filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_22367
import pytest from tests.actions.support.keys import Keys from tests.actions.support.refine import filter_dict, get_keys, get_events def test_null_response_value(session, key_chain): value = key_chain.key_up("a").perform() assert value is None value = session.actions.release() assert value is None def test_lone_keyup_sends_no_events(session, key_reporter, key_chain): key_chain.key_up("a").perform() assert len(get_keys(key_reporter)) == 0 assert len(get_events(session)) == 0 session.actions.release() assert len(get_keys(key_reporter)) == 0 assert len(get_events(session)) == 0 @pytest.mark.parametrize("value,code", [ (u"a", "KeyA",), ("a", "KeyA",), (u"\"", "Quote"), (u",", "Comma"), (u"\u00E0", ""), (u"\u0416", ""), (u"@", "Digit2"), (u"\u2603", ""), (u"\uF6C2", ""), # PUA ]) def test_single_printable_key_sends_correct_events(session, key_reporter, key_chain, value, code): key_chain \ .key_down(value) \ .key_up(value) \ .perform() expected = [ {"code": code, "key": value, "type": "keydown"}, {"code": code, "key": value, "type": "keypress"}, {"code": code, "key": value, "type": "keyup"}, ] all_events = get_events(session) events = [filter_dict(e, expected[0]) for e in all_events] if len(events) > 0 and events[0]["code"] == None: # Remove 'code' entry if browser doesn't support it expected = [filter_dict(e, {"key": "", "type": ""}) for e in expected] events = [filter_dict(e, expected[0]) for e in events] assert events == expected assert get_keys(key_reporter) == value @pytest.mark.parametrize("value", [ (u"\U0001F604"), (u"\U0001F60D"), ]) def test_single_emoji_records_correct_key(session, key_reporter, key_chain, value): # Not using key_chain.send_keys() because we always want to treat value as # one character here. `len(value)` varies by platform for non-BMP characters, # so we don't want to iterate over value. key_chain \ .key_down(value) \ .key_up(value) \ .perform() # events sent by major browsers are inconsistent so only check key value assert get_keys(key_reporter) == value @pytest.mark.parametrize("value,code,key", [ (u"\uE050", "ShiftRight", "Shift"), (u"\uE053", "OSRight", "Meta"), (Keys.CONTROL, "ControlLeft", "Control"), ]) def test_single_modifier_key_sends_correct_events(session, key_reporter, key_chain, value, code, key): key_chain \ .key_down(value) \ .key_up(value) \ .perform() all_events = get_events(session) expected = [ {"code": code, "key": key, "type": "keydown"}, {"code": code, "key": key, "type": "keyup"}, ] events = [filter_dict(e, expected[0]) for e in all_events] if len(events) > 0 and events[0]["code"] == None: # Remove 'code' entry if browser doesn't support it expected = [filter_dict(e, {"key": "", "type": ""}) for e in expected] events = [filter_dict(e, expected[0]) for e in events] assert events == expected assert len(get_keys(key_reporter)) == 0 @pytest.mark.parametrize("value,code,key", [ (Keys.ESCAPE, "Escape", "Escape"), (Keys.RIGHT, "ArrowRight", "ArrowRight"), ]) def test_single_nonprintable_key_sends_events(session, key_reporter, key_chain, value, code, key): key_chain \ .key_down(value) \ .key_up(value) \ .perform() expected = [ {"code": code, "key": key, "type": "keydown"}, {"code": code, "key": key, "type": "keypress"}, {"code": code, "key": key, "type": "keyup"}, ] all_events = get_events(session) events = [filter_dict(e, expected[0]) for e in all_events] if len(events) > 0 and events[0]["code"] == None: # Remove 'code' entry if browser doesn't support it expected = [filter_dict(e, {"key": "", "type": ""}) for e in expected] events = [filter_dict(e, expected[0]) for e in events] if len(events) == 2: # most browsers don't send a keypress for non-printable keys assert events == [expected[0], expected[2]] else: assert events == expected assert len(get_keys(key_reporter)) == 0 def test_sequence_of_keydown_printable_keys_sends_events(session, key_reporter, key_chain): key_chain \ .key_down("a") \ .key_down("b") \ .perform() expected = [ {"code": "KeyA", "key": "a", "type": "keydown"}, {"code": "KeyA", "key": "a", "type": "keypress"}, {"code": "KeyB", "key": "b", "type": "keydown"}, {"code": "KeyB", "key": "b", "type": "keypress"}, ] all_events = get_events(session) events = [filter_dict(e, expected[0]) for e in all_events] if len(events) > 0 and events[0]["code"] == None: # Remove 'code' entry if browser doesn't support it expected = [filter_dict(e, {"key": "", "type": ""}) for e in expected] events = [filter_dict(e, expected[0]) for e in events] assert events == expected assert get_keys(key_reporter) == "ab" def test_sequence_of_keydown_character_keys(session, key_reporter, key_chain): key_chain.send_keys("ef").perform() expected = [ {"code": "KeyE", "key": "e", "type": "keydown"}, {"code": "KeyE", "key": "e", "type": "keypress"}, {"code": "KeyE", "key": "e", "type": "keyup"}, {"code": "KeyF", "key": "f", "type": "keydown"}, {"code": "KeyF", "key": "f", "type": "keypress"}, {"code": "KeyF", "key": "f", "type": "keyup"}, ] all_events = get_events(session) events = [filter_dict(e, expected[0]) for e in all_events] if len(events) > 0 and events[0]["code"] == None: # Remove 'code' entry if browser doesn't support it expected = [filter_dict(e, {"key": "", "type": ""}) for e in expected] events = [filter_dict(e, expected[0]) for e in events] assert events == expected assert get_keys(key_reporter) == "ef" def test_backspace_erases_keys(session, key_reporter, key_chain): key_chain \ .send_keys("efcd") \ .send_keys([Keys.BACKSPACE, Keys.BACKSPACE]) \ .perform() assert get_keys(key_reporter) == "ef"
the-stack_106_22371
# -*- coding: utf-8 -*- from django.forms import ValidationError from django.utils.translation import ugettext_lazy as _ # models from comments.models import Comment from comments.models import CommentLike from comments.models import CommentImage # forms from base.forms import BaseModelForm class CommentForm(BaseModelForm): class Meta: model = Comment fields = ( 'text', 'event', 'activity', 'parent', 'images', 'user_mentions', 'methodology', 'tool', ) def clean(self): cleaned_data = super(CommentForm, self).clean() text = cleaned_data.get('text', '') users = cleaned_data['user_mentions'] cleaned_data['text'] = Comment.get_parsed_content(text, users) return cleaned_data class CommentUpdateForm(BaseModelForm): class Meta: model = Comment fields = ('text', 'event', 'activity', 'parent') class CommentImageForm(BaseModelForm): class Meta: model = CommentImage fields = ('image',) class CommentLikeForm(BaseModelForm): already_liked = _('you have already liked this comment') class Meta: model = CommentLike fields = ('comment',) def clean(self): likes = CommentLike.objects.filter(user=self.instance.user) likes = likes.filter(comment=self.cleaned_data['comment']) if likes.exists(): raise ValidationError(self.already_liked) return super(CommentLikeForm, self).clean()
the-stack_106_22372
# Webhooks for external integrations. from typing import Any, Dict, Optional from django.http import HttpRequest, HttpResponse from zerver.decorator import webhook_view from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import check_send_webhook_message from zerver.models import UserProfile @webhook_view("Canarytokens") @has_request_variables def api_canarytoken_webhook( request: HttpRequest, user_profile: UserProfile, message: Dict[str, Any] = REQ(argument_type="body"), user_specified_topic: Optional[str] = REQ("topic", default=None), ) -> HttpResponse: """ Construct a response to a webhook event from a Thinkst canarytoken from canarytokens.org. Canarytokens from Thinkst's paid product have a different schema and should use the "thinkst" integration. See linked documentation below for a schema: https://help.canary.tools/hc/en-gb/articles/360002426577-How-do-I-configure-notifications-for-a-Generic-Webhook- """ topic = "canarytoken alert" body = ( f"**:alert: Canarytoken has been triggered on {message['time']}!**\n\n" f"{message['memo']} \n\n" f"[Manage this canarytoken]({message['manage_url']})" ) if user_specified_topic: topic = user_specified_topic check_send_webhook_message(request, user_profile, topic, body) return json_success()
the-stack_106_22374
""" UP42 authentication mechanism and base requests functionality """ import json from pathlib import Path from typing import Dict, Optional, Union import requests import requests.exceptions from requests.auth import HTTPBasicAuth from requests_oauthlib import OAuth2Session from oauthlib.oauth2 import BackendApplicationClient, MissingTokenError from tenacity import ( Retrying, wait_fixed, wait_random_exponential, stop_after_attempt, retry_if_exception, retry_if_exception_type, retry, ) from up42.utils import get_logger logger = get_logger(__name__) class retry_if_401_invalid_token(retry_if_exception): """ Custom tenacity error response that enables separate retry strategy for 401 error (unauthorized response, unable decode JWT) due to invalid/timed out UP42 token. Adapted from https://github.com/alexwlchan/handling-http-429-with-tenacity """ def __init__(self): def is_http_401_error(exception): return ( isinstance( exception, ( requests.exceptions.HTTPError, requests.exceptions.RequestException, ), ) and exception.response.status_code == 401 ) super().__init__(predicate=is_http_401_error) class retry_if_429_rate_limit(retry_if_exception): """ Custom tenacity error response that enables separate retry strategy for 429 HTTPError (too many requests) due to UP42 rate limitation. Also see https://docs.up42.com/developers/api#section/API-Usage-Constraints/Rate-limiting Adapted from https://github.com/alexwlchan/handling-http-429-with-tenacity """ def __init__(self): def is_http_429_error(exception): return ( isinstance(exception, requests.exceptions.HTTPError) and exception.response.status_code == 429 ) super().__init__(predicate=is_http_429_error) class Auth: def __init__( self, cfg_file: Union[str, Path, None] = None, project_id: Optional[str] = None, project_api_key: Optional[str] = None, **kwargs, ): """ The Auth class handles the authentication with UP42. Info: Authentication is possible via the credentials of a specific project (project_id & project_api_key). To get your **project id** and **project api key**, follow the instructions in the docs authentication chapter. Args: cfg_file: File path to the cfg.json with {project_id: "...", project_api_key: "..."}. project_id: The unique identifier of the project. project_api_key: The project-specific API key. """ self.cfg_file = cfg_file self.project_id = project_id self.project_api_key = project_api_key self.workspace_id: Optional[str] = None self.token: Optional[str] = None try: self.env: str = kwargs["env"] except KeyError: self.env = "com" try: self.authenticate: bool = kwargs["authenticate"] except KeyError: self.authenticate = True if self.authenticate: self._find_credentials() self._get_token() self._get_workspace() logger.info("Authentication with UP42 successful!") def __repr__(self): return f"UP42ProjectAuth(project_id={self.project_id}, env={self.env})" def _find_credentials(self) -> None: """ Sources the project credentials from a provided config file, error handling if no credentials are provided in arguments or config file. """ if self.project_id is None or self.project_api_key is None: if self.cfg_file is None: raise ValueError( "Provide project_id and project_api_key via arguments or config file!" ) # Source credentials from config file. try: with open(self.cfg_file) as src: config = json.load(src) try: self.project_id = config["project_id"] self.project_api_key = config["project_api_key"] except KeyError as e: raise ValueError( "Provided config file does not contain project_id and " "project_api_key!" ) from e logger.info("Got credentials from config file.") except FileNotFoundError as e: raise ValueError("Selected config file does not exist!") from e elif all( v is not None for v in [self.cfg_file, self.project_id, self.project_api_key] ): logger.info( "Credentials are provided via arguments and config file, " "now using the argument credentials." ) def _endpoint(self) -> str: """Gets the endpoint.""" return f"https://api.up42.{self.env}" def _get_token(self): """Project specific authentication via project id and project api key.""" try: client = BackendApplicationClient( client_id=self.project_id, client_secret=self.project_api_key ) auth = HTTPBasicAuth(self.project_id, self.project_api_key) get_token_session = OAuth2Session(client=client) token_response = get_token_session.fetch_token( token_url=self._endpoint() + "/oauth/token", auth=auth ) except MissingTokenError as err: raise ValueError( "Authentication was not successful, check the provided project credentials." ) from err self.token = token_response["data"]["accessToken"] def _get_workspace(self) -> None: """Get workspace id belonging to authenticated project.""" url = f"https://api.up42.{self.env}/projects/{self.project_id}" resp = self._request("GET", url) self.workspace_id = resp["data"]["workspaceId"] # type: ignore @staticmethod def _generate_headers(token: str) -> Dict[str, str]: version = ( Path(__file__) .resolve() .parent.joinpath("_version.txt") .read_text(encoding="utf-8") ) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {token}", "cache-control": "no-cache", "X-UP42-info": f"python/{version}", } return headers # pylint: disable=dangerous-default-value @retry( retry=retry_if_429_rate_limit(), wait=wait_random_exponential(multiplier=0.5, max=180), reraise=True, ) def _request_helper( self, request_type: str, url: str, data: dict = {}, querystring: dict = {} ) -> requests.Response: """ Helper function for the request, running the actual request with the correct headers. Args: request_type: 'GET', 'POST', 'PUT', 'PATCH', 'DELETE' url: The requests url. data: The payload, e.g. dictionary with job parameters etc. querystring: The querystring. Returns: The request response. """ headers = self._generate_headers(self.token) # type: ignore if querystring == {}: response = requests.request( method=request_type, url=url, data=json.dumps(data), headers=headers ) else: response = requests.request( method=request_type, url=url, data=json.dumps(data), headers=headers, params=querystring, ) logger.debug(response) logger.debug(data) response.raise_for_status() return response def _request( self, request_type: str, url: str, data: Union[dict, list] = {}, querystring: dict = {}, return_text: bool = True, ): # Union[str, dict, requests.Response]: """ Handles retrying the request and automatically retries and gets a new token if the old is invalid. Retry is enabled by default, can be set to False as kwargs of Auth. In addition to this retry mechanic, 429-errors (too many requests) are retried more extensively in _request_helper. Args: request_type: 'GET', 'POST', 'PUT', 'PATCH', 'DELETE' url: The url to request. data: The payload, e.g. dictionary with job parameters etc. querystring: The querystring. return_text: If true returns response text/json, false returns response. retry: If False, after 5 minutes and invalid token will return 401 errors. Returns: The API response. """ retryer_token = Retrying( stop=stop_after_attempt(2), # Original attempt + one retry wait=wait_fixed(0.5), retry=( retry_if_401_invalid_token() | retry_if_exception_type(requests.exceptions.ConnectionError) ), after=lambda retry_state: self._get_token(), # type:ignore reraise=True, # after final failed attempt, raises last attempt's exception instead of RetryError. ) try: response = retryer_token( self._request_helper, request_type, url, data, querystring ) except requests.exceptions.RequestException as err: # Base error class err_message = json.loads(err.response.text)["error"] if "code" in err_message: err_message = f"{err_message['code']} Error - {err_message['message']}!" logger.error(err_message) raise requests.exceptions.RequestException(err_message) from err # Handle response text. if return_text: try: response_text = json.loads(response.text) except json.JSONDecodeError: # e.g. JobTask logs are str format. response_text = response.text # Handle api error messages here before handling it in every single function. try: if response_text["error"] is not None and response_text["data"] is None: raise ValueError(response_text["error"]) return response_text except ( KeyError, TypeError, ): # Catalog search, JobTask logs etc. does not have the usual {"data":"", # "error":""} format. return response_text else: # E.g. for DELETE return response
the-stack_106_22375
# -*- coding: utf-8 -*- ''' Operations on regular files, special files, directories, and symlinks ===================================================================== Salt States can aggressively manipulate files on a system. There are a number of ways in which files can be managed. Regular files can be enforced with the :mod:`file.managed <salt.states.file.managed>` state. This state downloads files from the salt master and places them on the target system. Managed files can be rendered as a jinja, mako, or wempy template, adding a dynamic component to file management. An example of :mod:`file.managed <salt.states.file.managed>` which makes use of the jinja templating system would look like this: .. code-block:: yaml /etc/http/conf/http.conf: file.managed: - source: salt://apache/http.conf - user: root - group: root - mode: 644 - template: jinja - defaults: custom_var: "default value" other_var: 123 {% if grains['os'] == 'Ubuntu' %} - context: custom_var: "override" {% endif %} It is also possible to use the :mod:`py renderer <salt.renderers.py>` as a templating option. The template would be a Python script which would need to contain a function called ``run()``, which returns a string. All arguments to the state will be made available to the Python script as globals. The returned string will be the contents of the managed file. For example: .. code-block:: python def run(): lines = ['foo', 'bar', 'baz'] lines.extend([source, name, user, context]) # Arguments as globals return '\\n\\n'.join(lines) .. note:: The ``defaults`` and ``context`` arguments require extra indentation (four spaces instead of the normal two) in order to create a nested dictionary. :ref:`More information <nested-dict-indentation>`. If using a template, any user-defined template variables in the file defined in ``source`` must be passed in using the ``defaults`` and/or ``context`` arguments. The general best practice is to place default values in ``defaults``, with conditional overrides going into ``context``, as seen above. The template will receive a variable ``custom_var``, which would be accessed in the template using ``{{ custom_var }}``. If the operating system is Ubuntu, the value of the variable ``custom_var`` would be *override*, otherwise it is the default *default value* The ``source`` parameter can be specified as a list. If this is done, then the first file to be matched will be the one that is used. This allows you to have a default file on which to fall back if the desired file does not exist on the salt fileserver. Here's an example: .. code-block:: yaml /etc/foo.conf: file.managed: - source: - salt://foo.conf.{{ grains['fqdn'] }} - salt://foo.conf.fallback - user: foo - group: users - mode: 644 - backup: minion .. note:: Salt supports backing up managed files via the backup option. For more details on this functionality please review the :doc:`backup_mode documentation </ref/states/backup_mode>`. The ``source`` parameter can also specify a file in another Salt environment. In this example ``foo.conf`` in the ``dev`` environment will be used instead. .. code-block:: yaml /etc/foo.conf: file.managed: - source: - salt://foo.conf?saltenv=dev - user: foo - group: users - mode: '0644' .. warning:: When using a mode that includes a leading zero you must wrap the value in single quotes. If the value is not wrapped in quotes it will be read by YAML as an integer and evaluated as an octal. Special files can be managed via the ``mknod`` function. This function will create and enforce the permissions on a special file. The function supports the creation of character devices, block devices, and fifo pipes. The function will create the directory structure up to the special file if it is needed on the minion. The function will not overwrite or operate on (change major/minor numbers) existing special files with the exception of user, group, and permissions. In most cases the creation of some special files require root permisisons on the minion. This would require that the minion to be run as the root user. Here is an example of a character device: .. code-block:: yaml /var/named/chroot/dev/random: file.mknod: - ntype: c - major: 1 - minor: 8 - user: named - group: named - mode: 660 Here is an example of a block device: .. code-block:: yaml /var/named/chroot/dev/loop0: file.mknod: - ntype: b - major: 7 - minor: 0 - user: named - group: named - mode: 660 Here is an example of a fifo pipe: .. code-block:: yaml /var/named/chroot/var/log/logfifo: file.mknod: - ntype: p - user: named - group: named - mode: 660 Directories can be managed via the ``directory`` function. This function can create and enforce the permissions on a directory. A directory statement will look like this: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - mode: 755 - makedirs: True If you need to enforce user and/or group ownership or permissions recursively on the directory's contents, you can do so by adding a ``recurse`` directive: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - mode: 755 - makedirs: True - recurse: - user - group - mode As a default, ``mode`` will resolve to ``dir_mode`` and ``file_mode``, to specify both directory and file permissions, use this form: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - file_mode: 744 - dir_mode: 755 - makedirs: True - recurse: - user - group - mode Symlinks can be easily created; the symlink function is very simple and only takes a few arguments: .. code-block:: yaml /etc/grub.conf: file.symlink: - target: /boot/grub/grub.conf Recursive directory management can also be set via the ``recurse`` function. Recursive directory management allows for a directory on the salt master to be recursively copied down to the minion. This is a great tool for deploying large code and configuration systems. A state using ``recurse`` would look something like this: .. code-block:: yaml /opt/code/flask: file.recurse: - source: salt://code/flask - include_empty: True A more complex ``recurse`` example: .. code-block:: yaml {% set site_user = 'testuser' %} {% set site_name = 'test_site' %} {% set project_name = 'test_proj' %} {% set sites_dir = 'test_dir' %} django-project: file.recurse: - name: {{ sites_dir }}/{{ site_name }}/{{ project_name }} - user: {{ site_user }} - dir_mode: 2775 - file_mode: '0644' - template: jinja - source: salt://project/templates_dir - include_empty: True ''' # Import python libs from __future__ import absolute_import import difflib import itertools import logging import os import shutil import traceback from collections import Iterable, Mapping # Import salt libs import salt.loader import salt.payload import salt.utils import salt.utils.templates import salt.utils.url from salt.utils.locales import sdecode from salt.exceptions import CommandExecutionError # Import 3rd-party libs import salt.ext.six as six from salt.ext.six.moves import zip_longest log = logging.getLogger(__name__) COMMENT_REGEX = r'^([[:space:]]*){0}[[:space:]]?' __NOT_FOUND = object() def _get_accumulator_filepath(): ''' Return accumulator data path. ''' return os.path.join(salt.utils.get_accumulator_dir(__opts__['cachedir']), __instance_id__) def _load_accumulators(): def _deserialize(path): serial = salt.payload.Serial(__opts__) ret = {'accumulators': {}, 'accumulators_deps': {}} try: with salt.utils.fopen(path, 'rb') as f: loaded = serial.load(f) return loaded if loaded else ret except (IOError, NameError): # NameError is a msgpack error from salt-ssh return ret loaded = _deserialize(_get_accumulator_filepath()) return loaded['accumulators'], loaded['accumulators_deps'] def _persist_accummulators(accumulators, accumulators_deps): accumm_data = {'accumulators': accumulators, 'accumulators_deps': accumulators_deps} serial = salt.payload.Serial(__opts__) try: with salt.utils.fopen(_get_accumulator_filepath(), 'w+b') as f: serial.dump(accumm_data, f) except NameError: # msgpack error from salt-ssh pass def _check_user(user, group): ''' Checks if the named user and group are present on the minion ''' err = '' if user: uid = __salt__['file.user_to_uid'](user) if uid == '': err += 'User {0} is not available '.format(user) if group: gid = __salt__['file.group_to_gid'](group) if gid == '': err += 'Group {0} is not available'.format(group) return err def _gen_keep_files(name, require, walk_d=None): ''' Generate the list of files that need to be kept when a dir based function like directory or recurse has a clean. ''' def _is_child(path, directory): ''' Check whether ``path`` is child of ``directory`` ''' path = os.path.abspath(path) directory = os.path.abspath(directory) relative = os.path.relpath(path, directory) return not relative.startswith(os.pardir) def _add_current_path(path): _ret = set() if os.path.isdir(path): dirs, files = walk_d.get(path, ((), ())) _ret.add(path) for _name in files: _ret.add(os.path.join(path, _name)) for _name in dirs: _ret.add(os.path.join(path, _name)) return _ret def _process_by_walk_d(name, ret): if os.path.isdir(name): walk_ret.update(_add_current_path(name)) dirs, _ = walk_d.get(name, ((), ())) for _d in dirs: p = os.path.join(name, _d) walk_ret.update(_add_current_path(p)) _process_by_walk_d(p, ret) def _process(name): ret = set() if os.path.isdir(name): for root, dirs, files in os.walk(name): ret.add(name) for name in files: ret.add(os.path.join(root, name)) for name in dirs: ret.add(os.path.join(root, name)) return ret keep = set() if isinstance(require, list): required_files = [comp for comp in require if 'file' in comp] for comp in required_files: for low in __lowstate__: # A requirement should match either the ID and the name of # another state. if low['name'] == comp['file'] or low['__id__'] == comp['file']: fn = low['name'] if os.path.isdir(fn): if _is_child(fn, name): if walk_d: walk_ret = set() _process_by_walk_d(fn, walk_ret) keep.update(walk_ret) else: keep.update(_process(fn)) else: keep.add(fn) return list(keep) def _check_file(name): ret = True msg = '' if not os.path.isabs(name): ret = False msg = 'Specified file {0} is not an absolute path'.format(name) elif not os.path.exists(name): ret = False msg = '{0}: file not found'.format(name) return ret, msg def _clean_dir(root, keep, exclude_pat): ''' Clean out all of the files and directories in a directory (root) while preserving the files in a list (keep) and part of exclude_pat ''' removed = set() real_keep = set() real_keep.add(root) if isinstance(keep, list): for fn_ in keep: if not os.path.isabs(fn_): continue real_keep.add(fn_) while True: fn_ = os.path.dirname(fn_) real_keep.add(fn_) if fn_ in ['/', ''.join([os.path.splitdrive(fn_)[0], '\\'])]: break def _delete_not_kept(nfn): if nfn not in real_keep: # -- check if this is a part of exclude_pat(only). No need to # check include_pat if not salt.utils.check_include_exclude( os.path.relpath(nfn, root), None, exclude_pat): return removed.add(nfn) if not __opts__['test']: try: os.remove(nfn) except OSError: __salt__['file.remove'](nfn) for roots, dirs, files in os.walk(root): for name in itertools.chain(dirs, files): _delete_not_kept(os.path.join(roots, name)) return list(removed) def _error(ret, err_msg): ret['result'] = False ret['comment'] = err_msg return ret def _check_directory(name, user, group, recurse, mode, clean, require, exclude_pat): ''' Check what changes need to be made on a directory ''' changes = {} if recurse or clean: walk_l = list(os.walk(name)) # walk path only once and store the result # root: (dirs, files) structure, compatible for python2.6 walk_d = {} for i in walk_l: walk_d[i[0]] = (i[1], i[2]) if recurse: try: recurse_set = _get_recurse_set(recurse) except (TypeError, ValueError) as exc: return False, '{0}'.format(exc), changes if 'user' not in recurse_set: user = None if 'group' not in recurse_set: group = None if 'mode' not in recurse_set: mode = None check_files = 'ignore_files' not in recurse_set check_dirs = 'ignore_dirs' not in recurse_set for root, dirs, files in walk_l: if check_files: for fname in files: fchange = {} path = os.path.join(root, fname) stats = __salt__['file.stats']( path, None, follow_symlinks=False ) if user is not None and user != stats.get('user'): fchange['user'] = user if group is not None and group != stats.get('group'): fchange['group'] = group if fchange: changes[path] = fchange if check_dirs: for name_ in dirs: path = os.path.join(root, name_) fchange = _check_dir_meta(path, user, group, mode) if fchange: changes[path] = fchange # Recurse skips root (we always do dirs, not root), so always check root: fchange = _check_dir_meta(name, user, group, mode) if fchange: changes[name] = fchange if clean: keep = _gen_keep_files(name, require, walk_d) def _check_changes(fname): path = os.path.join(root, fname) if path in keep: return {} else: if not salt.utils.check_include_exclude( os.path.relpath(path, name), None, exclude_pat): return {} else: return {path: {'removed': 'Removed due to clean'}} for root, dirs, files in walk_l: for fname in files: changes.update(_check_changes(fname)) for name_ in dirs: changes.update(_check_changes(name_)) if not os.path.isdir(name): changes[name] = {'directory': 'new'} if changes: comments = ['The following files will be changed:\n'] for fn_ in changes: for key, val in six.iteritems(changes[fn_]): comments.append('{0}: {1} - {2}\n'.format(fn_, key, val)) return None, ''.join(comments), changes return True, 'The directory {0} is in the correct state'.format(name), changes def _check_dir_meta(name, user, group, mode): ''' Check the changes in directory metadata ''' stats = __salt__['file.stats'](name, follow_symlinks=False) changes = {} if not stats: changes['directory'] = 'new' return changes if (user is not None and user != stats['user'] and user != stats.get('uid')): changes['user'] = user if (group is not None and group != stats['group'] and group != stats.get('gid')): changes['group'] = group # Normalize the dir mode smode = __salt__['config.manage_mode'](stats['mode']) mode = __salt__['config.manage_mode'](mode) if mode is not None and mode != smode: changes['mode'] = mode return changes def _check_touch(name, atime, mtime): ''' Check to see if a file needs to be updated or created ''' if not os.path.exists(name): return None, 'File {0} is set to be created'.format(name) stats = __salt__['file.stats'](name, follow_symlinks=False) if atime is not None: if str(atime) != str(stats['atime']): return None, 'Times set to be updated on file {0}'.format(name) if mtime is not None: if str(mtime) != str(stats['mtime']): return None, 'Times set to be updated on file {0}'.format(name) return True, 'File {0} exists and has the correct times'.format(name) def _get_symlink_ownership(path): return ( __salt__['file.get_user'](path, follow_symlinks=False), __salt__['file.get_group'](path, follow_symlinks=False) ) def _check_symlink_ownership(path, user, group): ''' Check if the symlink ownership matches the specified user and group ''' cur_user, cur_group = _get_symlink_ownership(path) return (cur_user == user) and (cur_group == group) def _set_symlink_ownership(path, user, group): ''' Set the ownership of a symlink and return a boolean indicating success/failure ''' try: __salt__['file.lchown'](path, user, group) except OSError: pass return _check_symlink_ownership(path, user, group) def _symlink_check(name, target, force, user, group): ''' Check the symlink function ''' pchanges = {} if not os.path.exists(name) and not __salt__['file.is_link'](name): pchanges['new'] = name return None, 'Symlink {0} to {1} is set for creation'.format( name, target ), pchanges if __salt__['file.is_link'](name): if __salt__['file.readlink'](name) != target: pchanges['change'] = name return None, 'Link {0} target is set to be changed to {1}'.format( name, target ), pchanges else: result = True msg = 'The symlink {0} is present'.format(name) if not _check_symlink_ownership(name, user, group): result = None pchanges['ownership'] = '{0}:{1}'.format(*_get_symlink_ownership(name)) msg += ( ', but the ownership of the symlink would be changed ' 'from {2}:{3} to {0}:{1}' ).format(user, group, *_get_symlink_ownership(name)) return result, msg, pchanges else: if force: return None, ('The file or directory {0} is set for removal to ' 'make way for a new symlink targeting {1}' .format(name, target)), pchanges return False, ('File or directory exists where the symlink {0} ' 'should be. Did you mean to use force?'