filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_22532
"""Speech to text.""" import io import os import subprocess import tempfile import time import wave from pathlib import Path from typing import Any, Dict, Iterable, List, Optional, Tuple, Type from urllib.parse import urljoin import requests from rhasspy.actor import RhasspyActor from rhasspy.utils import convert_wav, hass_request_kwargs, maybe_convert_wav # ----------------------------------------------------------------------------- class TranscribeWav: """Request to transcribe text from WAV buffer.""" def __init__( self, wav_data: bytes, receiver: Optional[RhasspyActor] = None, handle: bool = True, ) -> None: self.wav_data = wav_data self.receiver = receiver self.handle = handle class WavTranscription: """Response to TranscribeWav.""" def __init__(self, text: str, handle: bool = True, confidence: float = 1) -> None: self.text = text self.confidence = confidence self.handle = handle # ----------------------------------------------------------------------------- def get_decoder_class(system: str) -> Type[RhasspyActor]: """Get type for profile speech to text decoder.""" assert system in [ "dummy", "pocketsphinx", "kaldi", "remote", "hass_stt", "command", ], ("Invalid speech to text system: %s" % system) if system == "pocketsphinx": # Use pocketsphinx locally return PocketsphinxDecoder if system == "kaldi": # Use kaldi locally return KaldiDecoder if system == "remote": # Use remote Rhasspy server return RemoteDecoder if system == "hass_stt": # Use Home Assistant STT platform return HomeAssistantSTTIntegration if system == "command": # Use external program return CommandDecoder # Use dummy decoder as a fallback return DummyDecoder # ----------------------------------------------------------------------------- class DummyDecoder(RhasspyActor): """Always returns an emptry transcription""" def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, TranscribeWav): self.send(message.receiver or sender, WavTranscription("")) # ----------------------------------------------------------------------------- # Pocketsphinx based WAV to text decoder # https://github.com/cmusphinx/pocketsphinx # ----------------------------------------------------------------------------- class PocketsphinxDecoder(RhasspyActor): """Pocketsphinx based WAV to text decoder.""" def __init__(self) -> None: RhasspyActor.__init__(self) self.decoder = None self.min_confidence: float = 0 self.preload: bool = False self.decoder = None def to_started(self, from_state: str) -> None: """Transition to started state.""" self.min_confidence = self.profile.get( "speech_to_text.pocketsphinx.min_confidence", 0.0 ) self.open_transcription = self.profile.get( "speech_to_text.pocketsphinx.open_transcription", False ) self.preload = self.config.get("preload", False) if self.preload: with self._lock: try: self.load_decoder() except Exception as e: self._logger.warning("preload: %s", e) self.transition("loaded") def in_loaded(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in loaded state.""" if isinstance(message, TranscribeWav): try: self.load_decoder() text, confidence = self.transcribe_wav(message.wav_data) self.send( message.receiver or sender, WavTranscription( text, confidence=confidence, handle=message.handle ), ) except Exception: self._logger.exception("transcribing wav") # Send empty transcription back self.send( message.receiver or sender, WavTranscription("", handle=message.handle), ) # ------------------------------------------------------------------------- def load_decoder(self) -> None: """Load Pocketsphinx HMM/LM/Dictionary.""" if self.decoder is None: # Load decoder import pocketsphinx ps_config = self.profile.get("speech_to_text.pocketsphinx", {}) # Load decoder settings hmm_path = self.profile.read_path( ps_config.get("acoustic_model", "acoustic_model") ) if self.open_transcription: self._logger.debug("Open transcription mode") # Use base language model/dictionary dict_path = self.profile.read_path( ps_config.get("base_dictionary", "base_dictionary.txt") ) lm_path = self.profile.read_path( ps_config.get("base_language_model", "base_language_model.txt") ) else: # Custom voice commands dict_path = self.profile.read_path( ps_config.get("dictionary", "dictionary.txt") ) lm_path = self.profile.read_path( ps_config.get("language_model", "language_model.txt") ) self._logger.debug( "Loading decoder with hmm=%s, dict=%s, lm=%s", hmm_path, dict_path, lm_path, ) decoder_config = pocketsphinx.Decoder.default_config() decoder_config.set_string("-hmm", hmm_path) decoder_config.set_string("-dict", dict_path) decoder_config.set_string("-lm", lm_path) decoder_config.set_string("-logfn", "/dev/null") mllr_path = self.profile.read_path(ps_config["mllr_matrix"]) if os.path.exists(mllr_path): self._logger.debug( "Using tuned MLLR matrix for acoustic model: %s", mllr_path ) decoder_config.set_string("-mllr", mllr_path) self.decoder = pocketsphinx.Decoder(decoder_config) def transcribe_wav(self, wav_data: bytes) -> Tuple[str, float]: """Get text from WAV buffer.""" # Ensure 16-bit 16Khz mono assert self.decoder is not None with io.BytesIO(wav_data) as wav_io: with wave.open(wav_io, "rb") as wav_file: rate, width, channels = ( wav_file.getframerate(), wav_file.getsampwidth(), wav_file.getnchannels(), ) self._logger.debug( "rate=%s, width=%s, channels=%s.", rate, width, channels ) if (rate != 16000) or (width != 2) or (channels != 1): self._logger.info("Need to convert to 16-bit 16Khz mono.") # Use converted data audio_data = convert_wav(wav_data) else: # Use original data audio_data = wav_file.readframes(wav_file.getnframes()) # Process data as an entire utterance start_time = time.time() self.decoder.start_utt() self.decoder.process_raw(audio_data, False, True) self.decoder.end_utt() end_time = time.time() self._logger.debug("Decoded WAV in %s second(s)", end_time - start_time) hyp = self.decoder.hyp() if hyp is not None: confidence = self.decoder.get_logmath().exp(hyp.prob) self._logger.debug("Transcription confidence: %s", confidence) if confidence >= self.min_confidence: # Return best transcription self._logger.debug(hyp.hypstr) return hyp.hypstr, confidence self._logger.warning( "Transcription did not meet confidence threshold: %s < %s", confidence, self.min_confidence, ) # No transcription return "", 0 # ------------------------------------------------------------------------- def get_problems(self) -> Dict[str, Any]: """Get problems at startup.""" problems: Dict[str, Any] = {} try: import pocketsphinx # noqa: F401 except Exception: problems[ "Missing pocketsphinx" ] = "pocketsphinx Python library not installed. Try pip3 install pocketsphinx" ps_config = self.profile.get("speech_to_text.pocketsphinx", {}) hmm_path = self.profile.read_path( ps_config.get("acoustic_model", "acoustic_model") ) if not os.path.exists(hmm_path): problems[ "Missing acoustic model" ] = f"Acoustic model directory not found at {hmm_path}. Did you download your profile?" base_dict_path = self.profile.read_path( ps_config.get("base_dictionary", "base_dictionary.txt") ) if not os.path.exists(base_dict_path): problems[ "Missing base dictionary" ] = f"Base dictionary not found at {base_dict_path}. Did you download your profile?" dict_path = self.profile.read_path( ps_config.get("dictionary", "dictionary.txt") ) if not os.path.exists(dict_path): problems[ "Missing dictionary" ] = f"Dictionary not found at {dict_path}. Did you train your profile?" lm_path = self.profile.read_path( ps_config.get("language_model", "language_model.txt") ) if not os.path.exists(lm_path): problems[ "Missing language model" ] = f"Language model not found at {lm_path}. Did you train your profile?" return problems # ----------------------------------------------------------------------------- # HTTP based decoder on remote Rhasspy server # ----------------------------------------------------------------------------- class RemoteDecoder(RhasspyActor): """Forwards speech to text request to a rmemote Rhasspy server""" def __init__(self) -> None: RhasspyActor.__init__(self) self.remote_url = "" def to_started(self, from_state: str) -> None: """Transition to started state.""" self.remote_url = self.profile.get("speech_to_text.remote.url") def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, TranscribeWav): text = self.transcribe_wav(message.wav_data) self.send(message.receiver or sender, WavTranscription(text)) def transcribe_wav(self, wav_data: bytes) -> str: """POST to remote server and return response.""" import requests headers = {"Content-Type": "audio/wav"} self._logger.debug( "POSTing %d byte(s) of WAV data to %s", len(wav_data), self.remote_url ) # Pass profile name through params = {"profile": self.profile.name} response = requests.post( self.remote_url, headers=headers, data=wav_data, params=params ) try: response.raise_for_status() except Exception: self._logger.exception("transcribe_wav") return "" return response.text # ----------------------------------------------------------------------------- # Kaldi Decoder # http://kaldi-asr.org # ----------------------------------------------------------------------------- class KaldiDecoder(RhasspyActor): """Kaldi based decoder""" def __init__(self) -> None: RhasspyActor.__init__(self) self.kaldi_dir: Optional[Path] = None self.model_dir: Optional[Path] = None self.graph_dir: Optional[Path] = None self.decode_path: Optional[Path] = None self.decode_command: List[str] = [] def to_started(self, from_state: str) -> None: """Transition to started state.""" self.kaldi_dir = Path( os.path.expandvars( self.profile.get("speech_to_text.kaldi.kaldi_dir", "/opt/kaldi") ) ) model_dir_name = self.profile.get( "training.speech_to_text.kaldi.model_dir", self.profile.get("speech_to_text.kaldi.model_dir", "model"), ) self.model_dir = Path(self.profile.read_path(model_dir_name)) self.open_transcription = self.profile.get( "speech_to_text.kaldi.open_transcription", False ) if self.open_transcription: self.graph_dir = self.model_dir / self.profile.get( "speech_to_text.kaldi.base_graph", "base_graph" ) else: self.graph_dir = self.model_dir / self.profile.get( "speech_to_text.kaldi.graph", "graph" ) self.decode_path = Path(self.profile.read_path(model_dir_name, "decode.sh")) self.decode_command = [ "bash", str(self.decode_path), str(self.kaldi_dir), str(self.model_dir), str(self.graph_dir), ] def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, TranscribeWav): text = self.transcribe_wav(message.wav_data) self.send(message.receiver or sender, WavTranscription(text)) def transcribe_wav(self, wav_data: bytes) -> str: """Get text from WAV by calling external Kaldi script.""" try: with tempfile.NamedTemporaryFile(suffix=".wav", mode="wb+") as wav_file: # Ensure 16-bit 16Khz mono subprocess.run( [ "sox", "-t", "wav", "-", "-r", "16000", "-e", "signed-integer", "-b", "16", "-c", "1", "-t", "wav", wav_file.name, ], check=True, input=wav_data, ) wav_file.seek(0) command = self.decode_command + [wav_file.name] self._logger.debug(command) try: return ( subprocess.check_output(command, stderr=subprocess.STDOUT) .decode() .strip() ) except subprocess.CalledProcessError as e: output = e.output.decode() self._logger.error(output) raise Exception(output) except Exception: self._logger.exception("transcribe_wav") return "" def get_problems(self) -> Dict[str, Any]: """Get problems at startup.""" problems: Dict[str, Any] = {} assert self.kaldi_dir is not None if not self.kaldi_dir.is_dir(): problems[ "Missing Kaldi" ] = f"Kaldi not found at {self.kaldi_dir}. See http://kaldi-asr.org" assert self.graph_dir is not None hclg_path = self.graph_dir / "HCLG.fst" if not hclg_path.is_file(): problems[ "Missing HCLG.fst" ] = f"Graph not found at {hclg_path}. Did you train your profile?" assert self.model_dir is not None conf_path = self.model_dir / "online" / "conf" / "online.conf" if not conf_path.is_file(): problems[ "Missing online.conf" ] = f"Configuration file not found at {conf_path}. Did you train your profile?" return problems # ----------------------------------------------------------------------------- # Home Assistant STT Integration # https://www.home-assistant.io/integrations/stt # ----------------------------------------------------------------------------- class HomeAssistantSTTIntegration(RhasspyActor): """Use STT integration to Home Assistant""" def __init__(self) -> None: RhasspyActor.__init__(self) self.hass_config: Dict[str, Any] = {} self.pem_file: Optional[str] = "" self.platform: Optional[str] = None self.chunk_size: int = 2048 def to_started(self, from_state: str) -> None: """Transition to started state.""" self.hass_config = self.profile.get("home_assistant", {}) # PEM file for self-signed HA certificates self.pem_file = self.hass_config.get("pem_file", "") if self.pem_file: self.pem_file = os.path.expandvars(self.pem_file) self._logger.debug("Using PEM file at %s", self.pem_file) else: self.pem_file = None # disabled self.platform = self.profile.get("speech_to_text.hass_stt.platform") self.chunk_size = int( self.profile.get("speech_to_text.hass_stt.chunk_size", 2048) ) self.sample_rate = int( self.profile.get("speech_to_text.hass_stt.sample_rate", 16000) ) self.bit_rate = int(self.profile.get("speech_to_text.hass_stt.bit_rate", 16)) self.channels = int(self.profile.get("speech_to_text.hass_stt.channels", 1)) self.language = str( self.profile.get("speech_to_text.hass_stt.language", "en-US") ) def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, TranscribeWav): text = self.transcribe_wav(message.wav_data) self.send(message.receiver or sender, WavTranscription(text)) def transcribe_wav(self, wav_data: bytes) -> str: """Get text Home Assistant STT platform.""" try: assert self.platform, "Missing platform name" # Convert WAV to desired format wav_data = maybe_convert_wav( wav_data, rate=self.sample_rate, width=self.bit_rate, channels=self.channels, ) stt_url = urljoin(self.hass_config["url"], f"api/stt/{self.platform}") # Send to Home Assistant kwargs = hass_request_kwargs(self.hass_config, self.pem_file) if self.pem_file is not None: kwargs["verify"] = self.pem_file headers = kwargs.get("headers", {}) headers["X-Speech-Content"] = "; ".join( [ "format=wav", "codec=pcm", f"sample_rate={self.sample_rate}", f"bit_rate={self.bit_rate}", f"channel={self.channels}", f"language={self.language}", ] ) def generate_chunks() -> Iterable[bytes]: with io.BytesIO(wav_data) as wav_buffer: with wave.open(wav_buffer, "rb") as wav_file: # Send empty WAV as initial chunk (header only) with io.BytesIO() as empty_wav_buffer: with wave.open(empty_wav_buffer, "wb") as empty_wav_file: empty_wav_file.setframerate(wav_file.getframerate()) empty_wav_file.setsampwidth(wav_file.getsampwidth()) empty_wav_file.setnchannels(wav_file.getnchannels()) yield empty_wav_buffer.getvalue() # Stream chunks audio_data = wav_file.readframes(wav_file.getnframes()) while audio_data: chunk = audio_data[: self.chunk_size] yield chunk audio_data = audio_data[self.chunk_size :] # POST WAV data to STT response = requests.post(stt_url, data=generate_chunks(), **kwargs) response.raise_for_status() response_json = response.json() self._logger.debug(response_json) assert response_json["result"] == "success" return response_json["text"] except Exception: self._logger.exception("transcribe_wav") return "" def get_problems(self) -> Dict[str, Any]: """Get problems at startup.""" problems: Dict[str, Any] = {} if not self.platform: problems[ "Missing platform name" ] = "Expected Home Assistant STT platform name in speech_to_text.hass_stt.platform" stt_url = urljoin(self.hass_config["url"], f"api/stt/{self.platform}") try: kwargs = hass_request_kwargs(self.hass_config, self.pem_file) requests.get(stt_url, **kwargs) except Exception: problems[ "Can't contact server" ] = f"Unable to reach your Home Assistant STT platform at {stt_url}. Is the platform configured?" return problems # ----------------------------------------------------------------------------- # Command Decoder # ----------------------------------------------------------------------------- class CommandDecoder(RhasspyActor): """Command-line based decoder""" def __init__(self) -> None: RhasspyActor.__init__(self) self.command: List[str] = [] def to_started(self, from_state: str) -> None: """Transition to started state.""" program = os.path.expandvars(self.profile.get("speech_to_text.command.program")) arguments = [ os.path.expandvars(str(a)) for a in self.profile.get("speech_to_text.command.arguments", []) ] self.command = [program] + arguments def in_started(self, message: Any, sender: RhasspyActor) -> None: """Handle messages in started state.""" if isinstance(message, TranscribeWav): text = self.transcribe_wav(message.wav_data) self.send(message.receiver or sender, WavTranscription(text)) def transcribe_wav(self, wav_data: bytes) -> str: """Get text from WAV using external program.""" try: self._logger.debug(self.command) # WAV -> STDIN -> STDOUT -> text return ( subprocess.run( self.command, check=True, input=wav_data, stdout=subprocess.PIPE ) .stdout.decode() .strip() ) except Exception: self._logger.exception("transcribe_wav") return ""
the-stack_106_22533
# # Copyright (c) YugaByte, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations # under the License. # import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from build_definitions import * class GPerfToolsDependency(Dependency): def __init__(self): super(GPerfToolsDependency, self).__init__( 'gperftools', '2.7', 'https://github.com/gperftools/gperftools/releases/download/gperftools-{0}/' 'gperftools-{0}.tar.gz', BUILD_GROUP_INSTRUMENTED) self.copy_sources = True self.patch_version = 0 self.patch_strip = 1 self.post_patch = ['autoreconf', '-fvi'] def build(self, builder): log_prefix = builder.log_prefix(self) os.environ["YB_REMOTE_COMPILATION"] = "0" log_output(log_prefix, ['./configure', '--prefix={}'.format(builder.prefix), '--enable-frame-pointers', '--enable-heap-checker', '--with-pic']) log_output(log_prefix, ['make', 'clean']) log_output(log_prefix, ['make', 'install', '-j', '1']) def should_build(self, instrumented): return not instrumented
the-stack_106_22534
import random import numpy as np def downsample(data_numpy, step, random_sample=True): # input: C,T,V,M begin = np.random.randint(step) if random_sample else 0 return data_numpy[:, begin::step, :, :] def temporal_slice(data_numpy, step): # input: C,T,V,M C, T, V, M = data_numpy.shape return data_numpy.reshape(C, T / step, step, V, M).transpose( (0, 1, 3, 2, 4)).reshape(C, T / step, V, step * M) def mean_subtractor(data_numpy, mean): # input: C,T,V,M # naive version if mean == 0: return C, T, V, M = data_numpy.shape valid_frame = (data_numpy != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0 begin = valid_frame.argmax() end = len(valid_frame) - valid_frame[::-1].argmax() data_numpy[:, :end, :, :] = data_numpy[:, :end, :, :] - mean return data_numpy def auto_pading(data_numpy, size, random_pad=False): C, T, V, M = data_numpy.shape if T < size: begin = random.randint(0, size - T) if random_pad else 0 data_numpy_paded = np.zeros((C, size, V, M)) data_numpy_paded[:, begin:begin + T, :, :] = data_numpy return data_numpy_paded else: return data_numpy def random_choose(data_numpy, size, auto_pad=True): C, T, V, M = data_numpy.shape if T == size: return data_numpy elif T < size: if auto_pad: return auto_pading(data_numpy, size, random_pad=True) else: return data_numpy else: begin = random.randint(0, T - size) return data_numpy[:, begin:begin + size, :, :] def random_move(data_numpy, angle_candidate=[-10., -5., 0., 5., 10.], scale_candidate=[0.9, 1.0, 1.1], transform_candidate=[-0.2, -0.1, 0.0, 0.1, 0.2], move_time_candidate=[1]): # input: C,T,V,M C, T, V, M = data_numpy.shape move_time = random.choice(move_time_candidate) node = np.arange(0, T, T * 1.0 / move_time).round().astype(int) node = np.append(node, T) num_node = len(node) A = np.random.choice(angle_candidate, num_node) S = np.random.choice(scale_candidate, num_node) T_x = np.random.choice(transform_candidate, num_node) T_y = np.random.choice(transform_candidate, num_node) a = np.zeros(T) s = np.zeros(T) t_x = np.zeros(T) t_y = np.zeros(T) # linspace for i in range(num_node - 1): a[node[i]:node[i + 1]] = np.linspace( A[i], A[i + 1], node[i + 1] - node[i]) * np.pi / 180 s[node[i]:node[i + 1]] = np.linspace(S[i], S[i + 1], node[i + 1] - node[i]) t_x[node[i]:node[i + 1]] = np.linspace(T_x[i], T_x[i + 1], node[i + 1] - node[i]) t_y[node[i]:node[i + 1]] = np.linspace(T_y[i], T_y[i + 1], node[i + 1] - node[i]) theta = np.array([[np.cos(a) * s, -np.sin(a) * s], [np.sin(a) * s, np.cos(a) * s]]) # perform transformation for i_frame in range(T): xy = data_numpy[0:2, i_frame, :, :] new_xy = np.dot(theta[:, :, i_frame], xy.reshape(2, -1)) new_xy[0] += t_x[i_frame] new_xy[1] += t_y[i_frame] data_numpy[0:2, i_frame, :, :] = new_xy.reshape(2, V, M) return data_numpy def random_shift(data_numpy): C, T, V, M = data_numpy.shape data_shift = np.zeros(data_numpy.shape) valid_frame = (data_numpy != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0 begin = valid_frame.argmax() end = len(valid_frame) - valid_frame[::-1].argmax() size = end - begin bias = random.randint(0, T - size) data_shift[:, bias:bias + size, :, :] = data_numpy[:, begin:end, :, :] return data_shift def openpose_match(data_numpy): C, T, V, M = data_numpy.shape assert (C == 3) score = data_numpy[2, :, :, :].sum(axis=1) # the rank of body confidence in each frame (shape: T-1, M) rank = (-score[0:T - 1]).argsort(axis=1).reshape(T - 1, M) # data of frame 1 xy1 = data_numpy[0:2, 0:T - 1, :, :].reshape(2, T - 1, V, M, 1) # data of frame 2 xy2 = data_numpy[0:2, 1:T, :, :].reshape(2, T - 1, V, 1, M) # square of distance between frame 1&2 (shape: T-1, M, M) distance = ((xy2 - xy1) ** 2).sum(axis=2).sum(axis=0) # match pose forward_map = np.zeros((T, M), dtype=int) - 1 forward_map[0] = range(M) for m in range(M): choose = (rank == m) forward = distance[choose].argmin(axis=1) for t in range(T - 1): distance[t, :, forward[t]] = np.inf forward_map[1:][choose] = forward assert (np.all(forward_map >= 0)) # string data for t in range(T - 1): forward_map[t + 1] = forward_map[t + 1][forward_map[t]] # generate data new_data_numpy = np.zeros(data_numpy.shape) for t in range(T): new_data_numpy[:, t, :, :] = data_numpy[:, t, :, forward_map[ t]].transpose(1, 2, 0) data_numpy = new_data_numpy # score sort trace_score = data_numpy[2, :, :, :].sum(axis=1).sum(axis=0) rank = (-trace_score).argsort() data_numpy = data_numpy[:, :, :, rank] return data_numpy
the-stack_106_22535
import logging import os from collections import OrderedDict from typing import List from dateutil.parser import parse from great_expectations.data_context.util import instantiate_class_from_config from great_expectations.exceptions import ClassInstantiationError from great_expectations.render.util import num_to_str from ...core.expectation_validation_result import ExpectationSuiteValidationResult from ...core.run_identifier import RunIdentifier from ...validation_operators.types.validation_operator_result import ( ValidationOperatorResult, ) from ..types import ( CollapseContent, RenderedDocumentContent, RenderedHeaderContent, RenderedMarkdownContent, RenderedSectionContent, RenderedStringTemplateContent, RenderedTableContent, TextContent, ) from .renderer import Renderer logger = logging.getLogger(__name__) class ValidationResultsPageRenderer(Renderer): def __init__(self, column_section_renderer=None, run_info_at_end: bool = False): """ Args: column_section_renderer: run_info_at_end: Move the run info (Info, Batch Markers, Batch Kwargs) to the end of the rendered output rather than after Statistics. """ super().__init__() if column_section_renderer is None: column_section_renderer = { "class_name": "ValidationResultsColumnSectionRenderer" } module_name = "great_expectations.render.renderer.column_section_renderer" self._column_section_renderer = instantiate_class_from_config( config=column_section_renderer, runtime_environment={}, config_defaults={ "module_name": column_section_renderer.get("module_name", module_name) }, ) if not self._column_section_renderer: raise ClassInstantiationError( module_name=module_name, package_name=None, class_name=column_section_renderer["class_name"], ) self.run_info_at_end = run_info_at_end def render_validation_operator_result( self, validation_operator_result: ValidationOperatorResult ) -> List[RenderedDocumentContent]: """ Render a ValidationOperatorResult which can have multiple ExpectationSuiteValidationResult Args: validation_operator_result: ValidationOperatorResult Returns: List[RenderedDocumentContent] """ return [ self.render(validation_result) for validation_result in validation_operator_result.list_validation_results() ] # TODO: deprecate dual batch api support in 0.14 def render(self, validation_results: ExpectationSuiteValidationResult): run_id = validation_results.meta["run_id"] if isinstance(run_id, str): try: run_time = parse(run_id).strftime("%Y-%m-%dT%H:%M:%S.%fZ") except (ValueError, TypeError): run_time = "__none__" run_name = run_id elif isinstance(run_id, dict): run_name = run_id.get("run_name") or "__none__" run_time = run_id.get("run_time") or "__none__" elif isinstance(run_id, RunIdentifier): run_name = run_id.run_name or "__none__" run_time = run_id.run_time.strftime("%Y-%m-%dT%H:%M:%S.%fZ") expectation_suite_name = validation_results.meta["expectation_suite_name"] batch_kwargs = ( validation_results.meta.get("batch_kwargs", {}) or validation_results.meta.get("batch_spec", {}) or {} ) # add datasource key to batch_kwargs if missing if "datasource" not in batch_kwargs and "datasource" not in batch_kwargs: # check if expectation_suite_name follows datasource.batch_kwargs_generator.data_asset_name.suite_name pattern if len(expectation_suite_name.split(".")) == 4: if "batch_kwargs" in validation_results.meta: batch_kwargs["datasource"] = expectation_suite_name.split(".")[0] else: batch_kwargs["datasource"] = expectation_suite_name.split(".")[0] # Group EVRs by column columns = {} for evr in validation_results.results: if "column" in evr.expectation_config.kwargs: column = evr.expectation_config.kwargs["column"] else: column = "Table-Level Expectations" if column not in columns: columns[column] = [] columns[column].append(evr) ordered_columns = Renderer._get_column_list_from_evrs(validation_results) overview_content_blocks = [ self._render_validation_header(validation_results), self._render_validation_statistics(validation_results=validation_results), ] collapse_content_blocks = [ self._render_validation_info(validation_results=validation_results) ] if validation_results.meta.get("batch_markers"): collapse_content_blocks.append( self._render_nested_table_from_dict( input_dict=validation_results["meta"].get("batch_markers"), header="Batch Markers", ) ) if validation_results.meta.get("batch_kwargs"): collapse_content_blocks.append( self._render_nested_table_from_dict( input_dict=validation_results.meta.get("batch_kwargs"), header="Batch Kwargs", ) ) if validation_results.meta.get("batch_parameters"): collapse_content_blocks.append( self._render_nested_table_from_dict( input_dict=validation_results.meta.get("batch_parameters"), header="Batch Parameters", ) ) if validation_results.meta.get("batch_spec"): collapse_content_blocks.append( self._render_nested_table_from_dict( input_dict=validation_results.meta.get("batch_spec"), header="Batch Spec", ) ) if validation_results.meta.get("batch_request"): collapse_content_blocks.append( self._render_nested_table_from_dict( input_dict=validation_results.meta.get("batch_request"), header="Batch Definition", ) ) collapse_content_block = CollapseContent( **{ "collapse_toggle_link": "Show more info...", "collapse": collapse_content_blocks, "styling": { "body": {"classes": ["card", "card-body"]}, "classes": ["col-12", "p-1"], }, } ) if not self.run_info_at_end: overview_content_blocks.append(collapse_content_block) sections = [ RenderedSectionContent( **{ "section_name": "Overview", "content_blocks": overview_content_blocks, } ) ] if "Table-Level Expectations" in columns: sections += [ self._column_section_renderer.render( validation_results=columns["Table-Level Expectations"] ) ] sections += [ self._column_section_renderer.render( validation_results=columns[column], ) for column in ordered_columns ] if self.run_info_at_end: sections += [ RenderedSectionContent( **{ "section_name": "Run Info", "content_blocks": collapse_content_blocks, } ) ] data_asset_name = batch_kwargs.get("data_asset_name") # Determine whether we have a custom run_name try: run_name_as_time = parse(run_name) except ValueError: run_name_as_time = None try: run_time_datetime = parse(run_time) except ValueError: run_time_datetime = None include_run_name: bool = False if run_name_as_time != run_time_datetime and run_name_as_time != "__none__": include_run_name = True page_title = "Validations / " + str(expectation_suite_name) if data_asset_name: page_title += " / " + str(data_asset_name) if include_run_name: page_title += " / " + str(run_name) page_title += " / " + str(run_time) return RenderedDocumentContent( **{ "renderer_type": "ValidationResultsPageRenderer", "page_title": page_title, "batch_kwargs": batch_kwargs if "batch_kwargs" in validation_results.meta else None, "batch_spec": batch_kwargs if "batch_spec" in validation_results.meta else None, "expectation_suite_name": expectation_suite_name, "sections": sections, "utm_medium": "validation-results-page", } ) @classmethod def _render_validation_header(cls, validation_results): success = validation_results.success expectation_suite_name = validation_results.meta["expectation_suite_name"] expectation_suite_path_components = ( [".." for _ in range(len(expectation_suite_name.split(".")) + 3)] + ["expectations"] + str(expectation_suite_name).split(".") ) expectation_suite_path = ( os.path.join(*expectation_suite_path_components) + ".html" ) # TODO: deprecate dual batch api support in 0.14 batch_kwargs = validation_results.meta.get( "batch_kwargs", {} ) or validation_results.meta.get("batch_spec", {}) data_asset_name = batch_kwargs.get("data_asset_name") if success: success = "Succeeded" html_success_icon = ( '<i class="fas fa-check-circle text-success" aria-hidden="true"></i>' ) else: success = "Failed" html_success_icon = ( '<i class="fas fa-times text-danger" aria-hidden="true"></i>' ) return RenderedHeaderContent( **{ "content_block_type": "header", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Overview", "tag": "h5", "styling": {"classes": ["m-0"]}, }, } ), "subheader": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "${suite_title} ${expectation_suite_name}\n ${data_asset} ${data_asset_name}\n ${status_title} ${html_success_icon} ${success}", "params": { "suite_title": "Expectation Suite:", "data_asset": "Data asset:", "data_asset_name": data_asset_name, "status_title": "Status:", "expectation_suite_name": expectation_suite_name, "success": success, "html_success_icon": html_success_icon, }, "styling": { "params": { "suite_title": {"classes": ["h6"]}, "status_title": {"classes": ["h6"]}, "expectation_suite_name": { "tag": "a", "attributes": {"href": expectation_suite_path}, }, }, "classes": ["mb-0", "mt-1"], }, }, } ), "styling": { "classes": ["col-12", "p-0"], "header": {"classes": ["alert", "alert-secondary"]}, }, } ) @classmethod def _render_validation_info(cls, validation_results): run_id = validation_results.meta["run_id"] if isinstance(run_id, str): try: run_time = parse(run_id).strftime("%Y-%m-%dT%H:%M:%S.%fZ") except (ValueError, TypeError): run_time = "__none__" run_name = run_id elif isinstance(run_id, dict): run_name = run_id.get("run_name") or "__none__" run_time = run_id.get("run_time") or "__none__" elif isinstance(run_id, RunIdentifier): run_name = run_id.run_name or "__none__" run_time = run_id.run_time.strftime("%Y-%m-%dT%H:%M:%S.%fZ") # TODO: Deprecate "great_expectations.__version__" ge_version = validation_results.meta.get( "great_expectations_version" ) or validation_results.meta.get("great_expectations.__version__") return RenderedTableContent( **{ "content_block_type": "table", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Info", "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ), "table": [ ["Great Expectations Version", ge_version], ["Run Name", run_name], ["Run Time", run_time], ], "styling": { "classes": ["col-12", "table-responsive", "mt-1"], "body": { "classes": ["table", "table-sm"], "styles": { "margin-bottom": "0.5rem !important", "margin-top": "0.5rem !important", }, }, }, } ) @classmethod def _render_nested_table_from_dict(cls, input_dict, header=None, sub_table=False): table_rows = [] for kwarg, value in input_dict.items(): if not isinstance(value, (dict, OrderedDict)): table_row = [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$value", "params": {"value": str(kwarg)}, "styling": { "default": {"styles": {"word-break": "break-all"}}, }, }, "styling": { "parent": { "classes": ["pr-3"], } }, } ), RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$value", "params": {"value": str(value)}, "styling": { "default": {"styles": {"word-break": "break-all"}}, }, }, "styling": { "parent": { "classes": [], } }, } ), ] else: table_row = [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$value", "params": {"value": str(kwarg)}, "styling": { "default": {"styles": {"word-break": "break-all"}}, }, }, "styling": { "parent": { "classes": ["pr-3"], } }, } ), cls._render_nested_table_from_dict(value, sub_table=True), ] table_rows.append(table_row) table_rows.sort(key=lambda row: row[0].string_template["params"]["value"]) if sub_table: return RenderedTableContent( **{ "content_block_type": "table", "table": table_rows, "styling": { "classes": ["col-6", "table-responsive"], "body": {"classes": ["table", "table-sm", "m-0"]}, "parent": {"classes": ["pt-0", "pl-0", "border-top-0"]}, }, } ) else: return RenderedTableContent( **{ "content_block_type": "table", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": header, "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ), "table": table_rows, "styling": { "body": { "classes": ["table", "table-sm"], "styles": { "margin-bottom": "0.5rem !important", "margin-top": "0.5rem !important", }, } }, } ) @classmethod def _render_validation_statistics(cls, validation_results): statistics = validation_results.statistics statistics_dict = OrderedDict( [ ("evaluated_expectations", "Evaluated Expectations"), ("successful_expectations", "Successful Expectations"), ("unsuccessful_expectations", "Unsuccessful Expectations"), ("success_percent", "Success Percent"), ] ) table_rows = [] for key, value in statistics_dict.items(): if statistics.get(key) is not None: if key == "success_percent": # table_rows.append([value, "{0:.2f}%".format(statistics[key])]) table_rows.append( [value, num_to_str(statistics[key], precision=4) + "%"] ) else: table_rows.append([value, statistics[key]]) return RenderedTableContent( **{ "content_block_type": "table", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Statistics", "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ), "table": table_rows, "styling": { "classes": ["col-6", "table-responsive", "mt-1", "p-1"], "body": { "classes": ["table", "table-sm"], "styles": { "margin-bottom": "0.5rem !important", "margin-top": "0.5rem !important", }, }, }, } ) class ExpectationSuitePageRenderer(Renderer): def __init__(self, column_section_renderer=None): super().__init__() if column_section_renderer is None: column_section_renderer = { "class_name": "ExpectationSuiteColumnSectionRenderer" } module_name = "great_expectations.render.renderer.column_section_renderer" self._column_section_renderer = instantiate_class_from_config( config=column_section_renderer, runtime_environment={}, config_defaults={ "module_name": column_section_renderer.get("module_name", module_name) }, ) if not self._column_section_renderer: raise ClassInstantiationError( module_name=column_section_renderer, package_name=None, class_name=column_section_renderer["class_name"], ) def render(self, expectations): columns, ordered_columns = self._group_and_order_expectations_by_column( expectations ) expectation_suite_name = expectations.expectation_suite_name overview_content_blocks = [ self._render_expectation_suite_header(), self._render_expectation_suite_info(expectations), ] table_level_expectations_content_block = self._render_table_level_expectations( columns ) if table_level_expectations_content_block is not None: overview_content_blocks.append(table_level_expectations_content_block) asset_notes_content_block = self._render_expectation_suite_notes(expectations) if asset_notes_content_block is not None: overview_content_blocks.append(asset_notes_content_block) sections = [ RenderedSectionContent( **{ "section_name": "Overview", "content_blocks": overview_content_blocks, } ) ] sections += [ self._column_section_renderer.render(expectations=columns[column]) for column in ordered_columns if column != "_nocolumn" ] return RenderedDocumentContent( **{ "renderer_type": "ExpectationSuitePageRenderer", "page_title": "Expectations / " + str(expectation_suite_name), "expectation_suite_name": expectation_suite_name, "utm_medium": "expectation-suite-page", "sections": sections, } ) def _render_table_level_expectations(self, columns): table_level_expectations = columns.get("_nocolumn") if not table_level_expectations: return None else: expectation_bullet_list = self._column_section_renderer.render( expectations=table_level_expectations ).content_blocks[1] expectation_bullet_list.header = RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Table-Level Expectations", "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ) return expectation_bullet_list @classmethod def _render_expectation_suite_header(cls): return RenderedHeaderContent( **{ "content_block_type": "header", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Overview", "tag": "h5", "styling": {"classes": ["m-0"]}, }, } ), "styling": { "classes": ["col-12"], "header": {"classes": ["alert", "alert-secondary"]}, }, } ) @classmethod def _render_expectation_suite_info(cls, expectations): expectation_suite_name = expectations.expectation_suite_name # TODO: Deprecate "great_expectations.__version__" ge_version = expectations.meta.get( "great_expectations_version" ) or expectations.meta.get("great_expectations.__version__") return RenderedTableContent( **{ "content_block_type": "table", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Info", "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ), "table": [ ["Expectation Suite Name", expectation_suite_name], ["Great Expectations Version", ge_version], ], "styling": { "classes": ["col-12", "table-responsive", "mt-1"], "body": { "classes": ["table", "table-sm"], "styles": { "margin-bottom": "0.5rem !important", "margin-top": "0.5rem !important", }, }, }, } ) # TODO: Update tests @classmethod def _render_expectation_suite_notes(cls, expectations): content = [] total_expectations = len(expectations.expectations) columns = [] for exp in expectations.expectations: if "column" in exp.kwargs: columns.append(exp.kwargs["column"]) total_columns = len(set(columns)) content += [ # TODO: Leaving these two paragraphs as placeholders for later development. # "This Expectation suite was first generated by {BasicDatasetProfiler} on {date}, using version {xxx} of Great Expectations.", # "{name}, {name}, and {name} have also contributed additions and revisions.", "This Expectation suite currently contains %d total Expectations across %d columns." % ( total_expectations, total_columns, ), ] if "notes" in expectations.meta: notes = expectations.meta["notes"] note_content = None if isinstance(notes, str): note_content = [notes] elif isinstance(notes, list): note_content = notes elif isinstance(notes, dict): if "format" in notes: if notes["format"] == "string": if isinstance(notes["content"], str): note_content = [notes["content"]] elif isinstance(notes["content"], list): note_content = notes["content"] else: logger.warning( "Unrecognized Expectation suite notes format. Skipping rendering." ) elif notes["format"] == "markdown": if isinstance(notes["content"], str): note_content = [ RenderedMarkdownContent( **{ "content_block_type": "markdown", "markdown": notes["content"], "styling": {"parent": {}}, } ) ] elif isinstance(notes["content"], list): note_content = [ RenderedMarkdownContent( **{ "content_block_type": "markdown", "markdown": note, "styling": {"parent": {}}, } ) for note in notes["content"] ] else: logger.warning( "Unrecognized Expectation suite notes format. Skipping rendering." ) else: logger.warning( "Unrecognized Expectation suite notes format. Skipping rendering." ) if note_content is not None: content += note_content return TextContent( **{ "content_block_type": "text", "header": RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "Notes", "tag": "h6", "styling": {"classes": ["m-0"]}, }, } ), "text": content, "styling": { "classes": ["col-12", "table-responsive", "mt-1"], "body": {"classes": ["table", "table-sm"]}, }, } ) class ProfilingResultsPageRenderer(Renderer): def __init__(self, overview_section_renderer=None, column_section_renderer=None): super().__init__() if overview_section_renderer is None: overview_section_renderer = { "class_name": "ProfilingResultsOverviewSectionRenderer" } if column_section_renderer is None: column_section_renderer = { "class_name": "ProfilingResultsColumnSectionRenderer" } module_name = "great_expectations.render.renderer.profiling_results_overview_section_renderer" self._overview_section_renderer = instantiate_class_from_config( config=overview_section_renderer, runtime_environment={}, config_defaults={ "module_name": overview_section_renderer.get("module_name", module_name) }, ) if not self._overview_section_renderer: raise ClassInstantiationError( module_name=module_name, package_name=None, class_name=overview_section_renderer["class_name"], ) module_name = "great_expectations.render.renderer.column_section_renderer" self._column_section_renderer = instantiate_class_from_config( config=column_section_renderer, runtime_environment={}, config_defaults={ "module_name": column_section_renderer.get("module_name", module_name) }, ) if not self._column_section_renderer: raise ClassInstantiationError( module_name=module_name, package_name=None, class_name=column_section_renderer["class_name"], ) def render(self, validation_results): run_id = validation_results.meta["run_id"] if isinstance(run_id, str): try: run_time = parse(run_id).strftime("%Y-%m-%dT%H:%M:%S.%fZ") except (ValueError, TypeError): run_time = "__none__" run_name = run_id elif isinstance(run_id, dict): run_name = run_id.get("run_name") or "__none__" run_time = run_id.get("run_time") or "__none__" elif isinstance(run_id, RunIdentifier): run_name = run_id.run_name or "__none__" run_time = run_id.run_time.strftime("%Y-%m-%dT%H:%M:%S.%fZ") expectation_suite_name = validation_results.meta["expectation_suite_name"] batch_kwargs = validation_results.meta.get( "batch_kwargs", {} ) or validation_results.meta.get("batch_spec", {}) # add datasource key to batch_kwargs if missing if "datasource" not in batch_kwargs and "datasource" not in batch_kwargs: # check if expectation_suite_name follows datasource.batch_kwargs_generator.data_asset_name.suite_name pattern if len(expectation_suite_name.split(".")) == 4: if "batch_kwargs" in validation_results.meta: batch_kwargs["datasource"] = expectation_suite_name.split(".")[0] else: batch_kwargs["datasource"] = expectation_suite_name.split(".")[0] # Group EVRs by column # TODO: When we implement a ValidationResultSuite class, this method will move there. columns = self._group_evrs_by_column(validation_results) ordered_columns = Renderer._get_column_list_from_evrs(validation_results) column_types = self._overview_section_renderer._get_column_types( validation_results ) data_asset_name = batch_kwargs.get("data_asset_name") # Determine whether we have a custom run_name try: run_name_as_time = parse(run_name) except ValueError: run_name_as_time = None try: run_time_datetime = parse(run_time) except ValueError: run_time_datetime = None include_run_name: bool = False if run_name_as_time != run_time_datetime and run_name_as_time != "__none__": include_run_name = True page_title = "Profiling Results / " + str(expectation_suite_name) if data_asset_name: page_title += " / " + str(data_asset_name) if include_run_name: page_title += " / " + str(run_name) page_title += " / " + str(run_time) return RenderedDocumentContent( **{ "renderer_type": "ProfilingResultsPageRenderer", "page_title": page_title, "expectation_suite_name": expectation_suite_name, "utm_medium": "profiling-results-page", "batch_kwargs": batch_kwargs if "batch_kwargs" in validation_results.meta else None, "batch_spec": batch_kwargs if "batch_spec" in validation_results.meta else None, "sections": [ self._overview_section_renderer.render( validation_results, section_name="Overview" ) ] + [ self._column_section_renderer.render( columns[column], section_name=column, column_type=column_types.get(column), ) for column in ordered_columns ], } )
the-stack_106_22536
import json from unittest.mock import ANY import pytest import requests import schemathesis from schemathesis.models import APIOperation, Case, OperationDefinition from schemathesis.parameters import ParameterSet, PayloadAlternatives from schemathesis.specs.openapi.links import Link, get_container, get_links from schemathesis.specs.openapi.parameters import OpenAPI20Body, OpenAPI30Body, OpenAPI30Parameter from schemathesis.stateful import ParsedData, Stateful API_OPERATION = APIOperation( path="/users/{user_id}", method="get", verbose_name="GET /users/{user_id}", definition=ANY, schema=ANY, base_url=ANY, path_parameters=ParameterSet( [ OpenAPI30Parameter({"in": "path", "name": "user_id", "schema": {"type": "integer"}}), ] ), query=ParameterSet( [ OpenAPI30Parameter({"in": "query", "name": "code", "schema": {"type": "integer"}}), OpenAPI30Parameter({"in": "query", "name": "user_id", "schema": {"type": "integer"}}), OpenAPI30Parameter({"in": "query", "name": "common", "schema": {"type": "integer"}}), ] ), ) LINK = Link( name="GetUserByUserId", operation=API_OPERATION, parameters={"path.user_id": "$response.body#/id", "query.user_id": "$response.body#/id"}, ) @pytest.fixture(scope="module") def case(): return Case(API_OPERATION) @pytest.fixture(scope="module") def response(): response = requests.Response() response._content = b'{"id": 5}' response.status_code = 201 response.headers["Content-Type"] = "application/json" return response @pytest.mark.parametrize( "url, expected", ( ( "/users/", [ Link( name="GetUserByUserId", operation=APIOperation( path="/users/{user_id}", method="get", verbose_name="GET /users/{user_id}", definition=ANY, schema=ANY, base_url=ANY, path_parameters=ANY, query=ANY, ), parameters={"path.user_id": "$response.body#/id", "query.user_id": "$response.body#/id"}, ), Link( name="UpdateUserById", operation=ANY, parameters={"user_id": "$response.body#/id"}, ), ], ), ("/unknown", []), ), ) @pytest.mark.operations("create_user", "get_user", "update_user") def test_get_links(openapi3_base_url, schema_url, url, expected): schema = schemathesis.from_uri(schema_url) response = requests.post(f"{openapi3_base_url}{url}", json={"first_name": "TEST", "last_name": "TEST"}, timeout=1) tests = schema["/users/"]["POST"].get_stateful_tests(response, Stateful.links) assert len(tests) == len(expected) for test, value in zip(tests, expected): assert test.name == value.name assert test.parameters == value.parameters def test_response_type(case, empty_open_api_3_schema): # See GH-1068 # When runtime expression for `requestBody` contains a reference to the whole body empty_open_api_3_schema["paths"] = { "/users/{user_id}/": { "get": { "operationId": "getUser", "parameters": [ {"in": "query", "name": "user_id", "required": True, "schema": {"type": "string"}}, ], "responses": { "200": { "description": "OK", "links": { "UpdateUserById": { "operationRef": "#/paths/~1users~1{user_id}~1/patch", "parameters": {"user_id": "$response.body#/id"}, "requestBody": "$response.body", } }, }, "404": {"description": "Not found"}, }, }, "patch": { "operationId": "updateUser", "parameters": [ {"in": "query", "name": "user_id", "required": True, "schema": {"type": "string"}}, ], "requestBody": { "content": { "application/json": { "schema": { "type": "object", "properties": { "id": {"type": "string", "minLength": 3}, "first_name": {"type": "string", "minLength": 3}, "last_name": {"type": "string", "minLength": 3}, }, "required": ["first_name", "last_name"], "additionalProperties": False, } } }, "required": True, }, "responses": {"200": {"description": "OK"}}, }, } } schema = schemathesis.from_dict(empty_open_api_3_schema) response = requests.Response() body = b'{"id": "foo", "first_name": "TEST", "last_name": "TEST"}' response._content = body response.status_code = 200 response.headers["Content-Type"] = "application/json" tests = schema["/users/{user_id}/"]["GET"].get_stateful_tests(response, Stateful.links) assert len(tests) == 1 link = tests[0] parsed = link.parse(case, response) assert parsed.parameters == {"user_id": "foo"} # Then the parsed result should body with the actual type of the JSON value assert parsed.body == json.loads(body) def test_parse(case, response): assert LINK.parse(case, response) == ParsedData({"path.user_id": 5, "query.user_id": 5}) EXPECTED_PATH_PARAMETERS = [ { "additionalProperties": False, "properties": {"user_id": {"const": 1, "in": "path", "name": "user_id", "type": "integer"}}, "required": ["user_id"], "type": "object", }, { "additionalProperties": False, "properties": {"user_id": {"const": 3, "in": "path", "name": "user_id", "type": "integer"}}, "required": ["user_id"], "type": "object", }, ] @pytest.mark.parametrize( "value, path_user_id, query_user_id, code", ( ( [{"path.user_id": 1, "query.user_id": 2, "code": 7}, {"path.user_id": 3, "query.user_id": 4, "code": 5}], [1, 3], {"enum": [2, 4]}, {"enum": [7, 5]}, ), ( [{"path.user_id": 1}, {"path.user_id": 3}], [1, 3], {"type": "integer"}, {"type": "integer"}, ), ), ) def test_make_operation(value, path_user_id, query_user_id, code): operation = LINK.make_operation(list(map(ParsedData, value))) # There is only one path parameter assert len(operation.path_parameters) == 1 assert sorted(operation.path_parameters[0].definition["schema"]["enum"], key=json.dumps) == path_user_id assert len(operation.query) == 3 for item in operation.query: schema = item.definition["schema"] if item.name == "code": assert_schema(schema, code) elif item.name == "user_id": assert_schema(schema, query_user_id) else: assert schema == {"type": "integer"} def assert_schema(target, expected): if "enum" in expected: assert len(target) == 1 assert sorted(target["enum"]) == sorted(expected["enum"]) else: assert target == expected def test_make_operation_single(): operation = LINK.make_operation([ParsedData({"path.user_id": 1, "query.user_id": 2, "code": 7})]) assert len(operation.path_parameters) == 1 assert isinstance(operation.path_parameters[0], OpenAPI30Parameter) assert operation.path_parameters[0].definition == {"in": "path", "name": "user_id", "schema": {"enum": [1]}} for item in operation.query: schema = item.definition["schema"] if item.name == "code": assert schema == {"enum": [7]} elif item.name == "user_id": assert schema == {"enum": [2]} else: assert schema == {"type": "integer"} BODY_SCHEMA = {"required": ["foo"], "type": "object", "properties": {"foo": {"type": "string"}}} @pytest.mark.parametrize( "body", ( OpenAPI20Body( { "name": "attributes", "in": "body", "required": True, "schema": BODY_SCHEMA, }, media_type="application/json", ), OpenAPI30Body(definition={"schema": BODY_SCHEMA}, media_type="application/json", required=True), ), ) def test_make_operation_body(body): # See GH-1069 # When `requestBody` is present in the link definition # And in the target operation operation = APIOperation( path="/users/", method="post", verbose_name="GET /users/{user_id}", definition=ANY, schema=ANY, base_url=ANY, body=PayloadAlternatives([body]), ) body = {"foo": "bar"} # Literal value link = Link( name="Link", operation=operation, parameters={}, request_body={"requestBody": body}, ) # Then it should be taken into account during creation a modified version of that operation new_operation = link.make_operation([ParsedData({}, body=body)]) # Actual parsed data will contain the literal assert new_operation.body[0].definition["schema"] == {"enum": [body]} def test_invalid_request_body_definition(): # When a link defines `requestBody` for operation that does not accept one operation = APIOperation( path="/users/", method="get", verbose_name="GET /users/{user_id}", definition=ANY, schema=ANY, base_url=ANY, ) # Then a proper error should be triggered with pytest.raises(ValueError): Link(name="Link", operation=operation, parameters={}, request_body={"requestBody": {"foo": "bar"}}) @pytest.mark.parametrize("parameter", ("wrong.id", "unknown", "header.id")) def test_make_operation_invalid_location(parameter): with pytest.raises( ValueError, match=f"Parameter `{parameter}` is not defined in API operation GET /users/{{user_id}}" ): LINK.make_operation([ParsedData({parameter: 4})]) def test_get_container_invalid_location(swagger_20): operation = APIOperation( path="/users/{user_id}", method="get", schema=swagger_20, verbose_name="GET /users/{user_id}", definition=OperationDefinition( raw={}, resolved={}, scope="", parameters=[ OpenAPI30Parameter({"in": "query", "name": "code", "type": "integer"}), OpenAPI30Parameter({"in": "query", "name": "user_id", "type": "integer"}), OpenAPI30Parameter({"in": "query", "name": "common", "type": "integer"}), ], ), ) case = operation.make_case() with pytest.raises(ValueError, match="Parameter `unknown` is not defined in API operation `GET /users/{user_id}`"): get_container(case, None, "unknown") @pytest.mark.parametrize( "status_code, expected", ( (200, ["Foo"]), (201, ["Bar"]), ), ) def test_get_links_numeric_response_codes(status_code, openapi_30, expected): # See GH-1226 # When API definition contains response statuses as integers operation = openapi_30["/users"]["GET"] link_definition = {"operationRef": "#/paths/~1users/get"} operation.definition.resolved["responses"] = { "200": {"description": "OK", "links": {"Foo": link_definition}}, # Could be here due to YAML parsing + disabled schema validation 201: {"description": "OK", "links": {"Bar": link_definition}}, } response = requests.Response() response.status_code = status_code # Then they still should be checked, even that is not compliant with the spec assert [link.name for link in get_links(response, operation, "links")] == expected def test_custom_link_name(openapi_30): # When `name` is used with `add_link` operation = openapi_30["/users"]["GET"] name = "CUSTOM_NAME" openapi_30.add_link(source=operation, target=operation, status_code="200", parameters={}, name=name) # Then the resulting link has that name links = openapi_30.get_links(openapi_30["/users"]["GET"]) assert name in links["200"]
the-stack_106_22538
from mov_sdk.utxo_manager import decode_address, address_to_script print(address_to_script("btm2", "tn1q5zjfmndnexlx79n98wmjk6mhdd33qfwx78xt4w", "testnet")) print(address_to_script("btm", "tm1q5zjfmndnexlx79n98wmjk6mhdd33qfwxv7pm3g", "testnet")) from mov_sdk.mov_api import MovApi # s1 = MovApi(mnemonic_str="") # print(s1.main_address) # print(s1.get_main_chain_balance()) # print(s1.get_exchange_info()) # print(s1.cross_chain_in("btm", "3")) # print(s1.cross_chain_in("sup", "0.001")) # print(s1.cross_chain_out("btm", 5, s1.main_address)) # print(s1.cross_chain_out("sup", 0.002, s1.main_address)) s2 = MovApi(mnemonic_str="chalk memory wear dizzy universe govern obtain eye fiber denial judge six") asset = "btm" amount = 0.01 address = "0xa6cb31b0a18af665eafaf48ef6a05bd8a4387309" print(s2.cross_chain_in_to_bmc(asset, amount, address))
the-stack_106_22544
# -*- coding:utf-8 -*- # /usr/bin/env python """ Author: Albert King date: 2019/11/16 20:39 contact: [email protected] desc: 腾讯-股票-实时行情-成交明细 下载成交明细-每个交易日16:00提供当日数据 该列表港股报价延时15分钟 """ from io import StringIO import pandas as pd import requests def stock_zh_a_tick(code="sh600848", trade_date="20191011"): """ 成交明细-每个交易日16:00提供当日数据 :param code: 带市场标识的股票代码 :type code: str :param trade_date: 需要提取数据的日期 :type trade_date: str :return: 返回当日股票成交明细的数据 :rtype: pandas.DataFrame """ url = "http://stock.gtimg.cn/data/index.php" params = { "appn": "detail", "action": "download", "c": code, "d": trade_date, } res = requests.get(url, params=params) res.encoding = "gbk" temp_df = pd.read_table(StringIO(res.text)) return temp_df if __name__ == "__main__": date_list = pd.date_range(start="20190801", end="20191111").tolist() date_list = [item.strftime("%Y%m%d") for item in date_list] for item in date_list: data = stock_zh_a_tick(code="sh601872", trade_date=f"{item}") if not data.empty: print(data)
the-stack_106_22545
import Global import logging from handlers.kbeServer.Editor.Interface import interface_global #点赞 def DoMsg_Dianzan(DB ,self_uid,uid ,wid ,lid ,siscid ,tid ,dian ,ctype): # DEBUG_MSG("Msg_Dianzan : %d - %d - %d - %d - %d - %s" % (uid, wid, tid, dian,lid,siscid)) #logging.info("Dianzan - uid[%i],wid[%i],lid[%i],siscid[%s],tid[%i],dian[%i],ctype[%i]",(uid ,wid ,lid ,siscid ,tid ,dian ,ctype)) #print("dianzan,",uid ,wid ,lid ,siscid ,tid ,dian ,ctype) if ctype == 0: table_name = Global.GetWorkZanTableName(uid ,wid) elif ctype == 1: table_name = Global.GetCourseZanTableName(uid ,wid ,lid) else: table_name = Global.GetSisZanTableName(siscid) # table_name = "tb_work_zan_" + str(uid) + "_" + str(wid) sql = "select zan from " + table_name + " where UID = " + str(self_uid) + " and TID = " + str(tid) + ";" data = DB.fetchone(sql,None) _zan = -1 if data: _zan = int(data[0]) # DEBUG_MSG("Msg_Dianzan : %d - %d " % (dian, _zan)) if dian == 0: # 取消点赞 if _zan != 1: return 0 else: if _zan == 1: return -1 # DEBUG_MSG("Msg_Dianzan 1 : %d - %d " % (dian, _zan)) sql = "" if _zan == -1: sql = "Insert into " + table_name + " (UID,TID,ZAN) values (" + str(self_uid) + "," + str(tid) + ",1);" elif dian == 0: sql = "update " + table_name + " set zan = 0 where uid = " + str(self_uid) + " and TID = " + str(tid) + ";" else: sql = "update " + table_name + " set zan = 1 where uid = " + str(self_uid) + " and TID = " + str(tid) + ";" DB.edit(sql,None) return tid #self.client.App_MsgToClient(101, str(tid)) #作品评分/评论 #wid 作品ID #uid 作者ID #score 评分 >0 的整形 # log 如果无内容表示评分 有内容表示评论 #P_UID 不为0 表示回复消息 #s_lid 课时ID #ctype 评论分类 0-作品 1-市场的课程 2-SIS课程 def DoWorkMark(DB,self_uid,s_wid,s_lid,uid,score,log,P_UID,ctype): wid = 0 lid = 0 sis_cid = "" if ctype == 0: wid = int(s_wid) elif ctype == 1: wid = int(s_wid) lid = s_lid else: sis_cid = s_wid if score < 0: return 0 if ctype == 0: table_name = Global.GetWorkLogTableName(uid,wid) elif ctype == 1: table_name = Global.GetCourseLogTableName(uid,wid,lid) else: table_name = Global.GetSisLogTableName(sis_cid) _exist = interface_global.Global_TableExist(table_name,DB) if not _exist: data = DB.callprocAll('CreateWorkLogTable', (uid,wid,lid,ctype,sis_cid)) if data: code = int(data[0]) if code == 0: return -1 #作品不存在 DB.callprocAll('CreateWorkZanTable', (uid, wid,lid,ctype,sis_cid)) _succ = 0 if score > 0: if ctype == 0 or ctype == 1: if uid == self_uid: return -3 #作品不存在 _succ = 1 sql = "select ID,score from "+table_name+" where UID = "+str(self_uid) + " and log = '';" data = DB.fetchone(sql,None) _score = 0 _id = 0 if data: _id = int(data[0]) _score = int(data[1]) if _id > 0 and _score > 0: return -2 # 已经评过分 if _id == 0: sql = "Insert into "+table_name+" (UID,score,log) values ("+str(self_uid)+","+str(score)+",'');" else: sql = "update " + table_name + " set score = "+str(score) + " where ID = "+str(_id) DB.edit(sql,None) # 转发消息 # self.SendMsgOnLine(0, 1, _author_name, _work_name) # self.SendMsgOnLine(1, 1, _author_name, _work_name) if len(log) > 0: _succ = 2 sql = "Insert into " + table_name + " (UID,score,log,PID) values (" + str(self_uid) + ",0,'"+log+"',"+str(P_UID)+");" DB.edit(sql,None) # 转发消息 # self.SendMsgOnLine(0,2,_author_name,_work_name) # self.SendMsgOnLine(1, 2, _author_name, _work_name) return _succ #获取 作品评分数据 def DoWorkScoreData(DB,self_uid,wid,lid,uid,sis_cid,ctype): _base_string = "" #table_name = "tb_work_log_" + str(uid) + "_" + str(wid) if ctype == 0: table_name = Global.GetWorkLogTableName(uid,wid) elif ctype == 1: table_name = Global.GetCourseLogTableName(uid,wid,lid) else: table_name = Global.GetSisLogTableName(sis_cid) _exist = interface_global.Global_TableExist(table_name,DB) _pf = 0 if _exist: sql = "select score from " + table_name + " where LOG = '' and uid = " + str(self_uid) + ";" data = DB.fetchone(sql,None) if data: _pf = int(data[0]) else: _pf = 0 if ctype == 0 or ctype == 1: sql = "select UserName,NickName,NickUrl from tb_userdata where uid = " + str(uid) data = DB.fetchone(sql,None) if data: _base_string = data[0] + "$" + data[1] + "$" + data[2] + "$" + str(_pf) else: _base_string = "Feidie$飞蝶VR$$" + str(_pf) #DEBUG_MSG(_base_string) _score_data = "" if _exist: sql = "select count(ID),1 from " + table_name + " where log = '' AND SCORE = 1 union ALL select count(ID),2 from " + table_name + " where log = '' AND SCORE = 2 union ALL select count(ID),3 from " + table_name + " where log = '' AND SCORE = 3 union ALL select count(ID),4 from " + table_name + " where log = '' AND SCORE = 4 union ALL select count(ID),5 from " + table_name + " where log = '' AND SCORE = 5;" data = DB.fetchall(sql,None) if data: list_data = list(data) for minfo in list_data: minfo_list = list(minfo) if _score_data == "": _score_data = str(minfo_list[1]) + "," + str(minfo_list[0]) else: _score_data = _score_data + "&" + str(minfo_list[1]) + "," + str(minfo_list[0]) _send_data = _base_string + "@" + _score_data return _send_data #获取评论数据 def DoWorkLogData(DB,self_uid,wid,lid, uid, sis_cid, PID , ipage , ilenght,ctype): _base_string = "" _url_string = "" if ctype == 0: table_name = Global.GetWorkLogTableName(uid,wid) elif ctype == 1: table_name = Global.GetCourseLogTableName(uid,wid,lid) else: table_name = Global.GetSisLogTableName(sis_cid) #table_name1 = "tb_work_zan_" + str(uid) + "_" + str(wid) if ctype == 0: table_name1 = Global.GetWorkZanTableName(uid,wid) elif ctype == 1: table_name1 = Global.GetCourseZanTableName(uid,wid,lid) else: table_name1 = Global.GetSisZanTableName(sis_cid) _exist = interface_global.Global_TableExist(table_name,DB) sql1 = "" if _exist: if ipage == 0: if PID == 0: sql = "select t1.log,t1.`Date`,t2.UserName,t2.NickName,t2.UID,t1.ID,(SELECT COUNT(ID) FROM " + table_name + " WHERE PID = t1.ID) AS HF,(SELECT COUNT(ID) FROM " + table_name1 + " WHERE TID = t1.ID AND ZAN = 1) AS ZAN,(select zan from " + table_name1 + " where UID = " + str(self_uid) + " and TID = t1.ID) as IsZan from " + table_name + " as t1 inner join tb_userdata as t2 on t1.uid = t2.uid and t1.log != '' AND T1.PID = 0 order by t1.`Date` desc;" sql1 = "select UID,NickUrl from tb_userdata where uid in ( select UID from " + table_name + " WHERE LOG != '' AND PID = 0 GROUP BY UID );" else: sql = "select t1.log,t1.`Date`,t2.UserName,t2.NickName,t2.UID,t1.ID,(SELECT COUNT(ID) FROM " + table_name + " WHERE PID = t1.ID) AS HF,(SELECT COUNT(ID) FROM " + table_name1 + " WHERE TID = t1.ID AND ZAN = 1) AS ZAN,(select zan from " + table_name1 + " where UID = " + str(self_uid) + " and TID = t1.ID) as IsZan from " + table_name + " as t1 inner join tb_userdata as t2 on t1.uid = t2.uid and t1.log != '' AND T1.PID = " + str(PID) + " order by t1.`Date` desc;" sql1 = "select UID,NickUrl from tb_userdata where uid in ( select UID from " + table_name + " WHERE LOG != '' AND PID = " + str(PID) + " GROUP BY UID );" else: if PID == 0: sql = "select t1.log,t1.`Date`,t2.UserName,t2.NickName,t2.UID,t1.ID,(SELECT COUNT(ID) FROM " + table_name + " WHERE PID = t1.ID) AS HF,(SELECT COUNT(ID) FROM " + table_name1 + " WHERE TID = t1.ID AND ZAN = 1) AS ZAN,(select zan from " + table_name1 + " where UID = " + str(self_uid) + " and TID = t1.ID) as IsZan from " + table_name + " as t1 inner join tb_userdata as t2 on t1.uid = t2.uid and t1.log != '' AND T1.PID = 0 order by t1.`Date` desc limit " + str((ipage - 1) * ilenght) + "," + str(ilenght) + ";" sql1 = "select UID,NickUrl from tb_userdata where uid in ( select UID from " + table_name + " WHERE LOG != '' AND PID = 0 GROUP BY UID );" else: sql = "select t1.log,t1.`Date`,t2.UserName,t2.NickName,t2.UID,t1.ID,(SELECT COUNT(ID) FROM " + table_name + " WHERE PID = t1.ID) AS HF,(SELECT COUNT(ID) FROM " + table_name1 + " WHERE TID = t1.ID AND ZAN = 1) AS ZAN,(select zan from " + table_name1 + " where UID = " + str(self_uid) + " and TID = t1.ID) as IsZan from " + table_name + " as t1 inner join tb_userdata as t2 on t1.uid = t2.uid and t1.log != '' AND T1.PID = " + str(PID) + " order by t1.`Date` desc limit " + str((ipage - 1) * ilenght) + "," + str(ilenght) + ";" sql1 = "select UID,NickUrl from tb_userdata where uid in ( select UID from " + table_name + " WHERE LOG != '' AND PID = " + str(PID) + " GROUP BY UID );" # sql = "select t1.log,t1.`Date`,t2.UserName,t2.TheName,t2.UID from " + table_name + " as t1 inner join tb_userdata as t2 on t1.uid = t2.uid and t1.log != '' order by t1.`Date` desc limit "+str((ipage-1)*ilenght)+","+str(ilenght)+";" # sql1 = "select UID,NickUrl from tb_userdata where uid in ( select UID from " + table_name + " WHERE LOG != '' GROUP BY UID ) limit "+str((ipage-1)*ilenght)+","+str(ilenght)+";" data = DB.fetchall(sql,None) if data: list_data = list(data) for minfo in list_data: minfo_list = list(minfo) _ZAN_NUM = 0 if minfo_list[7] != None: _ZAN_NUM = minfo_list[7] _ZAN = 0 if minfo_list[8] != None: _ZAN = minfo_list[8] if _base_string == "": _base_string = minfo_list[0] + "@lyyym@" + str(minfo_list[1]) + "@lyyym@" + minfo_list[2] + "@lyyym@" + minfo_list[3] + "@lyyym@" + str(minfo_list[4]) + "@lyyym@" + str(minfo_list[5]) + "@lyyym@" + str(minfo_list[6]) + "@lyyym@" + str(_ZAN_NUM) + "@lyyym@" + str(_ZAN) else: _base_string = _base_string + "@lyyyym@" + minfo_list[0] + "@lyyym@" + str(minfo_list[1]) + "@lyyym@" + minfo_list[2] + "@lyyym@" + minfo_list[3] + "@lyyym@" + str(minfo_list[4]) + "@lyyym@" + str(minfo_list[5]) + "@lyyym@" + str(minfo_list[6]) + "@lyyym@" + str(_ZAN_NUM) + "@lyyym@" + str(_ZAN) data = DB.fetchall(sql1,None) if data: list_data = list(data) for minfo in list_data: minfo_list = list(minfo) if _url_string == "": _url_string = str(minfo_list[0]) + "@lyyym@" + minfo_list[1] else: _url_string = _url_string + "@lyyyym@" + str(minfo_list[0]) + "@lyyym@" + minfo_list[1] _send_string = _url_string + "@lyyyyym@" + _base_string return _send_string
the-stack_106_22546
class Node: def __init__(self, value): self.value = value self.left = None self.right = None class BST: def __init__(self, root_val): self.root = Node(root_val) def insert(self, value): newnode = Node(value) if self.root==None: self.root = newnode return current = self.root while True: if value < current.value: if current.left == None: current.left = newnode break current = current.left else: if current.right == None: current.right = newnode break current = current.right def height(self, root): try: if root.left == None and root.right==None: return 0 except: pass if root == None: return 0 return 1 + max(self.height(root.left), self.height(root.right)) if __name__ == "__main__": bst = BST(7) bst.insert(10) bst.insert(3) bst.insert(5) #print(bst.root.value) print(bst.height(bst.root))
the-stack_106_22547
# -*- coding: utf-8 -*- # Copyright © 2014 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Process images.""" import datetime import gzip import os import re import lxml import piexif from PIL import ExifTags, Image from nikola import utils EXIF_TAG_NAMES = {} class ImageProcessor(object): """Apply image operations.""" image_ext_list_builtin = ['.jpg', '.png', '.jpeg', '.gif', '.svg', '.svgz', '.bmp', '.tiff', '.webp'] def _fill_exif_tag_names(self): """Connect EXIF tag names to numeric values.""" if not EXIF_TAG_NAMES: for ifd in piexif.TAGS: for tag, data in piexif.TAGS[ifd].items(): EXIF_TAG_NAMES[tag] = data['name'] def filter_exif(self, exif, whitelist): """Filter EXIF data as described in the documentation.""" # Scenario 1: keep everything if whitelist == {'*': '*'}: return exif # Scenario 2: keep nothing if whitelist == {}: return None # Scenario 3: keep some self._fill_exif_tag_names() exif = exif.copy() # Don't modify in-place, it's rude for k in list(exif.keys()): if type(exif[k]) != dict: pass # At least thumbnails have no fields elif k not in whitelist: exif.pop(k) # Not whitelisted, remove elif k in whitelist and whitelist[k] == '*': # Fully whitelisted, keep all pass else: # Partially whitelisted for tag in list(exif[k].keys()): if EXIF_TAG_NAMES[tag] not in whitelist[k]: exif[k].pop(tag) return exif or None def resize_image(self, src, dst=None, max_size=None, bigger_panoramas=True, preserve_exif_data=False, exif_whitelist={}, preserve_icc_profiles=False, dst_paths=None, max_sizes=None): """Make a copy of the image in the requested size(s). max_sizes should be a list of sizes, and the image would be resized to fit in a square of each size (preserving aspect ratio). dst_paths is a list of the destination paths, and should be the same length as max_sizes. Backwards compatibility: * If max_sizes is None, it's set to [max_size] * If dst_paths is None, it's set to [dst] * Either max_size or max_sizes should be set * Either dst or dst_paths should be set """ if dst_paths is None: dst_paths = [dst] if max_sizes is None: max_sizes = [max_size] if len(max_sizes) != len(dst_paths): raise ValueError('resize_image called with incompatible arguments: {} / {}'.format(dst_paths, max_sizes)) extension = os.path.splitext(src)[1].lower() if extension in {'.svg', '.svgz'}: self.resize_svg(src, dst_paths, max_sizes, bigger_panoramas) return _im = Image.open(src) # The jpg exclusion is Issue #3332 is_animated = hasattr(_im, 'n_frames') and _im.n_frames > 1 and extension not in {'.jpg', '.jpeg'} exif = None if "exif" in _im.info: exif = piexif.load(_im.info["exif"]) # Rotate according to EXIF if "0th" in exif: value = exif['0th'].get(piexif.ImageIFD.Orientation, 1) if value in (3, 4): _im = _im.transpose(Image.ROTATE_180) elif value in (5, 6): _im = _im.transpose(Image.ROTATE_270) elif value in (7, 8): _im = _im.transpose(Image.ROTATE_90) if value in (2, 4, 5, 7): _im = _im.transpose(Image.FLIP_LEFT_RIGHT) exif['0th'][piexif.ImageIFD.Orientation] = 1 exif = self.filter_exif(exif, exif_whitelist) icc_profile = _im.info.get('icc_profile') if preserve_icc_profiles else None for dst, max_size in zip(dst_paths, max_sizes): if is_animated: # Animated gif, leave as-is utils.copy_file(src, dst) continue im = _im.copy() size = w, h = im.size if w > max_size or h > max_size: size = max_size, max_size # Panoramas get larger thumbnails because they look *awful* if bigger_panoramas and w > 2 * h: size = min(w, max_size * 4), min(w, max_size * 4) try: im.thumbnail(size, Image.ANTIALIAS) save_args = {} if icc_profile: save_args['icc_profile'] = icc_profile if exif is not None and preserve_exif_data: # Put right size in EXIF data w, h = im.size if '0th' in exif: exif["0th"][piexif.ImageIFD.ImageWidth] = w exif["0th"][piexif.ImageIFD.ImageLength] = h if 'Exif' in exif: exif["Exif"][piexif.ExifIFD.PixelXDimension] = w exif["Exif"][piexif.ExifIFD.PixelYDimension] = h # Filter EXIF data as required save_args['exif'] = piexif.dump(exif) im.save(dst, **save_args) except Exception as e: self.logger.warning("Can't process {0}, using original " "image! ({1})".format(src, e)) utils.copy_file(src, dst) def resize_svg(self, src, dst_paths, max_sizes, bigger_panoramas): """Make a copy of an svg at the requested sizes.""" # Resize svg based on viewport hacking. # note that this can also lead to enlarged svgs if src.endswith('.svgz'): with gzip.GzipFile(src, 'rb') as op: xml = op.read() else: with open(src, 'rb') as op: xml = op.read() for dst, max_size in zip(dst_paths, max_sizes): try: tree = lxml.etree.XML(xml) width = tree.attrib['width'] height = tree.attrib['height'] w = int(re.search("[0-9]+", width).group(0)) h = int(re.search("[0-9]+", height).group(0)) # calculate new size preserving aspect ratio. ratio = float(w) / h # Panoramas get larger thumbnails because they look *awful* if bigger_panoramas and w > 2 * h: max_size = max_size * 4 if w > h: w = max_size h = max_size / ratio else: w = max_size * ratio h = max_size w = int(w) h = int(h) tree.attrib.pop("width") tree.attrib.pop("height") tree.attrib['viewport'] = "0 0 %ipx %ipx" % (w, h) if dst.endswith('.svgz'): op = gzip.GzipFile(dst, 'wb') else: op = open(dst, 'wb') op.write(lxml.etree.tostring(tree)) op.close() except (KeyError, AttributeError) as e: self.logger.warning("No width/height in %s. Original exception: %s" % (src, e)) utils.copy_file(src, dst) def image_date(self, src): """Try to figure out the date of the image.""" if src not in self.dates: try: im = Image.open(src) exif = im._getexif() im.close() except Exception: exif = None if exif is not None: for tag, value in list(exif.items()): decoded = ExifTags.TAGS.get(tag, tag) if decoded in ('DateTimeOriginal', 'DateTimeDigitized'): try: if isinstance(value, tuple): value = value[0] self.dates[src] = datetime.datetime.strptime( value, '%Y:%m:%d %H:%M:%S') break except ValueError: # Invalid EXIF date. pass if src not in self.dates: self.dates[src] = datetime.datetime.fromtimestamp( os.stat(src).st_mtime) return self.dates[src]
the-stack_106_22548
