitor.res_x / mode.res_y self.ui.horizontalScale.setValue(h_scale * 1000) self.ui.verticalScale.setValue(v_scale * 1000) self.ui.primary.setChecked(monitor.primary) self.ui.enabled.setChecked(monitor.enabled) self.ui.orientationCombo.setCurrentText(monitor.orientation) self.ui.replicaOf.clear() self.ui.replicaOf.addItem("None") for mon in self.screen.monitors: if mon != name: self.ui.replicaOf.addItem(mon) if mon in self.screen.monitors[name].replica_of: self.ui.replicaOf.setCurrentText(mon) self.ui.modes.blockSignals(False) self.ui.primary.blockSignals(False) guessed_scale_mode = monitor.guess_scale_mode() self.ui.scaleModeCombo.setCurrentText(guessed_scale_mode) self.scale_mode_changed() def scale_changed(self): self.ui.horizontalScaleLabel.setText( f"{int(self.ui.horizontalScale.value()/10)}%" ) self.ui.verticalScaleLabel.setText(f"{int(self.ui.verticalScale.value()/10)}%") self.mode_changed() # Not really, but it's the same thing def main(): app = QApplication(sys.argv) ui_file = QFile(os.path.join(os.path.dirname(__file__), "main.ui")) ui_file.open(QFile.ReadOnly) loader = QUiLoader() Window(loader.load(ui_file)) sys.exit(app.exec_()) if __name__ == "__main__": main()
the-stack_106_27253
from tkinter import * from PIL import Image, ImageTk root = Tk() root.geometry("1200x700") load = Image.open("Network-Monitoring.jpg") render = ImageTk.PhotoImage(load) img = Label(image=render) img.place(x=0, y=0) label = Label(root , text="Welcome To The Network!",font=("bold,italic",25) , width=70,) label.pack(pady=50) e= Entry(root, width=100) e.pack(pady=50) e.insert(0,"Enter your IPaddress:") button=Button(root,text="Submit",width=30) button.pack() root.mainloop()
the-stack_106_27254
# -*- coding: utf-8 -*- ''' Control of entries in SSH authorized_key files ============================================== The information stored in a user's SSH authorized key file can be easily controlled via the ssh_auth state. Defaults can be set by the enc, options, and comment keys. These defaults can be overridden by including them in the name. Since the YAML specification limits the length of simple keys to 1024 characters, and since SSH keys are often longer than that, you may have to use a YAML 'explicit key', as demonstrated in the second example below. .. code-block:: yaml AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==: ssh_auth: - present - user: root - enc: ssh-dss ? AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==... : ssh_auth: - present - user: root - enc: ssh-dss thatch: ssh_auth: - present - user: root - source: salt://ssh_keys/thatch.id_rsa.pub sshkeys: ssh_auth: - present - user: root - enc: ssh-rsa - options: - option1="value1" - option2="value2 flag2" - comment: myuser - names: - AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY== - ssh-dss AAAAB3NzaCL0sQ9fJ5bYTEyY== user@domain - option3="value3" ssh-dss AAAAB3NzaC1kcQ9J5bYTEyY== other@testdomain - AAAAB3NzaC1kcQ9fJFF435bYTEyY== newcomment ''' # Import python libs import re import sys def _present_test(user, name, enc, comment, options, source, config): ''' Run checks for "present" ''' result = None if source: keys = __salt__['ssh.check_key_file']( user, source, config, saltenv=__env__) if keys: comment = '' for key, status in keys.items(): if status == 'exists': continue comment += 'Set to {0}: {1}\n'.format(status, key) if comment: return result, comment err = sys.modules[ __salt__['test.ping'].__module__ ].__context__.pop('ssh_auth.error', None) if err: return False, err else: return ( True, 'All host keys in file {0} are already present'.format(source) ) check = __salt__['ssh.check_key']( user, name, enc, comment, options, config) if check == 'update': comment = ( 'Key {0} for user {1} is set to be updated' ).format(name, user) elif check == 'add': comment = ( 'Key {0} for user {1} is set to be added' ).format(name, user) elif check == 'exists': result = True comment = ('The authorized host key {0} is already present ' 'for user {1}'.format(name, user)) return result, comment def present( name, user, enc='ssh-rsa', comment='', source='', options=None, config='.ssh/authorized_keys', **kwargs): ''' Verifies