.format(name)), pchanges def _test_owner(kwargs, user=None): ''' Convert owner to user, since other config management tools use owner, no need to punish people coming from other systems. PLEASE DO NOT DOCUMENT THIS! WE USE USER, NOT OWNER!!!! ''' if user: return user if 'owner' in kwargs: log.warning( 'Use of argument owner found, "owner" is invalid, please ' 'use "user"' ) return kwargs['owner'] return user def _unify_sources_and_hashes(source=None, source_hash=None, sources=None, source_hashes=None): ''' Silly little function to give us a standard tuple list for sources and source_hashes ''' if sources is None: sources = [] if source_hashes is None: source_hashes = [] if source and sources: return (False, "source and sources are mutually exclusive", []) if source_hash and source_hashes: return (False, "source_hash and source_hashes are mutually exclusive", []) if source: return (True, '', [(source, source_hash)]) # Make a nice neat list of tuples exactly len(sources) long.. return True, '', list(zip_longest(sources, source_hashes[:len(sources)])) def _get_template_texts(source_list=None, template='jinja', defaults=None, context=None, **kwargs): ''' Iterate a list of sources and process them as templates. Returns a list of 'chunks' containing the rendered templates. ''' ret = {'name': '_get_template_texts', 'changes': {}, 'result': True, 'comment': '', 'data': []} if source_list is None: return _error(ret, '_get_template_texts called with empty source_list') txtl = [] for (source, source_hash) in source_list: tmpctx = defaults if defaults else {} if context: tmpctx.update(context) rndrd_templ_fn = __salt__['cp.get_template']( source, '', template=template, saltenv=__env__, context=tmpctx, **kwargs ) msg = 'cp.get_template returned {0} (Called with: {1})' log.debug(msg.format(rndrd_templ_fn, source)) if rndrd_templ_fn: tmplines = None with salt.utils.fopen(rndrd_templ_fn, 'rb') as fp_: tmplines = fp_.readlines() if not tmplines: msg = 'Failed to read rendered template file {0} ({1})' log.debug(msg.format(rndrd_templ_fn, source)) ret['name'] = source return _error(ret, msg.format(rndrd_templ_fn, source)) txtl.append(''.join(tmplines)) else: msg = 'Failed to load template file {0}'.format(source) log.debug(msg) ret['name'] = source return _error(ret, msg) ret['data'] = txtl return ret def _validate_str_list(arg): ''' ensure ``arg`` is a list of strings ''' if isinstance(arg, six.string_types): ret = [arg] elif isinstance(arg, Iterable) and not isinstance(arg, Mapping): ret = [] for item in arg: if isinstance(item, six.string_types): ret.append(item) else: ret.append(str(item)) else: ret = [str(arg)] return ret def symlink( name, target, force=False, backupname=None, makedirs=False, user=None, group=None, mode=None, **kwargs): ''' Create a symbolic link (symlink, soft link) If the file already exists and is a symlink pointing to any location other than the specified target, the symlink will be replaced. If the symlink is a regular file or directory then the state will return False. If the regular file or directory is desired to be replaced with a symlink pass force: True, if it is to be renamed, pass a backupname. name The location of the symlink to create target The location that the symlink points to force If the name of the symlink exists and is not a symlink and force is set to False, the state will fail. If force is set to True, the file or directory in the way of the symlink file will be deleted to make room for the symlink, unless backupname is set, when it will be renamed backupname If the name of the symlink exists and is not a symlink, it will be renamed to the backupname. If the backupname already exists and force is False, the state will fail. Otherwise, the backupname will be removed first. makedirs If the location of the symlink does not already have a parent directory then the state will fail, setting makedirs to True will allow Salt to create the parent directory user The user to own the file, this defaults to the user salt is running as on the minion group The group ownership set for the file, this defaults to the group salt is running as on the minion. On Windows, this is ignored mode The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows ''' name = os.path.expanduser(name) # Make sure that leading zeros stripped by YAML loader are added back mode = __salt__['config.manage_mode'](mode) user = _test_owner(kwargs, user=user) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.symlink') if user is None: user = __opts__['user'] if salt.utils.is_windows(): # Make sure the user exists in Windows # Salt default is 'root' if not __salt__['user.info'](user): # User not found, use the account salt is running under # If username not found, use System user = __salt__['user.current']() if not user: user = 'SYSTEM' if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user if group is None: group = __salt__['file.gid_to_group']( __salt__['user.info'](user).get('gid', 0) ) preflight_errors = [] uid = __salt__['file.user_to_uid'](user) gid = __salt__['file.group_to_gid'](group) if uid == '': preflight_errors.append('User {0} does not exist'.format(user)) if gid == '': preflight_errors.append('Group {0} does not exist'.format(group)) if not os.path.isabs(name): preflight_errors.append( 'Specified file {0} is not an absolute path'.format(name) ) if preflight_errors: msg = '. '.join(preflight_errors) if len(preflight_errors) > 1: msg += '.' return _error(ret, msg) presult, pcomment, ret['pchanges'] = _symlink_check(name, target, force, user, group) if __opts__['test']: ret['result'] = presult ret['comment'] = pcomment return ret if not os.path.isdir(os.path.dirname(name)): if makedirs: __salt__['file.makedirs']( name, user=user, group=group, mode=mode) else: return _error( ret, 'Directory {0} for symlink is not present'.format( os.path.dirname(name) ) ) if __salt__['file.is_link'](name): # The link exists, verify that it matches the target if __salt__['file.readlink'](name) != target: # The target is wrong, delete the link os.remove(name) else: if _check_symlink_ownership(name, user, group): # The link looks good! ret['comment'] = ('Symlink {0} is present and owned by ' '{1}:{2}'.format(name, user, group)) else: if _set_symlink_ownership(name, user, group): ret['comment'] = ('Set ownership of symlink {0} to ' '{1}:{2}'.format(name, user, group)) ret['changes']['ownership'] = '{0}:{1}'.format(user, group) else: ret['result'] = False ret['comment'] += ( 'Failed to set ownership of symlink {0} to ' '{1}:{2}'.format(name, user, group) ) return ret elif os.path.isfile(name) or os.path.isdir(name): # It is not a link, but a file or dir if backupname is not None: # Make a backup first if os.path.lexists(backupname): if not force: return _error(ret, (( 'File exists where the backup target {0} should go' ).format(backupname))) else: __salt__['file.remove'](backupname) os.rename(name, backupname) elif force: # Remove whatever is in the way if __salt__['file.is_link'](name): __salt__['file.remove'](name) ret['changes']['forced'] = 'Symlink was forcibly replaced' else: __salt__['file.remove'](name) else: # Otherwise throw an error if os.path.isfile(name): return _error(ret, ('File exists where the symlink {0} should be' .format(name))) else: return _error(ret, (( 'Directory exists where the symlink {0} should be' ).format(name))) if not os.path.exists(name): # The link is not present, make it try: __salt__['file.symlink'](target, name) except OSError as exc: ret['result'] = False ret['comment'] = ('Unable to create new symlink {0} -> ' '{1}: {2}'.format(name, target, exc)) return ret else: ret['comment'] = ('Created new symlink {0} -> ' '{1}'.format(name, target)) ret['changes']['new'] = name if not _check_symlink_ownership(name, user, group): if not _set_symlink_ownership(name, user, group): ret['result'] = False ret['comment'] += (', but was unable to set ownership to ' '{0}:{1}'.format(user, group)) return ret def absent(name): ''' Make sure that the named file or directory is absent. If it exists, it will be deleted. This will work to reverse any of the functions in the file state module. If a directory is supplied, it will be recursively deleted. name The path which should be deleted ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.absent') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name) ) if name == '/': return _error(ret, 'Refusing to make "/" absent') if os.path.isfile(name) or os.path.islink(name): ret['pchanges']['removed'] = name if __opts__['test']: ret['result'] = None ret['comment'] = 'File {0} is set for removal'.format(name) return ret try: __salt__['file.remove'](name) ret['comment'] = 'Removed file {0}'.format(name) ret['changes']['removed'] = name return ret except CommandExecutionError as exc: return _error(ret, '{0}'.format(exc)) elif os.path.isdir(name): ret['pchanges']['removed'] = name if __opts__['test']: ret['result'] = None ret['comment'] = 'Directory {0} is set for removal'.format(name) return ret try: __salt__['file.remove'](name) ret['comment'] = 'Removed directory {0}'.format(name) ret['changes']['removed'] = name return ret except (OSError, IOError): return _error(ret, 'Failed to remove directory {0}'.format(name)) ret['comment'] = 'File {0} is not present'.format(name) return ret def exists(name): ''' Verify that the named file or directory is present or exists. Ensures pre-requisites outside of Salt's purview (e.g., keytabs, private keys, etc.) have been previously satisfied before deployment. name Absolute path which must exist ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.exists') if not os.path.exists(name): return _error(ret, 'Specified path {0} does not exist'.format(name)) ret['comment'] = 'Path {0} exists'.format(name) return ret def missing(name): ''' Verify that the named file or directory is missing, this returns True only if the named file is missing but does not remove the file if it is present. name Absolute path which must NOT exist ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.missing') if os.path.exists(name): return _error(ret, 'Specified path {0} exists'.format(name)) ret['comment'] = 'Path {0} is missing'.format(name) return ret def managed(name, source=None, source_hash='', user=None, group=None, mode=None, template=None, makedirs=False, dir_mode=None, context=None, replace=True, defaults=None, backup='', show_changes=True, create=True, contents=None, contents_pillar=None, contents_grains=None, contents_newline=True, contents_delimiter=':', allow_empty=True, follow_symlinks=True, check_cmd=None, skip_verify=False, **kwargs): ''' Manage a given file, this function allows for a file to be downloaded from the salt master and potentially run through a templating system. name The location of the file to manage source The source file to download to the minion, this source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials. (see s3.get state documentation) File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs, see swift.get documentation. For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If source is left blank or None (use ~ in YAML), the file will be created as an empty file and the content will not be managed. This is also the case when a file already exists and the source is undefined; the contents of the file will not be changed or managed. If the file is hosted on a HTTP or FTP server then the source_hash argument is also required A list of sources can also be passed in to provide a default source and a set of fallbacks. The first source in the list that is found to exist will be used and subsequent entries in the list will be ignored. Source list functionality only supports local files and remote files hosted on the salt master server or retrievable via HTTP, HTTPS, or FTP. .. code-block:: yaml file_override_example: file.managed: - source: - salt://file_that_does_not_exist - salt://file_that_exists source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 **Using a Source Hash File** The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. When using a source hash file the source_hash argument needs to be a url, the standard download urls are supported, ftp, http, salt etc: Example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.hash The following is an example of the supported source_hash format: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Debian file type ``*.dsc`` files are also supported. **Inserting the Source Hash in the sls Data** Examples: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: md5=79eef25f9b0b2c642c62b7f737d4f53f Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source file, the module will discover that it has already cached a directory where a file should be cached. For example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5 user The user to own the file, this defaults to the user salt is running as on the minion group The group ownership set for the file, this defaults to the group salt is running as on the minion On Windows, this is ignored mode The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows template If this setting is applied then the named templating engine will be used to render the downloaded file, currently jinja, mako, and wempy are supported makedirs : False If set to ``True``, then the parent directories will be created to facilitate the creation of the named file. If ``False``, and the parent directory of the destination file doesn't exist, the state will fail. dir_mode If directories are to be created, passing this option specifies the permissions for those directories. If this is not set, directories will be assigned permissions from the 'mode' argument. replace : True If set to ``False`` and the file already exists, the file will not be modified even if changes would otherwise be made. Permissions and ownership will still be enforced, however. context Overrides default context variables passed to the template. defaults Default context passed to the template. backup Overrides the default backup mode for this specific file. show_changes Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made. create : True If set to ``False``, then the file will only be managed if the file already exists on the system. contents Specify the contents of the file. Cannot be used in combination with ``source``. Ignores hashes and does not use a templating engine. This value can be either a single string, a multiline YAML string or a list of strings. If a list of strings, then the strings will be joined together with newlines in the resulting file. For example, the below two example states would result in identical file contents: .. code-block:: yaml /path/to/file1: file.managed: - contents: - This is line 1 - This is line 2 /path/to/file2: file.managed: - contents: | This is line 1 This is line 2 contents_pillar .. versionadded:: 0.17.0 Operates like ``contents``, but draws from a value stored in pillar, using the pillar path syntax used in :mod:`pillar.get <salt.modules.pillar.get>`. This is useful when the pillar value contains newlines, as referencing a pillar variable using a jinja/mako template can result in YAML formatting issues due to the newlines causing indentation mismatches. For example, the following could be used to deploy an SSH private key: .. code-block:: yaml /home/deployer/.ssh/id_rsa: file.managed: - user: deployer - group: deployer - mode: 600 - contents_pillar: userdata:deployer:id_rsa This would populate ``/home/deployer/.ssh/id_rsa`` with the contents of ``pillar['userdata']['deployer']['id_rsa']``. An example of this pillar setup would be like so: .. code-block:: yaml userdata: deployer: id_rsa: | -----BEGIN RSA PRIVATE KEY----- MIIEowIBAAKCAQEAoQiwO3JhBquPAalQF9qP1lLZNXVjYMIswrMe2HcWUVBgh+vY U7sCwx/dH6+VvNwmCoqmNnP+8gTPKGl1vgAObJAnMT623dMXjVKwnEagZPRJIxDy B/HaAre9euNiY3LvIzBTWRSeMfT+rWvIKVBpvwlgGrfgz70m0pqxu+UyFbAGLin+ GpxzZAMaFpZw4sSbIlRuissXZj/sHpQb8p9M5IeO4Z3rjkCP1cxI -----END RSA PRIVATE KEY----- .. note:: The private key above is shortened to keep the example brief, but shows how to do multiline string in YAML. The key is followed by a pipe character, and the mutliline string is indented two more spaces. To avoid the hassle of creating an indented multiline YAML string, the :mod:`file_tree external pillar <salt.pillar.file_tree>` can be used instead. However, this will not work for binary files in Salt releases before 2015.8.4. contents_grains .. versionadded:: 2014.7.0 Same as ``contents_pillar``, but with grains contents_newline : True .. versionadded:: 2014.7.0 .. versionchanged:: 2015.8.4 This option is now ignored if the contents being deployed contain binary data. If ``True``, files managed using ``contents``, ``contents_pillar``, or ``contents_grains`` will have a newline added to the end of the file if one is not present. Setting this option to ``False`` will omit this final newline. contents_delimiter .. versionadded:: 2015.8.4 Can be used to specify an alternate delimiter for ``contents_pillar`` or ``contents_grains``. This delimiter will be passed through to :py:func:`pillar.get <salt.modules.pillar.get>` or :py:func:`grains.get <salt.modules.grains.get>` when retrieving the contents. allow_empty : True .. versionadded:: 2015.8.4 If set to ``False``, then the state will fail if the contents specified by ``contents_pillar`` or ``contents_grains`` are empty. follow_symlinks : True .. versionadded:: 2014.7.0 If the desired path is a symlink follow it and make changes to the file to which the symlink points. check_cmd .. versionadded:: 2014.7.0 The specified command will be run with an appended argument of a *temporary* file containing the new managed contents. If the command exits with a zero status the new managed contents will be written to the managed destination. If the command exits with a nonzero exit code, the state will fail and no changes will be made to the file. For example, the following could be used to verify sudoers before making changes: .. code-block:: yaml /etc/sudoers: file.managed: - user: root - group: root - mode: 0440 - source: salt://sudoers/files/sudoers.jinja - template: jinja - check_cmd: /usr/sbin/visudo -c -f **NOTE**: This ``check_cmd`` functions differently than the requisite ``check_cmd``. skip_verify : False If ``True``, hash verification of remote file sources (``http://``, ``https://``, ``ftp://``) will be skipped, and the ``source_hash`` argument will be ignored. .. versionadded:: 2016.3.0 ''' if 'env' in kwargs: salt.utils.warn_until( 'Oxygen', 'Parameter \'env\' has been detected in the argument list. This ' 'parameter is no longer used and has been replaced by \'saltenv\' ' 'as of Salt Carbon. This warning will be removed in Salt Oxygen.' ) kwargs.pop('env') name = os.path.expanduser(name) ret = {'changes': {}, 'pchanges': {}, 'comment': '', 'name': name, 'result': True} content_sources = (contents, contents_pillar, contents_grains) contents_count = len( [x for x in content_sources if x is not None] ) if source and contents_count > 0: return _error( ret, '\'source\' cannot be used in combination with \'contents\', ' '\'contents_pillar\', or \'contents_grains\'' ) elif contents_count > 1: return _error( ret, 'Only one of \'contents\', \'contents_pillar\', and ' '\'contents_grains\' is permitted' ) # If no source is specified, set replace to False, as there is nothing # with which to replace the file. if not source and contents_count == 0 and replace: replace = False log.warning( 'Neither \'source\' nor \'contents\' nor \'contents_pillar\' nor ' '\'contents_grains\' was defined, yet \'replace\' was set to ' '\'True\'. As there is no source to replace the file with, ' '\'replace\' has been set to \'False\' to avoid reading the file ' 'unnecessarily.' ) # Use this below to avoid multiple '\0' checks and save some CPU cycles if contents_pillar is not None: use_contents = __salt__['pillar.get'](contents_pillar, __NOT_FOUND) if use_contents is __NOT_FOUND: return _error( ret, 'Pillar {0} does not exist'.format(contents_pillar) ) elif contents_grains is not None: use_contents = __salt__['grains.get'](contents_grains, __NOT_FOUND) if use_contents is __NOT_FOUND: return _error( ret, 'Grain {0} does not exist'.format(contents_grains) ) elif contents is not None: use_contents = contents else: use_contents = None if use_contents is not None: if not allow_empty and not use_contents: if contents_pillar: contents_id = 'contents_pillar {0}'.format(contents_pillar) elif contents_grains: contents_id = 'contents_grains {0}'.format(contents_grains) else: contents_id = '\'contents\'' return _error( ret, '{0} value would result in empty contents. Set allow_empty ' 'to True to allow the managed file to be empty.' .format(contents_id) ) contents_are_binary = \ isinstance(use_contents, six.string_types) and '\0' in use_contents if contents_are_binary: contents = use_contents else: validated_contents = _validate_str_list(use_contents) if not validated_contents: return _error( ret, 'Contents specified by contents/contents_pillar/' 'contents_grains is not a string or list of strings, and ' 'is not binary data. SLS is likely malformed.' ) contents = os.linesep.join(validated_contents) if contents_newline and not contents.endswith(os.linesep): contents += os.linesep # Make sure that leading zeros stripped by YAML loader are added back mode = __salt__['config.manage_mode'](mode) if not name: return _error(ret, 'Must provide name to file.exists') user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user if not create: if not os.path.isfile(name): # Don't create a file that is not already present ret['comment'] = ('File {0} is not present and is not set for ' 'creation').format(name) return ret u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if os.path.isdir(name): ret['comment'] = 'Specified target {0} is a directory'.format(name) ret['result'] = False return ret if context is None: context = {} elif not isinstance(context, dict): return _error( ret, 'Context must be formed as a dict') if defaults and not isinstance(defaults, dict): return _error( ret, 'Defaults must be formed as a dict') if not replace and os.path.exists(name): # Check and set the permissions if necessary ret, _ = __salt__['file.check_perms'](name, ret, user, group, mode, follow_symlinks) if __opts__['test']: ret['comment'] = 'File {0} not updated'.format(name) elif not ret['changes'] and ret['result']: ret['comment'] = ('File {0} exists with proper permissions. ' 'No changes made.'.format(name)) return ret accum_data, _ = _load_accumulators() if name in accum_data: if not context: context = {} context['accumulator'] = accum_data[name] if 'file.check_managed_changes' in __salt__: ret['pchanges'] = __salt__['file.check_managed_changes']( name, source, source_hash, user, group, mode, template, context, defaults, __env__, contents, skip_verify, **kwargs ) else: ret['pchanges'] = {} try: if __opts__['test']: if ret['pchanges']: ret['result'] = None ret['comment'] = 'The file {0} is set to be changed'.format(name) if show_changes and 'diff' in ret['pchanges']: ret['changes']['diff'] = ret['pchanges']['diff'] if not show_changes: ret['changes']['diff'] = '<show_changes=False>' else: ret['result'] = True ret['comment'] = 'The file {0} is in the correct state'.format(name) return ret # If the source is a list then find which file exists source, source_hash = __salt__['file.source_list']( source, source_hash, __env__ ) except CommandExecutionError as exc: ret['result'] = False ret['comment'] = 'Unable to manage file: {0}'.format(exc) return ret # Gather the source file from the server try: sfn, source_sum, comment_ = __salt__['file.get_managed']( name, template, source, source_hash, user, group, mode, __env__, context, defaults, skip_verify, **kwargs ) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) return _error(ret, 'Unable to manage file: {0}'.format(exc)) tmp_filename = None if check_cmd: tmp_filename = salt.utils.mkstemp() # if exists copy existing file to tmp to compare if __salt__['file.file_exists'](name): try: __salt__['file.copy'](name, tmp_filename) except Exception as exc: return _error( ret, 'Unable to copy file {0} to {1}: {2}'.format( name, tmp_filename, exc ) ) try: ret = __salt__['file.manage_file']( tmp_filename, sfn, ret, source, source_sum, user, group, mode, __env__, backup, makedirs, template, show_changes, contents, dir_mode, follow_symlinks, skip_verify) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) if os.path.isfile(tmp_filename): os.remove(tmp_filename) return _error(ret, 'Unable to check_cmd file: {0}'.format(exc)) # file being updated to verify using check_cmd if ret['changes']: # Reset ret ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} check_cmd_opts = {} if 'shell' in __grains__: check_cmd_opts['shell'] = __grains__['shell'] cret = mod_run_check_cmd(check_cmd, tmp_filename, **check_cmd_opts) if isinstance(cret, dict): ret.update(cret) if os.path.isfile(tmp_filename): os.remove(tmp_filename) return ret # Since we generated a new tempfile and we are not returning here # lets change the original sfn to the new tempfile or else we will # get file not found sfn = tmp_filename else: ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if comment_ and contents is None: return _error(ret, comment_) else: try: return __salt__['file.manage_file']( name, sfn, ret, source, source_sum, user, group, mode, __env__, backup, makedirs, template, show_changes, contents, dir_mode, follow_symlinks, skip_verify) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) return _error(ret, 'Unable to manage file: {0}'.format(exc)) finally: if tmp_filename and os.path.isfile(tmp_filename): os.remove(tmp_filename) _RECURSE_TYPES = ['user', 'group', 'mode', 'ignore_files', 'ignore_dirs'] def _get_recurse_set(recurse): ''' Converse *recurse* definition to a set of strings. Raises TypeError or ValueError when *recurse* has wrong structure. ''' if not recurse: return set() if not isinstance(recurse, list): raise TypeError('"recurse" must be formed as a list of strings') try: recurse_set = set(recurse) except TypeError: # non-hashable elements recurse_set = None if recurse_set is None or not set(_RECURSE_TYPES) >= recurse_set: raise ValueError('Types for "recurse" limited to {0}.'