""" Nadel's construction problem in cpmpy. From Rina Dechter 'Constraint Processing', page 5. Attributes the problem to B.A. Nadel 'Constraint satisfaction algorithms' (1989). ''' * The recreation area should be near the lake. * Steep slopes are to be avoided for all but the recreation area. * Poor soil should be avoided for those developments that involve construction, namely the apartments and the family houses. * The highway, being noisy, should not be near the apartments, the housing, or the recreation area. * The dumpsite should not be visible from the apartments, the houses, or the lake. * Lots 3 and 4 have bad soil. * Lots 3, 4, 7, and 8 are on steep slopes . * Lots 2, 3, and 4 are near the lake. * Lots 1 and 2 are near the highway. ''' Comment: I have not found any model that satisfies all the constraints. However this 'soft' approach counts the broken constraints and minimizes to 1 broken constraint. The model (which - of course - could be erroneous) generates 28 different solutions. The broken constraints are either - steep_slopes constraints or - near_dump constraints. This cpmpy model was written by Hakan Kjellerstrand ([email protected]) See also my cpmpy page: http://hakank.org/cpmpy/ """ from cpmpy import * import cpmpy.solvers import numpy as np from cpmpy_hakank import * def nadel(total_broken_val=None): n = 8 # number of lots d = 5 # number of developments # * Lots 3 and 4 have bad soil. # * Lots 3, 4, 7, and 8 are on steep slopes . # * Lots 2, 3, and 4 are near the lake. # * Lots 1 and 2 are near the highway. # 1, 2, 3, 4, 5, 6, 7, 8 bad_soil = cpm_array([0, 0, 1, 1, 0, 0, 0, 0]) steep_slopes = cpm_array([0, 0, 1, 1, 0, 0, 1, 1]) near_lake = cpm_array([0, 1, 1, 1, 0, 0, 0, 0]) near_highway = cpm_array([1, 1, 0, 0, 0, 0, 0, 0]) # matrix with the proximity of lots # (for the dump placement) near_lots = np.array([ # 1 2 3 4 5 6 7 8 [0, 1, 0, 0, 1, 0, 0, 0], # 1 [1, 0, 1, 0, 0, 1, 0, 0], # 2 [0, 1, 0, 1, 0, 0, 1, 0], # 3 [0, 0, 1, 0, 0, 0, 0, 1], # 4 [1, 0, 0, 0, 0, 1, 0, 0], # 5 [0, 1, 0, 0, 1, 0, 1, 0], # 6 [0, 0, 1, 0, 0, 1, 0, 1], # 7 [0, 0, 0, 1, 0, 0, 1, 0] # 8 ]) # alternative neighborhood matrix, # where diagonals also makes a neighbour. # This generates 8 models (all with 1 broken constraint) # # near_lots = [ # # 1 2 3 4 5 6 7 8 # [0, 1, 0, 0, 1, 1, 0, 0], # 1 # [1, 0, 1, 0, 1, 1, 1, 0], # 2 # [0, 1, 0, 1, 0, 1, 1, 1], # 3 # [0, 0, 1, 0, 0, 0, 1, 1], # 4 # [1, 1, 0, 0, 0, 1, 0, 0], # 5 # [1, 1, 1, 0, 1, 0, 1, 0], # 6 # [0, 1, 1, 1, 0, 1, 0, 1], # 7 # [0, 0, 1, 1, 0, 0, 1, 0] # 8 # ] # Array copy of near_lots (for 'matrix element' constraint) near_lots_a = boolvar(shape=n*n,name="near_lots") # # variables # # the development to place in one of the lots recreation = intvar(0,n-1,name="recreation") apartments = intvar(0,n-1,name="apartments") houses = intvar(0,n-1,name="houses") cemetery = intvar(0,n-1,name="cemetery") dump = intvar(0,n-1,name="dump") developments = [recreation, apartments, houses, cemetery, dump] c = 13 # number of (potentially) broken constraints (soft constraints) broken = boolvar(shape=c,name="broken") # indicator of broken constraint total_broken = intvar(0,c,name="total_broken") # sum(broken) # sol.minimize(total_broken) if total_broken_val == None: model = Model(minimize=total_broken) else: model = Model(total_broken==total_broken_val) for i in range(n): for j in range(n): model += (near_lots_a[i*n+j] == near_lots[i][j]) # constraints model += (total_broken == sum(broken)) model += (AllDifferent(developments)) # * The recreation area should be near the lake. model += ((near_lake[recreation] == 1) == ( broken[0] == 0)) # * Steep slopes are to be avoided for all but the recreation area. model += ((steep_slopes[apartments] == 0) == (broken[1] == 0)) model += ((steep_slopes[houses] == 0) == (broken[2] == 0)) model += ((steep_slopes[cemetery] == 0) == (broken[3] == 0)) model += ((steep_slopes[dump] == 0) == (broken[4] == 0)) # * Poor soil should be avoided for those developments that # involve construction, namely the apartments and the family houses. model += ((bad_soil[apartments] == 0) == (broken[5] == 0)) model += ((bad_soil[houses] == 0) == (broken[6] == 0)) # * The highway, being noisy, should not be near the apartments, # the housing, or the recreation area. model += ((near_highway[apartments] == 0) == (broken[7] == 0)) model += ((near_highway[houses] == 0) == (broken[8] == 0)) model += ((near_highway[recreation] == 0) == (broken[9] == 0)) # The dumpsite should not be visible from the apartments, # the houses, or the lake. # not near the lake model += ((near_lake[dump] == 0) == (broken[10] == 0)) # not near the house model += ( ((near_lots_a[dump*n+houses] == 0) & (near_lots_a[houses*n+dump] == 0)) == (broken[11] == 0) ) # not near the apartments model += ( ((near_lots_a[dump*n+apartments] == 0) & (near_lots_a[apartments*n+dump] == 0)) == (broken[12] == 0) ) ss = CPM_ortools(model) num_solutions = 0 if total_broken_val == None: if ss.solve(): num_solutions += 1 print("developments:", [v.value() for v in developments]) print("broken constraints:", [i for i in range(c) if broken[i].value()]) print("total_broken:", total_broken.value()) print() return total_broken.value() else: # Get all the optimal solutions and calculate the number # of times a constraints is broken in the solutions. broken_constraints_dict = {} while ss.solve(): num_solutions += 1 print("developments:", [v.value() for v in developments]) broken_constraints = [i for i in range(c) if broken[i].value()] print("broken constraints:", broken_constraints) for b in broken_constraints: broken_constraints_dict[b] = broken_constraints_dict.get(b,0)+1 print("total_broken:", total_broken.value()) print() get_different_solution(ss,developments) print("The broken constraints and their occurrences are:") for b in sorted(broken_constraints_dict): print(f"Constraint #{b:2d}: {broken_constraints_dict[b]} occurrences") print() print("num_solutions:",num_solutions) print("Find optimal value:") total_broken=nadel(None) print(f"Optimal value is {total_broken}.\nNow find all optimal solutions and the broken constraints:") nadel(total_broken)
the-stack_106_22549
#!/user/bin/env python # -*- coding: utf-8 -*- """CodeSeeker A simple tool to search for code on GitHub. Usage example: > python -m codeseeker cube 1 file(s) found(s). repository/path/to/file.py > python -m codeseeker cube -o 1 file(s) found(s). repository/path/to/file.py Opening in a web browser... For more information, see: https://leugimkm.github.io/codeseeker/ """ from .base import parse_args from .seeker import Seeker, open_url, to_txt, show_links, get_file from .utils import show def main(): args = parse_args() seeker = Seeker() if args.repo: seeker.repo = args.repo if args.lang: seeker.lang = args.lang if args.tag: seeker.tag = args.tag data = seeker.search(args.keyword, args.repo, args.lang) if data is None: print("No results found.") else: if args.keyword: show(data) if args.open: open_url(seeker, data) if args.txt: to_txt(seeker, data) if args.links: show_links(seeker, data) if args.get: get_file(seeker, data) if __name__ == "__main__": main()
the-stack_106_22552
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt self.root = opt.dataroot @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) flip = random.random() > 0.5 return {'crop_pos': (x, y), 'flip': flip} def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method))) elif 'scale_height' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_height(img, opt.load_size, opt.crop_size, method))) if 'crop' in opt.preprocess: if params is None: transform_list.append(transforms.RandomCrop(opt.crop_size)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) if not opt.no_flip: if params is None: transform_list.append(transforms.RandomHorizontalFlip()) elif params['flip']: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if convert: transform_list += [transforms.ToTensor()] if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img __print_size_warning(ow, oh, w, h) return img.resize((w, h), method) def __scale_width(img, target_size, crop_size, method=Image.BICUBIC): ow, oh = img.size if ow == target_size and oh >= crop_size: return img w = target_size h = int(max(target_size * oh / ow, crop_size)) return img.resize((w, h), method) def __scale_height(img, target_size, crop_size, method=Image.BICUBIC): ow, oh = img.size if oh == target_size and ow >= crop_size: return img h = target_size w = int(max(ow*target_size/oh, crop_size)) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img def __print_size_warning(ow, oh, w, h): """Print warning information about image size(only print once)""" if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True
the-stack_106_22554
# Example for create a delay in the client side ( the request is splited to 2) # connect(); wait for connection # delay 100msec # send(req) from trex.astf.api import * import argparse # we can send either Python bytes type as below: http_req = b'GET /3384 HTTP/1.1\r\nHost: 22.0.0.3\r\nConnection: Keep-Alive\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)\r\nAccept: */*\r\nAccept-Language: en-us\r\nAccept-Encoding: gzip, deflate, compress\r\n\r\n' # or we can send Python string containing ascii chars, as below: http_response = 'HTTP/1.1 200 OK\r\nServer: Microsoft-IIS/6.0\r\nContent-Type: text/html\r\nContent-Length: 32000\r\n\r\n<html><pre>**********</pre></html>' class Prof1(): def __init__(self): pass # tunables def create_profile(self): # client commands prog_c = ASTFProgram() prog_c.delay(100000); # delay 100msec prog_c.send(http_req) prog_c.recv(len(http_response)) prog_s = ASTFProgram() prog_s.recv(len(http_req)) prog_s.send(http_response) # ip generator ip_gen_c = ASTFIPGenDist(ip_range=["16.0.0.0", "16.0.0.255"], distribution="seq") ip_gen_s = ASTFIPGenDist(ip_range=["48.0.0.0", "48.0.255.255"], distribution="seq") ip_gen = ASTFIPGen(glob=ASTFIPGenGlobal(ip_offset="1.0.0.0"), dist_client=ip_gen_c, dist_server=ip_gen_s) # template temp_c = ASTFTCPClientTemplate(program=prog_c, ip_gen=ip_gen) temp_s = ASTFTCPServerTemplate(program=prog_s) # using default association template = ASTFTemplate(client_template=temp_c, server_template=temp_s) # profile profile = ASTFProfile(default_ip_gen=ip_gen, templates=template) return profile def get_profile(self, tunables, **kwargs): parser = argparse.ArgumentParser(description='Argparser for {}'.format(os.path.basename(__file__)), formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args(tunables) return self.create_profile() def register(): return Prof1()
the-stack_106_22555
import numpy as np import math from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.pyplot as plt def make_plot_plast(elms, scale=0): '''Рисует исходную схему''' polygons_plast = [] codes_plast = [] polygons_nonplast = [] codes_nonplast = [] polygons_quad = [] codes_quad = [] for i in elms: # рисует исходную схему if len(i.pnt) == 3 and i.pl is True: polygons_plast += [ (i.pnt[0].x + i.pnt[0].tot_displ_x * scale, i.pnt[0].y + i.pnt[0].tot_displ_y * scale), (i.pnt[1].x + i.pnt[1].tot_displ_x * scale, i.pnt[1].y + i.pnt[1].tot_displ_y * scale), (i.pnt[2].x + i.pnt[2].tot_displ_x * scale, i.pnt[2].y + i.pnt[2].tot_displ_y * scale), (0, 0)] codes_plast += [Path.MOVETO] + [Path.LINETO]*2 + [Path.CLOSEPOLY] elif len(i.pnt) == 3 and i.pl is not True: polygons_nonplast += [ (i.pnt[0].x + i.pnt[0].tot_displ_x * scale, i.pnt[0].y + i.pnt[0].tot_displ_y * scale), (i.pnt[1].x + i.pnt[1].tot_displ_x * scale, i.pnt[1].y + i.pnt[1].tot_displ_y * scale), (i.pnt[2].x + i.pnt[2].tot_displ_x * scale, i.pnt[2].y + i.pnt[2].tot_displ_y * scale), (0, 0)] codes_nonplast += [Path.MOVETO] + [Path.LINETO]*2 + [Path.CLOSEPOLY] if len(i.pnt) == 4: polygons_quad += [ (i.pnt[0].x + i.pnt[0].tot_displ_x * scale, i.pnt[0].y + i.pnt[0].tot_displ_y * scale), (i.pnt[1].x + i.pnt[1].tot_displ_x * scale, i.pnt[1].y + i.pnt[1].tot_displ_y * scale), (i.pnt[2].x + i.pnt[2].tot_displ_x * scale, i.pnt[2].y + i.pnt[2].tot_displ_y * scale), (i.pnt[3].x + i.pnt[3].tot_displ_x * scale, i.pnt[3].y + i.pnt[3].tot_displ_y * scale), (0, 0)] codes_quad += [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY] polygons_plast = np.array(polygons_plast, float) try: path_plast = Path(polygons_plast, codes_plast) pathpatch_PLAST = PathPatch(path_plast, facecolor='#fff000') except ValueError: pathpatch_PLAST = False print('не получилось') else: path_plast = Path(polygons_plast, codes_plast) pathpatch_PLAST = PathPatch(path_plast, facecolor='#fff000') polygons_nonplast = np.array(polygons_nonplast, float) try: path_nonplast = Path(polygons_nonplast, codes_nonplast) pathpatch_nonPLAST = PathPatch(path_nonplast, facecolor='#ffffff') except ValueError: pathpatch_nonPLAST = False print('не получилось') else: path_nonplast = Path(polygons_nonplast, codes_nonplast) pathpatch_nonPLAST = PathPatch(path_nonplast, facecolor='#ffffff') polygons_quad = np.array(polygons_quad, float) try: path_quad = Path(polygons_quad, codes_quad) pathpatch_quad = PathPatch(path_quad, facecolor='#ffffff') except ValueError: pathpatch_quad = False print('не получилось') else: path_quad = Path(polygons_quad, codes_quad) athpatch_quad = PathPatch(path_quad, facecolor='#ffffff') return pathpatch_PLAST, pathpatch_nonPLAST, pathpatch_quad def make_add_txt(elms, pnts, scale=0, num_elms=False, num_pnts=False, displacement_y=False, displacement_x=False, sigma_eq=False, sigma_x=False): if num_elms == True: for i in elms: # рисует номер элемента plt.text((i.pnt[0].x + i.pnt[1].x + i.pnt[2].x)/3+0.001, (i.pnt[0].y + i.pnt[1].y + i.pnt[2].y)/3, i.num, color='red', fontsize=6) if num_pnts == True: for i in pnts: # рисует номер узла plt.text(i.x + 0.1, i.y + 0.1, i.num, color='blue', fontsize=6) if displacement_y == True: for i in pnts: plt.text(i.x + 0.1, i.y + 0.1, '{:.2f}'.format(i.tot_displ_y*1000), color='blue', fontsize=6) if displacement_x == True: for i in pnts: plt.text(i.x + 0.001, i.y + 0.001, '{:.2f}'.format(i.tot_displ_x*1000), color='blue', fontsize=6) if sigma_eq == True: for i in elms: plt.text((i.pnt[0].x + i.pnt[1].x + i.pnt[2].x)/3, (i.pnt[0].y + i.pnt[1].y + i.pnt[2].y)/3, '{:.0f}'.format(i.sigma_eq), color='blue', fontsize=6) if sigma_x == True: for i in elms: plt.text((i.pnt[0].x + i.pnt[1].x + i.pnt[2].x)/3, (i.pnt[0].y + i.pnt[1].y + i.pnt[2].y)/3, '{:.0f}'.format(i.sigma_x), color='blue', fontsize=6) def show_plast(le, lp): fig, ax = plt.subplots() a = make_plot_plast(le, 1) make_add_txt(le, lp, scale=1, num_elms=True) for i in range(3): if a[i] is not False: ax.add_patch(a[i]) #~ ax.set_title( #~ 'Возникновение пластических деформации при {:.2f}P'.format(count)) ax.autoscale_view() # fig.savefig('png/png{}.png'.format(int(count*100))) plt.show() def graph_sigma(l_s1, l_s2, sigma_pr): fig, ax = plt.subplots() x = np.arange(-sigma_pr/50,sigma_pr/50,1) ax.plot(x, (x-np.sqrt(-3*x**2+4*(sigma_pr/100)**2))/2, label='se') ax.plot(x, (x+np.sqrt(-3*x**2+4*(sigma_pr/100)**2))/2, label='se') ax.plot(l_s1, l_s2, 'ro', label='se') for i in range(len(l_s1)): plt.text(l_s1[i] + 0.1, l_s2[i] + 0.1, '{}'.format(i), color='blue', fontsize=6) plt.show() def show_graph_P_u(P,u): fig, ax = plt.subplots() ax.plot(u, P, label='u(p)') plt.show() def graph_show(l_se, l_scr): '''Show graphic of Se and Scr''' fig, ax = plt.subplots() x = np.arange(0, 100, 1) ax.plot(x, l_se, 'ro', label='se') ax.plot(x, l_scr, 'k', label='scr') plt.show() if __name__=="__main__": graph_sigma([0],[0])
the-stack_106_22557
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for kfp.dsl.component_spec.""" from absl.testing import parameterized from kfp.components import _structures as structures from kfp.dsl import _pipeline_param from kfp.dsl import component_spec as dsl_component_spec from kfp.pipeline_spec import pipeline_spec_pb2 from google.protobuf import json_format class ComponentSpecTest(parameterized.TestCase): TEST_PIPELINE_PARAMS = [ _pipeline_param.PipelineParam( name='output1', param_type='Dataset', op_name='op-1'), _pipeline_param.PipelineParam( name='output2', param_type='Integer', op_name='op-2'), _pipeline_param.PipelineParam( name='output3', param_type='Model', op_name='op-3'), _pipeline_param.PipelineParam( name='output4', param_type='Double', op_name='op-4'), _pipeline_param.PipelineParam( name='arg_input', param_type='String', op_name=None), ] def setUp(self): self.maxDiff = None def test_build_component_spec_from_structure(self): structure_component_spec = structures.ComponentSpec( name='component1', description='component1 desc', inputs=[ structures.InputSpec( name='input1', description='input1 desc', type='Dataset'), structures.InputSpec( name='input2', description='input2 desc', type='String'), structures.InputSpec( name='input3', description='input3 desc', type='Integer'), structures.InputSpec( name='input4', description='optional inputs', optional=True), ], outputs=[ structures.OutputSpec( name='output1', description='output1 desc', type='Model') ]) expected_dict = { 'inputDefinitions': { 'artifacts': { 'input1': { 'artifactType': { 'schemaTitle': 'system.Dataset' } } }, 'parameters': { 'input2': { 'type': 'STRING' }, 'input3': { 'type': 'INT' } } }, 'outputDefinitions': { 'artifacts': { 'output1': { 'artifactType': { 'schemaTitle': 'system.Model' } } } }, 'executorLabel': 'exec-component1' } expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_dict, expected_spec) component_spec = ( dsl_component_spec.build_component_spec_from_structure( component_spec=structure_component_spec, executor_label='exec-component1', actual_inputs=['input1', 'input2', 'input3'], )) self.assertEqual(expected_spec, component_spec) @parameterized.parameters( { 'is_root_component': True, 'expected_result': { 'inputDefinitions': { 'artifacts': { 'input1': { 'artifactType': { 'schemaTitle': 'system.Dataset' } } }, 'parameters': { 'input2': { 'type': 'INT' }, 'input3': { 'type': 'STRING' }, 'input4': { 'type': 'DOUBLE' } } } } }, { 'is_root_component': False, 'expected_result': { 'inputDefinitions': { 'artifacts': { 'pipelineparam--input1': { 'artifactType': { 'schemaTitle': 'system.Dataset' } } }, 'parameters': { 'pipelineparam--input2': { 'type': 'INT' }, 'pipelineparam--input3': { 'type': 'STRING' }, 'pipelineparam--input4': { 'type': 'DOUBLE' } } } } }, ) def test_build_component_inputs_spec(self, is_root_component, expected_result): pipeline_params = [ _pipeline_param.PipelineParam(name='input1', param_type='Dataset'), _pipeline_param.PipelineParam(name='input2', param_type='Integer'), _pipeline_param.PipelineParam(name='input3', param_type='String'), _pipeline_param.PipelineParam(name='input4', param_type='Float'), ] expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_result, expected_spec) component_spec = pipeline_spec_pb2.ComponentSpec() dsl_component_spec.build_component_inputs_spec(component_spec, pipeline_params, is_root_component) self.assertEqual(expected_spec, component_spec) def test_build_component_outputs_spec(self): pipeline_params = [ _pipeline_param.PipelineParam(name='output1', param_type='Dataset'), _pipeline_param.PipelineParam(name='output2', param_type='Integer'), _pipeline_param.PipelineParam(name='output3', param_type='String'), _pipeline_param.PipelineParam(name='output4', param_type='Float'), ] expected_dict = { 'outputDefinitions': { 'artifacts': { 'output1': { 'artifactType': { 'schemaTitle': 'system.Dataset' } } }, 'parameters': { 'output2': { 'type': 'INT' }, 'output3': { 'type': 'STRING' }, 'output4': { 'type': 'DOUBLE' } } } } expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_dict, expected_spec) component_spec = pipeline_spec_pb2.ComponentSpec() dsl_component_spec.build_component_outputs_spec(component_spec, pipeline_params) self.assertEqual(expected_spec, component_spec) @parameterized.parameters( { 'is_parent_component_root': True, 'expected_result': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } }, 'pipelineparam--op-3-output3': { 'componentInputArtifact': 'op-3-output3' } }, 'parameters': { 'pipelineparam--op-2-output2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } }, 'pipelineparam--op-4-output4': { 'componentInputParameter': 'op-4-output4' }, 'pipelineparam--arg_input': { 'componentInputParameter': 'arg_input' } } } } }, { 'is_parent_component_root': False, 'expected_result': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } }, 'pipelineparam--op-3-output3': { 'componentInputArtifact': 'pipelineparam--op-3-output3' } }, 'parameters': { 'pipelineparam--op-2-output2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } }, 'pipelineparam--op-4-output4': { 'componentInputParameter': 'pipelineparam--op-4-output4' }, 'pipelineparam--arg_input': { 'componentInputParameter': 'pipelineparam--arg_input' } } } } }, ) def test_build_task_inputs_spec(self, is_parent_component_root, expected_result): pipeline_params = self.TEST_PIPELINE_PARAMS tasks_in_current_dag = ['task-op-1', 'task-op-2'] expected_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(expected_result, expected_spec) task_spec = pipeline_spec_pb2.PipelineTaskSpec() dsl_component_spec.build_task_inputs_spec(task_spec, pipeline_params, tasks_in_current_dag, is_parent_component_root) self.assertEqual(expected_spec, task_spec) @parameterized.parameters( { 'original_task_spec': {}, 'parent_component_inputs': {}, 'tasks_in_current_dag': [], 'input_parameters_in_current_dag': [], 'input_artifacts_in_current_dag': [], 'expected_result': {}, }, { # Depending on tasks & inputs within the current DAG. 'original_task_spec': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } }, 'artifact1': { 'componentInputArtifact': 'artifact1' }, }, 'parameters': { 'pipelineparam--op-2-output2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } }, 'param1': { 'componentInputParameter': 'param1' }, } } }, 'parent_component_inputs': { 'artifacts': { 'artifact1': { 'artifactType': { 'instanceSchema': 'dummy_schema' } }, }, 'parameters': { 'param1': { 'type': 'STRING' }, } }, 'tasks_in_current_dag': ['task-op-1', 'task-op-2'], 'input_parameters_in_current_dag': ['param1'], 'input_artifacts_in_current_dag': ['artifact1'], 'expected_result': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } }, 'artifact1': { 'componentInputArtifact': 'artifact1' }, }, 'parameters': { 'pipelineparam--op-2-output2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } }, 'param1': { 'componentInputParameter': 'param1' }, } } }, }, { # Depending on tasks and inputs not available in the current DAG. 'original_task_spec': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } }, 'artifact1': { 'componentInputArtifact': 'artifact1' }, }, 'parameters': { 'pipelineparam--op-2-output2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } }, 'param1': { 'componentInputParameter': 'param1' }, } } }, 'parent_component_inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'artifactType': { 'instanceSchema': 'dummy_schema' } }, 'pipelineparam--artifact1': { 'artifactType': { 'instanceSchema': 'dummy_schema' } }, }, 'parameters': { 'pipelineparam--op-2-output2' : { 'type': 'INT' }, 'pipelineparam--param1': { 'type': 'STRING' }, } }, 'tasks_in_current_dag': ['task-op-3'], 'input_parameters_in_current_dag': ['pipelineparam--op-2-output2', 'pipelineparam--param1'], 'input_artifacts_in_current_dag': ['pipelineparam--op-1-output1', 'pipelineparam--artifact1'], 'expected_result': { 'inputs': { 'artifacts': { 'pipelineparam--op-1-output1': { 'componentInputArtifact': 'pipelineparam--op-1-output1' }, 'artifact1': { 'componentInputArtifact': 'pipelineparam--artifact1' }, }, 'parameters': { 'pipelineparam--op-2-output2': { 'componentInputParameter': 'pipelineparam--op-2-output2' }, 'param1': { 'componentInputParameter': 'pipelineparam--param1' }, } } }, }, ) def test_update_task_inputs_spec(self, original_task_spec, parent_component_inputs, tasks_in_current_dag, input_parameters_in_current_dag, input_artifacts_in_current_dag, expected_result): pipeline_params = self.TEST_PIPELINE_PARAMS expected_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(expected_result, expected_spec) task_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(original_task_spec, task_spec) parent_component_inputs_spec = pipeline_spec_pb2.ComponentInputsSpec() json_format.ParseDict(parent_component_inputs, parent_component_inputs_spec) dsl_component_spec.update_task_inputs_spec(task_spec, parent_component_inputs_spec, pipeline_params, tasks_in_current_dag, input_parameters_in_current_dag, input_artifacts_in_current_dag) self.assertEqual(expected_spec, task_spec) def test_pop_input_from_component_spec(self): component_spec = pipeline_spec_pb2.ComponentSpec( executor_label='exec-component1') component_spec.input_definitions.artifacts[ 'input1'].artifact_type.schema_title = 'system.Dataset' component_spec.input_definitions.parameters[ 'input2'].type = pipeline_spec_pb2.PrimitiveType.STRING component_spec.input_definitions.parameters[ 'input3'].type = pipeline_spec_pb2.PrimitiveType.DOUBLE # pop an artifact, and there're other inputs left dsl_component_spec.pop_input_from_component_spec(component_spec, 'input1') expected_dict = { 'inputDefinitions': { 'parameters': { 'input2': { 'type': 'STRING' }, 'input3': { 'type': 'DOUBLE' } } }, 'executorLabel': 'exec-component1' } expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, component_spec) # pop an parameter, and there're other inputs left dsl_component_spec.pop_input_from_component_spec(component_spec, 'input2') expected_dict = { 'inputDefinitions': { 'parameters': { 'input3': { 'type': 'DOUBLE' } } }, 'executorLabel': 'exec-component1' } expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, component_spec) # pop the last input, expect no inputDefinitions dsl_component_spec.pop_input_from_component_spec(component_spec, 'input3') expected_dict = {'executorLabel': 'exec-component1'} expected_spec = pipeline_spec_pb2.ComponentSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, component_spec) # pop an input that doesn't exist, expect no-op. dsl_component_spec.pop_input_from_component_spec(component_spec, 'input4') self.assertEqual(expected_spec, component_spec) def test_pop_input_from_task_spec(self): task_spec = pipeline_spec_pb2.PipelineTaskSpec() task_spec.component_ref.name = 'comp-component1' task_spec.inputs.artifacts[ 'input1'].task_output_artifact.producer_task = 'task-op-1' task_spec.inputs.artifacts[ 'input1'].task_output_artifact.output_artifact_key = 'output1' task_spec.inputs.parameters[ 'input2'].task_output_parameter.producer_task = 'task-op-2' task_spec.inputs.parameters[ 'input2'].task_output_parameter.output_parameter_key = 'output2' task_spec.inputs.parameters[ 'input3'].component_input_parameter = 'op3-output3' # pop an parameter, and there're other inputs left dsl_component_spec.pop_input_from_task_spec(task_spec, 'input3') expected_dict = { 'inputs': { 'artifacts': { 'input1': { 'taskOutputArtifact': { 'producerTask': 'task-op-1', 'outputArtifactKey': 'output1' } } }, 'parameters': { 'input2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } } } }, 'component_ref': { 'name': 'comp-component1' } } expected_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, task_spec) # pop an artifact, and there're other inputs left dsl_component_spec.pop_input_from_task_spec(task_spec, 'input1') expected_dict = { 'inputs': { 'parameters': { 'input2': { 'taskOutputParameter': { 'producerTask': 'task-op-2', 'outputParameterKey': 'output2' } } } }, 'component_ref': { 'name': 'comp-component1' } } expected_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, task_spec) # pop the last input, expect no inputDefinitions dsl_component_spec.pop_input_from_task_spec(task_spec, 'input2') expected_dict = {'component_ref': {'name': 'comp-component1'}} expected_spec = pipeline_spec_pb2.PipelineTaskSpec() json_format.ParseDict(expected_dict, expected_spec) self.assertEqual(expected_spec, task_spec) # pop an input that doesn't exist, expect no-op. dsl_component_spec.pop_input_from_task_spec(task_spec, 'input4') self.assertEqual(expected_spec, task_spec) def test_additional_input_name_for_pipelineparam(self): self.assertEqual( 'pipelineparam--op1-param1', dsl_component_spec.additional_input_name_for_pipelineparam( _pipeline_param.PipelineParam(name='param1', op_name='op1'))) self.assertEqual( 'pipelineparam--param2', dsl_component_spec.additional_input_name_for_pipelineparam( _pipeline_param.PipelineParam(name='param2'))) self.assertEqual( 'pipelineparam--param3', dsl_component_spec.additional_input_name_for_pipelineparam('param3')) if __name__ == '__main__': unittest.main()
the-stack_106_22558
from ..credentials import create_proof_jwt, create_proof, verify_proof from aries_cloudagent.wallet.basic import BasicWallet from asynctest import TestCase as AsyncTestCase class TestJWT(AsyncTestCase): async def setUp(self): self.wallet = BasicWallet() self.example_schema = { "@context": [ "https://www.w3.org/2018/credentials/v1", "https://www.w3.org/2018/credentials/examples/v1", ], "type": ["VerifiablePresentation"], "verifiableCredential": [{}], } # async def test_create_proof_jwt(self): # abc = await create_proof_jwt(self.wallet, self.example_schema) # assert ( # abc # == "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ" # ) # assert abc == "eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9" async def test_create_proof(self): proof = await create_proof(self.wallet, self.example_schema, Exception) self.example_schema["proof"] = proof assert await verify_proof(self.wallet, self.example_schema) == True
the-stack_106_22559
# -*- coding: utf-8 -*- from __future__ import unicode_literals import errno import os import shutil import sys import tempfile import threading import time import unittest from datetime import datetime, timedelta from django.core.cache import cache from django.core.exceptions import SuspiciousFileOperation, SuspiciousOperation from django.core.files.base import ContentFile, File from django.core.files.storage import FileSystemStorage, get_storage_class from django.core.files.uploadedfile import ( InMemoryUploadedFile, SimpleUploadedFile, TemporaryUploadedFile, ) from django.db.models.fields.files import FileDescriptor from django.test import ( LiveServerTestCase, SimpleTestCase, TestCase, ignore_warnings, override_settings, ) from django.test.utils import requires_tz_support from django.utils import six, timezone from django.utils._os import upath from django.utils.deprecation import RemovedInDjango20Warning from django.utils.six.moves.urllib.request import urlopen from .models import Storage, temp_storage, temp_storage_location try: import pytz except ImportError: pytz = None FILE_SUFFIX_REGEX = '[A-Za-z0-9]{7}' class GetStorageClassTests(SimpleTestCase): def test_get_filesystem_storage(self): """ get_storage_class returns the class for a storage backend name/path. """ self.assertEqual( get_storage_class('django.core.files.storage.FileSystemStorage'), FileSystemStorage) def test_get_invalid_storage_module(self): """ get_storage_class raises an error if the requested import don't exist. """ with six.assertRaisesRegex(self, ImportError, "No module named '?storage'?"): get_storage_class('storage.NonExistingStorage') def test_get_nonexisting_storage_class(self): """ get_storage_class raises an error if the requested class don't exist. """ with self.assertRaises(ImportError): get_storage_class('django.core.files.storage.NonExistingStorage') def test_get_nonexisting_storage_module(self): """ get_storage_class raises an error if the requested module don't exist. """ # Error message may or may not be the fully qualified path. with six.assertRaisesRegex(self, ImportError, "No module named '?(django.core.files.)?non_existing_storage'?"): get_storage_class('django.core.files.non_existing_storage.NonExistingStorage') class FileStorageDeconstructionTests(unittest.TestCase): def test_deconstruction(self): path, args, kwargs = temp_storage.deconstruct() self.assertEqual(path, "django.core.files.storage.FileSystemStorage") self.assertEqual(args, tuple()) self.assertEqual(kwargs, {'location': temp_storage_location}) kwargs_orig = { 'location': temp_storage_location, 'base_url': 'http://myfiles.example.com/' } storage = FileSystemStorage(**kwargs_orig) path, args, kwargs = storage.deconstruct() self.assertEqual(kwargs, kwargs_orig) # Tests for TZ-aware time methods need pytz. requires_pytz = unittest.skipIf(pytz is None, "this test requires pytz") class FileStorageTests(TestCase): # Changing TIME_ZONE may issue a query to set the database's timezone, # hence TestCase. storage_class = FileSystemStorage def setUp(self): self.temp_dir = tempfile.mkdtemp() self.storage = self.storage_class(location=self.temp_dir, base_url='/test_media_url/') # Set up a second temporary directory which is ensured to have a mixed # case name. self.temp_dir2 = tempfile.mkdtemp(suffix='aBc') def tearDown(self): shutil.rmtree(self.temp_dir) shutil.rmtree(self.temp_dir2) def test_empty_location(self): """ Makes sure an exception is raised if the location is empty """ storage = self.storage_class(location='') self.assertEqual(storage.base_location, '') self.assertEqual(storage.location, upath(os.getcwd())) def test_file_access_options(self): """ Standard file access options are available, and work as expected. """ self.assertFalse(self.storage.exists('storage_test')) f = self.storage.open('storage_test', 'w') f.write('storage contents') f.close() self.assertTrue(self.storage.exists('storage_test')) f = self.storage.open('storage_test', 'r') self.assertEqual(f.read(), 'storage contents') f.close() self.storage.delete('storage_test') self.assertFalse(self.storage.exists('storage_test')) def _test_file_time_getter(self, getter): # Check for correct behavior under both USE_TZ=True and USE_TZ=False. # The tests are similar since they both set up a situation where the # system time zone, Django's TIME_ZONE, and UTC are distinct. self._test_file_time_getter_tz_handling_on(getter) self._test_file_time_getter_tz_handling_off(getter) @override_settings(USE_TZ=True, TIME_ZONE='Africa/Algiers') def _test_file_time_getter_tz_handling_on(self, getter): # Django's TZ (and hence the system TZ) is set to Africa/Algiers which # is UTC+1 and has no DST change. We can set the Django TZ to something # else so that UTC, Django's TIME_ZONE, and the system timezone are all # different. now_in_algiers = timezone.make_aware(datetime.now()) # Use a fixed offset timezone so we don't need pytz. with timezone.override(timezone.get_fixed_timezone(-300)): # At this point the system TZ is +1 and the Django TZ # is -5. The following will be aware in UTC. now = timezone.now() self.assertFalse(self.storage.exists('test.file.tz.on')) f = ContentFile('custom contents') f_name = self.storage.save('test.file.tz.on', f) self.addCleanup(self.storage.delete, f_name) dt = getter(f_name) # dt should be aware, in UTC self.assertTrue(timezone.is_aware(dt)) self.assertEqual(now.tzname(), dt.tzname()) # Check that the three timezones are indeed distinct. naive_now = datetime.now() algiers_offset = now_in_algiers.tzinfo.utcoffset(naive_now) django_offset = timezone.get_current_timezone().utcoffset(naive_now) utc_offset = timezone.utc.utcoffset(naive_now) self.assertGreater(algiers_offset, utc_offset) self.assertLess(django_offset, utc_offset) # dt and now should be the same effective time. self.assertLess(abs(dt - now), timedelta(seconds=2)) @override_settings(USE_TZ=False, TIME_ZONE='Africa/Algiers') def _test_file_time_getter_tz_handling_off(self, getter): # Django's TZ (and hence the system TZ) is set to Africa/Algiers which # is UTC+1 and has no DST change. We can set the Django TZ to something # else so that UTC, Django's TIME_ZONE, and the system timezone are all # different. now_in_algiers = timezone.make_aware(datetime.now()) # Use a fixed offset timezone so we don't need pytz. with timezone.override(timezone.get_fixed_timezone(-300)): # At this point the system TZ is +1 and the Django TZ # is -5. self.assertFalse(self.storage.exists('test.file.tz.off')) f = ContentFile('custom contents') f_name = self.storage.save('test.file.tz.off', f) self.addCleanup(self.storage.delete, f_name) dt = getter(f_name) # dt should be naive, in system (+1) TZ self.assertTrue(timezone.is_naive(dt)) # Check that the three timezones are indeed distinct. naive_now = datetime.now() algiers_offset = now_in_algiers.tzinfo.utcoffset(naive_now) django_offset = timezone.get_current_timezone().utcoffset(naive_now) utc_offset = timezone.utc.utcoffset(naive_now) self.assertGreater(algiers_offset, utc_offset) self.assertLess(django_offset, utc_offset) # dt and naive_now should be the same effective time. self.assertLess(abs(dt - naive_now), timedelta(seconds=2)) # If we convert dt to an aware object using the Algiers # timezone then it should be the same effective time to # now_in_algiers. _dt = timezone.make_aware(dt, now_in_algiers.tzinfo) self.assertLess(abs(_dt - now_in_algiers), timedelta(seconds=2)) @requires_pytz def test_file_get_accessed_time(self): """ File storage returns a Datetime object for the last accessed time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.addCleanup(self.storage.delete, f_name) atime = self.storage.get_accessed_time(f_name) self.assertEqual(atime, datetime.fromtimestamp(os.path.getatime(self.storage.path(f_name)))) self.assertLess(timezone.now() - self.storage.get_accessed_time(f_name), timedelta(seconds=2)) @requires_pytz @requires_tz_support def test_file_get_accessed_time_timezone(self): self._test_file_time_getter(self.storage.get_accessed_time) @ignore_warnings(category=RemovedInDjango20Warning) def test_file_accessed_time(self): """ File storage returns a datetime for the last accessed time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.addCleanup(self.storage.delete, f_name) atime = self.storage.accessed_time(f_name) self.assertEqual(atime, datetime.fromtimestamp(os.path.getatime(self.storage.path(f_name)))) self.assertLess(datetime.now() - self.storage.accessed_time(f_name), timedelta(seconds=2)) @requires_pytz def test_file_get_created_time(self): """ File storage returns a datetime for the creation time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.addCleanup(self.storage.delete, f_name) ctime = self.storage.get_created_time(f_name) self.assertEqual(ctime, datetime.fromtimestamp(os.path.getctime(self.storage.path(f_name)))) self.assertLess(timezone.now() - self.storage.get_created_time(f_name), timedelta(seconds=2)) @requires_pytz @requires_tz_support def test_file_get_created_time_timezone(self): self._test_file_time_getter(self.storage.get_created_time) @ignore_warnings(category=RemovedInDjango20Warning) def test_file_created_time(self): """ File storage returns a datetime for the creation time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) ctime = self.storage.created_time(f_name) self.addCleanup(self.storage.delete, f_name) self.assertEqual(ctime, datetime.fromtimestamp(os.path.getctime(self.storage.path(f_name)))) self.assertLess(datetime.now() - self.storage.created_time(f_name), timedelta(seconds=2)) @requires_pytz def test_file_get_modified_time(self): """ File storage returns a datetime for the last modified time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.addCleanup(self.storage.delete, f_name) mtime = self.storage.get_modified_time(f_name) self.assertEqual(mtime, datetime.fromtimestamp(os.path.getmtime(self.storage.path(f_name)))) self.assertLess(timezone.now() - self.storage.get_modified_time(f_name), timedelta(seconds=2)) @requires_pytz @requires_tz_support def test_file_get_modified_time_timezone(self): self._test_file_time_getter(self.storage.get_modified_time) @ignore_warnings(category=RemovedInDjango20Warning) def test_file_modified_time(self): """ File storage returns a datetime for the last modified time of a file. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.addCleanup(self.storage.delete, f_name) mtime = self.storage.modified_time(f_name) self.assertEqual(mtime, datetime.fromtimestamp(os.path.getmtime(self.storage.path(f_name)))) self.assertLess(datetime.now() - self.storage.modified_time(f_name), timedelta(seconds=2)) def test_file_save_without_name(self): """ File storage extracts the filename from the content object if no name is given explicitly. """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f.name = 'test.file' storage_f_name = self.storage.save(None, f) self.assertEqual(storage_f_name, f.name) self.assertTrue(os.path.exists(os.path.join(self.temp_dir, f.name))) self.storage.delete(storage_f_name) def test_file_save_with_path(self): """ Saving a pathname should create intermediate directories as necessary. """ self.assertFalse(self.storage.exists('path/to')) self.storage.save('path/to/test.file', ContentFile('file saved with path')) self.assertTrue(self.storage.exists('path/to')) with self.storage.open('path/to/test.file') as f: self.assertEqual(f.read(), b'file saved with path') self.assertTrue(os.path.exists( os.path.join(self.temp_dir, 'path', 'to', 'test.file'))) self.storage.delete('path/to/test.file') def test_save_doesnt_close(self): with TemporaryUploadedFile('test', 'text/plain', 1, 'utf8') as file: file.write(b'1') file.seek(0) self.assertFalse(file.closed) self.storage.save('path/to/test.file', file) self.assertFalse(file.closed) self.assertFalse(file.file.closed) file = InMemoryUploadedFile(six.StringIO('1'), '', 'test', 'text/plain', 1, 'utf8') with file: self.assertFalse(file.closed) self.storage.save('path/to/test.file', file) self.assertFalse(file.closed) self.assertFalse(file.file.closed) def test_file_path(self): """ File storage returns the full path of a file """ self.assertFalse(self.storage.exists('test.file')) f = ContentFile('custom contents') f_name = self.storage.save('test.file', f) self.assertEqual(self.storage.path(f_name), os.path.join(self.temp_dir, f_name)) self.storage.delete(f_name) def test_file_url(self): """ File storage returns a url to access a given file from the Web. """ self.assertEqual(self.storage.url('test.file'), self.storage.base_url + 'test.file') # should encode special chars except ~!*()' # like encodeURIComponent() JavaScript function do self.assertEqual( self.storage.url(r"~!*()'@#$%^&*abc`+ =.file"), "/test_media_url/~!*()'%40%23%24%25%5E%26*abc%60%2B%20%3D.file" ) self.assertEqual(self.storage.url("ab\0c"), "/test_media_url/ab%00c") # should translate os path separator(s) to the url path separator self.assertEqual(self.storage.url("""a/b\\c.file"""), "/test_media_url/a/b/c.file") # #25905: remove leading slashes from file names to prevent unsafe url output self.assertEqual(self.storage.url("/evil.com"), "/test_media_url/evil.com") self.assertEqual(self.storage.url(r"\evil.com"), "/test_media_url/evil.com") self.assertEqual(self.storage.url("///evil.com"), "/test_media_url/evil.com") self.assertEqual(self.storage.url(r"\\\evil.com"), "/test_media_url/evil.com") self.assertEqual(self.storage.url(None), "/test_media_url/") def test_base_url(self): """ File storage returns a url even when its base_url is unset or modified. """ self.storage.base_url = None with self.assertRaises(ValueError): self.storage.url('test.file') # #22717: missing ending slash in base_url should be auto-corrected storage = self.storage_class(location=self.temp_dir, base_url='/no_ending_slash') self.assertEqual( storage.url('test.file'), '%s%s' % (storage.base_url, 'test.file') ) def test_listdir(self): """ File storage returns a tuple containing directories and files. """ self.assertFalse(self.storage.exists('storage_test_1')) self.assertFalse(self.storage.exists('storage_test_2')) self.assertFalse(self.storage.exists('storage_dir_1')) self.storage.save('storage_test_1', ContentFile('custom content')) self.storage.save('storage_test_2', ContentFile('custom content')) os.mkdir(os.path.join(self.temp_dir, 'storage_dir_1')) dirs, files = self.storage.listdir('') self.assertEqual(set(dirs), {'storage_dir_1'}) self.assertEqual(set(files), {'storage_test_1', 'storage_test_2'}) self.storage.delete('storage_test_1') self.storage.delete('storage_test_2') os.rmdir(os.path.join(self.temp_dir, 'storage_dir_1')) def test_file_storage_prevents_directory_traversal(self): """ File storage prevents directory traversal (files can only be accessed if they're below the storage location). """ with self.assertRaises(SuspiciousOperation): self.storage.exists('..') with self.assertRaises(SuspiciousOperation): self.storage.exists('/etc/passwd') def test_file_storage_preserves_filename_case(self): """The storage backend should preserve case of filenames.""" # Create a storage backend associated with the mixed case name # directory. other_temp_storage = self.storage_class(location=self.temp_dir2) # Ask that storage backend to store a file with a mixed case filename. mixed_case = 'CaSe_SeNsItIvE' file = other_temp_storage.open(mixed_case, 'w') file.write('storage contents') file.close() self.assertEqual(os.path.join(self.temp_dir2, mixed_case), other_temp_storage.path(mixed_case)) other_temp_storage.delete(mixed_case) def test_makedirs_race_handling(self): """ File storage should be robust against directory creation race conditions. """ real_makedirs = os.makedirs # Monkey-patch os.makedirs, to simulate a normal call, a raced call, # and an error. def fake_makedirs(path): if path == os.path.join(self.temp_dir, 'normal'): real_makedirs(path) elif path == os.path.join(self.temp_dir, 'raced'): real_makedirs(path) raise OSError(errno.EEXIST, 'simulated EEXIST') elif path == os.path.join(self.temp_dir, 'error'): raise OSError(errno.EACCES, 'simulated EACCES') else: self.fail('unexpected argument %r' % path) try: os.makedirs = fake_makedirs self.storage.save('normal/test.file', ContentFile('saved normally')) with self.storage.open('normal/test.file') as f: self.assertEqual(f.read(), b'saved normally') self.storage.save('raced/test.file', ContentFile('saved with race')) with self.storage.open('raced/test.file') as f: self.assertEqual(f.read(), b'saved with race') # Check that OSErrors aside from EEXIST are still raised. with self.assertRaises(OSError): self.storage.save('error/test.file', ContentFile('not saved')) finally: os.makedirs = real_makedirs def test_remove_race_handling(self): """ File storage should be robust against file removal race conditions. """ real_remove = os.remove # Monkey-patch os.remove, to simulate a normal call, a raced call, # and an error. def fake_remove(path): if path == os.path.join(self.temp_dir, 'normal.file'): real_remove(path) elif path == os.path.join(self.temp_dir, 'raced.file'): real_remove(path) raise OSError(errno.ENOENT, 'simulated ENOENT') elif path == os.path.join(self.temp_dir, 'error.file'): raise OSError(errno.EACCES, 'simulated EACCES') else: self.fail('unexpected argument %r' % path) try: os.remove = fake_remove self.storage.save('normal.file', ContentFile('delete normally')) self.storage.delete('normal.file') self.assertFalse(self.storage.exists('normal.file')) self.storage.save('raced.file', ContentFile('delete with race')) self.storage.delete('raced.file') self.assertFalse(self.storage.exists('normal.file')) # Check that OSErrors aside from ENOENT are still raised. self.storage.save('error.file', ContentFile('delete with error')) with self.assertRaises(OSError): self.storage.delete('error.file') finally: os.remove = real_remove def test_file_chunks_error(self): """ Test behavior when file.chunks() is raising an error """ f1 = ContentFile('chunks fails') def failing_chunks(): raise IOError f1.chunks = failing_chunks with self.assertRaises(IOError): self.storage.save('error.file', f1) def test_delete_no_name(self): """ Calling delete with an empty name should not try to remove the base storage directory, but fail loudly (#20660). """ with self.assertRaises(AssertionError): self.storage.delete('') @override_settings( MEDIA_ROOT='media_root', MEDIA_URL='media_url/', FILE_UPLOAD_PERMISSIONS=0o777, FILE_UPLOAD_DIRECTORY_PERMISSIONS=0o777, ) def test_setting_changed(self): """ Properties using settings values as defaults should be updated on referenced settings change while specified values should be unchanged. """ storage = self.storage_class( location='explicit_location', base_url='explicit_base_url/', file_permissions_mode=0o666, directory_permissions_mode=0o666, ) defaults_storage = self.storage_class() settings = { 'MEDIA_ROOT': 'overriden_media_root', 'MEDIA_URL': 'overriden_media_url/', 'FILE_UPLOAD_PERMISSIONS': 0o333, 'FILE_UPLOAD_DIRECTORY_PERMISSIONS': 0o333, } with self.settings(**settings): self.assertEqual(storage.base_location, 'explicit_location') self.assertIn('explicit_location', storage.location) self.assertEqual(storage.base_url, 'explicit_base_url/') self.assertEqual(storage.file_permissions_mode, 0o666) self.assertEqual(storage.directory_permissions_mode, 0o666) self.assertEqual(defaults_storage.base_location, settings['MEDIA_ROOT']) self.assertIn(settings['MEDIA_ROOT'], defaults_storage.location) self.assertEqual(defaults_storage.base_url, settings['MEDIA_URL']) self.assertEqual(defaults_storage.file_permissions_mode, settings['FILE_UPLOAD_PERMISSIONS']) self.assertEqual( defaults_storage.directory_permissions_mode, settings['FILE_UPLOAD_DIRECTORY_PERMISSIONS'] ) class CustomStorage(FileSystemStorage): def get_available_name(self, name, max_length=None): """ Append numbers to duplicate files rather than underscores, like Trac. """ parts = name.split('.') basename, ext = parts[0], parts[1:] number = 2 while self.exists(name): name = '.'.join([basename, str(number)] + ext) number += 1 return name class CustomStorageTests(FileStorageTests): storage_class = CustomStorage def test_custom_get_available_name(self): first = self.storage.save('custom_storage', ContentFile('custom contents')) self.assertEqual(first, 'custom_storage') second = self.storage.save('custom_storage', ContentFile('more contents')) self.assertEqual(second, 'custom_storage.2') self.storage.delete(first) self.storage.delete(second) class CustomStorageLegacyDatetimeHandling(FileSystemStorage): # Use the legacy accessed_time() et al from FileSystemStorage and the # shim get_accessed_time() et al from the Storage baseclass. Both of those # raise warnings, so the testcase class ignores them all. def get_accessed_time(self, name): return super(FileSystemStorage, self).get_accessed_time(name) def get_created_time(self, name): return super(FileSystemStorage, self).get_created_time(name) def get_modified_time(self, name): return super(FileSystemStorage, self).get_modified_time(name) @ignore_warnings(category=RemovedInDjango20Warning) class CustomStorageLegacyDatetimeHandlingTests(FileStorageTests): storage_class = CustomStorageLegacyDatetimeHandling class DiscardingFalseContentStorage(FileSystemStorage): def _save(self, name, content): if content: return super(DiscardingFalseContentStorage, self)._save(name, content) return '' class DiscardingFalseContentStorageTests(FileStorageTests): storage_class = DiscardingFalseContentStorage def test_custom_storage_discarding_empty_content(self): """ When Storage.save() wraps a file-like object in File, it should include the name argument so that bool(file) evaluates to True (#26495). """ output = six.StringIO('content') self.storage.save('tests/stringio', output) self.assertTrue(self.storage.exists('tests/stringio')) with self.storage.open('tests/stringio') as f: self.assertEqual(f.read(), b'content') class FileFieldStorageTests(TestCase): def tearDown(self): shutil.rmtree(temp_storage_location) def _storage_max_filename_length(self, storage): """ Query filesystem for maximum filename length (e.g. AUFS has 242). """ dir_to_test = storage.location while not os.path.exists(dir_to_test): dir_to_test = os.path.dirname(dir_to_test) try: return os.pathconf(dir_to_test, 'PC_NAME_MAX') except Exception: return 255 # Should be safe on most backends def test_files(self): self.assertIsInstance(Storage.normal, FileDescriptor) # An object without a file has limited functionality. obj1 = Storage() self.assertEqual(obj1.normal.name, "") with self.assertRaises(ValueError): obj1.normal.size # Saving a file enables full functionality. obj1.normal.save("django_test.txt", ContentFile("content")) self.assertEqual(obj1.normal.name, "tests/django_test.txt") self.assertEqual(obj1.normal.size, 7) self.assertEqual(obj1.normal.read(), b"content") obj1.normal.close() # File objects can be assigned to FileField attributes, but shouldn't # get committed until the model it's attached to is saved. obj1.normal = SimpleUploadedFile("assignment.txt", b"content") dirs, files = temp_storage.listdir("tests") self.assertEqual(dirs, []) self.assertNotIn("assignment.txt", files) obj1.save() dirs, files = temp_storage.listdir("tests") self.assertEqual(sorted(files), ["assignment.txt", "django_test.txt"]) # Save another file with the same name. obj2 = Storage() obj2.normal.save("django_test.txt", ContentFile("more content")) obj2_name = obj2.normal.name six.assertRegex(self, obj2_name, "tests/django_test_%s.txt" % FILE_SUFFIX_REGEX) self.assertEqual(obj2.normal.size, 12) obj2.normal.close() # Deleting an object does not delete the file it uses. obj2.delete() obj2.normal.save("django_test.txt", ContentFile("more content")) self.assertNotEqual(obj2_name, obj2.normal.name) six.assertRegex(self, obj2.normal.name, "tests/django_test_%s.txt" % FILE_SUFFIX_REGEX) obj2.normal.close() def test_filefield_read(self): # Files can be read in a little at a time, if necessary. obj = Storage.objects.create( normal=SimpleUploadedFile("assignment.txt", b"content")) obj.normal.open() self.assertEqual(obj.normal.read(3), b"con") self.assertEqual(obj.normal.read(), b"tent") self.assertEqual(list(obj.normal.chunks(chunk_size=2)), [b"co", b"nt", b"en", b"t"]) obj.normal.close() def test_filefield_write(self): # Files can be written to. obj = Storage.objects.create(normal=SimpleUploadedFile('rewritten.txt', b'content')) with obj.normal as normal: normal.open('wb') normal.write(b'updated') obj.refresh_from_db() self.assertEqual(obj.normal.read(), b'updated') obj.normal.close() def test_duplicate_filename(self): # Multiple files with the same name get _(7 random chars) appended to them. objs = [Storage() for i in range(2)] for o in objs: o.normal.save("multiple_files.txt", ContentFile("Same Content")) try: names = [o.normal.name for o in objs] self.assertEqual(names[0], "tests/multiple_files.txt") six.assertRegex(self, names[1], "tests/multiple_files_%s.txt" % FILE_SUFFIX_REGEX) finally: for o in objs: o.delete() def test_file_truncation(self): # Given the max_length is limited, when multiple files get uploaded # under the same name, then the filename get truncated in order to fit # in _(7 random chars). When most of the max_length is taken by # dirname + extension and there are not enough characters in the # filename to truncate, an exception should be raised. objs = [Storage() for i in range(2)] filename = 'filename.ext' for o in objs: o.limited_length.save(filename, ContentFile('Same Content')) try: # Testing truncation. names = [o.limited_length.name for o in objs] self.assertEqual(names[0], 'tests/%s' % filename) six.assertRegex(self, names[1], 'tests/fi_%s.ext' % FILE_SUFFIX_REGEX) # Testing exception is raised when filename is too short to truncate. filename = 'short.longext' objs[0].limited_length.save(filename, ContentFile('Same Content')) with self.assertRaisesMessage(SuspiciousFileOperation, 'Storage can not find an available filename'): objs[1].limited_length.save(*(filename, ContentFile('Same Content'))) finally: for o in objs: o.delete() @unittest.skipIf( sys.platform.startswith('win'), "Windows supports at most 260 characters in a path.", ) def test_extended_length_storage(self): # Testing FileField with max_length > 255. Most systems have filename # length limitation of 255. Path takes extra chars. filename = (self._storage_max_filename_length(temp_storage) - 4) * 'a' # 4 chars for extension. obj = Storage() obj.extended_length.save('%s.txt' % filename, ContentFile('Same Content')) self.assertEqual(obj.extended_length.name, 'tests/%s.txt' % filename) self.assertEqual(obj.extended_length.read(), b'Same Content') obj.extended_length.close() def test_filefield_default(self): # Default values allow an object to access a single file. temp_storage.save('tests/default.txt', ContentFile('default content')) obj = Storage.objects.create() self.assertEqual(obj.default.name, "tests/default.txt") self.assertEqual(obj.default.read(), b"default content") obj.default.close() # But it shouldn't be deleted, even if there are no more objects using # it. obj.delete() obj = Storage() self.assertEqual(obj.default.read(), b"default content") obj.default.close() def test_empty_upload_to(self): # upload_to can be empty, meaning it does not use subdirectory. obj = Storage() obj.empty.save('django_test.txt', ContentFile('more content')) self.assertEqual(obj.empty.name, "django_test.txt") self.assertEqual(obj.empty.read(), b"more content") obj.empty.close() def test_random_upload_to(self): # Verify the fix for #5655, making sure the directory is only # determined once. obj = Storage() obj.random.save("random_file", ContentFile("random content")) self.assertTrue(obj.random.name.endswith("/random_file")) obj.random.close() def test_custom_valid_name_callable_upload_to(self): """ Storage.get_valid_name() should be called when upload_to is a callable. """ obj = Storage() obj.custom_valid_name.save("random_file", ContentFile("random content")) # CustomValidNameStorage.get_valid_name() appends '_valid' to the name self.assertTrue(obj.custom_valid_name.name.endswith("/random_file_valid")) obj.custom_valid_name.close() def test_filefield_pickling(self): # Push an object into the cache to make sure it pickles properly obj = Storage() obj.normal.save("django_test.txt", ContentFile("more content")) obj.normal.close() cache.set("obj", obj) self.assertEqual(cache.get("obj").normal.name, "tests/django_test.txt") def test_file_object(self): # Create sample file temp_storage.save('tests/example.txt', ContentFile('some content')) # Load it as python file object with open(temp_storage.path('tests/example.txt')) as file_obj: # Save it using storage and read its content temp_storage.save('tests/file_obj', file_obj) self.assertTrue(temp_storage.exists('tests/file_obj')) with temp_storage.open('tests/file_obj') as f: self.assertEqual(f.read(), b'some content') def test_stringio(self): # Test passing StringIO instance as content argument to save output = six.StringIO() output.write('content') output.seek(0) # Save it and read written file temp_storage.save('tests/stringio', output) self.assertTrue(temp_storage.exists('tests/stringio')) with temp_storage.open('tests/stringio') as f: self.assertEqual(f.read(), b'content') # Tests for a race condition on file saving (#4948). # This is written in such a way that it'll always pass on platforms # without threading. class SlowFile(ContentFile): def chunks(self): time.sleep(1) return super(ContentFile, self).chunks() class FileSaveRaceConditionTest(unittest.TestCase): def setUp(self): self.storage_dir = tempfile.mkdtemp() self.storage = FileSystemStorage(self.storage_dir) self.thread = threading.Thread(target=self.save_file, args=['conflict']) def tearDown(self): shutil.rmtree(self.storage_dir) def save_file(self, name): name = self.storage.save(name, SlowFile(b"Data")) def test_race_condition(self): self.thread.start() self.save_file('conflict') self.thread.join() files = sorted(os.listdir(self.storage_dir)) self.assertEqual(files[0], 'conflict') six.assertRegex(self, files[1], 'conflict_%s' % FILE_SUFFIX_REGEX) @unittest.skipIf(sys.platform.startswith('win'), "Windows only partially supports umasks and chmod.") class FileStoragePermissions(unittest.TestCase): def setUp(self): self.umask = 0o027 self.old_umask = os.umask(self.umask) self.storage_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.storage_dir) os.umask(self.old_umask) @override_settings(FILE_UPLOAD_PERMISSIONS=0o654) def test_file_upload_permissions(self): self.storage = FileSystemStorage(self.storage_dir) name = self.storage.save("the_file", ContentFile("data")) actual_mode = os.stat(self.storage.path(name))[0] & 0o777 self.assertEqual(actual_mode, 0o654) @override_settings(FILE_UPLOAD_PERMISSIONS=None) def test_file_upload_default_permissions(self): self.storage = FileSystemStorage(self.storage_dir) fname = self.storage.save("some_file", ContentFile("data")) mode = os.stat(self.storage.path(fname))[0] & 0o777 self.assertEqual(mode, 0o666 & ~self.umask) @override_settings(FILE_UPLOAD_DIRECTORY_PERMISSIONS=0o765) def test_file_upload_directory_permissions(self): self.storage = FileSystemStorage(self.storage_dir) name = self.storage.save("the_directory/the_file", ContentFile("data")) dir_mode = os.stat(os.path.dirname(self.storage.path(name)))[0] & 0o777 self.assertEqual(dir_mode, 0o765) @override_settings(FILE_UPLOAD_DIRECTORY_PERMISSIONS=None) def test_file_upload_directory_default_permissions(self): self.storage = FileSystemStorage(self.storage_dir) name = self.storage.save("the_directory/the_file", ContentFile("data")) dir_mode = os.stat(os.path.dirname(self.storage.path(name)))[0] & 0o777 self.assertEqual(dir_mode, 0o777 & ~self.umask) class FileStoragePathParsing(unittest.TestCase): def setUp(self): self.storage_dir = tempfile.mkdtemp() self.storage = FileSystemStorage(self.storage_dir) def tearDown(self): shutil.rmtree(self.storage_dir) def test_directory_with_dot(self): """Regression test for #9610. If the directory name contains a dot and the file name doesn't, make sure we still mangle the file name instead of the directory name. """ self.storage.save('dotted.path/test', ContentFile("1")) self.storage.save('dotted.path/test', ContentFile("2")) files = sorted(os.listdir(os.path.join(self.storage_dir, 'dotted.path'))) self.assertFalse(os.path.exists(os.path.join(self.storage_dir, 'dotted_.path'))) self.assertEqual(files[0], 'test') six.assertRegex(self, files[1], 'test_%s' % FILE_SUFFIX_REGEX) def test_first_character_dot(self): """ File names with a dot as their first character don't have an extension, and the underscore should get added to the end. """ self.storage.save('dotted.path/.test', ContentFile("1")) self.storage.save('dotted.path/.test', ContentFile("2")) files = sorted(os.listdir(os.path.join(self.storage_dir, 'dotted.path'))) self.assertFalse(os.path.exists(os.path.join(self.storage_dir, 'dotted_.path'))) self.assertEqual(files[0], '.test') six.assertRegex(self, files[1], '.test_%s' % FILE_SUFFIX_REGEX) class ContentFileStorageTestCase(unittest.TestCase): def setUp(self): self.storage_dir = tempfile.mkdtemp() self.storage = FileSystemStorage(self.storage_dir) def tearDown(self): shutil.rmtree(self.storage_dir) def test_content_saving(self): """ Test that ContentFile can be saved correctly with the filesystem storage, both if it was initialized with string or unicode content""" self.storage.save('bytes.txt', ContentFile(b"content")) self.storage.save('unicode.txt', ContentFile("español")) @override_settings(ROOT_URLCONF='file_storage.urls') class FileLikeObjectTestCase(LiveServerTestCase): """ Test file-like objects (#15644). """ available_apps = [] def setUp(self): self.temp_dir = tempfile.mkdtemp() self.storage = FileSystemStorage(location=self.temp_dir) def tearDown(self): shutil.rmtree(self.temp_dir) def test_urllib2_urlopen(self): """ Test the File storage API with a file like object coming from urllib2.urlopen() """ file_like_object = urlopen(self.live_server_url + '/') f = File(file_like_object) stored_filename = self.storage.save("remote_file.html", f) remote_file = urlopen(self.live_server_url + '/') with self.storage.open(stored_filename) as stored_file: self.assertEqual(stored_file.read(), remote_file.read())
the-stack_106_22560
from smt.surrogate_models import RMTB from smt.examples.one_D_step.one_D_step import get_one_d_step, plot_one_d_step xt, yt, xlimits = get_one_d_step() interp = RMTB( num_ctrl_pts=100, xlimits=xlimits, nonlinear_maxiter=20, solver_tolerance=1e-16, energy_weight=1e-14, regularization_weight=0.0, ) interp.set_training_values(xt, yt) interp.train() plot_one_d_step(xt, yt, xlimits, interp)
the-stack_106_22561
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """ Plugin for SGE. This has been tested on GE 6.2u3. Plugin originally written by Marco Dorigo. Email: marco(DOT)dorigo(AT)rub(DOT)de """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import xml.parsers.expat import xml.dom.minidom from aiida.common.escaping import escape_for_bash import aiida.schedulers from aiida.schedulers import SchedulerError, SchedulerParsingError from aiida.schedulers.datastructures import (JobInfo, JobState, ParEnvJobResource) # 'http://www.loni.ucla.edu/twiki/bin/view/Infrastructure/GridComputing?skin=plain': # Jobs Status: # 'qw' - Queued and waiting, # 'w' - Job waiting, # 's' - Job suspended, # 't' - Job transferring and about to start, # 'r' - Job running, # 'h' - Job hold, # 'R' - Job restarted, # 'd' - Job has been marked for deletion, # 'Eqw' - An error occurred with the job. # # 'http://confluence.rcs.griffith.edu.au:8080/display/v20zCluster/ # Sun+Grid+Engine+SGE+state+letter+symbol+codes+meanings': # # Category State SGE Letter Code # Pending: pending qw # Pending: pending, user hold qw # Pending: pending, system hold hqw # Pending: pending, user and system hold hqw # Pending: pending, user hold, re-queue hRwq # Pending: pending, system hold, re-queue hRwq # Pending: pending, user and system hold, re-queue hRwq # Pending: pending, user hold qw # Pending: pending, user hold qw # Running running r # Running transferring t # Running running, re-submit Rr # Running transferring, re-submit Rt # Suspended job suspended s, ts # Suspended queue suspended S, tS # Suspended queue suspended by alarm T, tT # Suspended all suspended with re-submit Rs, Rts, RS, RtS, RT, RtT # Error all pending states with error Eqw, Ehqw, EhRqw # Deleted all running and suspended states with deletion dr, dt, dRr, dRt, # ds, dS, dT, dRs, # dRS, dRT _MAP_STATUS_SGE = { 'qw': JobState.QUEUED, 'w': JobState.QUEUED, 'hqw': JobState.QUEUED_HELD, 'hRwq': JobState.QUEUED_HELD, 'r': JobState.RUNNING, 't': JobState.RUNNING, 'R': JobState.RUNNING, 'Rr': JobState.RUNNING, 'Rt': JobState.RUNNING, 's': JobState.SUSPENDED, 'st': JobState.SUSPENDED, 'Rs': JobState.SUSPENDED, 'Rts': JobState.SUSPENDED, 'dr': JobState.UNDETERMINED, 'dt': JobState.UNDETERMINED, 'ds': JobState.UNDETERMINED, 'dRr': JobState.UNDETERMINED, 'dRt': JobState.UNDETERMINED, 'dRs': JobState.UNDETERMINED, 'Eqw': JobState.UNDETERMINED, 'Ehqw': JobState.UNDETERMINED, 'EhRqw': JobState.UNDETERMINED } class SgeJobResource(ParEnvJobResource): pass class SgeScheduler(aiida.schedulers.Scheduler): """ Support for the Sun Grid Engine scheduler and its variants/forks (Son of Grid Engine, Oracle Grid Engine, ...) """ _logger = aiida.schedulers.Scheduler._logger.getChild('sge') # For SGE, we can have a good qstat xml output by querying by # user, but not by job id _features = { 'can_query_by_user': True, } # The class to be used for the job resource. _job_resource_class = SgeJobResource def _get_joblist_command(self, jobs=None, user=None): """ The command to report full information on existing jobs. TODO: in the case of job arrays, decide what to do (i.e., if we want to pass the -t options to list each subjob). !!!ALL COPIED FROM PBSPRO!!! TODO: understand if it is worth escaping the username, or rather leave it unescaped to allow to pass $USER """ from aiida.common.exceptions import FeatureNotAvailable if jobs: raise FeatureNotAvailable('Cannot query by jobid in SGE') command = 'qstat -ext -urg -xml ' if user: command += '-u {}'.format(str(user)) else: # All users if no user is specified command += "-u '*'" self.logger.debug('qstat command: {}'.format(command)) return command # raise NotImplementedError def _get_detailed_jobinfo_command(self, jobid): command = 'qacct -j {}'.format(escape_for_bash(jobid)) return command def _get_submit_script_header(self, job_tmpl): """ Return the submit script header, using the parameters from the job_tmpl. Args: job_tmpl: an JobTemplate instance with relevant parameters set. TODO: truncate the title if too long """ import re import string empty_line = '' lines = [] # SGE provides flags for wd and cwd if job_tmpl.working_directory: lines.append('#$ -wd {}'.format(job_tmpl.working_directory)) else: lines.append('#$ -cwd') # Enforce bash shell lines.append('#$ -S /bin/bash') if job_tmpl.submit_as_hold: # if isinstance(job_tmpl.submit_as_hold, str): lines.append('#$ -h {}'.format(job_tmpl.submit_as_hold)) if job_tmpl.rerunnable: # if isinstance(job_tmpl.rerunnable, str): lines.append('#$ -r {}'.format(job_tmpl.rerunnable)) if job_tmpl.email: # If not specified, but email events are set, PBSPro # sends the mail to the job owner by default lines.append('#$ -M {}'.format(job_tmpl.email)) email_events = '' if job_tmpl.email_on_started: email_events += 'b' if job_tmpl.email_on_terminated: email_events += 'ea' if email_events: lines.append('#$ -m {}'.format(email_events)) if not job_tmpl.email: self.logger.info('Email triggers provided to SGE script for job,' 'but no email field set; will send emails to ' 'the job owner as set in the scheduler') else: lines.append('#$ -m n') # From the qsub man page: # "The name may be any arbitrary alphanumeric ASCII string, but # may not contain "\n", "\t", "\r", "/", ":", "@", "\", "*", # or "?"." if job_tmpl.job_name: job_title = re.sub(r'[^a-zA-Z0-9_.-]+', '', job_tmpl.job_name) # prepend a 'j' (for 'job') before the string if the string # is now empty or does not start with a valid character # (the first symbol cannot be digit, at least in some versions # of the scheduler) if not job_title or (job_title[0] not in string.ascii_letters): job_title = 'j' + job_title lines.append('#$ -N {}'.format(job_tmpl.job_name)) if job_tmpl.import_sys_environment: lines.append('#$ -V') if job_tmpl.sched_output_path: lines.append('#$ -o {}'.format(job_tmpl.sched_output_path)) if job_tmpl.sched_join_files: # from qsub man page: # 'y': Standard error and standard output are merged into # standard output # 'n' : Standard error and standard output are not merged (default) lines.append('#$ -j y') if job_tmpl.sched_error_path: self.logger.info('sched_join_files is True, but sched_error_path is set in ' 'SGE script; ignoring sched_error_path') else: if job_tmpl.sched_error_path: lines.append('#$ -e {}'.format(job_tmpl.sched_error_path)) if job_tmpl.queue_name: lines.append('#$ -q {}'.format(job_tmpl.queue_name)) if job_tmpl.account: lines.append('#$ -P {}'.format(job_tmpl.account)) if job_tmpl.priority: # Priority of the job. Format: host-dependent integer. Default: # zero. Range: [-1023, +1024]. Sets job's Priority # attribute to priority. lines.append('#$ -p {}'.format(job_tmpl.priority)) if not job_tmpl.job_resource: raise ValueError('Job resources (as the tot_num_mpiprocs) are required for the SGE scheduler plugin') # Setting up the parallel environment lines.append('#$ -pe {} {}'. \ format(str(job_tmpl.job_resource.parallel_env), \ int(job_tmpl.job_resource.tot_num_mpiprocs))) if job_tmpl.max_wallclock_seconds is not None: try: tot_secs = int(job_tmpl.max_wallclock_seconds) if tot_secs <= 0: raise ValueError except ValueError: raise ValueError('max_wallclock_seconds must be ' "a positive integer (in seconds)! It is instead '{}'" ''.format((job_tmpl.max_wallclock_seconds))) hours = tot_secs // 3600 tot_minutes = tot_secs % 3600 minutes = tot_minutes // 60 seconds = tot_minutes % 60 lines.append('#$ -l h_rt={:02d}:{:02d}:{:02d}'.format(hours, minutes, seconds)) if job_tmpl.custom_scheduler_commands: lines.append(job_tmpl.custom_scheduler_commands) # TAKEN FROM PBSPRO: # Job environment variables are to be set on one single line. # This is a tough job due to the escaping of commas, etc. # moreover, I am having issues making it work. # Therefore, I assume that this is bash and export variables by # and. if job_tmpl.job_environment: lines.append(empty_line) lines.append('# ENVIRONMENT VARIABLES BEGIN ###') if not isinstance(job_tmpl.job_environment, dict): raise ValueError('If you provide job_environment, it must be a dictionary') for key, value in job_tmpl.job_environment.items(): lines.append('export {}={}'.format(key.strip(), escape_for_bash(value))) lines.append('# ENVIRONMENT VARIABLES END ###') lines.append(empty_line) return '\n'.join(lines) def _get_submit_command(self, submit_script): """ Return the string to execute to submit a given script. Args: submit_script: the path of the submit script relative to the working directory. IMPORTANT: submit_script should be already escaped. """ submit_command = 'qsub -terse {}'.format(submit_script) self.logger.info('submitting with: ' + submit_command) return submit_command def _parse_joblist_output(self, retval, stdout, stderr): if retval != 0: self.logger.error('Error in _parse_joblist_output: retval={}; ' 'stdout={}; stderr={}'.format(retval, stdout, stderr)) raise SchedulerError('Error during joblist retrieval, retval={}'. \ format(retval)) if stderr.strip(): self.logger.warning('in _parse_joblist_output for {}: ' 'there was some text in stderr: {}'.format(str(self.transport), stderr)) if stdout: try: xmldata = xml.dom.minidom.parseString(stdout) except xml.parsers.expat.ExpatError: self.logger.error('in sge._parse_joblist_output: xml parsing of stdout failed:' '{}'.format(stdout)) raise SchedulerParsingError('Error during joblist retrieval,' 'xml parsing of stdout failed') else: self.logger.error('Error in sge._parse_joblist_output: retval={}; ' 'stdout={}; stderr={}'.format(retval, stdout, stderr)) raise SchedulerError('Error during joblist retrieval,' 'no stdout produced') try: first_child = xmldata.firstChild second_childs = first_child.childNodes tag_names_sec = [elem.tagName for elem in second_childs \ if elem.nodeType == 1] if 'queue_info' not in tag_names_sec: self.logger.error('Error in sge._parse_joblist_output: ' 'no queue_info: {}'. \ format(stdout)) raise SchedulerError if 'job_info' not in tag_names_sec: self.logger.error('Error in sge._parse_joblist_output: ' 'no job_info: {}'. \ format(stdout)) raise SchedulerError except SchedulerError: self.logger.error('Error in sge._parse_joblist_output: stdout={}' \ .format(stdout)) raise SchedulerError('Error during xml processing, of stdout:' "There is no 'job_info' or no 'queue_info'" 'element or there are no jobs!') # If something weird happens while firstChild, pop, etc: except Exception: self.logger.error('Error in sge._parse_joblist_output: stdout={}' \ .format(stdout)) raise SchedulerError('Error during xml processing, of stdout') jobs = [i for i in first_child.getElementsByTagName('job_list')] # jobs = [i for i in jobinfo.getElementsByTagName('job_list')] # print [i[0].childNodes[0].data for i in job_numbers if i] joblist = [] for job in jobs: this_job = JobInfo() # In case the user needs more information the xml-data for # each job is stored: this_job.raw_data = job.toxml() try: job_element = job.getElementsByTagName('JB_job_number').pop(0) element_child = job_element.childNodes.pop(0) this_job.job_id = str(element_child.data).strip() if not this_job.job_id: raise SchedulerError except SchedulerError: self.logger.error('Error in sge._parse_joblist_output:' 'no job id is given, stdout={}' \ .format(stdout)) raise SchedulerError('Error in sge._parse_joblist_output:' 'no job id is given') except IndexError: self.logger.error("No 'job_number' given for job index {} in " 'job list, stdout={}'.format(jobs.index(job) \ , stdout)) raise IndexError('Error in sge._parse_joblist_output:' 'no job id is given') try: job_element = job.getElementsByTagName('state').pop(0) element_child = job_element.childNodes.pop(0) job_state_string = str(element_child.data).strip() try: this_job.job_state = _MAP_STATUS_SGE[job_state_string] except KeyError: self.logger.warning("Unrecognized job_state '{}' for job " 'id {}'.format(job_state_string, this_job.job_id)) this_job.job_state = JobState.UNDETERMINED except IndexError: self.logger.warning("No 'job_state' field for job id {} in" 'stdout={}'.format(this_job.job_id, stdout)) this_job.job_state = JobState.UNDETERMINED try: job_element = job.getElementsByTagName('JB_owner').pop(0) element_child = job_element.childNodes.pop(0) this_job.job_owner = str(element_child.data).strip() except IndexError: self.logger.warning("No 'job_owner' field for job id {}".format(this_job.job_id)) try: job_element = job.getElementsByTagName('JB_name').pop(0) element_child = job_element.childNodes.pop(0) this_job.title = str(element_child.data).strip() except IndexError: self.logger.warning("No 'title' field for job id {}".format(this_job.job_id)) try: job_element = job.getElementsByTagName('queue_name').pop(0) element_child = job_element.childNodes.pop(0) this_job.queue_name = str(element_child.data).strip() except IndexError: if this_job.job_state == JobState.RUNNING: self.logger.warning("No 'queue_name' field for job id {}".format(this_job.job_id)) try: job_element = job.getElementsByTagName('JB_submission_time').pop(0) element_child = job_element.childNodes.pop(0) time_string = str(element_child.data).strip() try: this_job.submission_time = self._parse_time_string(time_string) except ValueError: self.logger.warning("Error parsing 'JB_submission_time' " "for job id {} ('{}')".format(this_job.job_id, time_string)) except IndexError: try: job_element = job.getElementsByTagName('JAT_start_time').pop(0) element_child = job_element.childNodes.pop(0) time_string = str(element_child.data).strip() try: this_job.dispatch_time = self._parse_time_string(time_string) except ValueError: self.logger.warning("Error parsing 'JAT_start_time'" "for job id {} ('{}')".format(this_job.job_id, time_string)) except IndexError: self.logger.warning("No 'JB_submission_time' and no " "'JAT_start_time' field for job " 'id {}'.format(this_job.job_id)) # There is also cpu_usage, mem_usage, io_usage information available: if this_job.job_state == JobState.RUNNING: try: job_element = job.getElementsByTagName('slots').pop(0) element_child = job_element.childNodes.pop(0) this_job.num_mpiprocs = str(element_child.data).strip() except IndexError: self.logger.warning("No 'slots' field for job id {}".format(this_job.job_id)) joblist.append(this_job) # self.logger.debug("joblist final: {}".format(joblist)) return joblist def _parse_submit_output(self, retval, stdout, stderr): """ Parse the output of the submit command, as returned by executing the command returned by _get_submit_command command. To be implemented by the plugin. Return a string with the JobID. """ if retval != 0: self.logger.error('Error in _parse_submit_output: retval={}; ' 'stdout={}; stderr={}'.format(retval, stdout, stderr)) raise SchedulerError('Error during submission, retval={}\n' 'stdout={}\nstderr={}'.format(retval, stdout, stderr)) if stderr.strip(): self.logger.warning('in _parse_submit_output for {}: ' 'there was some text in stderr: {}'.format(str(self.transport), stderr)) return stdout.strip() def _parse_time_string(self, string, fmt='%Y-%m-%dT%H:%M:%S'): """ Parse a time string in the format returned from qstat -xml -ext and returns a datetime object. Example format: 2013-06-13T11:53:11 """ import time import datetime try: time_struct = time.strptime(string, fmt) except Exception as exc: self.logger.debug('Unable to parse time string {}, the message was {}'.format(string, exc)) raise ValueError('Problem parsing the time string.') # I convert from a time_struct to a datetime object going through # the seconds since epoch, as suggested on stackoverflow: # http://stackoverflow.com/questions/1697815 return datetime.datetime.fromtimestamp(time.mktime(time_struct)) def _get_kill_command(self, jobid): """ Return the command to kill the job with specified jobid. """ submit_command = 'qdel {}'.format(jobid) self.logger.info('killing job {}'.format(jobid)) return submit_command def _parse_kill_output(self, retval, stdout, stderr): """ Parse the output of the kill command. To be implemented by the plugin. :return: True if everything seems ok, False otherwise. """ if retval != 0: self.logger.error('Error in _parse_kill_output: retval={}; ' 'stdout={}; stderr={}'.format(retval, stdout, stderr)) return False if stderr.strip(): self.logger.warning('in _parse_kill_output for {}: ' 'there was some text in stderr: {}'.format(str(self.transport), stderr)) if stdout.strip(): self.logger.info('in _parse_kill_output for {}: ' 'there was some text in stdout: {}'.format(str(self.transport), stdout)) return True