that the specified SSH key is present for the specified user name The SSH key to manage user The user who owns the SSH authorized keys file to modify enc Defines what type of key is being used; can be ecdsa, ssh-rsa or ssh-dss comment The comment to be placed with the SSH public key source The source file for the key(s). Can contain any number of public keys, in standard "authorized_keys" format. If this is set, comment, enc, and options will be ignored. .. note:: The source file must contain keys in the format ``<enc> <key> <comment>``. If you have generated a keypair using PuTTYgen, then you will need to do the following to retrieve an OpenSSH-compatible public key. 1. In PuTTYgen, click ``Load``, and select the *private* key file (not the public key), and click ``Open``. 2. Copy the public key from the box labeled ``Public key for pasting into OpenSSH authorized_keys file``. 3. Paste it into a new file. options The options passed to the key, pass a list object config The location of the authorized keys file relative to the user's home directory, defaults to ".ssh/authorized_keys" ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if __opts__['test']: ret['result'], ret['comment'] = _present_test( user, name, enc, comment, options or [], source, config, ) return ret if source != '': data = __salt__['ssh.set_auth_key_from_file']( user, source, config, saltenv=__env__) else: # check if this is of form {options} {enc} {key} {comment} sshre = re.compile(r'^(.*?)\s?((?:ssh\-|ecds)[\w-]+\s.+)$') fullkey = sshre.search(name) # if it is {key} [comment] if not fullkey: key_and_comment = name.split() name = key_and_comment[0] if len(key_and_comment) == 2: comment = key_and_comment[1] else: # if there are options, set them if fullkey.group(1): options = fullkey.group(1).split(',') # key is of format: {enc} {key} [comment] comps = fullkey.group(2).split() enc = comps[0] name = comps[1] if len(comps) == 3: comment = comps[2] data = __salt__['ssh.set_auth_key']( user, name, enc, comment, options or [], config) if data == 'replace': ret['changes'][name] = 'Updated' ret['comment'] = ('The authorized host key {0} for user {1} was ' 'updated'.format(name, user)) return ret elif data == 'no change': ret['comment'] = ('The authorized host key {0} is already present ' 'for user {1}'.format(name, user)) elif data == 'new': ret['changes'][name] = 'New' ret['comment'] = ('The authorized host key {0} for user {1} was added' .format(name, user)) elif data == 'fail': ret['result'] = False err = sys.modules[ __salt__['test.ping'].__module__ ].__context__.pop('ssh_auth.error', None) if err: ret['comment'] = err else: ret['comment'] = ('Failed to add the ssh key. Is the home ' 'directory available, and/or does the key file ' 'exist?') elif data == 'invalid': ret['result'] = False ret['comment'] = 'Invalid public ssh key, most likely has spaces' return ret def absent(name, user, enc='ssh-rsa', comment='', options=None, config='.ssh/authorized_keys'): ''' Verifies that the specified SSH key is absent name The SSH key to manage user The user who owns the SSH authorized keys file to modify enc Defines what type of key is being used; can be ecdsa, ssh-rsa or ssh-dss comment The comment to be placed with the SSH public key options The options passed to the key, pass a list object config The location of the authorized keys file relative to the user's home directory, defaults to ".ssh/authorized_keys" ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} # Get just the key keydata = name.split(' ') if len(keydata) > 1: name = keydata[1] else: name = keydata[0] if __opts__['test']: check = __salt__['ssh.check_key']( user, name, enc, comment, options or [], config) if check == 'update' or check == 'exists': ret['result'] = None ret['comment'] = 'Key {0} is set for removal'.format(name) return ret else: ret['comment'] = 'Key is already absent' return ret ret['comment'] = __salt__['ssh.rm_auth_key'](user, name, config) if ret['comment'] == 'User authorized keys file not present': ret['result'] = False return ret elif ret['comment'] == 'Key removed': ret['changes'][name] = 'Removed' return ret
the-stack_106_27255