.format( ', '.join('"{0}"'.format(rtype) for rtype in _RECURSE_TYPES))) if 'ignore_files' in recurse_set and 'ignore_dirs' in recurse_set: raise ValueError('Must not specify "recurse" options "ignore_files"' ' and "ignore_dirs" at the same time.') return recurse_set def directory(name, user=None, group=None, recurse=None, dir_mode=None, file_mode=None, makedirs=False, clean=False, require=None, exclude_pat=None, follow_symlinks=False, force=False, backupname=None, allow_symlink=True, **kwargs): ''' Ensure that a named directory is present and has the right perms name The location to create or manage a directory user The user to own the directory; this defaults to the user salt is running as on the minion group The group ownership set for the directory; this defaults to the group salt is running as on the minion. On Windows, this is ignored recurse Enforce user/group ownership and mode of directory recursively. Accepts a list of strings representing what you would like to recurse. If ``mode`` is defined, will recurse on both ``file_mode`` and ``dir_mode`` if they are defined. If ``ignore_files`` or ``ignore_dirs`` is included, files or directories will be left unchanged respectively. Example: .. code-block:: yaml /var/log/httpd: file.directory: - user: root - group: root - dir_mode: 755 - file_mode: 644 - recurse: - user - group - mode Leave files or directories unchanged: .. code-block:: yaml /var/log/httpd: file.directory: - user: root - group: root - dir_mode: 755 - file_mode: 644 - recurse: - user - group - mode - ignore_dirs .. versionadded:: 2015.5.0 dir_mode / mode The permissions mode to set any directories created. Not supported on Windows file_mode The permissions mode to set any files created if 'mode' is run in 'recurse'. This defaults to dir_mode. Not supported on Windows makedirs If the directory is located in a path without a parent directory, then the state will fail. If makedirs is set to True, then the parent directories will be created to facilitate the creation of the named file. clean Make sure that only files that are set up by salt and required by this function are kept. If this option is set then everything in this directory will be deleted unless it is required. require Require other resources such as packages or files exclude_pat When 'clean' is set to True, exclude this pattern from removal list and preserve in the destination. follow_symlinks : False If the desired path is a symlink (or ``recurse`` is defined and a symlink is encountered while recursing), follow it and check the permissions of the directory/file to which the symlink points. .. versionadded:: 2014.1.4 force If the name of the directory exists and is not a directory and force is set to False, the state will fail. If force is set to True, the file in the way of the directory will be deleted to make room for the directory, unless backupname is set, then it will be renamed. .. versionadded:: 2014.7.0 backupname If the name of the directory exists and is not a directory, it will be renamed to the backupname. If the backupname already exists and force is False, the state will fail. Otherwise, the backupname will be removed first. .. versionadded:: 2014.7.0 allow_symlink : True If allow_symlink is True and the specified path is a symlink, it will be allowed to remain if it points to a directory. If allow_symlink is False then the state will fail, unless force is also set to True, in which case it will be removed or renamed, depending on the value of the backupname argument. .. versionadded:: 2014.7.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.directory') # Remove trailing slash, if present and we're not working on "/" itself if name[-1] == '/' and name != '/': name = name[:-1] user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this is ' 'a Windows system.'.format(name) ) group = user if 'mode' in kwargs and not dir_mode: dir_mode = kwargs.get('mode', []) if not file_mode: file_mode = dir_mode # Make sure that leading zeros stripped by YAML loader are added back dir_mode = __salt__['config.manage_mode'](dir_mode) file_mode = __salt__['config.manage_mode'](file_mode) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if os.path.isfile(name) or (not allow_symlink and os.path.islink(name)): if backupname is not None: # Make a backup first if os.path.lexists(backupname): if not force: return _error(ret, (( 'File exists where the backup target {0} should go' ).format(backupname))) else: __salt__['file.remove'](backupname) os.rename(name, backupname) elif force: # Remove whatever is in the way if os.path.isfile(name): os.remove(name) ret['changes']['forced'] = 'File was forcibly replaced' elif __salt__['file.is_link'](name): __salt__['file.remove'](name) ret['changes']['forced'] = 'Symlink was forcibly replaced' else: __salt__['file.remove'](name) else: if os.path.isfile(name): return _error( ret, 'Specified location {0} exists and is a file'.format(name)) elif os.path.islink(name): return _error( ret, 'Specified location {0} exists and is a symlink'.format(name)) presult, pcomment, ret['pchanges'] = _check_directory( name, user, group, recurse or [], dir_mode, clean, require, exclude_pat) if __opts__['test']: ret['result'] = presult ret['comment'] = pcomment return ret if not os.path.isdir(name): # The dir does not exist, make it if not os.path.isdir(os.path.dirname(name)): # The parent directory does not exist, create them if makedirs: # Make sure the drive is mapped before trying to create the # path in windows if salt.utils.is_windows(): drive, path = os.path.splitdrive(name) if not os.path.isdir(drive): return _error( ret, 'Drive {0} is not mapped'.format(drive)) # Everything's good, create the path __salt__['file.makedirs']( name, user=user, group=group, mode=dir_mode ) else: return _error( ret, 'No directory to create {0} in'.format(name)) __salt__['file.mkdir']( name, user=user, group=group, mode=dir_mode ) ret['changes'][name] = 'New Dir' if not os.path.isdir(name): return _error(ret, 'Failed to create directory {0}'.format(name)) # Check permissions ret, perms = __salt__['file.check_perms'](name, ret, user, group, dir_mode, follow_symlinks) if recurse or clean: walk_l = list(os.walk(name)) # walk path only once and store the result # root: (dirs, files) structure, compatible for python2.6 walk_d = {} for i in walk_l: walk_d[i[0]] = (i[1], i[2]) recurse_set = None if recurse: try: recurse_set = _get_recurse_set(recurse) except (TypeError, ValueError) as exc: ret['result'] = False ret['comment'] = '{0}'.format(exc) # NOTE: Should this be enough to stop the whole check altogether? if recurse_set: if 'user' in recurse_set: if user: uid = __salt__['file.user_to_uid'](user) # file.user_to_uid returns '' if user does not exist. Above # check for user is not fatal, so we need to be sure user # exists. if isinstance(uid, six.string_types): ret['result'] = False ret['comment'] = 'Failed to enforce ownership for ' \ 'user {0} (user does not ' \ 'exist)'.format(user) else: ret['result'] = False ret['comment'] = 'user not specified, but configured as ' \ 'a target for recursive ownership ' \ 'management' else: user = None if 'group' in recurse_set: if group: gid = __salt__['file.group_to_gid'](group) # As above with user, we need to make sure group exists. if isinstance(gid, six.string_types): ret['result'] = False ret['comment'] = 'Failed to enforce group ownership ' \ 'for group {0}'.format(group) else: ret['result'] = False ret['comment'] = 'group not specified, but configured ' \ 'as a target for recursive ownership ' \ 'management' else: group = None if 'mode' not in recurse_set: file_mode = None dir_mode = None check_files = 'ignore_files' not in recurse_set check_dirs = 'ignore_dirs' not in recurse_set for root, dirs, files in walk_l: if check_files: for fn_ in files: full = os.path.join(root, fn_) ret, perms = __salt__['file.check_perms']( full, ret, user, group, file_mode, follow_symlinks) if check_dirs: for dir_ in dirs: full = os.path.join(root, dir_) ret, perms = __salt__['file.check_perms']( full, ret, user, group, dir_mode, follow_symlinks) if clean: keep = _gen_keep_files(name, require, walk_d) log.debug('List of kept files when use file.directory with clean: %s', keep) removed = _clean_dir(name, list(keep), exclude_pat) if removed: ret['changes']['removed'] = removed ret['comment'] = 'Files cleaned from directory {0}'.format(name) if not ret['comment']: ret['comment'] = 'Directory {0} updated'.format(name) if __opts__['test']: ret['comment'] = 'Directory {0} not updated'.format(name) elif not ret['changes'] and ret['result']: ret['comment'] = 'Directory {0} is in the correct state'.format(name) return ret def recurse(name, source, clean=False, require=None, user=None, group=None, dir_mode=None, file_mode=None, sym_mode=None, template=None, context=None, defaults=None, include_empty=False, backup='', include_pat=None, exclude_pat=None, maxdepth=None, keep_symlinks=False, force_symlinks=False, **kwargs): ''' Recurse through a subdirectory on the master and copy said subdirectory over to the specified path. name The directory to set the recursion in source The source directory, this directory is located on the salt master file server and is specified with the salt:// protocol. If the directory is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs clean Make sure that only files that are set up by salt and required by this function are kept. If this option is set then everything in this directory will be deleted unless it is required. require Require other resources such as packages or files user The user to own the directory. This defaults to the user salt is running as on the minion group The group ownership set for the directory. This defaults to the group salt is running as on the minion. On Windows, this is ignored dir_mode The permissions mode to set on any directories created. Not supported on Windows file_mode The permissions mode to set on any files created. Not supported on Windows sym_mode The permissions mode to set on any symlink created. Not supported on Windows template If this setting is applied then the named templating engine will be used to render the downloaded file. Supported templates are: `jinja`, `mako` and `wempy`. .. note:: The template option is required when recursively applying templates. context Overrides default context variables passed to the template. defaults Default context passed to the template. include_empty Set this to True if empty directories should also be created (default is False) include_pat When copying, include only this pattern from the source. Default is glob match; if prefixed with 'E@', then regexp match. Example: .. code-block:: yaml - include_pat: hello* :: glob matches 'hello01', 'hello02' ... but not 'otherhello' - include_pat: E@hello :: regexp matches 'otherhello', 'hello01' ... exclude_pat Exclude this pattern from the source when copying. If both `include_pat` and `exclude_pat` are supplied, then it will apply conditions cumulatively. i.e. first select based on include_pat, and then within that result apply exclude_pat. Also, when 'clean=True', exclude this pattern from the removal list and preserve in the destination. Example: .. code-block:: yaml - exclude_pat: APPDATA* :: glob matches APPDATA.01, APPDATA.02,.. for exclusion - exclude_pat: E@(APPDATA)|(TEMPDATA) :: regexp matches APPDATA or TEMPDATA for exclusion maxdepth When copying, only copy paths which are of depth `maxdepth` from the source path. Example: .. code-block:: yaml - maxdepth: 0 :: Only include files located in the source directory - maxdepth: 1 :: Only include files located in the source or immediate subdirectories keep_symlinks Keep symlinks when copying from the source. This option will cause the copy operation to terminate at the symlink. If desire behavior similar to rsync, then set this to True. force_symlinks Force symlink creation. This option will force the symlink creation. If a file or directory is obstructing symlink creation it will be recursively removed so that symlink creation can proceed. This option is usually not needed except in special circumstances. ''' if 'env' in kwargs: salt.utils.warn_until( 'Oxygen', 'Parameter \'env\' has been detected in the argument list. This ' 'parameter is no longer used and has been replaced by \'saltenv\' ' 'as of Salt Carbon. This warning will be removed in Salt Oxygen.' ) kwargs.pop('env') name = os.path.expanduser(sdecode(name)) user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user ret = { 'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': {} # { path: [comment, ...] } } if 'mode' in kwargs: ret['result'] = False ret['comment'] = ( '\'mode\' is not allowed in \'file.recurse\'. Please use ' '\'file_mode\' and \'dir_mode\'.' ) return ret # Make sure that leading zeros stripped by YAML loader are added back dir_mode = __salt__['config.manage_mode'](dir_mode) file_mode = __salt__['config.manage_mode'](file_mode) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) # expand source into source_list source_list = _validate_str_list(source) for idx, val in enumerate(source_list): source_list[idx] = val.rstrip('/') for precheck in source_list: if not precheck.startswith('salt://'): return _error(ret, ('Invalid source {0!r} ' '(must be a salt:// URI)'.format(precheck))) # Select the first source in source_list that exists try: source, source_hash = __salt__['file.source_list'](source_list, '', __env__) except CommandExecutionError as exc: ret['result'] = False ret['comment'] = 'Recurse failed: {0}'.format(exc) return ret # Check source path relative to fileserver root, make sure it is a # directory source_rel = source.partition('://')[2] master_dirs = __salt__['cp.list_master_dirs'](__env__) if source_rel not in master_dirs \ and not any((x for x in master_dirs if x.startswith(source_rel + '/'))): ret['result'] = False ret['comment'] = ( 'The directory {0!r} does not exist on the salt fileserver ' 'in saltenv {1!r}'.format(source, __env__) ) return ret # Verify the target directory if not os.path.isdir(name): if os.path.exists(name): # it is not a dir, but it exists - fail out return _error( ret, 'The path {0} exists and is not a directory'.format(name)) if not __opts__['test']: __salt__['file.makedirs_perms']( name, user, group, int(str(dir_mode), 8) if dir_mode else None) def add_comment(path, comment): comments = ret['comment'].setdefault(path, []) if isinstance(comment, six.string_types): comments.append(comment) else: comments.extend(comment) def merge_ret(path, _ret): # Use the most "negative" result code (out of True, None, False) if _ret['result'] is False or ret['result'] is True: ret['result'] = _ret['result'] # Only include comments about files that changed if _ret['result'] is not True and _ret['comment']: add_comment(path, _ret['comment']) if _ret['changes']: ret['changes'][path] = _ret['changes'] def manage_file(path, source): source = salt.utils.url.escape(source) if clean and os.path.exists(path) and os.path.isdir(path): _ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if __opts__['test']: _ret['comment'] = 'Replacing directory {0} with a ' \ 'file'.format(path) _ret['result'] = None merge_ret(path, _ret) return else: __salt__['file.remove'](path) _ret['changes'] = {'diff': 'Replaced directory with a ' 'new file'} merge_ret(path, _ret) # Conflicts can occur if some kwargs are passed in here pass_kwargs = {} faults = ['mode', 'makedirs'] for key in kwargs: if key not in faults: pass_kwargs[key] = kwargs[key] _ret = managed( path, source=source, user=user, group=group, mode=file_mode, template=template, makedirs=True, context=context, defaults=defaults, backup=backup, **pass_kwargs) merge_ret(path, _ret) def manage_directory(path): if os.path.basename(path) == '..': return if clean and os.path.exists(path) and not os.path.isdir(path): _ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if __opts__['test']: _ret['comment'] = 'Replacing {0} with a directory'.format(path) _ret['result'] = None merge_ret(path, _ret) return else: os.remove(path) _ret['changes'] = {'diff': 'Replaced file with a directory'} merge_ret(path, _ret) _ret = directory( path, user=user, group=group, recurse=[], dir_mode=dir_mode, file_mode=None, makedirs=True, clean=False, require=None) merge_ret(path, _ret) # Process symlinks and return the updated filenames list def process_symlinks(filenames, symlinks): for lname, ltarget in six.iteritems(symlinks): if not salt.utils.check_include_exclude( os.path.relpath(lname, srcpath), include_pat, exclude_pat): continue srelpath = os.path.relpath(lname, srcpath) # Check for max depth if maxdepth is not None: srelpieces = srelpath.split('/') if not srelpieces[-1]: srelpieces = srelpieces[:-1] if len(srelpieces) > maxdepth + 1: continue # Check for all paths that begin with the symlink # and axe it leaving only the dirs/files below it. # This needs to use list() otherwise they reference # the same list. _filenames = list(filenames) for filename in _filenames: if filename.startswith(lname): log.debug('** skipping file ** {0}, it intersects a ' 'symlink'.format(filename)) filenames.remove(filename) # Create the symlink along with the necessary dirs. # The dir perms/ownership will be adjusted later # if needed _ret = symlink(os.path.join(name, srelpath), ltarget, makedirs=True, force=force_symlinks, user=user, group=group, mode=sym_mode) if not _ret: continue merge_ret(os.path.join(name, srelpath), _ret) # Add the path to the keep set in case clean is set to True keep.add(os.path.join(name, srelpath)) vdir.update(keep) return filenames keep = set() vdir = set() srcpath = salt.utils.url.parse(source)[0] if not srcpath.endswith('/'): # we're searching for things that start with this *directory*. # use '/' since #master only runs on POSIX srcpath = srcpath + '/' fns_ = __salt__['cp.list_master'](__env__, srcpath) # If we are instructed to keep symlinks, then process them. if keep_symlinks: # Make this global so that emptydirs can use it if needed. symlinks = __salt__['cp.list_master_symlinks'](__env__, srcpath) fns_ = process_symlinks(fns_, symlinks) for fn_ in fns_: if not fn_.strip(): continue # fn_ here is the absolute (from file_roots) source path of # the file to copy from; it is either a normal file or an # empty dir(if include_empty==true). relname = sdecode(os.path.relpath(fn_, srcpath)) if relname.startswith('..'): continue # Check for maxdepth of the relative path if maxdepth is not None: # Since paths are all master, just use POSIX separator relpieces = relname.split('/') # Handle empty directories (include_empty==true) by removing the # the last piece if it is an empty string if not relpieces[-1]: relpieces = relpieces[:-1] if len(relpieces) > maxdepth + 1: continue # Check if it is to be excluded. Match only part of the path # relative to the target directory if not salt.utils.check_include_exclude( relname, include_pat, exclude_pat): continue dest = os.path.join(name, relname) dirname = os.path.dirname(dest) keep.add(dest) if dirname not in vdir: # verify the directory perms if they are set manage_directory(dirname) vdir.add(dirname) src = salt.utils.url.create(fn_) manage_file(dest, src) if include_empty: mdirs = __salt__['cp.list_master_dirs'](__env__, srcpath) for mdir in mdirs: if not salt.utils.check_include_exclude( os.path.relpath(mdir, srcpath), include_pat, exclude_pat): continue mdest = os.path.join(name, os.path.relpath(mdir, srcpath)) # Check for symlinks that happen to point to an empty dir. if keep_symlinks: islink = False for link in symlinks: if mdir.startswith(link, 0): log.debug('** skipping empty dir ** {0}, it intersects' ' a symlink'.format(mdir)) islink = True break if islink: continue manage_directory(mdest) keep.add(mdest) keep = list(keep) if clean: # TODO: Use directory(clean=True) instead keep += _gen_keep_files(name, require) removed = _clean_dir(name, list(keep), exclude_pat) if removed: if __opts__['test']: if ret['result']: ret['result'] = None add_comment('removed', removed) else: ret['changes']['removed'] = removed # Flatten comments until salt command line client learns # to display structured comments in a readable fashion ret['comment'] = '\n'.join(u'\n#### {0} ####\n{1}'.format( k, v if isinstance(v, six.string_types) else '\n'.join(v) ) for (k, v) in six.iteritems(ret['comment'])).strip() if not ret['comment']: ret['comment'] = 'Recursively updated {0}'.format(name) if not ret['changes'] and ret['result']: ret['comment'] = 'The directory {0} is in the correct state'.format( name ) return ret def line(name, content, match=None, mode=None, location=None, before=None, after=None, show_changes=True, backup=False, quiet=False, indent=True, create=False, user=None, group=None, file_mode=None): ''' Line-based editing of a file. .. versionadded:: 2015.8.0 :param name: Filesystem path to the file to be edited. :param content: Content of the line. :param match: Match the target line for an action by a fragment of a string or regular expression. :param mode: :Ensure: If line does not exist, it will be added. :Replace: If line already exist, it will be replaced. :Delete: Delete the line, once found. :Insert: Insert a line. :param location: :start: Place the content at the beginning of the file. :end: Place the content at the end of the file. :param before: Regular expression or an exact case-sensitive fragment of the string. :param after: Regular expression or an exact case-sensitive fragment of the string. :param show_changes: Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made. Default is ``True`` .. note:: Using this option will store two copies of the file in-memory (the original version and the edited version) in order to generate the diff. :param backup: Create a backup of the original file with the extension: "Year-Month-Day-Hour-Minutes-Seconds". :param quiet: Do not raise any exceptions. E.g. ignore the fact that the file that is tried to be edited does not exist and nothing really happened. :param indent: Keep indentation with the previous line. :param create: Create an empty file if doesn't exists. .. versionadded:: Carbon :param user: The user to own the file, this defaults to the user salt is running as on the minion. .. versionadded:: Carbon :param group: The group ownership set for the file, this defaults to the group salt is running as on the minion On Windows, this is ignored. .. versionadded:: Carbon :param file_mode: The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows. .. versionadded:: Carbon If an equal sign (``=``) appears in an argument to a Salt command, it is interpreted as a keyword argument in the format of ``key=val``. That processing can be bypassed in order to pass an equal sign through to the remote shell command by manually specifying the kwarg: .. code-block: yaml update_config: file.line: - name: /etc/myconfig.conf - mode: ensure - content: my key = my value - before: somekey.*? ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.line') if create and not os.path.isfile(name): managed(name, create=create, user=user, group=group, mode=file_mode) check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) changes = __salt__['file.line']( name, content, match=match, mode=mode, location=location, before=before, after=after, show_changes=show_changes, backup=backup, quiet=quiet, indent=indent) if changes: ret['pchanges']['diff'] = changes if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would be made:\ndiff:\n{0}'.format(changes) else: ret['result'] = True ret['comment'] = 'Changes were made' ret['changes'] = {'diff': changes} else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def replace(name, pattern, repl, count=0, flags=8, bufsize=1, append_if_not_found=False, prepend_if_not_found=False, not_found_content=None, backup='.bak', show_changes=True): r''' Maintain an edit in a file. .. versionadded:: 0.17.0 name Filesystem path to the file to be edited. pattern A regular expression, to be matched using Python's :py:func:`~re.search`. repl The replacement text count Maximum number of pattern occurrences to be replaced. Defaults to 0. If count is a positive integer n, no more than n occurrences will be replaced, otherwise all occurrences will be replaced. flags A list of flags defined in the :ref:`re module documentation <contents-of-module-re>`. Each list item should be a string that will correlate to the human-friendly flag name. E.g., ``['IGNORECASE', 'MULTILINE']``. Optionally, ``flags`` may be an int, with a value corresponding to the XOR (``|``) of all the desired flags. Defaults to 8 (which supports 'MULTILINE'). bufsize How much of the file to buffer into memory at once. The default value ``1`` processes one line at a time. The special value ``file`` may be specified which will read the entire file into memory before processing. append_if_not_found : False If set to ``True``, and pattern is not found, then the content will be appended to the file. .. versionadded:: 2014.7.0 prepend_if_not_found : False If set to ``True`` and pattern is not found, then the content will be prepended to the file. .. versionadded:: 2014.7.0 not_found_content Content to use for append/prepend if not found. If ``None`` (default), uses ``repl``. Useful when ``repl`` uses references to group in pattern. .. versionadded:: 2014.7.0 backup The file extension to use for a backup of the file before editing. Set to ``False`` to skip making a backup. show_changes : True Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made. Returns a boolean or a string. .. note: Using this option will store two copies of the file in memory (the original version and the edited version) in order to generate the diff. This may not normally be a concern, but could impact performance if used with large files. For complex regex patterns, it can be useful to avoid the need for complex quoting and escape sequences by making use of YAML's multiline string syntax. .. code-block:: yaml complex_search_and_replace: file.replace: # <...snip...> - pattern: | CentOS \(2.6.32[^\n]+\n\s+root[^\n]+\n\)+ .. note:: When using YAML multiline string syntax in ``pattern:``, make sure to also use that syntax in the ``repl:`` part, or you might loose line feeds. ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.replace') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) changes = __salt__['file.replace'](name, pattern, repl, count=count, flags=flags, bufsize=bufsize, append_if_not_found=append_if_not_found, prepend_if_not_found=prepend_if_not_found, not_found_content=not_found_content, backup=backup, dry_run=__opts__['test'], show_changes=show_changes) if changes: ret['pchanges']['diff'] = changes if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would have been made:\ndiff:\n{0}'.format(changes) else: ret['result'] = True ret['comment'] = 'Changes were made' ret['changes'] = {'diff': changes} else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def blockreplace( name, marker_start='#-- start managed zone --', marker_end='#-- end managed zone --', source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None, content='', append_if_not_found=False, prepend_if_not_found=False, backup='.bak', show_changes=True): ''' Maintain an edit in a file in a zone delimited by two line markers .. versionadded:: 2014.1.0 A block of content delimited by comments can help you manage several lines entries without worrying about old entries removal. This can help you maintaining an un-managed file containing manual edits. Note: this function will store two copies of the file in-memory (the original version and the edited version) in order to detect changes and only edit the targeted file if necessary. name Filesystem path to the file to be edited marker_start The line content identifying a line as the start of the content block. Note that the whole line containing this marker will be considered, so whitespace or extra content before or after the marker is included in final output marker_end The line content identifying a line as the end of the content block. Note that the whole line containing this marker will be considered, so whitespace or extra content before or after the marker is included in final output. Note: you can use file.accumulated and target this state. All accumulated data dictionaries content will be added as new lines in the content content The content to be used between the two lines identified by ``marker_start`` and ``marker_end`` source The source file to download to the minion, this source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials. (see s3.get state documentation) File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs, see swift.get documentation. For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If source is left blank or None (use ~ in YAML), the file will be created as an empty file and the content will not be managed. This is also the case when a file already exists and the source is undefined; the contents of the file will not be changed or managed. If the file is hosted on a HTTP or FTP server then the source_hash argument is also required A list of sources can also be passed in to provide a default source and a set of fallbacks. The first source in the list that is found to exist will be used and subsequent entries in the list will be ignored. .. code-block:: yaml file_override_example: file.managed: - source: - salt://file_that_does_not_exist - salt://file_that_exists source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 **Using a Source Hash File** The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. When using a source hash file the source_hash argument needs to be a url, the standard download urls are supported, ftp, http, salt etc: Example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.hash The following is an example of the supported source_hash format: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Debian file type ``*.dsc`` files are also supported. **Inserting the Source Hash in the sls Data** Examples: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: md5=79eef25f9b0b2c642c62b7f737d4f53f template If this setting is applied then the named templating engine will be used to render the downloaded file, currently jinja, mako, and wempy are supported context Overrides default context variables passed to the template. defaults Default context passed to the template. append_if_not_found If markers are not found and set to True then the markers and content will be appended to the file. Default is ``False`` prepend_if_not_found If markers are not found and set to True then the markers and content will be prepended to the file. Default is ``False`` backup The file extension to use for a backup of the file if any edit is made. Set this to ``False`` to skip making a backup. dry_run Don't make any edits to the file show_changes Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made Example of usage with an accumulator and with a variable: .. code-block:: yaml {% set myvar = 42 %} hosts-config-block-{{ myvar }}: file.blockreplace: - name: /etc/hosts - marker_start: "# START managed zone {{ myvar }} -DO-NOT-EDIT-" - marker_end: "# END managed zone {{ myvar }} --" - content: 'First line of content' - append_if_not_found: True - backup: '.bak' - show_changes: True hosts-config-block-{{ myvar }}-accumulated1: file.accumulated: - filename: /etc/hosts - name: my-accumulator-{{ myvar }} - text: "text 2" - require_in: - file: hosts-config-block-{{ myvar }} hosts-config-block-{{ myvar }}-accumulated2: file.accumulated: - filename: /etc/hosts - name: my-accumulator-{{ myvar }} - text: | text 3 text 4 - require_in: - file: hosts-config-block-{{ myvar }} will generate and maintain a block of content in ``/etc/hosts``: .. code-block:: text # START managed zone 42 -DO-NOT-EDIT- First line of content text 2 text 3 text 4 # END managed zone 42 -- ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.blockreplace') if sources is None: sources = [] if source_hashes is None: source_hashes = [] (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) accum_data, accum_deps = _load_accumulators() if name in accum_data: accumulator = accum_data[name] # if we have multiple accumulators for a file, only apply the one # required at a time deps = accum_deps.get(name, []) filtered = [a for a in deps if __low__['__id__'] in deps[a] and a in accumulator] if not filtered: filtered = [a for a in accumulator] for acc in filtered: acc_content = accumulator[acc] for line in acc_content: if content == '': content = line else: content += "\n" + line if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] for index, item in enumerate(text): content += str(item) changes = __salt__['file.blockreplace']( name, marker_start, marker_end, content=content, append_if_not_found=append_if_not_found, prepend_if_not_found=prepend_if_not_found, backup=backup, dry_run=__opts__['test'], show_changes=show_changes ) if changes: ret['pchanges'] = {'diff': changes} if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would be made' else: ret['changes'] = {'diff': changes} ret['result'] = True ret['comment'] = 'Changes were made' else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def comment(name, regex, char='#', backup='.bak'): ''' Comment out specified lines in a file. name The full path to the file to be edited regex A regular expression used to find the lines that are to be commented; this pattern will be wrapped in parenthesis and will move any preceding/trailing ``^`` or ``$`` characters outside the parenthesis (e.g., the pattern ``^foo$`` will be rewritten as ``^(foo)$``) Note that you _need_ the leading ^, otherwise each time you run highstate, another comment char will be inserted. char : ``#`` The character to be inserted at the beginning of a line in order to comment it out backup : ``.bak`` The file will be backed up before edit with this file extension .. warning:: This backup will be overwritten each time ``sed`` / ``comment`` / ``uncomment`` is called. Meaning the backup will only be useful after the first invocation. Usage: .. code-block:: yaml /etc/fstab: file.comment: - regex: ^bind 127.0.0.1 .