the-stack_106_22562
# PyTorch from torch import cuda import warnings warnings.filterwarnings('ignore', category=FutureWarning) # Data science tools from os import path # def create_paths(data_path, train_path, test_path, save_net_path): data_dir = path.abspath(data_path) train_dir = data_dir + train_path test_dir = data_dir + test_path # val_dir = data_dir + val_path save_net_path = 'src/models/' + save_net_path checkpoint_path = save_net_path + 'h' return data_dir, train_dir, test_dir, save_net_path, checkpoint_path # def check_on_gpu(): train_on_gpu = cuda.is_available() return train_on_gpu # def check_number_gpu(): if check_on_gpu(): gpu_count = cuda.device_count() print(f'{gpu_count} gpus detected.') if gpu_count > 1: multi_gpu = True else: multi_gpu = False # def check_size_features_and_labels(data_loaders, dataset): train_iter = iter(data_loaders['train']) features, labels = next(train_iter) print(features.shape, '\n', labels.shape, '\n') n_classes = len(dataset['train'].classes) print(f'There are {n_classes} different classes.') # def check_total_params(model): total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) return print(f'{total_params:,} total parameters.\n {total_trainable_params:,} training parameters \n') # def check_params_to_learn(model): params_to_update = model.parameters() print("\nParams to learn:") params_to_update = [] for name, param in model.named_parameters(): if param.requires_grad: params_to_update.append(param) print("\t", name)
the-stack_106_22565
import collections import pickle import os def make_char_vocab(filename, output_path): chars = [] with open(filename, 'r', encoding='utf-8') as f: data = f.read() words = data.strip().split('\n') print(len(words)) for word in words[4:]: # ignore ['<PAD>', '<UNK>', '<ROOT>', '<NUM>'] for char in word: chars.append(char) chars_counter = collections.Counter(chars).most_common() char_vocab = {'<PAD>', '<UNK>', '<ROOT>', '<NUM>'} char_vocab = ['<PAD>', '<UNK>', '<ROOT>', '<NUM>'] + [item[0] for item in chars_counter] print(char_vocab) char_to_idx = {char:idx for idx, char in enumerate(char_vocab)} idx_to_char = {idx:char for idx, char in enumerate(char_vocab)} print(char_to_idx) vocab_path = os.path.join(output_path,'char.vocab') char2idx_path = os.path.join(output_path,'char2idx.bin') idx2char_path = os.path.join(output_path,'idx2char.bin') with open(vocab_path, 'w', encoding='utf-8') as f: f.write('\n'.join(char_vocab)) with open(char2idx_path, 'wb') as f: pickle.dump(char_to_idx, f) with open(idx2char_path, 'wb') as f: pickle.dump(idx_to_char, f) make_char_vocab('temp/word.vocab', 'temp')
the-stack_106_22570
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import functools import logging import traceback from thrift.server.TServer import TServerEventHandler from thrift.Thrift import ( TException, TProcessor, ) from thrift.async_common import ( AsyncioRpcConnectionContext, FramedProtocol, THeaderProtocol, ThriftHeaderClientProtocolBase, TReadWriteBuffer, WrappedTransport, ) __all__ = [ 'ThriftAsyncServerFactory', 'ThriftClientProtocolFactory', 'ThriftServerProtocolFactory', ] logger = logging.getLogger(__name__) # # Thrift server support # async def ThriftAsyncServerFactory( processor, *, interface=None, port=0, loop=None, nthreads=None, sock=None, backlog=100, ssl=None, event_handler=None, protocol_factory=None ): """ ThriftAsyncServerFactory(processor) -> asyncio.Server asyncio.Server factory for Thrift processors. In the spirit of "there should be one obvious way to do it", this server only supports the new THeader protocol. If `interface` is None (the default), listens on all interfaces. `port` is 0 by default, which makes the OS allocate the port. Enumerate the returned server's "sockets" attribute to know the port in this case. If not given, the default event loop is used. If `nthreads` is given, the default executor for the event loop is set to a thread pool of up to `nthreads`. ssl is an instance of ssl.SSLContext. If None (default) or False SSL/TLS is not used. event_handler must be a subclass of thrift.server.TServer. If None, thrift.server.TServer.TServerEventHandler is used. Specify a custom handler for custom event handling (e.g. handling new connections) protocol_factory is a function that takes a triplet of (processor, event_handler, loop=None) and returns a `asyncio.Protocol` instance that will be passed to a call to `asyncio.create_server`. processor will be a subclass of `TProcessor`, event_handler will be a subclass of `TServer`, and loop is an `Optional[asyncio.AbstractEventLoop]`. If protocol_factory is None `ThriftHeaderServerProtocol` is used. Notes about the processor method handling: 1. By default all methods are executed synchronously on the event loop. This can lead to poor performance if a single run takes long to process. 2. Mark coroutines with `async def` if you wish to use `await` to call async services, schedule tasks with customized executors, etc. 3. Mark methods with @run_on_thread if you wish to run them on the thread pool executor. Note that unless you're accessing C extensions which free the GIL, this is not going to win you any performance. Use this to initialize multiple servers asynchronously:: loop = asyncio.get_event_loop() servers = [ ThriftAsyncServerFactory(handler1, port=9090, loop=loop), ThriftAsyncServerFactory(handler2, port=9091, loop=loop), ] loop.run_until_complete(asyncio.wait(servers)) try: loop.run_forever() # Servers are initialized now finally: for server in servers: server.close() """ if loop is None: loop = asyncio.get_event_loop() if not isinstance(processor, TProcessor): try: processor = processor._processor_type(processor, loop=loop) except AttributeError: raise TypeError( "Unsupported processor type: {}".format(type(processor)), ) if nthreads: from concurrent.futures import ThreadPoolExecutor loop.set_default_executor( ThreadPoolExecutor(max_workers=nthreads), ) ehandler = TServerEventHandler() if event_handler is None else event_handler protocol_factory = protocol_factory or ThriftHeaderServerProtocol pfactory = functools.partial(protocol_factory, processor, ehandler, loop) server = await loop.create_server( pfactory, interface, port, sock=sock, backlog=backlog, ssl=ssl, ) if server.sockets: for socket in server.sockets: ehandler.preServe(socket.getsockname()) return server def ThriftServerProtocolFactory(processor, server_event_handler, loop=None): return functools.partial( ThriftHeaderServerProtocol, processor, server_event_handler, loop, ) class ThriftHeaderServerProtocol(FramedProtocol): def __init__(self, processor, server_event_handler, loop=None): super().__init__(loop=loop) self.processor = processor self.server_event_handler = server_event_handler self.server_context = None async def message_received(self, frame): # Note: we are using a single `prot` for in and out so that # we can support legacy clients that only understand FRAMED. # The discovery of what the client supports happens in iprot's # transport so we have to reuse a single one here. buf = TReadWriteBuffer(frame) prot = THeaderProtocol(buf) try: await self.processor.process( prot, prot, self.server_context, ) msg = buf.getvalue() if len(msg) > 0: self.transport.write(msg) except TException as e: logger.warning("TException while processing request: %s", str(e)) msg = buf.getvalue() if len(msg) > 0: self.transport.write(msg) except asyncio.CancelledError: self.transport.close() except BaseException as e: logger.error("Exception while processing request: %s", str(e)) logger.error(traceback.format_exc()) self.transport.close() def connection_made(self, transport): self.upgrade_transport(transport) def upgrade_transport(self, transport): self.transport = transport socket = self.transport.get_extra_info("socket") if socket is not None: self.server_context = AsyncioRpcConnectionContext(socket) self.server_event_handler.newConnection(self.server_context) def connection_lost(self, exc): self.server_event_handler.connectionDestroyed(self.server_context) # # Thrift client support # def ThriftClientProtocolFactory( client_class, loop=None, timeouts=None, client_type=None, ): return functools.partial( ThriftHeaderClientProtocol, client_class, loop, timeouts, client_type, ) class SenderTransport(WrappedTransport): async def _send(self): while True: msg = await self._queue.get() self._clean_producers() self._trans.write(msg) class ThriftHeaderClientProtocol(ThriftHeaderClientProtocolBase): async def timeout_task(self, fname, seqid, delay): await asyncio.sleep(delay, loop=self.loop) self._handle_timeout(fname, seqid) def wrapAsyncioTransport(self, asyncio_transport): return SenderTransport(asyncio_transport, self, self.loop)
the-stack_106_22571
import json import logging import os import shutil from abc import ABC, abstractmethod from pathlib import Path from typing import Union, Dict, Any, Iterable, List, IO, Tuple, TextIO, Optional import cv2 import numpy as np import pyproj from numpy import ndarray from opensfm import context, features, geo, pygeometry, pymap, types from PIL import Image logger: logging.Logger = logging.getLogger(__name__) def camera_from_json(key: str, obj: Dict[str, Any]) -> pygeometry.Camera: """ Read camera from a json object """ camera = None pt = obj.get("projection_type", "perspective") if pt == "perspective": camera = pygeometry.Camera.create_perspective( obj["focal"], obj.get("k1", 0.0), obj.get("k2", 0.0) ) elif pt == "brown": camera = pygeometry.Camera.create_brown( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), np.array( [ obj.get("k1", 0.0), obj.get("k2", 0.0), obj.get("k3", 0.0), obj.get("p1", 0.0), obj.get("p2", 0.0), ] ), ) elif pt == "fisheye": camera = pygeometry.Camera.create_fisheye( obj["focal"], obj.get("k1", 0.0), obj.get("k2", 0.0) ) elif pt == "fisheye_opencv": camera = pygeometry.Camera.create_fisheye_opencv( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), np.array( [ obj.get("k1", 0.0), obj.get("k2", 0.0), obj.get("k3", 0.0), obj.get("k4", 0.0), ] ), ) elif pt == "fisheye62": camera = pygeometry.Camera.create_fisheye62( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), np.array( [ obj.get("k1", 0.0), obj.get("k2", 0.0), obj.get("k3", 0.0), obj.get("k4", 0.0), obj.get("k5", 0.0), obj.get("k6", 0.0), obj.get("p1", 0.0), obj.get("p2", 0.0), ] ), ) elif pt == "fisheye624": camera = pygeometry.Camera.create_fisheye624( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), np.array( [ obj.get("k1", 0.0), obj.get("k2", 0.0), obj.get("k3", 0.0), obj.get("k4", 0.0), obj.get("k5", 0.0), obj.get("k6", 0.0), obj.get("p1", 0.0), obj.get("p2", 0.0), obj.get("s0", 0.0), obj.get("s1", 0.0), obj.get("s2", 0.0), obj.get("s3", 0.0), ] ), ) elif pt == "radial": camera = pygeometry.Camera.create_radial( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), np.array( [ obj.get("k1", 0.0), obj.get("k2", 0.0), ] ), ) elif pt == "simple_radial": camera = pygeometry.Camera.create_simple_radial( obj["focal_x"], obj["focal_y"] / obj["focal_x"], np.array([obj.get("c_x", 0.0), obj.get("c_y", 0.0)]), obj.get("k1", 0.0), ) elif pt == "dual": camera = pygeometry.Camera.create_dual( obj.get("transition", 0.5), obj["focal"], obj.get("k1", 0.0), obj.get("k2", 0.0), ) elif pygeometry.Camera.is_panorama(pt): camera = pygeometry.Camera.create_spherical() else: raise NotImplementedError camera.id = key camera.width = int(obj.get("width", 0)) camera.height = int(obj.get("height", 0)) return camera def pose_from_json(obj: Dict[str, Any]) -> pygeometry.Pose: pose = pygeometry.Pose() pose.rotation = obj["rotation"] if "translation" in obj: pose.translation = obj["translation"] return pose def bias_from_json(obj: Dict[str, Any]) -> pygeometry.Similarity: return pygeometry.Similarity(obj["rotation"], obj["translation"], obj["scale"]) def assign_shot_attributes(obj: Dict[str, Any], shot: pymap.Shot) -> None: shot.metadata = json_to_pymap_metadata(obj) if "scale" in obj: shot.scale = obj["scale"] if "covariance" in obj: shot.covariance = np.array(obj["covariance"]) if "merge_cc" in obj: shot.merge_cc = obj["merge_cc"] if "vertices" in obj and "faces" in obj: shot.mesh.vertices = obj["vertices"] shot.mesh.faces = obj["faces"] def shot_in_reconstruction_from_json( reconstruction: types.Reconstruction, key: str, obj: Dict[str, Any], rig_instance_id: Optional[str] = None, rig_camera_id: Optional[str] = None, is_pano_shot: bool = False, ) -> pymap.Shot: """ Read shot from a json object and append it to a reconstruction """ pose = pose_from_json(obj) if is_pano_shot: shot = reconstruction.create_pano_shot(key, obj["camera"], pose) else: shot = reconstruction.create_shot( key, obj["camera"], pose, rig_camera_id, rig_instance_id ) assign_shot_attributes(obj, shot) return shot def single_shot_from_json( key: str, obj: Dict[str, Any], camera: pygeometry.Camera ) -> pymap.Shot: """ Read shot from a json object """ pose = pose_from_json(obj) shot = pymap.Shot(key, camera, pose) assign_shot_attributes(obj, shot) return shot def point_from_json( reconstruction: types.Reconstruction, key: str, obj: Dict[str, Any] ) -> pymap.Landmark: """ Read a point from a json object """ point = reconstruction.create_point(key, obj["coordinates"]) point.color = obj["color"] return point def rig_camera_from_json(key: str, obj: Dict[str, Any]) -> pymap.RigCamera: """ Read a rig cameras from a json object """ pose = pygeometry.Pose() pose.rotation = obj["rotation"] pose.translation = obj["translation"] rig_camera = pymap.RigCamera(pose, key) return rig_camera def rig_cameras_from_json(obj: Dict[str, Any]) -> Dict[str, pymap.RigCamera]: """ Read rig cameras from a json object """ rig_cameras = {} for key, value in obj.items(): rig_cameras[key] = rig_camera_from_json(key, value) return rig_cameras def rig_instance_from_json( reconstruction: types.Reconstruction, instance_id: str, obj: Dict[str, Any] ) -> None: """ Read any rig instance from a json shot object """ reconstruction.add_rig_instance(pymap.RigInstance(instance_id)) pose = pygeometry.Pose() pose.rotation = obj["rotation"] pose.translation = obj["translation"] reconstruction.rig_instances[instance_id].pose = pose def rig_instance_camera_per_shot(obj: Dict[str, Any]) -> Dict[str, Tuple[str, str]]: """ Given JSON root data, return (rig_instance_id, rig_camera_id) per shot. """ panoshots = set(obj["pano_shots"].keys()) if "pano_shots" in obj else {} rig_shots = {} if "rig_instances" in obj: rig_shots = { s_key: (i_key, c_key) for i_key, ri in obj["rig_instances"].items() for s_key, c_key in ri["rig_camera_ids"].items() if s_key not in panoshots } return rig_shots def reconstruction_from_json(obj: Dict[str, Any]) -> types.Reconstruction: """ Read a reconstruction from a json object """ reconstruction = types.Reconstruction() # Extract cameras for key, value in obj["cameras"].items(): camera = camera_from_json(key, value) reconstruction.add_camera(camera) # Extract camera biases if "biases" in obj: for key, value in obj["biases"].items(): transform = bias_from_json(value) reconstruction.set_bias(key, transform) # Extract rig models if "rig_cameras" in obj: for key, value in obj["rig_cameras"].items(): reconstruction.add_rig_camera(rig_camera_from_json(key, value)) # Extract rig instances from shots if "rig_instances" in obj: for key, value in obj["rig_instances"].items(): rig_instance_from_json(reconstruction, key, value) # Extract shots rig_shots = rig_instance_camera_per_shot(obj) for key, value in obj["shots"].items(): shot_in_reconstruction_from_json( reconstruction, key, value, rig_camera_id=rig_shots[key][1] if key in rig_shots else None, rig_instance_id=rig_shots[key][0] if key in rig_shots else None, is_pano_shot=False, ) # Extract points if "points" in obj: for key, value in obj["points"].items(): point_from_json(reconstruction, key, value) # Extract pano_shots if "pano_shots" in obj: for key, value in obj["pano_shots"].items(): shot_in_reconstruction_from_json( reconstruction, key, value, is_pano_shot=True ) # Extract reference topocentric frame if "reference_lla" in obj: lla = obj["reference_lla"] reconstruction.reference = geo.TopocentricConverter( lla["latitude"], lla["longitude"], lla["altitude"] ) return reconstruction def reconstructions_from_json(obj: List[Dict[str, Any]]) -> List[types.Reconstruction]: """ Read all reconstructions from a json object """ return [reconstruction_from_json(i) for i in obj] def cameras_from_json(obj: Dict[str, Any]) -> Dict[str, pygeometry.Camera]: """ Read cameras from a json object """ cameras = {} for key, value in obj.items(): cameras[key] = camera_from_json(key, value) return cameras def camera_to_json(camera) -> Dict[str, Any]: """ Write camera to a json object """ if camera.projection_type == "perspective": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal": camera.focal, "k1": camera.k1, "k2": camera.k2, } elif camera.projection_type == "brown": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, "k2": camera.k2, "p1": camera.p1, "p2": camera.p2, "k3": camera.k3, } elif camera.projection_type == "fisheye": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal": camera.focal, "k1": camera.k1, "k2": camera.k2, } elif camera.projection_type == "fisheye_opencv": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, "k2": camera.k2, "k3": camera.k3, "k4": camera.k4, } elif camera.projection_type == "fisheye62": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, "k2": camera.k2, "k3": camera.k3, "k4": camera.k4, "k5": camera.k5, "k6": camera.k6, "p1": camera.p1, "p2": camera.p2, } elif camera.projection_type == "fisheye624": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, "k2": camera.k2, "k3": camera.k3, "k4": camera.k4, "k5": camera.k5, "k6": camera.k6, "p1": camera.p1, "p2": camera.p2, "s0": camera.s0, "s1": camera.s1, "s2": camera.s2, "s3": camera.s3, } elif camera.projection_type == "simple_radial": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, } elif camera.projection_type == "radial": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal_x": camera.focal, "focal_y": camera.focal * camera.aspect_ratio, "c_x": camera.principal_point[0], "c_y": camera.principal_point[1], "k1": camera.k1, "k2": camera.k2, } elif camera.projection_type == "dual": return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, "focal": camera.focal, "k1": camera.k1, "k2": camera.k2, "transition": camera.transition, } elif pygeometry.Camera.is_panorama(camera.projection_type): return { "projection_type": camera.projection_type, "width": camera.width, "height": camera.height, } else: raise NotImplementedError def shot_to_json(shot: pymap.Shot) -> Dict[str, Any]: """ Write shot to a json object """ obj: Dict[str, Any] = { "rotation": list(shot.pose.rotation), "translation": list(shot.pose.translation), "camera": shot.camera.id, } if shot.metadata is not None: obj.update(pymap_metadata_to_json(shot.metadata)) if shot.mesh is not None: obj["vertices"] = [list(vertice) for vertice in shot.mesh.vertices] obj["faces"] = [list(face) for face in shot.mesh.faces] if hasattr(shot, "scale"): obj["scale"] = shot.scale if hasattr(shot, "covariance"): obj["covariance"] = shot.covariance.tolist() if hasattr(shot, "merge_cc"): obj["merge_cc"] = shot.merge_cc return obj def rig_instance_to_json(rig_instance: pymap.RigInstance) -> Dict[str, Any]: """ Write a rig instance to a json object """ return { "translation": list(rig_instance.pose.translation), "rotation": list(rig_instance.pose.rotation), "rig_camera_ids": rig_instance.rig_camera_ids, } def rig_camera_to_json(rig_camera: pymap.RigCamera) -> Dict[str, Any]: """ Write a rig camera to a json object """ obj = { "rotation": list(rig_camera.pose.rotation), "translation": list(rig_camera.pose.translation), } return obj def pymap_metadata_to_json(metadata: pymap.ShotMeasurements) -> Dict[str, Any]: obj = {} if metadata.orientation.has_value: obj["orientation"] = metadata.orientation.value if metadata.capture_time.has_value: obj["capture_time"] = metadata.capture_time.value if metadata.gps_accuracy.has_value: obj["gps_dop"] = metadata.gps_accuracy.value if metadata.gps_position.has_value: obj["gps_position"] = list(metadata.gps_position.value) if metadata.accelerometer.has_value: obj["accelerometer"] = list(metadata.accelerometer.value) if metadata.compass_angle.has_value and metadata.compass_accuracy.has_value: obj["compass"] = { "angle": metadata.compass_angle.value, "accuracy": metadata.compass_accuracy.value, } else: if metadata.compass_angle.has_value: obj["compass"] = {"angle": metadata.compass_angle.value} elif metadata.compass_accuracy.has_value: obj["compass"] = {"accuracy": metadata.compass_accuracy.value} if metadata.sequence_key.has_value: obj["skey"] = metadata.sequence_key.value return obj def json_to_pymap_metadata(obj: Dict[str, Any]) -> pymap.ShotMeasurements: metadata = pymap.ShotMeasurements() if obj.get("orientation") is not None: metadata.orientation.value = obj.get("orientation") if obj.get("capture_time") is not None: metadata.capture_time.value = obj.get("capture_time") if obj.get("gps_dop") is not None: metadata.gps_accuracy.value = obj.get("gps_dop") if obj.get("gps_position") is not None: metadata.gps_position.value = obj.get("gps_position") if obj.get("skey") is not None: metadata.sequence_key.value = obj.get("skey") if obj.get("accelerometer") is not None: metadata.accelerometer.value = obj.get("accelerometer") if obj.get("compass") is not None: compass = obj.get("compass") if "angle" in compass: metadata.compass_angle.value = compass["angle"] if "accuracy" in compass: metadata.compass_accuracy.value = compass["accuracy"] return metadata def point_to_json(point: pymap.Landmark) -> Dict[str, Any]: """ Write a point to a json object """ return { "color": list(point.color.astype(float)), "coordinates": list(point.coordinates), } def reconstruction_to_json(reconstruction: types.Reconstruction) -> Dict[str, Any]: """ Write a reconstruction to a json object """ obj = {"cameras": {}, "shots": {}, "points": {}, "biases": {}} # Extract cameras for camera in reconstruction.cameras.values(): obj["cameras"][camera.id] = camera_to_json(camera) # Extract cameras biases for camera_id, bias in reconstruction.biases.items(): obj["biases"][camera_id] = bias_to_json(bias) # Extract rig models if len(reconstruction.rig_cameras): obj["rig_cameras"] = {} for rig_camera in reconstruction.rig_cameras.values(): obj["rig_cameras"][rig_camera.id] = rig_camera_to_json(rig_camera) if len(reconstruction.rig_instances): obj["rig_instances"] = {} for rig_instance in reconstruction.rig_instances.values(): obj["rig_instances"][rig_instance.id] = rig_instance_to_json(rig_instance) # Extract shots for shot in reconstruction.shots.values(): obj["shots"][shot.id] = shot_to_json(shot) # Extract points for point in reconstruction.points.values(): obj["points"][point.id] = point_to_json(point) # Extract pano_shots if hasattr(reconstruction, "pano_shots"): if len(reconstruction.pano_shots) > 0: obj["pano_shots"] = {} for shot in reconstruction.pano_shots.values(): obj["pano_shots"][shot.id] = shot_to_json(shot) # Extract reference topocentric frame if reconstruction.reference: ref = reconstruction.reference obj["reference_lla"] = { "latitude": ref.lat, "longitude": ref.lon, "altitude": ref.alt, } return obj def reconstructions_to_json( reconstructions: Iterable[types.Reconstruction], ) -> List[Dict[str, Any]]: """ Write all reconstructions to a json object """ return [reconstruction_to_json(i) for i in reconstructions] def cameras_to_json(cameras: Dict[str, pygeometry.Camera]) -> Dict[str, Dict[str, Any]]: """ Write cameras to a json object """ obj = {} for camera in cameras.values(): obj[camera.id] = camera_to_json(camera) return obj def bias_to_json(bias: pygeometry.Similarity) -> Dict[str, Any]: return { "rotation": list(bias.rotation), "translation": list(bias.translation), "scale": bias.scale, } def rig_cameras_to_json( rig_cameras: Dict[str, pymap.RigCamera] ) -> Dict[str, Dict[str, Any]]: """ Write rig cameras to a json object """ obj = {} for rig_camera in rig_cameras.values(): obj[rig_camera.id] = rig_camera_to_json(rig_camera) return obj def camera_from_vector( camera_id: str, width: int, height: int, projection_type: str, parameters: List[float], ) -> pygeometry.Camera: """Build a camera from a serialized vector of parameters.""" if projection_type == "perspective": focal, k1, k2 = parameters camera = pygeometry.Camera.create_perspective(focal, k1, k2) elif projection_type == "brown": fx, fy, cx, cy, k1, k2, p1, p2, k3 = parameters camera = pygeometry.Camera.create_brown( fx, fy / fx, np.array([cx, cy]), np.array([k1, k2, k3, p1, p2]) ) elif projection_type == "fisheye": focal, k1, k2 = parameters camera = pygeometry.Camera.create_fisheye(focal, k1, k2) elif projection_type == "fisheye_opencv": fx, fy, cx, cy, k1, k2, k3, k4 = parameters camera = pygeometry.Camera.create_fisheye_opencv( fx, fy / fx, np.array([cx, cy]), np.array([k1, k2, k3, k4]) ) elif projection_type == "fisheye62": fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, p1, p2 = parameters camera = pygeometry.Camera.create_fisheye62( fx, fy / fx, np.array([cx, cy]), np.array([k1, k2, k3, k4, k5, k6, p1, p2]) ) elif projection_type == "fisheye624": fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, p1, p2, s0, s1, s2, s3 = parameters camera = pygeometry.Camera.create_fisheye624( fx, fy / fx, np.array([cx, cy]), np.array([k1, k2, k3, k4, k5, k6, p1, p2, s0, s1, s2, s3]), ) elif projection_type == "radial": fx, fy, cx, cy, k1, k2 = parameters camera = pygeometry.Camera.create_radial( fx, fy / fx, np.array([cx, cy]), np.array([k1, k2]) ) elif projection_type == "simple_radial": fx, fy, cx, cy, k1 = parameters camera = pygeometry.Camera.create_simple_radial( fx, fy / fx, np.array([cx, cy]), k1 ) elif projection_type == "dual": focal, k1, k2, transition = parameters camera = pygeometry.Camera.create_dual(transition, focal, k1, k2) elif pygeometry.Camera.is_panorama(projection_type): camera = pygeometry.Camera.create_spherical() else: raise NotImplementedError camera.id = camera_id camera.width = width camera.height = height return camera def camera_to_vector(camera: pygeometry.Camera) -> List[float]: """Serialize camera parameters to a vector of floats.""" if camera.projection_type == "perspective": parameters = [camera.focal, camera.k1, camera.k2] elif camera.projection_type == "brown": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, camera.k2, camera.p1, camera.p2, camera.k3, ] elif camera.projection_type == "fisheye": parameters = [camera.focal, camera.k1, camera.k2] elif camera.projection_type == "fisheye_opencv": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, camera.k2, camera.k3, camera.k4, ] elif camera.projection_type == "fisheye62": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, camera.k2, camera.k3, camera.k4, camera.k5, camera.k6, camera.p1, camera.p2, ] elif camera.projection_type == "fisheye624": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, camera.k2, camera.k3, camera.k4, camera.k5, camera.k6, camera.p1, camera.p2, camera.s0, camera.s1, camera.s2, camera.s3, ] elif camera.projection_type == "radial": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, camera.k2, ] elif camera.projection_type == "simple_radial": parameters = [ camera.focal, camera.focal * camera.aspect_ratio, camera.principal_point[0], camera.principal_point[1], camera.k1, ] elif camera.projection_type == "dual": parameters = [ camera.focal, camera.k1, camera.k2, camera.transition, ] elif pygeometry.Camera.is_panorama(camera.projection_type): parameters = [] else: raise NotImplementedError return parameters def _read_gcp_list_lines( lines: Iterable[str], projection, exifs: Dict[str, Dict[str, Any]], ) -> List[pymap.GroundControlPoint]: points = {} for line in lines: words = line.split(None, 5) easting, northing, alt, pixel_x, pixel_y = map(float, words[:5]) key = (easting, northing, alt) shot_tokens = words[5].split(None) shot_id = shot_tokens[0] if shot_id not in exifs: continue if key in points: point = points[key] else: # Convert 3D coordinates if np.isnan(alt): alt = 0 has_altitude = False else: has_altitude = True if projection is not None: lat, lon = projection.transform(easting, northing) else: lon, lat = easting, northing point = pymap.GroundControlPoint() point.id = "unnamed-%d" % len(points) point.lla = {"latitude": lat, "longitude": lon, "altitude": alt} point.has_altitude = has_altitude points[key] = point # Convert 2D coordinates d = exifs[shot_id] coordinates = features.normalized_image_coordinates( np.array([[pixel_x, pixel_y]]), d["width"], d["height"] )[0] o = pymap.GroundControlPointObservation() o.shot_id = shot_id o.projection = coordinates point.add_observation(o) return list(points.values()) def _parse_utm_projection_string(line: str) -> str: """Convert strings like 'WGS84 UTM 32N' to a proj4 definition.""" words = line.lower().split() assert len(words) == 3 zone = line.split()[2].upper() if zone[-1] == "N": zone_number = int(zone[:-1]) zone_hemisphere = "north" elif zone[-1] == "S": zone_number = int(zone[:-1]) zone_hemisphere = "south" else: zone_number = int(zone) zone_hemisphere = "north" s = "+proj=utm +zone={} +{} +ellps=WGS84 +datum=WGS84 +units=m +no_defs" return s.format(zone_number, zone_hemisphere) def _parse_projection(line: str) -> Optional[pyproj.Transformer]: """Build a proj4 from the GCP format line.""" crs_4326 = pyproj.CRS.from_epsg(4326) if line.strip() == "WGS84": return None elif line.upper().startswith("WGS84 UTM"): return pyproj.Transformer.from_proj( pyproj.CRS(_parse_utm_projection_string(line)), crs_4326 ) elif "+proj" in line: return pyproj.Transformer.from_proj(pyproj.CRS(line), crs_4326) elif line.upper().startswith("EPSG:"): return pyproj.Transformer.from_proj( pyproj.CRS.from_epsg(int(line.split(":")[1])), crs_4326 ) else: raise ValueError("Un-supported geo system definition: {}".format(line)) def _valid_gcp_line(line: str) -> bool: stripped = line.strip() return stripped != "" and stripped[0] != "#" def read_gcp_list(fileobj, exif: Dict[str, Any]) -> List[pymap.GroundControlPoint]: """Read a ground control points from a gcp_list.txt file. It requires the points to be in the WGS84 lat, lon, alt format. If reference is None, topocentric data won't be initialized. """ all_lines = fileobj.readlines() lines = iter(filter(_valid_gcp_line, all_lines)) projection = _parse_projection(next(lines)) points = _read_gcp_list_lines(lines, projection, exif) return points def read_ground_control_points(fileobj: IO) -> List[pymap.GroundControlPoint]: """Read ground control points from json file""" obj = json_load(fileobj) points = [] for point_dict in obj["points"]: point = pymap.GroundControlPoint() point.id = point_dict["id"] lla = point_dict.get("position") if lla: point.lla = lla point.has_altitude = "altitude" in point.lla observations = [] observing_images = set() for o_dict in point_dict["observations"]: o = pymap.GroundControlPointObservation() o.shot_id = o_dict["shot_id"] if o.shot_id in observing_images: logger.warning( "GCP {} has multiple observations in image {}".format( point.id, o.shot_id ) ) observing_images.add(o.shot_id) if "projection" in o_dict: o.projection = np.array(o_dict["projection"]) observations.append(o) point.observations = observations points.append(point) return points def write_ground_control_points( gcp: List[pymap.GroundControlPoint], fileobj: IO, ) -> None: """Write ground control points to json file.""" obj = {"points": []} for point in gcp: point_obj = {} point_obj["id"] = point.id if point.lla: point_obj["position"] = { "latitude": point.lla["latitude"], "longitude": point.lla["longitude"], } if point.has_altitude: point_obj["position"]["altitude"] = point.lla["altitude"] point_obj["observations"] = [] for observation in point.observations: point_obj["observations"].append( { "shot_id": observation.shot_id, "projection": tuple(observation.projection), } ) obj["points"].append(point_obj) json_dump(obj, fileobj) def json_dump_kwargs(minify: bool = False) -> Dict[str, Any]: if minify: indent, separators = None, (",", ":") else: indent, separators = 4, None return {"indent": indent, "ensure_ascii": False, "separators": separators} def json_dump(data, fout: IO[str], minify: bool = False) -> None: kwargs = json_dump_kwargs(minify) return json.dump(data, fout, **kwargs) def json_dumps(data, minify: bool = False) -> str: kwargs = json_dump_kwargs(minify) return json.dumps(data, **kwargs) def json_load(fp: Union[IO[str], IO[bytes]]) -> Any: return json.load(fp) def json_loads(text: Union[str, bytes]) -> Any: return json.loads(text) # PLY def ply_header( count_vertices: int, with_normals: bool = False, point_num_views: bool = False ) -> List[str]: if with_normals: header = [ "ply", "format ascii 1.0", "element vertex {}".format(count_vertices), "property float x", "property float y", "property float z", "property float nx", "property float ny", "property float nz", "property uchar diffuse_red", "property uchar diffuse_green", "property uchar diffuse_blue", ] else: header = [ "ply", "format ascii 1.0", "element vertex {}".format(count_vertices), "property float x", "property float y", "property float z", "property uchar diffuse_red", "property uchar diffuse_green", "property uchar diffuse_blue", ] if point_num_views: header += ["property uchar views"] header += ["end_header"] return header def points_to_ply_string(vertices: List[str], point_num_views: bool = False) -> str: header = ply_header(len(vertices), point_num_views=point_num_views) return "\n".join(header + vertices + [""]) def reconstruction_to_ply( reconstruction: types.Reconstruction, tracks_manager: Optional[pymap.TracksManager] = None, no_cameras: bool = False, no_points: bool = False, point_num_views: bool = False, ) -> str: """Export reconstruction points as a PLY string.""" vertices = [] if not no_points: for point in reconstruction.points.values(): p, c = point.coordinates, point.color s = "{} {} {} {} {} {}".format( p[0], p[1], p[2], int(c[0]), int(c[1]), int(c[2]) ) if point_num_views and tracks_manager: obs_count = point.number_of_observations() if obs_count == 0: obs_count = len(tracks_manager.get_track_observations(point.id)) s += " {}".format(obs_count) vertices.append(s) if not no_cameras: for shot in reconstruction.shots.values(): o = shot.pose.get_origin() R = shot.pose.get_rotation_matrix() for axis in range(3): c = 255 * np.eye(3)[axis] for depth in np.linspace(0, 2, 10): p = o + depth * R[axis] s = "{} {} {} {} {} {}".format( p[0], p[1], p[2], int(c[0]), int(c[1]), int(c[2]) ) if point_num_views: s += " 0" vertices.append(s) return points_to_ply_string(vertices, point_num_views) def point_cloud_from_ply( fp: TextIO, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Load point cloud from a PLY file.""" all_lines = fp.read().splitlines() start = all_lines.index("end_header") + 1 lines = all_lines[start:] n = len(lines) points = np.zeros((n, 3), dtype=np.float32) normals = np.zeros((n, 3), dtype=np.float32) colors = np.zeros((n, 3), dtype=np.uint8) labels = np.zeros((n,), dtype=np.uint8) for i, row in enumerate(lines): words = row.split() label = int(words[9]) points[i] = list(map(float, words[0:3])) normals[i] = list(map(float, words[3:6])) colors[i] = list(map(int, words[6:9])) labels[i] = label return points, normals, colors, labels def point_cloud_to_ply( points: np.ndarray, normals: np.ndarray, colors: np.ndarray, labels: np.ndarray, fp: TextIO, ) -> None: fp.write("ply\n") fp.write("format ascii 1.0\n") fp.write("element vertex {}\n".format(len(points))) fp.write("property float x\n") fp.write("property float y\n") fp.write("property float z\n") fp.write("property float nx\n") fp.write("property float ny\n") fp.write("property float nz\n") fp.write("property uchar diffuse_red\n") fp.write("property uchar diffuse_green\n") fp.write("property uchar diffuse_blue\n") fp.write("property uchar class\n") fp.write("end_header\n") template = "{:.4f} {:.4f} {:.4f} {:.3f} {:.3f} {:.3f} {} {} {} {}\n" for i in range(len(points)): p, n, c, l = points[i], normals[i], colors[i], labels[i] fp.write( template.format( p[0], p[1], p[2], n[0], n[1], n[2], int(c[0]), int(c[1]), int(c[2]), int(l), ) ) # Filesystem interaction methods def mkdir_p(path: str) -> None: """Make a directory including parent directories.""" os.makedirs(path, exist_ok=True) def open_wt(path: str) -> IO[Any]: """Open a file in text mode for writing utf-8.""" return open(path, "w", encoding="utf-8") def open_rt(path: str) -> IO[Any]: """Open a file in text mode for reading utf-8.""" return open(path, "r", encoding="utf-8") def imread( path: str, grayscale: bool = False, unchanged: bool = False, anydepth: bool = False ) -> ndarray: with open(path, "rb") as fb: return imread_from_fileobject(fb, grayscale, unchanged, anydepth) def imread_from_fileobject( fb, grayscale: bool = False, unchanged: bool = False, anydepth: bool = False ) -> np.ndarray: """Load image as an array ignoring EXIF orientation.""" if context.OPENCV3: if grayscale: flags = cv2.IMREAD_GRAYSCALE elif unchanged: flags = cv2.IMREAD_UNCHANGED else: flags = cv2.IMREAD_COLOR try: flags |= cv2.IMREAD_IGNORE_ORIENTATION except AttributeError: logger.warning( "OpenCV version {} does not support loading images without " "rotating them according to EXIF. Please upgrade OpenCV to " "version 3.2 or newer.".format(cv2.__version__) ) if anydepth: flags |= cv2.IMREAD_ANYDEPTH else: if grayscale: flags = cv2.CV_LOAD_IMAGE_GRAYSCALE elif unchanged: flags = cv2.CV_LOAD_IMAGE_UNCHANGED else: flags = cv2.CV_LOAD_IMAGE_COLOR if anydepth: flags |= cv2.CV_LOAD_IMAGE_ANYDEPTH im_buffer = np.asarray(bytearray(fb.read()), dtype=np.uint8) image = cv2.imdecode(im_buffer, flags) if image is None: raise IOError("Unable to load image") if len(image.shape) == 3: image[:, :, :3] = image[:, :, [2, 1, 0]] # Turn BGR to RGB (or BGRA to RGBA) return image @classmethod def imwrite(cls, path: str, image: np.ndarray) -> None: with cls.open(path, "wb") as fwb: imwrite(fwb, image, path) def imwrite(path: str, image: np.ndarray) -> None: with open(path, "wb") as fwb: return imwrite_from_fileobject(fwb, image, path) def imwrite_from_fileobject(fwb, image: np.ndarray, ext: str) -> None: """Write an image to a file object""" if len(image.shape) == 3: image[:, :, :3] = image[:, :, [2, 1, 0]] # Turn RGB to BGR (or RGBA to BGRA) _, im_buffer = cv2.imencode(ext, image) fwb.write(im_buffer) def image_size_from_fileobject( fb: Union[IO[bytes], bytes, Path, str, TextIO] ) -> Tuple[int, int]: """Height and width of an image.""" if isinstance(fb, TextIO): image = imread(fb.name) return image.shape[:2] else: with Image.open(fb) as img: width, height = img.size return height, width def image_size(path: str) -> Tuple[int, int]: """Height and width of an image.""" with open(path, "rb") as fb: return image_size_from_fileobject(fb) # IO Filesystem class IoFilesystemBase(ABC): @classmethod @abstractmethod def exists(cls, path: str): pass @classmethod def ls(cls, path: str): pass @classmethod @abstractmethod def isfile(cls, path: str): pass @classmethod @abstractmethod def isdir(cls, path: str): pass @classmethod def rm_if_exist(cls, filename: str): pass @classmethod def symlink(cls, src_path: str, dst_path: str, **kwargs): pass @classmethod @abstractmethod def open(cls, *args, **kwargs) -> IO[Any]: pass @classmethod @abstractmethod def open_wt(cls, path: str): pass @classmethod @abstractmethod def open_rt(cls, path: str): pass @classmethod @abstractmethod def mkdir_p(cls, path: str): pass @classmethod @abstractmethod def imwrite(cls, path: str, image): pass @classmethod @abstractmethod def imread(cls, path: str, grayscale=False, unchanged=False, anydepth=False): pass @classmethod @abstractmethod def image_size(cls, path: str): pass @classmethod @abstractmethod def timestamp(cls, path: str): pass class IoFilesystemDefault(IoFilesystemBase): def __init__(self) -> None: self.type = "default" @classmethod def exists(cls, path: str) -> str: # pyre-fixme[7]: Expected `str` but got `bool`. return os.path.exists(path) @classmethod def ls(cls, path: str) -> List[str]: return os.listdir(path) @classmethod def isfile(cls, path: str) -> str: # pyre-fixme[7]: Expected `str` but got `bool`. return os.path.isfile(path) @classmethod def isdir(cls, path: str) -> str: # pyre-fixme[7]: Expected `str` but got `bool`. return os.path.isdir(path) @classmethod def rm_if_exist(cls, filename: str) -> None: if os.path.islink(filename): os.unlink(filename) if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: os.remove(filename) @classmethod def symlink(cls, src_path: str, dst_path: str, **kwargs): os.symlink(src_path, dst_path, **kwargs) @classmethod def open(cls, *args, **kwargs) -> IO[Any]: return open(*args, **kwargs) @classmethod def open_wt(cls, path: str): return cls.open(path, "w", encoding="utf-8") @classmethod def open_rt(cls, path: str): return cls.open(path, "r", encoding="utf-8") @classmethod def mkdir_p(cls, path: str): return os.makedirs(path, exist_ok=True) @classmethod def imread( cls, path: str, grayscale: bool = False, unchanged: bool = False, anydepth: bool = False, ): with cls.open(path, "rb") as fb: return imread_from_fileobject(fb, grayscale, unchanged, anydepth) @classmethod def imwrite(cls, path: str, image) -> None: with cls.open(path, "wb") as fwb: imwrite_from_fileobject(fwb, image, path) @classmethod def image_size(cls, path: str) -> Tuple[int, int]: with cls.open(path, "rb") as fb: return image_size_from_fileobject(fb) @classmethod def timestamp(cls, path: str) -> str: # pyre-fixme[7]: Expected `str` but got `float`. return os.path.getmtime(path)
the-stack_106_22581
import pandas as pd from sklearn.metrics import mean_squared_error import numpy as np # path = "./results/results_2.csv" # MAX_CARD = 501012 # path = './results/results_dmv_all.csv' # MAX_CARD = 9406943 path = './results/tpch_result.csv' df = pd.read_csv(path) MAX_CARD = 6000003 * 0.2 # print(df) est_card = df['est_card'].values/MAX_CARD true_card = df['true_card'].values/MAX_CARD print("RMSE error:",np.sqrt(mean_squared_error(est_card,true_card))) # %% def print_qerror(pred, label): qerror = [] for i in range(len(pred)): if pred[i]==0 and float(label[i])==0: qerror.append(1) elif pred[i]==0: qerror.append(label[i]) elif label[i]==0: qerror.append(pred[i]) elif pred[i] > float(label[i]): qerror.append(float(pred[i]) / float(label[i])) else: qerror.append(float(label[i]) / float(pred[i])) print("Median: {}".format(np.median(qerror))) print("90th percentile: {}".format(np.percentile(qerror, 90))) print("95th percentile: {}".format(np.percentile(qerror, 95))) print("99th percentile: {}".format(np.percentile(qerror, 99))) print("Max: {}".format(np.max(qerror))) print("Mean: {}".format(np.mean(qerror))) print_qerror(est_card,true_card) # %%
the-stack_106_22582
from collections import OrderedDict from pathlib import Path from typing import List, Tuple, Optional import numpy as np import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras import backend as K from tensorflow.keras.layers import ( Conv1D, MaxPooling1D, Input, Flatten, Dense, BatchNormalization, LeakyReLU, ReLU, Dropout, concatenate, LSTM, Lambda ) # Reference name of model MODEL_NAME = str(Path(__file__).resolve().stem) # Default inputs # Dictionary with {"Reference-name-of-input": {"len_input": <int>, "leads": <list with name of leads>}} INPUTS = OrderedDict( TS=dict( len_input=30, input_features=['venta_unidades_dia', 'venta_clp_dia', 'is_promo'], ) ) class ModelTS: ''' Generate an instance of a keras model ''' def __init__(self, n_output: int=1, output_layer: Optional[str]=None,): self.inputs = INPUTS self.model_name = MODEL_NAME self.n_output = n_output self.output_layer = output_layer # Load model def get_model(self,): shape_inputs = [(value.get("len_input"), len(value.get("input_features"))) for value in self.inputs.values()] # Inputs input_ecg = Input(shape=shape_inputs[0]) # LSTM x = LSTM(15, activation='tanh',recurrent_activation="sigmoid", kernel_initializer="glorot_uniform",dropout=0.5, recurrent_dropout=0.0)(input_ecg) #x = BatchNormalization()(x) # ---------------------------- Dense layer ------------------------------------ output = Flatten()(x) output = Dense(32, kernel_initializer='glorot_normal')(output) output = Dropout(0.4)(output) output = ReLU()(output) output = Dense(self.n_output, activation=self.output_layer, dtype = tf.float32)(output) model = Model(inputs = input_ecg, outputs = output) return model
the-stack_106_22583
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import urllib import httplib2 from py_utils import retry_util # pylint: disable=import-error from services import luci_auth # Some services pad JSON responses with a security prefix to prevent against # XSSI attacks. If found, the prefix is stripped off before attempting to parse # a JSON response. # See e.g.: https://gerrit-review.googlesource.com/Documentation/rest-api.html#output JSON_SECURITY_PREFIX = ")]}'" class RequestError(OSError): """Exception class for errors while making a request.""" def __init__(self, request, response, content): self.request = request self.response = response self.content = content message = u'%s returned HTTP Error %d: %s' % ( self.request, self.response.status, self.error_message) # Note: the message is a unicode object, possibly with special characters, # so it needs to be turned into a str as expected by the constructor of # the base class. super(RequestError, self).__init__(message.encode('utf-8')) def __reduce__(self): # Method needed to make the exception pickleable [1], otherwise it causes # the multiprocess pool to hang when raised by a worker [2]. # [1]: https://stackoverflow.com/a/36342588 # [2]: https://github.com/uqfoundation/multiprocess/issues/33 return (type(self), (self.request, self.response, self.content)) @property def json(self): """Attempt to load the content as a json object.""" try: return json.loads(self.content) except StandardError: return None @property def error_message(self): """Returns a unicode object with the error message found in the content.""" try: # Try to find error message within json content. return self.json['error'] except StandardError: # Otherwise fall back to entire content itself, converting str to unicode. return self.content.decode('utf-8') class ClientError(RequestError): """Exception for 4xx HTTP client errors.""" pass class ServerError(RequestError): """Exception for 5xx HTTP server errors.""" pass def BuildRequestError(request, response, content): """Build the correct RequestError depending on the response status.""" if response['status'].startswith('4'): error = ClientError elif response['status'].startswith('5'): error = ServerError else: # Fall back to the base class. error = RequestError return error(request, response, content) @retry_util.RetryOnException(ServerError, retries=3) def Request(url, method='GET', params=None, data=None, accept=None, content_type='urlencoded', use_auth=False, retries=None): """Perform an HTTP request of a given resource. Args: url: A string with the URL to request. method: A string with the HTTP method to perform, e.g. 'GET' or 'POST'. params: An optional dict or sequence of key, value pairs to be added as a query to the url. data: An optional dict or sequence of key, value pairs to send as payload data in the body of the request. accept: An optional string to specify the expected response format. Currently only 'json' is supported, which attempts to parse the response content as json. If ommitted, the default is to return the raw response content as a string. content_type: A string specifying how to encode the payload data, can be either 'urlencoded' (default) or 'json'. use_auth: A boolean indecating whether to send authorized requests, if True luci-auth is used to get an access token for the logged in user. retries: Number of times to retry the request in case of ServerError. Note, the request is _not_ retried if the response is a ClientError. Returns: A string with the content of the response when it has a successful status. Raises: A ClientError if the response has a 4xx status, or ServerError if the response has a 5xx status. """ del retries # Handled by the decorator. if params: url = '%s?%s' % (url, urllib.urlencode(params)) body = None headers = {} if accept == 'json': headers['Accept'] = 'application/json' elif accept is not None: raise NotImplementedError('Invalid accept format: %s' % accept) if data is not None: if content_type == 'json': body = json.dumps(data, sort_keys=True, separators=(',', ':')) headers['Content-Type'] = 'application/json' elif content_type == 'urlencoded': body = urllib.urlencode(data) headers['Content-Type'] = 'application/x-www-form-urlencoded' else: raise NotImplementedError('Invalid content type: %s' % content_type) else: headers['Content-Length'] = '0' if use_auth: headers['Authorization'] = 'Bearer %s' % luci_auth.GetAccessToken() logging.info('Making API request: %s', url) http = httplib2.Http() response, content = http.request( url, method=method, body=body, headers=headers) if response.status != 200: raise BuildRequestError(url, response, content) if accept == 'json': if content[:4] == JSON_SECURITY_PREFIX: content = content[4:] # Strip off security prefix if found. content = json.loads(content) return content
the-stack_106_22587
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field import torch from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class ExperimentMaskDistillationLossCriterionConfig(FairseqDataclass): label_smoothing: float = field( default=0.0, metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, ) report_accuracy: bool = field( default=False, metadata={"help": "report accuracy metric"}, ) ignore_prefix_size: int = field( default=0, metadata={"help": "Ignore first N tokens"}, ) kd_alpha: float = field( default=0.9, metadata={"help": "..."}, ) sentence_avg: bool = II("optimization.sentence_avg") def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) if reduce: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / (lprobs.size(-1) - 1) loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss return loss, nll_loss @register_criterion( "experiment_mask_distillation_loss", dataclass=ExperimentMaskDistillationLossCriterionConfig ) class ExperimentMaskDistillationLossCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, kd_alpha=0.9, ignore_prefix_size=0, report_accuracy=False, ): super().__init__(task) self.sentence_avg = sentence_avg self.eps = label_smoothing self.ignore_prefix_size = ignore_prefix_size self.report_accuracy = report_accuracy self.MSE_loss = torch.nn.MSELoss(reduce=False, reduction="sum") self.alpha = kd_alpha def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output, ret = model(**sample["net_input"]) loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) mask_bert_out, mask_encoder_out = ret['mask_bert_out'], ret['mask_encoder_out'] mask_loss = ret['mask_loss'] #bert_labels = ret['BERT_bert_labels'] loss_kd = self.MSE_loss(mask_bert_out, mask_encoder_out) loss_kd = torch.mean(loss_kd, dim=-1) loss_kd = loss_kd.sum() loss = loss + mask_loss + loss_kd * (1. - self.alpha) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output, sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) return loss, sample_size, logging_output def get_lprobs_and_target(self, model, net_output, sample): lprobs = model.get_normalized_probs(net_output, log_probs=True) target = model.get_targets(sample, net_output) if self.ignore_prefix_size > 0: if getattr(lprobs, "batch_first", False): lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() target = target[:, self.ignore_prefix_size :].contiguous() else: lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() target = target[self.ignore_prefix_size :, :].contiguous() return lprobs.view(-1, lprobs.size(-1)), target.view(-1) def compute_loss(self, model, net_output, sample, reduce=True): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss def compute_accuracy(self, model, net_output, sample): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) mask = target.ne(self.padding_idx) n_correct = torch.sum( lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) ) total = torch.sum(mask) return n_correct, total @classmethod def reduce_metrics(cls, logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) if total > 0: metrics.log_scalar("total", total) n_correct = utils.item( sum(log.get("n_correct", 0) for log in logging_outputs) ) metrics.log_scalar("n_correct", n_correct) metrics.log_derived( "accuracy", lambda meters: round( meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 ) if meters["total"].sum > 0 else float("nan"), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
the-stack_106_22590
from __future__ import absolute_import from __future__ import division from __future__ import print_function from math import cos from math import pi from math import sin from compas.geometry import matrix_from_frame from compas.geometry import transform_points from compas.geometry import Circle from compas.geometry import Frame from compas.geometry import Plane from compas.geometry._shapes import Shape __all__ = ['Cylinder'] class Cylinder(Shape): """A cylinder is defined by a circle and a height. Parameters ---------- circle: :class:`compas.geometry.Circle` The circle of the cylinder. height: float The height of the cylinder. Attributes ---------- plane : :class:`compas.geometry.Plane` The plane containing the circle. circle : :class:`compas.geometry.Circle` The base circle of the cylinder. radius : float The radius of the base circle. height : float The height of the cylinder. normal (read-only) : :class:`compas.geometry.Vector` The normal of the base plane. diameter : float The diameter of the cylinder. Examples -------- >>> from compas.geometry import Plane >>> from compas.geometry import Cylinder >>> plane = Plane([0, 0, 0], [0, 0, 1]) >>> circle = Circle(plane, 5) >>> cylinder = Cylinder(circle, 7) """ __slots__ = ['_circle', '_height'] def __init__(self, circle, height): self._circle = None self._height = None self.circle = circle self.height = height @property def data(self): """Returns the data dictionary that represents the cylinder. Returns ------- dict The cylinder data. """ return {'circle': self.circle.data, 'height': self.height} @data.setter def data(self, data): self.circle = Circle.from_data(data['circle']) self.height = data['height'] @property def plane(self): """Plane: The plane of the cylinder.""" return self.circle.plane @plane.setter def plane(self, plane): self.circle.plane = Plane(plane[0], plane[1]) @property def circle(self): """float: The circle of the cylinder.""" return self._circle @circle.setter def circle(self, circle): self._circle = Circle(circle[0], circle[1]) @property def radius(self): """float: The radius of the cylinder.""" return self.circle.radius @radius.setter def radius(self, radius): self.circle.radius = float(radius) @property def height(self): """float: The height of the cylinder.""" return self._height @height.setter def height(self, height): self._height = float(height) @property def normal(self): """Vector: The normal of the cylinder.""" return self.plane.normal @property def diameter(self): """float: The diameter of the cylinder.""" return self.circle.diameter @property def center(self): """Point: The center of the cylinder.""" return self.circle.center @center.setter def center(self, point): self.circle.center = point @property def area(self): """Float: The surface area of the cylinder.""" return (self.circle.area * 2) + (self.circle.circumference * self.height) @property def volume(self): """Float: The volume of the cylinder.""" return self.circle.area * self.height # ========================================================================== # customisation # ========================================================================== def __repr__(self): return 'Cylinder({0}, {1})'.format(self.circle, self.height) def __len__(self): return 2 def __getitem__(self, key): if key == 0: return self.circle elif key == 1: return self.height else: raise KeyError def __setitem__(self, key, value): if key == 0: self.circle = value elif key == 1: self.height = value else: raise KeyError def __iter__(self): return iter([self.circle, self.height]) # ========================================================================== # constructors # ========================================================================== @classmethod def from_data(cls, data): """Construct a cylinder from its data representation. Parameters ---------- data : :obj:`dict` The data dictionary. Returns ------- Cylinder The constructed cylinder. Examples -------- >>> from compas.geometry import Cylinder >>> from compas.geometry import Circle >>> from compas.geometry import Plane >>> data = {'circle': Circle(Plane.worldXY(), 5).data, 'height': 7.} >>> cylinder = Cylinder.from_data(data) """ cylinder = cls(Circle(Plane.worldXY(), 1), 1) cylinder.data = data return cylinder # ========================================================================== # methods # ========================================================================== def to_vertices_and_faces(self, **kwargs): """Returns a list of vertices and faces""" u = kwargs.get('u') or 10 if u < 3: raise ValueError('The value for u should be u > 3.') vertices = [] a = 2 * pi / u z = self.height / 2 for i in range(u): x = self.circle.radius * cos(i * a) y = self.circle.radius * sin(i * a) vertices.append([x, y, z]) vertices.append([x, y, -z]) # add v in bottom and top's circle center vertices.append([0, 0, z]) vertices.append([0, 0, -z]) # transform vertices to cylinder's plane frame = Frame.from_plane(self.circle.plane) M = matrix_from_frame(frame) vertices = transform_points(vertices, M) faces = [] # side faces for i in range(0, u * 2, 2): faces.append([i, i + 1, (i + 3) % (u * 2), (i + 2) % (u * 2)]) # top and bottom circle faces for i in range(0, u * 2, 2): top = [i, (i + 2) % (u * 2), len(vertices) - 2] bottom = [i + 1, (i + 3) % (u * 2), len(vertices) - 1] faces.append(top) faces.append(bottom[::-1]) return vertices, faces def transform(self, transformation): """Transform the cylinder. Parameters ---------- transformation : :class:`Transformation` The transformation used to transform the cylinder. Examples -------- >>> from compas.geometry import Frame >>> from compas.geometry import Transformation >>> from compas.geometry import Plane >>> from compas.geometry import Circle >>> from compas.geometry import Cylinder >>> circle = Circle(Plane.worldXY(), 5) >>> cylinder = Cylinder(circle, 7) >>> frame = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15]) >>> T = Transformation.from_frame(frame) >>> cylinder.transform(T) """ self.circle.transform(transformation) # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": import doctest doctest.testmod()
the-stack_106_22591
import glob from facenet_pytorch import MTCNN import os from PIL import Image image_dir = r"./origin_images/original" # MTCNN()で顔認識+トリミング mtcnn = MTCNN() # glob.glob(directory)⇨ファイル一覧をディレクトリとして取得 list = glob.glob(os.path.join(image_dir, "*.jpg")) print(list) print('トリミング開始') for i, path in enumerate(list): img = Image.open(path) try: mtcnn(img, save_path=r"./origin_images/croped/{}.jpg".format(str(i))) # 画像と保存先を渡す except KeyError as e: print(e) print('トリミング終了')
the-stack_106_22592
## @file # This file is used to be the warning class of ECC tool # # Copyright (c) 2009 - 2018, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # ## The exception class that used to report error messages when preprocessing # # Currently the "ToolName" is set to be "ECC PP". # class Warning (Exception): ## The constructor # # @param self The object pointer # @param Str The message to record # @param File The FDF name # @param Line The Line number that error occurs # def __init__(self, Str, File = None, Line = None): self.message = Str self.FileName = File self.LineNumber = Line self.ToolName = 'ECC PP'
the-stack_106_22593
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # Copyright (c) 2013, Battelle Memorial Institute # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation # are those of the authors and should not be interpreted as representing # official policies, either expressed or implied, of the FreeBSD # Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor Battelle, # nor any of their employees, nor any jurisdiction or organization that # has cooperated in the development of these materials, makes any # warranty, express or implied, or assumes any legal liability or # responsibility for the accuracy, completeness, or usefulness or any # information, apparatus, product, software, or process disclosed, or # represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does not # necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY # operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 #}}} from math import abs from time import sleep import settings class No_economizer: """Detects problems with economizer controls or operations. Usage: ... The purpose of this proactive diagnostic measure is to identify faulty economizer systems on a rooftop unit (RTU). If the economizer does not operate when outdoor conditions are favorable for economizing there are missed opportunities for free cooling, thus causing an energy penalty during periods when free cooling is available. When a call for cooling comes from the space thermostat and conditions are favorable for economizing (outdoor air temperature is less than return air temperature) the outdoor air damper should fully open. The outdoor air fraction, an indication of the relative amount of outdoor air brought into the RTU, should ideally be close to a value of one. Then, the process checks if the conditions are favorable for the proactive testing """ def __init__(self, parent): """parent is the afddagent or whatever object creating an instance of this class """ self._parent = parent config_json = resource_string(__name__, 'afdd_config.ini') self._config = json.loads(config_json) def run(self, voltron_data): #Data from Voltron voltron_data = self._parent.get_new_data() mixed_air_temperature = float(voltron_data["MixedAirTemperature"]) return_air_temperature = float(voltron_data["ReturnAirTemperature"]) outdoor_air_temperature = float(voltron_data["OutsideAirTemperature"]) zone_temp=float(voltron_data["ZoneTemp"]) zone_tempsp=float(voltron_data["ZoneTempSP"]) damper=float(voltron_data["DamperSignal"]) cool_call=float(voltron_data["CoolCall1"]) oatemp_vpoint =float(voltron_data["OutsideAirTemperatureVirtualPoint"]) cfm=5000 #constant for now offset=2.0 #settings.py file SecondsToSteadyState = settings.seconds_to_steady_state sleeptime = settings.sleeptime economizertype = settings.economizertype minutes_to_average=settings.minutes_to_average if economizertype==0: highlimit=return_air_temperature else: highlimit=self._config["highlimit"] # check Prerequisites if(heat_call==1 or math.fabs(outdoor_air_temperature-return_air_temperature)<settings.afdd_threshold): afdd3=38 self.log_status("Conditions not favorable for proactive economizer fault detection") return afdd3 # Main Algorithm if cool_call==1: if (outdoor_air_temperature-offset) < highlimit: if damper==100: oaf=self.calculate_oaf(self,minutes_to_average, sleeptime) if 1.0-oaf > afdd3_threshold: afdd3=32 potential_cooling_savings = 1.08*cfm*(mixed_air_temperature-outdoor_air_temperature) #sensible cooling load estimation in BTU/hr self.log_status("Insufficient outdoor air when economizing") return afdd3 else: afdd3=30 self.log_status("Economizer functioning properly") return afdd3 else: afdd3=33 potential_cooling_savings = 1.08*cfm*(mixed_air_temperature-outdoor_air_temperature) #sensible cooling load estimation in BTU/hr self.log_status("RTU not economizing when outdoor conditions are favorable for economizing") return afdd3 else: status=self.command_outdoor_air_temperature_vpoint(return_air_temperature-10) if not (status): afdd3=39 self.log_status("Lock not received from Catalyst") return afdd3 self.sleep(seconds_to_steady_state) voltron_data = self._parent.get_new_data() damper=float(voltron_data["DamperSignal"]) if damper==100: oaf=self.calculate_oaf(self,minutes_to_average, sleeptime) if 1.0-oaf > afdd3_threshold: afdd3=32 potential_cooling_savings = 1.08*cfm*(mixed_air_temperature-outdoor_air_temperature) #sensible cooling load estimation in BTU/hr self.log_status("Insufficient outdoor air when economizing") return afdd3 else: afdd3=30 self.log_status("Economizer functioning properly") return afdd3 else: afdd3=33 potential_cooling_savings = 1.08*cfm*(mixed_air_temperature-outdoor_air_temperature) #sensible cooling load estimation in BTU/hr self.log_status("RTU not economizing when outdoor conditions are favorable for economizing") return afdd3 afdd3=31 return afdd3 ################################################################################################### def log_message(self,msg): _log.debug(code) def sleep(self,sleeptime): self._parent.sleep(sleeptime) def log_status(self,code): # print or log code and exit # need to release OAtemp_vpoint and CoolCall1 _log.debug(code) def command_outdoor_air_temperature_vpoint(self,value): """ Command outdoor air damper to a new position """ status = 0 status = self._parent.command_equip("OutsideAirTemperaturevirtualpoint",value) if not status: return False return True def calculate_oaf(self,num_minutes, sleeptime): oaf = 0. return_air_temperature = 0. mixed_air_temperature = 0. outdoor_air_temperature-0 n = 0 for n in range(1, num_minutes): voltron_data = self._parent.get_new_data() mixed_air_temperature = float(voltron_data["MixedAirTemperature"]) # Point name follows RTUNetwork wiki) return_air_temperature = float(voltron_data["ReturnAirTemperature"]) # Point name follows RTUNetwork wiki) outdoor_air_temperature = float(voltron_data["OutsideAirTemperature"]) oaf +=(mixed_air_temperature-return_air_temperature)/(outdoor_air_temperature-return_air_temperature) sleep(sleeptime) # Pause for 60 seconds oaf = oaf/n return oaf
the-stack_106_22595
import sys from math import copysign def distance(pos1, pos2): (xstart, ystart) = pos1 (xend, yend) = pos2 dx = xend - xstart dy = yend - ystart if copysign(1, dx) == copysign(1, dy): return abs(dx + dy) else: return max(abs(dx), abs(dy)) def doit(input): way = [((0,0),0)] for x in input.split(','): newpos = None if x == 'n': newpos = (way[-1][0][0], way[-1][0][1] + 1) elif x == 'ne': newpos = (way[-1][0][0]+1, way[-1][0][1]) elif x == 'se': newpos = (way[-1][0][0]+1, way[-1][0][1] - 1) elif x == 's': newpos = (way[-1][0][0], way[-1][0][1] - 1) elif x == 'sw': newpos = (way[-1][0][0]-1, way[-1][0][1]) else: assert x == 'nw' newpos = (way[-1][0][0]-1, way[-1][0][1] + 1) way.append((newpos, distance(way[0][0], newpos))) return max([x[1] for x in way]), way[-1] if __name__ == "__main__": print(doit(sys.stdin.read().strip()))
the-stack_106_22599
""" TencentBlueKing is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaSCommunity Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import time from typing import Union, Dict from opsbot import CommandSession from opsbot.plugins import GenericTask from opsbot.log import logger from opsbot.exceptions import ActionFailed, HttpFailed from component import DevOps, RedisClient, BK_DEVOPS_DOMAIN class DevOpsTask(GenericTask): def __init__(self, session: CommandSession, bk_biz_id: Union[str, int] = None): super().__init__(session, bk_biz_id, RedisClient(env='prod')) self._devops = DevOps() async def _get_devops_project_list(self): data = await self._devops.v3_app_project_list(self.user_id) data.sort(key=lambda x: x['updatedAt'], reverse=True) return [{'id': str(project['projectCode']), 'text': project['projectName'], 'is_checked': False} for project in data[:20]] async def _get_devops_pipeline_list(self, project_id: str): data = (await self._devops.v3_app_pipeline_list(project_id, self.user_id)).get('records', []) data.sort(key=lambda x: x['latestBuildStartTime'], reverse=True) return [{'id': f'{project_id}|{project["pipelineId"]}|{project["pipelineName"]}', 'text': project['pipelineName'], 'is_checked': False} for project in data[:20]] async def _get_devops_build_start_info(self, project_id: str, pipeline_id: str): start_infos = await self._devops.v3_app_build_start_info(project_id, pipeline_id, self.user_id) filter_infos = [{'keyname': var['id'], 'value': var['defaultValue'] if var['defaultValue'] else '待输入'} for var in start_infos.get('properties', []) if not var.get('propertyType')] return filter_infos async def render_devops_project_list(self): if not self.biz_id: return None bk_devops_projects = await self._get_devops_project_list() template_card = { 'card_type': 'vote_interaction', 'source': { 'desc': 'CI' }, 'main_title': { 'title': '欢迎使用蓝盾平台', 'desc': '请选择蓝盾项目' }, 'task_id': str(int(time.time() * 100000)), 'checkbox': { 'question_key': 'bk_devops_project_id', 'option_list': bk_devops_projects }, 'submit_button': { 'text': '确认', 'key': 'bk_devops_project_select' } } return template_card async def render_devops_pipeline_list(self): try: bk_devops_project_id = self._session.ctx['SelectedItems']['SelectedItem']['OptionIds']['OptionId'] except KeyError: return None bk_devops_pipelines = await self._get_devops_pipeline_list(bk_devops_project_id) template_card = { 'card_type': 'vote_interaction', 'source': { 'desc': 'CI' }, 'main_title': { 'title': '欢迎使用蓝盾平台', 'desc': f'请选择「{bk_devops_project_id}」下流水线' }, 'task_id': str(int(time.time() * 100000)), 'checkbox': { 'question_key': 'bk_devops_pipeline_id', 'option_list': bk_devops_pipelines }, 'submit_button': { 'text': '确认', 'key': 'bk_devops_pipeline_select' } } return template_card async def render_devops_pipeline_detail(self): if self._session.is_first_run: try: bk_devops_pipeline_info = self._session.ctx['SelectedItems']['SelectedItem']['OptionIds']['OptionId'] bk_devops_project_id, bk_devops_pipeline_id, bk_devops_pipeline_name = \ bk_devops_pipeline_info.split('|') except (KeyError, ValueError): return None start_infos = await self._get_devops_build_start_info(bk_devops_project_id, bk_devops_pipeline_id) else: bk_devops_pipeline = self._session.state['bk_devops_pipeline'] bk_devops_project_id = bk_devops_pipeline['bk_devops_project_id'] bk_devops_pipeline_id = bk_devops_pipeline['bk_devops_pipeline_id'] bk_devops_pipeline_name = bk_devops_pipeline['bk_devops_pipeline_name'] start_infos = bk_devops_pipeline['start_infos'] info = { 'bk_devops_project_id': bk_devops_project_id, 'bk_devops_pipeline_id': bk_devops_pipeline_id, 'bk_devops_pipeline_name': bk_devops_pipeline_name, 'start_infos': start_infos } template_card = { 'card_type': 'button_interaction', 'source': { 'desc': 'CI' }, 'main_title': { 'title': f'蓝盾流水线_{bk_devops_pipeline_name}' }, 'task_id': str(int(time.time() * 100000)), 'sub_title_text': '参数确认', 'horizontal_content_list': start_infos, 'button_list': [ { "text": "执行", "style": 1, "key": f"bk_devops_pipeline_execute|{json.dumps(info)}" }, { "text": "修改", "style": 2, "key": f"bk_devops_pipeline_update|{json.dumps(info)}" }, { "text": "取消", "style": 3, "key": f"bk_devops_pipeline_cancel|{bk_devops_pipeline_name}" } ] } return template_card async def execute_task(self, bk_devops_pipeline: Dict): bk_devops_project_id = bk_devops_pipeline['bk_devops_project_id'] bk_devops_pipeline_id = bk_devops_pipeline['bk_devops_pipeline_id'] bk_devops_pipeline_name = bk_devops_pipeline['bk_devops_pipeline_name'] params = {item['keyname']: item['value'] for item in bk_devops_pipeline['start_infos']} try: await self._devops.v3_app_build_start(bk_devops_project_id, bk_devops_pipeline_id, self.user_id, **params) msg = f'{bk_devops_pipeline_name} {params} 任务启动成功' return True except ActionFailed as e: msg = f'{bk_devops_pipeline_id} {params} error: 参数有误 {e}' except HttpFailed as e: msg = f'{bk_devops_pipeline_id} {params} error: 第三方服务异常 {e}' finally: logger.info(msg) return False def render_devops_pipeline_execute_msg(self, result: bool, bk_devops_pipeline: Dict): return self.render_execute_msg('CI', result, bk_devops_pipeline['bk_devops_pipeline_name'], bk_devops_pipeline['start_infos'], BK_DEVOPS_DOMAIN)
the-stack_106_22602
""" ExcursionSet.py Author: Jordan Mirocha Affiliation: McGill Created on: Mon 18 Feb 2019 10:38:06 EST Description: """ import numpy as np from .Constants import rho_cgs from .Cosmology import Cosmology from ..util.Math import central_difference from ..util.ParameterFile import ParameterFile from scipy.integrate import simps, quad from scipy.interpolate import interp1d from scipy.misc import derivative two_pi = 2. * np.pi four_pi = 4. * np.pi two_pi_sq = 2. * np.pi**2 class ExcursionSet(object): def __init__(self, cosm=None, **kwargs): self.pf = ParameterFile(**kwargs) if cosm is not None: self._cosm = cosm @property def cosm(self): if not hasattr(self, '_cosm'): self._cosm = Cosmology(pf=self.pf, **self.pf) return self._cosm @cosm.setter def cosm(self, value): self._cosm = value @property def tab_sigma(self): if not hasattr(self, '_tab_sigma'): raise AttributeError('must set by hand for now') return self._tab_sigma @tab_sigma.setter def tab_sigma(self, value): self._tab_sigma = value @property def tab_M(self): if not hasattr(self, '_tab_M'): raise AttributeError('must set by hand for now') return self._tab_M @tab_M.setter def tab_M(self, value): self._tab_M = value @property def tab_z(self): if not hasattr(self, '_tab_z'): raise AttributeError('must set by hand for now') return self._tab_z @tab_z.setter def tab_z(self, value): self._tab_z = value @property def tab_k(self): if not hasattr(self, '_tab_k'): raise AttributeError('must set by hand for now') return self._tab_k @tab_k.setter def tab_k(self, value): self._tab_k = value @property def tab_ps(self): if not hasattr(self, '_tab_ps'): raise AttributeError('must set by hand for now') return self._tab_ps @tab_ps.setter def tab_ps(self, value): self._tab_ps = value @property def tab_growth(self): if not hasattr(self, '_tab_growth'): raise AttributeError('must set by hand for now') return self._tab_growth @tab_growth.setter def tab_growth(self, value): self._tab_growth = value def _growth_factor(self, z): return np.interp(z, self.tab_z, self.tab_growth, left=np.inf, right=np.inf) def Mass(self, R): return self.cosm.rho_m_z0 * rho_cgs * self.WindowVolume(R) def PDF(self, delta, R): pass def WindowReal(self, x, R): """ Return real-space window function. """ assert type(x) == np.ndarray if self.pf['xset_window'] == 'tophat-real': W = np.zeros_like(x) W[x <= R] = 3. / four_pi / R**3 elif self.pf['xset_window'] == 'tophat-fourier': W = (np.sin(x / R) - (x / R) * np.cos(x / R)) \ / R**3 / two_pi_sq / (x / R)**3 else: raise NotImplemented('help') return W def WindowFourier(self, k, R): if self.pf['xset_window'] == 'sharp-fourier': W = np.zeros_like(k) ok = 1. - k * R >= 0. W[ok == 1] = 1. elif self.pf['xset_window'] == 'tophat-real': W = 3. * (np.sin(k * R) - k * R * np.cos(k * R)) / (k * R)**3 elif self.pf['xset_window'] == 'tophat-fourier': W = np.zeros_like(k) W[k <= 1./R] = 1. else: raise NotImplemented('help') return W def WindowVolume(self, R): if self.pf['xset_window'] == 'sharp-fourier': # Sleight of hand return four_pi * R**3 / 3. elif self.pf['xset_window'] == 'tophat-real': return four_pi * R**3 / 3. elif self.pf['xset_window'] == 'tophat-fourier': return four_pi * R**3 / 3. else: raise NotImplemented('help') def Variance(self, z, R): """ Compute the variance in the field on some scale `R`. """ iz = np.argmin(np.abs(z - self.tab_z)) # Window function W = self.WindowFourier(self.tab_k, R) # Dimensionless power spectrum D = self.tab_k**3 * self.tab_ps[iz,:] / two_pi_sq return np.trapz(D * np.abs(W)**2, x=np.log(self.tab_k)) def CollapsedFraction(self): pass def SizeDistribution(self, z, R, dcrit=1.686, dzero=0.0): """ Compute the size distribution of objects. Parameters ---------- z: int, float Redshift of interest. Returns ------- Tuple containing (in order) the radii, masses, and the differential size distribution. Each is an array of length self.tab_M, i.e., with elements corresponding to the masses used to compute the variance of the density field. """ # Comoving matter density rho0_m = self.cosm.rho_m_z0 * rho_cgs M = self.Mass(R) S = np.array([self.Variance(z, RR) for RR in R]) _M, _dlnSdlnM = central_difference(np.log(M[-1::-1]), np.log(S[-1::-1])) _M = _M[-1::-1] dlnSdlnM = _dlnSdlnM[-1::-1] dSdM = dlnSdlnM * (S[1:-1] / M[1:-1]) dFdM = self.FCD(z, R, dcrit, dzero)[1:-1] * np.abs(dSdM) # This is, e.g., Eq. 17 in Zentner (2006) # or Eq. 9.38 in Loeb and Furlanetto (2013) dndm = rho0_m * np.abs(dFdM) / M[1:-1] return R[1:-1], M[1:-1], dndm def FCD(self, z, R, dcrit=1.686, dzero=0.0): """ First-crossing distribution function. i.e., dF/dS where S=sigma^2. """ S = np.array([self.Variance(z, RR) for RR in R]) norm = (dcrit - dzero) / np.sqrt(two_pi) / S**1.5 p = norm * np.exp(-(dcrit - dzero)**2 / 2. / S) return p