from time import time from cutqc.helper_fun import check_valid from cutqc.cutter import find_cuts, cut_circuit from cutqc.evaluator import run_subcircuit_instances from cutqc.post_process import generate_summation_terms, build from cutqc.verify import verify class CutQC: ''' The main module for CutQC cut --> evaluate results --> verify (optional) ''' def __init__(self, tasks, verbose): ''' Args: tasks (list): the input quantum circuits Each element is a dictionary with 'name', 'circuit' and 'kwargs' verbose: setting verbose to True to turn on logging information. Useful to visualize what happens, but may produce very long outputs for complicated circuits. ''' self.tasks = tasks for task in self.tasks: for field in ['name','circuit','kwargs']: if field not in task: raise ValueError('Missing %s'%field) check_valid(circuit=task['circuit']) self.verbose = verbose def cut(self): ''' Cut the given circuits If use the MIP solver to automatically find cuts, the following are required: max_subcircuit_width: max number of qubits in each subcircuit The following are optional: max_cuts: max total number of cuts allowed num_subcircuits: list of subcircuits to try, CutQC returns the best solution found among the trials max_subcircuit_cuts: max number of cuts for a subcircuit max_subcircuit_size: max number of gates in a subcircuit quantum_cost_weight: quantum_cost_weight : MIP overall cost objective is given by quantum_cost_weight * num_subcircuit_instances + (1-quantum_cost_weight) * classical_postprocessing_cost Else supply the subcircuit_vertices manually Note that supplying subcircuit_vertices overrides all other arguments ''' for task in self.tasks: circuit_name = task['name'] circuit = task['circuit'] kwargs = task['kwargs'] if self.verbose: print('*'*20,'Cut %s'%circuit_name,'*'*20) print('width = %d depth = %d size = %d -->'%(circuit.num_qubits,circuit.depth(),circuit.size())) print(kwargs) if 'subcircuit_vertices' not in kwargs: if 'max_subcircuit_width' not in kwargs: raise AttributeError('Automatic MIP cut searcher requires users to define max subcircuit width!') task.update(find_cuts(**kwargs,circuit=circuit,verbose=self.verbose)) else: task.update(cut_circuit(**kwargs,circuit=circuit,verbose=self.verbose)) def evaluate(self, eval_mode, num_shots_fn, mem_limit, num_threads): ''' eval_mode = qasm: simulate shots eval_mode = sv: statevector simulation num_shots_fn: a function that gives the number of shots to take for a given circuit ''' if self.verbose: print('*'*20,'evaluation mode = %s'%(eval_mode),'*'*20,flush=True) self._generate_metadata() self._run_subcircuits(eval_mode=eval_mode,num_shots_fn=num_shots_fn) self._attribute_shots() self._build(mem_limit=mem_limit,num_threads=num_threads) def verify(self): for task in self.tasks: print('*'*20,'Verify %s'%task['name'],'*'*20,flush=True) reconstructed_output, metrics = verify(full_circuit=task['circuit'], unordered=task['unordered_prob'], complete_path_map=task['complete_path_map'], subcircuits=task['subcircuits'], smart_order=task['smart_order']) for quasi_conversion_mode in metrics: print('Quasi probability conversion mode: %s'%quasi_conversion_mode) for metric_name in metrics[quasi_conversion_mode]: print(metric_name,metrics[quasi_conversion_mode][metric_name]) task['ordered_prob'] = reconstructed_output task['metrics'] = metrics def _generate_metadata(self): circ_dict = {} all_subcircuit_entries_sampled = {} for task in self.tasks: task['summation_terms'], task['subcircuit_entries'], task['subcircuit_instances'] = generate_summation_terms( subcircuits=task['subcircuits'], complete_path_map=task['complete_path_map'], num_cuts=task['num_cuts']) # if self.verbose: # print('--> %s subcircuit_instances:'%task['name'],flush=True) # for subcircuit_idx in task['subcircuit_instances']: # for init_meas in task['subcircuit_instances'][subcircuit_idx]: # subcircuit_instance_idx = task['subcircuit_instances'][subcircuit_idx][init_meas] # print('Subcircuit {:d}, {}, instance_idx {:d}'.format( # subcircuit_idx,init_meas,subcircuit_instance_idx)) # print('--> %s