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.comment') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) unanchor_regex = regex.lstrip('^').rstrip('$') # Make sure the pattern appears in the file before continuing if not __salt__['file.search'](name, regex, multiline=True): if __salt__['file.search'](name, unanchor_regex, multiline=True): ret['comment'] = 'Pattern already commented' ret['result'] = True return ret else: return _error(ret, '{0}: Pattern not found'.format(unanchor_regex)) ret['pchanges'][name] = 'updated' if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None return ret with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() # Perform the edit __salt__['file.comment_line'](name, regex, char, True, backup) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() # Check the result ret['result'] = __salt__['file.search'](name, unanchor_regex, multiline=True) if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if ret['result']: ret['comment'] = 'Commented lines successfully' else: ret['comment'] = 'Expected commented lines not found' return ret def uncomment(name, regex, char='#', backup='.bak'): ''' Uncomment specified commented lines in a file name The full path to the file to be edited regex A regular expression used to find the lines that are to be uncommented. This regex should not include the comment character. A leading ``^`` character will be stripped for convenience (for easily switching between comment() and uncomment()). The regex will be searched for from the beginning of the line, ignoring leading spaces (we prepend '^[ \\t]*') char : ``#`` The character to remove in order to uncomment a line backup : ``.bak`` The file will be backed up before edit with this file extension; .. warning:: This backup will be overwritten each time ``sed`` / ``comment`` / ``uncomment`` is called. Meaning the backup will only be useful after the first invocation. Usage: .. code-block:: yaml /etc/adduser.conf: file.uncomment: - regex: EXTRA_GROUPS .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.uncomment') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) # Make sure the pattern appears in the file if __salt__['file.search']( name, '^[ \t]*{0}'.format(regex.lstrip('^')), multiline=True): ret['comment'] = 'Pattern already uncommented' ret['result'] = True return ret elif __salt__['file.search']( name, '{0}[ \t]*{1}'.format(char, regex.lstrip('^')), multiline=True): # Line exists and is commented pass else: return _error(ret, '{0}: Pattern not found'.format(regex)) ret['pchanges'][name] = 'updated' if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None return ret with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() # Perform the edit __salt__['file.comment_line'](name, regex, char, False, backup) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() # Check the result ret['result'] = __salt__['file.search']( name, '^[ \t]*{0}'.format(regex.lstrip('^')), multiline=True ) if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if ret['result']: ret['comment'] = 'Uncommented lines successfully' else: ret['comment'] = 'Expected uncommented lines not found' return ret def append(name, text=None, makedirs=False, source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None, ignore_whitespace=True): ''' Ensure that some text appears at the end of a file. The text will not be appended if it already exists in the file. A single string of text or a list of strings may be appended. name The location of the file to append to. text The text to be appended, which can be a single string or a list of strings. makedirs If the file is located in a path without a parent directory, then the state will fail. If makedirs is set to True, then the parent directories will be created to facilitate the creation of the named file. Defaults to False. source A single source file to append. This source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials (see s3.get state documentation). File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs (see swift.get documentation). For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If the file is hosted on an HTTP or FTP server, the source_hash argument is also required. source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. Debian file type ``*.dsc`` is supported. Examples: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source file, the module will discover that it has already cached a directory where a file should be cached. For example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5 template : ``jinja`` The named templating engine will be used to render the appended-to file. Defaults to jinja. sources A list of source files to append. If the files are hosted on an HTTP or FTP server, the source_hashes argument is also required. source_hashes A list of source_hashes corresponding to the sources list specified in the sources argument. defaults Default context passed to the template. context Overrides default context variables passed to the template. ignore_whitespace .. versionadded:: 2015.8.4 Spaces and Tabs in text are ignored by default, when searching for the appending content, one space or multiple tabs are the same for salt. Set this option to ``False`` if you want to change this behavior. Multi-line example: .. code-block:: yaml /etc/motd: file.append: - text: | Thou hadst better eat salt with the Philosophers of Greece, than sugar with the Courtiers of Italy. - Benjamin Franklin Multiple lines of text: .. code-block:: yaml /etc/motd: file.append: - text: - Trust no one unless you have eaten much salt with him. - "Salt is born of the purest of parents: the sun and the sea." Gather text from multiple template files: .. code-block:: yaml /etc/motd: file: - append - template: jinja - sources: - salt://motd/devops-messages.tmpl - salt://motd/hr-messages.tmpl - salt://motd/general-messages.tmpl .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = { 'name': name, 'changes': {}, 'pchanges': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.append') if sources is None: sources = [] if source_hashes is None: source_hashes = [] # Add sources and source_hashes with template support # NOTE: FIX 'text' and any 'source' are mutually exclusive as 'text' # is re-assigned in the original code. (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) if makedirs is True: dirname = os.path.dirname(name) if not __salt__['file.directory_exists'](dirname): __salt__['file.makedirs'](name) check_res, check_msg, ret['pchanges'] = _check_directory( dirname, None, None, False, None, False, False, None ) if not check_res: return _error(ret, check_msg) check_res, check_msg = _check_file(name) if not check_res: # Try to create the file touch(name, makedirs=makedirs) retry_res, retry_msg = _check_file(name) if not retry_res: return _error(ret, check_msg) # Follow the original logic and re-assign 'text' if using source(s)... if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] text = _validate_str_list(text) with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() count = 0 test_lines = [] try: for chunk in text: if ignore_whitespace: if __salt__['file.search']( name, salt.utils.build_whitespace_split_regex(chunk), multiline=True): continue elif __salt__['file.search']( name, chunk, multiline=True): continue lines = chunk.splitlines() for line in lines: if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None test_lines.append('{0}\n'.format(line)) else: __salt__['file.append'](name, line) count += 1 except TypeError: return _error(ret, 'No text found to append. Nothing appended') if __opts__['test']: nlines = slines + test_lines ret['result'] = None if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if count: ret['comment'] = 'Appended {0} lines'.format(count) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret def prepend(name, text=None, makedirs=False, source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None): ''' Ensure that some text appears at the beginning of a file The text will not be prepended again if it already exists in the file. You may specify a single line of text or a list of lines to append. Multi-line example: .. code-block:: yaml /etc/motd: file.prepend: - text: | Thou hadst better eat salt with the Philosophers of Greece, than sugar with the Courtiers of Italy. - Benjamin Franklin Multiple lines of text: .. code-block:: yaml /etc/motd: file.prepend: - text: - Trust no one unless you have eaten much salt with him. - "Salt is born of the purest of parents: the sun and the sea." Gather text from multiple template files: .. code-block:: yaml /etc/motd: file: - prepend - template: jinja - sources: - salt://motd/devops-messages.tmpl - salt://motd/hr-messages.tmpl - salt://motd/general-messages.tmpl .. versionadded:: 2014.7.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'pchanges': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.prepend') if sources is None: sources = [] if source_hashes is None: source_hashes = [] # Add sources and source_hashes with template support # NOTE: FIX 'text' and any 'source' are mutually exclusive as 'text' # is re-assigned in the original code. (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) if makedirs is True: dirname = os.path.dirname(name) if not __salt__['file.directory_exists'](dirname): __salt__['file.makedirs'](name) check_res, check_msg, ret['pchanges'] = _check_directory( dirname, None, None, False, None, False, False, None ) if not check_res: return _error(ret, check_msg) check_res, check_msg = _check_file(name) if not check_res: # Try to create the file touch(name, makedirs=makedirs) retry_res, retry_msg = _check_file(name) if not retry_res: return _error(ret, check_msg) # Follow the original logic and re-assign 'text' if using source(s)... if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] text = _validate_str_list(text) with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() count = 0 test_lines = [] preface = [] for chunk in text: if __salt__['file.search']( name, salt.utils.build_whitespace_split_regex(chunk), multiline=True): continue lines = chunk.splitlines() for line in lines: if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None test_lines.append('{0}\n'.format(line)) else: preface.append(line) count += 1 if __opts__['test']: nlines = test_lines + slines if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) ret['result'] = None else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret __salt__['file.prepend'](name, *preface) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if count: ret['comment'] = 'Prepended {0} lines'.format(count) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret def patch(name, source=None, hash=None, options='', dry_run_first=True, **kwargs): ''' Apply a patch to a file or directory. .. note:: A suitable ``patch`` executable must be available on the minion when using this state function. name The file or directory to which the patch will be applied. source The source patch to download to the minion, this source file must be hosted on the salt master server. If the file is located in the directory named spam, and is called eggs, the source string is salt://spam/eggs. A source is required. hash Hash of the patched file. If the hash of the target file matches this value then the patch is assumed to have been applied. The hash string is the hash algorithm followed by the hash of the file: md5=e138491e9d5b97023cea823fe17bac22 options Extra options to pass to patch. dry_run_first : ``True`` Run patch with ``--dry-run`` first to check if it will apply cleanly. saltenv Specify the environment from which to retrieve the patch file indicated by the ``source`` parameter. If not provided, this defaults to the environment from which the state is being executed. Usage: .. code-block:: yaml # Equivalent to ``patch --forward /opt/file.txt file.patch`` /opt/file.txt: file.patch: - source: salt://file.patch - hash: md5=e138491e9d5b97023cea823fe17bac22 ''' if 'env' in kwargs: salt.utils.warn_until( 'Oxygen', 'Parameter \'env\' has been detected in the argument list. This ' 'parameter is no longer used and has been replaced by \'saltenv\' ' 'as of Salt Carbon. This warning will be removed in Salt Oxygen.' ) kwargs.pop('env') name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.patch') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) if not source: return _error(ret, 'Source is required') if hash is None: return _error(ret, 'Hash is required') if hash and __salt__['file.check_hash'](name, hash): ret.update(result=True, comment='Patch is already applied') return ret # get cached file or copy it to cache cached_source_path = __salt__['cp.cache_file'](source, __env__) if not cached_source_path: ret['comment'] = ('Unable to cache {0} from saltenv {1!r}' .format(source, __env__)) return ret log.debug( 'State patch.applied cached source {0} -> {1}'.format( source, cached_source_path ) ) if dry_run_first or __opts__['test']: ret['changes'] = __salt__['file.patch']( name, cached_source_path, options=options, dry_run=True ) if __opts__['test']: ret['comment'] = 'File {0} will be patched'.format(name) ret['result'] = None return ret if ret['changes']['retcode']: return ret ret['changes'] = __salt__['file.patch']( name, cached_source_path, options=options ) ret['result'] = not ret['changes']['retcode'] if ret['result'] and hash and not __salt__['file.check_hash'](name, hash): ret.update( result=False, comment='File {0} hash mismatch after patch was applied'.format( name ) ) return ret def touch(name, atime=None, mtime=None, makedirs=False): ''' Replicate the 'nix "touch" command to create a new empty file or update the atime and mtime of an existing file. Note that if you just want to create a file and don't care about atime or mtime, you should use ``file.managed`` instead, as it is more feature-complete. (Just leave out the ``source``/``template``/``contents`` arguments, and it will just create the file and/or check its permissions, without messing with contents) name name of the file atime atime of the file mtime mtime of the file makedirs whether we should create the parent directory/directories in order to touch the file Usage: .. code-block:: yaml /var/log/httpd/logrotate.empty: file.touch .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = { 'name': name, 'changes': {}, } if not name: return _error(ret, 'Must provide name to file.touch') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name) ) if __opts__['test']: ret['result'], ret['comment'] = _check_touch(name, atime, mtime) return ret if makedirs: __salt__['file.makedirs'](name) if not os.path.isdir(os.path.dirname(name)): return _error( ret, 'Directory not present to touch file {0}'.format(name) ) extant = os.path.exists(name) ret['result'] = __salt__['file.touch'](name, atime, mtime) if not extant and ret['result']: ret['comment'] = 'Created empty file {0}'.format(name) ret['changes']['new'] = name elif extant and ret['result']: ret['comment'] = 'Updated times on {0} {1}'.format( 'directory' if os.path.isdir(name) else 'file', name ) ret['changes']['touched'] = name return ret def copy( name, source, force=False, makedirs=False, preserve=False, user=None, group=None, mode=None, subdir=False, **kwargs): ''' If the source file exists on the system, copy it to the named file. The named file will not be overwritten if it already exists unless the force option is set to True. name The location of the file to copy to source The location of the file to copy to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them preserve .. versionadded:: 2015.5.0 Set ``preserve: True`` to preserve user/group ownership and mode after copying. Default is ``False``. If ``preserve`` is set to ``True``, then user/group/mode attributes will be ignored. user .. versionadded:: 2015.5.0 The user to own the copied file, this defaults to the user salt is running as on the minion. If ``preserve`` is set to ``True``, then this will be ignored group .. versionadded:: 2015.5.0 The group to own the copied file, this defaults to the group salt is running as on the minion. If ``preserve`` is set to ``True`` or on Windows this will be ignored mode .. versionadded:: 2015.5.0 The permissions to set on the copied file, aka 644, '0775', '4664'. If ``preserve`` is set to ``True``, then this will be ignored. Not supported on Windows subdir .. versionadded:: 2015.5.0 If the name is a directory then place the file inside the named directory ''' name = os.path.expanduser(name) source = os.path.expanduser(source) ret = { 'name': name, 'changes': {}, 'comment': 'Copied "{0}" to "{1}"'.format(source, name), 'result': True} if not name: return _error(ret, 'Must provide name to file.copy') changed = True if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if not os.path.exists(source): return _error(ret, 'Source file "{0}" is not present'.format(source)) if preserve: user = __salt__['file.get_user'](source) group = __salt__['file.get_group'](source) mode = __salt__['file.get_mode'](source) else: user = _test_owner(kwargs, user=user) if user is None: user = __opts__['user'] if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this is ' 'a Windows system.'.format(name) ) group = user if group is None: group = __salt__['file.gid_to_group']( __salt__['user.info'](user).get('gid', 0) ) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if mode is None: mode = __salt__['file.get_mode'](source) if os.path.isdir(name) and subdir: # If the target is a dir, and overwrite_dir is False, copy into the dir name = os.path.join(name, os.path.basename(source)) if os.path.lexists(source) and os.path.lexists(name): # if this is a file which did not change, do not update if force and os.path.isfile(name): hash1 = salt.utils.get_hash(name) hash2 = salt.utils.get_hash(source) if hash1 == hash2: changed = False if not force: changed = False elif not __opts__['test'] and changed: # Remove the destination to prevent problems later try: __salt__['file.remove'](name) except (IOError, OSError): return _error( ret, 'Failed to delete "{0}" in preparation for ' 'forced move'.format(name) ) if __opts__['test']: if changed: ret['comment'] = 'File "{0}" is set to be copied to "{1}"'.format( source, name ) ret['result'] = None else: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret if not changed: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret # Run makedirs dname = os.path.dirname(name) if not os.path.isdir(dname): if makedirs: __salt__['file.makedirs'](name) else: return _error( ret, 'The target directory {0} is not present'.format(dname)) # All tests pass, move the file into place try: shutil.copy(source, name) ret['changes'] = {name: source} # Preserve really means just keep the behavior of the cp command. If # the filesystem we're copying to is squashed or doesn't support chown # then we shouldn't be checking anything. if not preserve: __salt__['file.check_perms'](name, ret, user, group, mode) except (IOError, OSError): return _error( ret, 'Failed to copy "{0}" to "{1}"'.format(source, name)) return ret def rename(name, source, force=False, makedirs=False): ''' If the source file exists on the system, rename it to the named file. The named file will not be overwritten if it already exists unless the force option is set to True. name The location of the file to rename to source The location of the file to move to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them ''' name = os.path.expanduser(name) source = os.path.expanduser(source) ret = { 'name': name, 'changes': {}, 'comment': '', 'result': True} if not name: return _error(ret, 'Must provide name to file.rename') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if not os.path.lexists(source): ret['comment'] = ('Source file "{0}" has already been moved out of ' 'place').format(source) return ret if os.path.lexists(source) and os.path.lexists(name): if not force: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = False return ret elif not __opts__['test']: # Remove the destination to prevent problems later try: __salt__['file.remove'](name) except (IOError, OSError): return _error( ret, 'Failed to delete "{0}" in preparation for ' 'forced move'.format(name) ) if __opts__['test']: ret['comment'] = 'File "{0}" is set to be moved to "{1}"'.format( source, name ) ret['result'] = None return ret # Run makedirs dname = os.path.dirname(name) if not os.path.isdir(dname): if makedirs: __salt__['file.makedirs'](name) else: return _error( ret, 'The target directory {0} is not present'.format(dname)) # All tests pass, move the file into place try: if os.path.islink(source): linkto = os.readlink(source) os.symlink(linkto, name) os.unlink(source) else: shutil.move(source, name) except (IOError, OSError): return _error( ret, 'Failed to move "{0}" to "{1}"'.format(source, name)) ret['comment'] = 'Moved "{0}" to "{1}"'.format(source, name) ret['changes'] = {name: source} return ret def accumulated(name, filename, text, **kwargs): ''' Prepare accumulator which can be used in template in file.managed state. Accumulator dictionary becomes available in template. It can also be used in file.blockreplace. name Accumulator name filename Filename which would receive this accumulator (see file.managed state documentation about ``name``) text String or list for adding in accumulator require_in / watch_in One of them required for sure we fill up accumulator before we manage the file. Probably the same as filename Example: Given the following: .. code-block:: yaml animals_doing_things: file.accumulated: - filename: /tmp/animal_file.txt - text: ' jumps over the lazy dog.' - require_in: - file: animal_file animal_file: file.managed: - name: /tmp/animal_file.txt - source: salt://animal_file.txt - template: jinja One might write a template for ``animal_file.txt`` like the following: .. code-block:: jinja The quick brown fox{% for animal in accumulator['animals_doing_things'] %}{{ animal }}{% endfor %} Collectively, the above states and template file will produce: .. code-block:: text The quick brown fox jumps over the lazy dog. Multiple accumulators can be "chained" together. .. note:: The 'accumulator' data structure is a Python dictionary. Do not expect any loop over the keys in a deterministic order! ''' ret = { 'name': name, 'changes': {}, 'result': True, 'comment': '' } if not name: return _error(ret, 'Must provide name to file.accumulated') if text is None: ret['result'] = False ret['comment'] = 'No text supplied for accumulator' return ret require_in = __low__.get('require_in', []) watch_in = __low__.get('watch_in', []) deps = require_in + watch_in if not [x for x in deps if 'file' in x]: ret['result'] = False ret['comment'] = 'Orphaned accumulator {0} in {1}:{2}'.format( name, __low__['__sls__'], __low__['__id__'] ) return ret if isinstance(text, six.string_types): text = (text,) elif isinstance(text, dict): text = (text,) accum_data, accum_deps = _load_accumulators() if filename not in accum_data: accum_data[filename] = {} if filename not in accum_deps: accum_deps[filename] = {} if name not in accum_deps[filename]: accum_deps[filename][name] = [] for accumulator in deps: accum_deps[filename][name].extend(six.itervalues(accumulator)) if name not in accum_data[filename]: accum_data[filename][name] = [] for chunk in text: if chunk not in accum_data[filename][name]: accum_data[filename][name].append(chunk) ret['comment'] = ('Accumulator {0} for file {1} ' 'was charged by text'.format(name, filename)) _persist_accummulators(accum_data, accum_deps) return ret def _merge_dict(obj, k, v): changes = {} if k in obj: if isinstance(obj[k], list): if isinstance(v, list): for a in v: if a not in obj[k]: changes[k] = a obj[k].append(a) else: if obj[k] != v: changes[k] = v obj[k] = v elif isinstance(obj[k], dict): if isinstance(v, dict): for a, b in six.iteritems(v): if isinstance(b, dict) or isinstance(b, list): updates = _merge_dict(obj[k], a, b) for x, y in six.iteritems(updates): changes[k + "." + x] = y else: if a not in obj[k] or obj[k][a] != b: changes[k + "." + a] = b obj[k][a] = b else: if obj[k] != v: changes[k] = v obj[k] = v else: if obj[k] != v: changes[k] = v obj[k] = v else: changes[k] = v obj[k] = v return changes def serialize(name, dataset=None, dataset_pillar=None, user=None, group=None, mode=None, backup='', makedirs=False, show_diff=True, create=True, merge_if_exists=False, **kwargs): ''' Serializes dataset and store it into managed file. Useful for sharing simple configuration files. name The location of the file to create dataset The dataset that will be serialized dataset_pillar Operates like ``dataset``, but draws from a value stored in pillar, using the pillar path syntax used in :mod:`pillar.get <salt.modules.pillar.get>`. This is useful when the pillar value contains newlines, as referencing a pillar variable using a jinja/mako template can result in YAML formatting issues due to the newlines causing indentation mismatches. .. versionadded:: FIXME formatter Write the data as this format. Supported output formats: * JSON * YAML * Python (via pprint.pformat) user The user to own the directory, this defaults to the user salt is running as on the minion group The group ownership set for the directory, this defaults to the group salt is running as on the minion mode The permissions to set on this file, aka 644, 0775, 4664 backup Overrides the default backup mode for this specific file. makedirs Create parent directories for destination file. .. versionadded:: 2014.1.3 show_diff If set to False, the diff will not be shown. create Default is True, if create is set to False then the file will only be managed if the file already exists on the system. merge_if_exists Default is False, if merge_if_exists is True then the existing file will be parsed and the dataset passed in will be merged with the existing content .. versionadded:: 2014.7.0 For example, this state: .. code-block:: yaml /etc/dummy/package.json: file.serialize: - dataset: name: naive description: A package using naive versioning author: A confused individual <[email protected]> dependencies: express: >= 1.2.0 optimist: >= 0.1.0 engine: node 0.4.1 - formatter: json will manage the file ``/etc/dummy/package.json``: .. code-block:: json { "author": "A confused individual <[email protected]>", "dependencies": { "express": ">= 1.2.0", "optimist": ">= 0.1.0" }, "description": "A package using naive versioning", "engine": "node 0.4.1", "name": "naive" } ''' if 'env' in kwargs: salt.utils.warn_until( 'Oxygen', 'Parameter \'env\' has been detected in the argument list. This ' 'parameter is no longer used and has been replaced by \'saltenv\' ' 'as of Salt Carbon. This warning will be removed in Salt Oxygen.' ) kwargs.pop('env') name = os.path.expanduser(name) ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if not name: return _error(ret, 'Must provide name to file.serialize') if not create: if not os.path.isfile(name): # Don't create a file that is not already present ret['comment'] = ('File {0} is not present and is not set for ' 'creation').format(name) return ret formatter = kwargs.pop('formatter', 'yaml').lower() if len([x for x in (dataset, dataset_pillar) if x]) > 1: return _error( ret, 'Only one of \'dataset\' and \'dataset_pillar\' is permitted') if dataset_pillar: dataset = __salt__['pillar.get'](dataset_pillar) if dataset is None: return _error( ret, 'Neither \'dataset\' nor \'dataset_pillar\' was defined') if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user serializer_name = '{0}.serialize'.format(formatter) if serializer_name in __serializers__: serializer = __serializers__[serializer_name] if merge_if_exists: if os.path.isfile(name): if '{0}.deserialize'.format(formatter) in __serializers__: with salt.utils.fopen(name, 'r') as fhr: existing_data = serializer.deserialize(fhr) else: return {'changes': {}, 'comment': ('{0} format is not supported for merging' .format(formatter.capitalize())), 'name': name, 'result': False} if existing_data is not None: for k, v in six.iteritems(dataset): if k in existing_data: ret['changes'].update(_merge_dict(existing_data, k, v)) else: ret['changes'][k] = v existing_data[k] = v dataset = existing_data contents = __serializers__[serializer_name](dataset) else: return {'changes': {}, 'comment': '{0} format is not supported'.format( formatter.capitalize()), 'name': name, 'result': False } contents += '\n' if __opts__['test']: ret['changes'] = __salt__['file.check_managed_changes']( name=name, source=None, source_hash={}, user=user, group=group, mode=mode, template=None, context=None, defaults=None, saltenv=__env__, contents=contents, skip_verify=False, **kwargs ) if ret['changes']: ret['result'] = None ret['comment'] = 'Dataset will be serialized and stored into {0}'.format( name) else: ret['result'] = True ret['comment'] = 'The file {0} is in the correct state'.format(name) return ret return __salt__['file.manage_file'](name=name, sfn='', ret=ret, source=None, source_sum={}, user=user, group=group, mode=mode, saltenv=__env__, backup=backup, makedirs=makedirs, template=None, show_diff=show_diff, contents=contents) def mknod(name, ntype, major=0, minor=0, user=None, group=None, mode='0600'): ''' Create a special file similar to the 'nix mknod command. The supported device types are ``p`` (fifo pipe), ``c`` (character device), and ``b`` (block device). Provide the major and minor numbers when specifying a character device or block device. A fifo pipe does not require this information. The command will create the necessary dirs if needed. If a file of the same name not of the same type/major/minor exists, it will not be overwritten or unlinked (deleted). This is logically in place as a safety measure because you can really shoot yourself in the foot here and it is the behavior of 'nix ``mknod``. It is also important to note that not just anyone can create special devices. Usually this is only done as root. If the state is executed as none other than root on a minion, you may receive a permission error. name name of the file ntype node type 'p' (fifo pipe), 'c' (character device), or 'b' (block device) major major number of the device does not apply to a fifo pipe minor minor number of the device does not apply to a fifo pipe user owning user of the device/pipe group owning group of the device/pipe mode permissions on the device/pipe Usage: .. code-block:: yaml /dev/chr: file.mknod: - ntype: c - major: 180 - minor: 31 - user: root - group: root - mode: 660 /dev/blk: file.mknod: - ntype: b - major: 8 - minor: 999 - user: root - group: root - mode: 660 /dev/fifo: file.mknod: - ntype: p - user: root - group: root - mode: 660 .. versionadded:: 0.17.