the-stack_106_22604
# Copyright (c) 2010-2014 openpyxl from io import BytesIO from zipfile import ZipFile import pytest from openpyxl.tests.helper import compare_xml from openpyxl.reader.workbook import read_rels from openpyxl.xml.constants import ( ARC_CONTENT_TYPES, ARC_WORKBOOK_RELS, PKG_REL_NS, REL_NS, ) from openpyxl.xml.functions import tostring def test_read_external_ref(datadir): datadir.chdir() archive = ZipFile(BytesIO(), "w") with open("[Content_Types].xml") as src: archive.writestr(ARC_CONTENT_TYPES, src.read()) with open("workbook.xml.rels") as src: archive.writestr(ARC_WORKBOOK_RELS, src.read()) rels = read_rels(archive) for _, pth in rels: if pth['type'] == '%s/externalLink' % REL_NS: assert pth['path'] == 'xl/externalLinks/externalLink1.xml' def test_read_external_link(datadir): from .. external import parse_books datadir.chdir() with open("externalLink1.xml.rels") as src: xml = src.read() book = parse_books(xml) assert book.Id == 'rId1' def test_read_external_ranges(datadir): from .. external import parse_ranges datadir.chdir() with open("externalLink1.xml") as src: xml = src.read() names = tuple(parse_ranges(xml)) assert names[0].name == 'B2range' assert names[0].refersTo == "='Sheet1'!$A$1:$A$10" def test_dict_external_book(): from .. external import ExternalBook book = ExternalBook('rId1', "book1.xlsx") assert dict(book) == {'Id':'rId1', 'Target':'book1.xlsx', 'TargetMode':'External', 'Type':'http://schemas.openxmlformats.org/officeDocument/2006/relationships/externalLinkPath'} def test_dict_external_range(): from .. external import ExternalRange rng = ExternalRange("something_special", "='Sheet1'!$A$1:$B$2") assert dict(rng) == {'name':'something_special', 'refersTo':"='Sheet1'!$A$1:$B$2"} def test_write_external_link(): from .. external import ExternalRange from .. external import write_external_link link1 = ExternalRange('r1', 'over_there!$A$1:$B$2') link2 = ExternalRange('r2', 'somewhere_else!$C$10:$D$12') links = [link1, link2] el = write_external_link(links) xml = tostring(el) expected = """ <externalLink xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"> <externalBook xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships" r:id="rId1"> <definedNames> <definedName name="r1" refersTo="over_there!$A$1:$B$2"/> <definedName name="r2" refersTo="somewhere_else!$C$10:$D$12"/> </definedNames> </externalBook> </externalLink> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_write_external_book_rel(): from .. external import ExternalBook from .. external import write_external_book_rel book = ExternalBook("rId1", "book2.xlsx") rel = write_external_book_rel(book) xml = tostring(rel) expected = """ <Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> <Relationship Id="rId1" Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/externalLinkPath" Target="book2.xlsx" TargetMode="External"/> </Relationships> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_read_archive(datadir): from openpyxl.reader.workbook import read_rels from .. external import detect_external_links datadir.chdir() archive = ZipFile("book1.xlsx") rels = read_rels(archive) books = detect_external_links(rels, archive) book = tuple(books)[0] assert book.Target == "book2.xlsx" expected = ["='Sheet1'!$A$1:$A$10", ] for link, exp in zip(book.links, expected): assert link.refersTo == exp def test_load_workbook(datadir): datadir.chdir() from openpyxl import load_workbook wb = load_workbook('book1.xlsx') assert len(wb._external_links) == 1 def test_write_workbook(datadir, tmpdir): datadir.chdir() src = ZipFile("book1.xlsx") orig_files = set(src.namelist()) src.close() from openpyxl import load_workbook wb = load_workbook("book1.xlsx") tmpdir.chdir() wb.save("book1.xlsx") src = ZipFile("book1.xlsx") out_files = set(src.namelist()) src.close() # remove files from archive that the other can't have out_files.discard("xl/sharedStrings.xml") orig_files.discard("xl/calcChain.xml")
the-stack_106_22609
import typer valid_completion_items = [ ("Camila", "The reader of books."), ("Carlos", "The writer of scripts."), ("Sebastian", "The type hints guy."), ] def complete_name(incomplete: str): for name, help_text in valid_completion_items: if name.startswith(incomplete): yield (name, help_text) def main( name: str = typer.Option( "World", help="The name to say hi to.", autocompletion=complete_name ) ): typer.echo(f"Hello {name}") if __name__ == "__main__": typer.run(main)
the-stack_106_22610
# -*- coding: utf-8-*- from typing import Dict, Any import numpy as np import tensorflow as tf import tensorflow_addons as tf_ad from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, TimeDistributed, Conv1D, GlobalMaxPooling1D from tensorflow.python.keras.layers import add from feature_extractor import Vocabulary from train_param import TrainParam class BiLstmCrfModel(tf.keras.Model): def __init__(self, train_param: TrainParam, vocab: Vocabulary): super().__init__() self.train_param = train_param if train_param.use_elmo: # tf2 not support tf-hub version elmo ''' elmo = hub.KerasLayer("https://tfhub.dev/google/elmo/3", trainable=True, signature="tokens", output_key=train_param.elmo_output) def elmo_embedding(x): tokens, sequence_len = x return elmo( inputs={ 'tokens': tf.squeeze(tf.cast(tokens, tf.string)), 'sequence_len': sequence_len } )[train_param.elmo_output] self.embedding = Lambda(elmo_embedding, output_shape=(train_param.max_word, train_param.emb_dim), name='word_embedding') ''' else: self.embedding = Embedding(len(vocab.token), train_param.emb_dim, name='word_embedding') self.pos_embedding = Embedding(len(vocab.pos), train_param.pos_emb_dim, name='pos_embedding') self.char_embedding = Embedding(len(vocab.char), train_param.char_emb_dim, input_length=(train_param.max_word, train_param.max_char,), name='char_embedding') if train_param.char_embedding_type == 'lstm': self.char_lstm = TimeDistributed(Bidirectional(LSTM( units=train_param.char_lstm_units, recurrent_dropout=train_param.char_lstm_recurrent_dropout, dropout=train_param.char_lstm_dropout, ), name='char_blstm')) else: self.char_cnn = TimeDistributed( Conv1D(train_param.char_cnn_filter_num, train_param.char_cnn_window_size, padding='same'), name="char_cnn") self.char_max_pool = TimeDistributed(GlobalMaxPooling1D(), name="char_pooling") self.char_dropout = tf.keras.layers.Dropout(train_param.char_dropout) self.token_dropout = tf.keras.layers.Dropout(train_param.token_dropout) self.pos_dropout = tf.keras.layers.Dropout(train_param.pos_dropout) label_size = len(vocab.label) self.bilstm_layers = [] for idx in range(train_param.lstm_layer_size): self.bilstm_layers.append(Bidirectional(LSTM( units=train_param.lstm_units, recurrent_dropout=train_param.lstm_recurrent_dropout, dropout=train_param.lstm_dropout, return_sequences=True ), name=f"blstm-{idx}")) self.dense = tf.keras.layers.Dense(label_size, name='logits') self.transition_params = tf.Variable(tf.random.uniform(shape=(label_size, label_size))) def load_embedding_weights(self, wv_path: str, vocab: Vocabulary): word_vectors = {} with open(wv_path) as f: for line in f.readlines()[1:]: line = line.split() word, vector = line[0], np.array(line[1:], dtype='float32') word_vectors[word] = vector self.embedding.build((None,)) matrix = self.embedding.get_weights()[0] oov_count = 0 for word, idx in vocab.token.items(): target = word.lower() if self.train_param.do_lowercase else word if target in word_vectors: matrix[idx] = word_vectors[target] else: oov_count += 1 print("wv vector oov rate: {}".format(oov_count / len(vocab.token))) self.embedding.set_weights([matrix]) @tf.function(experimental_relax_shapes=True) def call(self, inputs: Dict[str, Any], labels=None, training=None): # token if self.train_param.use_elmo: # tf2 not support tf-hub version elmo ''' token_embedding = self.embedding([inputs['raw_token'], inputs['sequence_lengths']]) ''' token_embedding = inputs['token'] else: token_embedding = self.embedding(inputs['token']) token_embedding = self.token_dropout(token_embedding, training=training) # pos pos_embedding = self.pos_embedding(inputs['pos']) pos_embedding = self.pos_dropout(pos_embedding, training=training) # char char_embedding = self.char_embedding(inputs['char']) if self.train_param.char_embedding_type == 'lstm': char_embedding = self.char_lstm(char_embedding, training=training) else: char_embedding = self.char_cnn(char_embedding) char_embedding = self.char_max_pool(char_embedding) char_embedding = self.char_dropout(char_embedding, training=training) feature = tf.concat([token_embedding, char_embedding, pos_embedding], axis=-1) immediate_feature = [] for layer in self.bilstm_layers: immediate_feature.append(layer(feature, training=training)) feature = immediate_feature[-1] if len(self.bilstm_layers) > 1: feature = add(immediate_feature) # residual logits = self.dense(feature) if labels is not None: log_likelihood, self.transition_params = tf_ad.text.crf_log_likelihood(logits, labels, inputs['sequence_lengths'], transition_params=self.transition_params) return logits, log_likelihood else: return logits
the-stack_106_22611
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from email.headerregistry import Address from celery.schedules import crontab from first import first from warehouse import tasks from warehouse.accounts.interfaces import ITokenService, IUserService from warehouse.accounts.models import Email from warehouse.email.interfaces import IEmailSender from warehouse.email.services import EmailMessage from warehouse.email.ses.tasks import cleanup as ses_cleanup def _compute_recipient(user, email): # We want to try and use the user's name, then their username, and finally # nothing to display a "Friendly" name for the recipient. return str(Address(first([user.name, user.username], default=""), addr_spec=email)) @tasks.task(bind=True, ignore_result=True, acks_late=True) def send_email(task, request, recipient, msg, success_event): msg = EmailMessage(**msg) sender = request.find_service(IEmailSender) try: sender.send(recipient, msg) user_service = request.find_service(IUserService, context=None) user_service.record_event(**success_event) except Exception as exc: task.retry(exc=exc) def _send_email_to_user(request, user, msg, *, email=None, allow_unverified=False): # If we were not given a specific email object, then we'll default to using # the User's primary email address. if email is None: email = user.primary_email # If we were not able to locate an email address for this user, then we will just # have to skip sending email to them. If we have an email for them, then we will # check to see if it is verified, if it is not then we will also skip sending email # to them **UNLESS** we've been told to allow unverified emails. if email is None or not (email.verified or allow_unverified): return # We should only store/display IP address of an 'email sent' event if the user # who triggered the email event is the one who receives the email. Else display # 'Redacted' to prevent user privacy concerns. If we don't know the user who # triggered the action, default to showing the IP of the source. user_email = request.db.query(Email).filter(Email.email == email.email).one() redact_ip = user_email.user_id != request.user.id if request.user else False request.task(send_email).delay( _compute_recipient(user, email.email), { "subject": msg.subject, "body_text": msg.body_text, "body_html": msg.body_html, }, { "tag": "account:email:sent", "user_id": user.id, "ip_address": request.remote_addr, "additional": { "from_": request.registry.settings.get("mail.sender"), "to": email.email, "subject": msg.subject, "redact_ip": redact_ip, }, }, ) def _email(name, *, allow_unverified=False): """ This decorator is used to turn an e function into an email sending function! The name parameter is the name of the email we're going to be sending (used to locate the templates on the file system). The allow_unverified kwarg flags whether we will send this email to an unverified email or not. We generally do not want to do this, but some emails are important enough or have special requirements that require it. Functions that are decorated by this need to accept two positional arguments, the first argument is the Pyramid request object, and the second argument is either a single User, or a list of Users. These users represent the recipients of this email. Additional keyword arguments are supported, but are not otherwise restricted. Functions decorated by this must return a mapping of context variables that will ultimately be returned, but which will also be used to render the templates for the emails. Thus this function can decorate functions with a signature like so: def foo( request: Request, user_or_users: Union[User, List[User]] ) -> Mapping[str, Any]: ... Finally, if the email needs to be sent to an address *other* than the user's primary email address, instead of a User object, a tuple of (User, Email) objects may be used in place of a User object. """ def inner(fn): @functools.wraps(fn) def wrapper(request, user_or_users, **kwargs): if isinstance(user_or_users, (list, set)): recipients = user_or_users else: recipients = [user_or_users] context = fn(request, user_or_users, **kwargs) msg = EmailMessage.from_template(name, context, request=request) for recipient in recipients: if isinstance(recipient, tuple): user, email = recipient else: user, email = recipient, None _send_email_to_user( request, user, msg, email=email, allow_unverified=allow_unverified ) return context return wrapper return inner @_email("password-reset", allow_unverified=True) def send_password_reset_email(request, user_and_email): user, _ = user_and_email token_service = request.find_service(ITokenService, name="password") token = token_service.dumps( { "action": "password-reset", "user.id": str(user.id), "user.last_login": str(user.last_login), "user.password_date": str(user.password_date), } ) return { "token": token, "username": user.username, "n_hours": token_service.max_age // 60 // 60, } @_email("verify-email", allow_unverified=True) def send_email_verification_email(request, user_and_email): user, email = user_and_email token_service = request.find_service(ITokenService, name="email") token = token_service.dumps({"action": "email-verify", "email.id": email.id}) return { "token": token, "email_address": email.email, "n_hours": token_service.max_age // 60 // 60, } @_email("password-change") def send_password_change_email(request, user): return {"username": user.username} @_email("password-compromised", allow_unverified=True) def send_password_compromised_email(request, user): return {} @_email("password-compromised-hibp", allow_unverified=True) def send_password_compromised_email_hibp(request, user): return {} @_email("account-deleted") def send_account_deletion_email(request, user): return {"username": user.username} @_email("primary-email-change") def send_primary_email_change_email(request, user_and_email): user, email = user_and_email return { "username": user.username, "old_email": email.email, "new_email": user.email, } @_email("collaborator-added") def send_collaborator_added_email( request, email_recipients, *, user, submitter, project_name, role ): return { "username": user.username, "project": project_name, "submitter": submitter.username, "role": role, } @_email("verify-project-role", allow_unverified=True) def send_project_role_verification_email( request, user, desired_role, initiator_username, project_name, email_token, token_age, ): return { "desired_role": desired_role, "email_address": user.email, "initiator_username": initiator_username, "n_hours": token_age // 60 // 60, "project_name": project_name, "token": email_token, } @_email("added-as-collaborator") def send_added_as_collaborator_email(request, user, *, submitter, project_name, role): return {"project": project_name, "submitter": submitter.username, "role": role} @_email("collaborator-removed") def send_collaborator_removed_email( request, email_recipients, *, user, submitter, project_name ): return { "username": user.username, "project": project_name, "submitter": submitter.username, } @_email("removed-as-collaborator") def send_removed_as_collaborator_email(request, user, *, submitter, project_name): return { "project": project_name, "submitter": submitter.username, } @_email("collaborator-role-changed") def send_collaborator_role_changed_email( request, recipients, *, user, submitter, project_name, role ): return { "username": user.username, "project": project_name, "submitter": submitter.username, "role": role, } @_email("role-changed-as-collaborator") def send_role_changed_as_collaborator_email( request, user, *, submitter, project_name, role ): return { "project": project_name, "submitter": submitter.username, "role": role, } @_email("two-factor-added") def send_two_factor_added_email(request, user, method): pretty_methods = {"totp": "TOTP", "webauthn": "WebAuthn"} return {"method": pretty_methods[method], "username": user.username} @_email("two-factor-removed") def send_two_factor_removed_email(request, user, method): pretty_methods = {"totp": "TOTP", "webauthn": "WebAuthn"} return {"method": pretty_methods[method], "username": user.username} @_email("removed-project") def send_removed_project_email( request, user, *, project_name, submitter_name, submitter_role, recipient_role ): recipient_role_descr = "an owner" if recipient_role == "Maintainer": recipient_role_descr = "a maintainer" return { "project_name": project_name, "submitter_name": submitter_name, "submitter_role": submitter_role.lower(), "recipient_role_descr": recipient_role_descr, } @_email("yanked-project-release") def send_yanked_project_release_email( request, user, *, release, submitter_name, submitter_role, recipient_role ): recipient_role_descr = "an owner" if recipient_role == "Maintainer": recipient_role_descr = "a maintainer" return { "project": release.project.name, "release": release.version, "release_date": release.created.strftime("%Y-%m-%d"), "submitter": submitter_name, "submitter_role": submitter_role.lower(), "recipient_role_descr": recipient_role_descr, "yanked_reason": release.yanked_reason, } @_email("unyanked-project-release") def send_unyanked_project_release_email( request, user, *, release, submitter_name, submitter_role, recipient_role ): recipient_role_descr = "an owner" if recipient_role == "Maintainer": recipient_role_descr = "a maintainer" return { "project": release.project.name, "release": release.version, "release_date": release.created.strftime("%Y-%m-%d"), "submitter": submitter_name, "submitter_role": submitter_role.lower(), "recipient_role_descr": recipient_role_descr, } @_email("removed-project-release") def send_removed_project_release_email( request, user, *, release, submitter_name, submitter_role, recipient_role ): recipient_role_descr = "an owner" if recipient_role == "Maintainer": recipient_role_descr = "a maintainer" return { "project_name": release.project.name, "release_version": release.version, "release_date": release.created.strftime("%Y-%m-%d"), "submitter_name": submitter_name, "submitter_role": submitter_role.lower(), "recipient_role_descr": recipient_role_descr, } @_email("removed-project-release-file") def send_removed_project_release_file_email( request, user, *, file, release, submitter_name, submitter_role, recipient_role ): recipient_role_descr = "an owner" if recipient_role == "Maintainer": recipient_role_descr = "a maintainer" return { "file": file, "project_name": release.project.name, "release_version": release.version, "submitter_name": submitter_name, "submitter_role": submitter_role.lower(), "recipient_role_descr": recipient_role_descr, } def includeme(config): email_sending_class = config.maybe_dotted(config.registry.settings["mail.backend"]) config.register_service_factory(email_sending_class.create_service, IEmailSender) # Add a periodic task to cleanup our EmailMessage table. We're going to # do this cleanup, regardless of if we're configured to use SES to send # or not, because even if we stop using SES, we'll want to remove any # emails that had been sent, and the cost of doing this is very low. config.add_periodic_task(crontab(minute=0, hour=0), ses_cleanup)
the-stack_106_22613
from src.pipeline_constructor.core.PipelineModel import PipelineModel from src.pipeline_constructor.core.Model3D import Model3D from src.graph_creator.core.PipelineGraph import PipelineGraph, PipelinePart from src.core.PartType import PartType import open3d as o3d import numpy as np class PipelineConstructor: def __init__(self): self._part_dictionary = {part_type: part_type.part_model_file() for part_type in PartType} def construct_pipeline(self, pipeline: PipelineGraph) -> PipelineModel: graph = pipeline.graph model = PipelineModel() for node in graph.nodes: part_type = graph.nodes[node]['type'] coordinates = graph.nodes[node]['coordinates'] direction = graph.nodes[node]['direction'] part = Model3D(self.create_mesh(part_type, coordinates, direction)) model.add_element(part) model.compute_normals() return model def create_mesh_from_part(self, part: PipelinePart) -> o3d.geometry.TriangleMesh: return self.create_mesh(part.part_type, part.coordinates, part.direction) def create_mesh(self, part_type: PartType, coordinates: np.ndarray, direction: np.ndarray) -> o3d.geometry.TriangleMesh: mesh = o3d.io.read_triangle_mesh(str(self._part_dictionary[part_type])) rotation = o3d.geometry.get_rotation_matrix_from_xyz(direction) mesh.translate([0., 0., 0.], relative=True) mesh.rotate(rotation, center=[0., 0., 0.]) mesh.translate(coordinates, relative=True) return mesh
the-stack_106_22614
import view.ui.configuration as configuration from PyQt5 import QtWidgets, QtGui from PyQt5.QtCore import pyqtSlot from model.config import Config class Configuration(QtWidgets.QWidget): def __init__(self, window): super().__init__() self.MainWindow = window ui = configuration.Ui_Form() ui.setupUi(self) self.findChild(QtWidgets.QPushButton, "saveButton").clicked.connect(self.configSave) self.findChild(QtWidgets.QLineEdit, "threadcountLineEdit").setValidator(QtGui.QIntValidator(1, 100)) self.findChild(QtWidgets.QLineEdit, "plasterintervalLineEdit").setValidator(QtGui.QDoubleValidator(1, 100, 3)) @pyqtSlot() def configSave(self): threadCount = int(self.findChild(QtWidgets.QLineEdit, "threadcountLineEdit").text()) if threadCount == 0: self.findChild(QtWidgets.QLineEdit, "threadcountLineEdit").setText("1") threadCount = 1 Config.All.threadCount = threadCount Config.Delete.printIdFlag = self.findChild(QtWidgets.QCheckBox, "printidCheckBox").isChecked() Config.Delete.printTextFlag = self.findChild(QtWidgets.QCheckBox, "printtextCheckBox").isChecked() Config.Delete.printOriginFlag = self.findChild(QtWidgets.QCheckBox, "printoriginCheckBox").isChecked() Config.Search.printBoardSearchEndFlag = self.findChild(QtWidgets.QCheckBox, "printboardsearchendCheckBox").isChecked() plasterInterval = int(self.findChild(QtWidgets.QLineEdit, "plasterintervalLineEdit").text()) if plasterInterval == 0: self.MainWindow.messageDialog("failed", "도배 간격은 0초가 될 수 없습니다") return else: Config.Plaster.plasterInterval = plasterInterval Config.Plaster.printPlasterFlag = self.findChild(QtWidgets.QCheckBox, "printplasterCheckBox").isChecked() self.MainWindow.messageDialog("save", "저장되었습니다")
the-stack_106_22615
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: Hari Sekhon # Date: 2016-09-12 13:44:24 +0200 (Mon, 12 Sep 2016) # # https://github.com/harisekhon/devops-python-tools # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn # and optionally send me feedback to help steer this or other code I publish # # https://www.linkedin.com/in/harisekhon # # NOTE: 'flush' is not supported in Happybase as it's not in the Thrift API, # only available in the Java API, see HBaseAdmin.flush(table) # I'll write a JVM native alternative to this later as I needed this quickly """ Tool to iterate on and flush all HBase tables Written for flushing bulk imports skipping the WAL, for example OpenTSDB bulk import. The Thrift API doesn't support this action so it uses the HBase shell locally which must be in the $PATH There is also a shell script version of this in the adjacent DevOps-Perl-Tools repo Tested on Hortonworks HDP 2.3 (HBase 1.1.2) and Apache HBase 1.0.3, 1.1.6, 1.2.1, 1.2.2, 1.3.1 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function #from __future__ import unicode_literals import logging import os import re import sys import traceback import subprocess PIPE = subprocess.PIPE libdir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'pylib')) sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon.utils import log, die, autoflush from harisekhon.utils import validate_regex from harisekhon import CLI except ImportError as _: print(traceback.format_exc(), end='') sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.1' class HBaseFlushTables(CLI): def __init__(self): # Python 2.x super(HBaseFlushTables, self).__init__() # Python 3.x # super().__init__() self.table_list_header_regex = re.compile('TABLE') self.table_list_end_regex = re.compile(r'row.*\sin\s.*\sseconds') self.table_regex = None self.timeout_default = 6 * 3600 autoflush() def add_options(self): self.add_opt('-r', '--regex', help='Regex of tables to flush') self.add_opt('-l', '--list-tables', action='store_true', help='List tables and exit') def process_args(self): log.setLevel(logging.INFO) self.no_args() regex = self.get_opt('regex') if regex: validate_regex(regex) self.table_regex = re.compile(regex, re.I) log.info('filtering to flush only tables matching regex \'{0}\''.format(regex)) def get_tables(self): log.info('getting table list') try: process = subprocess.Popen(['hbase', 'shell'], stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT) (stdout, _) = process.communicate('list') process.wait() if process.returncode != 0: print('ERROR:', end='') die(stdout) lines = stdout.split('\n') lineno = 1 for line in lines: if self.table_list_header_regex.search(line): break lineno += 1 if lineno > len(lines): die("Failed to parse table list output (couldn't find the starting line TABLE)") tables = set() for line in lines[lineno:]: if self.table_list_end_regex.search(line): break line = line.strip() if not line: continue tables.add(line) return tables except OSError as _: die("OSError running hbase shell to list tables: {0}".format(_)) except subprocess.CalledProcessError as _: print('Failed to get tables using HBase shell:\n') print(_.output) sys.exit(_.returncode) def run(self): tables = self.get_tables() if not tables: die('No Tables Found') if self.get_opt('list_tables'): print('Tables:\n\n' + '\n'.join(tables)) sys.exit(3) tables_to_flush = set() if self.table_regex: log.info('filtering tables based on regex') for table in sorted(list(tables)): if self.table_regex.search(table): tables_to_flush.add(table) else: tables_to_flush = sorted(list(tables)) if log.isEnabledFor(logging.INFO): log.info('Flushing tables:\n\n%s\n', '\n'.join(tables_to_flush)) flush_commands = '\n'.join(["flush '{0}'".format(table) for table in tables_to_flush]) try: # by having stdout and stderr go to the same place more likely the output will be in a sane order process = subprocess.Popen(['hbase', 'shell'], stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT) (stdout, _) = process.communicate(input=flush_commands) process.wait() if process.returncode != 0: print('ERROR:', end='') die(stdout) print(stdout) except OSError as _: die("OSError running hbase shell to flush tables: {0}".format(_)) except subprocess.CalledProcessError as _: print('Failed to get tables using HBase shell:\n') print(_.output) sys.exit(_.returncode) if __name__ == '__main__': HBaseFlushTables().main()
the-stack_106_22616
import os import yaml from kivy.app import App from kivy.clock import Clock from kivy.core.window import Window from kivy.uix.floatlayout import FloatLayout from kivymd.app import MDApp from gui.core import Navigation from core.connectors import HomeAssistant from core.platform import Shpi if os.path.exists('config.yaml'): config_file = 'config.yaml' else: config_file = 'config.example.yaml' with open(config_file, 'r') as stream: config = yaml.safe_load(stream) class MainScreen(FloatLayout): def __init__(self, config, **kwargs): super(MainScreen, self).__init__(**kwargs) self.app = App.get_running_app() self.navigation = Navigation(config['rooms']) self.size = Window.size self.backlight_trigger = Clock.schedule_once(self.turn_display_off, 5) self.backlight = True self.add_widget(self.navigation) def on_touch_down(self, touch): if not self.backlight: print(touch) self.turn_display_on() print(self.backlight) Clock.unschedule(self.backlight_trigger) self.backlight_trigger = Clock.schedule_once(self.turn_display_off, 5) return super().on_touch_down(touch) def turn_display_off(self, dt): print('display is off') self.backlight = False if self.app.platform: self.app.platform.turn_display_off() def turn_display_on(self): print('display is on') self.backlight = True if self.app.platform: self.app.platform.turn_display_on() class MainApp(MDApp): def __init__(self, **kwargs): self.register_event_type('on_state_changed') # self.theme_cls.theme_style = "Dark" # self.theme_cls.primary_palette = "Gray" super().__init__(**kwargs) self.config = config self.connectors = {} self.platform = None if 'homeassistant' in config: self.connectors['homeassistant'] = HomeAssistant(self, self.config['homeassistant']) if 'shpi' in config: self.platform = Shpi(self, self.config['shpi']) def build(self): self.root = MainScreen(config) Window.size = (800, 480) for connector in self.connectors: self.connectors[connector].connect_to_server() return self.root def change_state(self, connector, entity_id, state): if connector in self.connectors: self.connectors[connector].change_state(entity_id, state) def change_temperature(self, connector, entity_id, temperature): if connector in self.connectors: self.connectors[connector].change_temperature(entity_id, temperature) def on_state_changed(self, *args, **kwargs): pass if __name__ == "__main__": MainApp().run()
the-stack_106_22617
#!/usr/bin/env python # Copyright (c) 2013 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Use the raw transactions API to spend bitcoins received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a bitcoind or Bitcoin-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the s-crow data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/s-CROW/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "s-CROW") return os.path.expanduser("~/.s-crow") def read_bitcoin_config(dbdir): """Read the s-crow.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "s-crow.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a s-crow JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 19712 if testnet else 9712 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the bitcoind we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(bitcoind): info = bitcoind.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") bitcoind.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = bitcoind.getinfo() return int(info['unlocked_until']) > time.time() def list_available(bitcoind): address_summary = dict() address_to_account = dict() for info in bitcoind.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = bitcoind.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = bitcoind.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-bitcoin-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(bitcoind, fromaddresses, toaddress, amount, fee): all_coins = list_available(bitcoind) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to bitcoind. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = bitcoind.createrawtransaction(inputs, outputs) signed_rawtx = bitcoind.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(bitcoind, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = bitcoind.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(bitcoind, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = bitcoind.decoderawtransaction(txdata_hex) total_in = compute_amount_in(bitcoind, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get s-crows from") parser.add_option("--to", dest="to", default=None, help="address to get send s-crows to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of s-crow.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True bitcoind = connect_JSON(config) if options.amount is None: address_summary = list_available(bitcoind) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(bitcoind) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(bitcoind, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(bitcoind, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = bitcoind.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
the-stack_106_22628
import sys , random from functions import split , listToString NumberOfWrites = 0 def Main(): argv1 = str(sys.argv[1]) if argv1 == None: print("Error - No argument Email Provided") Email = split(argv1) numOfElementInList = len(Email) RandomNumberGenerator = random.randint(1, (numOfElementInList-1)) Email.insert(RandomNumberGenerator,".") Email = listToString(list=Email) with open ("output.env", "r") as fileRead: data=fileRead.read() with open ("output.env", 'a') as fileWrite: if Email in data: print("End") else: fileWrite.write(Email) fileWrite.write("@gmail.com") fileWrite.write("\n") Main() Main()
the-stack_106_22629
import os from PIL import Image # Fill these variable before running this tool image_path = r"./crops.png" image_id = 7 image = Image.open(image_path) os.mkdir(r'./output_images') if image.width % 16 != 0 or image.height % 16 != 0: print('Error: image could not be cropped to 16x16 files exactly.') for i in range(0, image.width // 16): for j in range(0, image.height // 16): cropped_image = image.crop((i * 16, j * 16, i * 16 + 16, j * 16 + 16)) all_blank = True for x in range(0, 16): for y in range(0, 16): if cropped_image.load()[x, y] != (0, 0, 0, 0): all_blank = False # Only blocks with images could be saved into files. if not all_blank: cropped_image.save(open(r'./output_images/' + str(image_id) + '_' + str(i) + '_' + str(j) + '.png', 'wb')) pixels = image.load() for i in range(0, image.width // 16): for j in range(0, image.height // 16): # Draw this block for x in range(0, 16): pixels[i * 16 + 15, j * 16 + x] = (255, 255, 255, 255) pixels[i * 16 + x, j * 16 + 15] = (255, 255, 255, 255) # Draw number for this block image.save(open(r'proc_crops_tiles.png', 'wb'))
the-stack_106_22630
# Copyright 2021 VMware, Inc. # SPDX-License-Identifier: Apache-2.0 import os from unittest import mock import pytest from click.testing import Result from vdk.plugin.snowflake import snowflake_plugin from vdk.plugin.snowflake.snowflake_connection import SnowflakeConnection from vdk.plugin.test_utils.util_funcs import cli_assert_equal from vdk.plugin.test_utils.util_funcs import CliEntryBasedTestRunner @pytest.fixture def mocked_connection(monkeypatch): def mock_execute_query(*args, **kwargs): return [["Query successfully executed."]] monkeypatch.delattr( "vdk.plugin.snowflake.snowflake_connection.SnowflakeConnection._connect" ) monkeypatch.setattr(SnowflakeConnection, "execute_query", mock_execute_query) def test_snowflake_plugin(mocked_connection): """ Test if the configuration of the Snowflake plugin and its general setup work as expected. """ with mock.patch.dict( os.environ, { "VDK_DB_DEFAULT_TYPE": "SNOWFLAKE", "VDK_SNOWFLAKE_ACCOUNT": "testaccount", "VDK_SNOWFLAKE_USER": "testuser", "VDK_SNOWFLAKE_PASSWORD": "testpassword", }, ): runner = CliEntryBasedTestRunner(snowflake_plugin) query_result: Result = runner.invoke( ["snowflake-query", "--query", f"SELECT 1"] ) cli_assert_equal(0, query_result) assert "Query successfully executed." in query_result.output
the-stack_106_22631
# Copyright 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Presubmit script for changes affecting tools/perf/. See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details about the presubmit API built into depot_tools. """ import os USE_PYTHON3 = True def _CommonChecks(input_api, output_api, block_on_failure=False): """Performs common checks, which includes running pylint. block_on_failure: For some failures, we would like to warn the user but still allow them to upload the change. However, we don't want them to commit code with those failures, so we need to block the change on commit. """ results = [] results.extend(_CheckExpectations(input_api, output_api)) results.extend(_CheckJson(input_api, output_api)) results.extend( _CheckPerfDataCurrentness(input_api, output_api, block_on_failure)) results.extend( _CheckPerfJsonConfigs(input_api, output_api, block_on_failure)) results.extend(_CheckWprShaFiles(input_api, output_api)) results.extend(_CheckShardMaps(input_api, output_api, block_on_failure)) results.extend(_CheckVersionsInSmokeTests(input_api, output_api)) results.extend(input_api.RunTests(input_api.canned_checks.GetPylint( input_api, output_api, extra_paths_list=_GetPathsToPrepend(input_api), pylintrc='pylintrc'))) return results def _GetPathsToPrepend(input_api): perf_dir = input_api.PresubmitLocalPath() chromium_src_dir = input_api.os_path.join(perf_dir, '..', '..') telemetry_dir = input_api.os_path.join( chromium_src_dir, 'third_party', 'catapult', 'telemetry') typ_dir = input_api.os_path.join( chromium_src_dir, 'third_party', 'catapult', 'third_party', 'typ') experimental_dir = input_api.os_path.join( chromium_src_dir, 'third_party', 'catapult', 'experimental') tracing_dir = input_api.os_path.join( chromium_src_dir, 'third_party', 'catapult', 'tracing') py_utils_dir = input_api.os_path.join( chromium_src_dir, 'third_party', 'catapult', 'common', 'py_utils') android_pylib_dir = input_api.os_path.join( chromium_src_dir, 'build', 'android') testing_dir = input_api.os_path.join(chromium_src_dir, 'testing') return [ telemetry_dir, typ_dir, input_api.os_path.join(telemetry_dir, 'third_party', 'mock'), experimental_dir, tracing_dir, py_utils_dir, android_pylib_dir, testing_dir, ] def _RunArgs(args, input_api): p = input_api.subprocess.Popen(args, stdout=input_api.subprocess.PIPE, stderr=input_api.subprocess.STDOUT) out, _ = p.communicate() return (out, p.returncode) def _RunValidationScript( input_api, output_api, script_path, extra_args = None, block_on_failure = None): results = [] vpython = 'vpython3.bat' if input_api.is_windows else 'vpython3' perf_dir = input_api.PresubmitLocalPath() script_abs_path = input_api.os_path.join(perf_dir, script_path) extra_args = extra_args if extra_args else [] args = [vpython, script_abs_path] + extra_args out, return_code = _RunArgs(args, input_api) if return_code: error_msg = 'Script ' + script_path + ' failed.' if block_on_failure is None or block_on_failure: results.append(output_api.PresubmitError( error_msg, long_text=out)) else: results.append(output_api.PresubmitPromptWarning( error_msg, long_text=out)) return results def _CheckExpectations(input_api, output_api): return _RunValidationScript( input_api, output_api, 'validate_story_expectation_data', ) def _CheckPerfDataCurrentness(input_api, output_api, block_on_failure): return _RunValidationScript( input_api, output_api, 'generate_perf_data', ['--validate-only'], block_on_failure ) def _CheckPerfJsonConfigs(input_api, output_api, block_on_failure): return _RunValidationScript( input_api, output_api, 'validate_perf_json_config', ['--validate-only'], block_on_failure ) def _CheckWprShaFiles(input_api, output_api): """Check whether the wpr sha files have matching URLs.""" wpr_archive_shas = [] for affected_file in input_api.AffectedFiles(include_deletes=False): filename = affected_file.AbsoluteLocalPath() if not filename.endswith('.sha1'): continue wpr_archive_shas.append(filename) return _RunValidationScript( input_api, output_api, 'validate_wpr_archives', wpr_archive_shas ) def _CheckShardMaps(input_api, output_api, block_on_failure): return _RunValidationScript( input_api, output_api, 'generate_perf_sharding.py', ['validate'], block_on_failure ) def _CheckJson(input_api, output_api): """Checks whether JSON files in this change can be parsed.""" for affected_file in input_api.AffectedFiles(include_deletes=False): filename = affected_file.AbsoluteLocalPath() if os.path.splitext(filename)[1] != '.json': continue try: input_api.json.load(open(filename)) except ValueError: return [output_api.PresubmitError('Error parsing JSON in %s!' % filename)] return [] def _CheckVersionsInSmokeTests(input_api, output_api): return _RunValidationScript( input_api, output_api, input_api.os_path.join( 'benchmarks', 'system_health_load_tests_smoke_test.py'), ) def CheckChangeOnUpload(input_api, output_api): report = [] report.extend(_CommonChecks(input_api, output_api)) return report def CheckChangeOnCommit(input_api, output_api): report = [] report.extend(_CommonChecks(input_api, output_api, block_on_failure=True)) return report
the-stack_106_22632
#!/usr/bin/env python import sys import os import threading from subprocess import call import argparse import gzip ## code adapted from PrepareAA.py commit 38e758c19776f02cd0e920bde2513536cccc489f ## https://github.com/jluebeck/PrepareAA # Read the CNVkit .cns files def convert_cnvkit_cnv_to_seeds(cnvkit_output_directory, bam): base = os.path.splitext(os.path.basename(bam))[0] with open(cnvkit_output_directory + base + ".segment.cns") as infile, open(cnvkit_output_directory + base + "_CNV_GAIN.bed", 'w') as outfile: head = next(infile).rstrip().rsplit("\t") for line in infile: fields = line.rstrip().rsplit("\t") s, e = int(fields[1]), int(fields[2]) cn_r = float(fields[4]) cn = 2 ** (cn_r + 1) if cn >= args.cngain and e - s >= args.cnsize_min: outline = "\t".join(fields[0:3] + ["CNVkit", str(cn)]) + "\n" outfile.write(outline) return cnvkit_output_directory + base + "_CNV_GAIN.bed" # MAIN # if __name__ == '__main__': # Parses the command line arguments parser = argparse.ArgumentParser( description="A simple pipeline wrapper for AmpliconArchitect, invoking alignment, variant calling, " "and CNV calling prior to AA. The CNV calling is necesary for running AA") #parser.add_argument("-s", "--sample_name", help="sample name", required=True) parser.add_argument("-o", "--output_directory", help="output directory names (will create if not already created)", required=True) parser.add_argument("--sorted_bam", help="Sorted BAM file (aligned to an AA-supported reference.)", required=True) parser.add_argument("--cngain", type=float, help="CN gain threshold to consider for AA seeding", default=4.5) parser.add_argument("--cnsize_min", type=int, help="CN interval size (in bp) to consider for AA seeding", default=50000) args = parser.parse_args() args.cnv_bed = convert_cnvkit_cnv_to_seeds(args.output_directory + "/", args.sorted_bam)
the-stack_106_22634
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import re import llnl.util.tty as tty import spack.compiler import spack.util.executable class Fj(Package): """The Fujitsu compiler system is a high performance, production quality code generation tool designed for high performance parallel computing workloads. """ homepage = "https://www.fujitsu.com/us/" maintainers = ['t-karatsu'] def install(self, spec, prefix): raise InstallError( 'Fujitsu compilers are not installable yet, but can be ' 'detected on a system where they are supplied by vendor' ) executables = ['^fcc', '^FCC', '^frt'] @classmethod def determine_version(cls, exe): version_regex = re.compile(r'\((?:FCC|FRT)\) ([a-z\d.]+)') try: output = spack.compiler.get_compiler_version_output( exe, '--version' ) match = version_regex.search(output) if match: return match.group(1) except spack.util.executable.ProcessError: pass except Exception as e: tty.debug(e) @classmethod def determine_variants(cls, exes, version_str): compilers = {} for exe in exes: if 'fcc' in exe: compilers['c'] = exe if 'FCC' in exe: compilers['cxx'] = exe if 'frt' in exe: compilers['fortran'] = exe return '', {'compilers': compilers}
the-stack_106_22635
#! /usr/bin/env python # -*- coding: utf-8 -*- import os, sys from lab.environments import LocalEnvironment, MaiaEnvironment from common_setup import IssueConfig, IssueExperiment, is_test_run BENCHMARKS_DIR = os.environ["DOWNWARD_BENCHMARKS"] REVISIONS = ["issue698-base", "issue698-v1"] CONFIGS = [ IssueConfig( "blind", ["--search", "astar(blind())"], driver_options=["--search-time-limit", "60s"] ) ] sys.path.append(BENCHMARKS_DIR) import suites SUITE = suites.suite_optimal_strips() ENVIRONMENT = MaiaEnvironment( priority=0, email="[email protected]") if is_test_run(): SUITE = IssueExperiment.DEFAULT_TEST_SUITE ENVIRONMENT = LocalEnvironment(processes=1) exp = IssueExperiment( revisions=REVISIONS, configs=CONFIGS, environment=ENVIRONMENT, ) exp.add_suite(BENCHMARKS_DIR, SUITE) exp.add_command("parser", ["custom-parser.py"]) exp.add_comparison_table_step( attributes=exp.DEFAULT_TABLE_ATTRIBUTES + ["successor_generator_time", "reopened_until_last_jump"]) exp.add_scatter_plot_step(attributes=["successor_generator_time"]) exp()
the-stack_106_22636
from consoleme.config import config from consoleme.handlers.base import BaseAPIV1Handler from consoleme.lib.account_indexers import get_account_id_to_name_mapping from consoleme.lib.auth import ( can_admin_policies, can_create_roles, can_delete_roles, can_edit_dynamic_config, ) from consoleme.lib.generic import get_random_security_logo, is_in_group from consoleme.lib.plugins import get_plugin_by_name stats = get_plugin_by_name(config.get("plugins.metrics", "default_metrics"))() log = config.get_logger() class UserProfileHandler(BaseAPIV1Handler): async def get(self): """ Provide information about site configuration for the frontend :return: """ is_contractor = config.config_plugin().is_contractor(self.user) site_config = { "consoleme_logo": await get_random_security_logo(), "google_tracking_uri": config.get("google_analytics.tracking_url"), "documentation_url": config.get("documentation_page"), "support_contact": config.get("support_contact"), "support_chat_url": config.get("support_chat_url"), "security_logo": config.get("security_logo.image"), "security_url": config.get("security_logo.url"), } user_profile = { "site_config": site_config, "user": self.user, "can_logout": config.get("auth.set_auth_cookie"), "is_contractor": is_contractor, "employee_photo_url": config.config_plugin().get_employee_photo_url( self.user ), "employee_info_url": config.config_plugin().get_employee_info_url( self.user ), "authorization": { "can_edit_policies": can_admin_policies(self.user, self.groups), "can_create_roles": can_create_roles(self.user, self.groups), "can_delete_roles": can_delete_roles(self.user, self.groups), }, "pages": { "header": { "custom_header_message_title": config.get( "headers.custom_header_message.title", "" ), "custom_header_message_text": config.get( "headers.custom_header_message.text", "" ), }, "groups": { "enabled": config.get("headers.group_access.enabled", False) }, "users": {"enabled": config.get("headers.group_access.enabled", False)}, "policies": { "enabled": config.get("headers.policies.enabled", True) and not is_contractor }, "self_service": { "enabled": config.get("enable_self_service", True) and not is_contractor }, "api_health": { "enabled": is_in_group( self.user, self.groups, config.get("groups.can_edit_health_alert", []), ) }, "audit": { "enabled": is_in_group( self.user, self.groups, config.get("groups.can_audit", []) ) }, "config": {"enabled": can_edit_dynamic_config(self.user, self.groups)}, }, "accounts": await get_account_id_to_name_mapping(), } self.set_header("Content-Type", "application/json") self.write(user_profile)
the-stack_106_22637
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """For storing and accessing flags.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import json import absl.flags absl.flags.DEFINE_string("nn_flags", None, "Flags dict as b64-encoded JSON") class Flags(dict): """For storing and accessing flags.""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def print_values(self, indent=1): """Print the values in this flags object.""" for k, v in sorted(self.items()): if isinstance(v, Flags): print("{}{}:".format("\t" * indent, k)) v.print_values(indent=indent + 1) else: print("{}{}: {}".format("\t" * indent, k, v)) def load(self, other): """Recursively copy values from another flags object into this one.""" def recursive_update(flags, dict_): for k in dict_: if isinstance(dict_[k], dict): flags[k] = Flags() recursive_update(flags[k], dict_[k]) else: flags[k] = dict_[k] recursive_update(self, other) def load_json(self, json_): """Copy values from a JSON string into this flags object.""" if json_.startswith("b64"): json_ = base64.b64decode(json_[3:]) other = json.loads(json_) self.load(other) def load_from_cmdline(self): self.load_json(absl.flags.FLAGS.nn_flags) def set_if_empty(self, key, val): """If there's no current value for the given key, assign the given value.""" if key not in self: self[key] = val
the-stack_106_22638
#!/bin/python # -*- coding: utf-8 -*- """contains functions related to (re)compiling the model with different parameters """ import numpy as np import time from .stats import post_mean def posterior_sampler(self, nsamples, seed=0, verbose=True): """Draw parameters from the posterior. Parameters ---------- nsamples : int Size of the sample Returns ------- array Numpy array of parameters """ import random random.seed(seed) sample = self.get_chain()[-self.get_tune:] sample = sample.reshape(-1, sample.shape[(-1)]) sample = random.choices(sample, k=nsamples) return sample def sample_box(self, dim0, dim1=None, bounds=None, lp_rule=None, verbose=False): """Sample from a hypercube """ import chaospy bnd = bounds or np.array(self.fdict['prior_bounds']) dim1 = dim1 or self.ndim rule = lp_rule or 'S' res = chaospy.Uniform(0, 1).sample(size=(dim0, dim1), rule=rule) res = (bnd[1] - bnd[0]) * res + bnd[0] return res def prior_sampler(self, nsamples, seed=0, test_lprob=False, lks=None, verbose=True, debug=False, **args): """Draw parameters from prior. Parameters ---------- nsamples : int Size of the prior sample seed : int, optional Set the random seed (0 by default) test_lprob : bool, optional Whether to ensure that drawn parameters have a finite likelihood (False by default) verbose : bool, optional debug : bool, optional Returns ------- array Numpy array of parameters """ import tqdm from grgrlib.core import map2arr from grgrlib.multiprocessing import serializer l_max, k_max = lks or (None, None) if test_lprob and not hasattr(self, 'ndim'): self.prep_estim(load_R=True, verbose=verbose > 2) frozen_prior = self.fdict.get('frozen_prior') if not np.any(frozen_prior): from .stats import get_prior frozen_prior = get_prior(self.prior, verbose=verbose)[0] self.debug |= debug if hasattr(self, 'pool'): from .estimation import create_pool create_pool(self) set_par = serializer(self.set_par) get_par = serializer(self.get_par) lprob = serializer(self.lprob) if test_lprob else None def runner(locseed): np.random.seed(seed+locseed) done = False no = 0 while not done: no += 1 with np.warnings.catch_warnings(record=False): try: np.warnings.filterwarnings('error') rst = np.random.randint(2**31) # win explodes with 2**32 pdraw = [pl.rvs(random_state=rst+sn) for sn, pl in enumerate(frozen_prior)] if test_lprob: draw_prob = lprob(pdraw, linear=None, verbose=verbose > 1) done = not np.isinf(draw_prob) else: set_par(pdraw) done = True except Exception as e: if verbose > 1: print(str(e)+' (%s) ' % no) return pdraw, no if verbose > 1: print('[prior_sample:]'.ljust(15, ' ') + ' Sampling from the pior...') wrapper = tqdm.tqdm if verbose < 2 else (lambda x, **kwarg: x) pmap_sim = wrapper(self.mapper(runner, range(nsamples)), total=nsamples) draws, nos = map2arr(pmap_sim) if verbose: smess = '' if test_lprob: smess = 'of zero likelihood, ' print('[prior_sample:]'.ljust( 15, ' ') + ' Sampling done. %2.2f%% of the prior is either %sindetermined or explosive.' % (100*(sum(nos)-nsamples)/sum(nos), smess)) return draws def get_par(self, dummy=None, npar=None, asdict=False, full=True, nsamples=1, verbose=False, roundto=5, debug=False, **args): """Get parameters. Tries to figure out what you want. Parameters ---------- dummy : str, optional Can be `None`, a parameter name, a parameter set out of {'calib', 'init', 'prior_mean', 'best', 'mode', 'mcmc_mode', 'post_mean', 'posterior_mean'} or one of {'prior', 'post', 'posterior'}. If `None`, returns the current parameters (default). If there are no current parameters, this defaults to 'best'. 'calib' will return the calibration in the main body of the *.yaml (`parameters`). 'init' are the initial values (first column) in the `prior` section of the *.yaml. 'mode' is the highest known mode from any sort of parameter estimation. 'best' will default to 'mode' if it exists and otherwise fall back to 'init'. 'posterior_mean' and 'post_mean' are the same thing. 'posterior_mode', 'post_mode' and 'mcmc_mode' are the same thing. 'prior' or 'post'/'posterior' will draw random samples. Obviously, 'posterior', 'mode' etc are only available if a posterior/chain exists. NOTE: calling get_par with a set of parameters is the only way to recover the calibrated parameters that are not included in the prior (if you have changed them). All other options will work incrementially on (potential) previous edits of these parameters. asdict : bool, optional Returns a dict of the values if `True` and an array otherwise (default is `False`). full : bool, optional Whether to return all parameters or the estimated ones only. (default: True) nsamples : int, optional Size of the sample. Defaults to 1 verbose : bool, optional Print additional output infmormation (default is `False`) roundto : int, optional Rounding of additional output if verbose, defaults to 5 args : various, optional Auxilliary arguments passed to `gen_sys` calls Returns ------- array or dict Numpy array of parameters or dict of parameters """ from .gensys import gen_sys_from_yaml as gen_sys if not hasattr(self, 'par'): gen_sys(self, verbose=verbose, **args) pfnames, pffunc = self.parafunc pars_str = [str(p) for p in self.parameters] pars = np.array(self.par) if hasattr( self, 'par') else np.array(self.par_fix) if npar is not None: if len(npar) != len(self.par_fix): pars[self.prior_arg] = npar else: pars = npar if dummy is None: try: par_cand = np.array(pars)[self.prior_arg] except: par_cand = get_par(self, 'best', asdict=False, full=False, verbose=verbose, **args) elif not isinstance(dummy, str) and len(dummy) == len(self.par_fix): par_cand = dummy[self.prior_arg] elif not isinstance(dummy, str) and len(dummy) == len(self.prior_arg): par_cand = dummy else: if dummy in pars_str: p = pars[pars_str.index(dummy)] if verbose: print('[get_par:]'.ljust(15, ' ') + '%s = %s' % (dummy, p)) return p if dummy in pfnames: p = pffunc(pars)[pfnames.index(dummy)] if verbose: print('[get_par:]'.ljust(15, ' ') + '%s = %s' % (dummy, p)) return p if dummy == 'cov_mat': gen_sys(self, pars) p = self.QQ(self.ppar) if verbose: print('[get_par:]'.ljust(15, ' ') + '%s = %s' % (dummy, p)) return p if dummy == 'best': try: par_cand = get_par(self, 'mode', asdict=False, full=False, verbose=verbose, **args) except: par_cand = get_par(self, 'init', asdict=False, full=False, verbose=verbose, **args) else: old_par = self.par pars = self.par_fix self.par = self.par_fix if dummy == 'prior': par_cand = prior_sampler(self, nsamples=nsamples, verbose=verbose, debug=debug, **args) elif dummy in ('post', 'posterior'): par_cand = posterior_sampler(self, nsamples=nsamples, verbose=verbose, **args) elif dummy == 'posterior_mean' or dummy == 'post_mean': par_cand = post_mean(self) elif dummy == 'mode': par_cand = self.fdict['mode_x'] elif dummy in ('mcmc_mode', 'mode_mcmc', 'posterior_mode', 'post_mode'): par_cand = self.fdict['mcmc_mode_x'] elif dummy == 'calib': par_cand = self.par_fix[self.prior_arg].copy() elif dummy == 'prior_mean': par_cand = [] for pp in self.prior.keys(): if self.prior[pp][3] == 'uniform': par_cand.append( 0.5 * self.prior[pp][(-2)] + 0.5 * self.prior[pp][(-1)]) else: par_cand.append(self.prior[pp][(-2)]) elif dummy == 'adj_prior_mean': par_cand = [] for pp in self.prior.keys(): if self.prior[pp][3] == 'inv_gamma_dynare': par_cand.append(self.prior[pp][(-2)] * 10) else: if self.prior[pp][3] == 'uniform': par_cand.append( 0.5 * self.prior[pp][(-2)] + 0.5 * self.prior[pp][(-1)]) else: par_cand.append(self.prior[pp][(-2)]) elif dummy == 'init': par_cand = self.fdict['init_value'] for i in range(self.ndim): if par_cand[i] is None: par_cand[i] = self.par_fix[self.prior_arg][i] else: self.par = old_par raise KeyError( "Parameter or parametrization '%s' does not fit/exist." % dummy) if full: if isinstance(dummy, str) and dummy in ('prior', 'post', 'posterior'): par = np.tile(pars, (nsamples, 1)) for i in range(nsamples): par[i][self.prior_arg] = par_cand[i] else: par = np.array(pars) par[self.prior_arg] = par_cand if not asdict: return par pdict = dict(zip(pars_str, np.round(par, roundto))) pfdict = dict(zip(pfnames, np.round(pffunc(par), roundto))) return ( pdict, pfdict) if asdict: return dict(zip(np.array(pars_str)[self.prior_arg], np.round(par_cand, roundto))) if nsamples > 1: if dummy not in ('prior', 'post', 'posterior'): par_cand = par_cand * \ (1 + 0.001 * np.random.randn(nsamples, len(par_cand))) return par_cand def get_cov(self, npar=None, **args): """get the covariance matrix""" return get_par(self, dummy='cov_mat', npar=npar, **args) def set_par(self, dummy=None, setpar=None, npar=None, verbose=False, return_vv=False, roundto=5, **args): """Set the current parameter values. In essence, this is a wrapper around `get_par` which also compiles the transition function with the desired parameters. Parameters ---------- dummy : str or array, optional If an array, sets all parameters. If a string and a parameter name,`setpar` must be provided to define the value of this parameter. Otherwise, `dummy` is forwarded to `get_par` and the returning value(s) are set as parameters. setpar : float, optional Parametervalue to be set. Of course, only if `dummy` is a parameter name. npar : array, optional Vector of parameters. If given, this vector will be altered and returnd without recompiling the model. THIS WILL ALTER THE PARAMTER WITHOUT MAKING A COPY! verbose : bool Whether to output more or less informative messages (defaults to False) roundto : int Define output precision if output is verbose. (default: 5) args : keyword args Keyword arguments forwarded to the `gen_sys` call. """ from .gensys import gen_sys_from_yaml as gen_sys pfnames, pffunc = self.parafunc pars_str = [str(p) for p in self.parameters] par = np.array(self.par) if hasattr( self, 'par') else np.array(self.par_fix) if setpar is None: if dummy is None: par = get_par(self, dummy=dummy, asdict=False, full=True, verbose=verbose, **args) elif len(dummy) == len(self.par_fix): par = dummy elif len(dummy) == len(self.prior_arg): par[self.prior_arg] = dummy else: par = get_par(self, dummy=dummy, asdict=False, full=True, verbose=verbose, **args) elif dummy in pars_str: if npar is not None: npar = npar.copy() if len(npar) == len(self.prior_arg): npar[self.prior_names.index(dummy)] = setpar else: npar[pars_str.index(dummy)] = setpar if return_vv: return npar, self.vv return npar par[pars_str.index(dummy)] = setpar elif dummy in pfnames: raise SyntaxError( "Can not set parameter '%s' that is a function of other parameters." % dummy) else: raise SyntaxError( "Parameter '%s' is not defined for this model." % dummy) gen_sys(self, par=list(par), verbose=verbose, **args) if hasattr(self, 'filter'): Q = self.QQ(self.ppar) @ self.QQ(self.ppar) self.filter.Q = Q if verbose > 1: pdict = dict(zip(pars_str, np.round(self.par, roundto))) pfdict = dict(zip(pfnames, np.round(pffunc(self.par), roundto))) print('[set_par:]'.ljust(15, ' ') + ' Parameter(s):\n%s\n%s' % (pdict, pfdict)) if return_vv: return get_par(self), self.vv return get_par(self) def box_check(self, par=None): """Check if parameterset lies outside the box constraints Parameters ---------- par : array or list, optional The parameter set to check """ if par is None: par = self.par for i, name in enumerate(self.fdict['prior_names']): lb, ub = self.fdict['prior_bounds'] if par[i] < lb[i]: print('[box_check:]'.ljust( 15, ' ') + ' Parameter %s of %s lower than lb of %s.' % (name, par[i].round(5), lb[i])) if par[i] > ub[i]: print('[box_check:]'.ljust( 15, ' ') + ' Parameter %s of %s higher than ub of %s.' % (name, par[i].round(5), ub[i])) return
the-stack_106_22640
import tensorflow as tf from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import AUC from tensorflow.keras.callbacks import EarlyStopping from mtrec.models import MMoE from utils import build_census import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def main(): """ ========================= Hyper Parameters ======================= """ train_file = 'data/census/census-income.data.gz' test_file = 'data/census/census-income.test.gz' embed_dim = 4 num_experts = 8 expert_units = [16, 8] gate_units = [16, 8, 2] tower_units = [8] epochs = 10 batch_size = 1024 learning_rate = 0.001 """ ========================= Create dataset ======================= """ sparse_feature_columns, train, test = build_census(train_file, test_file, embed_dim) train_X, train_y = train test_X, test_y = test task_names = list(train_y.keys()) """ ========================= Build Model ======================= """ model = MMoE(task_names, num_experts, sparse_feature_columns, expert_units, gate_units, tower_units) model.summary() # tf.keras.utils.plot_model(model, "model_with_shape_info.png", show_shapes=True) """ ============================Compile============================ """ model.compile(loss={'income': 'binary_crossentropy', 'marital': 'binary_crossentropy'}, optimizer=Adam(learning_rate=learning_rate), metrics=[AUC()]) """ ==============================Fit============================== """ model.fit( train_X, train_y, epochs=epochs, callbacks=[EarlyStopping(monitor='val_marital_loss', patience=2, restore_best_weights=True)], # checkpoint, batch_size=batch_size, validation_split=0.1 ) """ ===========================Test============================== """ test_metric = model.evaluate(test_X, test_y, batch_size=batch_size) print('test income AUC: %f, marital AUC: %f' % (test_metric[3], test_metric[4])) if __name__ == '__main__': main()
the-stack_106_22641
# Ran Jan 16 to simulate reads with RSEM from the monocle model # The monocle model is a tobit model on the cluster1 log tpm # perturbations made on 20% of transcripts with at least 2 fold change, simulated from a log normal effect size distribution # also used to simulate nonperturb import os import glob import numpy import sys RSEM_path="/home/lynnyi/RSEM-1.3.0" RSEM_command= RSEM_path + "/rsem-simulate-reads" RSEM_ref_path= RSEM_path + "/ref/human" RSEM_model= RSEM_path + "/exp/Trapnell_cluster1.stat/Trapnell_cluster1.model" theta = "0.2" i = sys.argv[1] o = sys.argv[2] reads_logmean = 14.42 reads_logsd = 0.3336 with open('/home/lynnyi/dirichlet/log.txt', 'w') as logfile: reads = int(numpy.random.lognormal(mean=reads_logmean, sigma = reads_logsd)) #reads = 2000000 cmd = RSEM_command + " " + RSEM_ref_path + " " + RSEM_model + " " + i + " " + theta + " " + str(reads) + " " + o + " --seed 0 " logfile.write(cmd + '\n') print(cmd) os.system(cmd)
the-stack_106_22642
import logging from django.apps import apps from django.contrib.contenttypes.models import ContentType from django.core.exceptions import PermissionDenied from django.db import models from mayan.apps.acls.models import AccessControlList from mayan.apps.common.serialization import yaml_load from .classes import Layer from .transformations import BaseTransformation logger = logging.getLogger(name=__name__) class LayerTransformationManager(models.Manager): def get_for_object( self, obj, as_classes=False, maximum_layer_order=None, only_stored_layer=None, user=None ): """ as_classes == True returns the transformation classes from .classes ready to be feed to the converter class """ Layer.update() StoredLayer = apps.get_model( app_label='converter', model_name='StoredLayer' ) content_type = ContentType.objects.get_for_model(model=obj) transformations = self.filter( enabled=True, object_layer__content_type=content_type, object_layer__object_id=obj.pk, object_layer__enabled=True ) if maximum_layer_order is not None: access_layers = StoredLayer.objects.filter( order__lte=maximum_layer_order ) exclude_layers = StoredLayer.objects.filter( order__gt=maximum_layer_order ) else: access_layers = StoredLayer.objects.all() exclude_layers = StoredLayer.objects.none() for stored_layer in access_layers: try: layer_class = stored_layer.get_layer() except KeyError: """ This was a class defined but later erased. Ignore it. """ else: access_permission = layer_class.permissions.get( 'access_permission', None ) if access_permission: try: AccessControlList.objects.check_access( obj=obj, permissions=(access_permission,), user=user ) except PermissionDenied: access_layers = access_layers.exclude(pk=stored_layer.pk) for stored_layer in exclude_layers: exclude_permission = stored_layer.get_layer().permissions.get( 'exclude_permission', None ) if exclude_permission: try: AccessControlList.objects.check_access( obj=obj, permissions=(exclude_permission,), user=user ) except PermissionDenied: pass else: exclude_layers = exclude_layers.exclude(pk=stored_layer.pk) if only_stored_layer: transformations = transformations.filter( object_layer__stored_layer=only_stored_layer ) transformations = transformations.filter( object_layer__stored_layer__in=access_layers ) transformations = transformations.exclude( object_layer__stored_layer__in=exclude_layers ) if as_classes: result = [] for transformation in transformations: try: transformation_class = BaseTransformation.get( transformation.name ) except KeyError: # Non existant transformation, but we don't raise an error logger.error( 'Non existant transformation: %s for %s', transformation.name, obj ) else: try: # Some transformations don't require arguments # return an empty dictionary as ** doesn't allow None if transformation.arguments: kwargs = yaml_load( stream=transformation.arguments, ) else: kwargs = {} result.append( transformation_class( **kwargs ) ) except Exception as exception: logger.error( 'Error while parsing transformation "%s", ' 'arguments "%s", for object "%s"; %s', transformation, transformation.arguments, obj, exception, exc_info=True ) return result else: return transformations class ObjectLayerManager(models.Manager): def get_for(self, layer, obj): content_type = ContentType.objects.get_for_model(model=obj) return self.get_or_create( content_type=content_type, object_id=obj.pk, stored_layer=layer.stored_layer )
the-stack_106_22643
from pylab import * from scipy.stats import norm from scipy.linalg.matfuncs import expm2 import os def phi(x): k = 5 #return norm.pdf(x-4) * exp(1j * k * x) + norm.pdf(x-40) * exp(-1j * k * x) return norm.pdf(x-4) + norm.pdf(x-40) def phi2(x): k = 5 #return norm.pdf(x-4.1) * exp(1j * k * x) + norm.pdf(x-39.9) * exp(-1j * k * x) return norm.pdf(x-4.1) + norm.pdf(x-39.9) X = arange(-200,200,.5) phis = [phi(X),phi2(X)] #def evolve(initial,H,tfinal,timestep): #def propagator(H,t): #return expm2(-1j*H*t) #expm2: compute the matrix exponential using eigenvalue decomposition #time = arange(0,tfinal,timestep) #states = [initial] #U = propagator(H,timestep) ##evolve the system #for i in range(len(time)-1): #states.append(array(dot(U,states[-1]))) #return time, states def laplacematrix(dx,nx): return matrix((diag(ones(nx-1),1) + diag(ones(nx-1),-1) + diag(-2*ones(nx))) / (dx*dx)) def evolve(phis): lastphi = phis[-1] size = len(lastphi) #newphi = array(dot(laplacematrix(.1, size), lastphi)).flatten() + 2 * lastphi - phis[-2] newphi = .1 * .1 *array(dot(laplacematrix(.1, size), lastphi)).flatten() + 2 * lastphi - phis[-2] return array(newphi) for i in range(30): phis.append(evolve(phis)) def createvideo(spectrums, plotter): #http://dawes.wordpress.com/2007/12/04/animating-png-files/ #http://stackoverflow.com/questions/4092927/generating-movie-from-python-without-saving-individual-frames-to-files #http://www.scipy.org/Cookbook/Matplotlib/Animations import tempfile directory = tempfile.gettempdir() command = ('ffmpeg','-i', directory + '/%03d.png', 'out.avi', '-r', '5') #convert -delay 50 Th*.JPG anim.mpg ymin, ymax = min(spectrums[0]), max(spectrums[0]) for i in range(len(spectrums)): figure() ylim(ymin, ymax) plotter(spectrums[i]) filename = directory + '/%03d.png'%i savefig(filename) print('Wrote file '+ filename) clf() os.spawnvp(os.P_WAIT, 'ffmpeg', command) createvideo(phis,plot) #show() #for i in phis: #figure() #plot(X,i) #show()
the-stack_106_22645
from collections import namedtuple import threading import time import wrapt from neotiles.exceptions import NeoTilesError from neotiles.pixelcolor import PixelColor MatrixSize = namedtuple('MatrixSize', 'cols rows') TileSize = namedtuple('TileSize', 'cols rows') TilePosition = namedtuple('TilePosition', 'x y') PixelPosition = namedtuple('PixelPosition', 'x y') class StoppableThread(threading.Thread): """ Thread class with a stop() method. The thread itself has to check regularly for the stopped() condition. http://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread-in-python """ def __init__(self, **kwargs): super(StoppableThread, self).__init__(**kwargs) self._stop_requested = threading.Event() def stop(self): self._stop_requested.set() def stopped(self): return self._stop_requested.isSet() class TileManager(object): """ Manages all the tiles displayed on a hardware matrix (either a neopixel matrix or an RGB matrix). TileManager is the only class in neotiles which affects the actual hardware matrix. Example usage: :: from neotiles import TileManager from neotiles.matrixes import NTNeoPixelMatrix tiles = TileManager(NTNeoPixelMatrix(size=(8, 8), led_pin=18)) Or with an RGB matrix: :: from neotiles import TileManager from neotiles.matrixes import NTRGBMatrix tiles = TileManager(NTRGBMatrix(rows=32, chain=2)) **Animation**: The ``draw_fps`` (draw frames per second) parameter controls how many times per second the animation loop -- which runs in a separate thread -- will call :meth:`draw_hardware_matrix` which in turn calls all the tiles' :meth:`Tile.draw` methods. If ``draw_fps=None`` then the matrix will not be drawn automatically and you must call :meth:`draw_hardware_matrix` manually. The animation loop will attempt to re-draw the matrix at a rate of ``draw_fps`` times per second. This rate may or may not be achieved depending on whatever else the CPU is doing, including the compute load created by the tiles' :meth:`Tile.draw` methods. The animation loop assumes that something else will be sending data to the tiles via the :attr:`Tile.data` attribute or the :meth:`TileManager.send_data_to_tiles` method. If that isn't happening then the animation loop will likely keep re-drawing the matrix with the same unchanging pixel colors. :param matrix: (:class:`~neotiles.matrixes.NTNeoPixelMatrix` | :class:`~neotiles.matrixes.NTRGBMatrix`) The matrix being managed. :param draw_fps: (int|None) The frame rate for the drawing animation loop. """ def __init__(self, matrix, draw_fps=10): self.hardware_matrix = matrix self._draw_fps = draw_fps self._animation_thread = None self._pixels = None self._clear_pixels() # List of tiles we'll be displaying inside the matrix. self._managed_tiles = [] def __repr__(self): return '{}(matrix={}, draw_fps={})'.format( self.__class__.__name__, repr(self.hardware_matrix), self._draw_fps ) def __str__(self): matrix = self.pixels matrix_string = '' pixel_num = 0 # Do a scan to see if any pixels have a white component. If any do # then we'll display the white component for all of them; otherwise # we'll suppress it in the interest of space. display_white = False for row_num in range(len(matrix)): for col_num in range(len(matrix[row_num])): color = matrix[row_num][col_num] if color.white is not None: display_white = True # Display a 2-dimensional grid of pixel values. for row_num in range(len(matrix)): for col_num in range(len(matrix[row_num])): color = matrix[row_num][col_num] denormalized = color.hardware_components if len(denormalized) == 3 and display_white: display_components = denormalized + 0 else: display_components = denormalized if display_white: matrix_string += ( '[{:2d}] {:-3d},{:-3d},{:-3d},{:-3d} '.format( pixel_num, *display_components) ) else: matrix_string += '[{:2d}] {:-3d},{:-3d},{:-3d} '.format( pixel_num, *display_components) pixel_num += 1 matrix_string += '\n' return matrix_string.rstrip() def _clear_pixels(self): """ Generate a 2D matrix for the given size of the neopixel matrix where all the pixels are set to off (0, 0, 0). :return: ([[:class:`PixelColor`]]) 2D matrix of PixelColor objects all set to (0, 0, 0, 0). """ self._pixels = [ [PixelColor(0, 0, 0, 0) for col in range(self.matrix_size.cols)] for row in range(self.matrix_size.rows) ] @wrapt.synchronized def _set_pixels_from_tiles(self): """ Create a 2D matrix representing the entire pixel matrix, made up of each of the individual tiles' colors for each tile pixel. :return: ([[matrix]]) 2D list of :class:`PixelColor` objects. :raises: :class:`NeoTilesError` if an attempt is made to render a pixel outside of the neopixel matrix's dimensions. """ self._clear_pixels() # Set the matrix pixels to the colors of each tile in turn. If any # tiles happen to overlap then the last one processed will win. for managed_tile in self._managed_tiles: tile_object = managed_tile['tile_object'] if not tile_object.visible: continue # Call the draw() method of any tile which is flagged as animating. if tile_object.animate: tile_object.draw() # Retrieve the pixel colors of the tile. tile_matrix = tile_object.pixels # Draw the tile's pixels in the right place on the matrix # (determined by the tile's root position). for tile_row_num in range(len(tile_matrix)): for tile_col_num in range(len(tile_matrix[tile_row_num])): pixel_color = tile_matrix[tile_row_num][tile_col_num] matrix_row = managed_tile['root'].y + tile_row_num matrix_col = managed_tile['root'].x + tile_col_num try: self._pixels[matrix_row][matrix_col] = pixel_color except IndexError: raise NeoTilesError( 'Cannot render tile {}: pixel position ({}, {}) ' 'is invalid for {}x{} matrix'.format( managed_tile, matrix_col, matrix_row, self.matrix_size.cols, self.matrix_size.rows )) @wrapt.synchronized def _draw_hardware_matrix(self): """ Displays the current state of the matrix pixels on the neopixel hardware. """ pixels = self.pixels # Walk through the matrix from the top left to the bottom right, # painting pixels as we go. for row_num in range(len(pixels)): for col_num in range(len(pixels[row_num])): color = pixels[row_num][col_num] self.hardware_matrix.setPixelColor(col_num, row_num, color) self.hardware_matrix.show() def _animate(self): """ Internal animation method. Spawns a new thread to manage the drawing of the matrix at the (hoped-for) frame rate. """ frame_delay_millis = int(1000 / self._draw_fps) current_time = int(round(time.time() * 1000)) next_frame_time = current_time + frame_delay_millis # Draw the first frame. Not really necessary except perhaps for super # slow frame rates. self._set_pixels_from_tiles() self._draw_hardware_matrix() while True: current_time = int(round(time.time() * 1000)) if current_time > next_frame_time: next_frame_time = current_time + frame_delay_millis self._set_pixels_from_tiles() self._draw_hardware_matrix() # The sleep time needs to be long enough that we're not churning # through CPU cycles checking whether it's time to render the next # frame or not; but short enough to allow us to render the next # frame as soon as possible once we're past our next-frame wait # time. This is a bit of a cheap-and-cheerful animation loop, and # this sleep duration may not be ideal. time.sleep(0.005) if self._animation_thread.stopped(): return def register_tile( self, tile, size=None, root=None): """ Registers a tile with the TileManager. Registering a tile allows its pixels to be drawn by the TileManager to the hardware matrix. :param tile: (:class:`Tile`) The tile to register. :param size: (:class:`TileSize`) Size of the tile (in cols and rows). :param root: (:class:`TilePosition`) Position of the top left corner of the tile within the hardware matrix. """ tile.size = TileSize(*size) self._managed_tiles.append({ 'root': TilePosition(*root), 'tile_object': tile, }) # Set the tile manager's pixels based on this new tile. A future # optimization would be to only render the new tile onto the manager's # pixels. self._set_pixels_from_tiles() def deregister_tile(self, tile): """ Deregisters a tile from the tile manager. Deregistered tiles will no longer be drawn to the hardware matrix. If deregistering the tile results in no tiles being registered with the manager then the matrix-drawing animation loop will be stopped automatically. :param tile: (:class:`Tile`) The tile being deregistered. :return: (int) The number of tiles removed. """ removed = 0 for i, managed_tile in enumerate(self._managed_tiles): if managed_tile['tile_object'] == tile: del self._managed_tiles[i] removed += 1 if len(self._managed_tiles) == 0: self.draw_stop() return removed def send_data_to_tiles(self, data): """ Sends ``data`` to all registered tiles. The data will not be sent to any tile which has its :attr:`Tile.is_accepting_data` attribute set to ``False``. :param data: (any) Input data. """ for managed_tile in self._managed_tiles: tile_object = managed_tile['tile_object'] if tile_object.is_accepting_data: tile_object.data = data def draw_hardware_matrix(self): """ Calls each tile's :meth:`Tile.draw` method to ensure that each tile's pixels are up to date, with the result being displayed on the hardware matrix. If the TileManager's ``draw_fps`` is not ``None`` then this method will also trigger the animation loop if it's not already running. This means that you only need to call ``draw_hardware_matrix`` once if you've enabled animation, as the animation loop will ensure that the matrix is updated via each tile's :meth:`Tile.draw` method once per animation frame. """ if self._draw_fps is None: self._set_pixels_from_tiles() self._draw_hardware_matrix() return if self._animation_thread is None: self._animation_thread = StoppableThread(target=self._animate) self._animation_thread.start() def draw_stop(self): """ Stop the matrix-drawing animation loop. """ if self._animation_thread is not None: self._animation_thread.stop() self._animation_thread.join() self._animation_thread = None def clear_hardware_matrix(self): """ Clears the hardware matrix (sets all pixels to ``PixelColor(0, 0, 0, 0)``). """ pixels = self.pixels black_pixel = PixelColor(0, 0, 0) for row_num in range(len(pixels)): for col_num in range(len(pixels[row_num])): self.hardware_matrix.setPixelColor( col_num, row_num, black_pixel) self.hardware_matrix.show() @property def brightness(self): """ (int) Get or set the brightness of the matrix display. Range of acceptable values will depend on the matrix type. """ return self.hardware_matrix.brightness @brightness.setter def brightness(self, val): self.hardware_matrix.brightness = val @property def matrix_size(self): """ (:class:`MatrixSize`) Get the size of the matrix. """ return self.hardware_matrix.size @property def tiles(self): """ Get all registered tiles as a list of :class:`Tile` objects. """ return [tile['tile_object'] for tile in self._managed_tiles] @property def tiles_meta(self): """ Get all information on all registered tiles. Tile information is returned as a list of dictionaries which contain the ``root`` and ``tile_object`` keys (:class:`TilePosition` and :class:`Tile` objects respectively). If you just want the registered Tile instances then use :attr:`tiles` instead. """ return self._managed_tiles @property def pixels(self): """ Get the tile manager's current pixel colors, which is a combination of the current pixel colors of all the tiles being managed by the TileManager. The colors are returned as a two-dimensional list (with the same dimensions as :attr:`matrix_size`) of :class:`~PixelColor` objects. """ return self._pixels