subcircuit_entries:'%task['name'],flush=True) # for subcircuit_idx in task['subcircuit_entries']: # for subcircuit_entry_key in task['subcircuit_entries'][subcircuit_idx]: # subcircuit_entry_idx, kronecker_term = task['subcircuit_entries'][subcircuit_idx][subcircuit_entry_key] # print('Subcircuit {:d} {}, entry_idx {:d}, Kronecker term = {}'.format( # subcircuit_idx,subcircuit_entry_key,subcircuit_entry_idx,kronecker_term)) # print('--> %s summation_terms:'%task['name']) # [print(summation_term) for summation_term in task['summation_terms']] def _run_subcircuits(self,eval_mode,num_shots_fn): ''' Run all the subcircuit instances task['subcircuit_instance_probs'][subcircuit_idx][subcircuit_instance_idx] = measured prob ''' for task in self.tasks: if self.verbose: print('--> Running Subcircuits %s'%task['name'],flush=True) task['subcircuit_instance_probs'] = run_subcircuit_instances(subcircuits=task['subcircuits'],subcircuit_instances=task['subcircuit_instances'], eval_mode=eval_mode,num_shots_fn=num_shots_fn) def _attribute_shots(self): ''' Attribute the shots into respective subcircuit entries task['subcircuit_entry_probs'][subcircuit_idx][subcircuit_entry_idx] = prob ''' for task in self.tasks: if self.verbose: print('--> Attribute shots %s'%task['name'],flush=True) attribute_begin = time() task['subcircuit_entry_probs'] = {} for subcircuit_idx in task['subcircuit_entries']: task['subcircuit_entry_probs'][subcircuit_idx] = {} for label in task['subcircuit_entries'][subcircuit_idx]: subcircuit_entry_idx, kronecker_term = task['subcircuit_entries'][subcircuit_idx][label] # print('Subcircuit {:d} entry {:d} kronecker_term {}'.format( # subcircuit_idx, subcircuit_entry_idx, kronecker_term # )) subcircuit_entry_prob = None for term in kronecker_term: coefficient, subcircuit_instance_idx = term if subcircuit_entry_prob is None: subcircuit_entry_prob = coefficient * task['subcircuit_instance_probs'][subcircuit_idx][subcircuit_instance_idx] else: subcircuit_entry_prob += coefficient * task['subcircuit_instance_probs'][subcircuit_idx][subcircuit_instance_idx] task['subcircuit_entry_probs'][subcircuit_idx][subcircuit_entry_idx] = subcircuit_entry_prob attribute_time = time()-attribute_begin if self.verbose: print('%s attribute took %.3e seconds'%(task['name'],attribute_time),flush=True) def _build(self, mem_limit, num_threads): for task in self.tasks: if self.verbose: print('--> Build %s'%task['name'],flush=True) [print(summation_term,flush=True) for summation_term in task['summation_terms'][:10]] print('... Total %d summation terms\n'%len(task['summation_terms']),flush=True) build_begin = time() reconstructed_prob, smart_order, overhead = build( summation_terms=task['summation_terms'], subcircuit_entry_probs=task['subcircuit_entry_probs'], num_cuts=task['num_cuts'], num_threads=num_threads) build_time = time()-build_begin task['unordered_prob'] = reconstructed_prob task['build_time'] = build_time task['smart_order'] = smart_order if self.verbose: print('Overhead = {}, took {:.3e} seconds'.format(overhead,build_time))
the-stack_106_27257
class Warrior(object): def __init__(self, health=50, attack=5): self.health = health self.attack = attack self.is_alive = True if health > 0 else False """Getting damage.""" def BishBashBosh(self, damage): self.health -= damage self.is_alive = True if self.health > 0 else False class Knight(Warrior): def __init__(self, *args, **kwargs): #super(Knight, self).__init__(*args, **kwargs) super(Knight, self).__init__(50, 7) def fight(unit_1, unit_2): while (unit_1.is_alive and unit_2.is_alive): unit_2.BishBashBosh(unit_1.attack) if not unit_2.is_alive: return True unit_1.BishBashBosh(unit_2.attack) if not unit_1.is_alive: return False if __name__ == '__main__': chuck = Warrior() bruce = Warrior() carl = Knight() dave = Warrior() mark = Warrior() assert fight(chuck, bruce) == True assert fight(dave, carl) == False assert chuck.is_alive == True assert bruce.is_alive == False assert carl.is_alive == True assert dave.is_alive == False assert fight(carl, mark) == False assert carl.is_alive == False print("Coding complete? Let's try tests!")