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'comment': '', 'result': False} if not name: return _error(ret, 'Must provide name to file.mknod') if ntype == 'c': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a character device {0}. Cowardly ' 'refusing to continue'.format(name) ) # Check if it is a character device elif not __salt__['file.is_chrdev'](name): if __opts__['test']: ret['comment'] = ( 'Character device {0} is set to be created' ).format(name) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the major/minor else: devmaj, devmin = __salt__['file.get_devmm'](name) if (major, minor) != (devmaj, devmin): ret['comment'] = ( 'Character device {0} exists and has a different ' 'major/minor {1}/{2}. Cowardly refusing to continue' .format(name, devmaj, devmin) ) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Character device {0} is in the correct state'.format( name ) ) elif ntype == 'b': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a block device {0}. Cowardly ' 'refusing to continue'.format(name) ) # Check if it is a block device elif not __salt__['file.is_blkdev'](name): if __opts__['test']: ret['comment'] = ( 'Block device {0} is set to be created' ).format(name) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the major/minor else: devmaj, devmin = __salt__['file.get_devmm'](name) if (major, minor) != (devmaj, devmin): ret['comment'] = ( 'Block device {0} exists and has a different major/minor ' '{1}/{2}. Cowardly refusing to continue'.format( name, devmaj, devmin ) ) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Block device {0} is in the correct state'.format(name) ) elif ntype == 'p': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a fifo pipe {0}. Cowardly refusing ' 'to continue'.format(name) ) # Check if it is a fifo elif not __salt__['file.is_fifo'](name): if __opts__['test']: ret['comment'] = 'Fifo pipe {0} is set to be created'.format( name ) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Fifo pipe {0} is in the correct state'.format(name) ) else: ret['comment'] = ( 'Node type unavailable: {0!r}. Available node types are ' 'character (\'c\'), block (\'b\'), and pipe (\'p\')'.format(ntype) ) return ret def mod_run_check_cmd(cmd, filename, **check_cmd_opts): ''' Execute the check_cmd logic. Return a result dict if ``check_cmd`` succeeds (check_cmd == 0) otherwise return True ''' log.debug('running our check_cmd') _cmd = '{0} {1}'.format(cmd, filename) cret = __salt__['cmd.run_all'](_cmd, **check_cmd_opts) if cret['retcode'] != 0: ret = {'comment': 'check_cmd execution failed', 'skip_watch': True, 'result': False} if cret.get('stdout'): ret['comment'] += '\n' + cret['stdout'] if cret.get('stderr'): ret['comment'] += '\n' + cret['stderr'] return ret # No reason to stop, return True return True def decode(name, encoded_data=None, contents_pillar=None, encoding_type='base64', checksum='md5'): ''' Decode an encoded file and write it to disk .. versionadded:: 2016.3.0 name Path of the file to be written. encoded_data The encoded file. Either this option or ``contents_pillar`` must be specified. contents_pillar A Pillar path to the encoded file. Uses the same path syntax as :py:func:`pillar.get <salt.modules.pillar.get>`. The :py:func:`hashutil.base64_encodefile <salt.modules.hashutil.base64_encodefile>` function can load encoded content into Pillar. Either this option or ``encoded_data`` must be specified. encoding_type : ``base64`` The type of encoding. checksum : ``md5`` The hashing algorithm to use to generate checksums. Wraps the :py:func:`hashutil.digest <salt.modules.hashutil.digest>` execution function. Usage: .. code-block:: yaml write_base64_encoded_string_to_a_file: file.decode: - name: /tmp/new_file - encoding_type: base64 - contents_pillar: mypillar:thefile # or write_base64_encoded_string_to_a_file: file.decode: - name: /tmp/new_file - encoding_type: base64 - encoded_data: | Z2V0IHNhbHRlZAo= Be careful with multi-line strings that the YAML indentation is correct. E.g., .. code-block:: yaml write_base64_encoded_string_to_a_file: file.decode: - name: /tmp/new_file - encoding_type: base64 - encoded_data: | {{ salt.pillar.get('path:to:data') | indent(8) }} ''' ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not (encoded_data or contents_pillar): raise CommandExecutionError("Specify either the 'encoded_data' or " "'contents_pillar' argument.") elif encoded_data and contents_pillar: raise CommandExecutionError("Specify only one 'encoded_data' or " "'contents_pillar' argument.") elif encoded_data: content = encoded_data elif contents_pillar: content = __salt__['pillar.get'](contents_pillar, False) if content is False: raise CommandExecutionError('Pillar data not found.') else: raise CommandExecutionError('No contents given.') dest_exists = __salt__['file.file_exists'](name) if dest_exists: instr = __salt__['hashutil.base64_decodestring'](content) insum = __salt__['hashutil.digest'](instr, checksum) del instr # no need to keep in-memory after we have the hash outsum = __salt__['hashutil.digest_file'](name, checksum) if insum != outsum: ret['changes'] = { 'old': outsum, 'new': insum, } if not ret['changes']: ret['comment'] = 'File is in the correct state.' ret['result'] = True return ret if __opts__['test'] is True: ret['comment'] = 'File is set to be updated.' ret['result'] = None return ret ret['result'] = __salt__['hashutil.base64_decodefile'](content, name) ret['comment'] = 'File was updated.' if not ret['changes']: ret['changes'] = { 'old': None, 'new': __salt__['hashutil.digest_file'](name, checksum), } return ret
the-stack_106_22376
#!/usr/bin/env python3 ############################################################################## # # Module: mcci-catena-provision-helium.py # # Function: # Provision a catena device through Helium cli # # Copyright and License: # This file copyright (c) 2021 by # # MCCI Corporation # 3520 Krums Corners Road # Ithaca, NY 14850 # # See accompanying LICENSE file for copyright and license information. # # Author: # Sivaprakash Veluthambi, MCCI May 2021 # ############################################################################## # Built-in imports import argparse import os import re import subprocess import sys # Lib imports import pexpect from pexpect import fdpexpect import serial from serial.tools import list_ports class AppContext: ''' Class contains common attributes and default values ''' def __init__(self): self.nWarnings = 0 self.nErrors = 0 self.fVerbose = False self.fWerror = False self.fDebug = False self.sPort = None self.nBaudRate = 115200 self.fWriteEnable = True self.fEcho = False self.fInfo = False self.fPermissive = False self.fRegister = False self.dVariables = { 'APPEUI': None, 'DEVEUI': None, 'APPKEY': None, 'BASENAME' : None, 'SYSEUI' : None } def warning(self, msg): ''' Display warning message Args: msg: receives warning messages Returns: No explicit result ''' self.nWarnings = self.nWarnings + 1 print (msg, end='\n') def error(self, msg): ''' Display error message Args: msg: receives error messages Returns: No explicit result ''' self.nErrors = self.nErrors + 1 print (msg, end='\n') def fatal(self, msg): ''' Display error message and exit Args: msg: receives error messages Returns: No explicit result ''' self.error(msg) sys.exit(1) def debug(self, msg): ''' Display debug message Args: msg: receives debug messages Returns: No explicit result ''' if (self.fDebug): print (msg, end='\n') def verbose(self, msg): ''' Display verbose message Args: msg: receives verbose message Returns: No explicit result ''' if (self.fVerbose): print (msg, end='\n') def getnumerrors(self): ''' Get the error count Args: NA Returns: Number of errors occured ''' nErrors = self.nErrors if (self.fWerror): nErrors = nErrors + self.nWarnings return nErrors def exitchecks(self): ''' Display total errors detected Args: NA Returns: 0 if no errors occured or 1 otherwise ''' errCount = self.getnumerrors() if (errCount > 0): self.error("{} errors detected".format(errCount)) return 1 else: self.debug("No errors detected") return 0 ############################################################################## # # Provisioning Functions # ############################################################################## def openport(sPortName): ''' Open serial port Args: sPortName: serial port name Returns: True if port opens or None otherwise ''' # Check port is available listPort = [] listPort = list(list_ports.comports()) portAvail = [p.device for p in listPort if p.device == sPortName] if not portAvail: oAppContext.error("Port {} is unavailable".format(sPortName)) return None # Open port if not comPort.is_open: try: comPort.open() if comPort.is_open: oAppContext.debug("Port {} opened".format(sPortName)) return True except Exception as err: oAppContext.fatal("Can't open port {0} : {1}".format( sPortName, err) ) return None else: oAppContext.warning("Port {} is already opened".format(sPortName)) return True def writecommand(sCommand): ''' Transfer command to catena and receive result. It sends `sCommand` (followed by a new line) to the port. It then reads up to 1k characters until a timeout occurs (which is one second). It then tries to parse the normal catena response which ends either with "\nOK\n" or "\n?<error>\n" Args: sCommand: catena command Returns: catena result if success; None and error message if fail. ''' oAppContext.debug(">>> {}".format(sCommand)) if comPort.in_waiting != 0: comPort.reset_input_buffer() try: comPort.write(sCommand.encode()) oAppContext.verbose("Command sent: {}".format(sCommand)) except Exception as err: oAppContext.error("Can't write command {0} : {1}".format( sCommand, err) ) return None try: result = comPort.read(1024) sResult = result.decode() comPort.reset_input_buffer() except Exception as err: oAppContext.error("Can't read command response : {}".format(err)) return None if sResult: debugMsg = '<<< ' + sResult.replace('\r', '') oAppContext.debug(debugMsg) sResult = '\n'.join(sResult.splitlines()) sResult = sResult + '\n' # Parse the results d= {'code': 'timed out', 'msg': None} sResult = re.search( r'^([\s\S]*)^\n([OK]*[\s\S]*)\n$', sResult, re.MULTILINE) if sResult: d['msg'] = sResult.group(1) d['code'] = sResult.group(2) else: oAppContext.error("Error parsing catena response") if 'OK' in d['code']: return d['msg'] else: return None, d['code'], d['msg'] def setechooff(): ''' To turn off the system echo Args: NA Returns: True; None if fails ''' sEchoOffCommand = "system echo off\n" sEcho = writecommand(sEchoOffCommand) if type(sEcho) is tuple and sEcho[0] is None: oAppContext.fatal("Can't turn off echo: {}".format(sEcho[1])) else: return True def getversion(): ''' Get the identity of the attached device. Args: NA Returns: A dict containing the catena version info; None if fails ''' sVersionCommand = "system version\n" sVersion = writecommand(sVersionCommand) if type(sVersion) is tuple and sVersion[0] is None: dResult = {'Board': '?', 'Platform-Version': '?'} return dResult sVersion = re.sub(r'\n', '\n\r', sVersion, re.MULTILINE) sVersionWrap = '\r' + sVersion + '\n' oAppContext.verbose("sVersionWrap: {}".format(sVersionWrap)) sVersionWrap = re.findall( r'\r(\S+): ([ \S]+)\n', sVersionWrap, re.MULTILINE ) dResult = dict(sVersionWrap) if ('Board' in dResult and 'Platform-Version' in dResult): return dResult else: oAppContext.error("Unrecognized version response: {}".format( sVersion) ) return None def getsyseui(fPermissive): ''' Get the system EUI for the attached device. The device is queried to get the system EUI, which is returned as a 16-character hex string. Args: fPermissive: boolean value Returns: A dict containing the system EUI info; None if error occurs ''' sEuiCommand = "system configure syseui\n" lenEui = 64 / 4 kLenEuiStr = int(lenEui + (lenEui / 2)) sEUI = writecommand(sEuiCommand) if (type(sEUI) is tuple) and (sEUI[0] is None): if not fPermissive: oAppContext.error("Error getting syseui: {}".format(sEUI[1])) else: oAppContext.warning("Error getting syseui: {}".format( sEUI[1]) ) return None hexmatch = re.match(r'^(([0-9A-Fa-f]{2})-){7}([0-9A-Fa-f]{2})', sEUI) if (len(sEUI) != kLenEuiStr) or hexmatch is None: oAppContext.error("Unrecognized EUI response: {}".format(sEUI)) return None else: sEUI = re.sub(r'-', '', sEUI) sEUI = sEUI.replace('\n', '') return sEUI def checkcomms(fPermissive): ''' Try to recognize the attached device, and verify that comms are working. The device is queried to get the system EUI, which is returned as a 16-character hex string, as well as the firmware version. ${SYSEUI} (aka oAppContext.dVariables['SYSEUI']) is set to the fetched syseui. oAppContext.tVersion is set to the fetched version Args: fPermissive: boolean value Returns: A dict containing the information; True if success or False if fails ''' oAppContext.debug("CheckComms") tVersion = getversion() if tVersion is not None: sEUI = getsyseui(fPermissive) else: sEUI = None if (tVersion is not None) and (sEUI is None) and fPermissive: sEUI = '{syseui-not-set}' if (tVersion is not None) and (sEUI is not None): oAppContext.verbose( "\n Catena Type: {0}\ \n Platform Version: {1}\n SysEUI: {2}" .format( tVersion['Board'], tVersion['Platform-Version'], sEUI ) ) if oAppContext.fInfo: oAppContext.verbose( "\n Catena Type: {0}\ \n Platform Version: {1}\n SysEUI: {2}" .format( tVersion['Board'], tVersion['Platform-Version'], sEUI ) ) oAppContext.dVariables['SYSEUI'] = sEUI.upper() oAppContext.tVersion = tVersion return True elif (tVersion is not None) and (sEUI is None): oAppContext.fatal("SysEUI not set") return False def writeheliumcommand(hCmd): ''' Transer helium command and receive result. This function sends `hCmd` to the helium cli, then reads the result. It checks the return code number, if it is 0 send result or send error message otherwise. Args: hCmd: helium command Returns: helium result if success, None if failure ''' heliumcmd = hCmd oAppContext.debug("HELIUM COMMAND: {}".format(' '.join(heliumcmd))) sResult = subprocess.Popen( heliumcmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) hResult = pexpect.fdpexpect.fdspawn(sResult.stdout.fileno()) try: index = hResult.expect('Enter API key') if index == 0: flag = 0 msg = (hResult.before).decode() print("Enter API key: ", end="\n") opt = input() opt = str(opt) sResult.stdin.write(opt.encode()) heliumResult = sResult.communicate() except Exception: flag = 1 msg = (hResult.before).decode() oAppContext.verbose("HELIUM RESULT:\n {}".format(msg)) heliumResult = sResult.communicate() if (sResult.returncode == 0) and flag == 0: return heliumResult[0].decode() elif (sResult.returncode == 0) and flag == 1: return msg else: return None def heliumcomms(**dVarArgs): ''' Send helium cli commands and receives information to config catena This function checks for information in dict to send it to helium cli. It then sends command and receives registered device info from helium. Parse the results and store it in dict to use it later in script lines. Args: **dVarArgs: helium config info in dict Returns: True if success else None ''' devInfo = {} dAppeui = None dDeveui = None dAppKey = None if ((not dVarArgs['SYSEUI']) or ('SYSEUI-NOT-SET' in dVarArgs['SYSEUI'])): while True: devEUI = input('Enter Device EUI: ') if re.match(r'[0-9A-F]{16}', devEUI): oAppContext.dVariables['SYSEUI'] = devEUI break else: print('Invalid device EUI entered.') if (not dVarArgs['APPEUI']): while True: appEUI = input('Enter App EUI: ') if re.match(r'[0-9A-F]{16}', appEUI): oAppContext.dVariables['APPEUI'] = appEUI break else: print('Invalid application EUI entered.') if (not dVarArgs['APPKEY']): while True: appKey = input('Enter App Key: ') if re.match(r'[0-9A-F]{32}', appKey): oAppContext.dVariables['APPKEY'] = appKey break else: print("Invalid application key entered.") if dVarArgs['BASENAME']: devBaseName = dVarArgs['BASENAME'].replace('\n', '') sysEUI = oAppContext.dVariables['SYSEUI'].lower() sysEUI = sysEUI.replace('\n', '') devBaseName = devBaseName + sysEUI.lower() else: oAppContext.fatal("Must specify devcie basename") devRegisterCmdList = ['helium-console-cli', 'device', 'create'] devInfoCmdList = ['helium-console-cli', 'device', 'get'] devRegisterCmdList.append(oAppContext.dVariables['APPEUI']) devRegisterCmdList.append(oAppContext.dVariables['APPKEY']) devRegisterCmdList.append(oAppContext.dVariables['SYSEUI']) devRegisterCmdList.append(devBaseName) devInfoCmdList.append(oAppContext.dVariables['APPEUI']) devInfoCmdList.append(oAppContext.dVariables['APPKEY']) devInfoCmdList.append(oAppContext.dVariables['SYSEUI']) devRegisterResult = writeheliumcommand(devRegisterCmdList) if devRegisterResult is not None: oAppContext.debug("HELIUM - Device Registered:\n {}".format( devRegisterResult) ) else: oAppContext.fatal("Device Registration failed") devInfoResult = writeheliumcommand(devInfoCmdList) if devInfoResult is not None: oAppContext.debug("HELIUM - Device Info:\n {}".format(devInfoResult)) else: oAppContext.fatal("Getting Device Info failed") regMatch = re.search( r'([\s\S]*){\n([\s\S]*)}\n', devInfoResult, re.MULTILINE) if not regMatch.group(2): oAppContext.fatal("Error in Device Info") else: devInfoPacked = regMatch.group(2) devInfoPacked = re.sub(' {2,}', '', devInfoPacked) devInfoUnpack = re.findall( r'(\S+): \"(\S+)\"\,\n', devInfoPacked, re.MULTILINE) devInfo = dict(devInfoUnpack) for k, v in devInfo.items(): if k.upper() == "APP_EUI": dAppeui = v if k.upper() == "DEV_EUI": dDeveui = v if k.upper() == "APP_KEY": dAppKey = v if not dAppeui: oAppContext.fatal("APPEUI is none") elif not dDeveui: oAppContext.fatal("DEVEUI is none") elif not dAppKey: oAppContext.fatal("APPKEY is none") else: oAppContext.debug("APPEUI: {0}\nDEVEUI: {1}\nAPPKEY: {2}\n".format( dAppeui, dDeveui, dAppKey) ) if ((dAppeui == oAppContext.dVariables['APPEUI']) and (dAppKey == oAppContext.dVariables['APPKEY']) and (dDeveui == oAppContext.dVariables['SYSEUI'])): oAppContext.dVariables['DEVEUI'] = dDeveui return True else: return None def expand(sLine): ''' Perform macro expansion on a line of text This function is looking for strings of the form "${name}" in sLine. If ${name} was written, and name was found in the dict, name's value is used. Args: sLine: catena command line from cat file Returns: String suitably expanded ''' sResult = re.search(r'^([a-z ]+)\$(\{.*\})$', sLine) if not sResult: return sLine if sResult: sPrefix = sResult.group(1) sWord = re.search(r'\$\{(.*)\}', sLine) sName = sWord.group(1) if not sName in oAppContext.dVariables: oAppContext.error("Unknown macro {}".format(sName)) sValue = '{' + sName + '}' else: sValue = oAppContext.dVariables[sName] sResult = sPrefix + sValue oAppContext.verbose("Expansion of {0}: {1}" .format(sLine, sResult) ) return sResult def doscript(sFileName): ''' Perform macro expansion on a line of text. The file is opened and read line by line. Blank lines are ignored. Any text after a '#' character is treated as a comment and discarded. Variables of the form ${name} are expanded. Any error causes the script to stop. Args: sFileName: script name Returns: True for script success, False for failure ''' oAppContext.debug("DoScript: {}".format(sFileName)) try: with open(sFileName, 'r') as rFile: rFile = rFile.readlines() except EnvironmentError as e: oAppContext.error("Can't open file: {}".format(e)) return False if not rFile: oAppContext.error("Empty file") return False for line in rFile: line = re.sub('\n$', '', line) line = re.sub(r'^\s*#.*$', '', line) line = expand(line) if (re.sub(r'^\s*$', '', line) != ''): if (oAppContext.fEcho): sys.stdout.write(line + '\n') if (oAppContext.fWriteEnable): sResult = writecommand((re.sub('\n$', '', line)) + '\n') if not (type(sResult) is tuple and sResult[0] is None): continue else: oAppContext.error("Line: {0}\nError: \n{1}".format( line, sResult[1]) ) return False return True def closeport(sPortName): ''' Close serial port Args: sPortName: serial port name Returns: True if closed or None otherwise ''' if comPort.is_open: comPort.reset_input_buffer() comPort.reset_output_buffer() comPort.close() oAppContext.debug('Port {} closed'.format(sPortName)) return True else: oAppContext.error('Port {} already closed'.format(sPortName)) return None ############################################################################## # # main # ############################################################################## if __name__ == '__main__': pName = os.path.basename(__file__) pDir = os.path.dirname(os.path.abspath(__file__)) oAppContext = AppContext() optparser = argparse.ArgumentParser( description='MCCI Catena Provisioning') optparser.add_argument( '-baud', action='store', nargs='?', dest='baudrate', type=int, help='Specify the baud rate as a number. Default is 115200') optparser.add_argument( '-port', action='store', nargs=1, dest='portname', type=str, required=True, help='Specify the COM port name. This is system specific') optparser.add_argument( '-D', action='store_true', default=False, dest='debug', help='Operate in debug mode. Causes more output to be produced') optparser.add_argument( '-info', action='store_true', default=False, dest='info', help='Display the Catena info') optparser.add_argument( '-v', action='store_true', default=False, dest='verbose', help='Operate in verbose mode') optparser.add_argument( '-echo', action='store_true', default=False, dest='echo', help='Echo all device operations') optparser.add_argument( '-V', action='append', dest='vars', help='Specify ttn config info in name=value format') optparser.add_argument( '-nowrite', action='store_false', default=True, dest='writeEnable', help='Disable writes to the device') optparser.add_argument( '-permissive', action='store_true', default=False, dest='permissive', help='Don\'t give up if SYSEUI isn\'t set.') optparser.add_argument( '-r', action='store_true', default=False, dest='register', help='Registers the device in helium network') optparser.add_argument( '-Werror', action='store_true', default=False, dest='warning', help='Warning messages become error messages') optparser.add_argument( '-s', action='store', nargs=1, dest='script', type=str, help='Specify script name to load catena info') opt = optparser.parse_args() if not opt.portname: oAppContext.fatal("Must specify -port") oAppContext.sPort = opt.portname[0] if opt.baudrate and (opt.baudrate < 9600): oAppContext.fatal("Baud rate too small: {}".format(opt.baudrate)) elif opt.baudrate and (opt.baudrate > 9600): oAppContext.nBaudRate = opt.baudrate # Serial port Settings comPort = serial.Serial() comPort.port = oAppContext.sPort comPort.baudrate = oAppContext.nBaudRate comPort.bytesize = serial.EIGHTBITS comPort.parity = serial.PARITY_NONE comPort.stopbits = serial.STOPBITS_ONE # comPort.dsrdtr = True # comPort.rtscts = True comPort.timeout = 1 # Add validate and split -V args if opt.vars: varCount = len(opt.vars) else: varCount = 0 for i in range(varCount): mResult = re.search(r'^([A-Za-z0-9_]+)=(.*)$', opt.vars[i]) if not mResult: oAppContext.fatal("Illegal variable specification: {}".format( opt.vars[i]) ) else: oAppContext.dVariables[mResult.group(1)] = mResult.group(2) # Copy the boolean params oAppContext.fDebug = opt.debug oAppContext.fVerbose = opt.verbose oAppContext.fWerror = opt.warning oAppContext.fEcho = opt.echo oAppContext.fWriteEnable = opt.writeEnable oAppContext.fInfo = opt.info oAppContext.fPermissive = opt.permissive oAppContext.fRegister = opt.register hPort = openport(oAppContext.sPort) if not hPort: sys.exit(1) # Turn off echo, before start provisioning setechooff() checkcomms(oAppContext.fPermissive) listDirContent = os.listdir(pDir) heliumCli = [True for dirfile in listDirContent if dirfile == 'helium-console-cli' or dirfile == 'helium-console-cli.exe'] if not heliumCli: oAppContext.fatal("helium cli not found; add to path: {}".format( pDir) ) if oAppContext.fRegister: heliumcommResult = heliumcomms(**oAppContext.dVariables) if heliumcommResult: oAppContext.debug("Device Created Successfully") else: oAppContext.fatal("Failed to create device") oAppContext.verbose("Vars Dict:\n {}".format(oAppContext.dVariables)) if opt.script: doscript(opt.script[0]) cResult = closeport(oAppContext.sPort) if not cResult: oAppContext.error("Can't close port {}".format(oAppContext.sPort)) oAppContext.exitchecks()
the-stack_106_22377