the-stack_106_22646
#!/usr/bin/env python """Safe(ish) evaluation of mathematical expression using Python's ast module. This module provides an Interpreter class that compiles a restricted set of Python expressions and statements to Python's AST representation, and then executes that representation using values held in a symbol table. The symbol table is a simple dictionary, giving a simple, flat namespace. This comes pre-loaded with many functions from Python's builtin and math module. If numpy is installed, many numpy functions are also included. Additional symbols can be added when an Interpreter is created, but the user of that interpreter will not be able to import additional modules. Expressions, including loops, conditionals, and function definitions can be compiled into ast node and then evaluated later, using the current values in the symbol table. The result is a restricted, simplified version of Python meant for numerical caclulations that is somewhat safer than 'eval' because many unsafe operations (such as 'import' and 'eval') are simply not allowed. Many parts of Python syntax are supported, including: for loops, while loops, if-then-elif-else conditionals try-except (including 'finally') function definitions with def advanced slicing: a[::-1], array[-3:, :, ::2] if-expressions: out = one_thing if TEST else other list comprehension out = [sqrt(i) for i in values] The following Python syntax elements are not supported: Import, Exec, Lambda, Class, Global, Generators, Yield, Decorators In addition, while many builtin functions are supported, several builtin functions that are considered unsafe are missing ('eval', 'exec', and 'getattr' for example) """ from __future__ import division, print_function import ast import time import inspect from sys import exc_info, stdout, stderr, version_info import six from .astutils import (UNSAFE_ATTRS, HAS_NUMPY, make_symbol_table, numpy, op2func, ExceptionHolder, ReturnedNone, valid_symbol_name) builtins = __builtins__ if not isinstance(builtins, dict): builtins = builtins.__dict__ ALL_NODES = ['arg', 'assert', 'assign', 'attribute', 'augassign', 'binop', 'boolop', 'break', 'call', 'compare', 'continue', 'delete', 'dict', 'ellipsis', 'excepthandler', 'expr', 'extslice', 'for', 'functiondef', 'if', 'ifexp', 'index', 'interrupt', 'list', 'listcomp', 'module', 'name', 'nameconstant', 'num', 'pass', 'print', 'raise', 'repr', 'return', 'slice', 'str', 'subscript', 'try', 'tuple', 'unaryop', 'while'] ERR_MAX_TIME = "Execution exceeded time limit, max runtime is {}s" class Interpreter(object): """create an asteval Interpreter: a restricted, simplified interpreter of mathematical expressions using Python syntax. Parameters ---------- symtable : dict or `None` dictionary to use as symbol table (if `None`, one will be created). usersyms : dict or `None` dictionary of user-defined symbols to add to symbol table. writer : file-like or `None` callable file-like object where standard output will be sent. err_writer : file-like or `None` callable file-like object where standard error will be sent. use_numpy : bool whether to use functions from numpy. minimal : bool create a minimal interpreter: disable all options (see Note 1). no_if : bool whether to support `if` blocks no_for : bool whether to support `for` blocks. no_while : bool whether to support `while` blocks. no_try : bool whether to support `try` blocks. no_functiondef : bool whether to support user-defined functions. no_ifexp : bool whether to support if expressions. no_listcomp : bool whether to support list comprehension. no_augassign : bool whether to support augemented assigments (`a += 1`, etc). no_assert : bool whether to support `assert`. no_delete : bool whether to support `del`. no_raise : bool whether to support `raise`. no_print : bool whether to support `print`. max_time : float deprecated, unreliable. max_time will be dropped soon. (default 86400) readonly_symbols : iterable or `None` symbols that the user can not assign to builtins_readonly : bool whether to blacklist all symbols that are in the initial symtable Notes ----- 1. setting `minimal=True` is equivalent to setting all `no_***` options to `True`. 2. max_time is not reliable and no longer supported -- the keyword will be dropped soon. """ def __init__(self, symtable=None, usersyms=None, writer=None, err_writer=None, use_numpy=True, minimal=False, no_if=False, no_for=False, no_while=False, no_try=False, no_functiondef=False, no_ifexp=False, no_listcomp=False, no_augassign=False, no_assert=False, no_delete=False, no_raise=False, no_print=False, max_time=86400, readonly_symbols=None, builtins_readonly=False): self.writer = writer or stdout self.err_writer = err_writer or stderr if symtable is None: if usersyms is None: usersyms = {} symtable = make_symbol_table(use_numpy=use_numpy, **usersyms) symtable['print'] = self._printer self.symtable = symtable self._interrupt = None self.error = [] self.error_msg = None self.expr = None self.retval = None self.lineno = 0 self.start_time = time.time() self.max_time = max_time self.use_numpy = HAS_NUMPY and use_numpy nodes = ALL_NODES[:] if minimal or no_if: nodes.remove('if') if minimal or no_for: nodes.remove('for') if minimal or no_while: nodes.remove('while') if minimal or no_try: nodes.remove('try') if minimal or no_functiondef: nodes.remove('functiondef') if minimal or no_ifexp: nodes.remove('ifexp') if minimal or no_assert: nodes.remove('assert') if minimal or no_delete: nodes.remove('delete') if minimal or no_raise: nodes.remove('raise') if minimal or no_print: nodes.remove('print') if minimal or no_listcomp: nodes.remove('listcomp') if minimal or no_augassign: nodes.remove('augassign') self.node_handlers = {} for node in nodes: self.node_handlers[node] = getattr(self, "on_%s" % node) # to rationalize try/except try/finally for Python2.6 through Python3.3 if 'try' in self.node_handlers: self.node_handlers['tryexcept'] = self.node_handlers['try'] self.node_handlers['tryfinally'] = self.node_handlers['try'] if readonly_symbols is None: self.readonly_symbols = set() else: self.readonly_symbols = set(readonly_symbols) if builtins_readonly: self.readonly_symbols |= set(self.symtable) self.no_deepcopy = [key for key, val in symtable.items() if (callable(val) or 'numpy.lib.index_tricks' in repr(val) or inspect.ismodule(val))] def remove_nodehandler(self, node): """remove support for a node returns current node handler, so that it might be re-added with add_nodehandler() """ out = None if node in self.node_handlers: out = self.node_handlers.pop(node) return out def set_nodehandler(self, node, handler): """set node handler""" self.node_handlers[node] = handler def user_defined_symbols(self): """Return a set of symbols that have been added to symtable after construction. I.e., the symbols from self.symtable that are not in self.no_deepcopy. Returns ------- unique_symbols : set symbols in symtable that are not in self.no_deepcopy """ sym_in_current = set(self.symtable.keys()) sym_from_construction = set(self.no_deepcopy) unique_symbols = sym_in_current.difference(sym_from_construction) return unique_symbols def unimplemented(self, node): """Unimplemented nodes.""" self.raise_exception(node, exc=NotImplementedError, msg="'%s' not supported" % (node.__class__.__name__)) def raise_exception(self, node, exc=None, msg='', expr=None, lineno=None): """Add an exception.""" if self.error is None: self.error = [] if expr is None: expr = self.expr if len(self.error) > 0 and not isinstance(node, ast.Module): msg = '%s' % msg err = ExceptionHolder(node, exc=exc, msg=msg, expr=expr, lineno=lineno) self._interrupt = ast.Break() self.error.append(err) if self.error_msg is None: self.error_msg = "at expr='%s'" % (self.expr) elif len(msg) > 0: self.error_msg = msg if exc is None: try: exc = self.error[0].exc except: exc = RuntimeError raise exc(self.error_msg) # main entry point for Ast node evaluation # parse: text of statements -> ast # run: ast -> result # eval: string statement -> result = run(parse(statement)) def parse(self, text): """Parse statement/expression to Ast representation.""" self.expr = text try: out = ast.parse(text) except SyntaxError: self.raise_exception(None, msg='Syntax Error', expr=text) except: self.raise_exception(None, msg='Runtime Error', expr=text) return out def run(self, node, expr=None, lineno=None, with_raise=True): """Execute parsed Ast representation for an expression.""" # Note: keep the 'node is None' test: internal code here may run # run(None) and expect a None in return. if time.time() - self.start_time > self.max_time: raise RuntimeError(ERR_MAX_TIME.format(self.max_time)) out = None if len(self.error) > 0: return out if node is None: return out if isinstance(node, str): node = self.parse(node) if lineno is not None: self.lineno = lineno if expr is not None: self.expr = expr # get handler for this node: # on_xxx with handle nodes of type 'xxx', etc try: handler = self.node_handlers[node.__class__.__name__.lower()] except KeyError: return self.unimplemented(node) # run the handler: this will likely generate # recursive calls into this run method. try: ret = handler(node) if isinstance(ret, enumerate): ret = list(ret) return ret except: if with_raise: self.raise_exception(node, expr=expr) def __call__(self, expr, **kw): """Call class instance as function.""" return self.eval(expr, **kw) def eval(self, expr, lineno=0, show_errors=True): """Evaluate a single statement.""" self.lineno = lineno self.error = [] self.start_time = time.time() try: node = self.parse(expr) except: errmsg = exc_info()[1] if len(self.error) > 0: errmsg = "\n".join(self.error[0].get_error()) if not show_errors: try: exc = self.error[0].exc except: exc = RuntimeError raise exc(errmsg) print(errmsg, file=self.err_writer) return try: return self.run(node, expr=expr, lineno=lineno) except: errmsg = exc_info()[1] if len(self.error) > 0: errmsg = "\n".join(self.error[0].get_error()) if not show_errors: try: exc = self.error[0].exc except: exc = RuntimeError raise exc(errmsg) print(errmsg, file=self.err_writer) return @staticmethod def dump(node, **kw): """Simple ast dumper.""" return ast.dump(node, **kw) # handlers for ast components def on_expr(self, node): """Expression.""" return self.run(node.value) # ('value',) def on_index(self, node): """Index.""" return self.run(node.value) # ('value',) def on_return(self, node): # ('value',) """Return statement: look for None, return special sentinal.""" self.retval = self.run(node.value) if self.retval is None: self.retval = ReturnedNone return def on_repr(self, node): """Repr.""" return repr(self.run(node.value)) # ('value',) def on_module(self, node): # ():('body',) """Module def.""" out = None for tnode in node.body: out = self.run(tnode) return out def on_expression(self, node): "basic expression" return self.on_module(node) # ():('body',) def on_pass(self, node): """Pass statement.""" return None # () def on_ellipsis(self, node): """Ellipses.""" return Ellipsis # for break and continue: set the instance variable _interrupt def on_interrupt(self, node): # () """Interrupt handler.""" self._interrupt = node return node def on_break(self, node): """Break.""" return self.on_interrupt(node) def on_continue(self, node): """Continue.""" return self.on_interrupt(node) def on_assert(self, node): # ('test', 'msg') """Assert statement.""" if not self.run(node.test): self.raise_exception(node, exc=AssertionError, msg=node.msg) return True def on_list(self, node): # ('elt', 'ctx') """List.""" return [self.run(e) for e in node.elts] def on_tuple(self, node): # ('elts', 'ctx') """Tuple.""" return tuple(self.on_list(node)) def on_dict(self, node): # ('keys', 'values') """Dictionary.""" return dict([(self.run(k), self.run(v)) for k, v in zip(node.keys, node.values)]) def on_num(self, node): # ('n',) """Return number.""" return node.n def on_str(self, node): # ('s',) """Return string.""" return node.s def on_nameconstant(self, node): # ('value',) """named constant""" return node.value def on_name(self, node): # ('id', 'ctx') """Name node.""" ctx = node.ctx.__class__ if ctx in (ast.Param, ast.Del): return str(node.id) else: if node.id in self.symtable: return self.symtable[node.id] else: msg = "name '%s' is not defined" % node.id self.raise_exception(node, exc=NameError, msg=msg) def on_nameconstant(self, node): """ True, False, None in python >= 3.4 """ return node.value def node_assign(self, node, val): """Assign a value (not the node.value object) to a node. This is used by on_assign, but also by for, list comprehension, etc. """ if node.__class__ == ast.Name: if not valid_symbol_name(node.id) or node.id in self.readonly_symbols: errmsg = "invalid symbol name (reserved word?) %s" % node.id self.raise_exception(node, exc=NameError, msg=errmsg) self.symtable[node.id] = val if node.id in self.no_deepcopy: self.no_deepcopy.remove(node.id) elif node.__class__ == ast.Attribute: if node.ctx.__class__ == ast.Load: msg = "cannot assign to attribute %s" % node.attr self.raise_exception(node, exc=AttributeError, msg=msg) setattr(self.run(node.value), node.attr, val) elif node.__class__ == ast.Subscript: sym = self.run(node.value) xslice = self.run(node.slice) if isinstance(node.slice, ast.Index): sym[xslice] = val elif isinstance(node.slice, ast.Slice): sym[slice(xslice.start, xslice.stop)] = val elif isinstance(node.slice, ast.ExtSlice): sym[xslice] = val elif node.__class__ in (ast.Tuple, ast.List): if len(val) == len(node.elts): for telem, tval in zip(node.elts, val): self.node_assign(telem, tval) else: raise ValueError('too many values to unpack') def on_attribute(self, node): # ('value', 'attr', 'ctx') """Extract attribute.""" ctx = node.ctx.__class__ if ctx == ast.Store: msg = "attribute for storage: shouldn't be here!" self.raise_exception(node, exc=RuntimeError, msg=msg) sym = self.run(node.value) if ctx == ast.Del: return delattr(sym, node.attr) # ctx is ast.Load fmt = "cannnot access attribute '%s' for %s" if node.attr not in UNSAFE_ATTRS: fmt = "no attribute '%s' for %s" try: return getattr(sym, node.attr) except AttributeError: pass # AttributeError or accessed unsafe attribute obj = self.run(node.value) msg = fmt % (node.attr, obj) self.raise_exception(node, exc=AttributeError, msg=msg) def on_assign(self, node): # ('targets', 'value') """Simple assignment.""" val = self.run(node.value) for tnode in node.targets: self.node_assign(tnode, val) return def on_augassign(self, node): # ('target', 'op', 'value') """Augmented assign.""" return self.on_assign(ast.Assign(targets=[node.target], value=ast.BinOp(left=node.target, op=node.op, right=node.value))) def on_slice(self, node): # ():('lower', 'upper', 'step') """Simple slice.""" return slice(self.run(node.lower), self.run(node.upper), self.run(node.step)) def on_extslice(self, node): # ():('dims',) """Extended slice.""" return tuple([self.run(tnode) for tnode in node.dims]) def on_subscript(self, node): # ('value', 'slice', 'ctx') """Subscript handling -- one of the tricky parts.""" val = self.run(node.value) nslice = self.run(node.slice) ctx = node.ctx.__class__ if ctx in (ast.Load, ast.Store): if isinstance(node.slice, (ast.Index, ast.Slice, ast.Ellipsis)): return val.__getitem__(nslice) elif isinstance(node.slice, ast.ExtSlice): return val[nslice] else: msg = "subscript with unknown context" self.raise_exception(node, msg=msg) def on_delete(self, node): # ('targets',) """Delete statement.""" for tnode in node.targets: if tnode.ctx.__class__ != ast.Del: break children = [] while tnode.__class__ == ast.Attribute: children.append(tnode.attr) tnode = tnode.value if tnode.__class__ == ast.Name and tnode.id not in self.readonly_symbols: children.append(tnode.id) children.reverse() self.symtable.pop('.'.join(children)) else: msg = "could not delete symbol" self.raise_exception(node, msg=msg) def on_unaryop(self, node): # ('op', 'operand') """Unary operator.""" return op2func(node.op)(self.run(node.operand)) def on_binop(self, node): # ('left', 'op', 'right') """Binary operator.""" return op2func(node.op)(self.run(node.left), self.run(node.right)) def on_boolop(self, node): # ('op', 'values') """Boolean operator.""" val = self.run(node.values[0]) is_and = ast.And == node.op.__class__ if (is_and and val) or (not is_and and not val): for n in node.values[1:]: val = op2func(node.op)(val, self.run(n)) if (is_and and not val) or (not is_and and val): break return val def on_compare(self, node): # ('left', 'ops', 'comparators') """comparison operators""" lval = self.run(node.left) out = True for op, rnode in zip(node.ops, node.comparators): rval = self.run(rnode) out = op2func(op)(lval, rval) lval = rval if self.use_numpy and isinstance(out, numpy.ndarray) and out.any(): break elif not out: break return out def on_print(self, node): # ('dest', 'values', 'nl') """Note: implements Python2 style print statement, not print() function. May need improvement.... """ dest = self.run(node.dest) or self.writer end = '' if node.nl: end = '\n' out = [self.run(tnode) for tnode in node.values] if out and len(self.error) == 0: self._printer(*out, file=dest, end=end) def _printer(self, *out, **kws): """Generic print function.""" flush = kws.pop('flush', True) fileh = kws.pop('file', self.writer) sep = kws.pop('sep', ' ') end = kws.pop('sep', '\n') print(*out, file=fileh, sep=sep, end=end) if flush: fileh.flush() def on_if(self, node): # ('test', 'body', 'orelse') """Regular if-then-else statement.""" block = node.body if not self.run(node.test): block = node.orelse for tnode in block: self.run(tnode) def on_ifexp(self, node): # ('test', 'body', 'orelse') """If expressions.""" expr = node.orelse if self.run(node.test): expr = node.body return self.run(expr) def on_while(self, node): # ('test', 'body', 'orelse') """While blocks.""" while self.run(node.test): self._interrupt = None for tnode in node.body: self.run(tnode) if self._interrupt is not None: break if isinstance(self._interrupt, ast.Break): break else: for tnode in node.orelse: self.run(tnode) self._interrupt = None def on_for(self, node): # ('target', 'iter', 'body', 'orelse') """For blocks.""" for val in self.run(node.iter): self.node_assign(node.target, val) self._interrupt = None for tnode in node.body: self.run(tnode) if self._interrupt is not None: break if isinstance(self._interrupt, ast.Break): break else: for tnode in node.orelse: self.run(tnode) self._interrupt = None def on_listcomp(self, node): # ('elt', 'generators') """List comprehension.""" out = [] for tnode in node.generators: if tnode.__class__ == ast.comprehension: for val in self.run(tnode.iter): self.node_assign(tnode.target, val) add = True for cond in tnode.ifs: add = add and self.run(cond) if add: out.append(self.run(node.elt)) return out def on_excepthandler(self, node): # ('type', 'name', 'body') """Exception handler...""" return (self.run(node.type), node.name, node.body) def on_try(self, node): # ('body', 'handlers', 'orelse', 'finalbody') """Try/except/else/finally blocks.""" no_errors = True for tnode in node.body: self.run(tnode, with_raise=False) no_errors = no_errors and len(self.error) == 0 if len(self.error) > 0: e_type, e_value, e_tback = self.error[-1].exc_info for hnd in node.handlers: htype = None if hnd.type is not None: htype = builtins.get(hnd.type.id, None) if htype is None or isinstance(e_type(), htype): self.error = [] if hnd.name is not None: self.node_assign(hnd.name, e_value) for tline in hnd.body: self.run(tline) break break if no_errors and hasattr(node, 'orelse'): for tnode in node.orelse: self.run(tnode) if hasattr(node, 'finalbody'): for tnode in node.finalbody: self.run(tnode) def on_raise(self, node): # ('type', 'inst', 'tback') """Raise statement: note difference for python 2 and 3.""" if version_info[0] == 3: excnode = node.exc msgnode = node.cause else: excnode = node.type msgnode = node.inst out = self.run(excnode) msg = ' '.join(out.args) msg2 = self.run(msgnode) if msg2 not in (None, 'None'): msg = "%s: %s" % (msg, msg2) self.raise_exception(None, exc=out.__class__, msg=msg, expr='') def on_call(self, node): """Function execution.""" # ('func', 'args', 'keywords'. Py<3.5 has 'starargs' and 'kwargs' too) func = self.run(node.func) if not hasattr(func, '__call__') and not isinstance(func, type): msg = "'%s' is not callable!!" % (func) self.raise_exception(node, exc=TypeError, msg=msg) args = [self.run(targ) for targ in node.args] starargs = getattr(node, 'starargs', None) if starargs is not None: args = args + self.run(starargs) keywords = {} if six.PY3 and func == print: keywords['file'] = self.writer for key in node.keywords: if not isinstance(key, ast.keyword): msg = "keyword error in function call '%s'" % (func) self.raise_exception(node, msg=msg) keywords[key.arg] = self.run(key.value) kwargs = getattr(node, 'kwargs', None) if kwargs is not None: keywords.update(self.run(kwargs)) try: return func(*args, **keywords) except Exception as ex: self.raise_exception( node, msg="Error running function call '%s' with args %s and " "kwargs %s: %s" % (func.__name__, args, keywords, ex)) def on_arg(self, node): # ('test', 'msg') """Arg for function definitions.""" return node.arg def on_functiondef(self, node): """Define procedures.""" # ('name', 'args', 'body', 'decorator_list') if node.decorator_list: raise Warning("decorated procedures not supported!") kwargs = [] if not valid_symbol_name(node.name) or node.name in self.readonly_symbols: errmsg = "invalid function name (reserved word?) %s" % node.name self.raise_exception(node, exc=NameError, msg=errmsg) offset = len(node.args.args) - len(node.args.defaults) for idef, defnode in enumerate(node.args.defaults): defval = self.run(defnode) keyval = self.run(node.args.args[idef+offset]) kwargs.append((keyval, defval)) if version_info[0] == 3: args = [tnode.arg for tnode in node.args.args[:offset]] else: args = [tnode.id for tnode in node.args.args[:offset]] doc = None nb0 = node.body[0] if isinstance(nb0, ast.Expr) and isinstance(nb0.value, ast.Str): doc = nb0.value.s varkws = node.args.kwarg vararg = node.args.vararg if version_info[0] == 3: if isinstance(vararg, ast.arg): vararg = vararg.arg if isinstance(varkws, ast.arg): varkws = varkws.arg self.symtable[node.name] = Procedure(node.name, self, doc=doc, lineno=self.lineno, body=node.body, args=args, kwargs=kwargs, vararg=vararg, varkws=varkws) if node.name in self.no_deepcopy: self.no_deepcopy.remove(node.name) class Procedure(object): """Procedure: user-defined function for asteval. This stores the parsed ast nodes as from the 'functiondef' ast node for later evaluation. """ def __init__(self, name, interp, doc=None, lineno=0, body=None, args=None, kwargs=None, vararg=None, varkws=None): """TODO: docstring in public method.""" self.__ininit__ = True self.name = name self.__name__ = self.name self.__asteval__ = interp self.raise_exc = self.__asteval__.raise_exception self.__doc__ = doc self.body = body self.argnames = args self.kwargs = kwargs self.vararg = vararg self.varkws = varkws self.lineno = lineno self.__ininit__ = False def __setattr__(self, attr, val): if not getattr(self, '__ininit__', True): self.raise_exc(None, exc=TypeError, msg="procedure is read-only") self.__dict__[attr] = val def __dir__(self): return ['name'] def __repr__(self): """TODO: docstring in magic method.""" sig = "" if len(self.argnames) > 0: sig = "%s%s" % (sig, ', '.join(self.argnames)) if self.vararg is not None: sig = "%s, *%s" % (sig, self.vararg) if len(self.kwargs) > 0: if len(sig) > 0: sig = "%s, " % sig _kw = ["%s=%s" % (k, v) for k, v in self.kwargs] sig = "%s%s" % (sig, ', '.join(_kw)) if self.varkws is not None: sig = "%s, **%s" % (sig, self.varkws) sig = "<Procedure %s(%s)>" % (self.name, sig) if self.__doc__ is not None: sig = "%s\n %s" % (sig, self.__doc__) return sig def __call__(self, *args, **kwargs): """TODO: docstring in public method.""" symlocals = {} args = list(args) nargs = len(args) nkws = len(kwargs) nargs_expected = len(self.argnames) # check for too few arguments, but the correct keyword given if (nargs < nargs_expected) and nkws > 0: for name in self.argnames[nargs:]: if name in kwargs: args.append(kwargs.pop(name)) nargs = len(args) nargs_expected = len(self.argnames) nkws = len(kwargs) if nargs < nargs_expected: msg = "%s() takes at least %i arguments, got %i" self.raise_exc(None, exc=TypeError, msg=msg % (self.name, nargs_expected, nargs)) # check for multiple values for named argument if len(self.argnames) > 0 and kwargs is not None: msg = "multiple values for keyword argument '%s' in Procedure %s" for targ in self.argnames: if targ in kwargs: self.raise_exc(None, exc=TypeError, msg=msg % (targ, self.name), lineno=self.lineno) # check more args given than expected, varargs not given if nargs != nargs_expected: msg = None if nargs < nargs_expected: msg = 'not enough arguments for Procedure %s()' % self.name msg = '%s (expected %i, got %i)' % (msg, nargs_expected, nargs) self.raise_exc(None, exc=TypeError, msg=msg) if nargs > nargs_expected and self.vararg is None: if nargs - nargs_expected > len(self.kwargs): msg = 'too many arguments for %s() expected at most %i, got %i' msg = msg % (self.name, len(self.kwargs)+nargs_expected, nargs) self.raise_exc(None, exc=TypeError, msg=msg) for i, xarg in enumerate(args[nargs_expected:]): kw_name = self.kwargs[i][0] if kw_name not in kwargs: kwargs[kw_name] = xarg for argname in self.argnames: symlocals[argname] = args.pop(0) try: if self.vararg is not None: symlocals[self.vararg] = tuple(args) for key, val in self.kwargs: if key in kwargs: val = kwargs.pop(key) symlocals[key] = val if self.varkws is not None: symlocals[self.varkws] = kwargs elif len(kwargs) > 0: msg = 'extra keyword arguments for Procedure %s (%s)' msg = msg % (self.name, ','.join(list(kwargs.keys()))) self.raise_exc(None, msg=msg, exc=TypeError, lineno=self.lineno) except (ValueError, LookupError, TypeError, NameError, AttributeError): msg = 'incorrect arguments for Procedure %s' % self.name self.raise_exc(None, msg=msg, lineno=self.lineno) save_symtable = self.__asteval__.symtable.copy() self.__asteval__.symtable.update(symlocals) self.__asteval__.retval = None retval = None # evaluate script of function for node in self.body: self.__asteval__.run(node, expr='<>', lineno=self.lineno) if len(self.__asteval__.error) > 0: break if self.__asteval__.retval is not None: retval = self.__asteval__.retval self.__asteval__.retval = None if retval is ReturnedNone: retval = None break self.__asteval__.symtable = save_symtable symlocals = None return retval
the-stack_106_22651
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from bottles_of_bear import BottlesOfBear class HQ9Plus(): def __init__(self, tokens): self.tokens = tf.constant(tokens) self.cnt = tf.Variable(0, trainable=False) with open(__file__) as fin: self.src = fin.read() self.graph = tf.while_loop(self.cond, self.body, [0, self.tokens, ''], back_prop=False) def run(self): with tf.Session() as sess: tf.global_variables_initializer().run() return sess.run(self.graph) def cond(self, i, x, _): return tf.less(i, tf.size(self.tokens)) def body(self, i, _, output): def inc(): return tf.cond(tf.equal(tf.assign(self.cnt, self.cnt +1), 0), lambda: (''), lambda: ('')) r = tf.cond(tf.equal(self.tokens[i], 'H'), lambda: ('Hello, world!\n'), lambda: tf.cond(tf.equal(self.tokens[i], 'Q'), lambda: (self.src), lambda: tf.cond(tf.equal(self.tokens[i], '9'), lambda: (BottlesOfBear().graph[1]), lambda: tf.cond(tf.equal(self.tokens[i], '+'), lambda: inc(), lambda: (''))))) return tf.add(i, 1), self.tokens, output + r if __name__ == '__main__': tokens = list('HQ9+') _, _, output = HQ9Plus(tokens).run() print(output)
the-stack_106_22652
from torch import nn from torch_rl.utils import gauss_weights_init from torch_rl.core import * import os import glob class SaveableModel(object): def save(self, path): tor.save(self, path) @classmethod def load(cls, path): return tor.load(path) @classmethod def load_best(cls, path): assert os.path.isdir(path) best_models = glob.glob(os.path.join(path, "*best*")) assert not len(best_models > 1) return tor.load(os.path.join(path, best_models[0])) class NeuralNet(nn.Module, SaveableModel): def __init__(self): super(NeuralNet, self).__init__() self.relu = nn.ReLU() self.tanh = nn.Tanh() self.softmax = nn.Softmax() def action(self, x): pass class StochasticNeuralNet(NeuralNet): def __init__(self): super(StochasticNeuralNet, self).__init__() def sample_action(self, action_distribution=None): if not action_distribution: action_distribution = self.out action_distribution = action_distribution.cpu().data.numpy() action = np.random.choice(action_distribution.squeeze(), p=action_distribution.squeeze()) action = np.argmax(action_distribution == action) return action class StochasticContinuousNeuralNet(NeuralNet): def __init__(self): super(StochasticContinuousNeuralNet, self).__init__() def sigma(self): pass def mu(self): pass class SimpleNetwork(NeuralNet): def __init__(self, architecture, weight_init=gauss_weights_init(0,0.02),activation_functions=None): super(SimpleNetwork, self).__init__() if len(architecture) < 2: raise Exception("Architecture needs at least two numbers to create network") self.activation_functions = activation_functions self.layer_list = [] for i in range(len(architecture)-1): self.layer_list.append(nn.Linear(architecture[i], architecture[i+1])) setattr(self, "fc" + str(i), self.layer_list[-1]) self.apply(weight_init) def forward(self, x): if self.activation_functions: for i, func in enumerate(self.activation_functions): x = func(self.layer_list[i](x)) else: for i, layer in enumerate(self.layer_list): x = self.relu(layer(x)) i+=1 while i < len(self.layer_list): x = self.layer_list[i](x) i+=1 self.out = x return x class QNetwork(NeuralNet): """ Just adds a call method for simpler state and action passing. """ def __init__(self, architecture, weight_init=gauss_weights_init(0,0.02), activation_functions=None): super(NeuralNet, self).__init__() self.activation_functions = activation_functions self.layer_list = [] for i in range(len(architecture)-1): self.layer_list.append(nn.Linear(architecture[i], architecture[i+1])) setattr(self, "fc" + str(i), self.layer_list[-1]) #self.last_linear = nn.Linear(architecture[-1], 1) self.apply(weight_init) def forward(self, x): if self.activation_functions: for i, func in enumerate(self.activation_functions): x = func(self.layer_list[i](x)) else: for i, layer in enumerate(self.layer_list): x = self.relu(layer(x)) i+=1 while i < len(self.layer_list): x = self.layer_list[i](x) i+=1 # x = self.last_linear(x) return x def __call__(self, s, a): x = tor.cat((s,a), 1) return self.forward(x) class PolicyAHG(StochasticNeuralNet): def __init__(self, input_size, output_size): super(PolicyAHG, self).__init__() self.f1 = nn.Linear(input_size,32) self.f2 = nn.Linear(32, output_size) def forward(self, x): out = self.f1(x) out = self.tanh(out) out = self.f2(out) out = self.softmax(out) self.out = out return out class PolicySPG(StochasticNeuralNet): def __init__(self, input_size, output_size): super(PolicySPG, self).__init__() self.f1 = nn.Linear(input_size,64) self.f2 = nn.Linear(64, output_size) def forward(self, x): out = self.f1(x) out = self.relu(out) out = self.f2(out) out = self.softmax(out) self.out = out return out
the-stack_106_22655
""" Environment (1) set the attribute of Node, App, BasicThroughput, Currently we fix the No. of App with 9, homogeneous cluster. The No. of Nodes could be set, No. of Containers in the batch is not required to know (2) Functions: 1. _state_reset: clear state matrix 2. step: allocate one container to a node, return new state 3. get_tput_total_env: get the throughput of the entire cluster (after each episode) """ import numpy as np from testbedlib.SubScheduler_pppo import NineNodeAPI from testbedlib.simulator.simulator import Simulator app_node_set = np.array([ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [2, 3, 5, 6, 7, 11, 12, 18, 20, 22, 23, 24, 25, 26], [0, 2, 8, 9, 19, 23, 24, 25, 26], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]]) class LraClusterEnv(): def __init__(self, num_nodes): #: Cluster configuration self.NUM_NODES = num_nodes # node_id: 0,1,2,... #: fixed 9 apps self.NUM_APPS = 7 #: initialized state to zero matrix self._state_reset() # clustering self.baisc_oath_name = 'unified_27_' path_surffix = "./checkpoint/" self.nine_node_api_0 = NineNodeAPI(path_name=self.baisc_oath_name + '0', surffix='0', path_surffix=path_surffix) self.nine_node_api_1 = NineNodeAPI(path_name=self.baisc_oath_name + '10', surffix='10', path_surffix=path_surffix) self.nine_node_api_2 = NineNodeAPI(path_name=self.baisc_oath_name + '20', surffix='20', path_surffix=path_surffix) self.nine_node_api_3 = NineNodeAPI(path_name=self.baisc_oath_name + '30', surffix='30', path_surffix=path_surffix) self.nine_node_api_4 = NineNodeAPI(path_name=self.baisc_oath_name + '40', surffix='40', path_surffix=path_surffix) self.nine_node_api_5 = NineNodeAPI(path_name=self.baisc_oath_name + '50', surffix='50', path_surffix=path_surffix) self.nine_node_api_6 = NineNodeAPI(path_name=self.baisc_oath_name + '60', surffix='60', path_surffix=path_surffix) self.nine_node_api_7 = NineNodeAPI(path_name=self.baisc_oath_name + '70', surffix='70', path_surffix=path_surffix) self.nine_node_api_8 = NineNodeAPI(path_name=self.baisc_oath_name + '80', surffix='80', path_surffix=path_surffix) self.nine_node_api_9 = NineNodeAPI(path_name=self.baisc_oath_name + '90', surffix='90', path_surffix=path_surffix) self.nine_node_api_10 = NineNodeAPI(path_name=self.baisc_oath_name + '100', surffix='100', path_surffix=path_surffix) self.nine_node_api_11 = NineNodeAPI(path_name=self.baisc_oath_name + '100', surffix='100', path_surffix=path_surffix) # self.nine_node_api_12 = NineNodeAPI(path_name=self.baisc_oath_name + '120', surffix='120', path_surffix=path_surffix) # self.nine_node_api_13 = NineNodeAPI(path_name=self.baisc_oath_name + '130', surffix='130', path_surffix=path_surffix) # self.nine_node_api_14 = NineNodeAPI(path_name=self.baisc_oath_name + '140', surffix='140', path_surffix=path_surffix) # self.nine_node_api_15 = NineNodeAPI(path_name=self.baisc_oath_name + '150', surffix='150', path_surffix=path_surffix) # self.nine_node_api_16 = NineNodeAPI(path_name=self.baisc_oath_name + '160', surffix='160', path_surffix=path_surffix) # self.nine_node_api_17 = NineNodeAPI(path_name=self.baisc_oath_name + '170', surffix='170', path_surffix=path_surffix) # self.nine_node_api_18 = NineNodeAPI(path_name=self.baisc_oath_name + '180', surffix='180', path_surffix=path_surffix) # self.nine_node_api_19 = NineNodeAPI(path_name=self.baisc_oath_name + '190', surffix='190', path_surffix=path_surffix) # self.nine_node_api_20 = NineNodeAPI(path_name=self.baisc_oath_name + '200', surffix='200', path_surffix=path_surffix) self.sim = Simulator() def _state_reset(self): self.state = np.zeros([self.NUM_NODES, self.NUM_APPS]) def reset(self): self._state_reset() return self._get_state() def step(self, action, appid): """ :param action: node chosen :param appid: current app_id of the container to be allocated :return: new state after allocation """ curr_app = appid self.state[action][curr_app] += 1 # locate state = self._get_state() return state def _get_state(self): return self.state @property def _get_throughput(self): state_all = np.empty([0, self.NUM_APPS]) for nid in range(self.NUM_NODES): container_list = self.state[nid] num_container = sum(container_list) predictor_class = int((num_container-1)/10) if predictor_class > 11: predictor_class = 11 assert (predictor_class >= 0) & (predictor_class <= 11) if predictor_class == 0: state_this = self.nine_node_api_0.get_total_tput(container_list) elif predictor_class == 1: state_this = self.nine_node_api_1.get_total_tput(container_list) elif predictor_class == 2: state_this = self.nine_node_api_2.get_total_tput(container_list) elif predictor_class == 3: state_this = self.nine_node_api_3.get_total_tput(container_list) elif predictor_class == 4: state_this = self.nine_node_api_4.get_total_tput(container_list) elif predictor_class == 5: state_this = self.nine_node_api_5.get_total_tput(container_list) elif predictor_class == 6: state_this = self.nine_node_api_6.get_total_tput(container_list) elif predictor_class == 7: state_this = self.nine_node_api_7.get_total_tput(container_list) elif predictor_class == 8: state_this = self.nine_node_api_8.get_total_tput(container_list) elif predictor_class == 9: state_this = self.nine_node_api_9.get_total_tput(container_list) elif predictor_class == 10: state_this = self.nine_node_api_10.get_total_tput(container_list) elif predictor_class == 11: state_this = self.nine_node_api_11.get_total_tput(container_list) state_all = np.append(state_all, state_this, 0) if self. getTput: total_tput = (self.sim.predict(state_all.reshape(-1, self.NUM_APPS)) * state_all).sum() else: total_tput = 0 state = state_all # list_check_per_app = (state > 1).sum() # + max((env.state - 1).max(), 0) # list_check_sum = sum(state.sum(1) > 8) # + max(max(env.state.sum(1) - params['container_limitation per node']), 0) # list_check_coex = sum((state[:, 1] > 0) * (state[:, 2] > 0)) # list_check = list_check_sum + list_check_coex + list_check_per_app list_check = 0 # for node in range(self.NUM_NODES * 27): # for app in range(self.NUM_APPS): # if state[node, :].sum() > 8 or state[node, app] > 1 or (app == 1 and state[node, 2] > 0) or (app == 2 and state[node, 1] > 0): # list_check += state[node, app] # container limitation & deployment spread for node in range(self.NUM_NODES * 27): for app in range(self.NUM_APPS): if state[node, :].sum() > 8: # or env.state[node, app] > 1: list_check += state[node, app] # hardware affinity & increamental deployment for app in range(7): node_now = np.where(state[:, app] > 0)[0] for node_ in node_now: if node_%27 not in app_node_set[app]: list_check += state[node_, app] return total_tput, 0, 0, 0, list_check def get_tput_total_env(self, getTput=True): self. getTput = getTput return self._get_throughput
the-stack_106_22656
# coding: utf-8 """ Memsource REST API Welcome to Memsource's API documentation. To view our legacy APIs please [visit our documentation](https://wiki.memsource.com/wiki/Memsource_API) and for more information about our new APIs, [visit our blog](https://www.memsource.com/blog/2017/10/24/introducing-rest-apis-qa-with-the-memsource-api-team/). If you have any questions, please contact [Memsource Support](<mailto:[email protected]>). # noqa: E501 OpenAPI spec version: Latest Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class WildCardSearchRequestDto(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'query': 'str', 'source_lang': 'str', 'target_langs': 'list[str]', 'count': 'int', 'offset': 'int', 'source_langs': 'list[str]' } attribute_map = { 'query': 'query', 'source_lang': 'sourceLang', 'target_langs': 'targetLangs', 'count': 'count', 'offset': 'offset', 'source_langs': 'sourceLangs' } def __init__(self, query=None, source_lang=None, target_langs=None, count=None, offset=None, source_langs=None): # noqa: E501 """WildCardSearchRequestDto - a model defined in Swagger""" # noqa: E501 self._query = None self._source_lang = None self._target_langs = None self._count = None self._offset = None self._source_langs = None self.discriminator = None self.query = query self.source_lang = source_lang if target_langs is not None: self.target_langs = target_langs if count is not None: self.count = count if offset is not None: self.offset = offset if source_langs is not None: self.source_langs = source_langs @property def query(self): """Gets the query of this WildCardSearchRequestDto. # noqa: E501 :return: The query of this WildCardSearchRequestDto. # noqa: E501 :rtype: str """ return self._query @query.setter def query(self, query): """Sets the query of this WildCardSearchRequestDto. :param query: The query of this WildCardSearchRequestDto. # noqa: E501 :type: str """ if query is None: raise ValueError("Invalid value for `query`, must not be `None`") # noqa: E501 self._query = query @property def source_lang(self): """Gets the source_lang of this WildCardSearchRequestDto. # noqa: E501 :return: The source_lang of this WildCardSearchRequestDto. # noqa: E501 :rtype: str """ return self._source_lang @source_lang.setter def source_lang(self, source_lang): """Sets the source_lang of this WildCardSearchRequestDto. :param source_lang: The source_lang of this WildCardSearchRequestDto. # noqa: E501 :type: str """ if source_lang is None: raise ValueError("Invalid value for `source_lang`, must not be `None`") # noqa: E501 self._source_lang = source_lang @property def target_langs(self): """Gets the target_langs of this WildCardSearchRequestDto. # noqa: E501 :return: The target_langs of this WildCardSearchRequestDto. # noqa: E501 :rtype: list[str] """ return self._target_langs @target_langs.setter def target_langs(self, target_langs): """Sets the target_langs of this WildCardSearchRequestDto. :param target_langs: The target_langs of this WildCardSearchRequestDto. # noqa: E501 :type: list[str] """ self._target_langs = target_langs @property def count(self): """Gets the count of this WildCardSearchRequestDto. # noqa: E501 :return: The count of this WildCardSearchRequestDto. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this WildCardSearchRequestDto. :param count: The count of this WildCardSearchRequestDto. # noqa: E501 :type: int """ if count is not None and count > 50: # noqa: E501 raise ValueError("Invalid value for `count`, must be a value less than or equal to `50`") # noqa: E501 if count is not None and count < 1: # noqa: E501 raise ValueError("Invalid value for `count`, must be a value greater than or equal to `1`") # noqa: E501 self._count = count @property def offset(self): """Gets the offset of this WildCardSearchRequestDto. # noqa: E501 :return: The offset of this WildCardSearchRequestDto. # noqa: E501 :rtype: int """ return self._offset @offset.setter def offset(self, offset): """Sets the offset of this WildCardSearchRequestDto. :param offset: The offset of this WildCardSearchRequestDto. # noqa: E501 :type: int """ self._offset = offset @property def source_langs(self): """Gets the source_langs of this WildCardSearchRequestDto. # noqa: E501 :return: The source_langs of this WildCardSearchRequestDto. # noqa: E501 :rtype: list[str] """ return self._source_langs @source_langs.setter def source_langs(self, source_langs): """Sets the source_langs of this WildCardSearchRequestDto. :param source_langs: The source_langs of this WildCardSearchRequestDto. # noqa: E501 :type: list[str] """ self._source_langs = source_langs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(WildCardSearchRequestDto, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, WildCardSearchRequestDto): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_22657
import tempfile import logging import json import os import unittest.mock from unittest.mock import patch from smac.utils.io.traj_logging import TrajLogger from smac.utils.io.traj_logging import TrajEntry from smac.configspace import ConfigurationSpace,\ Configuration, CategoricalHyperparameter, Constant, UniformFloatHyperparameter, UniformIntegerHyperparameter from smac.scenario.scenario import Scenario from smac.stats.stats import Stats __copyright__ = "Copyright 2021, AutoML.org Freiburg-Hannover" __license__ = "3-clause BSD" class TrajLoggerTest(unittest.TestCase): def mocked_get_used_wallclock_time(self): self.value += 1 return self.value def setUp(self): logging.basicConfig() self.logger = logging.getLogger(self.__module__ + "." + self.__class__.__name__) self.logger.setLevel(logging.DEBUG) self.value = 0 self.cs = ConfigurationSpace() self.cs.add_hyperparameters([ UniformFloatHyperparameter('param_a', -0.2, 1.77, 1.1), UniformIntegerHyperparameter('param_b', -3, 10, 1), Constant('param_c', 'value'), CategoricalHyperparameter('ambigous_categorical', choices=['True', True, 5]), # True is ambigous here ]) self.test_config = Configuration(self.cs, {'param_a': 0.5, 'param_b': 1, 'param_c': 'value', 'ambigous_categorical': 5}) def test_init(self): scen = Scenario(scenario={'run_obj': 'quality', 'cs': self.cs, 'output_dir': ''}) stats = Stats(scen) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'tmp_test_folder') TrajLogger(output_dir=path, stats=stats) self.assertTrue(os.path.exists(path)) def test_oserror(self): scen = Scenario(scenario={'run_obj': 'quality', 'cs': self.cs, 'output_dir': ''}) stats = Stats(scen) # test OSError with patch('os.makedirs') as osMock: osMock.side_effect = OSError() self.assertRaises(OSError, TrajLogger, output_dir='random_directory', stats=stats) @patch('smac.stats.stats.Stats') def test_add_entries(self, mock_stats): # Mock stats mock_stats.ta_time_used = .5 mock_stats.get_used_wallclock_time = self.mocked_get_used_wallclock_time mock_stats.finished_ta_runs = 1 with tempfile.TemporaryDirectory() as tmpdir: tl = TrajLogger(output_dir=tmpdir, stats=mock_stats) # Add some entries tl.add_entry(0.9, 1, self.test_config, 0) mock_stats.ta_runs = 2 mock_stats.ta_time_used = 0 tl.add_entry(1.3, 1, self.test_config, 10) mock_stats.ta_time_used = 0 tl.add_entry(0.7, 2, Configuration(self.cs, dict(self.test_config.get_dictionary(), **{'param_a': 0.})), 10) # Test the list that's added to the trajectory class self.assertEqual(tl.trajectory[0], TrajEntry(0.9, 1, self.test_config, 1, 0.5, 1, 0)) # Test named-tuple-access: self.assertEqual(tl.trajectory[0].train_perf, 0.9) self.assertEqual(tl.trajectory[0].incumbent_id, 1) self.assertEqual(tl.trajectory[0].ta_runs, 1) self.assertEqual(tl.trajectory[0].ta_time_used, 0.5) self.assertEqual(tl.trajectory[0].wallclock_time, 1) self.assertEqual(tl.trajectory[0].budget, 0) self.assertEqual(len(tl.trajectory), 3) # Check if the trajectories are generated for fn in ['traj_old.csv', 'traj_aclib2.json', 'traj.json']: self.assertTrue(os.path.exists(os.path.join(tmpdir, fn))) # Load trajectories with open(os.path.join(tmpdir, 'traj_old.csv')) as to: data = to.read().split('\n') with open(os.path.join(tmpdir, 'traj_aclib2.json')) as js_aclib: json_dicts_aclib2 = [json.loads(line) for line in js_aclib.read().splitlines()] with open(os.path.join(tmpdir, 'traj.json')) as js: json_dicts_alljson = [json.loads(line) for line in js.read().splitlines()] # Check old format header = data[0].split(',') self.assertEqual(header[0], '"CPU Time Used"') self.assertEqual(header[-1], '"Configuration..."') data = list(map(lambda x: x.split(', '), data[1:])) frmt_str = '%1.6f' self.assertEqual(frmt_str % 0.5, data[0][0]) self.assertEqual(frmt_str % 0.9, data[0][1]) self.assertEqual(frmt_str % 0.5, data[0][4]) self.assertEqual(frmt_str % 0, data[1][0]) self.assertEqual(frmt_str % 1.3, data[1][1]) self.assertEqual(frmt_str % 2, data[1][4]) self.assertEqual(frmt_str % 0, data[2][0]) self.assertEqual(frmt_str % .7, data[2][1]) self.assertEqual(frmt_str % 3, data[2][4]) # Check aclib2-format self.assertEqual(json_dicts_aclib2[0]['cpu_time'], .5) self.assertEqual(json_dicts_aclib2[0]['cost'], 0.9) self.assertEqual(len(json_dicts_aclib2[0]['incumbent']), 4) self.assertTrue("param_a='0.5'" in json_dicts_aclib2[0]['incumbent']) self.assertTrue("param_a='0.0'" in json_dicts_aclib2[2]['incumbent']) # Check alljson-format self.assertEqual(json_dicts_alljson[0]['cpu_time'], .5) self.assertEqual(json_dicts_alljson[0]['cost'], 0.9) self.assertEqual(len(json_dicts_alljson[0]['incumbent']), 4) self.assertTrue(json_dicts_alljson[0]["incumbent"]["param_a"] == 0.5) self.assertTrue(json_dicts_alljson[2]["incumbent"]["param_a"] == 0.0) self.assertEqual(json_dicts_alljson[0]['budget'], 0) self.assertEqual(json_dicts_alljson[2]['budget'], 10) @patch('smac.stats.stats.Stats') def test_add_entries_multi_objectives(self, mock_stats): # Mock stats mock_stats.ta_time_used = .5 mock_stats.get_used_wallclock_time = self.mocked_get_used_wallclock_time mock_stats.finished_ta_runs = 1 num_obj = 2 with tempfile.TemporaryDirectory() as tmpdir: tl = TrajLogger(output_dir=tmpdir, stats=mock_stats) # Add some entries tl.add_entry([0.9, 0.8], 1, self.test_config, 0) # Test the list that's added to the trajectory class self.assertEqual(tl.trajectory[0], TrajEntry([0.9, 0.8], 1, self.test_config, 1, 0.5, 1, 0)) # Test named-tuple-access: self.assertEqual(tl.trajectory[0].train_perf, [0.9, 0.8]) self.assertEqual(len(tl.trajectory), 1) # Check if the trajectories are generated for fn in ['traj_old.csv', 'traj_aclib2.json', 'traj.json']: self.assertTrue(os.path.exists(os.path.join(tmpdir, fn))) # Load trajectories with open(os.path.join(tmpdir, 'traj_old.csv')) as to: data = to.read().split('\n') with open(os.path.join(tmpdir, 'traj_aclib2.json')) as js_aclib: json_dicts_aclib2 = [json.loads(line) for line in js_aclib.read().splitlines()] with open(os.path.join(tmpdir, 'traj.json')) as js: json_dicts_alljson = [json.loads(line) for line in js.read().splitlines()] # Check old format header = data[0].split(',') self.assertEqual(header[0], '"CPU Time Used"') self.assertEqual(header[-1], '"Configuration..."') data = list(map(lambda x: x.split(', '), data[1:])) data[0][1] = ', '.join(data[0][1: 1 + num_obj]) del data[0][1 + 1: 1 + num_obj] frmt_str = '%1.6f' self.assertEqual(frmt_str % 0.5, data[0][0]) self.assertEqual(f'[{0.9}, {0.8}]', data[0][1]) self.assertEqual(frmt_str % 0.5, data[0][4]) # Check aclib2-format self.assertEqual(json_dicts_aclib2[0]['cpu_time'], .5) self.assertEqual(json_dicts_aclib2[0]['cost'], [0.9, 0.8]) self.assertEqual(len(json_dicts_aclib2[0]['incumbent']), 4) self.assertTrue("param_a='0.5'" in json_dicts_aclib2[0]['incumbent']) # Check alljson-format self.assertEqual(json_dicts_alljson[0]['cpu_time'], .5) self.assertEqual(json_dicts_alljson[0]['cost'], [0.9, 0.8]) self.assertEqual(len(json_dicts_alljson[0]['incumbent']), 4) self.assertTrue(json_dicts_alljson[0]["incumbent"]["param_a"] == 0.5) self.assertEqual(json_dicts_alljson[0]['budget'], 0) @patch('smac.stats.stats.Stats') def test_ambigious_categoricals(self, mock_stats): mock_stats.ta_time_used = 0.5 mock_stats.get_used_wallclock_time = self.mocked_get_used_wallclock_time mock_stats.finished_ta_runs = 1 with tempfile.TemporaryDirectory() as tmpdir: tl = TrajLogger(output_dir=tmpdir, stats=mock_stats) problem_config = Configuration(self.cs, {'param_a': 0.0, 'param_b': 2, 'param_c': 'value', 'ambigous_categorical': True}) # not recoverable without json tl.add_entry(0.9, 1, problem_config) from_aclib2 = tl.read_traj_aclib_format(os.path.join(tmpdir, 'traj_aclib2.json'), self.cs) from_alljson = tl.read_traj_alljson_format(os.path.join(tmpdir, 'traj.json'), self.cs) # Wrong! but passes: self.assertIsInstance(from_aclib2[0]['incumbent']['ambigous_categorical'], str) # Works good for alljson: self.assertIsInstance(from_alljson[0]['incumbent']['ambigous_categorical'], bool) if __name__ == "__main__": unittest.main()
the-stack_106_22659
from setuptools import setup, find_packages, Command import os from os import path import subprocess import configparser # Get config parameters config = configparser.ConfigParser() config.read('setup.cfg') pkg_name = config['metadata']['name'] pypi_server = config['netsquid']['pypi-server'] def load_readme_text(): """Load in README file as a string.""" try: dir_path = path.abspath(path.dirname(__file__)) with open(path.join(dir_path, 'README.md'), encoding='utf-8') as f: return f.read() except FileNotFoundError: return "" def load_requirements(): """Load in requirements.txt as a list of strings.""" try: dir_path = path.abspath(path.dirname(__file__)) with open(path.join(dir_path, 'requirements.txt'), encoding='utf-8') as f: install_requires = [line.strip() for line in f.readlines()] return install_requires except FileNotFoundError: return "" class DeployCommand(Command): """Run command for uploading binary wheel files to NetSquid PyPi index. """ description = "Deploy binary wheel files to NetSquid PyPi index." user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): print("Uploading binary snippet {} wheels to {} (requires authentication)" .format(pkg_name, pypi_server)) if 'NETSQUIDCI_USER' not in os.environ: print("ERROR: environment variable NETSQUIDCI_USER is not defined.") return # Check for wheel files wheel_files = [] for f in os.listdir("dist/"): if f.endswith(".whl"): wheel_files.append("dist/{}".format(f)) # Upload wheel files if len(wheel_files) > 0: subprocess.check_output(("/usr/bin/scp", " ".join(wheel_files), "{}@{}:/srv/netsquid/pypi/{}/".format( os.environ['NETSQUIDCI_USER'], pypi_server, pkg_name)), encoding='utf8') else: print("ERROR: no wheel files in dist/ to upload.") setup( cmdclass={"deploy": DeployCommand}, long_description=load_readme_text(), long_description_content_type='text/markdown', python_requires='>=3.5', packages=find_packages(exclude=('tests', 'docs', 'examples')), # if offering a package # py_modules=['pkgname.replace('-', '_')'], # if offering a single module file install_requires=load_requirements(), test_suite=pkg_name.replace('-', '_'), zip_safe=False, include_package_data=True, platforms='any', )
the-stack_106_22660
import random from pprint import pprint import copy def gen_fresh_name(base_name, used_names): if base_name not in used_names: new_name = base_name else: for i in range(2, 10000): if f"{base_name}_{i}" in used_names: continue new_name = f"{base_name}_{i}" break used_names.append(new_name) return new_name def gen_name_mapping(old_name_sets, new_names): # old names is a list of set # new names is a list of strings mapping = {} for old_names, new_name in zip(old_name_sets, new_names): for old_name in old_names: mapping[old_name] = new_name return mapping class TableOp(): def tbl_op_dispatcher(s_exp): if s_exp[0] == "table_or_subquery": if s_exp[1][0] == 'table_name': tbl = TableReference(s_exp) if 'as' in s_exp: tbl.alias = s_exp[3][1].replace("\'", "").replace("\"", "") elif len(s_exp) > 2 and type(s_exp[2]) == list and s_exp[2][0] == 'table_alias': tbl.alias = s_exp[2][1].replace("\'", "").replace("\"", "") else: tbl = SelectStatement(s_exp[1][0]) if 'as' in s_exp: tbl.alias = s_exp[3][1].replace("\'", "").replace("\"", "") elif len(s_exp) > 2 and type(s_exp[2]) == list and s_exp[2][0] == 'table_alias': tbl.alias = s_exp[2][1].replace("\'", "").replace("\"", "") return tbl elif s_exp[0] == "join_clause": return JoinTable.from_s_exp(s_exp) class RenamedTable(TableOp): def __init__(self, name, table, cols): self.name = name self.table = table self.cols = cols # these are invented alias names def infer_out_schema(self, schema): # return self.table.infer_out_schema(schema) return [set([f"{self.name}.{c}", c]) for c in self.cols] def rename(self, schema, used_table_names): return self.table.rename(schema, used_table_names) def rename_ops(self, mapping): pass def to_rkt(self, schema): return "(AS " + self.table.to_rkt(schema) + "\n[\"" + self.name + "\" (list " + " ".join(["\"" + col + "\"" for col in self.cols]) + ")])" class TableReference(TableOp): def __init__(self, s_exp): self.name = s_exp[1][1][1] if len(s_exp) > 2: self.alias = s_exp[2][1] else: self.alias = None def infer_out_schema(self, schema): tbl_schema = schema[self.name] to_return = [] for col in tbl_schema: full_name = self.alias + "." + col if self.alias else self.name + "." + col to_return.append(set([full_name, col])) return to_return def rename(self, schema, used_table_names): tbl_schema = schema[self.name] tbl_name = self.alias if self.alias else self.name new_table_name = gen_fresh_name(tbl_name, used_table_names) # collecting old names old_names = [set([c, f"{tbl_name}.{c}"]) for c in tbl_schema] new_names = [f"{new_table_name}.{c}" for c in tbl_schema] mappings = gen_name_mapping(old_names, new_names) return RenamedTable(new_table_name, self, list(tbl_schema.keys())), mappings, used_table_names def rename_ops(self, mapping): pass def to_rkt(self, schema): return "(NAMED " + self.name + ")" class JoinTable(TableOp): def __init__(self, left_tbl, right_tbl, join_op, constraint = None): self.left_tbl = left_tbl self.right_tbl = right_tbl self.join_op = join_op self.constraint = constraint @classmethod def from_s_exp(cls, s_exp): left_tbl = TableOp.tbl_op_dispatcher(s_exp[1]) join_op = s_exp[2][1:] right_tbl = TableOp.tbl_op_dispatcher(s_exp[3]) if "inner" in join_op: if type(s_exp[4]) == list: constraint = PredicateOp.pred_op_dispatcher(s_exp[4]) else: constraint = None cross_table = cls(left_tbl, right_tbl, 'cross') to_return = SelectStatement([], wrap = True, wrap_tbl = cross_table, wrap_constraints = constraint) return to_return else: if type(s_exp[4]) == list: constraint = PredicateOp.pred_op_dispatcher(s_exp[4]) else: constraint = None return cls(left_tbl, right_tbl, join_op, constraint) def infer_out_schema(self, schema): left_cols = self.left_tbl.infer_out_schema(schema) right_cols = self.right_tbl.infer_out_schema(schema) left_cols_set = set() right_cols_set = set() for col_set in left_cols: left_cols_set = left_cols_set.union(col_set) for col_set in right_cols: right_cols_set = right_cols_set.union(col_set) duplicate_col_names = left_cols_set & right_cols_set if hasattr(self, "alias") and self.alias: name = self.alias else: name = None used_names = set() non_referrables = [set() for i in range(len(left_cols + right_cols))] for index, colset in enumerate(left_cols + right_cols): for col_name in colset: if col_name in used_names: non_referrables[index].add(col_name) else: used_names.add(col_name) to_return = left_cols + right_cols if not name: to_return = [{c for c in nameset if c not in non_refs} for nameset, non_refs in zip(to_return, non_referrables)] else: to_return = [set([f'{name}.{c}' for c in nameset if c not in non_refs and "." not in c] + [c for c in nameset if c not in non_refs and '.' in c]) for nameset, non_refs in zip(to_return, non_referrables)] # for index, nameset in enumerate(left_cols): # for col in nameset: # if col in duplicate_col_names: # if name: # to_return[index].union(set([col, name + "." + col])) # else: # to_return[index].union(set([col])) return to_return def rename(self, schema, used_table_names): left_cols_old = self.left_tbl.infer_out_schema(schema) right_cols_old = self.right_tbl.infer_out_schema(schema) my_cols_old = self.infer_out_schema(schema) self.left_tbl, mappings_left, used_table_names = self.left_tbl.rename(schema, used_table_names) self.right_tbl, mappings_right, used_table_names = self.right_tbl.rename(schema, used_table_names) left_cols_new = self.left_tbl.infer_out_schema(schema) right_cols_new = self.right_tbl.infer_out_schema(schema) self.rename_ops({**mappings_left, **mappings_right}) new_table_name = gen_fresh_name(self.alias if (hasattr(self, "alias") and self.alias) else "t", used_table_names) mappings = {} # the list of new names column_list = [] used_col_names = [] for index, col_set in enumerate(my_cols_old): old_full_name = [col for col in col_set if "." in col] old_short_name = [col for col in col_set if "." not in col] base_name = old_full_name[0].split(".")[-1] if len(old_full_name) > 0 else "c" new_name = gen_fresh_name(base_name, used_col_names) for old_name in col_set: mappings[old_name] = new_table_name + "." + new_name column_list.append(new_name) # print("Join table mappings:") # pprint(mappings) return RenamedTable(new_table_name, self, column_list), mappings, used_table_names def rename_ops(self, mapping): if self.constraint: self.constraint.rename_ops(mapping) def to_rkt(self, schema): if "left" in self.join_op: op = "LEFT-OUTER-JOIN" else: op = "JOIN" return f"({op} {self.left_tbl.to_rkt(schema)} {self.right_tbl.to_rkt(schema)} {self.constraint.to_rkt(schema) if self.constraint else ''})" class SelectStatement(TableOp): def __init__(self, entire_s_exp, wrap = False, wrap_tbl = None, wrap_constraints = None): if wrap: self.columns = [AllColumn()] self.col_names = [None] self.tables = [wrap_tbl] self.tbl_names = [None] self.subquery_tree = wrap_tbl self.where_tree = wrap_constraints self.group_col = None self.having_tree = None self.order_cols = [] self.ordering_dir = [] else: self.from_s_exp(entire_s_exp) def from_s_exp(self, entire_s_exp): s_exp = entire_s_exp[1] select_index = s_exp.index('select') from_index = s_exp.index('from') self.columns = [] self.col_names = [] for term in s_exp[select_index:from_index]: if type(term) == list and term[0] == 'result_column': self.columns.append(ColOp.col_op_dispatcher(term[1])) if "as" in term: alias = term[term.index("as") + 1][1] alias = alias.replace("\'", "").replace("\"", "") self.col_names.append(alias) elif len(term) > 2 and type(term[2]) == list and term[2][0] == 'column_alias': alias = term[2][1] alias = alias.replace("\'", "").replace("\"", "") self.col_names.append(alias) else: self.col_names.append(None) self.tables = [] self.tbl_names = [] if "where" in s_exp: where_index = s_exp.index('where') for term in s_exp[from_index+1:where_index]: if type(term) == list: self.tables.append(TableOp.tbl_op_dispatcher(term)) if hasattr(self.tables[-1], "alias"): self.tbl_names.append(self.tables[-1].alias) else: self.tbl_names.append(None) else: for term in s_exp[from_index+1:]: if type(term) == list: self.tables.append(TableOp.tbl_op_dispatcher(term)) if hasattr(self.tables[-1], "alias"): self.tbl_names.append(self.tables[-1].alias) else: self.tbl_names.append(None) if len(self.tables) > 1: self.tables[0].alias = self.tbl_names[0] self.tables[1].alias = self.tbl_names[1] self.subquery_tree = JoinTable(self.tables[0], self.tables[1], 'cross') if len(self.tables) > 2: for i, tbl in enumerate(self.tables[2:]): tbl.alias = self.tbl_names[i+2] self.subquery_tree = JoinTable(left_tbl = self.subquery_tree, right_tbl = tbl, join_op = 'cross') else: self.subquery_tree = self.tables[0] self.subquery_tree.alias = self.tbl_names[0] if "where" in s_exp: self.where_tree = PredicateOp.pred_op_dispatcher(s_exp[where_index+1]) else: self.where_tree = None if "group" in s_exp: groupby_index = list(filter(lambda i: s_exp[i] == 'group' and s_exp[i+1] == 'by', range(len(s_exp)-2)))[0] if "having" in s_exp: having_index = s_exp.index('having') self.group_col = [ColOp.col_op_dispatcher(col) for col in s_exp[groupby_index + 2:having_index]] else: self.group_col = [ColOp.col_op_dispatcher(col) for col in s_exp[groupby_index + 2:]] else: self.group_col = None if "having" in s_exp: having_index = s_exp.index('having') self.having_tree = PredicateOp.pred_op_dispatcher(s_exp[having_index+1]) else: self.having_tree = None self.order_cols = [] self.ordering_dir = [] if 'order' in entire_s_exp: orderby_index = list(filter(lambda i: entire_s_exp[i] == 'order' and entire_s_exp[i+1] == 'by', range(len(entire_s_exp)-2)))[0] if "limit" in entire_s_exp: end = entire_s_exp.index('limit') else: end = len(entire_s_exp) for term in entire_s_exp[orderby_index+2:end]: if type(term) == list and term[0] == "ordering_term": self.order_cols.append(ColOp.col_op_dispatcher(term[1])) if len(term) > 2: self.ordering_dir.append(term[2]) else: self.ordering_dir.append("asc") if 'limit' in entire_s_exp: limit_index = entire_s_exp.index('limit') self.limit = entire_s_exp[limit_index+1][1][1] def infer_out_schema(self, schema): to_return = [] if type(self.columns[0]) == AllColumn: schema = self.subquery_tree.infer_out_schema(schema) to_return = [{col for col in nameset if "." not in col} for nameset in schema] # TODO: pass through names currently implemented to_return = [{col for col in nameset} for nameset in schema] else: for col, col_name in zip(self.columns, self.col_names): if col_name: to_return.append(set([col_name])) else: if type(col) in [UnaryColumnOp, BinaryColumnOp, ConstantColumn]: to_return.append(set()) else: to_return.append(set([col.name])) if hasattr(self, "alias") and self.alias: for col in to_return: if col: col.add(self.alias + "." + next(iter(col))) return to_return def rename(self, schema, used_table_names): child_old_names = self.subquery_tree.infer_out_schema(schema) my_old_names = self.infer_out_schema(schema) self.subquery_tree, child_mappings, used_table_names = self.subquery_tree.rename(schema, used_table_names) child_new_names = self.subquery_tree.infer_out_schema(schema) # print("My child mappings are", child_mappings) self.rename_ops(child_mappings, child_new_names) new_table_name = gen_fresh_name(self.alias if (hasattr(self, "alias") and self.alias) else "t", used_table_names) mappings = {} column_list = [] used_col_names = [] #print("My old names are", old_names) for index, col_set in enumerate(my_old_names): old_full_name = [col for col in col_set if "." in col] old_short_name = [col for col in col_set if "." not in col] if len(old_full_name) > 0: base_name = old_full_name[0].split(".")[-1] elif len(old_short_name) > 0: base_name = old_short_name[0] else: base_name = 'c' new_name = gen_fresh_name(base_name, used_col_names) for old_name in col_set: mappings[old_name] = new_table_name + "." + new_name column_list.append(new_name) # print(f"My mapping is [Select {new_table_name}]:") # pprint(mappings) # old names overwrites new names mappings_copy = copy.deepcopy(mappings) for name in child_mappings: mappings_copy[name] = child_mappings[name] self.rename_having(mappings_copy) return RenamedTable(new_table_name, self, column_list), mappings, used_table_names def rename_ops(self, mapping, new_names): replacement_col_names = [] if type(self.columns[0]) == AllColumn: pass else: for col in self.columns: col.rename_ops(mapping) if self.where_tree: self.where_tree.rename_ops(mapping) if self.group_col: for col in self.group_col: col.rename_ops(mapping) def rename_having(self, mapping): if self.having_tree: self.having_tree.rename_ops(mapping) for col in self.order_cols: col.rename_ops(mapping) def to_rkt(self, schema): where_part = "\nWHERE " + self.where_tree.to_rkt(schema) if self.where_tree else "\nWHERE (TRUE)" # TODO reference full names group_part = "\nGROUP-BY (list " + " ".join([col.to_rkt(schema) + " " for col in self.group_col])+ ")" if self.group_col else "" # TODO: reference full names if self.having_tree: having_part = "\nHAVING " + self.having_tree.to_rkt(schema) # TODO reference full names else: if self.group_col: having_part = "\nHAVING (TRUE)" else: having_part = "" if type(self.columns[0]) == AllColumn: select_part = "SELECT (VALS " + self.columns[0].to_rkt(schema, self.subquery_tree) + ")" else: select_part = "SELECT " + "(VALS " + " ".join([col.to_rkt(schema) for col in self.columns]) + ")" return "(" + select_part + "\nFROM " + self.subquery_tree.to_rkt(schema) + where_part + " " + group_part + " " + having_part + ")" class ColOp(): def col_op_dispatcher(s_exp): if s_exp == "*" or s_exp == "[*]": return AllColumn() assert s_exp[0] == "expr" if s_exp[1][0] == "column_name": return Column(s_exp[1]) elif s_exp[1][0] == "literal_value": return ConstantColumn(s_exp[1]) elif s_exp[1][0] == "function_name" and len(s_exp) == 3: return UnaryColumnOp(s_exp) elif '.' in s_exp: return Column(s_exp, table = True) elif len(s_exp) == 4: return BinaryColumnOp(s_exp) class Column(ColOp): def __init__(self, s_exp, table = False, direct = False, name = None): if direct: self.name = name self.table = None elif not table: assert s_exp[0] == "column_name" self.name = s_exp[1][1] if type(s_exp[1][1]) == str else s_exp[1][1][0][1] self.table = None else: assert s_exp[1][0] == "table_name" self.name = s_exp[3][1][1] self.table = s_exp[1][1][1] def rename_ops(self, mapping): if self.table: new_name = mapping[self.table + "." + self.name] else: new_name = mapping[self.name] self.table = new_name.split(".")[0] self.name = new_name.split(".")[1] def to_rkt(self, schema): return "\"" + (self.table + "." + self.name if self.table else self.name) + "\"" class ConstantColumn(ColOp): def __init__(self, s_exp): assert s_exp[0] == "literal_value" self.value = s_exp[1] def to_rkt(self, schema): return str(self.value) def rename_ops(self, mapping): pass class UnaryColumnOp(ColOp): def __init__(self, s_exp): self.op = s_exp[1][1][1] self.col_ops = [] for child in s_exp[2]: self.col_ops.append(ColOp.col_op_dispatcher(child)) def rename_ops(self, mapping): # If child is an all column, replace it simply with just any 1 column which can be found in mapping's values. for child in self.col_ops: if type(child) == AllColumn: key = next(iter(mapping)) self.col_ops = [Column(None, False, direct = True, name = mapping[key])] # this is a hacky solution to replace count(*) with any column -- will not support NaNs! break else: child.rename_ops(mapping) def to_rkt(self, schema): return "(" + self.op.upper() + " " + " ".join(["\"" + (col.table + "." + col.name if col.table else col.name) + "\"" for col in self.col_ops]) + ")" class BinaryColumnOp(ColOp): def __init__(self, s_exp): self.op = s_exp[2] if self.op == "==": self.op = "=" self.left_col_op = ColOp.col_op_dispatcher(s_exp[1]) self.right_col_op = ColOp.col_op_dispatcher(s_exp[3]) def rename_ops(self, mapping): self.left_col_op.rename_ops(mapping) self.right_col_op.rename_ops(mapping) def to_rkt(self, schema): return "(BINOP " + self.left_col_op.to_rkt(schema) + " " + self.op + " " + self.right_col_op.to_rkt(schema) + ")" class AllColumn(ColOp): def __init__(self): pass def rename_ops(self, mapping): pass def to_rkt(self, schema, table): table_schema = table.infer_out_schema(schema) full_names = [{colname for colname in colset if "." in colname}.pop() for colset in table_schema] to_return = "" for full_name in full_names: to_return += f"\"{full_name}\" " return to_return[:-1] class PredicateOp(): def pred_op_dispatcher(s_exp): if s_exp[0] == 'join_constraint': return JoinPredicate(s_exp) assert s_exp[0] == "expr" s_exp = find_ultimate_pred(s_exp) if 'and' in s_exp: return AndPred(s_exp) elif 'or' in s_exp: return OrPred(s_exp) elif s_exp[1][0] == 'unary_operator' and s_exp[1][1] == 'not': return NotPred(s_exp) elif "like" in s_exp: return LikePredicate(s_exp) else: return Predicate(s_exp) class JoinPredicate(PredicateOp): def __init__(self, s_exp): assert s_exp[0] == 'join_constraint' pred_stmt = s_exp[2] self.op = pred_stmt[2] if self.op == '==': self.op = '=' self.left_pred_op = ColOp.col_op_dispatcher(pred_stmt[1]) self.right_pred_op = ColOp.col_op_dispatcher(pred_stmt[3]) def rename_ops(self, mapping): self.left_pred_op.rename_ops(mapping) self.right_pred_op.rename_ops(mapping) def to_rkt(self, schema): return "(BINOP " + self.left_pred_op.to_rkt(schema) + " " + self.op + " " + self.right_pred_op.to_rkt(schema) + ")" def find_ultimate_pred(s_exp): assert s_exp[0] == "expr" if type(s_exp[1][0]) == list: return find_ultimate_pred(s_exp[1][0]) else: return s_exp class Predicate(PredicateOp): def __init__(self, s_exp): assert s_exp[0] == 'expr' pred_stmt = s_exp self.left_pred_op = ColOp.col_op_dispatcher(pred_stmt[1]) if pred_stmt[2] == 'not': self.op = pred_stmt[2:4] self.right_pred_op = ColOp.col_op_dispatcher(pred_stmt[4]) else: self.op = pred_stmt[2] self.right_pred_op = ColOp.col_op_dispatcher(pred_stmt[3]) def rename_ops(self, mapping): self.left_pred_op.rename_ops(mapping) self.right_pred_op.rename_ops(mapping) def to_rkt(self, schema): return "(BINOP " + self.left_pred_op.to_rkt(schema) + " " + self.op + " " + self.right_pred_op.to_rkt(schema) + ")" class LikePredicate(Predicate): def __init__(self, s_exp): assert s_exp[0] == 'expr' self.left_pred_op = ColOp.col_op_dispatcher(s_exp[1]) if s_exp[2] == 'not': self.like = False self.pattern = s_exp[4][1][1] else: self.like = True self.pattern = s_exp[3][1][1] def rename_ops(self, mapping): self.left_pred_op.rename_ops(mapping) def to_rkt(self, schema): if self.like: return "(TRUE)" return "(LIKEOP " + self.left_pred_op.to_rkt(schema) + " \"" + self.pattern + "\")" # TODO else: return "(TRUE)" return "(NOT (LIKEOP " + self.left_pred_op.to_rkt(schema) + " \"" + self.pattern + "\"))" class AndPred(PredicateOp): def __init__(self, s_exp): self.left_pred_op = PredicateOp.pred_op_dispatcher(s_exp[1]) self.right_pred_op = PredicateOp.pred_op_dispatcher(s_exp[3]) def rename_ops(self, mapping): self.left_pred_op.rename_ops(mapping) self.right_pred_op.rename_ops(mapping) def to_rkt(self, schema): return "(AND " + self.left_pred_op.to_rkt(schema) + " " + self.right_pred_op.to_rkt(schema) + ")" class OrPred(PredicateOp): def __init__(self, s_exp): self.left_pred_op = PredicateOp.pred_op_dispatcher(s_exp[1]) self.right_pred_op = PredicateOp.pred_op_dispatcher(s_exp[3]) def rename_ops(self, mapping): self.left_pred_op.rename_ops(mapping) self.right_pred_op.rename_ops(mapping) def to_rkt(self, schema): return "(OR " + self.left_pred_op.to_rkt(schema) + " " + self.right_pred_op.to_rkt(schema) + ")" def NotPred(PredicateOp): def __init__(self, s_exp): pred_stmt = s_exp[2][1][0] self.op = pred_stmt[2] self.pred_op = PredOp.pred_op_dispatcher(pred_stmt[1]) def rename_ops(self, mapping): self.pred_op.rename_ops(mapping) def to_rkt(self, schema): return "(NOT " + self.pred_op.to_rkt(schema) + ")"