import nipype.pipeline.engine as pe import nipype.interfaces.utility as util import nipype.interfaces.fsl as fsl import nipype.interfaces.c3 as c3 def create_nonlinear_register(name='nonlinear_register'): """ Performs non-linear registration of an input file to a reference file. Parameters ---------- name : string, optional Name of the workflow. Returns ------- nonlinear_register : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.input_brain : string (nifti file) File of brain to be normalized (registered) inputspec.input_skull : string (nifti file) File of input brain with skull inputspec.reference_brain : string (nifti file) Target brain file to normalize to inputspec.reference_skull : string (nifti file) Target brain with skull to normalize to inputspec.fnirt_config : string (fsl fnirt config file) Configuration file containing parameters that can be specified in fnirt Workflow Outputs:: outputspec.output_brain : string (nifti file) Normalizion of input brain file outputspec.linear_xfm : string (.mat file) Affine matrix of linear transformation of brain file outputspec.invlinear_xfm : string Inverse of affine matrix of linear transformation of brain file outputspec.nonlinear_xfm : string Nonlinear field coefficients file of nonlinear transformation Registration Procedure: 1. Perform a linear registration to get affine transformation matrix. 2. Perform a nonlinear registration on an input file to the reference file utilizing affine transformation from the previous step as a starting point. 3. Invert the affine transformation to provide the user a transformation (affine only) from the space of the reference file to the input file. Workflow Graph: .. image:: ../images/nonlinear_register.dot.png :width: 500 Detailed Workflow Graph: .. image:: ../images/nonlinear_register_detailed.dot.png :width: 500 """ nonlinear_register = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['input_brain', 'input_skull', 'reference_brain', 'reference_skull', 'ref_mask', 'fnirt_config']), name='inputspec') outputspec = pe.Node(util.IdentityInterface(fields=['output_brain', 'linear_xfm', 'invlinear_xfm', 'nonlinear_xfm']), name='outputspec') linear_reg = pe.Node(interface=fsl.FLIRT(), name='linear_reg_0') linear_reg.inputs.cost = 'corratio' nonlinear_reg = pe.Node(interface=fsl.FNIRT(), name='nonlinear_reg_1') nonlinear_reg.inputs.fieldcoeff_file = True nonlinear_reg.inputs.jacobian_file = True brain_warp = pe.Node(interface=fsl.ApplyWarp(), name='brain_warp') inv_flirt_xfm = pe.Node(interface=fsl.utils.ConvertXFM(), name='inv_linear_reg0_xfm') inv_flirt_xfm.inputs.invert_xfm = True nonlinear_register.connect(inputspec, 'input_brain', linear_reg, 'in_file') nonlinear_register.connect(inputspec, 'reference_brain', linear_reg, 'reference') nonlinear_register.connect(inputspec, 'input_skull', nonlinear_reg, 'in_file') nonlinear_register.connect(inputspec, 'reference_skull', nonlinear_reg, 'ref_file') nonlinear_register.connect(inputspec, 'ref_mask', nonlinear_reg, 'refmask_file') # FNIRT parameters are specified by FSL config file # ${FSLDIR}/etc/flirtsch/TI_2_MNI152_2mm.cnf (or user-specified) nonlinear_register.connect(inputspec, 'fnirt_config', nonlinear_reg, 'config_file') nonlinear_register.connect(linear_reg, 'out_matrix_file', nonlinear_reg, 'affine_file') nonlinear_register.connect(nonlinear_reg, 'fieldcoeff_file', outputspec, 'nonlinear_xfm') nonlinear_register.connect(inputspec, 'input_brain', brain_warp, 'in_file') nonlinear_register.connect(nonlinear_reg, 'fieldcoeff_file', brain_warp, 'field_file') nonlinear_register.connect(inputspec, 'reference_brain', brain_warp, 'ref_file') nonlinear_register.connect(brain_warp, 'out_file', outputspec, 'output_brain') nonlinear_register.connect(linear_reg, 'out_matrix_file', inv_flirt_xfm, 'in_file') nonlinear_register.connect(inv_flirt_xfm, 'out_file', outputspec, 'invlinear_xfm') nonlinear_register.connect(linear_reg, 'out_matrix_file', outputspec, 'linear_xfm') return nonlinear_register def create_register_func_to_mni(name='register_func_to_mni'): """ Registers a functional scan in native space to MNI standard space. This is meant to be used after create_nonlinear_register() has been run and relies on some of it's outputs. Parameters ---------- name : string, optional Name of the workflow. Returns ------- register_func_to_mni : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.func : string (nifti file) Input functional scan to be registered to MNI space inputspec.mni : string (nifti file) Reference MNI file inputspec.anat : string (nifti file) Corresponding anatomical scan of subject inputspec.interp : string Type of interpolation to use ('trilinear' or 'nearestneighbour' or 'sinc') inputspec.anat_to_mni_nonlinear_xfm : string (warp file) Corresponding anatomical native space to MNI warp file inputspec.anat_to_mni_linear_xfm : string (mat file) Corresponding anatomical native space to MNI mat file Workflow Outputs:: outputspec.func_to_anat_linear_xfm : string (mat file) Affine transformation from functional to anatomical native space outputspec.func_to_mni_linear_xfm : string (mat file) Affine transformation from functional to MNI space outputspec.mni_to_func_linear_xfm : string (mat file) Affine transformation from MNI to functional space outputspec.mni_func : string (nifti file) Functional scan registered to MNI standard space Workflow Graph: .. image:: ../images/register_func_to_mni.dot.png :width: 500 Detailed Workflow Graph: .. image:: ../images/register_func_to_mni_detailed.dot.png :width: 500 """ register_func_to_mni = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['func', 'mni', 'anat', 'interp', 'anat_to_mni_nonlinear_xfm', 'anat_to_mni_linear_xfm']), name='inputspec') outputspec = pe.Node(util.IdentityInterface(fields=['func_to_anat_linear_xfm', 'func_to_mni_linear_xfm', 'mni_to_func_linear_xfm', 'mni_func']), name='outputspec') linear_reg = pe.Node(interface=fsl.FLIRT(), name='linear_func_to_anat') linear_reg.inputs.cost = 'corratio' linear_reg.inputs.dof = 6 mni_warp = pe.Node(interface=fsl.ApplyWarp(), name='mni_warp') mni_affine = pe.Node(interface=fsl.ConvertXFM(), name='mni_affine') mni_affine.inputs.concat_xfm = True register_func_to_mni.connect(linear_reg, 'out_matrix_file', mni_affine, 'in_file2') register_func_to_mni.connect(inputspec, 'anat_to_mni_linear_xfm', mni_affine, 'in_file') register_func_to_mni.connect(mni_affine, 'out_file', outputspec, 'func_to_mni_linear_xfm') inv_mni_affine = pe.Node(interface=fsl.ConvertXFM(), name='inv_mni_affine') inv_mni_affine.inputs.invert_xfm = True register_func_to_mni.connect(mni_affine, 'out_file', inv_mni_affine, 'in_file') register_func_to_mni.connect(inv_mni_affine, 'out_file', outputspec, 'mni_to_func_linear_xfm') register_func_to_mni.connect(inputspec, 'func', linear_reg, 'in_file') register_func_to_mni.connect(inputspec, 'anat', linear_reg, 'reference') register_func_to_mni.connect(inputspec, 'interp', linear_reg, 'interp') register_func_to_mni.connect(inputspec, 'func', mni_warp, 'in_file') register_func_to_mni.connect(inputspec, 'mni', mni_warp, 'ref_file') register_func_to_mni.connect(inputspec, 'anat_to_mni_nonlinear_xfm', mni_warp, 'field_file') register_func_to_mni.connect(linear_reg, 'out_matrix_file', mni_warp, 'premat') register_func_to_mni.connect(linear_reg, 'out_matrix_file', outputspec, 'func_to_anat_linear_xfm') register_func_to_mni.connect(mni_warp, 'out_file', outputspec, 'mni_func') return register_func_to_mni def create_register_func_to_anat(fieldmap_distortion=False, name='register_func_to_anat'): """ Registers a functional scan in native space to anatomical space using a linear transform and does not include bbregister. Parameters ---------- fieldmap_distortion : bool, optional If field map-based distortion correction is being run, FLIRT should take in the appropriate field map-related inputs. name : string, optional Name of the workflow. Returns ------- create_register_func_to_anat : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.func : string (nifti file) Input functional scan to be registered to anatomical space inputspec.anat : string (nifti file) Corresponding anatomical scan of subject inputspec.interp : string Type of interpolation to use ('trilinear' or 'nearestneighbour' or 'sinc') Workflow Outputs:: outputspec.func_to_anat_linear_xfm_nobbreg : string (mat file) Affine transformation from functional to anatomical native space outputspec.anat_func_nobbreg : string (nifti file) Functional scan registered to anatomical space """ register_func_to_anat = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['func', 'anat', 'interp', 'fieldmap', 'fieldmapmask']), name='inputspec') inputNode_echospacing = pe.Node( util.IdentityInterface(fields=['echospacing']), name='echospacing_input') inputNode_pedir = pe.Node(util.IdentityInterface(fields=['pedir']), name='pedir_input') outputspec = pe.Node(util.IdentityInterface(fields=['func_to_anat_linear_xfm_nobbreg', 'anat_func_nobbreg']), name='outputspec') linear_reg = pe.Node(interface=fsl.FLIRT(), name='linear_func_to_anat') linear_reg.inputs.cost = 'corratio' linear_reg.inputs.dof = 6 if fieldmap_distortion: register_func_to_anat.connect(inputNode_pedir, 'pedir', linear_reg, 'pedir') register_func_to_anat.connect(inputspec, 'fieldmap', linear_reg, 'fieldmap') register_func_to_anat.connect(inputspec, 'fieldmapmask', linear_reg, 'fieldmapmask') register_func_to_anat.connect(inputNode_echospacing, 'echospacing', linear_reg, 'echospacing') register_func_to_anat.connect(inputspec, 'func', linear_reg, 'in_file') register_func_to_anat.connect(inputspec, 'anat', linear_reg, 'reference') register_func_to_anat.connect(inputspec, 'interp', linear_reg, 'interp') register_func_to_anat.connect(linear_reg, 'out_matrix_file', outputspec, 'func_to_anat_linear_xfm_nobbreg') register_func_to_anat.connect(linear_reg, 'out_file', outputspec, 'anat_func_nobbreg') return register_func_to_anat def create_bbregister_func_to_anat(fieldmap_distortion=False, name='bbregister_func_to_anat'): """ Registers a functional scan in native space to structural. This is meant to be used after create_nonlinear_register() has been run and relies on some of it's outputs. Parameters ---------- fieldmap_distortion : bool, optional If field map-based distortion correction is being run, FLIRT should take in the appropriate field map-related inputs. name : string, optional Name of the workflow. Returns ------- register_func_to_anat : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.func : string (nifti file) Input functional scan to be registered to MNI space inputspec.anat_skull : string (nifti file) Corresponding full-head scan of subject inputspec.linear_reg_matrix : string (mat file) Affine matrix from linear functional to anatomical registration inputspec.anat_wm_segmentation : string (nifti file) White matter segmentation probability mask in anatomical space inputspec.bbr_schedule : string (.sch file) Boundary based registration schedule file for flirt command Workflow Outputs:: outputspec.func_to_anat_linear_xfm : string (mat file) Affine transformation from functional to anatomical native space outputspec.anat_func : string (nifti file) Functional data in anatomical space """ register_bbregister_func_to_anat = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['func', 'anat_skull', 'linear_reg_matrix', 'anat_wm_segmentation', 'bbr_schedule', 'fieldmap', 'fieldmapmask' ]), name='inputspec') inputNode_echospacing = pe.Node( util.IdentityInterface(fields=['echospacing']), name='echospacing_input') inputNode_pedir = pe.Node(util.IdentityInterface(fields=['pedir']), name='pedir_input') outputspec = pe.Node(util.IdentityInterface(fields=['func_to_anat_linear_xfm', 'anat_func']), name='outputspec') wm_bb_mask = pe.Node(interface=fsl.ImageMaths(), name='wm_bb_mask') wm_bb_mask.inputs.op_string = '-thr 0.5 -bin' register_bbregister_func_to_anat.connect(inputspec, 'anat_wm_segmentation', wm_bb_mask, 'in_file') def bbreg_args(bbreg_target): return '-cost bbr -wmseg ' + bbreg_target bbreg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='bbreg_func_to_anat') bbreg_func_to_anat.inputs.dof = 6 register_bbregister_func_to_anat.connect(inputspec, 'bbr_schedule', bbreg_func_to_anat, 'schedule') register_bbregister_func_to_anat.connect(wm_bb_mask, ('out_file', bbreg_args), bbreg_func_to_anat, 'args') register_bbregister_func_to_anat.connect(inputspec, 'func', bbreg_func_to_anat, 'in_file') register_bbregister_func_to_anat.connect(inputspec, 'anat_skull', bbreg_func_to_anat, 'reference') register_bbregister_func_to_anat.connect(inputspec, 'linear_reg_matrix', bbreg_func_to_anat, 'in_matrix_file') if fieldmap_distortion: def convert_pedir(pedir): # FSL Flirt requires pedir input encoded as an int conv_dct = {'x': 1, 'y': 2, 'z': 3, '-x': -1, '-y': -2, '-z': -3} if not isinstance(pedir, str): raise Exception("\n\nPhase-encoding direction must be a " "string value.\n\n") if pedir not in conv_dct.keys(): raise Exception("\n\nInvalid phase-encoding direction " "entered: {0}\n\n".format(pedir)) return conv_dct[pedir] register_bbregister_func_to_anat.connect(inputNode_pedir, ('pedir', convert_pedir), bbreg_func_to_anat, 'pedir') register_bbregister_func_to_anat.connect(inputspec, 'fieldmap', bbreg_func_to_anat, 'fieldmap') register_bbregister_func_to_anat.connect(inputspec, 'fieldmapmask', bbreg_func_to_anat, 'fieldmapmask') register_bbregister_func_to_anat.connect(inputNode_echospacing, 'echospacing', bbreg_func_to_anat, 'echospacing') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_matrix_file', outputspec, 'func_to_anat_linear_xfm') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_file', outputspec, 'anat_func') return register_bbregister_func_to_anat def create_wf_calculate_ants_warp(name='create_wf_calculate_ants_warp', mult_input=0, num_threads=1): ''' Calculates the nonlinear ANTS registration transform. This workflow employs the antsRegistration tool: http://stnava.github.io/ANTs/ Parameters ---------- name : string, optional Name of the workflow. Returns ------- calc_ants_warp_wf : nipype.pipeline.engine.Workflow Notes ----- Some of the inputs listed below are lists or lists of lists. This is because antsRegistration can perform multiple stages of calculations depending on how the user configures their registration. For example, if one wants to employ a different metric (with different parameters) at each stage, the lists would be configured like this: warp_wf.inputs.inputspec.transforms = ['Rigid','Affine','SyN'] warp_wf.inputs.inputspec.transform_parameters = [[0.1],[0.1],[0.1,3,0]] ..where each element in the first list is a metric to be used at each stage, 'Rigid' being for stage 1, 'Affine' for stage 2, etc. The lists within the list for transform_parameters would then correspond to each stage's metric, with [0.1] applying to 'Rigid' and 'Affine' (stages 1 and 2), and [0.1,3,0] applying to 'SyN' of stage 3. In some cases, when a parameter is not needed for a stage, 'None' must be entered in its place if there are other parameters for other stages. Workflow Inputs:: inputspec.anatomical_brain : string (nifti file) File of brain to be normalized (registered) inputspec.reference_brain : string (nifti file) Target brain file to normalize to inputspec.dimension : integer Dimension of the image (default: 3) inputspec.use_histogram_matching : boolean Histogram match the images before registration inputspec.winsorize_lower_quantile : float Winsorize data based on quantiles (lower range) inputspec.winsorize_higher_quantile : float Winsorize data based on quantiles (higher range) inputspec.metric : list of strings Image metric(s) to be used at each stage inputspec.metric_weight : list of floats Modulate the per-stage weighting of the corresponding metric inputspec.radius_or_number_of_bins : list of integers Number of bins in each stage for the MI and Mattes metric, the radius for other metrics inputspec.sampling_strategy : list of strings Sampling strategy (or strategies) to use for the metrics {None, Regular, or Random} inputspec.sampling_percentage : list of floats Defines the sampling strategy {float value, or None} inputspec.number_of_iterations : list of lists of integers Determines the convergence inputspec.convergence_threshold : list of floats Threshold compared to the slope of the line fitted in convergence inputspec.convergence_window_size : list of integers Window size of convergence calculations inputspec.transforms : list of strings Selection of transform options. See antsRegistration documentation for a full list of options and their descriptions inputspec.transform_parameters : list of lists of floats Fine-tuning for the different transform options inputspec.shrink_factors : list of lists of integers Specify the shrink factor for the virtual domain (typically the fixed image) at each level inputspec.smoothing_sigmas : list of lists of floats Specify the sigma of gaussian smoothing at each level Workflow Outputs:: outputspec.warp_field : string (nifti file) Output warp field of registration outputspec.inverse_warp_field : string (nifti file) Inverse of the warp field of the registration outputspec.ants_affine_xfm : string (.mat file) The affine matrix of the registration outputspec.ants_inverse_affine_xfm : string (.mat file) The affine matrix of the reverse registration outputspec.composite_transform : string (nifti file) The combined transform including the warp field and rigid & affine linear warps outputspec.normalized_output_brain : string (nifti file) Template-registered version of input brain Registration Procedure: 1. Calculates a nonlinear anatomical-to-template registration. Workflow Graph: .. image:: :width: 500 Detailed Workflow Graph: .. image:: :width: 500 ''' import nipype.interfaces.ants as ants from nipype.interfaces.utility import Function from CPAC.registration.utils import seperate_warps_list, \ combine_inputs_into_list, \ hardcoded_reg calc_ants_warp_wf = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['anatomical_brain', 'reference_brain', 'dimension', 'use_histogram_matching', 'winsorize_lower_quantile', 'winsorize_upper_quantile', 'metric', 'metric_weight', 'radius_or_number_of_bins', 'sampling_strategy', 'sampling_percentage', 'number_of_iterations', 'convergence_threshold', 'convergence_window_size', 'transforms', 'transform_parameters', 'shrink_factors', 'smoothing_sigmas', 'write_composite_transform', 'anatomical_skull', 'reference_skull']), name='inputspec') # use ANTS to warp the masked anatomical image to a template image ''' calculate_ants_warp = pe.Node(interface=ants.Registration(), name='calculate_ants_warp') calculate_ants_warp.inputs.output_warped_image = True calculate_ants_warp.inputs.initial_moving_transform_com = 0 ''' reg_imports = ['import os', 'import subprocess'] calculate_ants_warp = \ pe.Node(interface=util.Function(input_names=['anatomical_brain', 'reference_brain', 'anatomical_skull', 'reference_skull'], output_names=['warp_list', 'warped_image'], function=hardcoded_reg, imports=reg_imports), name='calc_ants_warp') calculate_ants_warp.interface.num_threads = num_threads select_forward_initial = pe.Node(util.Function(input_names=['warp_list', 'selection'], output_names=['selected_warp'], function=seperate_warps_list), name='select_forward_initial') select_forward_initial.inputs.selection = "Initial" select_forward_rigid = pe.Node(util.Function(input_names=['warp_list', 'selection'], output_names=['selected_warp'], function=seperate_warps_list), name='select_forward_rigid') select_forward_rigid.inputs.selection = "Rigid" select_forward_affine = pe.Node(util.Function(input_names=['warp_list', 'selection'], output_names=['selected_warp'], function=seperate_warps_list), name='select_forward_affine') select_forward_affine.inputs.selection = "Affine" select_forward_warp = pe.Node(util.Function(input_names=['warp_list', 'selection'], output_names=['selected_warp'], function=seperate_warps_list), name='select_forward_warp') select_forward_warp.inputs.selection = "3Warp" select_inverse_warp = pe.Node(util.Function(input_names=['warp_list', 'selection'], output_names=['selected_warp'], function=seperate_warps_list), name='select_inverse_warp') select_inverse_warp.inputs.selection = "Inverse" outputspec = pe.Node(util.IdentityInterface(fields=['ants_initial_xfm', 'ants_rigid_xfm', 'ants_affine_xfm', 'warp_field', 'inverse_warp_field', 'composite_transform', 'wait', 'normalized_output_brain']), name='outputspec') # connections from inputspec if mult_input == 1: ''' combine_inputs = pe.Node(util.Function(input_names=['input1', 'input2', 'input3'], output_names=['inputs_list'], function=combine_inputs_into_list), name='ants_reg_combine_inputs') combine_refs = pe.Node(util.Function(input_names=['input1', 'input2', 'input3'], output_names=['inputs_list'], function=combine_inputs_into_list), name='ants_reg_combine_refs') ''' calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', calculate_ants_warp, 'anatomical_brain') calc_ants_warp_wf.connect(inputspec, 'anatomical_skull', calculate_ants_warp, 'anatomical_skull') calc_ants_warp_wf.connect(inputspec, 'reference_brain', calculate_ants_warp, 'reference_brain') calc_ants_warp_wf.connect(inputspec, 'reference_skull', calculate_ants_warp, 'reference_skull') ''' calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', combine_inputs, 'input1') calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', combine_inputs, 'input2') calc_ants_warp_wf.connect(inputspec, 'anatomical_skull', combine_inputs, 'input3') calc_ants_warp_wf.connect(combine_inputs, 'inputs_list', calculate_ants_warp, 'moving_image') calc_ants_warp_wf.connect(inputspec, 'reference_brain', combine_refs, 'input1') calc_ants_warp_wf.connect(inputspec, 'reference_brain', combine_refs, 'input2') calc_ants_warp_wf.connect(inputspec, 'reference_skull', combine_refs, 'input3') calc_ants_warp_wf.connect(combine_refs, 'inputs_list', calculate_ants_warp, 'fixed_image') ''' else: ''' calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', calculate_ants_warp, 'moving_image') calc_ants_warp_wf.connect(inputspec, 'reference_brain', calculate_ants_warp, 'fixed_image') ''' calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', calculate_ants_warp, 'anatomical_brain') calc_ants_warp_wf.connect(inputspec, 'anatomical_brain', calculate_ants_warp, 'anatomical_skull') calc_ants_warp_wf.connect(inputspec, 'reference_brain', calculate_ants_warp, 'reference_brain') calc_ants_warp_wf.connect(inputspec, 'reference_brain', calculate_ants_warp, 'reference_skull') calc_ants_warp_wf.connect(inputspec, 'dimension', calculate_ants_warp, 'dimension') calc_ants_warp_wf.connect(inputspec, 'use_histogram_matching', calculate_ants_warp, 'use_histogram_matching') calc_ants_warp_wf.connect(inputspec, 'winsorize_lower_quantile', calculate_ants_warp, 'winsorize_lower_quantile') calc_ants_warp_wf.connect(inputspec, 'winsorize_upper_quantile', calculate_ants_warp, 'winsorize_upper_quantile') calc_ants_warp_wf.connect(inputspec, 'metric', calculate_ants_warp, 'metric') calc_ants_warp_wf.connect(inputspec, 'metric_weight', calculate_ants_warp, 'metric_weight') calc_ants_warp_wf.connect(inputspec, 'radius_or_number_of_bins', calculate_ants_warp, 'radius_or_number_of_bins') calc_ants_warp_wf.connect(inputspec, 'sampling_strategy', calculate_ants_warp, 'sampling_strategy') calc_ants_warp_wf.connect(inputspec, 'sampling_percentage', calculate_ants_warp, 'sampling_percentage') calc_ants_warp_wf.connect(inputspec, 'number_of_iterations', calculate_ants_warp, 'number_of_iterations') calc_ants_warp_wf.connect(inputspec, 'convergence_threshold', calculate_ants_warp, 'convergence_threshold') calc_ants_warp_wf.connect(inputspec, 'convergence_window_size', calculate_ants_warp, 'convergence_window_size') calc_ants_warp_wf.connect(inputspec, 'transforms', calculate_ants_warp, 'transforms') calc_ants_warp_wf.connect(inputspec, 'transform_parameters', calculate_ants_warp, 'transform_parameters') calc_ants_warp_wf.connect(inputspec, 'shrink_factors', calculate_ants_warp, 'shrink_factors') calc_ants_warp_wf.connect(inputspec, 'smoothing_sigmas', calculate_ants_warp, 'smoothing_sigmas') calc_ants_warp_wf.connect(inputspec, 'write_composite_transform', calculate_ants_warp, 'write_composite_transform') # inter-workflow connections calc_ants_warp_wf.connect(calculate_ants_warp, 'warp_list', select_forward_initial, 'warp_list') calc_ants_warp_wf.connect(calculate_ants_warp, 'warp_list', select_forward_rigid, 'warp_list') calc_ants_warp_wf.connect(calculate_ants_warp, 'warp_list', select_forward_affine, 'warp_list') calc_ants_warp_wf.connect(calculate_ants_warp, 'warp_list', select_forward_warp, 'warp_list') calc_ants_warp_wf.connect(calculate_ants_warp, 'warp_list', select_inverse_warp, 'warp_list') # connections to outputspec calc_ants_warp_wf.connect(select_forward_initial, 'selected_warp', outputspec, 'ants_initial_xfm') calc_ants_warp_wf.connect(select_forward_rigid, 'selected_warp', outputspec, 'ants_rigid_xfm') calc_ants_warp_wf.connect(select_forward_affine, 'selected_warp', outputspec, 'ants_affine_xfm') calc_ants_warp_wf.connect(select_forward_warp, 'selected_warp', outputspec, 'warp_field') calc_ants_warp_wf.connect(select_inverse_warp, 'selected_warp', outputspec, 'inverse_warp_field') calc_ants_warp_wf.connect(calculate_ants_warp, 'warped_image', outputspec, 'normalized_output_brain') return calc_ants_warp_wf def create_wf_apply_ants_warp(map_node=False, name='create_wf_apply_ants_warp', ants_threads=1): """ Applies previously calculated ANTS registration transforms to input images. This workflow employs the antsApplyTransforms tool: http://stnava.github.io/ANTs/ Parameters ---------- name : string, optional Name of the workflow. Returns ------- apply_ants_warp_wf : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.input_image : string (nifti file) Image file of brain to be registered to reference inputspec.reference_image : string (nifti file) Image file of brain or template being used as a reference inputspec.transforms : list of filepaths (nifti, .mat, .txt) List of transforms and warps to be applied to the input image inputspec.dimension : integer Dimension value of image being registered (2, 3, or 4) inputspec.interpolation : string Type of interpolation to be used. See antsApplyTransforms documentation or Nipype interface documentation for options Workflow Outputs:: outputspec.output_image : string (nifti file) Normalized output file Workflow Graph: .. image:: :width: 500 Detailed Workflow Graph: .. image:: :width: 500 """ import nipype.interfaces.ants as ants apply_ants_warp_wf = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['input_image', 'reference_image', 'transforms', 'dimension', 'input_image_type', 'interpolation']), name='inputspec') if map_node: apply_ants_warp = pe.MapNode(interface=ants.ApplyTransforms(), name='apply_ants_warp_mapnode', iterfield=['input_image', 'transforms']) else: apply_ants_warp = pe.Node(interface=ants.ApplyTransforms(), name='apply_ants_warp') apply_ants_warp.inputs.out_postfix = '_antswarp' apply_ants_warp.interface.num_threads = ants_threads apply_ants_warp.interface.estimated_memory_gb = 1.5 outputspec = pe.Node(util.IdentityInterface(fields=['output_image']), name='outputspec') # connections from inputspec apply_ants_warp_wf.connect(inputspec, 'input_image', apply_ants_warp, 'input_image') apply_ants_warp_wf.connect(inputspec, 'reference_image', apply_ants_warp, 'reference_image') apply_ants_warp_wf.connect(inputspec, 'transforms', apply_ants_warp, 'transforms') apply_ants_warp_wf.connect(inputspec, 'dimension', apply_ants_warp, 'dimension') apply_ants_warp_wf.connect(inputspec, 'input_image_type', apply_ants_warp, 'input_image_type') apply_ants_warp_wf.connect(inputspec, 'interpolation', apply_ants_warp, 'interpolation') # connections to outputspec apply_ants_warp_wf.connect(apply_ants_warp, 'output_image', outputspec, 'output_image') return apply_ants_warp_wf def create_wf_c3d_fsl_to_itk(input_image_type=0, map_node=False, name='create_wf_c3d_fsl_to_itk'): """ Converts an FSL-format output matrix to an ITK-format (ANTS) matrix for use with ANTS registration tools. Parameters ---------- name : string, optional Name of the workflow. Returns ------- fsl_to_itk_conversion : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.affine_file : string (nifti file) Output matrix of FSL-based functional to anatomical registration inputspec.reference_file : string (nifti file) File of skull-stripped anatomical brain to be used in affine conversion inputspec.source_file : string (nifti file) Should match the input of the apply warp (in_file) unless you are applying the warp to a 4-d file, in which case this file should be a mean_functional file Workflow Outputs:: outputspec.itk_transform : string (nifti file) Converted affine transform in ITK format usable with ANTS """ import nipype.interfaces.c3 as c3 from nipype.interfaces.utility import Function from CPAC.registration.utils import change_itk_transform_type from nipype.interfaces.afni import preprocess fsl_to_itk_conversion = pe.Workflow(name=name) itk_imports = ['import os'] inputspec = pe.Node(util.IdentityInterface(fields=['affine_file', 'reference_file', 'source_file']), name='inputspec') # converts FSL-format .mat affine xfm into ANTS-format .txt # .mat affine comes from Func->Anat registration if map_node: fsl_reg_2_itk = pe.MapNode(c3.C3dAffineTool(), name='fsl_reg_2_itk_mapnode', iterfield=['source_file']) change_transform = pe.MapNode(util.Function( input_names=['input_affine_file'], output_names=['updated_affine_file'], function=change_itk_transform_type, imports=itk_imports), name='change_transform_type', iterfield=['input_affine_file']) else: fsl_reg_2_itk = pe.Node(c3.C3dAffineTool(), name='fsl_reg_2_itk') change_transform = pe.Node(util.Function( input_names=['input_affine_file'], output_names=['updated_affine_file'], function=change_itk_transform_type, imports=itk_imports), name='change_transform_type') fsl_reg_2_itk.inputs.itk_transform = True fsl_reg_2_itk.inputs.fsl2ras = True outputspec = pe.Node(util.IdentityInterface(fields=['itk_transform']), name='outputspec') fsl_to_itk_conversion.connect(inputspec, 'affine_file', fsl_reg_2_itk, 'transform_file') fsl_to_itk_conversion.connect(inputspec, 'reference_file', fsl_reg_2_itk, 'reference_file') # source_file input of the conversion must be a 3D file, so if the source # file is 4D (input_image_type=3), average it into a 3D file first if input_image_type == 0: fsl_to_itk_conversion.connect(inputspec, 'source_file', fsl_reg_2_itk, 'source_file') elif input_image_type == 3: try: tstat_source = pe.Node(interface=preprocess.TStat(), name='fsl_to_itk_tcat_source') except AttributeError: from nipype.interfaces.afni import utils as afni_utils tstat_source = pe.Node(interface=afni_utils.TStat(), name='fsl_to_itk_tcat_source') tstat_source.inputs.outputtype = 'NIFTI_GZ' tstat_source.inputs.options = '-mean' fsl_to_itk_conversion.connect(inputspec, 'source_file', tstat_source, 'in_file') fsl_to_itk_conversion.connect(tstat_source, 'out_file', fsl_reg_2_itk, 'source_file') fsl_to_itk_conversion.connect(fsl_reg_2_itk, 'itk_transform', change_transform, 'input_affine_file') fsl_to_itk_conversion.connect(change_transform, 'updated_affine_file', outputspec, 'itk_transform') return fsl_to_itk_conversion def create_wf_collect_transforms(map_node=False, name='create_wf_collect_transforms'): """ DOCSTRINGS """ collect_transforms_wf = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['warp_file', 'linear_initial', 'linear_affine', 'linear_rigid', \ 'fsl_to_itk_affine']), name='inputspec') # converts FSL-format .mat affine xfm into ANTS-format .txt # .mat affine comes from Func->Anat registration if map_node: collect_transforms = pe.MapNode(util.Merge(5), name='collect_transforms_mapnode', iterfield=['in5']) else: collect_transforms = pe.Node(util.Merge(5), name='collect_transforms') outputspec = pe.Node(util.IdentityInterface( fields=['transformation_series']), name='outputspec') # Field file from anatomical nonlinear registration collect_transforms_wf.connect(inputspec, 'warp_file', collect_transforms, 'in1') # affine transformation from anatomical registration collect_transforms_wf.connect(inputspec, 'linear_affine', collect_transforms, 'in2') # rigid transformation from anatomical registration collect_transforms_wf.connect(inputspec, 'linear_rigid', collect_transforms, 'in3') # initial transformation from anatomical registration collect_transforms_wf.connect(inputspec, 'linear_initial', collect_transforms, 'in4') # Premat from Func->Anat linear reg and bbreg (if bbreg is enabled) collect_transforms_wf.connect(inputspec, 'fsl_to_itk_affine', collect_transforms, 'in5') collect_transforms_wf.connect(collect_transforms, 'out', outputspec, 'transformation_series') return collect_transforms_wf
the-stack_106_22378