the-stack_106_22661
#!/usr/bin/python # # Copyright 2017 "OVS Performance" Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Files name: # ovs_performance.py # # Description: # Simple script to run the OVS performance tests # # Author: # Eelco Chaudron # # Initial Created: # 17 January 2017 # # Notes: # - Install the spur python module # dnf install python-spur # - Install the XenaPythonLib from https://github.com/fleitner/XenaPythonLib # cd XenaPythonLib/ # sudo python setup.py install # - Install natsort and enum modules # pip install natsort enum34 # - Install matplotlib # dnf install python-matplotlib # - Install latest Scapy # pip install scapy # - Install netaddr # pip install netaddr # # Example: # # # TODOs: # - Add tunnel test cases (Geneve and VXLAN) # - Add check after test to see all OF flows got packets (i.e. n_packets != 0) # - Add option to stop trying more packet sizes once maximum performance # of link is reached (i.e. two consecutive runs @ wire speed) # - Test to determine maximum throughput without dropping packets # - Add option to maximize traffic rate (PPS, and/or % based on port speed) # - Add some VLAN test cases # - Add a Bi-directional PVP test [phy0-vf0-VM-vf1-phy1] # - Add option to run traffic part multiple(3) times to calculate deviation, # and add error bars to the graphs # # # Imports # import argparse import csv import datetime import inspect import os import logging import numpy as np import re import spur import sys import time # # Imports from simpel shell API # from dut_ssh_shell import DutSshShell # # Import general traffic_generator library # from traffic_generator_base import TrafficFlowType from traffic_generator import TrafficGenerator, TrafficGeneratorType # # Imports from Matplot, by default disable the tk interface # import matplotlib matplotlib.use('Agg') # # Imports from natural sort # from natsort import natsorted # # Imports from distutils # from distutils.version import StrictVersion # In Python 2, raw_input() returns a string, and input() tries # to run the input as a Python expression. # Since getting a string was almost always what we wanted, # Python 3 does that with input() # The following line checks the Python version being used to # stick to raw_input() for Python2 and input() for Python3 if sys.version_info[0] == 3: raw_input = input # # Default configuration # DEFAULT_TESTER_TYPE = 'xena' DEFAULT_TESTER_SERVER_ADDRESS = '' DEFAULT_TESTER_INTERFACE = '' DEFAULT_SECOND_TESTER_INTERFACE = '' DEFAULT_DUT_ADDRESS = '' DEFAULT_DUT_LOGIN_USER = 'root' DEFAULT_DUT_LOGIN_PASSWORD = 'root' DEFAULT_DUT_VM_ADDRESS = '' DEFAULT_DUT_SECOND_VM_ADDRESS = '' DEFAULT_DUT_VM_NIC_PCI_ADDRESS = '' DEFAULT_DUT_VM_LOGIN_USER = 'root' DEFAULT_DUT_VM_LOGIN_PASSWORD = 'root' DEFAULT_PHYSICAL_INTERFACE = '' DEFAULT_SECOND_PHYSICAL_INTERFACE = '' DEFAULT_PACKET_LIST = '64, 128, 256, 512, 768, 1024, 1514' DEFAULT_VIRTUAL_INTERFACE = '' DEFAULT_SECOND_VIRTUAL_INTERFACE = '' DEFAULT_RUN_TIME = 20 DEFAULT_STREAM_LIST = '10, 1000, 10000, 100000, 1000000' DEFAULT_BRIDGE_NAME = 'ovs_pvp_br0' DEFAULT_WARM_UP_TIMEOUT = 360 DEFAULT_DST_MAC_ADDRESS = '00:00:02:00:00:00' DEFAULT_SRC_MAC_ADDRESS = '00:00:01:00:00:00' # # Run simple traffic test Virtual to Virtual # def test_v2v(nr_of_flows, packet_sizes): v2v_tx_results = list() v2v_rx_results = list() cpu_results = list() for packet_size in packet_sizes: ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] START". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) ################################################## lprint(" * Create OVS OpenFlow rules...") create_ovs_of_rules(nr_of_flows, of_interfaces[config.virtual_interface], of_interfaces[config.second_virtual_interface]) ################################################## lprint(" * Start packet receiver on second VM...") start_traffic_rx_on_vm(config.dut_second_vm_address, config.dut_second_vm_nic_pci) ################################################## lprint(" * Start CPU monitoring on DUT...") start_cpu_monitoring() ################################################## lprint(" * Start packet generation for {0} seconds...".format(config.run_time)) start_traffic_tx_on_vm(config.dut_vm_address, nr_of_flows, packet_size) time.sleep(config.run_time) ################################################## lprint(" * Stop CPU monitoring on DUT...") stop_cpu_monitoring() ################################################## lprint(" * Stopping packet stream on VM1...") stop_traffic_tx_on_vm(config.dut_vm_address) ################################################## lprint(" * Stop packet receiver on VM2...") stop_traffic_rx_on_vm(config.dut_second_vm_address) ################################################## lprint(" * Gathering statistics...") of_dump_port_to_logfile(config.bridge_name) vm_pkts_sec = get_traffic_rx_stats_from_vm(config.dut_second_vm_address) vm_tx_pkts_sec = get_traffic_tx_stats_from_vm(config.dut_vm_address) lprint(" - Transmit rate on VM: {:,} pps".format(vm_tx_pkts_sec)) lprint(" ! Result, average: {:,} pps".format(vm_pkts_sec)) cpu_results.append(get_cpu_monitoring_stats()) v2v_tx_results.append(vm_tx_pkts_sec) v2v_rx_results.append(vm_pkts_sec) ################################################## lprint(" * Restoring state for next test...") # dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0} && ovs-appctl dpctl/del-flows"'.\ # format(config.bridge_name), # die_on_error=True) ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] END". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) flow_str = get_flow_type_short() flow_file_str = get_flow_type_name() create_multiple_graph(packet_sizes, {'Send Rate': v2v_tx_results, 'Receive Rate': v2v_rx_results}, "Packet size", "Packets/second", "Virtual to Virtual with {} {} flows".format(nr_of_flows, flow_str), "test_v2v_{}_{}".format(nr_of_flows, flow_file_str), None, cpu_utilization={'Receive Rate': cpu_results}) create_multiple_graph(packet_sizes, {'Send Rate': v2v_tx_results, 'Receive Rate': v2v_rx_results}, "Packet size", "Packets/second", "Virtual to Virtual with {} {} flows".format(nr_of_flows, flow_str), "test_v2v_{}_{}_ref".format(nr_of_flows, flow_file_str), [phy_speed], cpu_utilization={'Receive Rate': cpu_results}) return v2v_rx_results, cpu_results # # Run simple traffic test Physical to VM back to Physical # def test_p2v2p(nr_of_flows, packet_sizes): p2v2p_results = list() cpu_results = list() warm_up_done = False for packet_size in packet_sizes: ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] START". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) ################################################## lprint(" * Create OVS OpenFlow rules...") create_ovs_bidirectional_of_rules( nr_of_flows, of_interfaces[config.physical_interface], of_interfaces[config.virtual_interface]) ################################################## lprint(" * Initializing packet generation...") tester.configure_traffic_stream(config.tester_interface, get_traffic_generator_flow(), nr_of_flows, packet_size, traffic_dst_mac=config.dst_mac_address, traffic_src_mac=config.src_mac_address) ################################################## if config.warm_up: lprint(" * Doing flow table warm-up...") start_vm_time = datetime.datetime.now() start_traffic_loop_on_vm(config.dut_vm_address, config.dut_vm_nic_pci) tester.start_traffic(config.tester_interface) warm_up_done = warm_up_verify(nr_of_flows * 2, config.warm_up_timeout) tester.stop_traffic(config.tester_interface) if not warm_up_done: if config.warm_up_no_fail: stop_traffic_loop_on_vm(config.dut_vm_address) flow_table_cool_down() else: sys.exit(-1) ################################################## lprint(" * Clear all statistics...") tester.clear_statistics(config.tester_interface) pp_tx_start, pp_tx_drop_start, pp_rx_start, pp_rx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.physical_interface]) vp_tx_start, vp_tx_drop_start, vp_rx_start, vp_rx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface]) ################################################## if not config.warm_up or not warm_up_done: lprint(" * Start packet receiver on VM...") start_traffic_loop_on_vm(config.dut_vm_address, config.dut_vm_nic_pci) warm_up_time = 0 else: # warm_up_time is the total time it takes from the start of the # VM at warm-up till we would normally start the loop back VM. # This values is used to remove warm-up statistics. warm_up_time = int(np.ceil((datetime.datetime.now() - start_vm_time).total_seconds())) lprint(" * Determine warm op time, {} seconds...". format(warm_up_time)) ################################################## lprint(" * Start CPU monitoring on DUT...") start_cpu_monitoring() ################################################## lprint(" * Start packet generation for {0} seconds...".format(config.run_time)) tester.start_traffic(config.tester_interface) for i in range(1, config.run_time): time.sleep(1) tester.take_rx_statistics_snapshot(config.tester_interface) ################################################## lprint(" * Stop CPU monitoring on DUT...") stop_cpu_monitoring() ################################################## lprint(" * Stopping packet stream...") tester.stop_traffic(config.tester_interface) time.sleep(1) ################################################## lprint(" * Stop packet receiver on VM...") stop_traffic_loop_on_vm(config.dut_vm_address) ################################################## lprint(" * Gathering statistics...") tester.take_statistics_snapshot(config.tester_interface) full_tx_stats = tester.get_tx_statistics_snapshots(config.tester_interface) full_rx_stats = tester.get_rx_statistics_snapshots(config.tester_interface) slogger.debug(" full_tx_stats={}".format(full_tx_stats)) slogger.debug(" full_rx_stats={}".format(full_rx_stats)) pp_tx_end, pp_tx_drop_end, pp_rx_end, pp_rx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.physical_interface]) vp_tx_end, vp_tx_drop_end, vp_rx_end, vp_rx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface]) pp_rx = pp_rx_end - pp_rx_start pp_tx = pp_tx_end - pp_tx_start pp_rx_drop = pp_rx_drop_end - pp_rx_drop_start pp_tx_drop = pp_tx_drop_end - pp_tx_drop_start vp_rx = vp_rx_end - vp_rx_start vp_tx = vp_tx_end - vp_tx_start vp_rx_drop = vp_rx_drop_end - vp_rx_drop_start vp_tx_drop = vp_tx_drop_end - vp_tx_drop_start vm_pkts_sec = get_traffic_rx_stats_from_vm(config.dut_vm_address, skip_samples=warm_up_time) packets_tx = full_tx_stats[sorted(full_tx_stats.keys())[-1]]['pt_total']['packets'] packets_rx = full_rx_stats[sorted(full_rx_stats.keys())[-1]]['pr_total']['packets'] lprint(" - Packets send by Tester : {:-20,}".format(packets_tx)) lprint(" - Packets received by physical: {:-20,} [Lost {:,}, Drop {:,}]". format(pp_rx, packets_tx - pp_rx, pp_rx_drop)) lprint(" - Packets received by virtual : {:-20,} [Lost {:,}, Drop {:,}]". format(vp_tx, pp_rx - vp_tx, vp_tx_drop)) lprint(" - Packets send by virtual : {:-20,} [Lost {:,}, Drop {:,}]". format(vp_rx, vp_tx - vp_rx, vp_rx_drop)) lprint(" - Packets send by physical : {:-20,} [Lost {:,}, Drop {:,}]". format(pp_tx, vp_rx - pp_tx, pp_tx_drop)) lprint(" - Packets received by Tester : {:-20,} [Lost {:,}]". format(packets_rx, pp_tx - packets_rx)) lprint(" - Receive rate on VM: {:,} pps".format(vm_pkts_sec)) rx_pkts_sec = get_packets_per_second_from_traffic_generator_rx_stats(full_rx_stats) lprint(" ! Result, average: {:,} pps".format(rx_pkts_sec)) p2v2p_results.append(rx_pkts_sec) cpu_results.append(get_cpu_monitoring_stats()) ################################################## lprint(" * Restoring state for next test...") tester.unconfigure_traffic_stream(config.tester_interface) # dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0} && ovs-appctl dpctl/del-flows"'.\ # format(config.bridge_name), # die_on_error=True) ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] END". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) create_single_graph(packet_sizes, p2v2p_results, "Packet size", "Packets/second", "Physical to Virtual back to Physical with {} {} flows". format(nr_of_flows, get_flow_type_short()), "test_p2v2p_{}_{}".format(nr_of_flows, get_flow_type_name()), phy_speed, cpu_utilization=cpu_results) return p2v2p_results, cpu_results # # Run simple traffic test Physical to VM # def test_p2v(nr_of_flows, packet_sizes): p2v_results = list() cpu_results = list() warm_up_done = False for packet_size in packet_sizes: ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] START". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) ################################################## lprint(" * Create OVS OpenFlow rules...") create_ovs_of_rules(nr_of_flows, of_interfaces[config.physical_interface], of_interfaces[config.virtual_interface]) ################################################## lprint(" * Initializing packet generation...") tester.configure_traffic_stream(config.tester_interface, get_traffic_generator_flow(), nr_of_flows, packet_size, traffic_dst_mac=config.dst_mac_address, traffic_src_mac=config.src_mac_address) ################################################## if config.warm_up: lprint(" * Doing flow table warm-up...") tester.start_traffic(config.tester_interface) warm_up_done = warm_up_verify(nr_of_flows, config.warm_up_timeout) tester.stop_traffic(config.tester_interface) if not warm_up_done: if config.warm_up_no_fail: flow_table_cool_down() else: sys.exit(-1) ################################################## lprint(" * Clear all statistics...") tester.clear_statistics(config.tester_interface) pp_rx_start \ = get_of_port_packet_stats(of_interfaces[config.physical_interface])[2] vp_tx_start, vp_tx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface])[0:2] ################################################## lprint(" * Start packet receiver on VM...") start_traffic_rx_on_vm(config.dut_vm_address, config.dut_vm_nic_pci) ################################################## lprint(" * Start CPU monitoring on DUT...") start_cpu_monitoring() ################################################## lprint(" * Start packet generation for {0} seconds...".format(config.run_time)) tester.start_traffic(config.tester_interface) for i in range(1, config.run_time): time.sleep(1) ################################################## lprint(" * Stop CPU monitoring on DUT...") stop_cpu_monitoring() ################################################## lprint(" * Stopping packet stream...") tester.stop_traffic(config.tester_interface) time.sleep(1) ################################################## lprint(" * Stop packet receiver on VM...") stop_traffic_rx_on_vm(config.dut_vm_address) ################################################## lprint(" * Gathering statistics...") tester.take_tx_statistics_snapshot(config.tester_interface) full_tx_stats = tester.get_tx_statistics_snapshots(config.tester_interface) slogger.debug(" full_tx_stats={}".format(full_tx_stats)) pp_rx_end \ = get_of_port_packet_stats(of_interfaces[config.physical_interface])[2] vp_tx_end, vp_tx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface])[0:2] pp_rx = pp_rx_end - pp_rx_start vp_tx = vp_tx_end - vp_tx_start vp_tx_drop = vp_tx_drop_end - vp_tx_drop_start vm_pkts_sec = get_traffic_rx_stats_from_vm(config.dut_vm_address) packets_tx = full_tx_stats[sorted(full_tx_stats.keys())[-1]]['pt_total']['packets'] lprint(" - Packets send by Tester {:,}".format(packets_tx)) lprint(" - Packets received by physical port {:,} [Lost {:,}]". format(pp_rx, packets_tx - pp_rx)) lprint(" - Packets received by virtual port {:,} [Lost {:,}]". format(vp_tx, pp_rx - vp_tx)) lprint(" - Packets dropped by virtual port {:,}". format(vp_tx_drop)) lprint(" ! Result, average: {:,} pps".format(vm_pkts_sec)) p2v_results.append(vm_pkts_sec) cpu_results.append(get_cpu_monitoring_stats()) ################################################## lprint(" * Restoring state for next test...") tester.unconfigure_traffic_stream(config.tester_interface) # dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0} && ovs-appctl dpctl/del-flows"'.\ # format(config.bridge_name), # die_on_error=True) ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] END". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) create_single_graph(packet_sizes, p2v_results, "Packet size", "Packets/second", "Physical to Virtual with {} {} flows". format(nr_of_flows, get_flow_type_short()), "test_p2v_{}_{}". format(nr_of_flows, get_flow_type_name()), phy_speed, cpu_utilization=cpu_results) return p2v_results, cpu_results # # Run simple traffic test Physical to Physical # def test_p2p(nr_of_flows, packet_sizes): p2p_results = list() cpu_results = list() warm_up_done = False for packet_size in packet_sizes: ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] START". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) ################################################## lprint(" * Create OVS OpenFlow rules...") create_ovs_of_rules(nr_of_flows, of_interfaces[config.physical_interface], of_interfaces[config.second_physical_interface]) ################################################## lprint(" * Initializing packet generation...") tester.configure_traffic_stream(config.tester_interface, get_traffic_generator_flow(), nr_of_flows, packet_size, traffic_dst_mac=config.dst_mac_address, traffic_src_mac=config.src_mac_address) ################################################## if config.warm_up: lprint(" * Doing flow table warm-up...") tester.start_traffic(config.tester_interface) warm_up_done = warm_up_verify(nr_of_flows, config.warm_up_timeout) tester.stop_traffic(config.tester_interface) if not warm_up_done: if config.warm_up_no_fail: flow_table_cool_down() else: sys.exit(-1) ################################################## lprint(" * Clear all statistics...") tester.clear_statistics(config.tester_interface) tester.clear_statistics(config.second_tester_interface) pp_tx_start, pp_tx_drop_start, pp_rx_start, pp_rx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.physical_interface]) rpp_tx_start, rpp_tx_drop_start, rpp_rx_start, rpp_rx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.second_physical_interface]) ################################################## lprint(" * Start CPU monitoring on DUT...") start_cpu_monitoring() ################################################## lprint(" * Start packet generation for {0} seconds...".format(config.run_time)) tester.start_traffic(config.tester_interface) for i in range(1, config.run_time): time.sleep(1) tester.take_rx_statistics_snapshot(config.second_tester_interface) ################################################## lprint(" * Stop CPU monitoring on DUT...") stop_cpu_monitoring() ################################################## lprint(" * Stopping packet stream...") tester.stop_traffic(config.tester_interface) time.sleep(1) ################################################## lprint(" * Gathering statistics...") tester.take_tx_statistics_snapshot(config.tester_interface) tester.take_rx_statistics_snapshot(config.second_tester_interface) full_tx_stats = tester.get_tx_statistics_snapshots(config.tester_interface) full_rx_stats = tester.get_rx_statistics_snapshots(config.second_tester_interface) slogger.debug(" full_tx_stats={}".format(full_tx_stats)) slogger.debug(" full_rx_stats={}".format(full_rx_stats)) pp_tx_end, pp_tx_drop_end, pp_rx_end, pp_rx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.physical_interface]) rpp_tx_end, rpp_tx_drop_end, rpp_rx_end, rpp_rx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.second_physical_interface]) pp_rx = pp_rx_end - pp_rx_start pp_rx_drop = pp_rx_drop_end - pp_rx_drop_start rpp_tx = rpp_tx_end - rpp_tx_start rpp_tx_drop = rpp_tx_drop_end - rpp_tx_drop_start packets_tx = full_tx_stats[sorted(full_tx_stats.keys())[-1]]['pt_total']['packets'] packets_rx = full_rx_stats[sorted(full_rx_stats.keys())[-1]]['pr_total']['packets'] lprint(" - Packets send by Tester : {:-20,}".format(packets_tx)) lprint(" - Packets received by physical : {:-20,} [Lost {:,}, Drop {:,}]". format(pp_rx, packets_tx - pp_rx, pp_rx_drop)) lprint(" - Packets send by second physical: {:-20,} [Lost {:,}, Drop {:,}]". format(rpp_tx, pp_rx - rpp_tx, rpp_tx_drop)) lprint(" - Packets received by Tester : {:-20,} [Lost {:,}]". format(packets_rx, rpp_tx - packets_rx)) rx_pkts_sec = get_packets_per_second_from_traffic_generator_rx_stats(full_rx_stats) lprint(" ! Result, average: {:,} pps".format(rx_pkts_sec)) p2p_results.append(rx_pkts_sec) cpu_results.append(get_cpu_monitoring_stats()) ################################################## lprint(" * Restoring state for next test...") tester.unconfigure_traffic_stream(config.tester_interface) # dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0} && ovs-appctl dpctl/del-flows"'.\ # format(config.bridge_name), # die_on_error=True) ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] END". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) create_single_graph(packet_sizes, p2p_results, "Packet size", "Packets/second", "Physical to Physical with {} {} flows". format(nr_of_flows, get_flow_type_short()), "test_p2p_{}_{}". format(nr_of_flows, get_flow_type_name()), phy_speed, cpu_utilization=cpu_results) return p2p_results, cpu_results # # Run VXLAN test # # TODO: This is only tested on OVS-DPDK, need modular support # so it will work on kernel (hw offload) datapath. # # Also needs encap test, and encap-decap test. # # Also note that this test will not distribute the # load among rx queue's as the outer IP+UDP headers # do not change. Making the source UDP port of the # outer header will solve this, but we have no more # modifiers. We could do a destination IP only OF # rule and use the source IP counters for src UDP. # def test_vxlan(nr_of_flows, packet_sizes): vxlan_results = list() cpu_results = list() tunnel_bridge = (config.bridge_name + "_tterm")[:15] for packet_size in packet_sizes: ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] START". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) ################################################## lprint(" * Get bridge MAC address...") tunnel_dst_mac = get_of_bridge_mac_address(tunnel_bridge) ################################################## lprint(" * Create OVS OpenFlow rules...") create_ovs_of_rules(nr_of_flows, of_interfaces['vxlan0'], of_interfaces[config.virtual_interface]) ################################################## if ovs_data_path == "netdev": # # For DPDK data path only # lprint(" * Setup neighbor entry...") dut_shell.dut_exec('sh -c "ovs-appctl tnl/neigh/set {} ' ' 3.1.1.2 00:00:00:00:00:01"'.format(tunnel_bridge), die_on_error=True) dut_shell.dut_exec('sh -c "ip addr add 3.1.1.1/24 dev {0};' 'ip link set {0} up"'.format(tunnel_bridge), die_on_error=True) ################################################## lprint(" * Initializing packet generation...") tester.configure_traffic_stream(config.tester_interface, TrafficFlowType.vxlan_l3_ipv4, nr_of_flows, packet_size, tunnel_dst_mac=tunnel_dst_mac, traffic_dst_mac=config.dst_mac_address) ################################################## lprint(" * Clear all statistics...") tester.clear_statistics(config.tester_interface) pp_rx_start \ = get_of_port_packet_stats(of_interfaces[config.physical_interface], bridge=tunnel_bridge)[2] vp_tx_start, vp_tx_drop_start \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface])[0:2] ################################################## lprint(" * Start packet receiver on VM...") start_traffic_rx_on_vm(config.dut_vm_address, config.dut_vm_nic_pci) ################################################## lprint(" * Start CPU monitoring on DUT...") start_cpu_monitoring() ################################################## lprint(" * Start packet generation for {0} seconds...". format(config.run_time)) tester.start_traffic(config.tester_interface) for i in range(1, config.run_time): time.sleep(1) ################################################## lprint(" * Stop CPU monitoring on DUT...") stop_cpu_monitoring() ################################################## lprint(" * Stopping packet stream...") tester.stop_traffic(config.tester_interface) time.sleep(1) ################################################## lprint(" * Stop packet receiver on VM...") stop_traffic_rx_on_vm(config.dut_vm_address) ################################################## lprint(" * Gathering statistics...") tester.take_tx_statistics_snapshot(config.tester_interface) full_tx_stats = tester.get_tx_statistics_snapshots(config.tester_interface) slogger.debug(" full_tx_stats={}".format(full_tx_stats)) pp_rx_end = get_of_port_packet_stats(of_interfaces[config.physical_interface], bridge=tunnel_bridge)[2] vp_tx_end, vp_tx_drop_end \ = get_of_port_packet_stats(of_interfaces[config.virtual_interface])[0:2] pp_rx = pp_rx_end - pp_rx_start vp_tx = vp_tx_end - vp_tx_start vp_tx_drop = vp_tx_drop_end - vp_tx_drop_start vm_pkts_sec = get_traffic_rx_stats_from_vm(config.dut_vm_address) packets_tx = full_tx_stats[sorted(full_tx_stats.keys())[-1]]['pt_total']['packets'] lprint(" - Packets send by Tester {:,}".format(packets_tx)) lprint(" - Packets received by physical port {:,} [Lost {:,}]". format(pp_rx, packets_tx - pp_rx)) lprint(" - Packets received by virtual port {:,} [Lost {:,}]". format(vp_tx, pp_rx - vp_tx)) lprint(" - Packets dropped by virtual port {:,}". format(vp_tx_drop)) lprint(" ! Result, average: {:,} pps".format(vm_pkts_sec)) vxlan_results.append(vm_pkts_sec) cpu_results.append(get_cpu_monitoring_stats()) ################################################## lprint(" * Restoring state for next test...") tester.unconfigure_traffic_stream(config.tester_interface) ################################################## lprint("- [TEST: {0}(flows={1}, packet_size={2})] END". format(inspect.currentframe().f_code.co_name, nr_of_flows, packet_size)) create_single_graph(packet_sizes, vxlan_results, "Packet size", "Packets/second", "VXLAN Tunnel with {} {} flows". format(nr_of_flows, get_flow_type_short()), "test_vxlan_{}_{}". format(nr_of_flows, get_flow_type_name()), phy_speed, cpu_utilization=cpu_results) return vxlan_results, cpu_results # # Count datapath flows # def get_active_datapath_flows(): if ovs_data_path == "netdev": cmd = 'sh -c "ovs-appctl dpctl/show netdev@ovs-netdev | ' \ 'grep flows | awk \'{print $2}\'"' else: cmd = 'sh -c "ovs-appctl dpctl/show system@ovs-system | ' \ 'grep flows | awk \'{print $2}\'"' result = dut_shell.dut_exec(cmd, die_on_error=True) return int(result.stdout_output) # # Warm up verification # def warm_up_verify(requested_flows, timeout): run_time = 0 active_flows = 0 while active_flows < requested_flows: run_time += 1 if timeout != 0 and run_time >= timeout: lprint("ERROR: Failed to complete warm-up in time ({} seconds)!". format(timeout)) return False time.sleep(1) active_flows = get_active_datapath_flows() # # Flows exist, we can continue now # return True # # Wait for datapth flows to flush # def flow_table_cool_down(failure_fatal=True): run_time = 0 active_flows = 0 if config.warm_up or not config.no_cool_down: lprint(" * Doing flow table cool-down...") active_flows = get_active_datapath_flows() while active_flows > 32: run_time += 1 if run_time >= 20: if failure_fatal: lprint("ERROR: Failed to complete cool-down in time " "(20 seconds)!") sys.exit(-1) else: lprint("WARNING: Failed to complete cool-down in time " "(20 seconds)!") break active_flows = get_active_datapath_flows() time.sleep(1) # # Flush all OVS flows # def flush_ovs_flows(): # data_path = "system@ovs-system" # # For now we only flush the openflow rules for nedtev, because as soon as # we flush the datapath rules no more flows get added to the datapath. # # However other vendors are also struggling when flushing the datapath. # # if ovs_data_path == "netdev": # data_path = "netdev@ovs-netdev" # # cmd = 'sh -c "ovs-ofctl del-flows {0}; ' \ # 'ovs-appctl dpctl/del-flows {1}"'. \ # format(config.bridge_name, data_path) cmd = 'sh -c "ovs-ofctl del-flows {0}"'. \ format(config.bridge_name) dut_shell.dut_exec(cmd, die_on_error=True) flow_table_cool_down(failure_fatal=False) time.sleep(2) # # Dump openflow port statistics to logfile # def of_dump_port_to_logfile(bridge): return dut_shell.dut_exec("ovs-ofctl dump-ports {}".format(bridge), die_on_error=True) # # Start packet receive application on VM # def start_traffic_rx_on_vm(vm, pci): cpu_mask = ((1 << (config.dut_vm_nic_queues + 1)) - 1) pmd_cpu_mask = cpu_mask & ~0x1 disable_hw_vlan = " --disable-hw-vlan" if vm_dpdk_version < \ StrictVersion('18.2.0') else "" cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'rm -f ~/results.txt; " \ r" nohup sh -c " \ r' "(while sleep 1; do echo show port stats 0; done | ' \ r" testpmd -c {5:x} -n 4 --socket-mem 2048,0 -w {3} -- "\ r" --burst 64 -i --rxq={4} --txq={4} --rxd={8} " \ r" --txd={9} --auto-start --forward-mode=rxonly " \ r' --port-topology=chained --coremask={6:x}{7})" ' \ r" &>results.txt &'". \ format(vm, config.dut_vm_user, config.dut_vm_password, pci, config.dut_vm_nic_queues, cpu_mask, pmd_cpu_mask, disable_hw_vlan, config.dut_vm_nic_rxd, config.dut_vm_nic_txd) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) time.sleep(2) # # Stop packet receive application on VM # def stop_traffic_rx_on_vm(vm, **kwargs): die = kwargs.pop("die", True) cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'kill -SIGINT `pidof testpmd`'". \ format(vm, config.dut_vm_user, config.dut_vm_password) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=die) # # Start packet receive and loop application on VM # def start_traffic_loop_on_vm(vm, pci): cpu_mask = ((1 << (config.dut_vm_nic_queues + 1)) - 1) pmd_cpu_mask = cpu_mask & ~0x1 mac_swap = " --forward-mode=macswap" if config.mac_swap else "" disable_hw_vlan = " --disable-hw-vlan" if vm_dpdk_version < \ StrictVersion('18.2.0') else "" cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'rm -f ~/results.txt; " \ r" nohup sh -c " \ r' "(while sleep 1; do echo show port stats 0; done | ' \ r" testpmd -c {5:x} -n 4 --socket-mem 2048,0 -w {3} -- "\ r" --burst 64 -i --rxq={4} --txq={4} --rxd={9} " \ r" --txd={10} --coremask={6:x} --auto-start " \ r' --port-topology=chained{7}{8})" ' \ r" &>results.txt &'". \ format(vm, config.dut_vm_user, config.dut_vm_password, pci, config.dut_vm_nic_queues, cpu_mask, pmd_cpu_mask, mac_swap, disable_hw_vlan, config.dut_vm_nic_rxd, config.dut_vm_nic_txd) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) time.sleep(2) # # Stop packet receive and loop application on VM # def stop_traffic_loop_on_vm(vm): stop_traffic_rx_on_vm(vm) # # Get traffic receive stats from application on VM # def get_traffic_rx_stats_from_vm(vm, **kwargs): skip_samples = kwargs.pop("skip_samples", 0) cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ "'cat ~/results.txt | grep -E \"Rx-pps|Tx-pps\"'". \ format(vm, config.dut_vm_user, config.dut_vm_password) result = dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) pkt_rates = [int(re.sub(r'^\s*Rx-pps:\s*', '', s)) for s in re.findall(r'^\s*Rx-pps:\s*\d+$', result.stdout_output, re.MULTILINE)] if skip_samples > 0: pkt_rates = pkt_rates[skip_samples:] if len(pkt_rates) <= 10: lprint("ERROR: No engough elements to calculate packet rate!") sys.exit(-1) pkt_rates = pkt_rates[5:-5] return sum(pkt_rates) / len(pkt_rates) # # Start packet generation application on VM # def start_traffic_tx_on_vm(vm, nr_of_flows, packet_size): if config.flow_type == 'L2': cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'rm -f ~/results.txt; " \ r" nohup /bin/trafgen -c 3 -n 4 -- -p 1 --benchmark " \ r"--flows-per-stream 1 --bursts-per-stream 1 --streams {3} " \ r"--src-mac {5} --dst-mac {6} " \ r"--src-ip 1.0.0.0 --dst-ip 2.0.0.0 --packet-size {4} " \ r"--vary-src mac --vary-dst mac -s ~/results.txt" \ r"> /dev/null 2>&1 &'". \ format(vm, config.dut_vm_user, config.dut_vm_password, nr_of_flows, packet_size, config.src_mac_address, config.dst_mac_address) elif config.flow_type == 'L3': cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'rm -f ~/results.txt; " \ r" nohup /bin/trafgen -c 3 -n 4 -- -p 1 --benchmark " \ r"--flows-per-stream 1 --bursts-per-stream 1 --streams {3} " \ r"--src-mac {5} --dst-mac {6} " \ r"--src-ip 1.0.0.0 --dst-ip 2.0.0.0 --packet-size {4} " \ r"--vary-src ip --vary-dst ip -s ~/results.txt" \ r"> /dev/null 2>&1 &'". \ format(vm, config.dut_vm_user, config.dut_vm_password, nr_of_flows, packet_size, config.src_mac_address, config.dst_mac_address) elif config.flow_type == 'L4-UDP': cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'rm -f ~/results.txt; " \ r" nohup /bin/trafgen -c 3 -n 4 -- -p 1 --benchmark " \ r"--flows-per-stream 1 --bursts-per-stream 1 --streams {3} " \ r"--src-mac {5} --dst-mac {6} " \ r"--src-ip 1.0.0.0 --dst-ip 2.0.0.0 --packet-size {4} " \ r"--src-port 0 --dst-port 0 " \ r"--vary-src port --vary-dst port -s ~/results.txt" \ r"> /dev/null 2>&1 &'". \ format(vm, config.dut_vm_user, config.dut_vm_password, nr_of_flows, packet_size, config.src_mac_address, config.dst_mac_address) else: raise ValueError("No support for this protocol on!!") dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) # # Stop packet generation application on VM # def stop_traffic_tx_on_vm(vm, **kwargs): die = kwargs.pop("die", True) cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'kill -SIGINT `pidof trafgen`'". \ format(vm, config.dut_vm_user, config.dut_vm_password) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=die) # # Get traffic transmit stats from application on VM # def get_traffic_tx_stats_from_vm(vm): cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"'cat ~/results.txt | grep port0.tx_packets'". \ format(vm, config.dut_vm_user, config.dut_vm_password) result = dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) return get_packets_per_second_from_pkt_counters(result.stdout_output, 5) # # Get packets per seconds from traffic rx generator starts # def get_packets_per_second_from_traffic_generator_rx_stats(rx_stats): avg = cnt = 0 for timestamp in natsorted(list(rx_stats.keys()))[2:-2]: stats = rx_stats[timestamp] pps = stats['pr_total']['pps'] avg += pps cnt += 1 return avg / cnt # # Get packets per seconds from traffic tx generator starts # def get_packets_per_second_from_traffic_generator_tx_stats(tx_stats): avg = cnt = 0 for timestamp in natsorted(list(tx_stats.keys()))[2:-2]: stats = tx_stats[timestamp] pps = stats['pt_total']['pps'] avg += pps cnt += 1 return avg / cnt # # Get packets per seconds from a string with packets count values # It might strip, start, stop number of entries, and than return # average value. # def get_packets_per_second_from_pkt_counters(counters, strip): slogger.info("get_pacets_per_second_from_counters(\"{}\", {})". format(counters, strip)) counters_clean = re.sub(r'.+:\s?', '', counters) counter_list = map(int, counters_clean.split()) if strip < 0 or (len(counter_list) - (strip * 2)) < 2: lprint("ERROR: No engough elements to calculate packet rate!") sys.exit(-1) if strip > 0: del counter_list[:strip] del counter_list[-strip:] slogger.info("[gppsfc] Work list \"{}\"".format(counter_list)) pkts_sec = 0 for i in range(1, len(counter_list)): pkts_sec = pkts_sec + (counter_list[i] - counter_list[i - 1]) pkts_sec = pkts_sec / (len(counter_list) - 1) slogger.info("[gppsfc] pkts/sec = {:,}".format(pkts_sec)) return pkts_sec # # Add OVS OpenFlow rules # def create_ovs_of_rules(number_of_flows, src_port, dst_port, **kwargs): if config.flow_type == 'L2': create_ovs_l2_of_rules(number_of_flows, src_port, dst_port, **kwargs) elif config.flow_type == 'L3': create_ovs_l3_of_rules(number_of_flows, src_port, dst_port, **kwargs) elif config.flow_type == 'L4-UDP': create_ovs_l4_of_rules(number_of_flows, src_port, dst_port, **kwargs) else: raise ValueError("No support for this protocol!!") # # Add OVS OpenFlow rules # def create_ovs_bidirectional_of_rules(number_of_flows, src_port, dst_port, **kwargs): if config.flow_type == 'L2': create_ovs_bidirectional_l2_of_rules(number_of_flows, src_port, dst_port, **kwargs) elif config.flow_type == 'L3': create_ovs_bidirectional_l3_of_rules(number_of_flows, src_port, dst_port, **kwargs) elif config.flow_type == 'L4-UDP': create_ovs_bidirectional_l4_of_rules(number_of_flows, src_port, dst_port, **kwargs) else: raise ValueError("No support for this protocol!!") # # Add OVS OpenFlow rule from physical 2 physical, and reverse # def create_ovs_bidirectional_of_phy_rules(src_port, dst_port): lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0}"'. format(config.bridge_name), die_on_error=True) lprint(" * Create two OpenFlow physical to physical rules...") cmd = "ovs-ofctl add-flow {0} in_port={1},action={2} && " \ "ovs-ofctl add-flow {0} in_port={2},action={1}". \ format(config.bridge_name, src_port, dst_port) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) lprint(" * Verify that of physical port flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\'"'. format(config.bridge_name), die_on_error=True) if result.output.count('\n') != 2: lprint("ERROR: Only 2 flows should exsits, but there are {1}!". format(result.output.count('\n') - 1)) sys.exit(-1) # # Add OVS OpenFlow rule from physical 2 physical # def create_ovs_of_phy_rule(src_port, dst_port, **kwargs): clear_rules = kwargs.pop("clear_rules", True) if clear_rules: lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) flush_ovs_flows() lprint(" * Create OpenFlow physical to physical rules...") cmd = "ovs-ofctl add-flow {0} in_port={1},action={2}". \ format(config.bridge_name, src_port, dst_port) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) lprint(" * Verify that of physical port flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\'"'. format(config.bridge_name), die_on_error=True) if result.output.count('\n') != 1: lprint("ERROR: Only 2 flows should exsits, but there are {1}!". format(result.output.count('\n') - 1)) sys.exit(-1) # # Add OVS L2 OpenFlow rules # def create_ovs_l2_of_rules(number_of_flows, src_port, dst_port, **kwargs): total_nr_of_flows = kwargs.pop("total_number_of_flows", number_of_flows) clear_rules = kwargs.pop("clear_rules", True) mac_swap = kwargs.pop("mac_swap", False) base_mac = mac_2_int(config.dst_mac_address if not mac_swap else config.src_mac_address) & 0xffffff000000 if clear_rules: lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) flush_ovs_flows() if config.debug or config.debug_dut_shell: of_dump_port_to_logfile(config.bridge_name) lprint(" * Create {} L2 OpenFlow rules...".format(number_of_flows)) cmd = "python -c 'for i in range({4}, {0}): " \ "print \"add in_port={2}," \ "dl_dst={{0:02x}}:{{1:02x}}:{{2:02x}}:{{3:02x}}:{{4:02x}}:{{5:02x}}," \ "action={3}\".format((i >> 40) & 0xff, (i >> 32) & 0xff, (i >> 24) " \ "& 0xff, (i >> 16) & 0xff, (i >> 8) & 0xff, i & 0xff)'" \ " | ovs-ofctl add-flow {1} -". \ format(number_of_flows + base_mac, config.bridge_name, src_port, dst_port, base_mac) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) if total_nr_of_flows != 0: lprint(" * Verify requested number of flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\' | wc -l"'. format(config.bridge_name), die_on_error=True) if int(result.stdout_output) != total_nr_of_flows: lprint("ERROR: Only {0} flows should exsits, but there are {1}!". format(number_of_flows, int(result.stdout_output))) sys.exit(-1) # # Add OVS Bidirectional L2 OpenFlow rules # def create_ovs_bidirectional_l2_of_rules(number_of_flows, src_port, dst_port, **kwargs): create_ovs_l2_of_rules(number_of_flows, src_port, dst_port) create_ovs_l2_of_rules(number_of_flows, dst_port, src_port, total_number_of_flows=number_of_flows * 2, clear_rules=False, mac_swap=config.mac_swap) # # Add OVS L3 OpenFlow rules # def create_ovs_l3_of_rules(number_of_flows, src_port, dst_port, **kwargs): total_nr_of_flows = kwargs.pop("total_number_of_flows", number_of_flows) clear_rules = kwargs.pop("clear_rules", True) ip_start_offset = kwargs.pop("ipv4_start", 0x01000000) if number_of_flows > 1000000: lprint("ERROR: Maximum of 1,000,000 L3 flows are supported!") sys.exit(-1) if clear_rules: lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) flush_ovs_flows() if config.debug or config.debug_dut_shell: of_dump_port_to_logfile(config.bridge_name) lprint(" * Create {} L3 OpenFlow rules...".format(number_of_flows)) cmd = "python -c 'for i in range({4}, {0}): " \ "print \"add in_port={2}," \ "eth_type(0x800),nw_src={{}}.{{}}.{{}}.{{}},nw_dst={{}}.{{}}.{{}}.{{}}," \ "action={3}\".format(" \ "(i >> 24) & 0xff, (i >> 16) & 0xff," \ "(i >> 8) & 0xff, i & 0xff," \ "((i + 0x01000000) >> 24) & 0xff, ((i + 0x01000000) >> 16) & 0xff," \ "((i + 0x01000000) >> 8) & 0xff, (i + 0x01000000) & 0xff)'" \ " | ovs-ofctl add-flow {1} -". \ format(number_of_flows + ip_start_offset, config.bridge_name, src_port, dst_port, ip_start_offset) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) if total_nr_of_flows != 0: lprint(" * Verify requested number of flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\' | wc -l"'. format(config.bridge_name), die_on_error=True) if int(result.stdout_output) != total_nr_of_flows: lprint("ERROR: Only {0} flows should exsits, but there are {1}!". format(number_of_flows, int(result.stdout_output))) sys.exit(-1) # # Add OVS Bidirectional L3 OpenFlow rules # def create_ovs_bidirectional_l3_of_rules(number_of_flows, src_port, dst_port, **kwargs): clear_rules = kwargs.pop("clear_rules", True) total_nr_of_flows = kwargs.pop("total_number_of_flows", number_of_flows * 2) ip_start_offset = kwargs.pop("ipv4_start", 0x01000000) create_ovs_l3_of_rules(number_of_flows, src_port, dst_port, clear_rules=clear_rules, total_number_of_flows=0, ipv4_start=ip_start_offset) create_ovs_l3_of_rules(number_of_flows, dst_port, src_port, clear_rules=False, total_number_of_flows=total_nr_of_flows, ipv4_start=ip_start_offset) # # Add OVS OpenFlow rules for the /16 flow ranges we create # def create_ovs_bidirectional_l3_of_slash_16_rules(number_of_flows, src_port, dst_port): create_ovs_l3_of_slash_16_rules(number_of_flows, src_port, dst_port) create_ovs_l3_of_slash_16_rules(number_of_flows, dst_port, src_port, total_number_of_flows=number_of_flows * 2, clear_rules=False) def create_ovs_l3_of_slash_16_rules(number_of_flows, src_port, dst_port, **kwargs): total_nr_of_flows = kwargs.pop("total_number_of_flows", number_of_flows) clear_rules = kwargs.pop("clear_rules", True) if number_of_flows > 255: lprint("ERROR: Maximum of 255 /16 flows are supported!") sys.exit(-1) if clear_rules: lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) flush_ovs_flows() if config.debug or config.debug_dut_shell: of_dump_port_to_logfile(config.bridge_name) lprint(" * Create {} L3 /16 OpenFlow rules...".format(number_of_flows)) cmd = "python -c 'for i in range(0, {0}): " \ "print \"add in_port={2}," \ "eth_type(0x800),nw_src=1.{{0}}.0.0/16,nw_dst=2.{{0}}.0.0/16," \ "action={3}\".format(i)'" \ " | ovs-ofctl add-flow {1} -". \ format(number_of_flows, config.bridge_name, src_port, dst_port) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) if total_nr_of_flows != 0: lprint(" * Verify requested number of flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\' | wc -l"'. format(config.bridge_name), die_on_error=True) if int(result.stdout_output) != total_nr_of_flows: lprint("ERROR: Only {0} flows should exsits, but there are {1}!". format(number_of_flows, int(result.stdout_output))) sys.exit(-1) # # Add OVS L4 OpenFlow rules # def create_ovs_l4_of_rules(number_of_flows, src_port, dst_port, **kwargs): total_nr_of_flows = kwargs.pop("total_number_of_flows", number_of_flows) clear_rules = kwargs.pop("clear_rules", True) if number_of_flows > 1000000: lprint("ERROR: Maximum of 1,000,000 L4 flows are supported!") sys.exit(-1) if clear_rules: lprint(" * Clear all OpenFlow/Datapath rules on bridge \"{}\"...". format(config.bridge_name)) dut_shell.dut_exec('sh -c "ovs-ofctl del-flows {0}"'. format(config.bridge_name), die_on_error=True) flush_ovs_flows() if config.debug or config.debug_dut_shell: of_dump_port_to_logfile(config.bridge_name) lprint(" * Create {} L4 OpenFlow rules...".format(number_of_flows)) cmd = "python -c 'for i in range(0, {0}): " \ "print \"add in_port={2}," \ "udp,udp_src={{0}},udp_dst={{0}}," \ "action={3}\".format(i)'" \ " | ovs-ofctl add-flow {1} -". \ format(number_of_flows, config.bridge_name, src_port, dst_port) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) if total_nr_of_flows != 0: lprint(" * Verify requested number of flows exists...") result \ = dut_shell.dut_exec('sh -c "ovs-ofctl dump-flows {0} | grep -v \'NXST_FLOW reply\' | wc -l"'. format(config.bridge_name), die_on_error=True) if int(result.stdout_output) != total_nr_of_flows: lprint("ERROR: Only {0} flows should exsits, but there are {1}!". format(number_of_flows, int(result.stdout_output))) sys.exit(-1) # # Add OVS Bidirectional L4 OpenFlow rules # def create_ovs_bidirectional_l4_of_rules(number_of_flows, src_port, dst_port, **kwargs): create_ovs_l4_of_rules(number_of_flows, src_port, dst_port) create_ovs_l4_of_rules(number_of_flows, dst_port, src_port, total_number_of_flows=number_of_flows * 2, clear_rules=False) # # Add test bridge setup # def create_ovs_bridge(): lprint("- Configuring bridge...") if "dpdk" in config.physical_interface: dpdk = True else: dpdk = False # # Delete bridge if existing # dut_shell.dut_exec("ovs-vsctl -- --if-exists del-br {0} " "-- --if-exists del-br {1}". format(config.bridge_name, (config.bridge_name + "_tterm")[:15]), die_on_error=True) # # Create bridge and set data path if needed # command = "ovs-vsctl add-br {0} ".format(config.bridge_name) if dpdk: command += "-- set Bridge {} datapath_type=netdev ".format(config.bridge_name) # # Add basic ports (1x ingress, and 1x egress) # command += "-- add-port {0} {1} -- set Interface {1} ofport_request=10 ". \ format(config.bridge_name, config.physical_interface) if config.virtual_interface: command += "-- add-port {0} {1} -- set Interface {1} ofport_request=20 ". \ format(config.bridge_name, config.virtual_interface) if dpdk: command += "-- set Interface {0} type=dpdk " . \ format(config.physical_interface) if config.virtual_interface: command += "-- set Interface {0} type=dpdkvhostuser ". \ format(config.virtual_interface) if config.pmd_rxq_affinity is not None: command += "-- set Interface {0} options:n_rxq={1} " \ "other_config:pmd-rxq-affinity={2} " . \ format(config.physical_interface, config.pmd_rxq_affinity.count(':'), config.pmd_rxq_affinity) if config.virtual_interface: command += "-- set Interface {0} options:n_rxq={1} " \ "other_config:pmd-rxq-affinity={2} ". \ format(config.virtual_interface, config.pmd_rxq_affinity.count(':'), config.pmd_rxq_affinity) # # Add second virtual ports if vv test is enabled # if not config.skip_vv_test: command += "-- add-port {0} {1} -- set Interface {1} ofport_request=21 ". \ format(config.bridge_name, config.second_virtual_interface) if dpdk: command += "-- set Interface {0} type=dpdkvhostuser ". \ format(config.second_virtual_interface) if config.pmd_rxq_affinity is not None: command += "-- set Interface {0} options:n_rxq={1} " \ "other_config:pmd-rxq-affinity={2} ". \ format(config.second_virtual_interface, config.pmd_rxq_affinity.count(':'), config.pmd_rxq_affinity) # # Add second physical port if pp test is enabled # if config.run_pp_test: command += "-- add-port {0} {1} -- set Interface {1} ofport_request=11 ". \ format(config.bridge_name, config.second_physical_interface) if dpdk: command += "-- set Interface {0} type=dpdk ". \ format(config.second_physical_interface) if config.pmd_rxq_affinity is not None: command += "-- set Interface {0} options:n_rxq={1} " \ "other_config:pmd-rxq-affinity={2} ". \ format(config.second_physical_interface, config.pmd_rxq_affinity.count(':'), config.pmd_rxq_affinity) # # If we are running DPDK and it's 2.7 or higher we need to specify the PCI # addresses for the physical ports. # if dpdk and StrictVersion(ovs_version) >= StrictVersion('2.7.0'): if not check_pci_address_string(config.physical_interface_pci) or \ (config.run_pp_test and not check_pci_address_string(config.second_physical_interface_pci)): lprint("ERROR: For OVS >=2.7 you must supply a valid PCI address " "for the physical interfaces!") sys.exit(-1) command += "-- set Interface {0} options:dpdk-devargs={1} ". \ format(config.physical_interface, config.physical_interface_pci) if config.second_physical_interface: command += "-- set Interface {0} options:dpdk-devargs={1} " . \ format(config.second_physical_interface, config.second_physical_interface_pci) # # Configure all the above! # dut_shell.dut_exec(command, die_on_error=True) if config.debug or config.debug_dut_shell: dut_shell.dut_exec("ovs-vsctl show", die_on_error=True) # # If this is DPDK, you might need to start the VM for thinks to start # working. So we pause here, asking for restart of the VM. # if dpdk and config.virtual_interface: print("!!! Finished configuring the OVS bridge, please restart the Virtual Machine !!!") raw_input("Press Enter to continue...") # # Add VXLAN test bridge setup # def create_ovs_vxlan_bridge(): lprint("- Configuring bridge...") if "dpdk" in config.physical_interface: dpdk = True else: dpdk = False tunnel_bridge = (config.bridge_name + "_tterm")[:15] # # Delete bridge if existing # dut_shell.dut_exec("ovs-vsctl -- --if-exists del-br {0} " "-- --if-exists del-br {1}". format(config.bridge_name, tunnel_bridge), die_on_error=True) # # Create bridge and set data path if needed # command = "ovs-vsctl add-br {0} -- add-br {1} " \ .format(config.bridge_name, tunnel_bridge) if dpdk: command += "-- set Bridge {} datapath_type=netdev ".format(config.bridge_name) command += "-- set Bridge {} datapath_type=netdev ".format(tunnel_bridge) # # Add basic ports (1x ingress, and 1x egress) # command += "-- add-port {3} {1} -- set Interface {1} ofport_request=10 " \ "-- add-port {0} {2} -- set Interface {2} ofport_request=20 " \ "-- add-port {0} vxlan0 -- set Interface vxlan0 ofport_request=30 " \ "-- set interface vxlan0 type=vxlan options:remote_ip=3.1.1.2 options:key=69 ". \ format(config.bridge_name, config.physical_interface, config.virtual_interface, tunnel_bridge) if dpdk: command += "-- set Interface {0} type=dpdk " \ "-- set Interface {1} type=dpdkvhostuser ". \ format(config.physical_interface, config.virtual_interface) if config.pmd_rxq_affinity is not None: command += "-- set Interface {0} options:n_rxq={2} " \ "other_config:pmd-rxq-affinity={3} " \ "-- set Interface {1} options:n_rxq={2} " \ "other_config:pmd-rxq-affinity={3} ". \ format(config.physical_interface, config.virtual_interface, config.pmd_rxq_affinity.count(':'), config.pmd_rxq_affinity) # # If we are running DPDK and it's 2.7 or higher we need to specify the PCI # addresses for the physical ports. # if dpdk and StrictVersion(ovs_version) >= StrictVersion('2.7.0'): if not check_pci_address_string(config.physical_interface_pci) or \ (config.run_pp_test and not check_pci_address_string(config.second_physical_interface_pci)): lprint("ERROR: For OVS >=2.7 you must supply a valid PCI address " "for the physical interfaces!") sys.exit(-1) command += "-- set Interface {0} options:dpdk-devargs={1} ". \ format(config.physical_interface, config.physical_interface_pci) # # Configure all the above! # dut_shell.dut_exec(command, die_on_error=True) if config.debug or config.debug_dut_shell: dut_shell.dut_exec("ovs-vsctl show", die_on_error=True) # # If this is DPDK, you might need to start the VM for thinks to start # working. So we pause here, asking for restart of the VM. # if dpdk: print("!!! Finished configuring the OVS bridge, please restart the Virtual Machine !!!") raw_input("Press Enter to continue...") # # Get bridge port numbers # def get_bridge_port_numbers(tunnel=False): lprint("- Get OpenFlow and DataPath port numbers...") of = dict() dp = dict() # # Get mapping from openvswitch # command = 'sh -c "ovs-ofctl show {0} && ovs-appctl dpctl/show"'.\ format(config.bridge_name) if tunnel: tunnel_bridge = (config.bridge_name + "_tterm")[:15] command = 'sh -c "ovs-ofctl show {0} && ovs-ofctl show {1} && '\ 'ovs-appctl dpctl/show"'.\ format(config.bridge_name, tunnel_bridge) result = dut_shell.dut_exec(command, die_on_error=True) # # Create list of interfaces, second interfaces are optional, # so check if they exist before adding. # interfaces = [config.physical_interface] if config.virtual_interface != '': interfaces.append(config.virtual_interface) if config.second_virtual_interface != '': interfaces.append(config.second_virtual_interface) if config.second_physical_interface != '': interfaces.append(config.second_physical_interface) if tunnel: interfaces.append('vxlan0') for interface in interfaces: m = re.search('\s*([0-9]*)\({0}\): addr:.*'.format(interface), result.output) if m: of[interface] = m.group(1) else: lprint("ERROR: Can't figure out OpenFlow interface for {0}". format(interface)) sys.exit(-1) if interface == 'vxlan0': continue m = re.search('\s*port\s*([0-9]*):\s*{0}\s*.*'.format(interface), result.output) if m: dp[interface] = m.group(1) else: lprint("ERROR: Can't figure out OpenFlow datapath interface for {0}" .format(interface)) sys.exit(-1) slogger.info("OpenFlow ports; {}".format(of)) slogger.info("DataPath ports; {}".format(dp)) return of, dp # # Get OpenFlow port packet stats # def get_of_port_packet_stats(of_port, **kwargs): bridge = kwargs.pop("bridge", config.bridge_name) port_stats = of_dump_port_to_logfile(bridge) m = re.search('\s.*port *{}: rx pkts=.*\n.*tx pkts=([0-9?]*), '.format(of_port), port_stats.output) if m: if '?' in m.group(1): tx = int(0) else: tx = int(m.group(1)) else: lprint("ERROR: Can't get transmitted packet stats for OpenFlow " "port {0} on brige \"{1}\"". format(of_port, config.bridge_name)) sys.exit(-1) m = re.search('\s.*port *{}: rx pkts=.*\n.*tx pkts=.* drop=([0-9?]*), .*'.format(of_port), port_stats.output) if m: if '?' in m.group(1): tx_drop = int(0) else: tx_drop = int(m.group(1)) else: lprint("ERROR: Can't get transmitted drop stats for OpenFlow " "port {0} on brige \"{1}\"". format(of_port, config.bridge_name)) sys.exit(-1) m = re.search('\s.*port *{}: rx pkts=([0-9?]*), .*'.format(of_port), port_stats.output) if m: if '?' in m.group(1): rx = int(0) else: rx = int(m.group(1)) else: lprint("ERROR: Can't get received packet stats for OpenFlow " "port {0} on brige \"{1}\"". format(of_port, config.bridge_name)) sys.exit(-1) m = re.search('\s.*port *{}: rx pkts=.* drop=([0-9?]*), .*'.format(of_port), port_stats.output) if m: if '?' in m.group(1): rx_drop = int(0) else: rx_drop = int(m.group(1)) else: lprint("ERROR: Can't get received drop stats for OpenFlow port {0} on brige \"{1}\"" .format(of_port, config.bridge_name)) sys.exit(-1) slogger.debug("OF port {0} stats: tx = {1}, tx_drop = {2}, rx = {3}, tx_drop = {3}". format(of_port, tx, tx_drop, rx, rx_drop)) return tx, tx_drop, rx, rx_drop # # Convert a MAC address string to an integer # def mac_2_int(mac_str): return int(mac_str.replace(":", ""), 16) # # Check tester interface number string # def tester_interface_valid(interface): if config.tester_type == 'xena': xport = interface.split(',') if len(xport) != 2: return False else: xport = interface for number in xport: try: if int(number) < 0: return False except ValueError: return False return True # # Create a single graph # def create_single_graph(x, y, x_label, y_label, title, file_name, phy_speed, **kwargs): cpu_util = kwargs.pop("cpu_utilization", None) show_idle_cpu = kwargs.pop("show_cpu_idle", False) slogger.info("create_single_graph[{}], x = {} : y = {}". format(title, x, y)) if cpu_util is None: fig, pps = plt.subplots() pps_plot = pps else: fig, pps = plt.subplots(2) pps_plot = pps[0] fig.set_figwidth(2 * fig.get_figwidth(), forward=True) fig.set_figheight(2 * fig.get_figheight(), forward=True) # # Main graph showing utilization # pps_plot.set_title(title) pps_plot.set_xlabel(x_label) pps_plot.set_ylabel(y_label) pps_plot.grid(True) pps_plot.autoscale(enable=True, axis='both', tight=False) pps_plot.plot(x, y, 'o-', label='average') pps_plot.ticklabel_format(axis='y', style='plain') pps_plot.grid(b=True, which='minor', color='k', linestyle=':', alpha=0.2) pps_plot.minorticks_on() # # Add second scaled graph showing line utilization # if phy_speed > 0: util_y = list() for i in range(0, len(x)): util_y.append(eth_utilization(phy_speed, x[i], y[i])) util = pps_plot.twinx() util.plot(x, util_y, '.:', color='r') util.set_ylim(0, 100) util.set_ylabel('Link Utilization in % ({} Gbit/s)'. format(phy_speed / 1000000000), color='r') util.tick_params('y', colors='r') # # Adding CPU utilization if requested # if cpu_util is not None: cpu_plot = pps[1] x_cpu = np.arange(len(x)) bar_width = 0.20 ovs_y_values = list() usr_y_values = list() nice_y_values = list() sys_y_values = list() iowait_y_values = list() irq_y_values = list() soft_y_values = list() steal_y_values = list() guest_y_values = list() gnice_y_values = list() idle_y_values = list() for i in range(0, len(x)): ovs_y_values.append(cpu_util[i]['ovs_cpu']) usr_y_values.append(cpu_util[i]['sys_usr']) nice_y_values.append(cpu_util[i]['sys_nice']) sys_y_values.append(cpu_util[i]['sys_sys']) iowait_y_values.append(cpu_util[i]['sys_iowait']) irq_y_values.append(cpu_util[i]['sys_irq']) soft_y_values.append(cpu_util[i]['sys_soft']) steal_y_values.append(cpu_util[i]['sys_steal']) guest_y_values.append(cpu_util[i]['sys_guest']) gnice_y_values.append(cpu_util[i]['sys_gnice']) idle_y_values.append(cpu_util[i]['sys_idle']) y_cpu_values = [usr_y_values, nice_y_values, sys_y_values, iowait_y_values, irq_y_values, soft_y_values, steal_y_values, guest_y_values, gnice_y_values, idle_y_values] y_cpu_colors = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5'] y_cpu_labels = ['usr', 'nice', 'sys', 'iowait', 'irq', 'soft', 'steal', 'guest', 'gnice', 'idle'] cpu_plot.bar(x_cpu, ovs_y_values, bar_width, label='OVS', color='b', edgecolor='b') bottom = [0] * len(x) for i in range(0, len(y_cpu_values) - (1, 0)[show_idle_cpu]): cpu_plot.bar(x_cpu + bar_width, y_cpu_values[i], bar_width, color=y_cpu_colors[i], edgecolor=y_cpu_colors[i], bottom=bottom, label=y_cpu_labels[i]) bottom = [a + b for a, b in zip(bottom, y_cpu_values[i])] if show_idle_cpu: total_util = bottom[0] else: total_util = bottom[0] + y_cpu_values[i+1][0] cpu_plot.set_title("Open vSwitch, and system CPU usage (max {:.0f}%)". format(total_util)) cpu_plot.set_xticks(x_cpu + bar_width) cpu_plot.set_xticklabels(x) cpu_plot.set_ylabel("CPU utilization") cpu_plot.set_xlabel(x_label) cpu_plot.grid(b=True, which='major') cpu_plot.grid(b=True, which='minor', color='k', linestyle=':', alpha=0.2) cpu_plot.minorticks_on() cpu_plot.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # # Due to bug in matplotlib we need to disable some np errors # old_np_seterr = np.seterr(divide='ignore', invalid='ignore') # # Final tweaking # fig.tight_layout() if cpu_util is not None: box = cpu_plot.get_position() cpu_plot.set_position([box.x0, box.y0, box.width * 0.9, box.height]) # # Write picture # if file_name is not None and file_name != "": plt.savefig(file_name + '.png') # # Show picture if requested, and clear the graph # if config.gui: plt.show() plt.close() np.seterr(**old_np_seterr) # # Single graph with multiple results # def create_multiple_graph(x, y, x_label, y_label, title, file_name, phy_speed, **kwargs): fixed_packet_size = kwargs.pop("fixed_packet_size", None) cpu_util = kwargs.pop("cpu_utilization", None) show_idle_cpu = kwargs.pop("show_cpu_idle", True) slogger.info("create_multiple_graph[{}], x = {} : y = {}". format(title, x, y)) if cpu_util is None: fig, pps = plt.subplots() pps_plot = pps else: fig = plt.figure() # # This split looked nice, until we used all packets sizes, # and multiple flows # # pps_plot = plt.subplot2grid((2, 2), (0, 0), colspan=2) # cpu_plot = plt.subplot2grid((2, 2), (1, 0)) # sys_plot = plt.subplot2grid((2, 2), (1, 1)) # fig.set_figwidth(2 * fig.get_figwidth(), forward = True) # fig.set_figheight(2 * fig.get_figheight(), forward = True) pps_plot = plt.subplot2grid((3, 2), (0, 0), colspan=2) cpu_plot = plt.subplot2grid((3, 2), (1, 0), colspan=2) sys_plot = plt.subplot2grid((3, 2), (2, 0), colspan=2) fig.set_figwidth(2 * fig.get_figwidth(), forward=True) fig.set_figheight(3 * fig.get_figheight(), forward=True) # # Main graph showing utilization # pps_plot.set_title(title) pps_plot.set_xlabel(x_label) pps_plot.set_ylabel(y_label) pps_plot.grid(True) pps_plot.autoscale(enable=True, axis='both', tight=False) pps_plot.ticklabel_format(axis='y', style='plain') pps_plot.grid(b=True, which='minor', color='k', linestyle=':', alpha=0.2) pps_plot.minorticks_on() for y_run in natsorted(list(y.keys())): pps_plot.plot(x, y[y_run], 'o-', label="{}".format(y_run)) # # Add maximum PPS for the given physical speed # if phy_speed is not None: for speed in phy_speed: y_values = list() for x_val in x: if fixed_packet_size is None: y_values.append(eth_max_pps(speed, x_val)) else: y_values.append(eth_max_pps(speed, fixed_packet_size)) pps_plot.plot(x, y_values, '.:', label="Max PPS {}G". format(speed / 1000000000)) pps_plot.legend(loc='upper right', shadow=True) # # Add CPU util information if given # if cpu_util is not None: # # OVS CPU utilization # x_cpu = np.arange(len(x)) bar_width = 0.11 cpu_plot.set_title("Open vSwitch CPU utilization") ovs_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) for i in range(0, len(x)): for key in list(cpu_util.keys()): ovs_y_values[key].append(cpu_util[key][i]['ovs_cpu']) if len(cpu_util) % 2 != 0: align = 'center' else: align = 'edge' for i, key in enumerate(natsorted(list(cpu_util.keys()))): colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] x_pos = (x_cpu - (len(cpu_util) / 2 * bar_width)) + (i * bar_width) cpu_plot.bar(x_pos, ovs_y_values[key], bar_width, align=align, color=colors[i % len(colors)], edgecolor="none") cpu_plot.set_xlim(0 - (len(cpu_util) * bar_width), len(x_cpu) - 1 + (len(cpu_util) * bar_width)) cpu_plot.set_xticks(x_cpu) cpu_plot.set_xticklabels(x, ha='center') cpu_plot.set_ylabel("CPU utilization") cpu_plot.set_xlabel(x_label) cpu_plot.grid(b=True, which='major') cpu_plot.grid(b=True, which='minor', color='k', linestyle=':', alpha=0.2) cpu_plot.minorticks_on() # # System CPU utilization # sys_plot.set_title("Total System CPU utilization") usr_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) nice_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) sys_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) iowait_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) irq_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) soft_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) steal_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) guest_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) gnice_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) idle_y_values = dict(list(zip(list(cpu_util.keys()), [[] for i in range(len(cpu_util))]))) y_cpu_values = [usr_y_values, nice_y_values, sys_y_values, iowait_y_values, irq_y_values, soft_y_values, steal_y_values, guest_y_values, gnice_y_values, idle_y_values] y_cpu_labels = ['usr', 'nice', 'sys', 'iowait', 'irq', 'soft', 'steal', 'guest', 'gnice', 'idle'] y_cpu_keys = ['sys_usr', 'sys_nice', 'sys_sys', 'sys_iowait', 'sys_irq', 'sys_soft', 'sys_steal', 'sys_guest', 'sys_gnice', 'sys_idle'] y_cpu_colors = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5'] for i in range(0, len(x)): for key in list(cpu_util.keys()): for j, y_cpu_value in enumerate(y_cpu_values): y_cpu_value[key].append(cpu_util[key][i][y_cpu_keys[j]]) if len(cpu_util) % 2 != 0: align = 'center' else: align = 'edge' for i, key in enumerate(natsorted(list(cpu_util.keys()))): x_pos = (x_cpu - (len(cpu_util) / 2 * bar_width)) + (i * bar_width) bottom = [0] * len(x) for j in range(0, len(y_cpu_values) - (1, 0)[show_idle_cpu]): sys_plot.bar(x_pos, y_cpu_values[j][key], bar_width, align=align, color=y_cpu_colors[j], label=y_cpu_labels[j] if i == 0 else "", bottom=bottom) bottom = [a + b for a, b in zip(bottom, y_cpu_values[j][key])] sys_plot.set_xlim(0 - (len(cpu_util) * bar_width), len(x_cpu) - 1 + (len(cpu_util) * bar_width)) sys_plot.set_xticks(x_cpu) sys_plot.set_xticklabels(x, ha='center') sys_plot.set_ylabel("CPU utilization") sys_plot.set_xlabel(x_label) sys_plot.grid(b=True, which='major') sys_plot.grid(b=True, which='minor', color='k', linestyle=':', alpha=0.2) sys_plot.minorticks_on() handles, labels = sys_plot.get_legend_handles_labels() sys_plot.legend(list(reversed(handles)), list(reversed(labels)), loc='center left', bbox_to_anchor=(1, 0.5)) # # Due to bug in matplotlib we need to disable some np errors # old_np_seterr = np.seterr(divide='ignore', invalid='ignore') # # Final tweaking # fig.tight_layout() if cpu_util is not None: box = sys_plot.get_position() sys_plot.set_position([box.x0, box.y0, box.width * 0.90, box.height]) # # Write picture # if file_name is not None and file_name != "": plt.savefig(file_name + '.png') # # Show picture if requested, and clear the graph # if config.gui: plt.show() plt.close() np.seterr(**old_np_seterr) # # Try to get phy speed from physical port # def get_physical_port_speed(): speed = 10000000000 result = dut_shell.dut_exec("ethtool {}".format(config.physical_interface)) m = re.search('\s*Speed: ([0-9]*)Mb.*', result.output) if m: speed = int(m.group(1)) * 1000000 else: slogger.info("Can't determine physical interface \"{0}\" its speed!". format(config.physical_interface)) slogger.info("Set physical interface \"{0}\" speed to {1} bits/second". format(config.physical_interface, speed)) return speed # # Calculate wire utilization based on packet size and packets per seconds # # Packet size = 12 bytes IFG + # 8 bytes preamble + # x bytes packet + # 4 bytes CRC # def eth_utilization(line_speed_bps, packet_size, packets_per_second): packet_size_bits = (12 + 8 + packet_size + 4) * 8 packet_speed_second = packet_size_bits * packets_per_second util = int(float(packet_speed_second) / line_speed_bps * 100) if util > 100: util = 100 return util # # Calculate max packets per second base on packet size and wire speed # def eth_max_pps(line_speed_bps, packet_size): packet_size_bits = (12 + 8 + packet_size + 4) * 8 return line_speed_bps / packet_size_bits # # Print results in CSV # def csv_write_test_results(csv_handle, test_name, flow_size_list, packet_size_list, test_results, cpu_results): if config.flow_type == 'L2': flow_type = ", L2 flows" elif config.flow_type == 'L3': flow_type = ", L3 flows" elif config.flow_type == 'L4-UDP': flow_type = ", L4-udp flows" else: raise ValueError("No support for this protocol!!") csv_handle.writerow([test_name + flow_type]) if len(test_results) > 0: csv_handle.writerow(['', 'Packet size']) csv_handle.writerow(['Number of flows'] + packet_size_list) for flow in flow_size_list: results = [flow] for i in range(0, len(packet_size_list)): results.append(test_results[flow][i]) csv_handle.writerow(results) results = ["cpu_{}".format(flow)] for i in range(0, len(packet_size_list)): results.append(cpu_results[flow][i]) csv_handle.writerow(results) for i in range(0, 4): csv_handle.writerow([]) # # Check a string of list entries, and make sure they are valid number, # and are in order. # def check_list(list_string, min_val, max_val): last_entry = 0 list = list_string.split(',') if len(list) == 0: return False for entry in list: try: value = int(entry) except ValueError: return False if value < min_val or value > max_val or last_entry >= value: return False last_entry = value return True # # Check the string to be a valid PCI address in the format "0000:02:00.0". # In addition we also allow the ",txq_inline=" option needed for some vendors, # as a workaround for L3 forwarding to work. # def check_pci_address_string(pci_address): if pci_address is None: return False if re.match("^\d{4}:\d{2}:[0-9A-Fa-f]{2}\.\d{1}$", pci_address) is None and \ re.match("^\d{4}:\d{2}:[0-9A-Fa-f]{2}\.\d{1},txq_inline=\d+$", pci_address) is None: return False return True # # Mimic the normal print command, but also send the same output # put on the console to the log file. But only if the log file option # is enabled else we end up with the same text on the console twice. # def lprint(msg): print (msg) if config.logging is not None: slogger.info(msg) # # Start Perf recording on DUT # def start_perf_recording(test_name): if not config.perf: return perf_path = "/root/ovs_test_perf_data/run_{}".format(run_start_time) perf_file = "{}/{}.perf".format(perf_path, test_name) cmd = r"mkdir -p {0}; " \ r"nohup perf record -o '{1}' -g -p `pidof ovs-vswitchd` &> /dev/null &". \ format(perf_path, perf_file) lprint(" * Start perf recording on DUT ({})...".format(perf_file)) dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) # # Stop Perf recording on DUT # def stop_perf_recording(): if not config.perf: return lprint(" * Stop perf recording on DUT...") cmd = r"kill -s INT `pidof perf`" dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) # # Start CPU monitoring on DUT # def start_cpu_monitoring(): # # pidstat -u -t -p `pidof ovs-vswitchd`,`pidof ovsdb-server` 1 # PIDSTAT for all qemu? # mpstat -P ALL 1 # kill -SIGINT `pidof pidstat` cmd = r"rm -f /var/tmp/cpu_ovs.txt /var/tmp/cpu_mpstat.txt; " \ r"nohup pidstat -u -t -p `pidof ovs-vswitchd`,`pidof ovsdb-server` 1 > /var/tmp/cpu_ovs.txt 2> /dev/null & " \ r"nohup mpstat -P ALL 1 > /var/tmp/cpu_mpstat.txt 2> /dev/null &" dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) # # Stop CPU monitoring on DUT # def stop_cpu_monitoring(**kwargs): die = kwargs.pop("die", True) cmd = r"kill -s INT `pidof pidstat`; " \ r"kill -s INT `pidof mpstat`" dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=die) # # Get CPU monitoring stats # def get_cpu_monitoring_stats(): cmd = r"cat /var/tmp/cpu_ovs.txt" results = dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) # Average: 0 - 6982 0.00 0.05 0.00 0.05 - |__ovs-vswitchd regex = re.compile("^Average:\s+[0-9]+\s+-\s+[0-9]+\s+[0-9\.]+\s+[0-9\.]+\s+[0-9\.]+\s+([0-9\.]+).+", re.MULTILINE) ovs_cpu_usage = float(0) for match in regex.finditer(results.stdout_output): ovs_cpu_usage += float(match.group(1)) cmd = r"cat /var/tmp/cpu_mpstat.txt" results = dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=True) cpu_raw_stats = results.stdout_output cpu_usr = float(0) cpu_nice = float(0) cpu_sys = float(0) cpu_iowait = float(0) cpu_irq = float(0) cpu_soft = float(0) cpu_steal = float(0) cpu_guest = float(0) cpu_gnice = float(0) cpu_idle = float(0) # %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle regex = re.compile("^Average:\s+[0-9]+\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)\s+([0-9\.]+)$", re.MULTILINE) for match in regex.finditer(results.stdout_output): cpu_usr += float(match.group(1)) cpu_nice += float(match.group(2)) cpu_sys += float(match.group(3)) cpu_iowait += float(match.group(4)) cpu_irq += float(match.group(5)) cpu_soft += float(match.group(6)) cpu_steal += float(match.group(7)) cpu_guest += float(match.group(8)) cpu_gnice += float(match.group(9)) cpu_idle += float(match.group(10)) cpu_total = int(cpu_usr + cpu_nice + cpu_sys + cpu_iowait + cpu_irq + cpu_soft + cpu_steal + cpu_guest + cpu_gnice + cpu_idle) cpu_results = dict([('ovs_cpu', ovs_cpu_usage), ('sys_usr', cpu_usr), ('sys_nice', cpu_nice), ('sys_sys', cpu_sys), ('sys_iowait', cpu_iowait), ('sys_irq', cpu_irq), ('sys_soft', cpu_soft), ('sys_steal', cpu_steal), ('sys_guest', cpu_guest), ('sys_gnice', cpu_gnice), ('sys_idle', cpu_idle), ('sys_total', cpu_total)]) slogger.debug("CPU results: {}".format(cpu_results)) return cpu_results # # Get ovs version # def get_ovs_version(): result = dut_shell.dut_exec('sh -c "ovs-vswitchd --version"'. format(config.bridge_name), die_on_error=True) m = re.search('.*([0-9]+.[0-9]+.[0-9]+).*', str(result.output)) if m: return str(m.group(1)) lprint("ERROR: Can't figure out ovs-vswitchd's version!") sys.exit(-1) # # Get VM DPDK version # def get_vm_dpdk_version(vm): cmd = r"sshpass -p {2} ssh -o UserKnownHostsFile=/dev/null " \ r"-o StrictHostKeyChecking=no -n {1}@{0} " \ r"testpmd -v". \ format(vm, config.dut_vm_user, config.dut_vm_password) result = dut_shell.dut_exec('', raw_cmd=['sh', '-c', cmd], die_on_error=False) m = re.search('DPDK ([0-9]+\.[0-9]+\.[0-9]+)', result.output) if m: return str(m.group(1)) lprint("ERROR: Can't figure out VMs DPDK version!") sys.exit(-1) # # Get ovs data path type # def get_ovs_datapath(): result = dut_shell.dut_exec('sh -c "ovs-appctl dpif/show"', die_on_error=True) output = result.output.replace("\n", "") m = re.search('(.+@.*{}):.*'.format(config.bridge_name), output) if m: m = re.search('(.+)@.*'.format(config.bridge_name), m.group(1)) return m.group(1) lprint("ERROR: Can't figure out ovs datapath!") sys.exit(-1) # # Get bridge MAC address # def get_of_bridge_mac_address(bridge): command = 'sh -c "ovs-ofctl show {0}"'.format(bridge) result = dut_shell.dut_exec(command, die_on_error=True) m = re.search('\s*LOCAL\({0}\): addr:(.*)'.format(bridge), result.output) if not m: lprint("ERROR: Can't figure out MAC address for bridge \"{}\"". format(bridge)) sys.exit(-1) slogger.debug("MAC address for bridge \"{}\" is {}".format(bridge, m.group(1))) return m.group(1) # # Flow type definitions # flow_types = ['L2', 'L3', 'L4-UDP'] def get_flow_type_short(): labels = dict(list(zip(flow_types, ['L2', 'L3', 'L4-UDP']))) return labels[config.flow_type] def get_flow_type_name(): labels = dict(list(zip(flow_types, ['l2', 'l3', 'l4_udp']))) return labels[config.flow_type] def get_traffic_generator_flow(): flow_type = dict(list(zip(flow_types, [TrafficFlowType.l2_mac, TrafficFlowType.l3_ipv4, TrafficFlowType.l4_udp]))) return flow_type[config.flow_type] # # Traffic tester type definitions # traffic_tester_types = ['xena', 'trex'] def get_traffic_generator_type(): traffic_generator_type = dict(list(zip(traffic_tester_types, [TrafficGeneratorType.xena, TrafficGeneratorType.trex]))) return traffic_generator_type[config.tester_type] # # main() # def main(): # # Not the best way to share all of this, but will work for this # small test script # global config global plt global dut_shell global slogger global of_interfaces global ovs_data_path global dp_interfaces global tester global phy_speed global ovs_version global vm_dpdk_version global run_start_time run_start_time = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') # # Command line argument parsing # parser = argparse.ArgumentParser() parser.add_argument("--bridge-name", metavar="BRIDGE", help="Bridge name to use for testing", type=str, default=DEFAULT_BRIDGE_NAME) parser.add_argument("-d", "--debug", help="Enable debugging", action="store_true") parser.add_argument("--debug-dut-shell", help="Enable DUT shell debugging", action="store_true") parser.add_argument("--debug-scapy", help="Enable scapy debugging", action="store_true") parser.add_argument("--debug-script", help="Enable script debugging", action="store_true") parser.add_argument("--debug-tester", help="Enable tester debugging", action="store_true") parser.add_argument("--pmd-rxq-affinity", metavar="AFINITY", help="Set pmd-rxq-affinity when script configures bridges", type=str) parser.add_argument("--dut-vm-address", metavar="ADDRESS", help="IP address of VM running on OpenVSwitch DUT", type=str, default=DEFAULT_DUT_VM_ADDRESS) parser.add_argument("--dut-vm-nic-pci", metavar="PCI", help="PCI address of VMs virtual NIC", type=str, default=DEFAULT_DUT_VM_NIC_PCI_ADDRESS) parser.add_argument("--dut-vm-user", metavar="USER", help="User name of VM running on OpenVSwitch DUT", type=str, default=DEFAULT_DUT_VM_LOGIN_USER) parser.add_argument("--dut-vm-password", metavar="PASSWORD", help="User name of VM running on OpenVSwitch DUT", type=str, default=DEFAULT_DUT_VM_LOGIN_PASSWORD) parser.add_argument("--dut-vm-nic-queues", metavar="QUEUES", help="Number of VM nic queues (and cores) to allocate, default 1", type=int, default=1) parser.add_argument("--dut-vm-nic-rxd", metavar="DESCRIPTORS", help="Number of VM nic receive descriptors, default 4096", type=int, default=4096) parser.add_argument("--dut-vm-nic-txd", metavar="DESCRIPTORS", help="Number of VM nic transmit descriptors, default 1024", type=int, default=1024) # Removed VV test for now, as it needs non-upstream trafgen tool #parser.add_argument("--dut-second-vm-address", metavar="ADDRESS", # help="IP address of second VM running on OpenVSwitch DUT", type=str, # default=DEFAULT_DUT_SECOND_VM_ADDRESS) #parser.add_argument("--dut-second-vm-nic-pci", metavar="PCI", # help="PCI address of VMs virtual NIC", type=str, # default=DEFAULT_DUT_VM_NIC_PCI_ADDRESS) parser.add_argument("--flow-type", help="Flow type used for the tests, default L3", choices=flow_types, default='L3') parser.add_argument("-g", "--gui", help="Show graph GUI", action="store_true") parser.add_argument("--no-bridge-config", help="Do not configure OVS", action="store_true") parser.add_argument("-o", "--ovs-address", metavar="ADDRESS", help="IP address of OpenVSwitch DUT", type=str, default=DEFAULT_DUT_ADDRESS) parser.add_argument("--ovs-user", metavar="USER", help="User name of OpenVSwitch DUT", type=str, default=DEFAULT_DUT_LOGIN_USER) parser.add_argument("--ovs-password", metavar="PASSWORD", help="User name of OpenVSwitch DUT", type=str, default=DEFAULT_DUT_LOGIN_PASSWORD) parser.add_argument("-p", "--physical-interface", metavar="DEVICE", help="Physical interface", type=str, default=DEFAULT_PHYSICAL_INTERFACE) parser.add_argument("--perf", help="Enable perf profiling", action="store_true") parser.add_argument("--physical-interface-pci", metavar="PCI", help="Physical interface's PCI address", type=str) parser.add_argument("--second-physical-interface", metavar="DEVICE", help="Second Physical interface", type=str, default=DEFAULT_SECOND_PHYSICAL_INTERFACE) parser.add_argument("--second-physical-interface-pci", metavar="PCI", help="Second Physical interface", type=str) parser.add_argument("--physical-speed", metavar="GBPS", help="Physical interface speed in Gbit/s", type=int, default=0) parser.add_argument("--packet-list", metavar="LIST", help="List of packet sizes to test", type=str, default=DEFAULT_PACKET_LIST) parser.add_argument("-r", "--run-time", metavar="SECONDS", help="Traffic run time per test", type=int, default=DEFAULT_RUN_TIME) parser.add_argument("--run-pp-test", help="Run the P to P test", action="store_true") # Disable VXLAN for now due to it being incomplete #parser.add_argument("--run-vxlan-test", # help="Run the VXLAN tunnel test", action="store_true") parser.add_argument("--skip-pv-test", help="Do not run the P to V test", action="store_true") parser.add_argument("--skip-pvp-test", help="Do not run the P to V to P test", action="store_true") # Removed VV test for now, as it needs non-upstream trafgen tool # parser.add_argument("--skip-vv-test", # help="Do not run the V to V test", action="store_true") parser.add_argument("--stream-list", metavar="LIST", help="List of stream sizes to test", type=str, default=DEFAULT_STREAM_LIST) parser.add_argument("--warm-up", help="Do flow warm-up round before tests", action="store_true") parser.add_argument("--warm-up-timeout", metavar="SECONDS", help="Warm up timeout", type=int, default=DEFAULT_WARM_UP_TIMEOUT) parser.add_argument("--warm-up-no-fail", help="Continue running the test even if warm up times out", action="store_true") parser.add_argument("--no-cool-down", help="Do not wait for datapath flows to be cleared", action="store_true") parser.add_argument("-v", "--virtual-interface", metavar="DEVICE", help="Virtual interface", type=str, default=DEFAULT_VIRTUAL_INTERFACE) # Removed VV test for now, as it needs non-upstream trafgen tool #parser.add_argument("-w", "--second-virtual-interface", metavar="DEVICE", # help="Virtual interface for second VM", type=str, # default=DEFAULT_SECOND_VIRTUAL_INTERFACE) parser.add_argument("-x", "--tester-address", metavar="ADDRESS", help="IP address of network tester", type=str, default=DEFAULT_TESTER_SERVER_ADDRESS) parser.add_argument("--tester-type", help="Traffic tester type to use, default \"xena\"", choices=traffic_tester_types, default=DEFAULT_TESTER_TYPE) parser.add_argument("-i", "--tester-interface", metavar="{MOD,}PORT", help="Tester interface", type=str, default=DEFAULT_TESTER_INTERFACE) parser.add_argument("--second-tester-interface", metavar="{MOD,}PORT", help="Second tester interface", type=str, default=DEFAULT_SECOND_TESTER_INTERFACE) parser.add_argument("-l", "--logging", metavar="FILE", help="Redirecting log output to file", type=str) parser.add_argument("--dst-mac-address", help="Destination Base MAC address", type=str, default=DEFAULT_DST_MAC_ADDRESS) parser.add_argument("--src-mac-address", help="Source Base MAC address", type=str, default=DEFAULT_SRC_MAC_ADDRESS) parser.add_argument("--mac-swap", help="Swap source/destination mac at VM", action="store_true") config = parser.parse_args() # # Removed VV test for now, as it needs non-upstream trafgen tool # config.skip_vv_test = True config.dut_second_vm_address = DEFAULT_DUT_SECOND_VM_ADDRESS config.dut_second_vm_nic_pci = DEFAULT_DUT_VM_NIC_PCI_ADDRESS config.second_virtual_interface = DEFAULT_SECOND_VIRTUAL_INTERFACE # # Disable VXLAN for now due to it being incomplete # config.run_vxlan_test = False # # Setting up the logger # logging.basicConfig(format='%(asctime)s[%(levelname)-8.8s][%(name)s]: %(message)s', datefmt='%H:%M:%S', level=logging.ERROR, filename=config.logging) slogger = logging.getLogger('script') slogger.setLevel(logging.INFO) slogger.info("**********************************************************************") slogger.info("** Starting \"%s\"", os.path.basename(__file__)) slogger.info("**********************************************************************") # # Check some input parameters # if config.ovs_address == '': lprint("ERROR: You must supply the OVS host address to use for testing!") sys.exit(-1) if (not config.skip_vv_test or not config.skip_pv_test or \ not config.skip_pvp_test ) and config.dut_vm_address == '': lprint("ERROR: You must supply the DUT VM host address to use for testing!") sys.exit(-1) if config.dst_mac_address == '': lprint("ERROR: You must supply a Destination Base MAC Address") sys.exit(-1) if config.src_mac_address == '': lprint("ERROR: You must supply a Source Base MAC Address") sys.exit(-1) if config.flow_type == 'L2': if (int(config.src_mac_address.replace(":", ""), 16) & 0xffffff) \ != 0: lprint("ERROR: For L2 tests the Source Base MAC address must " "be xx:xx:xx:00:00:00") sys.exit(-1) if (int(config.dst_mac_address.replace(":", ""), 16) & 0xffffff) \ != 0: lprint("ERROR: For L2 tests the Destination Base MAC address must " "be xx:xx:xx:00:00:00") sys.exit(-1) if (not config.skip_vv_test or not config.skip_pv_test or \ not config.skip_pvp_test ) and \ not check_pci_address_string(config.dut_vm_nic_pci): lprint("ERROR: You must supply a valid PCI address for the VMs NIC!") sys.exit(-1) if not config.skip_vv_test and config.second_virtual_interface == '': lprint("ERROR: You must supply a second virtual interface to use for testing!") sys.exit(-1) if not config.skip_vv_test and config.dut_second_vm_address == '': lprint("ERROR: You must supply the second DUT VM address!") sys.exit(-1) if not config.skip_vv_test and \ not check_pci_address_string(config.dut_second_vm_nic_pci): lprint("ERROR: You must supply a valid PCI address for the second VMs NIC!") sys.exit(-1) if config.dut_second_vm_address != '' and config.dut_vm_nic_pci == '': lprint("ERROR: You must supply the second DUT VM host's NIC PCI address!") sys.exit(-1) if config.physical_interface == '': lprint("ERROR: You must supply the physical interface to use for testing!") sys.exit(-1) if config.run_pp_test and config.second_physical_interface == '': lprint("ERROR: You must supply the second physical interface to use for testing!") sys.exit(-1) if (not config.skip_vv_test or not config.skip_pv_test or \ not config.skip_pvp_test) and config.virtual_interface == '': lprint("ERROR: You must supply the virtual interface to use for testing!") sys.exit(-1) if config.tester_address == '': lprint("ERROR: You must supply the tester's address to use for testing!") sys.exit(-1) if config.tester_interface == '': lprint("ERROR: You must supply the tester's interface to use for testing!") sys.exit(-1) if config.run_pp_test and config.second_tester_interface == '': lprint("ERROR: You must supply the second tester's interface to use for testing!") sys.exit(-1) if not tester_interface_valid(config.tester_interface): lprint("ERROR: Invalid tester interface configuration!") sys.exit(-1) if config.second_tester_interface != '' and \ not tester_interface_valid(config.second_tester_interface): lprint("ERROR: Invalid second tester interface configuration!") sys.exit(-1) if not check_list(config.stream_list, 1, 1000000): lprint("ERROR: Invalid stream list, \"{}\", supplied!".format(config.stream_list)) sys.exit(-1) if config.flow_type == 'L4-UDP' and not check_list(config.stream_list, 1, 65535): lprint("ERROR: Invalid stream list, \"{}\", supplied for L4 flows!". format(config.stream_list)) sys.exit(-1) if not check_list(config.packet_list, 64, 9000): lprint("ERROR: Invalid packet list, \"{}\", supplied!".format(config.packet_list)) sys.exit(-1) if config.run_time < 20 or config.run_time > 3600: lprint("ERROR: Run time should be [20..3600] seconds!") sys.exit(-1) if config.physical_speed != 0 and \ (config.physical_speed < 0 or config.physical_speed > 1000): lprint("ERROR: Invalid physical speed supplied [1..1000]!") sys.exit(-1) if config.dut_vm_nic_queues < 1 or config.dut_vm_nic_queues > 63: lprint("ERROR: Invalid VM NIC queue count supplied [1..63]!") sys.exit(-1) if config.run_vxlan_test and config.no_bridge_config: # # We can only support tunnels with no bridge config, if no other tests # are ran, as it needs a special config compared to the other tests. # if not config.skip_vv_test or not config.skip_pv_test \ or not config.skip_pvp_test or config.run_pp_test: lprint("ERROR: Tunnel tests can only be run individually " "with the no-bridge-config option!") sys.exit(-1) if config.run_vxlan_test and config.flow_type != 'L3': lprint("ERROR: Tunnel tests only support the L3 flow type!") sys.exit(-1) if config.run_vxlan_test and not check_list(config.packet_list, 96, 9000): # # ETH + IPv4 + UDP + VXLAN + ETH + IPv4 + UDP + ETH_CRC # lprint("ERROR: Minimal packet size for the VXLAN test should be 96 bytes!") sys.exit(-1) if config.warm_up and (not config.skip_vv_test or config.run_vxlan_test): lprint("WARNING: Warm-up only works for P2P, P2V, and P2V2P tests!") # # Dump settings if global debug is enabled # if config.debug: logger = logging.getLogger() logger.setLevel(logging.DEBUG) if config.debug_script or config.debug: slogger.setLevel(logging.DEBUG) if config.debug_scapy or config.debug: logging.getLogger("scapy.runtime").setLevel(logging.DEBUG) slogger.debug("Configured values:") slogger.debug(" %-23.23s: %s", 'Debug', config.debug) slogger.debug(" %-23.23s: %s", 'Debug DUT Shell', config.debug_dut_shell) slogger.debug(" %-23.23s: %s", 'Debug Scapy', config.debug_scapy) slogger.debug(" %-23.23s: %s", 'Debug Script', config.debug_script) slogger.debug(" %-23.23s: %s", 'Debug Tester', config.debug_tester) slogger.debug(" %-23.23s: %s", 'Flow Type', config.flow_type) slogger.debug(" %-23.23s: %s", 'Perf tracing', config.perf) slogger.debug(" %-23.23s: %s", 'Tester Type', config.tester_type) slogger.debug(" %-23.23s: %s", 'Tester Address', config.tester_address) slogger.debug(" %-23.23s: %s", 'Tester Interface', config.tester_interface) slogger.debug(" %-23.23s: %s", 'Second Tester Interface', config.second_tester_interface) slogger.debug(" %-23.23s: %s", 'OVS Bridge Name', config.bridge_name) slogger.debug(" %-23.23s: %s", 'OVS DUT Address', config.ovs_address) slogger.debug(" %-23.23s: %s", 'OVS DUT Login', config.ovs_user) slogger.debug(" %-23.23s: %s", 'OVS DUT VM1 Address', config.dut_vm_address) slogger.debug(" %-23.23s: %s", 'OVS DUT VM2 Address', config.dut_second_vm_address) slogger.debug(" %-23.23s: %s", 'OVS DUT VM1 PCI Address', config.dut_vm_nic_pci) slogger.debug(" %-23.23s: %s", 'OVS DUT VM2 PCI Address', config.dut_second_vm_nic_pci) slogger.debug(" %-23.23s: %s", 'OVS VM Login', config.dut_vm_user) slogger.debug(" %-23.23s: %s", 'OVS VM NIC queues', config.dut_vm_nic_queues) slogger.debug(" %-23.23s: %s", 'OVS VM NIC rxd', config.dut_vm_nic_rxd) slogger.debug(" %-23.23s: %s", 'OVS VM NIC txd', config.dut_vm_nic_txd) slogger.debug(" %-23.23s: %s", 'Physical Interface', config.physical_interface) slogger.debug(" %-23.23s: %u Gbit/s", 'Physical Int. Speed', config.physical_speed) slogger.debug(" %-23.23s: %s", 'Virtual Interface', config.virtual_interface) slogger.debug(" %-23.23s: %s", '2nd Virtual Interface', config.second_virtual_interface) slogger.debug(" %-23.23s: %s", 'MAC swap', config.mac_swap) slogger.debug(" %-23.23s: %s", 'Source MAC', config.src_mac_address) slogger.debug(" %-23.23s: %s", 'Destination MAC', config.dst_mac_address) slogger.debug(" %-23.23s: %u seconds", 'Test run time', config.run_time) slogger.debug(" %-23.23s: %s", 'Run with stream size\'s', config.stream_list) slogger.debug(" %-23.23s: %s", 'Run with packet size\'s', config.packet_list) slogger.debug(" %-23.23s: %s", 'Skip PV test', config.skip_pv_test) slogger.debug(" %-23.23s: %s", 'Skip PVP test', config.skip_pvp_test) slogger.debug(" %-23.23s: %s", 'Skip VV test', config.skip_vv_test) slogger.debug(" %-23.23s: %s", 'Run PP test', config.run_pp_test) slogger.debug(" %-23.23s: %s", 'Warm-up', config.warm_up) slogger.debug(" %-23.23s: %s", 'No-cool-down', config.no_cool_down) # # If we use the GUI, we need to set the correct back-end # However this does not seem to work always in a non-Tk back-end, if you get # Tinker errors, set the following environment variable: # export MPLBACKEND="agg" # # if config.gui: # matplotlib.use('TkAgg') # else: # matplotlib.use('Agg') # # Commenting out the above, as it no longer works. Use the export as # explained above as python loads the modules beforehand. import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter, FormatStrFormatter # # Quick regenerate grapgh from results (DEBUG) # # packet_sizes = [64, 128, 256, 512, 1024, 1514] # p2v_results = [22969229, 25139846, 18116596, 9398727, 4789329, 3259472] # create_single_graph(packet_sizes, p2v_results, # "Packet size", "Packets/second", # "Physical to Virtual with 1000 flows", # "test_p2v_1000") # sys.exit(-1) # # Connecting to Tester # lprint("- Connecting to the tester...") tester = TrafficGenerator(get_traffic_generator_type(), hostname=config.tester_address) if config.debug_tester: logging.getLogger('xenalib.BaseSocket').setLevel(logging.DEBUG) logging.getLogger('xenalib.KeepAliveThread').setLevel(logging.DEBUG) logging.getLogger('xenalib.XenaManager').setLevel(logging.DEBUG) logging.getLogger('xenalib.XenaModifier').setLevel(logging.DEBUG) logging.getLogger('xenalib.XenaPort').setLevel(logging.DEBUG) logging.getLogger('xenalib.XenaSocket').setLevel(logging.DEBUG) logging.getLogger('xenalib.XenaStream').setLevel(logging.DEBUG) if not tester.reserve_port(config.tester_interface): lprint("ERROR: Failed to add first tester port") sys.exit(-1) if config.second_tester_interface != '': if not tester.reserve_port(config.second_tester_interface): lprint("ERROR: Failed to add second tester port") sys.exit(-1) # # Connecting to DUT # lprint("- Connecting to DUT, \"{}\"...".format(config.ovs_address)) dut_shell = DutSshShell(hostname=config.ovs_address, username=config.ovs_user, password=config.ovs_password, missing_host_key=spur.ssh.MissingHostKey.accept) if config.debug_dut_shell: dut_shell.logger.setLevel(logging.DEBUG) ovs_version = get_ovs_version() # # Stop any running test tools on the VMs # # lprint("- Stop any running test tools...") stop_cpu_monitoring(die=False) if config.dut_vm_address != '': stop_traffic_rx_on_vm(config.dut_vm_address, die=False) stop_traffic_tx_on_vm(config.dut_vm_address, die=False) lprint("- Getting VM's DPDK version...") vm_dpdk_version = get_vm_dpdk_version(config.dut_vm_address) if config.dut_second_vm_address != '': stop_traffic_rx_on_vm(config.dut_second_vm_address, die=False) stop_traffic_tx_on_vm(config.dut_second_vm_address, die=False) # # Create OVS bridge, and get OpenFlow port numbers # if not config.no_bridge_config: if not config.skip_pv_test or not config.skip_pvp_test or \ not config.skip_vv_test or config.run_pp_test: # # Also skip if all we are running are the tunnel tests # create_ovs_bridge() # # If we run only tunnel tests we need to skip this # if not config.skip_pv_test or not config.skip_pvp_test or \ not config.skip_vv_test or config.run_pp_test: of_interfaces = dict() dp_interfaces = dict() of_interfaces, dp_interfaces = get_bridge_port_numbers() # # Getting physical port speed, used for graphs # if config.physical_speed != 0: phy_speed = config.physical_speed * 1000000000 else: phy_speed = get_physical_port_speed() # # Get datapath type # ovs_data_path = get_ovs_datapath() lprint("- Get OVS datapath type, \"{}\"...".format(ovs_data_path)) # # Open CSV file for writing # lprint("- Create \"test_results.csv\" for writing results...") if config.flow_type == 'L2': csv_file = "test_results_l2.csv" elif config.flow_type == 'L3': csv_file = "test_results_l3.csv" elif config.flow_type == 'L4-UDP': csv_file = "test_results_l4_udp.csv" else: raise ValueError("No support for this protocol!!") with open(csv_file, 'w') as csvfile: csv_handle = csv.writer(csvfile, dialect='excel') csv_handle.writerow(["Physical port, \"{}\", speed {} Gbit/s". format(config.physical_interface, phy_speed / 1000000000)]) csv_handle.writerow([]) csv_handle.writerow([]) # # Run tests # stream_size_list = [int(i) for i in config.stream_list.split(',')] packet_size_list = [int(i) for i in config.packet_list.split(',')] flow_str = get_flow_type_short() flow_file_str = get_flow_type_name() v2v_results = dict() v2v_cpu_results = dict() p2v_results = dict() p2v_cpu_results = dict() p2p_results = dict() p2p_cpu_results = dict() p2v2p_results = dict() p2v2p_cpu_results = dict() if not config.skip_vv_test: for nr_of_streams in stream_size_list: v2v_results[nr_of_streams], \ v2v_cpu_results[nr_of_streams] = test_v2v(nr_of_streams, packet_size_list) create_multiple_graph(packet_size_list, v2v_results, "Packet size", "Packets/second", "Virtual to Virtual, {}". format(get_flow_type_short()), "test_v2v_all_{}". format(get_flow_type_name()), None, cpu_utilization=v2v_cpu_results) create_multiple_graph(packet_size_list, v2v_results, "Packet size", "Packets/second", "Virtual to Virtual, {}". format(get_flow_type_short()), "test_v2v_all_{}_ref". format(get_flow_type_name()), [phy_speed], cpu_utilization=v2v_cpu_results) csv_write_test_results(csv_handle, 'Virtual to Virtual test', stream_size_list, packet_size_list, v2v_results, v2v_cpu_results) if not config.skip_pv_test: for nr_of_streams in stream_size_list: p2v_results[nr_of_streams], \ p2v_cpu_results[nr_of_streams] = test_p2v(nr_of_streams, packet_size_list) create_multiple_graph(packet_size_list, p2v_results, "Packet size", "Packets/second", "Physical to Virtual, {}".format(flow_str), "test_p2v_all_{}".format(flow_file_str), None, cpu_utilization=p2v_cpu_results) create_multiple_graph(packet_size_list, p2v_results, "Packet size", "Packets/second", "Physical to Virtual, {}".format(flow_str), "test_p2v_all_{}_ref".format(flow_file_str), [phy_speed], cpu_utilization=p2v_cpu_results) csv_write_test_results(csv_handle, 'Physical to Virtual test', stream_size_list, packet_size_list, p2v_results, p2v_cpu_results) if not config.skip_pvp_test: for nr_of_streams in stream_size_list: p2v2p_results[nr_of_streams], \ p2v2p_cpu_results[nr_of_streams] = test_p2v2p(nr_of_streams, packet_size_list) create_multiple_graph(packet_size_list, p2v2p_results, "Packet size", "Packets/second", "Physical to Virtual to Physical, {}".format(flow_str), "test_p2v2p_all_{}".format(flow_file_str), None, cpu_utilization=p2v2p_cpu_results) create_multiple_graph(packet_size_list, p2v2p_results, "Packet size", "Packets/second", "Physical to Virtual to Physical, {}".format(flow_str), "test_p2v2p_all_{}_ref".format(flow_file_str), [phy_speed], cpu_utilization=p2v2p_cpu_results) csv_write_test_results(csv_handle, 'Physical to Virtual to Physical test', stream_size_list, packet_size_list, p2v2p_results, p2v2p_cpu_results) if config.run_pp_test: for nr_of_streams in stream_size_list: p2p_results[nr_of_streams], \ p2p_cpu_results[nr_of_streams] = test_p2p(nr_of_streams, packet_size_list) create_multiple_graph(packet_size_list, p2p_results, "Packet size", "Packets/second", "Physical to Physical, {}".format(flow_str), "test_p2p_all_{}".format(flow_file_str), None, cpu_utilization=p2p_cpu_results) create_multiple_graph(packet_size_list, p2p_results, "Packet size", "Packets/second", "Physical to Physical, {}".format(flow_str), "test_p2p_all_{}_ref".format(flow_file_str), [phy_speed], cpu_utilization=p2p_cpu_results) csv_write_test_results(csv_handle, 'Physical to Physical test', stream_size_list, packet_size_list, p2p_results, p2p_cpu_results) if config.run_vxlan_test: if not config.no_bridge_config: create_ovs_vxlan_bridge() of_interfaces = dict() dp_interfaces = dict() of_interfaces, dp_interfaces = get_bridge_port_numbers(tunnel=True) vxlan_results = dict() vxlan_cpu_results = dict() for nr_of_streams in stream_size_list: vxlan_results[nr_of_streams], \ vxlan_cpu_results[nr_of_streams] = test_vxlan(nr_of_streams, packet_size_list) create_multiple_graph(packet_size_list, vxlan_results, "Packet size", "Packets/second", "VXLAN Tunnel, {}".format(flow_str), "test_vxlan_all_{}".format(flow_file_str), None, cpu_utilization=vxlan_cpu_results) create_multiple_graph(packet_size_list, vxlan_results, "Packet size", "Packets/second", "VXLAN Tunnel, {}".format(flow_str), "test_vxlan_all_{}_ref".format(flow_file_str), [phy_speed], cpu_utilization=vxlan_cpu_results) csv_write_test_results(csv_handle, 'VXLAN Tunnel', stream_size_list, packet_size_list, vxlan_results, vxlan_cpu_results) # # Done... # lprint("- Done running performance tests!") # For now we leave the DUT in the last test state in case we would like # to do some trouble shooting. First step in re-run is to remove bridge, # and delete all openflow rules. tester.disconnect() del tester # # Start main() as default entry point... # if __name__ == '__main__': main()
the-stack_106_22667
import flask from indexd.blueprint import dist_get_record from indexd.errors import AuthError from indexd.errors import UserError from indexd.alias.errors import NoRecordFound as AliasNoRecordFound from indexd.index.errors import NoRecordFound as IndexNoRecordFound blueprint = flask.Blueprint('dos', __name__) blueprint.config = dict() blueprint.index_driver = None blueprint.alias_driver = None blueprint.dist = [] @blueprint.route('/ga4gh/dos/v1/dataobjects/<path:record>', methods=['GET']) def get_dos_record(record): ''' Returns a record from the local ids, alias, or global resolvers. Returns DOS Schema ''' try: ret = blueprint.index_driver.get(record) ret['alias'] = blueprint.index_driver.get_aliases_for_did(record) except IndexNoRecordFound: try: ret = blueprint.index_driver.get_by_alias(record) ret['alias'] = blueprint.index_driver.get_aliases_for_did(ret['did']) except IndexNoRecordFound: try: ret = blueprint.alias_driver.get(record) except AliasNoRecordFound: if not blueprint.dist: raise ret = dist_get_record(record) return flask.jsonify(indexd_to_dos(ret)), 200 @blueprint.route('/ga4gh/dos/v1/dataobjects/list', methods=['POST']) def list_dos_records(): ''' Returns a record from the local ids, alias, or global resolvers. Returns DOS Schema ''' start = flask.request.json.get('page_token') limit = flask.request.json.get('page_size') try: limit = 100 if limit is None else int(limit) except ValueError: raise UserError('limit must be an integer') if limit <= 0 or limit > 1024: raise UserError('limit must be between 1 and 1024') url = flask.request.json.get('url') # Support this in the future when we have # more fully featured aliases? #alias = flask.request.json.get('alias') checksum = flask.request.json.get('checksum') if checksum: hashes = {checksum['type']: checksum['checksum']} else: hashes = None records = blueprint.index_driver.ids( start=start, limit=limit, urls=url, hashes=hashes ) for record in records: record['alias'] = blueprint.index_driver.get_aliases_for_did(record['did']) ret = {"data_objects": [indexd_to_dos(record)['data_object'] for record in records]} return flask.jsonify(ret), 200 def indexd_to_dos(record): data_object = { "id": record['did'], "name": record['file_name'], 'created': record['created_date'], 'updated': record['updated_date'], "size": record['size'], "version": record['rev'], "description": "", "mime_type": "" } data_object['aliases'] = record['alias'] # parse out checksums data_object['checksums'] = [] for k in record['hashes']: data_object['checksums'].append( {'checksum': record['hashes'][k], 'type': k}) # parse out the urls data_object['urls'] = [] for url in record['urls']: url_object = { 'url': url } if 'metadata' in record and record['metadata']: url_object['system_metadata'] = record['metadata'] if 'urls_metadata' in record and url in record['urls_metadata'] and record['urls_metadata'][url]: url_object['user_metadata'] = record['urls_metadata'][url] data_object['urls'].append(url_object) result = { "data_object": data_object } return result @blueprint.errorhandler(UserError) def handle_user_error(err): ret = { msg: str(err), status_code: 0 } return flask.jsonify(ret), 400 @blueprint.errorhandler(AuthError) def handle_auth_error(err): ret = { msg: str(err), status_code: 0 } return flask.jsonify(ret), 403 @blueprint.errorhandler(AliasNoRecordFound) def handle_no_alias_record_error(err): ret = { msg: str(err), status_code: 0 } return flask.jsonify(ret), 404 @blueprint.errorhandler(IndexNoRecordFound) def handle_no_index_record_error(err): ret = { msg: str(err), status_code: 0 } return flask.jsonify(ret), 404 @blueprint.record def get_config(setup_state): index_config = setup_state.app.config['INDEX'] alias_config = setup_state.app.config['ALIAS'] blueprint.index_driver = index_config['driver'] blueprint.alias_driver = alias_config['driver'] if 'DIST' in setup_state.app.config: blueprint.dist = setup_state.app.config['DIST']
the-stack_106_22668
from __future__ import print_function, division, absolute_import from fontTools.ttLib import TTFont from afdko.fontpdf import (doTitle, FontPDFParams) from afdko.otfpdf import txPDFFont from afdko.pdfgen import Canvas from test_utils import get_input_path TOOL = 'fontpdf' OTF_FONT = 'OTF.otf' # ----- # Tests # ----- def test_doTitle_pageIncludeTitle_1(): with TTFont(get_input_path(OTF_FONT)) as otfont: params = FontPDFParams() assert params.pageIncludeTitle == 1 pdfFont = txPDFFont(otfont, params) rt_canvas = Canvas("pdf_file_path") assert rt_canvas._code == [] doTitle(rt_canvas, pdfFont, params, 1) assert len(rt_canvas._code) assert 'SourceSansPro-Black' in rt_canvas._code[1] def test_doTitle_pageIncludeTitle_0(): with TTFont(get_input_path(OTF_FONT)) as otfont: params = FontPDFParams() params.pageIncludeTitle = 0 pdfFont = txPDFFont(otfont, params) rt_canvas = Canvas("pdf_file_path") assert rt_canvas._code == [] doTitle(rt_canvas, pdfFont, params, 1) assert rt_canvas._code == []
the-stack_106_22669
# Copyright (c) 2011-2015 Berkeley Model United Nations. All rights reserved. # Use of this source code is governed by a BSD License (see LICENSE). import json import requests from django.conf import settings from django.core.mail import send_mail from django.db import models, transaction from django.db.models.signals import post_save, pre_save from huxley.core.constants import ContactGender, ContactType, ProgramTypes from huxley.utils import zoho class Conference(models.Model): session = models.PositiveSmallIntegerField(default=0) start_date = models.DateField() end_date = models.DateField() reg_open = models.DateField() early_reg_close = models.DateField() reg_close = models.DateField() min_attendance = models.PositiveSmallIntegerField(default=0) max_attendance = models.PositiveSmallIntegerField(default=0) open_reg = models.BooleanField(default=True) waitlist_reg = models.BooleanField(default=False) def __unicode__(self): return 'BMUN %d' % self.session class Meta: db_table = u'conference' get_latest_by = 'start_date' class Country(models.Model): name = models.CharField(max_length=128) special = models.BooleanField(default=False) def __unicode__(self): return self.name class Meta: db_table = u'country' class Committee(models.Model): name = models.CharField(max_length=8) full_name = models.CharField(max_length=128) countries = models.ManyToManyField(Country, through='Assignment') delegation_size = models.PositiveSmallIntegerField(default=2) special = models.BooleanField(default=False) def __unicode__(self): return self.name class Meta: db_table = u'committee' class School(models.Model): REGISTRATION_FEE = 50.0 DELEGATE_FEE = 50.0 PROGRAM_TYPE_OPTIONS = ( (ProgramTypes.CLUB, 'Club'), (ProgramTypes.CLASS, 'Class'), ) CONTACT_TYPE_OPTIONS = ( (ContactType.FACULTY, 'Faculty'), (ContactType.STUDENT, 'Student'), ) GENDER_OPTIONS = ( (ContactGender.MALE, 'Male'), (ContactGender.FEMALE, 'Female'), (ContactGender.OTHER, 'Other'), (ContactGender.UNSPECIFIED, 'Unspecified'), ) registered = models.DateTimeField(auto_now_add=True) name = models.CharField(max_length=128) address = models.CharField(max_length=128) city = models.CharField(max_length=128) state = models.CharField(max_length=16) zip_code = models.CharField(max_length=16) country = models.CharField(max_length=64) primary_name = models.CharField(max_length=128) primary_gender = models.PositiveSmallIntegerField(choices=GENDER_OPTIONS, default=ContactGender.UNSPECIFIED) primary_email = models.EmailField() primary_phone = models.CharField(max_length=32) primary_type = models.PositiveSmallIntegerField(choices=CONTACT_TYPE_OPTIONS, default=ContactType.FACULTY) secondary_name = models.CharField(max_length=128, blank=True) secondary_gender = models.PositiveSmallIntegerField(choices=GENDER_OPTIONS, blank=True, default=ContactGender.UNSPECIFIED) secondary_email = models.EmailField(blank=True) secondary_phone = models.CharField(max_length=32, blank=True) secondary_type = models.PositiveSmallIntegerField(choices=CONTACT_TYPE_OPTIONS, blank=True, default=ContactType.FACULTY) program_type = models.PositiveSmallIntegerField(choices=PROGRAM_TYPE_OPTIONS, default=ProgramTypes.CLUB) times_attended = models.PositiveSmallIntegerField(default=0) international = models.BooleanField(default=False) waitlist = models.BooleanField(default=False) beginner_delegates = models.PositiveSmallIntegerField() intermediate_delegates = models.PositiveSmallIntegerField() advanced_delegates = models.PositiveSmallIntegerField() spanish_speaking_delegates = models.PositiveSmallIntegerField() chinese_speaking_delegates = models.PositiveSmallIntegerField() countrypreferences = models.ManyToManyField(Country, through='CountryPreference') committeepreferences = models.ManyToManyField(Committee, limit_choices_to={'special': True}) registration_comments = models.TextField(default='', blank=True) fees_owed = models.DecimalField(max_digits=6, decimal_places=2, default=0) fees_paid = models.DecimalField(max_digits=6, decimal_places=2, default=0) assignments_finalized = models.BooleanField(default=False) def update_country_preferences(self, country_ids): '''Given a list of country IDs, first dedupe and filter out 0s, then clear the existing country preferences and construct new ones.''' seen = set() processed_country_ids = [] country_preferences = [] for rank, country_id in enumerate(country_ids): if not country_id or country_id in seen: continue seen.add(country_id) processed_country_ids.append(country_id) country_preferences.append( CountryPreference( school=self, country_id=country_id, rank=rank, ) ) if country_preferences: with transaction.atomic(): self.countrypreferences.clear() CountryPreference.objects.bulk_create(country_preferences) return processed_country_ids @classmethod def update_fees(cls, **kwargs): school = kwargs['instance'] delegate_fees = cls.DELEGATE_FEE * sum(( school.beginner_delegates, school.intermediate_delegates, school.advanced_delegates, )) school.fees_owed = cls.REGISTRATION_FEE + delegate_fees @classmethod def update_waitlist(cls, **kwargs): '''If the school is about to be created (i.e. has no ID) and registration is closed, add it to the waitlist.''' school = kwargs['instance'] if not school.id and settings.CONFERENCE_WAITLIST_OPEN: school.waitlist = True @property def country_preference_ids(self): '''Return an ordered list of the school's preferred countries.''' return [country.id for country in self.countrypreferences.all()] @country_preference_ids.setter def country_preference_ids(self, country_ids): '''Queue a pending update to replace the school's preferred countries on the next save.''' self._pending_country_preference_ids = country_ids def save(self, *args, **kwargs): '''Save the school normally, then update its country preferences.''' super(School, self).save(*args, **kwargs) if getattr(self, '_pending_country_preference_ids', []): self.update_country_preferences(self._pending_country_preference_ids) self._pending_country_preference_ids = [] @classmethod def email_comments(cls, **kwargs): school = kwargs['instance'] if kwargs['created'] and school.registration_comments: send_mail('Registration Comments from '+ school.name, school.name + ' made comments about registration: ' + school.registration_comments, '[email protected]', ['[email protected]'], fail_silently=True) @classmethod def email_confirmation(cls, **kwargs): if kwargs['created']: school = kwargs['instance'] if school.waitlist: send_mail('BMUN 64 Waitlist Confirmation', 'You have officially been put on the waitlist for BMUN 64. ' 'We will inform you if and when you are taken off the waitlist.\n\n' 'If you have any tech related questions, please email [email protected]. ' 'For all other questions, please email [email protected].\n\n' 'Thank you for using Huxley!', '[email protected]', [school.primary_email], fail_silently=True) else: send_mail('BMUN 64 Registration Confirmation', 'You have officially been registered for BMUN 64. ' 'To access your account, please log in at huxley.bmun.org.\n\n' 'The school registration fee is $50. The delegate registration ' 'fee is $50 per student. You will be able to view your balance ' 'on huxley.bmun.org in November, at which point we will begin ' 'accepting payments.\n\n' 'If you have any tech related questions, please email [email protected]. ' 'For all other questions, please email [email protected].\n\n' 'Thank you for using Huxley!', '[email protected]', [school.primary_email], fail_silently=True) @classmethod def create_zoho_contact(cls, **kwargs): if not settings.ZOHO_CREDENTIALS: return school = kwargs['instance'] attrs = zoho.generate_contact_attributes(school) parameters = {'JSONString': json.dumps(attrs)} if kwargs['created']: create_url = 'https://invoice.zoho.com/api/v3/contacts?organization_id=' + settings.ORGANIZATION_ID + '&authtoken=' + settings.AUTHTOKEN r = requests.post(create_url, params=parameters) else: update_url = 'https://invoice.zoho.com/api/v3/contacts/'+ zoho.get_contact(school) +'?organization_id=' + settings.ORGANIZATION_ID + '&authtoken=' + settings.AUTHTOKEN r = requests.put(update_url, params=parameters) def __unicode__(self): return self.name class Meta: db_table = u'school' pre_save.connect(School.update_fees, sender=School) pre_save.connect(School.update_waitlist, sender=School) post_save.connect(School.email_comments, sender=School) post_save.connect(School.email_confirmation, sender=School) post_save.connect(School.create_zoho_contact, sender=School) class Assignment(models.Model): committee = models.ForeignKey(Committee) country = models.ForeignKey(Country) school = models.ForeignKey(School, null=True, blank=True, default=None) @classmethod def update_assignments(cls, new_assignments): ''' Atomically update the set of country assignments in a transaction. For each assignment in the updated list, either update the existing one (and delete its delegates), or create a new one if it doesn't exist. ''' assignments = cls.objects.all().values() assignment_dict = {(a['committee_id'], a['country_id']): a for a in assignments} additions = [] deletions = [] def add(committee, country, school): additions.append(cls( committee_id=committee, country_id=country, school_id=school, )) def remove(assignment_data): deletions.append(assignment_data['id']) for committee, country, school in new_assignments: key = (committee, country) old_assignment = assignment_dict.get(key) if not old_assignment: add(committee, country, school) continue if old_assignment['school_id'] != school: # Remove the old assignment instead of just updating it # so that its delegates are deleted by cascade. remove(old_assignment) add(committee, country, school) del assignment_dict[key] for old_assignment in assignment_dict.values(): remove(old_assignment) with transaction.atomic(): Assignment.objects.filter(id__in=deletions).delete() Assignment.objects.bulk_create(additions) def __unicode__(self): return self.committee.name + " : " + self.country.name + " : " + (self.school.name if self.school else "Unassigned") class Meta: db_table = u'assignment' unique_together = ('committee', 'country') class CountryPreference(models.Model): school = models.ForeignKey(School) country = models.ForeignKey(Country, limit_choices_to={'special': False}) rank = models.PositiveSmallIntegerField() def __unicode__(self): return '%s : %s (%d)' % (self.school.name, self.country.name, self.rank) class Meta: db_table = u'country_preference' ordering = ['-school','rank'] unique_together = ('country', 'school') class Delegate(models.Model): assignment = models.ForeignKey(Assignment, related_name='delegates') name = models.CharField(max_length=64, blank=True) email = models.EmailField(blank=True) created_at = models.DateTimeField(auto_now_add=True) summary = models.TextField(default='', null=True) def __unicode__(self): return self.name @property def country(self): return self.assignment.country @property def committee(self): return self.assignment.committee @property def school(self): return self.assignment.school class Meta: db_table = u'delegate' ordering = ['assignment__country']
the-stack_106_22671
from collections import OrderedDict from .FFI import FFIMethod __all__ = [ "PotentialArguments" ] class PotentialArgumentHolder: """ Wrapper class that simply holds onto """ def __init__(self, args): if isinstance(args, OrderedDict): self.arg_vec = args else: self.arg_vec = None # supported extra types extra_bools = [] extra_ints = [] extra_floats = [] for a in args: if a is True or a is False: extra_bools.append(a) elif isinstance(a, int): extra_ints.append(a) elif isinstance(a, float): extra_floats.append(a) self.extra_bools = extra_bools self.extra_ints = extra_ints self.extra_floats = extra_floats @property def ffi_parameters(self): if self.arg_vec is None: raise ValueError("Python thinks we're using an old-style potential") else: return self.arg_vec.values() def __repr__(self): return "{}(<>)".format(type(self).__name__) class OldStyleArg: """ Shim that supports old-style args """ def __init__(self, name=None, dtype=None, extra=None, shape=None, default=None): self.name=name self.dtype=self.canonicalize_dtype(dtype) self.extra=extra self.shape=shape if default is not None: raise ValueError("currrently, no longer supporting default values") self.default=default _type_map = {'int':int, 'float':float, 'str':str} def canonicalize_dtype(self, dtype): if isinstance(dtype, str): return self._type_map[dtype] else: raise ValueError("don't know how to handle old-style dtype '{}'".format(dtype)) def cast(self, v): if not isinstance(v, self.dtype): raise ValueError( "Argument mismatch: argument '{}' is expected to be of type {} (got {})".format( self.name, self.dtype.__name__, type(v).__name__ )) return v @property def arg_name(self): return self.name class OldStyleArgList: """ Shim that supports old-style arg lists """ def __init__(self, args): self.args = [OldStyleArg(**a) for a in args] @property def arg_names(self): return tuple(a.arg_name for a in self.args) def collect_args(self, *args, excluded_args=None, **kwargs): arg_dict = OrderedDict() req_dict = OrderedDict( (k.arg_name, k) for k in self.args ) for k in kwargs: arg_dict[k] = req_dict[k].cast(kwargs[k]) del req_dict[k] if excluded_args is not None: for k in excluded_args: if k in req_dict: del req_dict[k] if len(req_dict) > 0: for v, k in zip(args, req_dict.copy()): arg_dict[k] = req_dict[k].cast(v) del req_dict[k] if len(req_dict) > 0: raise ValueError("{}.{}: missing required arguments {}".format( type(self).__name__, 'collect_args', tuple(req_dict.values()) )) return tuple(arg_dict.values()) # need this to tell PotentialArgumentHolder that this is old-style class PotentialArgumentSpec: """ Simple wrapper to support both old- and new-style calling semantics """ def __init__(self, arg_pattern, name=None): self._name = name self.arg_pat = self.canonicalize_pats(arg_pattern) @property def name(self): if self._name is None: return self.arg_pat.name else: return self._name def canonicalize_pats(self, pats): if isinstance(pats, FFIMethod): return pats arg_list = [] for a in pats: if isinstance(a, (dict, OrderedDict)): name = a['name'] dtype = a['dtype'] default = a['default'] if 'default' in a else None shape = a['shape'] if 'shape' in a else () else: name = a[0] dtype = a[1] default = a[2] if len(a) > 2 in a else None shape = a[3] if len(a) > 3 in a else () arg_list.append({ "name":name, "dtype":dtype, "default":default, "shape":shape }) return OldStyleArgList(arg_list) def collect_args(self, *args, **kwargs): return PotentialArgumentHolder(self.arg_pat.collect_args(*args, excluded_args=["coords", "raw_coords", "atoms"], **kwargs)) def arg_names(self, excluded=None): """ Canonicalizes arguments, if passed :return: :rtype: """ names = self.arg_pat.arg_names if excluded is None: return tuple(x for x in names if x not in excluded) else: return names class AtomsPattern: """ Spec to define a pattern for atoms so that calls can be validated before a function is every called """ def __init__(self, atoms): self.atom_pat = atoms def validate(self, atoms): if self.atom_pat is not None: import re if isinstance(self._atom_pat, str): self._atom_pat = re.compile(self._atom_pat) matches = True bad_ind = -1 try: matches = re.match(self._atom_pat, "".join(atoms)) except TypeError: for i,a in enumerate(zip(self._atom_pat, atoms)): a1, a2 = a if a1 != a2: matches = False bad_ind = i if not matches and bad_ind >= 0: raise ValueError("Atom mismatch at {}: expected atom list {} but got {}".format( bad_ind, tuple(self._atom_pat), tuple(atoms) )) elif not matches: raise ValueError("Atom mismatch: expected atom pattern {} but got list {}".format( bad_ind, self._atom_pat.pattern, tuple(atoms) )) return atoms
the-stack_106_22672
# This file is part of Indico. # Copyright (C) 2002 - 2020 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from indico.modules.events.tracks.controllers import (RHCreateTrack, RHCreateTrackGroup, RHDeleteTrack, RHDeleteTrackGroup, RHDisplayTracks, RHEditProgram, RHEditTrack, RHEditTrackGroup, RHManageTracks, RHSortTracks, RHTracksPDF) from indico.web.flask.util import make_compat_redirect_func from indico.web.flask.wrappers import IndicoBlueprint _bp = IndicoBlueprint('tracks', __name__, template_folder='templates', virtual_template_folder='events/tracks', url_prefix='/event/<confId>') _bp.add_url_rule('/manage/tracks/', 'manage', RHManageTracks) _bp.add_url_rule('/manage/tracks/program', 'edit_program', RHEditProgram, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/create', 'create_track', RHCreateTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/sort', 'sort_tracks', RHSortTracks, methods=('POST',)) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'edit_track', RHEditTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'delete_track', RHDeleteTrack, methods=('DELETE',)) _bp.add_url_rule('/manage/track-groups/create', 'create_track_group', RHCreateTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'edit_track_group', RHEditTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'delete_track_group', RHDeleteTrackGroup, methods=('DELETE',)) _bp.add_url_rule('/program', 'program', RHDisplayTracks) _bp.add_url_rule('/program.pdf', 'program_pdf', RHTracksPDF) _compat_bp = IndicoBlueprint('compat_tracks', __name__, url_prefix='/event/<int:confId>') _compat_bp.add_url_rule('/manage/program/tracks/<int:track_id>/contributions/', 'track_contribs', make_compat_redirect_func('contributions', 'contribution_list', view_args_conv={'track_id': None}))
the-stack_106_22673
from __future__ import print_function import sys, os, time from h2o.exceptions import H2OTypeError sys.path.insert(1, os.path.join("..","..","..")) import h2o from tests import pyunit_utils from h2o.automl import H2OAutoML """ This test is used to check arguments passed into H2OAutoML along with different ways of using `.train()` """ max_models = 2 def import_dataset(seed=0, larger=False): df = h2o.import_file(path=pyunit_utils.locate("smalldata/prostate/{}".format("prostate_complete.csv.zip" if larger else "prostate.csv"))) target = "CAPSULE" df[target] = df[target].asfactor() #Split frames fr = df.split_frame(ratios=[.8,.1], seed=seed) #Set up train, validation, and test sets return dict(train=fr[0], valid=fr[1], test=fr[2], target=target, target_idx=1) # Below fails bc there are no models in the leaderboard, but AutoML needs to check the models to get the # model type (binomial, multinomial, or regression) # print("Check that exclude_algos implementation is complete, and empty leaderboard works") # aml = H2OAutoML(max_runtime_secs=30, project_name="py_aml0", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234, exclude_algos=["GLM", "DRF", "GBM", "DeepLearning", "StackedEnsemble"]) # aml.train(y="CAPSULE", training_frame=train) # print("Check leaderboard to ensure that it only has a header") # print(aml.leaderboard) # assert aml.leaderboard.nrows == 0, "with all algos excluded, leaderboard is not empty" def get_partitioned_model_names(leaderboard): model_names = [leaderboard[i, 0] for i in range(0, (leaderboard.nrows))] se_model_names = [m for m in model_names if m.startswith('StackedEnsemble')] non_se_model_names = [m for m in model_names if m not in se_model_names] return model_names, non_se_model_names, se_model_names def test_early_stopping_args(): print("Check arguments to H2OAutoML class") ds = import_dataset() aml = H2OAutoML(project_name="py_aml0", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234, exclude_algos=["DeepLearning"]) aml.train(y=ds['target'], training_frame=ds['train']) assert aml.project_name == "py_aml0", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_no_x_train_set_only(): print("AutoML run with x not provided and train set only") ds = import_dataset() aml = H2OAutoML(project_name="py_aml1", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target'], training_frame=ds['train']) assert aml.project_name == "py_aml1", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_no_x_train_and_validation_sets(): print("AutoML run with x not provided with train and valid") ds = import_dataset() aml = H2OAutoML(project_name="py_aml2", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target'], training_frame=ds['train'], validation_frame=ds['valid']) assert aml.project_name == "py_aml2", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_no_x_train_and_test_sets(): print("AutoML run with x not provided with train and test") ds = import_dataset() aml = H2OAutoML(project_name="py_aml3", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target'], training_frame=ds['train'], leaderboard_frame=ds['test']) assert aml.project_name == "py_aml3", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_no_x_train_and_validation_and_test_sets(): print("AutoML run with x not provided with train, valid, and test") ds = import_dataset() aml = H2OAutoML(project_name="py_aml4", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target'], training_frame=ds['train'], validation_frame=ds['valid'], leaderboard_frame=ds['test']) assert aml.project_name == "py_aml4", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_no_x_y_as_idx_train_and_validation_and_test_sets(): print("AutoML run with x not provided and y as col idx with train, valid, and test") ds = import_dataset() aml = H2OAutoML(project_name="py_aml5", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target_idx'], training_frame=ds['train'], validation_frame=ds['valid'], leaderboard_frame=ds['test']) assert aml.project_name == "py_aml5", "Project name is not set" assert aml.stopping_rounds == 3, "stopping_rounds is not set to 3" assert aml.stopping_tolerence == 0.001, "stopping_tolerance is not set to 0.001" assert aml.stopping_metric == "AUC", "stopping_metrics is not set to `AUC`" assert aml.max_models == 2, "max_models is not set to 2" assert aml.seed == 1234, "seed is not set to `1234`" print("Check leaderboard") print(aml.leaderboard) def test_exclude_algos(): print("AutoML doesn't train models for algos listed in exclude_algos") ds = import_dataset() aml = H2OAutoML(project_name="py_exclude_algos", exclude_algos=['DRF', 'GLM'], max_models=max_models, seed=1) aml.train(y=ds['target'], training_frame=ds['train'], validation_frame=ds['valid']) _, non_se, se = get_partitioned_model_names(aml.leaderboard) assert not any(['DRF' in name or 'GLM' in name for name in non_se]) assert len(se) == 2 def test_include_algos(): print("AutoML trains only models for algos listed in include_algos") ds = import_dataset() aml = H2OAutoML(project_name="py_include_algos", include_algos=['GBM'], max_models=max_models, seed=1) aml.train(y=ds['target'], training_frame=ds['train'], validation_frame=ds['valid']) _, non_se, se = get_partitioned_model_names(aml.leaderboard) assert all(['GBM' in name for name in non_se]) assert len(se) == 0, "No StackedEnsemble should have been trained if not explicitly included to the existing include_algos" def test_include_exclude_algos(): print("include_algos and exclude_algos parameters are mutually exclusive") try: H2OAutoML(project_name="py_include_exclude_algos", exclude_algos=['DRF', 'XGBoost'], include_algos=['GBM'], max_models=max_models, seed=1) assert False, "Should have thrown AssertionError" except AssertionError as e: assert "Use either include_algos or exclude_algos" in str(e) def test_predict_on_train_set(): print("Check predict, leader, and leaderboard") print("AutoML run with x not provided and train set only") ds = import_dataset() aml = H2OAutoML(project_name="py_aml6", stopping_rounds=3, stopping_tolerance=0.001, stopping_metric="AUC", max_models=max_models, seed=1234) aml.train(y=ds['target'], training_frame=ds['train']) print("Check leaderboard") print(aml.leaderboard) print("Check predictions") print(aml.predict(ds['train'])) def test_nfolds_param(): print("Check nfolds is passed through to base models") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_nfolds3", nfolds=3, max_models=3, seed=1) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['nfolds']['actual'] == 3 def test_nfolds_eq_0(): print("Check nfolds = 0 works properly") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_nfolds0", nfolds=0, max_models=3, seed=1) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['nfolds']['actual'] == 0 def test_balance_classes(): print("Check balance_classes & related args work properly") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_balance_classes_etc", exclude_algos=['XGBoost'], # XGB doesn't support balance_classes max_models=3, balance_classes=True, class_sampling_factors=[0.2, 1.4], max_after_balance_size=3.0, seed=1) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['balance_classes']['actual'] == True assert amodel.params['max_after_balance_size']['actual'] == 3.0 assert amodel.params['class_sampling_factors']['actual'] == [0.2, 1.4] def test_nfolds_default_and_fold_assignements_skipped_by_default(): print("Check that fold assignments were skipped by default and nfolds > 1") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_keep_cross_validation_fold_assignment_0", nfolds=3, max_models=3, seed=1) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['keep_cross_validation_fold_assignment']['actual'] == False assert amodel._model_json["output"]["cross_validation_fold_assignment_frame_id"] == None def test_keep_cross_validation_fold_assignment_enabled_with_nfolds_neq_0(): print("Check that fold assignments were kept when `keep_cross_validation_fold_assignment` = True and nfolds > 1") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_keep_cross_validation_fold_assignment_1", nfolds=3, max_models=3, seed=1, keep_cross_validation_fold_assignment=True) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['keep_cross_validation_fold_assignment']['actual'] == True assert amodel._model_json["output"]["cross_validation_fold_assignment_frame_id"] != None def test_keep_cross_validation_fold_assignment_enabled_with_nfolds_eq_0(): print("Check that fold assignments were skipped when `keep_cross_validation_fold_assignment` = True and nfolds = 0") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_keep_cross_validation_fold_assignment_2", nfolds=0, max_models=3, seed=1, keep_cross_validation_fold_assignment=True) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) amodel = h2o.get_model(non_se[0]) assert amodel.params['keep_cross_validation_fold_assignment']['actual'] == False assert amodel._model_json["output"]["cross_validation_fold_assignment_frame_id"] == None def test_stacked_ensembles_are_trained_after_timeout(): print("Check that Stacked Ensembles are still trained after timeout") max_runtime_secs = 20 ds = import_dataset() aml = H2OAutoML(project_name="py_aml_SE_after_timeout", seed=1, max_runtime_secs=max_runtime_secs, exclude_algos=['DeepLearning']) start = time.time() aml.train(y=ds['target'], training_frame=ds['train']) end = time.time() assert end-start - max_runtime_secs > 0 _, _, se = get_partitioned_model_names(aml.leaderboard) assert len(se) == 2, "StackedEnsemble should still be trained after timeout" def test_automl_stops_after_max_models(): print("Check that automl gets interrupted after `max_models`") ds = import_dataset() max_models = 5 aml = H2OAutoML(project_name="py_aml_max_models", seed=1, max_models=max_models) aml.train(y=ds['target'], training_frame=ds['train']) _, non_se, _ = get_partitioned_model_names(aml.leaderboard) assert len(non_se) == max_models, "obtained {} base models when {} are expected".format(len(non_se), max_models) def test_stacked_ensembles_are_trained_after_max_models(): print("Check that Stacked Ensembles are still trained after max models have been trained") max_models = 5 ds = import_dataset() aml = H2OAutoML(project_name="py_aml_SE_after_max_models", seed=1, max_models=max_models) aml.train(y=ds['target'], training_frame=ds['train']) _, _, se = get_partitioned_model_names(aml.leaderboard) assert len(se) == 2, "StackedEnsemble should still be trained after max models have been reached" def test_stacked_ensembles_are_trained_with_blending_frame_even_if_nfolds_eq_0(): print("Check that we can disable cross-validation when passing a blending frame and that Stacked Ensembles are trained using this frame.") max_models = 5 ds = import_dataset() aml = H2OAutoML(project_name="py_aml_blending_frame", seed=1, max_models=max_models, nfolds=0) aml.train(y=ds['target'], training_frame=ds['train'], blending_frame=ds['valid'], leaderboard_frame=ds['test']) _, _, se = get_partitioned_model_names(aml.leaderboard) assert len(se) == 2, "In blending mode, StackedEnsemble should still be trained in spite of nfolds=0." for m in se: model = h2o.get_model(m) assert model.params['blending_frame']['actual']['name'] == ds['valid'].frame_id assert model._model_json['output']['stacking_strategy'] == 'blending' def test_frames_cannot_be_passed_as_key(): print("Check that all AutoML frames can be passed as keys.") ds = import_dataset() aml = H2OAutoML(project_name="py_aml_frames_as_keys", seed=1, max_models=3, nfolds=0) kw_args = [ dict(training_frame=ds['train'].frame_id), dict(training_frame=ds['train'], validation_frame=ds['valid'].frame_id), dict(training_frame=ds['train'], blending_frame=ds['valid'].frame_id), dict(training_frame=ds['train'], leaderboard_frame=ds['test'].frame_id), ] for kwargs in kw_args: try: aml.train(y=ds['target'], **kwargs) assert False, "should have thrown due to wrong frame key" except H2OTypeError as e: attr = next(k for k, v in kwargs.items() if v is not ds['train']) assert "'{}' must be a valid H2OFrame".format(attr) in str(e) # TO DO PUBDEV-5676 # Add a test that checks fold_column like in runit pyunit_utils.run_tests([ test_early_stopping_args, test_no_x_train_set_only, test_no_x_train_and_validation_sets, test_no_x_train_and_test_sets, test_no_x_train_and_validation_and_test_sets, test_no_x_y_as_idx_train_and_validation_and_test_sets, test_exclude_algos, test_include_algos, test_include_exclude_algos, test_predict_on_train_set, test_nfolds_param, test_nfolds_eq_0, test_balance_classes, test_nfolds_default_and_fold_assignements_skipped_by_default, test_keep_cross_validation_fold_assignment_enabled_with_nfolds_neq_0, test_keep_cross_validation_fold_assignment_enabled_with_nfolds_eq_0, test_stacked_ensembles_are_trained_after_timeout, test_automl_stops_after_max_models, test_stacked_ensembles_are_trained_after_max_models, test_stacked_ensembles_are_trained_with_blending_frame_even_if_nfolds_eq_0, test_frames_cannot_be_passed_as_key, ])
the-stack_106_22674
# apis_v1/documentation_source/position_public_support_count_for_ballot_item_doc.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- def position_public_support_count_for_ballot_item_doc_template_values(url_root): """ Show documentation about positionPublicSupportCountForBallotItem """ required_query_parameter_list = [ { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, { 'name': 'kind_of_ballot_item', 'value': 'string', # boolean, integer, long, string 'description': 'The kind of ballot item we want the support count for. ' '(kind_of_ballot_item is either "CANDIDATE", "POLITICIAN" or "MEASURE")', }, { 'name': 'ballot_item_id', 'value': 'integer', # boolean, integer, long, string 'description': 'The unique internal identifier of the ballot item we want the support count for. ' '(either ballot_item_id OR ballot_item_we_vote_id required -- not both. ' 'If it exists, ballot_item_id is used instead of ballot_item_we_vote_id)', }, { 'name': 'ballot_item_we_vote_id', 'value': 'string', # boolean, integer, long, string 'description': 'The unique identifier for this ballot_item across all networks ' '(either ballot_item_id OR ballot_item_we_vote_id required -- not both. ' 'NOTE: In the future we might support other identifiers used in the industry.', }, ] optional_query_parameter_list = [ # { # 'name': '', # 'value': '', # boolean, integer, long, string # 'description': '', # }, ] potential_status_codes_list = [ { 'code': 'UNABLE_TO_RETRIEVE-CANDIDATE_ID_AND_MEASURE_ID_MISSING', 'description': 'Cannot proceed. Neither candidate_id nor measure_id were included.', }, { 'code': 'SUCCESSFUL_RETRIEVE_OF_POSITIONS', 'description': 'The number of supports for this ballot item was retrieved.', }, { 'code': 'SUCCESSFUL_RETRIEVE_OF_POSITIONS_NOT_FOLLOWED', 'description': 'The number of organizations that support this ballot item that voter is NOT following.', }, ] try_now_link_variables_dict = { 'kind_of_ballot_item': 'CANDIDATE', 'ballot_item_id': '5655', } api_response = '{\n' \ ' "status": string,\n' \ ' "success": boolean,\n' \ ' "count": integer,\n' \ '}' template_values = { 'api_name': 'positionPublicSupportCountForBallotItem', 'api_slug': 'positionPublicSupportCountForBallotItem', 'api_introduction': "A single number showing the total supporters for this Ballot Item (Candidate or Measure) from " "any organizations and public figures. (Not just the ones a voter follows.)", 'try_now_link': 'apis_v1:positionPublicSupportCountForBallotItemView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, 'api_response_notes': "", 'potential_status_codes_list': potential_status_codes_list, } return template_values
the-stack_106_22676
import os, argparse import pandas as pd import ami_md.ami_json as aj dtypes = { 'digitizationProcess.analogDigitalConverter.serialNumber': object, 'digitizationProcess.captureSoftware.version': object, 'digitizationProcess.playbackDevice.serialNumber': object, 'digitizationProcess.timeBaseCorrector.serialNumber': object } def _make_parser(): parser = argparse.ArgumentParser() parser.description = "convert a PAMIdb merge export to JSON records" parser.add_argument("-i", "--input", help = "path to a PAMIdb merge export", required = True) parser.add_argument("-o", "--output", help = "directory to save all json files", required = True) parser.add_argument("-s", "--schema", help = "current schema version, preferred format x.y.z", default = "2.0.0") return parser def main(): parser = _make_parser() args = parser.parse_args() md = pd.read_csv(args.input, dtype = dtypes) md = md.dropna(axis = 1, how = "all") md = md.drop(['asset.fileExt'], axis = 1) json_directory = os.path.abspath(args.output) for (index, row) in md.iterrows(): json_tree = aj.ami_json(flat_dict = row.to_dict(), schema_version = args.schema) json_tree.write_json(json_directory, indent = 4) if __name__ == "__main__": main()
the-stack_106_22677
from typing import List from typing import Union import pandas from sqlalchemy.orm import Session from db.crud import recipeBewertung as crud_recipeBewertung from schemes.exceptions import DatabaseException from schemes.exceptions import RecipeNotFound from schemes.scheme_filter import FilterRecipe from schemes.scheme_recipe import Recipe from schemes.scheme_recipe import RecipeBase from schemes.scheme_recipe import RecipeBewertungCreate from schemes.scheme_recipe import RecipeBewertungReturn from schemes.scheme_user import UserBase from tools.recipe_db import recipe_db from tools.recipe_db import RecipeDB def search_recipe(db_session: Session, user: UserBase, recipe_filter: FilterRecipe) -> Recipe: """Search for a recipe with the given filter Args: db_session (sqlalchemy.orm.Session): Session to the DB -> See `db: Session = Depends(get_db)` recipe_filter (schemes.scheme_filter.FilterRecipe): Filter the Recipes Returns: schemes.scheme_recipe.Recipe: The one choosen Recipe """ pd_random_recipe: pandas.DataFrame = __apply_filter(recipe_db.pd_frame, recipe_filter).sample() random_recipe = Recipe( id=pd_random_recipe["_id.$oid"].array[0], name=pd_random_recipe["name"].array[0], ingredients=pd_random_recipe["ingredients"].array[0], url=pd_random_recipe["url"].array[0], image=pd_random_recipe["image"].array[0], cookTime=pd_random_recipe["cookTime"].array[0], prepTime=pd_random_recipe["prepTime"].array[0], ) if not crud_recipeBewertung.get_bewertung_from_user_to_recipe(db=db_session, user=user, recipe=random_recipe): add_assessment( db_session=db_session, assessment=RecipeBewertungCreate(name=random_recipe.name, person=user, recipe=random_recipe), ) return random_recipe def __apply_filter(recipes: pandas.DataFrame, recipe_filter: FilterRecipe) -> pandas.DataFrame: cooktime_bool = RecipeDB.filter_cooktime(user_pd_frame=recipes, total_time=recipe_filter.total_time) keyword_bool = RecipeDB.filter_keyword(user_pd_frame=recipes, keyword=recipe_filter.keyword) filter_bool = cooktime_bool & keyword_bool if not (True in filter_bool.value_counts()): raise RecipeNotFound("No Recipe Found with these Filters") return recipes[filter_bool] def get_assessments_from_user(db_session: Session, user: UserBase) -> Union[List[RecipeBewertungReturn], None]: """Get Bewertungen from a User to all recipes Args: db_session (sqlalchemy.orm.Session): Session to the DB -> See `db: Session = Depends(get_db)` user_mail (str): Mail of the User Returns: Union[List[schemes.scheme_recipe.RecipeBewertungReturn], None]: Return a List of all Recipe or None """ db_recipes = crud_recipeBewertung.get_all_user_bewertungen(db_session, user) scheme_recipes = [ RecipeBewertungReturn( name=db_recipe.rezept_name, email=db_recipe.person_email, id=db_recipe.rezept_id, comment=db_recipe.kommentar, rating=db_recipe.rating, timestamp=db_recipe.zeitstempel, ) for db_recipe in db_recipes ] return scheme_recipes def add_assessment(db_session: Session, assessment: RecipeBewertungCreate) -> RecipeBewertungReturn: """Add the given assessment to the Database. Args: db_session (sqlalchemy.orm.Session): Session to the DB -> See `db: Session = Depends(get_db)` assessment (schemes.scheme_recipe.RecipeBewertungCreate): The assessment need to be unique Raises: schemes.exceptions.DatabaseException: if the User or Recipe does not exist or the assessment is duplicated Returns: [schemes.scheme_recipe.RecipeBewertungReturn]: The created recipe """ try: created_assessment = crud_recipeBewertung.create_bewertung(db_session, assessment) return RecipeBewertungReturn( name=created_assessment.rezept_name, email=created_assessment.person_email, id=created_assessment.rezept_id, comment=created_assessment.kommentar, rating=created_assessment.rating, timestamp=created_assessment.zeitstempel, ) except DatabaseException as error: raise error def update_assessment( db_session: Session, old_assessment: RecipeBewertungCreate, new_assessment: RecipeBewertungCreate ) -> RecipeBewertungReturn: """Update the comment and rating of a existing assessment Args: db_session (sqlalchemy.orm.Session): Session to the DB -> See `db: Session = Depends(get_db)` old_assessment (schemes.scheme_recipe.RestBewertungCreate): The current assessment new_assessment (schemes.scheme_recipe.RecipeBewertungCreate): The new assessment with the updated values Raises: schemes.exceptions.DatabaseException: if the User or Recipe does not exist Returns: schemes.scheme_recipe.RecipeBewertungReturn: Recipe with the new values """ try: updated_assessment = crud_recipeBewertung.update_assessment(db_session, old_assessment, new_assessment) except DatabaseException as error: raise error return RecipeBewertungReturn( name=updated_assessment.rezept_name, email=updated_assessment.person_email, id=updated_assessment.rezept_id, comment=updated_assessment.kommentar, rating=updated_assessment.rating, timestamp=updated_assessment.zeitstempel, ) def delete_assessment(db_session: Session, user: UserBase, recipe: RecipeBase) -> int: """Delete one assessment that are mapped between the user and recipe Args: db_session (sqlalchemy.orm.Session): Session to the DB -> See `db: Session = Depends(get_db)` user (schemes.scheme_user.UserBase): The owner of the assessment recipe (schemes.scheme_recipe.RecipeBase): The mapped recipe Raises: schemes.exceptions.DatabaseException: if the User or recipe does not exist Returns: int: The number of affected Rows of the delete """ rows = crud_recipeBewertung.delete_bewertung(db_session, user, recipe) if rows == 0: raise DatabaseException("Can not delete assessment. Does the user and recipe excist?") return rows
the-stack_106_22678
from flask import Flask, request app = Flask(__name__) PORT = 7000 @app.route('/', methods=["GET"]) def home(): remote_user = request.headers.get('REMOTE_USER') return "Hello {}, this is service2.".format(remote_user) if __name__ == "__main__": app.run(port=PORT, debug=True)
the-stack_106_22680
import tensorflow as tf from absl import app, flags, logging from absl.flags import FLAGS import numpy as np import cv2 from core.yolov4 import YOLOv4, YOLOv3, YOLOv3_tiny, decode import core.utils as utils import os from core.config import cfg flags.DEFINE_string('weights', './checkpoints/yolov3-416', 'path to weights file') flags.DEFINE_string('output', './checkpoints/yolov3-416-int8.tflite', 'path to output') flags.DEFINE_integer('input_size', 416, 'path to output') flags.DEFINE_string('quantize_mode', 'float32', 'quantize mode (int8, float16, float32)') flags.DEFINE_string('dataset', "/Volumes/Elements/data/coco_dataset/coco/5k.txt", 'path to dataset') def representative_data_gen(): fimage = open(FLAGS.dataset).read().split() for input_value in range(10): if os.path.exists(fimage[input_value]): original_image=cv2.imread(fimage[input_value]) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) image_data = utils.image_preprocess(np.copy(original_image), [FLAGS.input_size, FLAGS.input_size]) img_in = image_data[np.newaxis, ...].astype(np.float32) print("calibration image {}".format(fimage[input_value])) yield [img_in] else: continue def save_tflite(): converter = tf.lite.TFLiteConverter.from_saved_model(FLAGS.weights) if FLAGS.quantize_mode == 'float16': converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.compat.v1.lite.constants.FLOAT16] converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS] converter.allow_custom_ops = True elif FLAGS.quantize_mode == 'int8': converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS] converter.allow_custom_ops = True converter.representative_dataset = representative_data_gen tflite_model = converter.convert() open(FLAGS.output, 'wb').write(tflite_model) logging.info("model saved to: {}".format(FLAGS.output)) def demo(): interpreter = tf.lite.Interpreter(model_path=FLAGS.output) interpreter.allocate_tensors() logging.info('tflite model loaded') input_details = interpreter.get_input_details() print(input_details) output_details = interpreter.get_output_details() print(output_details) input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] print(output_data) def main(_argv): save_tflite() demo() if __name__ == '__main__': try: app.run(main) except SystemExit: pass
the-stack_106_22683
RESPONSES = { 'auth_response': { 'status': 200, 'type': 'success', 'code': 'R-0000', 'detail': 'Authentification is success' }, 'json_test': { 'status': 200, 'type': 'success', 'code': 'R-0001', 'detail': 'Json test is correct' }, } ERRORS = { 'authentification_error': { 'status': 401, 'type': 'error', 'code': 'E-0000', 'detail': 'Key and Resource are not valid', }, 'json_format_error': { 'status': 400, 'type': 'error', 'code': 'E-0001', 'detail': 'Json request is not valid', }, 'openapi3_error': { 'status': 400, 'type': 'error', 'code': 'E-0002', 'detail': 'Json payload is not valid', }, 'session_error': { 'status': 403, 'type': 'error', 'code': 'E-0003', 'detail': 'Session is not valid', }, 'signature_error': { 'status': 401, 'type': 'error', 'code': 'E-0004', 'detail': 'Signature is not valid', }, 'signature_header_not_found': { 'status': 401, 'type': 'error', 'code': 'E-0005', 'detail': 'Content-Signature header error', }, } CATALOG = { **RESPONSES, **ERRORS }
the-stack_106_22684
""" Tests that apply specifically to the Python parser. Unless specifically stated as a Python-specific issue, the goal is to eventually move as many of these tests out of this module as soon as the C parser can accept further arguments when parsing. """ import csv from io import BytesIO, StringIO import pytest from pandas.errors import ParserError from pandas import DataFrame, Index, MultiIndex import pandas._testing as tm def test_default_separator(python_parser_only): # see gh-17333 # # csv.Sniffer in Python treats "o" as separator. data = "aob\n1o2\n3o4" parser = python_parser_only expected = DataFrame({"a": [1, 3], "b": [2, 4]}) result = parser.read_csv(StringIO(data), sep=None) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("skipfooter", ["foo", 1.5, True]) def test_invalid_skipfooter_non_int(python_parser_only, skipfooter): # see gh-15925 (comment) data = "a\n1\n2" parser = python_parser_only msg = "skipfooter must be an integer" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=skipfooter) def test_invalid_skipfooter_negative(python_parser_only): # see gh-15925 (comment) data = "a\n1\n2" parser = python_parser_only msg = "skipfooter cannot be negative" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=-1) @pytest.mark.parametrize("kwargs", [{"sep": None}, {"delimiter": "|"}]) def test_sniff_delimiter(python_parser_only, kwargs): data = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ parser = python_parser_only result = parser.read_csv(StringIO(data), index_col=0, **kwargs) expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) def test_sniff_delimiter_comment(python_parser_only): data = """# comment line index|A|B|C # comment line foo|1|2|3 # ignore | this bar|4|5|6 baz|7|8|9 """ parser = python_parser_only result = parser.read_csv(StringIO(data), index_col=0, sep=None, comment="#") expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("encoding", [None, "utf-8"]) def test_sniff_delimiter_encoding(python_parser_only, encoding): parser = python_parser_only data = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ if encoding is not None: from io import TextIOWrapper data = data.encode(encoding) data = BytesIO(data) data = TextIOWrapper(data, encoding=encoding) else: data = StringIO(data) result = parser.read_csv(data, index_col=0, sep=None, skiprows=2, encoding=encoding) expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) def test_single_line(python_parser_only): # see gh-6607: sniff separator parser = python_parser_only result = parser.read_csv(StringIO("1,2"), names=["a", "b"], header=None, sep=None) expected = DataFrame({"a": [1], "b": [2]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [{"skipfooter": 2}, {"nrows": 3}]) def test_skipfooter(python_parser_only, kwargs): # see gh-6607 data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ parser = python_parser_only result = parser.read_csv(StringIO(data), **kwargs) expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "compression,klass", [("gzip", "GzipFile"), ("bz2", "BZ2File")] ) def test_decompression_regex_sep(python_parser_only, csv1, compression, klass): # see gh-6607 parser = python_parser_only with open(csv1, "rb") as f: data = f.read() data = data.replace(b",", b"::") expected = parser.read_csv(csv1) module = pytest.importorskip(compression) klass = getattr(module, klass) with tm.ensure_clean() as path: tmp = klass(path, mode="wb") tmp.write(data) tmp.close() result = parser.read_csv(path, sep="::", compression=compression) tm.assert_frame_equal(result, expected) def test_read_csv_buglet_4x_multi_index(python_parser_only): # see gh-6607 data = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" parser = python_parser_only expected = DataFrame( [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.3640], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], [-0.6662, -0.5243, -0.3580, 0.89145, 2.5838], ], columns=["A", "B", "C", "D", "E"], index=MultiIndex.from_tuples( [("a", "b", 10.0032, 5), ("a", "q", 20, 4), ("x", "q", 30, 3)], names=["one", "two", "three", "four"], ), ) result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_read_csv_buglet_4x_multi_index2(python_parser_only): # see gh-6893 data = " A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9" parser = python_parser_only expected = DataFrame.from_records( [(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list("abcABC"), index=list("abc"), ) result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("add_footer", [True, False]) def test_skipfooter_with_decimal(python_parser_only, add_footer): # see gh-6971 data = "1#2\n3#4" parser = python_parser_only expected = DataFrame({"a": [1.2, 3.4]}) if add_footer: # The stray footer line should not mess with the # casting of the first two lines if we skip it. kwargs = {"skipfooter": 1} data += "\nFooter" else: kwargs = {} result = parser.read_csv(StringIO(data), names=["a"], decimal="#", **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sep", ["::", "#####", "!!!", "123", "#1!c5", "%!c!d", "@@#4:2", "_!pd#_"] ) @pytest.mark.parametrize( "encoding", ["utf-16", "utf-16-be", "utf-16-le", "utf-32", "cp037"] ) def test_encoding_non_utf8_multichar_sep(python_parser_only, sep, encoding): # see gh-3404 expected = DataFrame({"a": [1], "b": [2]}) parser = python_parser_only data = "1" + sep + "2" encoded_data = data.encode(encoding) result = parser.read_csv( BytesIO(encoded_data), sep=sep, names=["a", "b"], encoding=encoding ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("quoting", [csv.QUOTE_MINIMAL, csv.QUOTE_NONE]) def test_multi_char_sep_quotes(python_parser_only, quoting): # see gh-13374 kwargs = {"sep": ",,"} parser = python_parser_only data = 'a,,b\n1,,a\n2,,"2,,b"' if quoting == csv.QUOTE_NONE: msg = "Expected 2 fields in line 3, saw 3" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), quoting=quoting, **kwargs) else: msg = "ignored when a multi-char delimiter is used" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), quoting=quoting, **kwargs) def test_none_delimiter(python_parser_only, capsys): # see gh-13374 and gh-17465 parser = python_parser_only data = "a,b,c\n0,1,2\n3,4,5,6\n7,8,9" expected = DataFrame({"a": [0, 7], "b": [1, 8], "c": [2, 9]}) # We expect the third line in the data to be # skipped because it is malformed, but we do # not expect any errors to occur. result = parser.read_csv( StringIO(data), header=0, sep=None, warn_bad_lines=True, error_bad_lines=False ) tm.assert_frame_equal(result, expected) captured = capsys.readouterr() assert "Skipping line 3" in captured.err @pytest.mark.parametrize("data", ['a\n1\n"b"a', 'a,b,c\ncat,foo,bar\ndog,foo,"baz']) @pytest.mark.parametrize("skipfooter", [0, 1]) def test_skipfooter_bad_row(python_parser_only, data, skipfooter): # see gh-13879 and gh-15910 parser = python_parser_only if skipfooter: msg = "parsing errors in the skipped footer rows" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), skipfooter=skipfooter) else: msg = "unexpected end of data|expected after" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), skipfooter=skipfooter) def test_malformed_skipfooter(python_parser_only): parser = python_parser_only data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = "Expected 3 fields in line 4, saw 5" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), header=1, comment="#", skipfooter=1) @pytest.mark.parametrize("thousands", [None, "."]) @pytest.mark.parametrize( "value, result_value", [ ("1,2", 1.2), ("1,2e-1", 0.12), ("1,2E-1", 0.12), ("1,2e-10", 0.0000000012), ("1,2e1", 12.0), ("1,2E1", 12.0), ("-1,2e-1", -0.12), ("0,2", 0.2), (",2", 0.2), ], ) def test_decimal_and_exponential(python_parser_only, thousands, value, result_value): # GH#31920 data = StringIO( f"""a b 1,1 {value} """ ) result = python_parser_only.read_csv( data, "\t", decimal=",", engine="python", thousands=thousands ) expected = DataFrame({"a": [1.1], "b": [result_value]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("thousands", [None, "."]) @pytest.mark.parametrize( "value", ["e11,2", "1e11,2", "1,2,2", "1,2.1", "1,2e-10e1", "--1,2", "1a.2,1", "1..2,3"], ) def test_decimal_and_exponential_erroneous(python_parser_only, thousands, value): # GH#31920 data = StringIO( f"""a b 1,1 {value} """ ) result = python_parser_only.read_csv(data, "\t", decimal=",", thousands=thousands) expected = DataFrame({"a": [1.1], "b": [value]}) tm.assert_frame_equal(result, expected)