import random import sys import numpy as np import pandas as pd from scipy import stats from tqdm import tqdm import torch import train_network import network as net import functions as f from parameters import BATCH_SIZE, RESOLUTION, N_ACTIONS, DATA_PATH_TEST, TRANSFORM, Q_TABLE_TEST, DEVICE def generate_random(idx_to_class, loader): random_list = np.zeros(1000) n_samples = 30 with torch.no_grad(): print('generating {} random samples ... \n'.format(n_samples)) for j in tqdm(range(n_samples)): df = [] for images, labels, paths in loader: image_class = [idx_to_class[l.item()] for l in labels] image_name = [f.path_to_image_name(paths[i], image_class[i]) for i in range(len(images))] actions = [random.randint(0, 24) for _ in range(len(images))] predicted = torch.tensor([f.image_reward(image_name[i], Q_TABLE_TEST, actions[i]) for i in range(len(images))], device=DEVICE) df += predicted.tolist() random_list = np.add(random_list, df) random_list = random_list / n_samples print('generating {} random samples done'.format(n_samples)) return random_list def generate_predictions(idx_to_class, loader, model): model.eval() center_count = 0 target_list = [] predicted_list = [] with torch.no_grad(): print('generating predictions ... \n') for images, labels, paths in tqdm(loader): images = images.to(DEVICE) image_class = [idx_to_class[l.item()] for l in labels] image_name = [f.path_to_image_name(paths[i], image_class[i]) for i in range(len(images))] actions = [model(i.unsqueeze(0)).min(1)[1].view(1, 1) for i in images] predicted = torch.tensor([f.image_reward(image_name[i], Q_TABLE_TEST, actions[i]) for i in range(len(images))], device=DEVICE) targets = torch.tensor([f.image_reward(image_name[i], Q_TABLE_TEST, 12) for i in range(len(images))], device=DEVICE) predicted_list += predicted.tolist() target_list += targets.tolist() center = [torch.ones([1, 1], dtype=torch.long, device=DEVICE) * 12 for _ in range(len(actions))] center_count += (torch.tensor(actions) == torch.tensor(center)).sum().item() print('generating predictions done') return predicted_list, target_list, center_count def print_results(predicted_results=None, target_results=None, random_results=None): possible_combinations = [('Better', np.less), ('Equal', np.equal), ('Worse', np.greater)] statistic_comparison = stats.wilcoxon def print_comparison(x, y): assert len(x) == len(y), "length of lists is not equal" for s, func in possible_combinations: val = 100 * sum(func(x, y)) / len(x) # TODO fix text "network then center" print('{} performance of the network then center on the {} test images: {}%'.format(s, len(x), val)) print(statistic_comparison(x, y)) print(statistic_comparison(x, y, alternative='less')) if predicted_results is not None and target_results is not None: print('\n', '=== predicted vs target ===') print_comparison(predicted_results, target_results) if random_results is not None and target_results is not None: print('\n', '=== random vs target ===') print_comparison(random_results, target_results) if predicted_results is not None and random_results is not None: print('\n', '=== predicted vs random ===') print_comparison(predicted_results, random_results) # fig = plt.figure(dpi=200, facecolor='w', edgecolor='k') # plt.plot(df['predicted'], 'ro', markersize=3, fillstyle='none') # plt.plot(df['random'], 'go', markersize=3, fillstyle='none') # plt.plot(df['target'], 'bo', markersize=3) # plt.ylabel('cross-entropy loss') # plt.xlabel('test images') # plt.legend(['predicted', 'random', 'target']) # plt.show() # fig.savefig("testdatascatterplot", bbox_inches='tight') # # result = df.sort_values('default', ascending=False) # result = result.reset_index(drop=True) # print(result) # # fig = plt.figure(dpi=200, facecolor='w', edgecolor='k') # plt.plot(df['predicted'], 'ro', markersize=3, fillstyle='none') # plt.plot(df['random'], 'go', markersize=3, fillstyle='none') # plt.plot(df['target'], 'bo', markersize=3) # plt.ylabel('cross-entropy loss') # plt.xlabel('test images') # plt.legend(['predicted', 'random', 'target']) # plt.show() # fig.savefig("testdatascatterplot", bbox_inches='tight') if __name__ == '__main__': NETWORK_PATH = sys.argv[1] # DATA_PATH = sys.argv[2] model = net.DQN(RESOLUTION, RESOLUTION, N_ACTIONS) model.load_state_dict(torch.load(NETWORK_PATH)) # if gpu is to be used model.to(DEVICE) model.eval() loader_test, idx_to_class = f.loader(DATA_PATH_TEST, transform=TRANSFORM, batch_size=BATCH_SIZE, shuffle=False) random_losses = generate_random(idx_to_class, loader_test) predicted_losses, target_losses, center_locations = generate_predictions(idx_to_class, loader_test, model) losses = pd.DataFrame([np.array(target_losses), np.array(predicted_losses), np.array(random_losses)]).transpose() losses.columns = ['target', 'predicted', 'random'] losses = losses.sort_values('target') losses = losses.reset_index(drop=True) print_results(losses)
the-stack_106_22379
from inspect import getframeinfo, currentframe from os.path import dirname, abspath from sys import path import numpy as np from torch import ones, zeros, mean, tensor, cat, log, clamp, sigmoid, dist, Tensor from torch.nn import MSELoss, BCELoss, BCEWithLogitsLoss, Module, L1Loss from torch.autograd import grad from torch.nn.functional import normalize from torchvision.models import vgg19 from torchvision.transforms import Normalize from .model import Discriminator, FeatureExtractor, Generator from models.abstract_gan_solver import AbstractGanSolver from feature_extractor import Senet50FeatureExtractor Generator = None class Solver(AbstractGanSolver): def __init__(self, cfg=None, mode="train"): super().__init__(cfg, mode) # TODO: use this as dynamic gen. import (if so, define Gen on global level) model = cfg['GAN']['Generator'] if cfg is not None else self.discriminator_name global Generator try: Generator = __import__("models." + model, fromlist=['Generator']).Generator except AttributeError: Generator = __import__("models." + model, fromlist=['Net']).Net if mode == "train": nn_config = cfg['GAN'] self.mse = MSELoss().to(self.device) self.l1 = L1Loss().to(self.device) self.bcewl = BCEWithLogitsLoss().to(self.device) self.ones_const = ones(self.batch_size, device=self.device) self.zeros_const = zeros(self.batch_size, device=self.device) self.d_loss_response = cat((ones(self.batch_size, device=self.device), zeros(self.batch_size, device=self.device))) self.pixel_loss_param = nn_config.getfloat('PixelLossParam', fallback=0) self.adversarial_loss_param = nn_config.getfloat('AdversarialLossParam', fallback=0) self.feature_loss_param = nn_config.getfloat('FeatureLossParam', fallback=0) self.variance_loss_param = nn_config.getfloat('VarianceLossParam', fallback=0) self.identity_loss_param = nn_config.getfloat("IdentityLossParam", fallback=0) self.gradient_penalty_param = nn_config.getfloat("GradientPenaltyParam", fallback=0) if self.feature_loss_param > 0: self.feature_extractor = FeatureExtractor().to(self.device) if self.identity_loss_param > 0: self.identity_extractor = Senet50FeatureExtractor( "/run/media/hacky/DATA2/FFHQ/mtcnn_detections_ffhq.pkl", "/home/hacky/datasets/VGG2/senet50_ft_pytorch/senet50_ft_dims_2048.pth" ).to(self.device) self.zero = zeros(1).to(self.device) elif mode == "single": pass else: raise Exception(f"Wrong mode \"{mode}\"!") @property def discriminator_name(self): return "MFGAn" def build_generator(self, *args, **kwargs): return Generator(*args, **kwargs) def build_discriminator(self, *args, **kwargs): return Discriminator() def compute_gradient_penalty(self, real_img: tensor, fake_img: tensor): """Calculates the gradient penalty loss for WGAN GP""" # Random weight term for interpolation between real and fake samples alpha = Tensor(np.random.random((real_img.size(0), 1, 1, 1))).to(self.device) # Get random interpolation between real and fake samples interpolates = (alpha * real_img + ((1 - alpha) * fake_img)).requires_grad_(True) d_interpolates = self.discriminator(interpolates) # fake = Tensor(real.size(0), 1).fill_(1.).requires_grad_(False) # Get gradient w.r.t. interpolates gradients = grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=self.ones_const[:real_img.size(0)], create_graph=True, retain_graph=True, only_inputs=True, )[0] gradients = gradients.view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() return gradient_penalty def compute_discriminator_loss(self, fake_img, real_img, precomputed=None, train=True, *args, **kwargs): fake_response = self.discriminator(fake_img.detach()) real_response = self.discriminator(real_img) gradient_penalty = 0. \ if not train or self.gradient_penalty_param == 0 \ else self.compute_gradient_penalty(real_img, fake_img) # response = cat((real_response, fake_response)) # return self.bcewl(real_response, self.ones_const) + self.bcewl(fake_response, self.zeros_const) + gradient_penalty # return mean(- log(sigmoid(real_response) + self.epsilon), 0) \ # - mean(log(1 - sigmoid(fake_response) + self.epsilon), 0) return self.bcewl(real_response - fake_response.mean(0, keepdim=True), self.ones_const[:real_response.size(0)]) \ + self.bcewl(fake_response - real_response.mean(0, keepdim=True), self.zeros_const[:real_response.size(0)]) + gradient_penalty def compute_generator_loss(self, label, fake_img: tensor, real_img: tensor, precomputed=None, *args, **kwargs): loss = 0. components = {} if self.pixel_loss_param != 0: pixel_loss = self.pixel_loss_param * self.l1(fake_img, real_img) loss += pixel_loss components["pixel_loss"] = pixel_loss.item() if self.adversarial_loss_param != 0: fake_response = self.discriminator(fake_img) real_response = self.discriminator(real_img).detach() # adversarial_loss = self.adversarial_loss_param * self.bcewl(fake_response, self.ones_const) adversarial_loss = self.adversarial_loss_param * \ (self.bcewl(fake_response - real_response.mean(0, keepdim=True), self.zeros_const[:fake_response.size(0)]) + self.bcewl(real_response - fake_response.mean(0, keepdim=True), self.ones_const[:fake_response.size(0)]) ) loss += adversarial_loss components["adv_loss"] = adversarial_loss.item() if self.feature_loss_param > 0: fake_features = self.feature_extractor(fake_img) real_features = self.feature_extractor(real_img) feature_loss = self.feature_loss_param * self.mse(real_features, fake_features) loss += feature_loss components["feature_loss"] = feature_loss.item() if self.variance_loss_param != 0: var_loss = self.variance_loss_param * compute_variance_loss(fake_img) loss += var_loss components["variance_loss"] = var_loss.item() if self.identity_loss_param > 0: fake_identities = self.identity_extractor(label, fake_img) real_identities = self.identity_extractor(label, real_img).detach() norm_fake = normalize(fake_identities, p=2, dim=1) norm_real = normalize(real_identities, p=2, dim=1) # compute l2 distance in hyperball metric space identity_loss = self.identity_loss_param * (norm_fake - norm_real).pow(2).sum(1).mean() loss += identity_loss components["identity_loss"] = identity_loss.item() return loss, components, None def compute_variance_loss(x: Tensor): n, c, h, w = x.shape num_count_h = n * c * (h - 1) * w num_count_w = n * c * h * (w - 1) # h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :-1, :]), 2).sum() # w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :-1]), 2).sum() h_tv = dist(x[:, :, 1:, :], x[:, :, :-1, :], p=1) w_tv = dist(x[:, :, :, 1:], x[:, :, :, :-1], p=1) return h_tv / num_count_h + w_tv / num_count_w
the-stack_106_22381
import pytest import tiflash class TestMemoryApi(): def test_basic_memory_read_single_byte(self, tdev): """Tests simple memory read""" result = tiflash.memory_read(tdev['read-address'], 1, serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(result) == 1 def test_basic_memory_read_multiple_bytes(self, tdev): """Tests simple memory read of multiple bytes""" result = tiflash.memory_read(tdev['read-address'], 4, serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(result) == 4 def test_basic_memory_read_and_check_byte_values(self, tdev): """Tests memory read and checks for correct byte values. This test is device specific.""" if "read-address" not in tdev.keys() or \ "address-value" not in tdev.keys(): pytest.skip("Need to add memval and memaddr fields in \ setup.cfg for device: %s" % tdev['devicetype']) addr = int(tdev['read-address'], 0) answer = tdev['value'].split(',') answer = [ int(d, 0) for d in answer ] result = tiflash.memory_read(addr, len(answer), serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(result) == len(answer) assert result == answer def test_basic_memory_write(self, tdev): """Tests simple memory write""" WRITE_DATA = [0x11, 0x22, 0x33] tiflash.memory_write(tdev['write-address'], WRITE_DATA, serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) def test_invalid_address_memory_read(self, tdev): """Tests an Error is raised when trying to access invalid memory for memory read""" INVALID_ADDRESS = 0xFFFFFFFF NUM_BYTES = 4 with pytest.raises(tiflash.TIFlashError): tiflash.memory_read(INVALID_ADDRESS, NUM_BYTES, serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) def test_invalid_address_memory_write(self, tdev): """Tests an Error is raised when trying to access invalid memory for memory write""" INVALID_ADDRESS = 0x10000000 WRITE_DATA = [0x11, 0x22, 0x33] with pytest.raises(tiflash.TIFlashError): tiflash.memory_write(INVALID_ADDRESS, WRITE_DATA, serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype'])
the-stack_106_22382
import json import requests # Cargamos los usuarios with open('usuarios.json') as f: usuarios = json.load(f) # Funciones de ayuda def save_users(): "Guarda los usuarios en nuestro fichero de usuarios" with open('usuarios.json', 'w') as f: json.dump(usuarios, f, indent=2) def is_user(cid): "Comprueba si un ID es usuario de nuestro bot" return usuarios.get(str(cid)) def add_user(cid): "Añade un usuario" usuarios[str(cid)] = True save_users() def delete_user(cid): "Borra un usuario" usuarios[str(cid)] = False save_users() # Funciones para obtener información de los pokemon url = "https://pokeapi.co/api/v2/{}" def get_pokemon_info(pokemon): "Obtiene información básica de un Pokémon" r = requests.get(url.format('pokemon/{}'.format(pokemon))) # Comprobamos si la petición tuvo éxito if r.status_code != 200: return "Error. Pokémon not found" # Sabiendo que ha sido una petición buena, empezamos a sacar información del pokemon # Primero obtendremos el json del resultado a la petición r_json = r.json() # Crearemos un diccionario donde almacenar la información del pokemon de forma cómoda # Para esto cogeremos una petición cualquiera y la analizaremos con http://jsonviewer.stack.hu/ poke_info = dict() # Obtenemos el nombre y lo ponemos capitalizamos poke_info['name'] = r_json['name'].capitalize() # El peso (Viene en gramos) poke_info['weight'] = r_json['weight']/10 # La altura (Viene en centímetros) poke_info['height'] = r_json['height']/10 # Los tipos (Viene una lista con los tipos en minúscula) # Aquí estamos usando list comprehension http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html poke_info['types'] = [x['type']['name'].capitalize() for x in r_json['types']] # Habilidades (Viene como los tipos) poke_info['abilities'] = [x['ability']['name'].capitalize() for x in r_json['abilities']] # Sprite del pokemon (Viene una lista y cogeremos solo la parte de alante por defecto) poke_info['sprite'] = r_json['sprites']['front_default'] # Generamos el mensaje a enviar utilizando la información del pokemon # OJO, lo que hay entre los corchetes de antes del sprite es un caracter vacío # que utilizaremos para enviar la imagen desde la URL message = "[⁣]({sprite})Pokémon: *{name}*\nHeight: *{height}* m\nWeight: *{weight}* kg\nTypes:\n*\t· {types}*\nAbilities:\n*\t· {abilities}*".format( sprite = poke_info['sprite'], name = poke_info['name'], types = "\n\t· ".join(poke_info['types']), abilities = "\n\t· ".join(poke_info['abilities']), height = poke_info['height'], weight = poke_info['weight']) return message
the-stack_106_22383
# -*- coding: utf-8 -*- """Tests for the xml module.""" from __future__ import unicode_literals from soco import xml def test_register_namespace(): assert xml.register_namespace def test_ns_tag(): """Test the ns_tag function.""" namespaces = ['http://purl.org/dc/elements/1.1/', 'urn:schemas-upnp-org:metadata-1-0/upnp/', 'urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/'] for ns_in, namespace in zip(['dc', 'upnp', ''], namespaces): res = xml.ns_tag(ns_in, 'testtag') correct = '{{{0}}}{1}'.format(namespace, 'testtag') assert res == correct
the-stack_106_22384
from urllib.parse import urlparse import vobject from csp.decorators import csp_update from django.conf import settings from django.contrib import messages from django.db.models import Q from django.http import Http404, HttpResponse from django.shortcuts import get_object_or_404, render from django.utils.decorators import method_decorator from django.utils.functional import cached_property from django.utils.translation import gettext_lazy as _ from django.views.generic import DetailView, FormView, TemplateView from django_context_decorator import context from pretalx.agenda.signals import register_recording_provider from pretalx.cfp.views.event import EventPageMixin from pretalx.common.mixins.views import PermissionRequired from pretalx.common.phrases import phrases from pretalx.schedule.models import Schedule, TalkSlot from pretalx.submission.forms import FeedbackForm from pretalx.submission.models import QuestionTarget, Submission, SubmissionStates @method_decorator(csp_update(IMG_SRC="https://www.gravatar.com"), name="dispatch") class TalkView(PermissionRequired, TemplateView): model = Submission slug_field = "code" template_name = "agenda/talk.html" permission_required = "agenda.view_slot" def get_object(self, queryset=None): talk = ( self.request.event.talks.prefetch_related("slots", "answers", "resources") .filter( code__iexact=self.kwargs["slug"], ) .first() ) if talk: return talk if getattr(self.request, "is_orga", False): return get_object_or_404( self.request.event.submissions.prefetch_related( "speakers", "slots", "answers", "resources" ).select_related("submission_type"), code__iexact=self.kwargs["slug"], ) raise Http404() @context @cached_property def submission(self): return self.get_object() def get_permission_object(self): return self.submission @cached_property def recording(self): for __, response in register_recording_provider.send_robust(self.request.event): if ( response and not isinstance(response, Exception) and getattr(response, "get_recording", None) ): recording = response.get_recording(self.submission) if recording and recording["iframe"]: return recording return {} @context def recording_iframe(self): return self.recording.get("iframe") def get(self, request, *args, **kwargs): response = super().get(request, *args, **kwargs) if self.recording.get("csp_header"): response._csp_update = {"frame-src": self.recording.get("csp_header")} return response def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) qs = TalkSlot.objects.none() schedule = Schedule.objects.none() if self.request.event.current_schedule: schedule = self.request.event.current_schedule qs = schedule.talks.filter(is_visible=True).select_related("room") elif self.request.is_orga: schedule = self.request.event.wip_schedule qs = schedule.talks.filter(room__isnull=False).select_related("room") ctx["talk_slots"] = ( qs.filter(submission=self.submission) .order_by("start") .select_related("room") ) result = [] other_slots = ( schedule.talks.exclude(submission_id=self.submission.pk).filter( is_visible=True ) if schedule else TalkSlot.objects.none() ) for speaker in self.submission.speakers.all(): speaker.talk_profile = speaker.event_profile(event=self.request.event) speaker.other_submissions = self.request.event.submissions.filter( slots__in=other_slots, speakers__in=[speaker] ).select_related("event") result.append(speaker) ctx["speakers"] = result return ctx @context @cached_property def submission_description(self): return ( self.submission.description or self.submission.abstract or _("The talk “{title}” at {event}").format( title=self.submission.title, event=self.request.event.name ) ) @context @cached_property def answers(self): return self.submission.answers.filter( question__is_public=True, question__event=self.request.event, question__target=QuestionTarget.SUBMISSION, ).select_related("question") class TalkReviewView(TalkView): model = Submission slug_field = "review_code" template_name = "agenda/talk.html" def has_permission(self): return True def get_object(self): return get_object_or_404( self.request.event.submissions, review_code=self.kwargs["slug"], state__in=[ SubmissionStates.SUBMITTED, SubmissionStates.ACCEPTED, SubmissionStates.CONFIRMED, ], ) class SingleICalView(EventPageMixin, DetailView): model = Submission slug_field = "code" def get(self, request, event, **kwargs): submission = self.get_object() code = submission.code talk_slots = submission.slots.filter( schedule=self.request.event.current_schedule, is_visible=True ) netloc = urlparse(settings.SITE_URL).netloc cal = vobject.iCalendar() cal.add("prodid").value = "-//pretalx//{}//{}".format(netloc, code) for talk in talk_slots: talk.build_ical(cal) resp = HttpResponse(cal.serialize(), content_type="text/calendar") resp[ "Content-Disposition" ] = f'attachment; filename="{request.event.slug}-{code}.ics"' return resp class FeedbackView(PermissionRequired, FormView): form_class = FeedbackForm template_name = "agenda/feedback_form.html" permission_required = "agenda.view_slot" def get_object(self): return self.request.event.talks.filter(code__iexact=self.kwargs["slug"]).first() @context @cached_property def talk(self): return self.get_object() @context @cached_property def can_give_feedback(self): return self.request.user.has_perm("agenda.give_feedback", self.talk) @context @cached_property def speakers(self): return self.talk.speakers.all() def get(self, *args, **kwargs): talk = self.talk if talk and self.request.user in self.speakers: return render( self.request, "agenda/feedback.html", context={ "talk": talk, "feedback": talk.feedback.filter( Q(speaker__isnull=True) | Q(speaker=self.request.user) ).select_related("speaker"), }, ) return super().get(*args, **kwargs) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs["talk"] = self.talk return kwargs def form_valid(self, form): if not self.can_give_feedback: return super().form_invalid(form) result = super().form_valid(form) form.save() messages.success(self.request, phrases.agenda.feedback_success) return result def get_success_url(self): return self.get_object().urls.public
the-stack_106_22386
# pylint: skip-file # # All modification made by Intel Corporation: Copyright (c) 2016 Intel Corporation # # All contributions by the University of California: # Copyright (c) 2014, 2015, The Regents of the University of California (Regents) # All rights reserved. # # All other contributions: # Copyright (c) 2014, 2015, the respective contributors # All rights reserved. # For the list of contributors go to https://github.com/BVLC/caffe/blob/master/CONTRIBUTORS.md # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import unittest import tempfile import os import numpy as np import six from collections import OrderedDict import caffe def simple_net_file(num_output): """Make a simple net prototxt, based on test_net.cpp, returning the name of the (temporary) file.""" f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write("""name: 'testnet' force_backward: true layer { type: 'DummyData' name: 'data' top: 'data' top: 'label' dummy_data_param { num: 5 channels: 2 height: 3 width: 4 num: 5 channels: 1 height: 1 width: 1 data_filler { type: 'gaussian' std: 1 } data_filler { type: 'constant' } } } layer { type: 'Convolution' name: 'conv' bottom: 'data' top: 'conv' convolution_param { num_output: 11 kernel_size: 2 pad: 3 weight_filler { type: 'gaussian' std: 1 } bias_filler { type: 'constant' value: 2 } } param { decay_mult: 1 } param { decay_mult: 0 } } layer { type: 'InnerProduct' name: 'ip' bottom: 'conv' top: 'ip_blob' inner_product_param { num_output: """ + str(num_output) + """ weight_filler { type: 'gaussian' std: 2.5 } bias_filler { type: 'constant' value: -3 } } } layer { type: 'SoftmaxWithLoss' name: 'loss' bottom: 'ip_blob' bottom: 'label' top: 'loss' }""") f.close() return f.name class TestNet(unittest.TestCase): def setUp(self): self.num_output = 13 net_file = simple_net_file(self.num_output) self.net = caffe.Net(net_file, caffe.TRAIN) # fill in valid labels self.net.blobs['label'].data[...] = \ np.random.randint(self.num_output, size=self.net.blobs['label'].data.shape) os.remove(net_file) def test_memory(self): """Check that holding onto blob data beyond the life of a Net is OK""" params = sum(map(list, six.itervalues(self.net.params)), []) blobs = self.net.blobs.values() del self.net # now sum everything (forcing all memory to be read) total = 0 for p in params: total += p.data.sum() + p.diff.sum() for bl in blobs: total += bl.data.sum() + bl.diff.sum() def test_layer_dict(self): layer_dict = self.net.layer_dict self.assertEqual(list(layer_dict.keys()), list(self.net._layer_names)) for i, name in enumerate(self.net._layer_names): self.assertEqual(layer_dict[name].type, self.net.layers[i].type) def test_forward_backward(self): self.net.forward() self.net.backward() def test_forward_start_end(self): conv_blob=self.net.blobs['conv'] ip_blob=self.net.blobs['ip_blob'] sample_data=np.random.uniform(size=conv_blob.data.shape) sample_data=sample_data.astype(np.float32) conv_blob.data[:]=sample_data forward_blob=self.net.forward(start='ip',end='ip') self.assertIn('ip_blob',forward_blob) manual_forward=[] for i in range(0,conv_blob.data.shape[0]): dot=np.dot(self.net.params['ip'][0].data, conv_blob.data[i].reshape(-1)) manual_forward.append(dot+self.net.params['ip'][1].data) manual_forward=np.array(manual_forward) np.testing.assert_allclose(ip_blob.data,manual_forward,rtol=1e-3,atol=1e-5) def test_backward_start_end(self): conv_blob=self.net.blobs['conv'] ip_blob=self.net.blobs['ip_blob'] sample_data=np.random.uniform(size=ip_blob.data.shape) sample_data=sample_data.astype(np.float32) ip_blob.diff[:]=sample_data backward_blob=self.net.backward(start='ip',end='ip') self.assertIn('conv',backward_blob) manual_backward=[] for i in range(0,conv_blob.data.shape[0]): dot=np.dot(self.net.params['ip'][0].data.transpose(), sample_data[i].reshape(-1)) manual_backward.append(dot) manual_backward=np.array(manual_backward) manual_backward=manual_backward.reshape(conv_blob.data.shape) np.testing.assert_allclose(conv_blob.diff,manual_backward,rtol=1e-3,atol=1e-5) def test_clear_param_diffs(self): # Run a forward/backward step to have non-zero diffs self.net.forward() self.net.backward() diff = self.net.params["conv"][0].diff # Check that we have non-zero diffs self.assertTrue(diff.max() > 0) self.net.clear_param_diffs() # Check that the diffs are now 0 self.assertTrue((diff == 0).all()) def test_inputs_outputs(self): self.assertEqual(self.net.inputs, []) self.assertEqual(self.net.outputs, ['loss']) def test_top_bottom_names(self): self.assertEqual(self.net.top_names, OrderedDict([('data', ['data', 'label']), ('conv', ['conv']), ('ip', ['ip_blob']), ('loss', ['loss'])])) self.assertEqual(self.net.bottom_names, OrderedDict([('data', []), ('conv', ['data']), ('ip', ['conv']), ('loss', ['ip_blob', 'label'])])) def test_save_and_read(self): f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.close() self.net.save(f.name) net_file = simple_net_file(self.num_output) # Test legacy constructor # should print deprecation warning caffe.Net(net_file, f.name, caffe.TRAIN) # Test named constructor net2 = caffe.Net(net_file, caffe.TRAIN, weights=f.name) os.remove(net_file) os.remove(f.name) for name in self.net.params: for i in range(len(self.net.params[name])): self.assertEqual(abs(self.net.params[name][i].data - net2.params[name][i].data).sum(), 0) def test_save_hdf5(self): f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.close() self.net.save_hdf5(f.name) net_file = simple_net_file(self.num_output) net2 = caffe.Net(net_file, caffe.TRAIN) net2.load_hdf5(f.name) os.remove(net_file) os.remove(f.name) for name in self.net.params: for i in range(len(self.net.params[name])): self.assertEqual(abs(self.net.params[name][i].data - net2.params[name][i].data).sum(), 0) class TestLevels(unittest.TestCase): TEST_NET = """ layer { name: "data" type: "DummyData" top: "data" dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } } layer { name: "NoLevel" type: "InnerProduct" bottom: "data" top: "NoLevel" inner_product_param { num_output: 1 } } layer { name: "Level0Only" type: "InnerProduct" bottom: "data" top: "Level0Only" include { min_level: 0 max_level: 0 } inner_product_param { num_output: 1 } } layer { name: "Level1Only" type: "InnerProduct" bottom: "data" top: "Level1Only" include { min_level: 1 max_level: 1 } inner_product_param { num_output: 1 } } layer { name: "Level>=0" type: "InnerProduct" bottom: "data" top: "Level>=0" include { min_level: 0 } inner_product_param { num_output: 1 } } layer { name: "Level>=1" type: "InnerProduct" bottom: "data" top: "Level>=1" include { min_level: 1 } inner_product_param { num_output: 1 } } """ def setUp(self): self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) self.f.write(self.TEST_NET) self.f.close() def tearDown(self): os.remove(self.f.name) def check_net(self, net, blobs): net_blobs = [b for b in net.blobs.keys() if 'data' not in b] self.assertEqual(net_blobs, blobs) def test_0(self): net = caffe.Net(self.f.name, caffe.TEST) self.check_net(net, ['NoLevel', 'Level0Only', 'Level>=0']) def test_1(self): net = caffe.Net(self.f.name, caffe.TEST, level=1) self.check_net(net, ['NoLevel', 'Level1Only', 'Level>=0', 'Level>=1']) class TestStages(unittest.TestCase): TEST_NET = """ layer { name: "data" type: "DummyData" top: "data" dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } } layer { name: "A" type: "InnerProduct" bottom: "data" top: "A" include { stage: "A" } inner_product_param { num_output: 1 } } layer { name: "B" type: "InnerProduct" bottom: "data" top: "B" include { stage: "B" } inner_product_param { num_output: 1 } } layer { name: "AorB" type: "InnerProduct" bottom: "data" top: "AorB" include { stage: "A" } include { stage: "B" } inner_product_param { num_output: 1 } } layer { name: "AandB" type: "InnerProduct" bottom: "data" top: "AandB" include { stage: "A" stage: "B" } inner_product_param { num_output: 1 } } """ def setUp(self): self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) self.f.write(self.TEST_NET) self.f.close() def tearDown(self): os.remove(self.f.name) def check_net(self, net, blobs): net_blobs = [b for b in net.blobs.keys() if 'data' not in b] self.assertEqual(net_blobs, blobs) def test_A(self): net = caffe.Net(self.f.name, caffe.TEST, stages=['A']) self.check_net(net, ['A', 'AorB']) def test_B(self): net = caffe.Net(self.f.name, caffe.TEST, stages=['B']) self.check_net(net, ['B', 'AorB']) def test_AandB(self): net = caffe.Net(self.f.name, caffe.TEST, stages=['A', 'B']) self.check_net(net, ['A', 'B', 'AorB', 'AandB']) class TestAllInOne(unittest.TestCase): TEST_NET = """ layer { name: "train_data" type: "DummyData" top: "data" top: "label" dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } shape { dim: 1 dim: 1 dim: 1 dim: 1 } } include { phase: TRAIN stage: "train" } } layer { name: "val_data" type: "DummyData" top: "data" top: "label" dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } shape { dim: 1 dim: 1 dim: 1 dim: 1 } } include { phase: TEST stage: "val" } } layer { name: "deploy_data" type: "Input" top: "data" input_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } include { phase: TEST stage: "deploy" } } layer { name: "ip" type: "InnerProduct" bottom: "data" top: "ip" inner_product_param { num_output: 2 } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip" bottom: "label" top: "loss" include: { phase: TRAIN stage: "train" } include: { phase: TEST stage: "val" } } layer { name: "pred" type: "Softmax" bottom: "ip" top: "pred" include: { phase: TEST stage: "deploy" } } """ def setUp(self): self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) self.f.write(self.TEST_NET) self.f.close() def tearDown(self): os.remove(self.f.name) def check_net(self, net, outputs): self.assertEqual(list(net.blobs['data'].shape), [1,1,10,10]) self.assertEqual(net.outputs, outputs) def test_train(self): net = caffe.Net(self.f.name, caffe.TRAIN, stages=['train']) self.check_net(net, ['loss']) def test_val(self): net = caffe.Net(self.f.name, caffe.TEST, stages=['val']) self.check_net(net, ['loss']) def test_deploy(self): net = caffe.Net(self.f.name, caffe.TEST, stages=['deploy']) self.check_net(net, ['pred'])
the-stack_106_22387