the-stack_106_22685
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import six import unittest from itertools import dropwhile from mock import patch, call from airflow import configuration from airflow.models.connection import Connection from airflow.utils import db from airflow.contrib.hooks.spark_sql_hook import SparkSqlHook def get_after(sentinel, iterable): """Get the value after `sentinel` in an `iterable`""" truncated = dropwhile(lambda el: el != sentinel, iterable) next(truncated) return next(truncated) class TestSparkSqlHook(unittest.TestCase): _config = { 'conn_id': 'spark_default', 'executor_cores': 4, 'executor_memory': '22g', 'keytab': 'privileged_user.keytab', 'name': 'spark-job', 'num_executors': 10, 'verbose': True, 'sql': ' /path/to/sql/file.sql ', 'conf': 'key=value,PROP=VALUE' } def setUp(self): configuration.load_test_config() db.merge_conn( Connection( conn_id='spark_default', conn_type='spark', host='yarn://yarn-master') ) def test_build_command(self): hook = SparkSqlHook(**self._config) # The subprocess requires an array but we build the cmd by joining on a space cmd = ' '.join(hook._prepare_command("")) # Check all the parameters assert "--executor-cores {}".format(self._config['executor_cores']) in cmd assert "--executor-memory {}".format(self._config['executor_memory']) in cmd assert "--keytab {}".format(self._config['keytab']) in cmd assert "--name {}".format(self._config['name']) in cmd assert "--num-executors {}".format(self._config['num_executors']) in cmd sql_path = get_after('-f', hook._prepare_command("")) assert self._config['sql'].strip() == sql_path # Check if all config settings are there for kv in self._config['conf'].split(","): k, v = kv.split('=') assert "--conf {0}={1}".format(k, v) in cmd if self._config['verbose']: assert "--verbose" in cmd @patch('airflow.contrib.hooks.spark_sql_hook.subprocess.Popen') def test_spark_process_runcmd(self, mock_popen): # Given mock_popen.return_value.stdout = six.StringIO('Spark-sql communicates using stdout') mock_popen.return_value.stderr = six.StringIO('stderr') mock_popen.return_value.wait.return_value = 0 # When hook = SparkSqlHook( conn_id='spark_default', sql='SELECT 1' ) with patch.object(hook.log, 'debug') as mock_debug: with patch.object(hook.log, 'info') as mock_info: hook.run_query() mock_debug.assert_called_with( 'Spark-Sql cmd: %s', ['spark-sql', '-e', 'SELECT 1', '--master', 'yarn', '--name', 'default-name', '--verbose', '--queue', 'default'] ) mock_info.assert_called_with( 'Spark-sql communicates using stdout' ) # Then self.assertEqual( mock_popen.mock_calls[0], call(['spark-sql', '-e', 'SELECT 1', '--master', 'yarn', '--name', 'default-name', '--verbose', '--queue', 'default'], stderr=-2, stdout=-1) ) if __name__ == '__main__': unittest.main()
the-stack_106_22686
#! /usr/bin/env python2.7 import pika import sys import json message = ' '.join(sys.argv[1:]) or "Hello World!" def broadcast (message): connection = pika.BlockingConnection(pika.ConnectionParameters( 'localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body=message) print(" [x] Sent '",message,"'") connection.close data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ] broadcast(repr(data)) data_string = json.dumps(data) broadcast(data_string) json_string = '''{ "firstName": "John","age": 25,"address": {"streetAddress": "21 2nd Street","city": "New York","state": "NY","postalCode": "10021"},"phoneNumber": [{"type": "home","number": "212 555-1234"},{"type": "fax","number": "646 555-4567"}]}''' broadcast(json_string)
the-stack_106_22691
# Copyright 2021, Robotec.ai sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Launchfile for benchmarking rosbag2. This launchfile can only be launched with 'ros2 launch' command. Two launch arguments are required: * benchmark - path to benchmark description in yaml format ('benchmark:=<PATH>'), * producers - path to producers description in yaml format ('producers:=<PATH>'). Goal of this launchfile is to launch in sequence all processes and/or nodes with right parameters required for selected benchmark. Cross section of parameters is generated based on parameters from 'benchmark' yaml description file. Based on 'no_transport' parameter in benchmark description, a single run in launch sequence looks as follow: NO TRANSPORT: Only 'writer_benchmark' node is used as 'producer node' (PN). It directly writes messages to a storage and then fill up a result file. No additional processes are required. PN starts -> PN exits TRANSPORT: For end-to-end benchmark, `ros2 bag record` (ROSBAG) process and 'result writer' (RW) are also included in a single launch sequence run. In this case 'benchmark_publishers' node act as producer node. Result writer node writes final result file. ROSBAG starts -> PN starts -> PN exits -> ROSBAG exits -> RW starts After the whole sequence is finished, both producers and benchmark description files are copied to benchmark folder. """ import datetime import os import pathlib import shutil import signal import sys from ament_index_python import get_package_share_directory import launch import launch_ros import yaml _bench_cfg_path = None _producers_cfg_path = None _producer_idx = 0 _producer_nodes = [] _rosbag_processes = [] _rosbag_pid = None _result_writers = [] def _parse_arguments(args=sys.argv[4:]): """Parse benchmark and producers config file paths.""" bench_cfg_path = None producers_cfg_path = None err_str = 'Missing or invalid arguments detected. ' \ 'Launchfile requires "benchmark:=" and "producers:=" arguments ' \ 'with coresponding config files.' if len(args) != 2: raise RuntimeError(err_str) else: for arg in args: if 'benchmark:=' in arg: bench_cfg_path = pathlib.Path(arg.replace('benchmark:=', '')) if not bench_cfg_path.is_file(): raise RuntimeError( 'Batch config file {} does not exist.'.format(bench_cfg_path) ) elif 'producers:=' in arg: producers_cfg_path = pathlib.Path(arg.replace('producers:=', '')) if not producers_cfg_path.is_file(): raise RuntimeError( 'Producers config file {} does not exist.'.format(producers_cfg_path) ) else: raise RuntimeError(err_str) return bench_cfg_path, producers_cfg_path def _copy_config_files(): """Copy benchmark and producers config files to benchmark folder.""" global _bench_cfg_path, _producers_cfg_path # Copy yaml configs for current benchmark after benchmark is finished benchmark_path = pathlib.Path(_producer_nodes[0]['parameters']['db_folder']) shutil.copy(str(_bench_cfg_path), str(benchmark_path.with_name('benchmark.yaml'))) shutil.copy(str(_producers_cfg_path), str(benchmark_path.with_name('producers.yaml'))) def _launch_sequence(transport): """ Continue with launch sequence (launch entry action of next run). Launches next producer node or rosbag2 record process, based on transport (end to end) or transportless type of benchmark. :param" transport If True launch a 'ros2 bag record' process, else a producer node. """ global _producer_idx, _producer_nodes, _rosbag_processes if _producer_idx == len(_producer_nodes): _copy_config_files() return launch.actions.LogInfo(msg='Benchmark finished!') action = None if transport: action = _rosbag_processes[_producer_idx] else: action = _producer_nodes[_producer_idx]['node'] return action def _rosbag_proc_started(event, context): """Register current rosbag2 PID so we can terminate it when producer exits.""" global _rosbag_pid _rosbag_pid = event.pid def _rosbag_ready_check(event): """ Consider rosbag2 ready when 'Listening for topics...' string is printed. Launches producer node if ready. """ target_str = 'Listening for topics...' if target_str in event.text.decode(): return _launch_sequence(transport=False) def _rosbag_proc_exited(event, context): """ Start next rosbag2 record process after current one exits. Launches result writer on exit. """ global _producer_idx, _result_writers, _rosbag_pid # ROS2 bag returns 2 if terminated with SIGINT, which we expect here if event.returncode != 2: _rosbag_pid = None return [ launch.actions.LogInfo(msg='Rosbag2 record error. Shutting down benchmark.'), launch.actions.EmitEvent( event=launch.events.Shutdown( reason='Rosbag2 record error' ) ) ] return [ _result_writers[_producer_idx-1] ] def _producer_node_started(event, context): """Log current benchmark progress on producer start.""" global _producer_idx return launch.actions.LogInfo( msg='-----------{}/{}-----------'.format(_producer_idx + 1, len(_producer_nodes)) ) def _producer_node_exited(event, context): """ Launch new producer when current has finished. If transport is on, then stops rosbag2 recorder process. Handles clearing of bags. """ global _producer_idx, _producer_nodes, _rosbag_pid node_params = _producer_nodes[_producer_idx]['parameters'] transport = node_params['transport'] # Handle clearing bag files if not node_params['preserve_bags']: db_files = pathlib.Path.cwd().joinpath(node_params['db_folder']).glob('*.db3') for f in db_files: f.unlink() # If we have non empty rosbag PID, then we need to kill it (end-to-end transport case) if _rosbag_pid is not None and transport: os.kill(_rosbag_pid, signal.SIGINT) _rosbag_pid = None # Shutdown benchmark with error if producer node crashes if event.returncode != 0: return [ launch.actions.LogInfo(msg='Writer error. Shutting down benchmark.'), launch.actions.EmitEvent( event=launch.events.Shutdown( reason='Writer error' ) ) ] # Bump up producer index, so the launch sequence can continue _producer_idx += 1 return [ launch.actions.LogInfo( msg='---------------------------' ), _launch_sequence(transport=transport) ] def generate_launch_description(): """Generate launch description for ros2 launch system.""" global _producer_nodes, _bench_cfg_path, _producers_cfg_path _bench_cfg_path, _producers_cfg_path = _parse_arguments() # Parse yaml config for benchmark bench_cfg = None with open(_bench_cfg_path, 'r') as config_file: bench_cfg_yaml = yaml.load(config_file, Loader=yaml.FullLoader) bench_cfg = (bench_cfg_yaml['rosbag2_performance_benchmarking'] ['benchmark_node'] ['ros__parameters']) # Benchmark options benchmark_params = bench_cfg['benchmark'] repeat_each = benchmark_params.get('repeat_each') db_root_folder = benchmark_params.get('db_root_folder') summary_result_file = benchmark_params.get('summary_result_file') transport = not benchmark_params.get('no_transport') preserve_bags = benchmark_params.get('preserve_bags') # Producers options producers_params = bench_cfg['benchmark']['parameters'] max_cache_size_params = producers_params.get('max_cache_size') max_bag_size_params = producers_params.get('max_bag_size') compression_params = producers_params.get('compression') compression_queue_size_params = producers_params.get('compression_queue_size') compression_threads_params = producers_params.get('compression_threads') storage_config_file_params = producers_params.get('storage_config_file') # Parameters cross section for whole benchmark # Parameters cross section is a list of all possible parameters variants params_cross_section = [] # Generate unique benchmark directory name benchmark_cfg_name = pathlib.Path(_bench_cfg_path).name.replace('.yaml', '') producer_cfg_name = pathlib.Path(_producers_cfg_path).name.replace('.yaml', '') timestamp = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') transport_postfix = 'transport' if transport else 'no_transport' benchmark_dir_name = benchmark_cfg_name + \ '_' + producer_cfg_name + \ '_' + transport_postfix + \ '_' + timestamp # Helper function for generating cross section list def __generate_cross_section_parameter(i, cache, compression, compression_queue_size, compression_threads, storage_config, max_bag_size): # Storage conf parameter for each producer st_conf_filename = storage_config.replace('.yaml', '') storage_conf_path = '' if storage_config != '': storage_conf_path = pathlib.Path( get_package_share_directory( 'rosbag2_performance_benchmarking' ) ).joinpath('config', 'storage', storage_config) if not storage_conf_path.exists(): raise RuntimeError( 'Config {} does not exist.'.format(storage_config)) st_conf_filename = pathlib.Path(storage_config).with_suffix('') # Generates unique title for producer node_title = 'run_' + \ '{i}_{cache}_{comp}_{comp_q}_{comp_t}_{st_conf}_{bag_size}'.format( i=i, cache=cache, comp=compression if compression else 'default_compression', comp_q=compression_queue_size, comp_t=compression_threads, st_conf=st_conf_filename if st_conf_filename else 'default_config', bag_size=max_bag_size ) # Result file path for producer result_file = pathlib.Path(db_root_folder).joinpath( benchmark_dir_name, summary_result_file ) # Database folder path for producer db_folder = pathlib.Path(db_root_folder).joinpath( benchmark_dir_name, node_title ) # Filling up parameters cross section list for benchmark params_cross_section.append( { 'node_title': node_title, 'db_folder': str(db_folder), 'cache': cache, 'preserve_bags': preserve_bags, 'transport': transport, 'result_file': str(result_file), 'compression_format': compression, 'compression_queue_size': compression_queue_size, 'compression_threads': compression_threads, 'storage_config_file': str(storage_conf_path), 'config_file': str(_producers_cfg_path), 'max_bag_size': max_bag_size } ) # For the sake of python indentation, multiple for loops in alternative way with helper func [ __generate_cross_section_parameter( i, cache, compression, compression_queue_size, compression_threads, storage_config, max_bag_size) for i in range(0, repeat_each) for cache in max_cache_size_params for compression in compression_params for compression_queue_size in compression_queue_size_params for compression_threads in compression_threads_params for storage_config in storage_config_file_params for max_bag_size in max_bag_size_params ] ld = launch.LaunchDescription() ld.add_action( launch.actions.LogInfo(msg='Launching benchmark!'), ) # Create all required nodes and processes for benchmark for producer_param in params_cross_section: parameters = [ producer_param['config_file'], {'max_cache_size': producer_param['cache']}, {'max_bag_size': producer_param['max_bag_size']}, {'db_folder': producer_param['db_folder']}, {'results_file': producer_param['result_file']}, {'compression_queue_size': producer_param['compression_queue_size']}, {'compression_threads': producer_param['compression_threads']} ] if producer_param['storage_config_file'] != '': parameters.append({'storage_config_file': producer_param['storage_config_file']}) if producer_param['compression_format'] != '': parameters.append({'compression_format': producer_param['compression_format']}) if not transport: # Writer benchmark node writes messages directly to a storage, uses no publishers producer_node = launch_ros.actions.Node( package='rosbag2_performance_benchmarking', executable='writer_benchmark', name='rosbag2_performance_benchmarking_node', parameters=parameters ) else: # Benchmark publishers node uses standard publishers for publishing messages producer_node = launch_ros.actions.Node( package='rosbag2_performance_benchmarking', executable='benchmark_publishers', name='rosbag2_performance_benchmarking_node', parameters=parameters ) # ROS2 bag process for recording messages rosbag_args = [] if producer_param['storage_config_file']: rosbag_args += [ '--storage-config-file', str(producer_param['storage_config_file']) ] if producer_param['cache']: rosbag_args += [ '--max-cache-size', str(producer_param['cache']) ] if producer_param['compression_format']: rosbag_args += [ '--compression-mode', 'message' ] rosbag_args += [ '--compression-format', str(producer_param['compression_format']) ] if producer_param['compression_queue_size']: rosbag_args += [ '--compression-queue-size', str(producer_param['compression_queue_size']) ] if producer_param['compression_threads']: rosbag_args += [ '--compression-threads', str(producer_param['compression_threads']) ] if producer_param['max_bag_size']: rosbag_args += [ '-b', str(producer_param['max_bag_size']) ] rosbag_args += ['-o', str(producer_param['db_folder'])] rosbag_process = launch.actions.ExecuteProcess( sigkill_timeout=launch.substitutions.LaunchConfiguration( 'sigkill_timeout', default=60), sigterm_timeout=launch.substitutions.LaunchConfiguration( 'sigterm_timeout', default=60), cmd=['ros2', 'bag', 'record', '-a'] + rosbag_args ) # Result writer node walks through output metadata files and generates # output results file result_writer = launch_ros.actions.Node( package='rosbag2_performance_benchmarking', executable='results_writer', name='rosbag2_performance_benchmarking_node', parameters=parameters ) # Fill up list with rosbag record process and result writers actions _rosbag_processes.append(rosbag_process) _result_writers.append(result_writer) # Fill up dict with producer nodes and their corresponding parameters _producer_nodes.append({'node': producer_node, 'parameters': producer_param}) # Connect start and exit events for a proper sequence if not transport: for producer_node in _producer_nodes: ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessExit( target_action=producer_node['node'], on_exit=_producer_node_exited ) ) ) ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessStart( target_action=producer_node['node'], on_start=_producer_node_started ) ) ) else: for producer_node, rosbag_proc in zip(_producer_nodes, _rosbag_processes): ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessExit( target_action=producer_node['node'], on_exit=_producer_node_exited ) ) ) ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessStart( target_action=producer_node['node'], on_start=_producer_node_started ) ) ), ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessStart( target_action=rosbag_proc, on_start=_rosbag_proc_started ) ) ) ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessIO( target_action=rosbag_proc, on_stdout=_rosbag_ready_check, on_stderr=_rosbag_ready_check ) ) ) ld.add_action( launch.actions.RegisterEventHandler( launch.event_handlers.OnProcessExit( target_action=rosbag_proc, on_exit=_rosbag_proc_exited ) ) ) # Launch nodes one after another. Next node is launched after previous is finished. ld.add_action(_launch_sequence(transport=transport)) return ld if __name__ == '__main__': raise RuntimeError('Benchmark launchfile does not support standalone execution.')
the-stack_106_22692
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2019 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Script to run neighbourhood processing.""" from improver import cli from improver.constants import DEFAULT_PERCENTILES @cli.clizefy @cli.with_output def process(cube: cli.inputcube, mask: cli.inputcube = None, *, neighbourhood_output, neighbourhood_shape, radii: cli.comma_separated_list, lead_times: cli.comma_separated_list = None, degrees_as_complex=False, weighted_mode=False, area_sum=False, remask=False, percentiles: cli.comma_separated_list = DEFAULT_PERCENTILES, halo_radius: float = None): """Runs neighbourhood processing. Apply the requested neighbourhood method via the NeighbourhoodProcessing plugin to a Cube. Args: cube (iris.cube.Cube): The Cube to be processed. mask (iris.cube.Cube): A cube to mask the input cube. The data should contain 1 for usable points and 0 for discarded points. Only supported with square neighbourhoods. (Optional) neighbourhood_output (str): The form of the results generated using neighbourhood processing. If "probabilities" is selected, the mean probability with a neighbourhood is calculated. If "percentiles" is selected, then the percentiles are calculated with a neighbourhood. Calculating percentiles from a neighbourhood is only supported for a circular neighbourhood. Options: "probabilities", "percentiles". neighbourhood_shape (str): Name of the neighbourhood method to use. Only a "circular" neighbourhood shape is applicable for calculating "percentiles" output. Options: "circular", "square". radii (list of float): The radius or a list of radii in metres of the neighbourhood to apply. If it is a list, it must be the same length as lead_times, which defines at which lead time to use which nbhood radius. The radius will be interpolated for intermediate lead times. lead_times (list of int): The lead times in hours that correspond to the radii to be used. If lead_times are set, radii must be a list the same length as lead_times. degrees_as_complex (bool): Include this option to process angles as complex numbers. Not compatible with circular kernel or percentiles. weighted_mode (bool): Include this option to set the weighting to decrease with radius. Otherwise a constant weighting is assumed. weighted_mode is only applicable for calculating "probability" neighbourhood output using the circular kernel. area_sum (bool): Return sum rather than fraction over the neighbourhood area. remask (bool): Include this option to apply the original un-neighbourhood processed mask to the neighbourhood processed cube. Otherwise the original un-neighbourhood processed mask is not applied. Therefore, the neighbourhood processing may result in values being present in area that were originally masked. percentiles (float): Calculates value at the specified percentiles from the neighbourhood surrounding each grid point. This argument has no effect if the output is probabilities. halo_radius (float): Set this radius in metres to define the excess halo to clip. Used where a larger grid was defined than the standard grid and we want to clip the grid back to the standard grid. Otherwise no clipping is applied. Returns: iris.cube.Cube: A processed Cube. Raises: RuntimeError: If weighted_mode is used with the wrong neighbourhood_output. RuntimeError: If degree_as_complex is used with neighbourhood_output='percentiles'. RuntimeError: If degree_as_complex is used with neighbourhood_shape='circular'. """ from improver.nbhood import radius_by_lead_time from improver.nbhood.nbhood import ( GeneratePercentilesFromANeighbourhood, NeighbourhoodProcessing) from improver.utilities.pad_spatial import remove_cube_halo from improver.wind_calculations.wind_direction import WindDirection sum_or_fraction = 'sum' if area_sum else 'fraction' if neighbourhood_output == "percentiles": if weighted_mode: raise RuntimeError('weighted_mode cannot be used with' 'neighbourhood_output="percentiles"') if degrees_as_complex: raise RuntimeError('Cannot generate percentiles from complex ' 'numbers') if neighbourhood_shape == "circular": if degrees_as_complex: raise RuntimeError( 'Cannot process complex numbers with circular neighbourhoods') if degrees_as_complex: # convert cube data into complex numbers cube.data = WindDirection.deg_to_complex(cube.data) radius_or_radii, lead_times = radius_by_lead_time(radii, lead_times) if neighbourhood_output == "probabilities": result = NeighbourhoodProcessing( neighbourhood_shape, radius_or_radii, lead_times=lead_times, weighted_mode=weighted_mode, sum_or_fraction=sum_or_fraction, re_mask=remask)(cube, mask_cube=mask) elif neighbourhood_output == "percentiles": result = GeneratePercentilesFromANeighbourhood( neighbourhood_shape, radius_or_radii, lead_times=lead_times, percentiles=percentiles)(cube) if degrees_as_complex: # convert neighbourhooded cube back to degrees result.data = WindDirection.complex_to_deg(result.data) if halo_radius is not None: result = remove_cube_halo(result, halo_radius) return result
the-stack_106_22694
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for API compatibility between TensorFlow release versions. See [Version Compatibility](https://tensorflow.org/guide/version_compat#backward_forward) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import datetime from tensorflow.python.util import tf_contextlib from tensorflow.python.util.tf_export import tf_export _FORWARD_COMPATIBILITY_HORIZON = datetime.date(2019, 2, 23) @tf_export("compat.forward_compatible") def forward_compatible(year, month, day): """Return true if the forward compatibility window has expired. See [Version compatibility](https://tensorflow.org/guide/version_compat#backward_forward). Forward-compatibility refers to scenarios where the producer of a TensorFlow model (a GraphDef or SavedModel) is compiled against a version of the TensorFlow library newer than what the consumer was compiled against. The "producer" is typically a Python program that constructs and trains a model while the "consumer" is typically another program that loads and serves the model. TensorFlow has been supporting a 3 week forward-compatibility window for programs compiled from source at HEAD. For example, consider the case where a new operation `MyNewAwesomeAdd` is created with the intent of replacing the implementation of an existing Python wrapper - `tf.add`. The Python wrapper implementation should change from something like: ```python def add(inputs, name=None): return gen_math_ops.add(inputs, name) ``` to: ```python from tensorflow.python.compat import compat def add(inputs, name=None): if compat.forward_compatible(year, month, day): # Can use the awesome new implementation. return gen_math_ops.my_new_awesome_add(inputs, name) # To maintain forward compatibiltiy, use the old implementation. return gen_math_ops.add(inputs, name) ``` Where `year`, `month`, and `day` specify the date beyond which binaries that consume a model are expected to have been updated to include the new operations. This date is typically at least 3 weeks beyond the date the code that adds the new operation is committed. Args: year: A year (e.g., 2018). month: A month (1 <= month <= 12) in year. day: A day (1 <= day <= 31, or 30, or 29, or 28) in month. Returns: True if the caller can expect that serialized TensorFlow graphs produced can be consumed by programs that are compiled with the TensorFlow library source code after (year, month, day). """ return _FORWARD_COMPATIBILITY_HORIZON > datetime.date(year, month, day) @tf_export("compat.forward_compatibility_horizon") @tf_contextlib.contextmanager def forward_compatibility_horizon(year, month, day): """Context manager for testing forward compatibility of generated graphs. See [Version compatibility](https://tensorflow.org/guide/version_compat#backward_forward). To ensure forward compatibility of generated graphs (see `forward_compatible`) with older binaries, new features can be gated with: ```python if compat.forward_compatible(year=2018, month=08, date=01): generate_graph_with_new_features() else: generate_graph_so_older_binaries_can_consume_it() ``` However, when adding new features, one may want to unittest it before the forward compatibility window expires. This context manager enables such tests. For example: ```python from tensorflow.python.compat import compat def testMyNewFeature(self): with compat.forward_compatibility_horizon(2018, 08, 02): # Test that generate_graph_with_new_features() has an effect ``` Args : year: A year (e.g. 2018). month: A month (1 <= month <= 12) in year. day: A day (1 <= day <= 31, or 30, or 29, or 28) in month. Yields: Nothing. """ global _FORWARD_COMPATIBILITY_HORIZON try: old_compat_date = _FORWARD_COMPATIBILITY_HORIZON _FORWARD_COMPATIBILITY_HORIZON = datetime.date(year, month, day) yield finally: _FORWARD_COMPATIBILITY_HORIZON = old_compat_date
the-stack_106_22695
import sys from pysam import VariantFile """ mkdir prplot ; cd prplot bedtools intersect -wao -a $data/pingpong_ext/OUT/HGspecificvars_1.bed -b $data/pingpong_ext/OUT/pp/over/sspecific.short.hg-haps.sam.bed > rec1.short.bed bedtools intersect -wao -a $data/pingpong_ext/OUT/HGspecificvars_2.bed -b $data/pingpong_ext/OUT/pp/over/sspecific.short.hg-haps.sam.bed > rec2.short.bed bedtools intersect -wao -a $data/pingpong_ext/OUT/HGspecificvars_1.bed -b $data/pingpong_ext/OUT/pp/over/sspecific.long.hg-haps.sam.bed > rec1.long.bed bedtools intersect -wao -a $data/pingpong_ext/OUT/HGspecificvars_2.bed -b $data/pingpong_ext/OUT/pp/over/sspecific.long.hg-haps.sam.bed > rec2.long.bed cat rec1.short.bed rec1.long.bed > rec1.bed cat rec2.short.bed rec2.long.bed > rec2.bed bedtools intersect -wao -b $data/pingpong_ext/OUT/HGspecificvars_1.bed -a $data/pingpong_ext/OUT/pp/over/sspecific.short.hg-haps.sam.bed > pre1.short.bed bedtools intersect -wao -b $data/pingpong_ext/OUT/HGspecificvars_2.bed -a $data/pingpong_ext/OUT/pp/over/sspecific.short.hg-haps.sam.bed > pre2.short.bed bedtools intersect -wao -b $data/pingpong_ext/OUT/HGspecificvars_1.bed -a $data/pingpong_ext/OUT/pp/over/sspecific.long.hg-haps.sam.bed > pre1.long.bed bedtools intersect -wao -b $data/pingpong_ext/OUT/HGspecificvars_2.bed -a $data/pingpong_ext/OUT/pp/over/sspecific.long.hg-haps.sam.bed > pre2.long.bed cat pre1.short.bed pre1.long.bed > pre1.bed cat pre2.short.bed pre2.long.bed > pre2.bed """ def parse_recbed(bed_path): alleles = {} for line in open(bed_path): line = line.strip('\n').split('\t') ref, vidx, ridx, covering = line[0], line[3], line[8], int(line[-1]) aidx = vidx + ('2' if ref.endswith("_2") else '1') if aidx not in alleles: alleles[aidx] = set() if covering > 0: alleles[aidx].add(ridx) return alleles def recall(alleles, cutoff): total = 0 hits = 0 for ridxs in alleles.values(): total += 1 if any([int(ridx.split('#')[1]) >= cutoff for ridx in ridxs]): hits += 1 return hits, total # precision setup def count_sample(fq_path): # assuming fastq n = 4 reads_by_coverage = {} for line in open(fq_path): if n % 4 == 0: line = line[1:-1] # removes @ and \n cov = int(line.split('#')[1]) reads_by_coverage[cov] = reads_by_coverage[cov] + 1 if cov in reads_by_coverage else 1 n = 0 n += 1 return reads_by_coverage def parse_vcf(vcf_path, sample1="HG00733", sample2="NA19240"): variants = {} vcf = VariantFile(vcf_path) for record in vcf.fetch(): idx = record.id gt1, gt2 = record.samples[sample1]["GT"] gt1_2, gt2_2 = record.samples[sample2]["GT"] variants[idx] = [(gt1, gt2), (gt1_2, gt2_2)] return variants def parse_prebed(bed_path, firsthap): alignments = {} for line in open(bed_path): line = line.strip('\n').split('\t') ref, start, end, ridx, vidx, covering = line[0], line[1], line[2], line[3], line[9], int(line[-1]) if ref.endswith("_2") and firsthap: continue posidx = ridx + ":" + start + "-" + end if posidx not in alignments: alignments[posidx] = set() if covering > 0: if vidx == ".": print(line) exit(1) alignments[posidx].add(vidx) return alignments def check_haplo_uniqueness(variants, firsthap=True): HGhaplo = [v[0][not firsthap] for v in variants] NAhaplo1 = [v[1][0] for v in variants] NAhaplo2 = [v[1][1] for v in variants] return HGhaplo != NAhaplo1 and HGhaplo != NAhaplo2 def precision(alignments1, alignments2, variants, cutoff): covering_results = {} for posidx, vidxs in alignments1.items(): ridx = posidx.split(':')[0] if int(ridx.split('#')[1]) < cutoff: continue if ridx not in covering_results: covering_results[ridx] = False if len(vidxs) > 0: covered_variants = [variants[vidx] for vidx in vidxs] unique = check_haplo_uniqueness(covered_variants, True) covering_results[ridx] = covering_results[ridx] or unique for posidx, vidxs in alignments2.items(): ridx = posidx.split(':')[0] if int(ridx.split('#')[1]) < cutoff: continue if ridx not in covering_results: covering_results[ridx] = False if len(vidxs) > 0: covered_variants = [variants[vidx] for vidx in vidxs] unique = check_haplo_uniqueness(covered_variants, False) covering_results[ridx] = covering_results[ridx] or unique covering = 0 for ridx, flag in covering_results.items(): if flag: covering += 1 return covering def main(): fq_path = sys.argv[1] vcf_path = sys.argv[2] rec1_waobed = sys.argv[3] # bedtools intersect -wao {variants} {alignments} rec2_waobed = sys.argv[4] pre1_waobed = sys.argv[5] # bedtools intersect -wao {alignments} {variants} pre2_waobed = sys.argv[6] # # RECALL # alleles1 = parse_recbed(rec1_waobed) # print("Parsed rec1", file=sys.stderr) # alleles2 = parse_recbed(rec2_waobed) # print("Parsed rec2", file=sys.stderr) # alleles = {**alleles1, **alleles2} # print("Combined", file=sys.stderr) # for c in range(5, 11): # print(f"Computing recall with c={c}", file=sys.stderr) # hits, total = recall(alleles, c) # R = round(hits/total*100 if total > 0 else 0, 3) # print("R", c, hits, total, R, sep=',') # PRECISION print("Parsing sample", file=sys.stderr) reads_by_coverage = count_sample(fq_path) print("Parsing VCF", file=sys.stderr) variants = parse_vcf(vcf_path) print("Parsing pre1", file=sys.stderr) alignments1 = parse_prebed(pre1_waobed, True) print("Parsing pre2", file=sys.stderr) alignments2 = parse_prebed(pre2_waobed, False) for c in range(5, 11): print(f"Computing recall with c={c}", file=sys.stderr) covering = precision(alignments1, alignments2, variants, c) total = 0 # TODO improve this for cutoff,n in reads_by_coverage.items(): if cutoff >= c: total += n P = round(covering/total*100 if total != 0 else 0, 3) print("P", c, covering, total, P, sep=',') if __name__ == "__main__": main()
the-stack_106_22696
from train_model import joblib from process_picture import obtain_one_picture def image_identification(image, model_type): """ :param: image :param: model_type :return: """ x_data = obtain_one_picture(image) # deal with picture clr = joblib.load("model/" + model_type +".pkl") return clr.predict([x_data])[0] if __name__ == '__main__': # the picture come from img test result = image_identification("img/1234.jpg", "lr") m_dict = joblib.load("img/m_dict.pkl") print("The picture class is: {}, and number path is {}".format(result, m_dict[result]))
the-stack_106_22697
# Copyright 2017 Bernhard Walter # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Credits: http://stackoverflow.com/a/11927374 import os import socket import logging from .utils import Singleton from six import with_metaclass class LogLevel(with_metaclass(Singleton)): def __init__(self): self.logLevel = "INFO" def setLogLevel(self, logLevel): self.logLevel = logLevel def getLogLevel(self): return self.logLevel class TruncatingFormatter(logging.Formatter): def __init__(self, fmt=None, datefmt=None, size=400, noNL=True): super(TruncatingFormatter, self).__init__(fmt, datefmt) self.size = size self.noNL = noNL def truncate(self, text, size=80, noNL=True): if len(text) < self.size: ret = text else: ret = text[:self.size-6] + " [...(%d)]" % (len(text) - self.size) if self.noNL: return ret.replace("\n", "\\n") else: return ret def format(self, record): record.message = self.truncate(record.getMessage()) if self.usesTime(): record.asctime = self.formatTime(record, self.datefmt) return self._fmt % record.__dict__ class Logger(object): def __init__(self, name, size=400, noNL=True): logLevel = LogLevel().getLogLevel() logger = logging.getLogger(name) logger.setLevel(logLevel) if not logger.handlers: log_dir = os.environ["ZEPPELIN_LOG_DIR"] prefix = "zeppelin-interpreter-pyspark-comm-layer" file_name = os.path.join(log_dir, '%s-%s-%s.log' % (prefix, os.environ["USER"], socket.gethostname())) handler = logging.FileHandler(file_name) formatter = TruncatingFormatter('%(asctime)s %(levelname)s:%(name)s %(message)s', size=size, noNL=noNL) handler.setFormatter(formatter) handler.setLevel(logLevel) logger.addHandler(handler) self._logger = logger def get(self): return self._logger
the-stack_106_22698
"""Script to convert an old-structure influxdb to a new one.""" import argparse import sys from typing import List # Based on code at # http://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console def print_progress(iteration: int, total: int, prefix: str = '', suffix: str = '', decimals: int = 2, bar_length: int = 68) -> None: """Print progress bar. Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : number of decimals in percent complete (Int) barLength - Optional : character length of bar (Int) """ filled_length = int(round(bar_length * iteration / float(total))) percents = round(100.00 * (iteration / float(total)), decimals) line = '#' * filled_length + '-' * (bar_length - filled_length) sys.stdout.write('%s [%s] %s%s %s\r' % (prefix, line, percents, '%', suffix)) sys.stdout.flush() if iteration == total: print("\n") def run(script_args: List) -> int: """Run the actual script.""" from influxdb import InfluxDBClient parser = argparse.ArgumentParser( description="Migrate legacy influxDB.") parser.add_argument( '-d', '--dbname', metavar='dbname', required=True, help="InfluxDB database name") parser.add_argument( '-H', '--host', metavar='host', default='127.0.0.1', help="InfluxDB host address") parser.add_argument( '-P', '--port', metavar='port', default=8086, help="InfluxDB host port") parser.add_argument( '-u', '--username', metavar='username', default='root', help="InfluxDB username") parser.add_argument( '-p', '--password', metavar='password', default='root', help="InfluxDB password") parser.add_argument( '-s', '--step', metavar='step', default=1000, help="How many points to migrate at the same time") parser.add_argument( '-o', '--override-measurement', metavar='override_measurement', default="", help="Store all your points in the same measurement") parser.add_argument( '-D', '--delete', action='store_true', default=False, help="Delete old database") parser.add_argument( '--script', choices=['influxdb_migrator']) args = parser.parse_args() # Get client for old DB client = InfluxDBClient(args.host, args.port, args.username, args.password) client.switch_database(args.dbname) # Get DB list db_list = [db['name'] for db in client.get_list_database()] # Get measurements of the old DB res = client.query('SHOW MEASUREMENTS') measurements = [measurement['name'] for measurement in res.get_points()] nb_measurements = len(measurements) # Move data # Get old DB name old_dbname = "{}__old".format(args.dbname) # Create old DB if needed if old_dbname not in db_list: client.create_database(old_dbname) # Copy data to the old DB print("Cloning from {} to {}".format(args.dbname, old_dbname)) for index, measurement in enumerate(measurements): client.query('''SELECT * INTO {}..:MEASUREMENT FROM ''' '"{}" GROUP BY *'.format(old_dbname, measurement)) # Print progress print_progress(index + 1, nb_measurements) # Delete the database client.drop_database(args.dbname) # Create new DB if needed client.create_database(args.dbname) client.switch_database(old_dbname) # Get client for new DB new_client = InfluxDBClient(args.host, args.port, args.username, args.password, args.dbname) # Counter of points without time point_wt_time = 0 print("Migrating from {} to {}".format(old_dbname, args.dbname)) # Walk into measurement for index, measurement in enumerate(measurements): # Get tag list res = client.query('''SHOW TAG KEYS FROM "{}"'''.format(measurement)) tags = [v['tagKey'] for v in res.get_points()] # Get field list res = client.query('''SHOW FIELD KEYS FROM "{}"'''.format(measurement)) fields = [v['fieldKey'] for v in res.get_points()] # Get points, convert and send points to the new DB offset = 0 while True: nb_points = 0 # Prepare new points new_points = [] # Get points res = client.query('SELECT * FROM "{}" LIMIT {} OFFSET ' '{}'.format(measurement, args.step, offset)) for point in res.get_points(): new_point = {"tags": {}, "fields": {}, "time": None} if args.override_measurement: new_point["measurement"] = args.override_measurement else: new_point["measurement"] = measurement # Check time if point["time"] is None: # Point without time point_wt_time += 1 print("Can not convert point without time") continue # Convert all fields for field in fields: try: new_point["fields"][field] = float(point[field]) except (ValueError, TypeError): if field == "value": new_key = "state" else: new_key = "{}_str".format(field) new_point["fields"][new_key] = str(point[field]) # Add tags for tag in tags: new_point["tags"][tag] = point[tag] # Set time new_point["time"] = point["time"] # Add new point to the new list new_points.append(new_point) # Count nb points nb_points += 1 # Send to the new db try: new_client.write_points(new_points) except Exception as exp: raise exp # If there is no points if nb_points == 0: # print("Measurement {} migrated".format(measurement)) break else: # Increment offset offset += args.step # Print progress print_progress(index + 1, nb_measurements) # Delete database if needed if args.delete: print("Dropping {}".format(old_dbname)) client.drop_database(old_dbname)
the-stack_106_22704
import torch.nn as nn from .blocks import LayerDepwiseDecode, LayerDepwiseEncode class MobileHairNet(nn.Module): def __init__(self, encode_block=LayerDepwiseEncode, decode_block=LayerDepwiseDecode, mobilenet_block=None, *args, **kwargs): super(MobileHairNet, self).__init__() self.encode_block = encode_block self.decode_block = decode_block self.make_layers() def make_layers(self): self.encode_layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=2, padding=1), self.encode_block(32, 64, reserve=True) ) self.encode_layer2 = nn.Sequential( self.encode_block(64, 128), self.encode_block(128, 128), ) self.encode_layer3 = nn.Sequential( self.encode_block(128, 256), self.encode_block(256,256) ) self.encode_layer4 = nn.Sequential( self.encode_block(256, 512), self.encode_block(512, 512), self.encode_block(512, 512), self.encode_block(512, 512), self.encode_block(512, 512), self.encode_block(512, 512), ) self.encode_layer5 = nn.Sequential( self.encode_block(512, 1024), self.encode_block(1024, 1024) ) self.decode_layer1 = nn.Upsample(scale_factor=2) self.decode_layer2 = nn.Sequential( nn.Conv2d(in_channels=1024, out_channels=64, kernel_size=1), self.decode_block(in_channel=64, out_channel=64, kernel_size=3), nn.Upsample(scale_factor=2) ) self.decode_layer3 = nn.Sequential( self.decode_block(in_channel=64, out_channel=64, kernel_size=3), nn.Upsample(scale_factor=2) ) self.decode_layer4 = nn.Sequential( self.decode_block(in_channel=64, out_channel=64, kernel_size=3), nn.Upsample(scale_factor=2) ) self.decode_layer5 = nn.Sequential( self.decode_block(in_channel=64, out_channel=64, kernel_size=3), nn.Upsample(scale_factor=2), self.decode_block(in_channel=64, out_channel=64, kernel_size=3), nn.Conv2d(in_channels=64, out_channels=2, kernel_size=3, padding=1) ) self.encode_to_decoder4 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1) self.encode_to_decoder3 = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1) self.encode_to_decoder2 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=1) self.encode_to_decoder1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=1) self.soft_max = nn.Softmax(dim=1) self._init_weight() def forward(self, x): #connet encode 4-> decode 1, encode 3-> decode 2, encode 2-> decode 3, encode 1-> decode 4 encode_layer1 = self.encode_layer1(x) encode_layer2 = self.encode_layer2(encode_layer1) encode_layer3 = self.encode_layer3(encode_layer2) encode_layer4 = self.encode_layer4(encode_layer3) encode_layer5 = self.encode_layer5(encode_layer4) encode_layer4 = self.encode_to_decoder4(encode_layer4) encode_layer3 = self.encode_to_decoder3(encode_layer3) encode_layer2 = self.encode_to_decoder2(encode_layer2) encode_layer1 = self.encode_to_decoder1(encode_layer1) decode_layer1 = self.decode_layer1(encode_layer5) + encode_layer4 decode_layer2 = self.decode_layer2(decode_layer1) + encode_layer3 decode_layer3 = self.decode_layer3(decode_layer2) + encode_layer2 decode_layer4 = self.decode_layer4(decode_layer3) + encode_layer1 out = self.decode_layer5(decode_layer4) return out def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias)
the-stack_106_22705
# coding: utf-8 # WaveMaker Code # by kense # ############ import numpy as np import matplotlib.pyplot as plt np.random.seed(seed=None) # random seed def jonswap(f,Hs,Tp): # JONSWAP function fp=1/float(Tp) TH = Tp/float(np.sqrt(Hs)) if TH<=3.6: gamma=5 elif (3.6<TH) and (TH<=5): gamma=np.exp(5.75-1.15*TH) else: gamma=1 if f<=fp: sigma = 0.07 else: sigma = 0.09 s=0.3125*Hs**2*Tp*(f/float(fp))**(-5)*np.exp(-1.25*(f/float(fp))**(-4))*(1-0.287*np.log(gamma))*gamma**(np.exp(-0.5*((f/float(fp)-1)/float(sigma))**2)) return s def x0(TDur,dt,Hs,Tp,f0,df,fHighCut,y,ny): # etaBC generation f=np.arange(f0,fHighCut+f0,df) omega=2*np.pi*f JS = np.zeros((1,f.size)) for ij in range(0,f.size-1): fL=f[ij] JS1 = jonswap(fL,Hs,Tp) JS[0,ij] = JS1 #tSpan=0:dt:TDur; tSpan=np.arange(0,TDur+dt,dt) etaBC=np.zeros((tSpan.size,1)) A=np.zeros((1,omega.size)) B=np.zeros((1,omega.size)) AB=np.random.standard_normal((1,2*omega.size)) #random Fourie coefficients for j in range(0,omega.size): A[0,j]=np.sqrt(JS[0,j]*df)*AB[0,j] B[0,j]=np.sqrt(JS[0,j]*df)*AB[0,omega.size+j] for i in range(0,tSpan.size): etaBC[i,0]=np.sum(A*np.cos(2*np.pi*f*tSpan[i])+B*np.sin(2*np.pi*f*tSpan[i])); # Initial Wave Surface # Print Check #print omega.size #print etaBC #plt.plot(tSpan,etaBC,'b-*') #plt.xlabel('Time[s]') #plt.ylabel('Eta[m]') #plt.grid() #plt.show() n = tSpan.size # Lets print output the Wave Maker file = open("waveMakerSignalrandom.inp","w") file.write("# This is a Wave Generation surface response at x=0\n") file.write("%.7f %.0f %.0f\n" % (dt, n, ny)) file.write("%.7f\n" % y) for i in range(0,tSpan.size): file.write("%.7f %.7f\n" % (tSpan[i],etaBC[i,0])) file.close() ## Which Fourie coefficients have been used file = open("randomAB.txt","w") file.write("# These are random Aj and Bj\n") for i in range(0,omega.size): file.write("%.7s %.7s\n" % (AB[0,i],AB[0,omega.size+i])) file.close()
the-stack_106_22706
import sys import getopt import re def main(argv): inname='' outname='' try: opts,args=getopt.getopt(argv,"hi:o:",["infile=","outfile=",]) except getopt.GetoptError: print('pbsv_tra_fliter.py -i <inputfile> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('pbsv_tra_fliter.py -i <inputfile> -o <outputfile>') sys.exit() elif opt in ("-i", "--infile"): inname = arg elif opt in ("-o", "--outfile"): outname = arg return inname,outname if __name__ == "__main__": inputname,outputname = main(sys.argv[1:]) inputfile = open(inputname) outputfile = open(outputname,'w') while 1: lines = inputfile.readlines(10000) if not lines: break for line1 in lines: line1 = line1.rstrip() cut1 = line1.strip().split('\t') if re.search('^#',line1): outputfile.write(str(line1)) outputfile.write('\n') else: cut2 = cut1[9] FORMAT = cut2.strip().split(':') GT = FORMAT[0] cut3 = cut1[7] INFO = cut3.strip().split(';') sv_type = INFO[0] if GT == '0/1' or GT == '1/1': if cut1[6] == 'PASS': if sv_type == 'SVTYPE=BND': outputfile.write(str(line1)) outputfile.write('\n') outputfile.close()
the-stack_106_22707
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR model and criterion classes. """ import torch import torch.nn.functional as F from torch import nn from util import box_ops from util.misc import (NestedTensor, nested_tensor_from_tensor_list, accuracy, get_world_size, interpolate, is_dist_avail_and_initialized) from .backbone import build_backbone from .matcher import build_matcher from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm, dice_loss, sigmoid_focal_loss) from .transformer import build_transformer class DETR(nn.Module): """ This is the DETR module that performs object detection """ def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False): """ Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) self.query_embed = nn.Embedding(num_queries, hidden_dim) self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1) self.backbone = backbone self.aux_loss = aux_loss def forward(self, samples: NestedTensor): """ The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, pos = self.backbone(samples) src, mask = features[-1].decompose() assert mask is not None hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0] outputs_class = self.class_embed(hs) outputs_coord = self.bbox_embed(hs).sigmoid() out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] class SetCriterion(nn.Module): """ This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer('empty_weight', empty_weight) def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients """ pred_logits = outputs['pred_logits'] device = pred_logits.device tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) losses = {'cardinality_error': card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # upsample predictions to the target size src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False) src_masks = src_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(src_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), "loss_dice": dice_loss(src_masks, target_masks, num_boxes), } return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { 'labels': self.loss_labels, 'cardinality': self.loss_cardinality, 'boxes': self.loss_boxes, 'masks': self.loss_masks } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == 'masks': # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) return losses class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def build(args): # the `num_classes` naming here is somewhat misleading. # it indeed corresponds to `max_obj_id + 1`, where max_obj_id # is the maximum id for a class in your dataset. For example, # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91. # As another example, for a dataset that has a single class with id 1, # you should pass `num_classes` to be 2 (max_obj_id + 1). # For more details on this, check the following discussion # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223 num_classes = 21 if args.dataset_file != 'coco' else 91 if args.dataset_file == "coco_panoptic": # for panoptic, we just add a num_classes that is large enough to hold # max_obj_id + 1, but the exact value doesn't really matter num_classes = 250 device = torch.device(args.device) backbone = build_backbone(args) transformer = build_transformer(args) model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if args.masks: losses += ["masks"] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) criterion.to(device) postprocessors = {'bbox': PostProcess()} if args.masks: postprocessors['segm'] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) return model, criterion, postprocessors
the-stack_106_22708
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE from unittest import mock from django.test import override_settings from promgen import models, rest, tests from promgen.notification.email import NotificationEmail from promgen.notification.linenotify import NotificationLineNotify from promgen.notification.user import NotificationUser class UserSplayTest(tests.PromgenTest): fixtures = ["testcases.yaml"] @override_settings(PROMGEN=tests.SETTINGS) @override_settings(CELERY_TASK_ALWAYS_EAGER=True) @mock.patch("promgen.notification.email.send_mail") @mock.patch("promgen.util.post") def test_user_splay(self, mock_email, mock_post): one = models.Service.objects.get(pk=1) NotificationUser.create(obj=one, value=one.owner.username) NotificationLineNotify.create(obj=one.owner, value="#foo") NotificationEmail.create(obj=one.owner, value="[email protected]") response = self.fireAlert() self.assertRoute(response, rest.AlertReceiver, 202) self.assertCount(models.Alert, 1, "Alert Queued") self.assertCount(models.AlertError, 0, "No failed alerts") # Since we test the specifics elsewhere, just want to check # the count of calls here self.assertEqual(mock_post.call_count, 1, "Called LINE Notify") self.assertEqual(mock_email.call_count, 1, "Called email") @override_settings(PROMGEN=tests.SETTINGS) @override_settings(CELERY_TASK_ALWAYS_EAGER=True) @mock.patch("promgen.notification.email.send_mail") def test_failed_user(self, mock_email): # We have one valid sender and one invalid one # The invalid one should be skipped while still letting # the valid one pass one = models.Service.objects.get(pk=1) NotificationEmail.create(obj=one, value="[email protected]") NotificationUser.create(obj=one, value="does not exist") response = self.fireAlert() self.assertRoute(response, rest.AlertReceiver, 202) self.assertCount(models.Alert, 1, "Alert Queued") self.assertCount(models.AlertError, 0, "No failed alerts") self.assertEqual(mock_email.call_count, 1, "Still called email")
the-stack_106_22711
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Module of the current Interactive Beam environment. For internal use only; no backwards-compatibility guarantees. Provides interfaces to interact with existing Interactive Beam environment. External Interactive Beam users please use interactive_beam module in application code or notebook. """ # pytype: skip-file from __future__ import absolute_import import atexit import importlib import logging import sys import apache_beam as beam from apache_beam.runners import runner from apache_beam.utils.interactive_utils import is_in_ipython from apache_beam.utils.interactive_utils import is_in_notebook # Interactive Beam user flow is data-centric rather than pipeline-centric, so # there is only one global interactive environment instance that manages # implementation that enables interactivity. _interactive_beam_env = None _LOGGER = logging.getLogger(__name__) def current_env(cache_manager=None): """Gets current Interactive Beam environment.""" global _interactive_beam_env if not _interactive_beam_env: _interactive_beam_env = InteractiveEnvironment(cache_manager) return _interactive_beam_env def new_env(cache_manager=None): """Creates a new Interactive Beam environment to replace current one.""" global _interactive_beam_env if _interactive_beam_env: _interactive_beam_env.cleanup() _interactive_beam_env = None return current_env(cache_manager) class InteractiveEnvironment(object): """An interactive environment with cache and pipeline variable metadata. Interactive Beam will use the watched variable information to determine if a PCollection is assigned to a variable in user pipeline definition. When executing the pipeline, interactivity is applied with implicit cache mechanism for those PCollections if the pipeline is interactive. Users can also visualize and introspect those PCollections in user code since they have handles to the variables. """ def __init__(self, cache_manager=None): self._cache_manager = cache_manager # Register a cleanup routine when kernel is restarted or terminated. if cache_manager: atexit.register(self.cleanup) # Holds class instances, module object, string of module names. self._watching_set = set() # Holds variables list of (Dict[str, object]). self._watching_dict_list = [] # Holds results of main jobs as Dict[Pipeline, PipelineResult]. # Each key is a pipeline instance defined by the end user. The # InteractiveRunner is responsible for populating this dictionary # implicitly. self._main_pipeline_results = {} # Holds results of background caching jobs as # Dict[Pipeline, PipelineResult]. Each key is a pipeline instance defined by # the end user. The InteractiveRunner is responsible for populating this # dictionary implicitly when a background caching jobs is started. self._background_caching_pipeline_results = {} self._cached_source_signature = {} self._tracked_user_pipelines = set() # Tracks the computation completeness of PCollections. PCollections tracked # here don't need to be re-computed when data introspection is needed. self._computed_pcolls = set() # Always watch __main__ module. self.watch('__main__') # Do a warning level logging if current python version is below 3.6. if sys.version_info < (3, 6): self._is_py_version_ready = False _LOGGER.warning('Interactive Beam requires Python 3.5.3+.') else: self._is_py_version_ready = True # Check if [interactive] dependencies are installed. try: import IPython # pylint: disable=unused-import import jsons # pylint: disable=unused-import import timeloop # pylint: disable=unused-import from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator # pylint: disable=unused-import self._is_interactive_ready = True except ImportError: self._is_interactive_ready = False _LOGGER.warning('Dependencies required for Interactive Beam PCollection ' 'visualization are not available, please use: `pip ' 'install apache-beam[interactive]` to install necessary ' 'dependencies to enable all data visualization features.') self._is_in_ipython = is_in_ipython() self._is_in_notebook = is_in_notebook() if not self._is_in_ipython: _LOGGER.warning('You cannot use Interactive Beam features when you are ' 'not in an interactive environment such as a Jupyter ' 'notebook or ipython terminal.') if self._is_in_ipython and not self._is_in_notebook: _LOGGER.warning('You have limited Interactive Beam features since your ' 'ipython kernel is not connected any notebook frontend.') @property def is_py_version_ready(self): """If Python version is above the minimum requirement.""" return self._is_py_version_ready @property def is_interactive_ready(self): """If the [interactive] dependencies are installed.""" return self._is_interactive_ready @property def is_in_ipython(self): """If the runtime is within an IPython kernel.""" return self._is_in_ipython @property def is_in_notebook(self): """If the kernel is connected to a notebook frontend. If not, it could be that the user is using kernel in a terminal or a unit test. """ return self._is_in_notebook def cleanup(self): # Utilizes cache manager to clean up cache from everywhere. if self.cache_manager(): self.cache_manager().cleanup() def watch(self, watchable): """Watches a watchable. A watchable can be a dictionary of variable metadata such as locals(), a str name of a module, a module object or an instance of a class. The variable can come from any scope even local. Duplicated variable naming doesn't matter since they are different instances. Duplicated variables are also allowed when watching. """ if isinstance(watchable, dict): self._watching_dict_list.append(watchable.items()) else: self._watching_set.add(watchable) def watching(self): """Analyzes and returns a list of pair lists referring to variable names and values from watched scopes. Each entry in the list represents the variable defined within a watched watchable. Currently, each entry holds a list of pairs. The format might change in the future to hold more metadata. Duplicated pairs are allowed. And multiple paris can have the same variable name as the "first" while having different variable values as the "second" since variables in different scopes can have the same name. """ watching = list(self._watching_dict_list) for watchable in self._watching_set: if isinstance(watchable, str): module = importlib.import_module(watchable) watching.append(vars(module).items()) else: watching.append(vars(watchable).items()) return watching def set_cache_manager(self, cache_manager): """Sets the cache manager held by current Interactive Environment.""" if self._cache_manager is cache_manager: # NOOP if setting to the same cache_manager. return if self._cache_manager: # Invoke cleanup routine when a new cache_manager is forcefully set and # current cache_manager is not None. self.cleanup() atexit.unregister(self.cleanup) self._cache_manager = cache_manager if self._cache_manager: # Re-register cleanup routine for the new cache_manager if it's not None. atexit.register(self.cleanup) def cache_manager(self): """Gets the cache manager held by current Interactive Environment.""" return self._cache_manager def set_pipeline_result(self, pipeline, result, is_main_job): """Sets the pipeline run result. Adds one if absent. Otherwise, replace. When is_main_job is True, set the result for the main job; otherwise, set the result for the background caching job. """ assert issubclass(type(pipeline), beam.Pipeline), ( 'pipeline must be an instance of apache_beam.Pipeline or its subclass') assert issubclass(type(result), runner.PipelineResult), ( 'result must be an instance of ' 'apache_beam.runners.runner.PipelineResult or its subclass') if is_main_job: self._main_pipeline_results[pipeline] = result else: self._background_caching_pipeline_results[pipeline] = result def evict_pipeline_result(self, pipeline, is_main_job=True): """Evicts the tracking of given pipeline run. Noop if absent.""" if is_main_job: return self._main_pipeline_results.pop(pipeline, None) return self._background_caching_pipeline_results.pop(pipeline, None) def pipeline_result(self, pipeline, is_main_job=True): """Gets the pipeline run result. None if absent.""" if is_main_job: return self._main_pipeline_results.get(pipeline, None) return self._background_caching_pipeline_results.get(pipeline, None) def is_terminated(self, pipeline, is_main_job=True): """Queries if the most recent job (by executing the given pipeline) state is in a terminal state. True if absent.""" result = self.pipeline_result(pipeline, is_main_job=is_main_job) if result: return runner.PipelineState.is_terminal(result.state) return True def set_cached_source_signature(self, pipeline, signature): self._cached_source_signature[pipeline] = signature def get_cached_source_signature(self, pipeline): return self._cached_source_signature.get(pipeline, set()) def track_user_pipelines(self): """Record references to all user-defined pipeline instances watched in current environment. Current static global singleton interactive environment holds references to a set of pipeline instances defined by the user in the watched scope. Interactive Beam features could use the references to determine if a given pipeline is defined by user or implicitly created by Beam SDK or runners, then handle them differently. This is invoked every time a PTransform is to be applied if the current code execution is under ipython due to the possibility that any user-defined pipeline can be re-evaluated through notebook cell re-execution at any time. Each time this is invoked, the tracked user pipelines are refreshed to remove any pipeline instances that are no longer in watched scope. For example, after a notebook cell re-execution re-evaluating a pipeline creation, the last pipeline reference created by last evaluation will not be in watched scope anymore. """ self._tracked_user_pipelines = set() for watching in self.watching(): for _, val in watching: if isinstance(val, beam.pipeline.Pipeline): self._tracked_user_pipelines.add(val) @property def tracked_user_pipelines(self): return self._tracked_user_pipelines def mark_pcollection_computed(self, pcolls): """Marks computation completeness for the given pcolls. Interactive Beam can use this information to determine if a computation is needed to introspect the data of any given PCollection. """ self._computed_pcolls.update(pcoll for pcoll in pcolls) def evict_computed_pcollections(self): """Evicts all computed PCollections. Interactive Beam will treat none of the PCollections in any given pipeline as completely computed. """ self._computed_pcolls = set() @property def computed_pcollections(self): return self._computed_pcolls
the-stack_106_22712
from urllib.parse import urlparse from discord.ext import commands from .utils import utils import collections import traceback import functools import discord import inspect import logging import asyncio import datetime log = logging.getLogger(__name__) """ Credit to Danny(Rapptz) for example of custom commands It was based of his and improve from there with a lot of changes to my like. I believe this cogs is full of hack. """ class CreateCustom: def __init__(self,**kwargs): self.name = kwargs.get('name') self.content = kwargs.get('content') self.brief= kwargs.get('brief') self.guild_id= kwargs.get('guild_id') async def run_command(cmd,o,ctx,*args:str): """ Custom Command """ """ Args: cmd: CreateCustom Obj o: Nothing ctx: ctx *args: any remain message from user """ args = list(args) #ignore obj if(bool(urlparse(cmd.content).netloc)): temp = cmd.content.find(".", int(len(cmd.content)/2)) temp = cmd.content[temp:] picture = False for x in ["png","gif","jpg","bmp","jpeg"]: if x in temp.lower(): picture = True break if picture: embed = discord.Embed() embed.set_image(url = cmd.content) return await ctx.send(embed = embed) msg = ctx.message name = "" mention = "" #a bad way to fix it, way i know, sorry. cmd.content = cmd.content.replace("\\t","\t").replace("\\n","\n") if msg.mentions: #putting mention in ment = msg.mentions for i in range(len(ment)): x = ment.pop(0) blank = " " if len(ment) >1: blank = "," name += x.name + blank mention += x.mention + blank if args: log.debug("Cleaning out mentions") try: for l in range(len(args)): args.pop(args.index(x.mention)) #when there is dupe mention except Exception as e: log.debug(e) pass content = cmd.content.format(cmduser = msg.author.name,cmdmention = msg.author.mention, user = name, mention = mention,msg = " ".join(args)) await ctx.send(content[:2000]) #sorry folk, you wont make it past 2k! class CustomCmd(commands.Command): def __init__(self,func,**kwargs): self._entries = {} self.module = None super().__init__(func,**kwargs) self.name = kwargs.get("name",self.name) self.brief = kwargs.get("brief",self.brief) self.params = collections.OrderedDict() self.params["cog"] = self.cog # These are for help command to ignore errors by user. self.params["ctx"] = "nothing"# These are for help command to ignore errors by user. async def callback(self): pass #ignore any problem and JUST CARRY ON. async def invoke(self, ctx): server = ctx.message.guild if server is not None: log.debug("Invoke command: {} , guild ID {}".format(ctx.command.name,server.id)) entry = self._entries.get(server.id) if entry is None: return # update the callback called self.callback = functools.partial(run_command, entry) self.params = inspect.signature(self.callback).parameters await super().invoke(ctx) async def can_run(self,ctx): server = ctx.message.guild if server is not None: log.debug("checking conditions, {} , {}".format(ctx.command.name,server.id)) get_entry = self._entries.get(server.id) if get_entry: #to make brief for that server, totally hacky way? try: ctx.bot.get_command(get_entry.name).brief = get_entry.brief or "" except: #if user didn't enter brief in. pass return bool(get_entry) class Custom_Commands(commands.Cog, name = "Custom Commands"): """ An unique custom commands for your server! """ def __init__(self,bot): self.bot = bot self.redis = bot.db.redis self.starter = True self.bg = utils.Background("customcmd",60,50,self.timer,log) self.bot.background.update({"customcmd":self.bg}) self.bg.start() def cog_unload(self): self.bg.stop() def cog_check(self,ctx): return utils.is_enable(ctx,"custom commands") async def timer(self): try: for guild in list(self.bot.guilds): log.debug(guild) if await self.redis.hget("{}:Config:Cogs".format(guild.id),"custom commands") == "on": list_name = await self.redis.smembers("{}:Customcmd:update_delete".format(guild.id)) log.debug(list_name) if list_name: for name in list_name: #if it edit or delete, either way remove them, we will do fresh update cmd = self.bot.get_command(name) print(cmd) if cmd: #Set None.. for some reason doesn't exist? cmd._entries.pop(guild.id,None) await self.redis.delete("{}:Customcmd:update_delete".format(guild.id)) if await self.redis.get("{}:Customcmd:update".format(guild.id)) or list_name or self.starter is True: #Which mean there is update log.debug("adding commands") cmd_content = await self.redis.hgetall("{}:Customcmd:content".format(guild.id)) cmd_brief = await self.redis.hgetall("{}:Customcmd:brief".format(guild.id)) log.debug("commands contents: {}".format(cmd_content)) for name,content in cmd_content.items(): log.debug("name {} : content: {}".format(name,content)) brief = cmd_brief[name] entry = CreateCustom(name=name.lower(), content=content, brief = brief,guild_id=guild.id) self.create_command(entry) await self.redis.delete("{}:Customcmd:update".format(guild.id)) self.starter = False except asyncio.CancelledError: return utils.prRed("Asyncio Cancelled Error") except Exception as e: utils.prRed(e) utils.prRed(traceback.format_exc()) def create_command(self,cmd): cmd_exit = self.bot.get_command(cmd.name) log.debug(cmd_exit) if cmd_exit is None: #checking if we have exist command command = self.bot.command(name = cmd.name, brief = cmd.brief,cls = CustomCmd)(run_command) #Decorator command.cog = self #adding cog to command so it can format in help. command._entries[cmd.guild_id] = cmd elif isinstance(cmd_exit,CustomCmd): log.debug("command already exist") cmd_exit._entries[cmd.guild_id] = cmd def setup(bot): bot.add_cog(Custom_Commands(bot))
the-stack_106_22713
from datetime import datetime class PCB(object): def __init__(self, pid=0, name="", priority=0, arrival=0, burst=0, simArrival=0, simBurst=0): """ Variables were initially made to handle real-time CPU processing; However, all "sim" variables were later added to account for simulating CPU times.""" self.pid = pid self.name = name self.priority = priority self.after = None self.before = None self.arrival = arrival self.child = None self.state = None self.inQueue = None self.startTime = datetime.now() self.endTime = 0 self.runTime = 0 self.waitTime = 0 self.age = 0 self.burst = burst self.lastBurst = 0 self.avgBurst = 0 self.numBursts = 0 self.predictedBurst = 0 self.registers = [] #All simulation elements below: self.simArrival = simArrival self.simBurst = simBurst self.simWait = 0 self.simTurnAround = 0 self.simStartTime = 0 self.simEndTime = 0 self.simInitDefinedBurst = simBurst def complete(self, CPUStep): """ Called when a process has finished. Updates CPU times, and sim times. """ self.endTime = datetime.now() self.calculageAge() self.waitTime = self.age - self.runTime self.processSimTimes(CPUStep) def calculageAge(self): """Called to calculate the "real time" age an object lived.""" diff = self.endTime - self.startTime self.age = diff.total_seconds() * 1000 def inProcessing(self, CPUStep): """Update times when a PCB is admitted into CPU.""" self.runTime = datetime.now() self.simStartTime = CPUStep def outProcessing(self, CPUStep): """Update times when a PCB is leaving the CPU.""" diff = datetime.now() - self.runTime self.runTime = diff.total_seconds() * 1000 self.simEndTime = CPUStep def processSimTimes(self, CPUStep): """Calculate simulation times.""" self.simTurnAround = (CPUStep - self.simArrival) self.simWait = self.simTurnAround - self.simInitDefinedBurst def printSimTimes(self): """Print the simulation times.""" print("Finished PID:", self.pid) print("Arrived:", self.simArrival) print("Wait Time:", self.simWait) print("Turnaround:", self.simTurnAround) def printRawTime(self): """Print the raw CPU processing times.""" arrival = tmpPCB.arrival # comment out if you don't want to consider 'arrival' time, i.e., you want true arrival print("Arrived:", tmpPCB.arrival) print("Runtime:", tmpPCB.runTime) print("Wait Time:", tmpPCB.waitTime)# - tmpPCB.arrival) print("Turnaround:", tmpPCB.age)# - tmpPCB.arrival)
the-stack_106_22714
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import torch from nemo.collections.tts.data.datalayers import FastSpeech2Dataset class TestTTSDatasets: @pytest.mark.unit def test_fs2_dataset(self, test_data_dir): manifest_path = os.path.join(test_data_dir, 'tts/mini_ljspeech/manifest.json') mappings_file = os.path.join(test_data_dir, 'tts/mini_ljspeech/mappings.json') ignore_file = os.path.join(test_data_dir, 'tts/mini_ljspeech/wavs_to_ignore.pkl') # Test loading data (including supplementary data) with ignore file ds = FastSpeech2Dataset( manifest_filepath=manifest_path, mappings_filepath=mappings_file, sample_rate=22050, ignore_file=ignore_file, load_supplementary_values=True, ) assert len(ds) == 4 count = 0 for _ in ds: count += 1 assert count == 4
the-stack_106_22715
import os # after running this function, we need to manually remove the blank line in the head. def transfer_neuroner_into_ncrfpp(input_dir, output_dir, tag='BIO'): fin_train = open(os.path.join(input_dir, 'train.txt'), 'r') fin_dev = open(os.path.join(input_dir, 'valid.txt'), 'r') fin_test = open(os.path.join(input_dir, 'test.txt'), 'r') fout_train = open(os.path.join(output_dir, 'train.txt'), 'w') fout_dev = open(os.path.join(output_dir, 'valid.txt'), 'w') fout_test = open(os.path.join(output_dir, 'test.txt'), 'w') fin = [fin_train, fin_dev, fin_test] fout = [fout_train, fout_dev, fout_test] for fin_, fout_ in zip(fin, fout): out_lines = [] last_label = '' for line in fin_: line = line.strip() if line == '': if tag == 'BIOES': if len(out_lines) > 0 and last_label == 'B': last_out_line = out_lines[-1] position = last_out_line.rfind('B-') last_out_line = last_out_line[:position] + 'S' + last_out_line[position + 1:] out_lines[-1] = last_out_line elif len(out_lines) > 0 and last_label == 'I': last_out_line = out_lines[-1] position = last_out_line.rfind('I-') last_out_line = last_out_line[:position] + 'E' + last_out_line[position + 1:] out_lines[-1] = last_out_line out_lines.append('\n') last_label = '' continue if line.find('-DOCSTART-') != -1: continue columns = line.split() out_line = '' for idx, column in enumerate(columns): if idx == 0: out_line += column+' ' elif idx == 1: #out_line += '[POS]'+column+" " pass elif idx == 2: pass else: if tag == 'BIOES': if column[0]=='B': out_line += column+'\n' elif column[0]=='I': out_line += column+'\n' elif column[0] == 'O': if len(out_lines) > 0 and last_label=='B': last_out_line = out_lines[-1] position = last_out_line.rfind('B-') last_out_line = last_out_line[:position]+'S'+last_out_line[position+1:] out_lines[-1] = last_out_line elif len(out_lines) > 0 and last_label=='I': last_out_line = out_lines[-1] position = last_out_line.rfind('I-') last_out_line = last_out_line[:position] + 'E' + last_out_line[position + 1:] out_lines[-1] = last_out_line out_line += column+'\n' else: out_line += column+'\n' out_lines.append(out_line) last_label = column[0] for out_line in out_lines: fout_.write(out_line) fin_train.close() fin_dev.close() fin_test.close() fout_train.close() fout_dev.close() fout_test.close() if __name__ == '__main__': transfer_neuroner_into_ncrfpp('/Users/feili/project/NeuroNER/data/conll2003/en', '/Users/feili/project/NCRFpp_0914/NCRFpp/conll03', tag='BIOES') pass