import uuid import os import tarfile from pymongo import MongoClient from server.files import list_all_img_in_folder client = MongoClient('mongodb://localhost:27017/') db = client.details def retrieve_article(id): result = db.articles.find_one({'id': id}, {'_id': 0}) return result def retrieve_all_articles(): result = db.articles.find({}, {'_id': 0}) return result def retrieve_news_by_chunck(index, limit): result = list( db.articles.find({'typeIsArticle': {'$in' : ['true', True, 'True']}}, {'_id': 0}). sort('date', -1). skip(int(index)). limit(limit) ) for element in result: element['content'] = remove_author_name(element['content']) return result def retrieve_rubrique_by_chunck(rubrique_name, index, limit): result = list( db.articles.find({'categorie': rubrique_name}, {'_id': 0}). sort('date', -1). skip(int(index)). limit(limit) ) for element in result: element['content'] = remove_author_name(element['content']) return result def retrieve_titles_and_ids(): result = list(db.articles.find({}, {'title': 1, 'id': 1, '_id': 0}).sort('date', -1)) return result def count_articles(key, value): return db.articles.count_documents({key: value}) def count_news(): return db.articles.count_documents({'typeIsArticle': {'$in' : ['true', True, 'True']}}) def add_article(data): data['thumbail'] = data['image'][0] data['id'] = create_unique_id(data['title']) db.articles.insert_one(data) def edit_article(id, data): data['thumbail'] = data['image'][0] db.articles.update_one( {'id': id}, {'$set': data} ) def remove_article(id): db.articles.delete_one({'id': id}) def create_unique_id(complicated_title): key = "-" + uuid.uuid4().hex[:8] short_title = complicated_title.lower() array_title = short_title.split(" ")[:3] clean_title = [] for word in array_title : for char in word : if char.isalnum(): clean_title.append(char) return "".join(clean_title) + key def aggregate_img_by_article(): result = list(db.articles.find({}, {'image': 1, '_id': 0}).sort('date', -1)) flat_result = array_of_dict_to_array_flat(result) return flat_result def array_of_dict_to_array_flat(array): image_list = [] for element in array: if 'image' in dict(element): for value in (dict(element)['image']): image_list.append(value) return image_list # compare img articles with img folder to find unused img def find_unused_img(): list_total = list_all_img_in_folder('public/img') list_used = aggregate_img_by_article() list_difference = [] for item in list_total: if item not in list_used: list_difference.append(item) return list_difference def populate_archive_folder(): result = retrieve_all_articles() for element in result: file = open('archive/'+element['id']+'.txt', 'w') file.write(element['title']+'\n') file.write(element['date']+'\n') file.write(element['id']+'\n') file.write(str(element['typeIsArticle'])+'\n') file.write(element['thumbail']+'\n') file.write(element['categorie']+'\n') file.write(str(element['content'])) file.close() def create_archive(): os.remove('public/img/archive.tgz') with tarfile.open('public/img/archive.tgz', 'x:gz') as tar: tar.add('archive', 'archive') tar.add('public/img', 'img') tar.close() def remove_author_name(text): return text[:text.find("<p>")] + text[text.find("</p>") + len('<p>')+3:]
the-stack_106_22388
from torch.optim.lr_scheduler import _LRScheduler, CosineAnnealingLR import math class RestartCosineAnnealingLR(_LRScheduler): def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1): self.T_max = T_max self.eta_min = eta_min super(RestartCosineAnnealingLR, self).__init__(optimizer, last_epoch) def get_lr(self): return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch % self.T_max) / self.T_max)) / 2 for base_lr in self.base_lrs]
the-stack_106_22389
from python_interface.gecco_interface import * from python_spec.mrcc_response.get_response_data import _response_data, _pop_data, _cmp_data, _calc_data from python_spec.mrcc_response.set_mrcc_response_targets import relax_ref import math _inp = GeCCo_Input() # Get the name of the package GeCCo uses the integrals from _env = _inp.env _orb = Orb_Info() _s2 = _orb.get('imult') _ms = _orb.get('ims') _isym_0 = _orb.get('lsym') _isym= _isym_0 if ((_ms == 0) and ((_s2-1 % 4) == 0)): _msc = 1 elif ((_ms == 0) and ((_s2+1 % 4) == 0)): _msc = -1 else: _msc = 0 #Getting the frequency _freq=_response_data['freq'] #Getting the value of the restart option _restart=_response_data['restart'] #Getting the total number of perturbation operator need to be defined _npop=_response_data['nPop'] #Getting total number of response calculation _ncnt=_response_data['nCnt'] #Getting the maximum order of the properties that will be calculated _maxord=_response_data['maxorder'] #n_par tells how many version of the same operator has to be defined #Defining all the perturbation operators needed for the whole calculations _list_to_depend=[] for ipop in range (0,_npop): _cur_ext=_pop_data['name'][ipop]+_pop_data['comp'][ipop] _pop_name='V'+_cur_ext new_target(_pop_name) DEF_HAMILTONIAN({LABEL:_pop_name,MAX_RANK:1}) new_target('IMPORT_'+_pop_name) depend(_pop_name) _op_list={_pop_name:'ME_'+_pop_name} _irrep=_pop_data['isym'][ipop] for _op in _op_list: DEF_ME_LIST({LIST:_op_list[_op], OPERATOR:_op, IRREP:_irrep, '2MS':0, AB_SYM:1}) # For second order properties, the perturbations are mainly singlet. #Getting the type of the integrals needed while importing the integrals _int_type=_pop_data['int_name'][ipop] IMPORT({LIST:'ME_'+_pop_name, TYPE:_int_type, ENV:_env}) PRINT_MEL({LIST:'ME_'+_pop_name}) _list_to_depend.append('IMPORT_'+_pop_name) new_target('DEF_RSPNS(1)'+_cur_ext) DEF_SCALAR({LABEL:'RSPNS(1)'+_cur_ext}) _op_list={'RSPNS(1)'+_cur_ext:'ME_RSPNS(1)'+_cur_ext} for _op in _op_list: DEF_ME_LIST({LIST:_op_list[_op], OPERATOR:_op, IRREP:_irrep, '2MS':0}) new_target('IMPORT_PERT_OPS') for ele in _list_to_depend: depend(ele) # We calculate the first order response, again(!), that will be needed here # Here we will first get the formula, and then for each of the operator we # will use the same formula, but changing only the list of the operators new_target('GET_RSPNS(1)_FORM') depend('F_MRCC_LAG') depend('DEF_ME_T') depend('DEF_ME_C0') depend('DEF_ME_L') if (relax_ref): depend('DEF_ME_C0_bar') DEF_SCALAR({LABEL:'preRSPNS(1)_1'}) DEF_SCALAR({LABEL:'preRSPNS(1)_2'}) DEF_SCALAR({LABEL:'preRSPNS(1)'}) #Defining a dummy scalar operator for RSPNS(1) DEF_SCALAR({LABEL:'RSPNS(1)'}) #Defining a dummy perturbation operator DEF_HAMILTONIAN({LABEL:'V(1)',MAX_RANK:1}) INVARIANT({LABEL_RES:'F_preRSPNS(1)_1', LABEL_IN:'F_MRCC_LAG', OP_RES:'preRSPNS(1)_1', OPERATORS:'L'}) if (relax_ref): REPLACE({LABEL_RES:'F_preRSPNS(1)_1', LABEL_IN:'F_preRSPNS(1)_1', OP_LIST:['C0^+','C0_bar']}) DERIVATIVE({LABEL_RES:'F_preRSPNS(1)_2', LABEL_IN:'F_MRCC_LAG', OP_RES:'preRSPNS(1)_2', OP_DERIV:'L', OP_MULT:'L'}) DEF_FORMULA({LABEL:'F_preRSPNS(1)', FORMULA:'preRSPNS(1)=preRSPNS(1)_1+preRSPNS(1)_2'}) # FORMULA:'preRSPNS(1)=preRSPNS(1)_2'}) EXPAND({LABEL_RES:'F_preRSPNS(1)', LABEL_IN:'F_preRSPNS(1)', INTERM:['F_preRSPNS(1)_1','F_preRSPNS(1)_2']}) REPLACE({LABEL_RES:'F_RSPNS(1)', LABEL_IN:'F_preRSPNS(1)', OP_LIST:['H','V(1)']}) INVARIANT({LABEL_RES:'F_RSPNS(1)', LABEL_IN:'F_RSPNS(1)', OP_RES:'RSPNS(1)', OPERATORS:'H'}) _list_to_depend=[] for ipop in range (0,_npop): _cur_ext=_pop_data['name'][ipop]+_pop_data['comp'][ipop] _pop_name='V'+_cur_ext new_target('EVAL_RSPNS(1)'+_cur_ext) depend('DEF_RSPNS(1)'+_cur_ext) ASSIGN_ME2OP({LIST:'ME_RSPNS(1)'+_cur_ext, OPERATOR:'RSPNS(1)'}) ASSIGN_ME2OP({LIST:'ME_'+_pop_name, OPERATOR:'V(1)'}) depend('H0') depend('GET_RSPNS(1)_FORM') OPTIMIZE({LABEL_OPT:'FOPT_RSPNS(1)'+_cur_ext, LABELS_IN:'F_RSPNS(1)'}) EVALUATE({FORM:'FOPT_RSPNS(1)'+_cur_ext}) _print_mel_arg={} _print_mel_arg[LIST]='ME_RSPNS(1)'+_cur_ext _print_mel_arg[COMMENT]='First order property('+str(ipop)+')' _print_mel_arg[FORMAT]='NORM' PRINT_MEL(_print_mel_arg) _list_to_depend.append('EVAL_RSPNS(1)'+_cur_ext) ########## calculating the first order properties if (_restart<2): new_target('EVAL_RSPNS(1)',True) else: new_target('EVAL_RSPNS(1)') depend('IMPORT_PERT_OPS') for ele in _list_to_depend: depend(ele)
the-stack_106_22391
# This code is part of Mthree. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test balanced cals""" from mthree.mitigation import _balanced_cal_strings def test_balanced_strings(): """Validate balanced cal string pairs sum to the num_qubits""" for num_qubits in [1, 2, 5, 9, 22, 47, 102]: cal_strs = _balanced_cal_strings(num_qubits) for kk in range(num_qubits): _sum = 0 str1 = cal_strs[2*kk] str2 = cal_strs[2*kk+1] for jj in range(num_qubits): _sum += int(str1[jj]) + int(str2[jj]) assert _sum == num_qubits
the-stack_106_22393
r""" Morphisms of Toric Varieties There are three "obvious" ways to map toric varieties to toric varieties: 1. Polynomial maps in local coordinates, the usual morphisms in algebraic geometry. 2. Polynomial maps in the (global) homogeneous coordinates. 3. Toric morphisms, that is, algebraic morphisms equivariant with respect to the torus action on the toric variety. Both 2 and 3 are special cases of 1, which is just to say that we always remain within the realm of algebraic geometry. But apart from that, none is included in one of the other cases. In the examples below, we will explore some algebraic maps that can or can not be written as a toric morphism. Often a toric morphism can be written with polynomial maps in homogeneous coordinates, but sometimes it cannot. The toric morphisms are perhaps the most mysterious at the beginning. Let us quickly review their definition (See Definition 3.3.3 of [CLS]_). Let `\Sigma_1` be a fan in `N_{1,\RR}` and `\Sigma_2` be a fan in `N_{2,\RR}`. A morphism `\phi: X_{\Sigma_1} \to X_{\Sigma_2}` of the associated toric varieties is toric if `\phi` maps the maximal torus `T_{N_1} \subseteq X_{\Sigma_1}` into `T_{N_2} \subseteq X_{\Sigma_2}` and `\phi|_{T_N}` is a group homomorphism. The data defining a toric morphism is precisely what defines a fan morphism (see :mod:`~sage.geometry.fan_morphism`), extending the more familiar dictionary between toric varieties and fans. Toric geometry is a functor from the category of fans and fan morphisms to the category of toric varieties and toric morphisms. .. note:: Do not create the toric morphisms (or any morphism of schemes) directly from the ``SchemeMorphism...`` classes. Instead, use the :meth:`~sage.schemes.generic.scheme.hom` method common to all algebraic schemes to create new homomorphisms. EXAMPLES: First, consider the following embedding of `\mathbb{P}^1` into `\mathbb{P}^2` :: sage: P2.<x,y,z> = toric_varieties.P2() sage: P1.<u,v> = toric_varieties.P1() sage: P1.hom([0,u^2+v^2,u*v], P2) Scheme morphism: From: 1-d CPR-Fano toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [u : v] to [0 : u^2 + v^2 : u*v] This is a well-defined morphism of algebraic varieties because homogeneously rescaled coordinates of a point of `\mathbb{P}^1` map to the same point in `\mathbb{P}^2` up to its homogeneous rescalings. It is not equivariant with respect to the torus actions .. MATH:: \CC^\times \times \mathbb{P}^1, (\mu,[u:v]) \mapsto [u:\mu v] \quad\text{and}\quad \left(\CC^\times\right)^2 \times \mathbb{P}^2, ((\alpha,\beta),[x:y:z]) \mapsto [x:\alpha y:\beta z] , hence it is not a toric morphism. Clearly, the problem is that the map in homogeneous coordinates contains summands that transform differently under the torus action. However, this is not the only difficulty. For example, consider :: sage: phi = P1.hom([0,u,v], P2); phi Scheme morphism: From: 1-d CPR-Fano toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [u : v] to [0 : u : v] This map is actually the embedding of the :meth:`~sage.schemes.toric.variety.ToricVariety_field.orbit_closure` associated to one of the rays of the fan of `\mathbb{P}^2`. Now the morphism is equivariant with respect to **some** map `\CC^\times \to (\CC^\times)^2` of the maximal tori of `\mathbb{P}^1` and `\mathbb{P}^2`. But this map of the maximal tori cannot be the same as ``phi`` defined above. Indeed, the image of ``phi`` completely misses the maximal torus `T_{\mathbb{P}^2} = \{ [x:y:z] | x\not=0, y\not=0, z\not=0 \}` of `\mathbb{P}^2`. Consider instead the following morphism of fans:: sage: fm = FanMorphism( matrix(ZZ,[[1,0]]), P1.fan(), P2.fan() ); fm Fan morphism defined by the matrix [1 0] Domain fan: Rational polyhedral fan in 1-d lattice N Codomain fan: Rational polyhedral fan in 2-d lattice N which also defines a morphism of toric varieties:: sage: P1.hom(fm, P2) Scheme morphism: From: 1-d CPR-Fano toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined by sending Rational polyhedral fan in 1-d lattice N to Rational polyhedral fan in 2-d lattice N. The fan morphism map is equivalent to the following polynomial map:: sage: _.as_polynomial_map() Scheme morphism: From: 1-d CPR-Fano toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [u : v] to [u : v : v] Finally, here is an example of a fan morphism that cannot be written using homogeneous polynomials. Consider the blowup `O_{\mathbb{P}^1}(2) \to \CC^2/\ZZ_2`. In terms of toric data, this blowup is:: sage: A2_Z2 = toric_varieties.A2_Z2() sage: A2_Z2.fan().rays() N(1, 0), N(1, 2) in 2-d lattice N sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)]) sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2) sage: blowup.as_polynomial_map() Traceback (most recent call last): ... TypeError: The fan morphism cannot be written in homogeneous polynomials. If we denote the homogeneous coordinates of `O_{\mathbb{P}^1}(2)` by `x`, `t`, `y` corresponding to the rays `(1,2)`, `(1,1)`, and `(1,0)` then the blow-up map is [BB]_: .. MATH:: f: O_{\mathbb{P}^1}(2) \to \CC^2/\ZZ_2, \quad (x,t,y) \mapsto \left( x\sqrt{t}, y\sqrt{t} \right) which requires square roots. Fibrations ---------- If a toric morphism is :meth:`dominant <SchemeMorphism_fan_toric_variety.is_dominant>`, then all fibers over a fixed torus orbit in the base are isomorphic. Hence, studying the fibers is again a combinatorial question and Sage implements additional methods to study such fibrations that are not available otherwise (however, note that you can always :meth:`~SchemeMorphism_fan_toric_variety.factor` to pick out the part that is dominant over the image or its closure). For example, consider the blow-up restricted to one of the two coordinate charts of $O_{\mathbb{P}^1}(2)$ :: sage: O2_P1_chart = ToricVariety(Fan([O2_P1.fan().generating_cones()[0]])) sage: single_chart = O2_P1_chart.hom(identity_matrix(2), A2_Z2) sage: single_chart.is_dominant() True sage: single_chart.is_surjective() False sage: fiber = single_chart.fiber_generic(); fiber (0-d affine toric variety, 1) sage: fiber[0].embedding_morphism().as_polynomial_map() Scheme morphism: From: 0-d affine toric variety To: 2-d affine toric variety Defn: Defined on coordinates by sending [] to [1 : 1] The fibers are labeled by torus orbits in the base, that is, cones of the codomain fan. In this case, the fibers over lower-dimensional torus orbits are:: sage: A2_Z2_cones = flatten(A2_Z2.fan().cones()) sage: table([('cone', 'dim')] + ....: [(cone.ambient_ray_indices(), single_chart.fiber_dimension(cone)) ....: for cone in A2_Z2_cones], header_row=True) cone dim +--------+-----+ () 0 (0,) 0 (1,) -1 (0, 1) 1 Lets look closer at the one-dimensional fiber. Although not the case in this example, connected components of fibers over higher-dimensional cones (corresponding to lower-dimensional torus orbits) of the base are often not irreducible. The irreducible components are labeled by the :meth:`~sage.geometry.fan_morphism.FanMorphism.primitive_preimage_cones`, which are certain cones of the domain fan that map to the cone in the base that defines the torus orbit:: sage: table([('base cone', 'primitive preimage cones')] + ....: [(cone.ambient_ray_indices(), ....: single_chart.fan_morphism().primitive_preimage_cones(cone)) ....: for cone in A2_Z2_cones], header_row=True) base cone primitive preimage cones +-----------+---------------------------------------------------------+ () (0-d cone of Rational polyhedral fan in 2-d lattice N,) (0,) (1-d cone of Rational polyhedral fan in 2-d lattice N,) (1,) () (0, 1) (1-d cone of Rational polyhedral fan in 2-d lattice N,) The fiber over the trivial cone is the generic fiber that we have already encountered. The interesting fiber is the one over the 2-dimensional cone, which represents the exceptional set of the blow-up in this single coordinate chart. Lets investigate further:: sage: exceptional_cones = single_chart.fan_morphism().primitive_preimage_cones(A2_Z2.fan(2)[0]) sage: exceptional_set = single_chart.fiber_component(exceptional_cones[0]) sage: exceptional_set 1-d affine toric variety sage: exceptional_set.embedding_morphism().as_polynomial_map() Scheme morphism: From: 1-d affine toric variety To: 2-d affine toric variety Defn: Defined on coordinates by sending [z0] to [z0 : 0] So we see that the fiber over this point is an affine line. Together with another affine line in the other coordinate patch, this covers the exceptional $\mathbb{P}^1$ of the blowup $O_{\mathbb{P}^1}(2) \to \CC^2/\ZZ_2$. Here is an example with higher dimensional varieties involved:: sage: A3 = toric_varieties.A(3) sage: P3 = toric_varieties.P(3) sage: m = matrix([(2,0,0), (1,1,0), (3, 1, 0)]) sage: phi = A3.hom(m, P3) sage: phi.as_polynomial_map() Scheme morphism: From: 3-d affine toric variety To: 3-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined on coordinates by sending [z0 : z1 : z2] to [z0^2*z1*z2^3 : z1*z2 : 1 : 1] sage: phi.fiber_generic() Traceback (most recent call last): ... AttributeError: 'SchemeMorphism_fan_toric_variety' object has no attribute 'fiber_generic' Let's use factorization mentioned above:: sage: phi_i, phi_b, phi_s = phi.factor() It is possible to study fibers of the last two morphisms or their composition:: sage: phi_d = phi_b * phi_s sage: phi_d Scheme morphism: From: 3-d affine toric variety To: 2-d toric variety covered by 3 affine patches Defn: Defined by sending Rational polyhedral fan in 3-d lattice N to Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>. sage: phi_d.as_polynomial_map() Scheme morphism: From: 3-d affine toric variety To: 2-d toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [z0 : z1 : z2] to [z0^2*z1*z2^3 : z1*z2 : 1] sage: phi_d.codomain().fan().rays() N( 1, 0, 0), N( 0, 1, 0), N(-1, -1, 0) in Sublattice <N(1, 0, 0), N(0, 1, 0)> sage: for c in phi_d.codomain().fan(): ....: c.ambient_ray_indices() (1, 2) (0, 2) (0, 1) We see that codomain fan of this morphism is a projective plane, which can be verified by :: sage: phi_d.codomain().fan().is_isomorphic(toric_varieties.P2().fan()) # known bug True (Unfortunately it cannot be verified correctly until :trac:`16012` is fixed.) We now have access to fiber methods:: sage: fiber = phi_d.fiber_generic() sage: fiber (1-d affine toric variety, 2) sage: fiber[0].embedding_morphism() Scheme morphism: From: 1-d affine toric variety To: 3-d affine toric variety Defn: Defined by sending Rational polyhedral fan in Sublattice <N(1, 1, -1)> to Rational polyhedral fan in 3-d lattice N. sage: fiber[0].embedding_morphism().as_polynomial_map() Traceback (most recent call last): ... NotImplementedError: polynomial representations for fans with virtual rays are not implemented yet sage: fiber[0].fan().rays() Empty collection in Sublattice <N(1, 1, -1)> We see that generic fibers of this morphism consist of 2 one-dimensional tori each. To see what happens over boundary points we can look at fiber components corresponding to the cones of the domain fan:: sage: fm = phi_d.fan_morphism() sage: for c in flatten(phi_d.domain().fan().cones()): ....: fc, m = phi_d.fiber_component(c, multiplicity=True) ....: print("{} |-> {} ({} rays, multiplicity {}) over {}".format( ....: c.ambient_ray_indices(), fc, fc.fan().nrays(), ....: m, fm.image_cone(c).ambient_ray_indices())) () |-> 1-d affine toric variety (0 rays, multiplicity 2) over () (0,) |-> 1-d affine toric variety (0 rays, multiplicity 1) over (0,) (1,) |-> 2-d affine toric variety (2 rays, multiplicity 1) over (0, 1) (2,) |-> 2-d affine toric variety (2 rays, multiplicity 1) over (0, 1) (0, 1) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (0, 1) (1, 2) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (0, 1) (0, 2) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (0, 1) (0, 1, 2) |-> 0-d affine toric variety (0 rays, multiplicity 1) over (0, 1) Now we see that over one of the coordinate lines of the projective plane we also have one-dimensional tori (but only one in each fiber), while over one of the points fixed by torus action we have two affine planes intersecting along an affine line. An alternative perspective is provided by cones of the codomain fan:: sage: for c in flatten(phi_d.codomain().fan().cones()): ....: print("{} connected components over {}, each with {} irreducible components.".format( ....: fm.index(c), c.ambient_ray_indices(), ....: len(fm.primitive_preimage_cones(c)))) 2 connected components over (), each with 1 irreducible components. 1 connected components over (0,), each with 1 irreducible components. None connected components over (1,), each with 0 irreducible components. None connected components over (2,), each with 0 irreducible components. None connected components over (1, 2), each with 0 irreducible components. None connected components over (0, 2), each with 0 irreducible components. 1 connected components over (0, 1), each with 2 irreducible components. REFERENCES: .. [BB] Gavin Brown, Jaroslaw Buczynski: Maps of toric varieties in Cox coordinates, http://arxiv.org/abs/1004.4924 """ #***************************************************************************** # Copyright (C) 2011 Volker Braun <[email protected]> # Copyright (C) 2010 Andrey Novoseltsev <[email protected]> # Copyright (C) 2006 William Stein <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function from six import iteritems # For now, the scheme morphism base class cannot derive from Morphism # since this would clash with elliptic curves. So we derive only on # the toric varieties level from Morphism. See # https://groups.google.com/d/msg/sage-devel/qF4yU6Vdmao/wQlNrneSmWAJ from sage.categories.morphism import Morphism from sage.structure.richcmp import richcmp_not_equal, richcmp from sage.structure.sequence import Sequence from sage.rings.all import ZZ from sage.arith.all import gcd from sage.misc.all import cached_method from sage.matrix.constructor import matrix, identity_matrix from sage.modules.free_module_element import vector from sage.geometry.all import Cone, Fan from sage.schemes.generic.scheme import is_Scheme from sage.schemes.generic.morphism import ( is_SchemeMorphism, SchemeMorphism, SchemeMorphism_point, SchemeMorphism_polynomial ) ############################################################################ # A points on a toric variety determined by homogeneous coordinates. class SchemeMorphism_point_toric_field(SchemeMorphism_point, Morphism): """ A point of a toric variety determined by homogeneous coordinates in a field. .. WARNING:: You should not create objects of this class directly. Use the :meth:`~sage.schemes.generic.scheme.hom` method of :class:`toric varieties <sage.schemes.toric.variety.ToricVariety_field>` instead. INPUT: - ``X`` -- toric variety or subscheme of a toric variety. - ``coordinates`` -- list of coordinates in the base field of ``X``. - ``check`` -- if ``True`` (default), the input will be checked for correctness. OUTPUT: A :class:`SchemeMorphism_point_toric_field`. TESTS:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1xP1(1,2,3,4) [1 : 2 : 3 : 4] """ # Mimicking affine/projective classes def __init__(self, X, coordinates, check=True): r""" See :class:`SchemeMorphism_point_toric_field` for documentation. TESTS:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1xP1(1,2,3,4) [1 : 2 : 3 : 4] """ # Convert scheme to its set of points over the base ring if is_Scheme(X): X = X(X.base_ring()) super(SchemeMorphism_point_toric_field, self).__init__(X) if check: # Verify that there are the right number of coords # Why is it not done in the parent? if is_SchemeMorphism(coordinates): coordinates = list(coordinates) if not isinstance(coordinates, (list, tuple)): raise TypeError("coordinates must be a scheme point, list, " "or tuple. Got %s" % coordinates) d = X.codomain().ambient_space().ngens() if len(coordinates) != d: raise ValueError("there must be %d coordinates! Got only %d: " "%s" % (d, len(coordinates), coordinates)) # Make sure the coordinates all lie in the appropriate ring coordinates = Sequence(coordinates, X.value_ring()) # Verify that the point satisfies the equations of X. X.codomain()._check_satisfies_equations(coordinates) self._coords = coordinates ############################################################################ # A morphism of toric varieties determined by homogeneous polynomials. class SchemeMorphism_polynomial_toric_variety(SchemeMorphism_polynomial, Morphism): """ A morphism determined by homogeneous polynomials. .. WARNING:: You should not create objects of this class directly. Use the :meth:`~sage.schemes.generic.scheme.hom` method of :class:`toric varieties <sage.schemes.toric.variety.ToricVariety_field>` instead. INPUT: Same as for :class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial`. OUTPUT: A :class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial_toric_variety`. TESTS:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1xP1.inject_variables() Defining s, t, x, y sage: P1 = P1xP1.subscheme(s-t) sage: H = P1xP1.Hom(P1) sage: import sage.schemes.toric.morphism as MOR sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [s, s, x, y]) Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: Closed subscheme of 2-d CPR-Fano toric variety covered by 4 affine patches defined by: s - t Defn: Defined on coordinates by sending [s : t : x : y] to [s : s : x : y] """ def __init__(self, parent, polynomials, check=True): r""" See :class:`SchemeMorphism_polynomial_toric_variety` for documentation. TESTS:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1xP1.inject_variables() Defining s, t, x, y sage: P1 = P1xP1.subscheme(s-t) sage: H = P1xP1.Hom(P1) sage: import sage.schemes.toric.morphism as MOR sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [s, s, x, y]) Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: Closed subscheme of 2-d CPR-Fano toric variety covered by 4 affine patches defined by: s - t Defn: Defined on coordinates by sending [s : t : x : y] to [s : s : x : y] """ SchemeMorphism_polynomial.__init__(self, parent, polynomials, check) if check: # Check that defining polynomials are homogeneous (degrees can be # different if the target uses weighted coordinates) for p in self.defining_polynomials(): if not self.domain().ambient_space().is_homogeneous(p): raise ValueError("%s is not homogeneous!" % p) def as_fan_morphism(self): """ Express the morphism as a map defined by a fan morphism. OUTPUT: A :class:`SchemeMorphism_polynomial_toric_variety`. Raises a ``TypeError`` if the morphism cannot be written in such a way. EXAMPLES:: sage: A1.<z> = toric_varieties.A1() sage: P1 = toric_varieties.P1() sage: patch = A1.hom([1,z], P1) sage: patch.as_fan_morphism() Traceback (most recent call last): ... NotImplementedError: expressing toric morphisms as fan morphisms is not implemented yet! """ raise NotImplementedError("expressing toric morphisms as fan " "morphisms is not implemented yet!") ############################################################################ # The embedding morphism of an orbit closure class SchemeMorphism_orbit_closure_toric_variety(SchemeMorphism, Morphism): """ The embedding of an orbit closure. INPUT: - ``parent`` -- the parent homset. - ``defining_cone`` -- the defining cone. - ``ray_map`` -- a dictionary ``{ambient ray generator: orbit ray generator}``. Note that the image of the ambient ray generator is not necessarily primitive. .. WARNING:: You should not create objects of this class directly. Use the :meth:`~sage.schemes.toric.variety.ToricVariety_field.orbit_closure` method of :class:`toric varieties <sage.schemes.toric.variety.ToricVariety_field>` instead. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: H = P1xP1.fan(1)[0] sage: V = P1xP1.orbit_closure(H) sage: V.embedding_morphism() Scheme morphism: From: 1-d toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined by embedding the torus closure associated to the 1-d cone of Rational polyhedral fan in 2-d lattice N. TESTS:: sage: V.embedding_morphism()._reverse_ray_map() {N(-1): 3, N(1): 2} sage: V.embedding_morphism()._defining_cone 1-d cone of Rational polyhedral fan in 2-d lattice N """ def __init__(self, parent, defining_cone, ray_map): """ The Python constructor. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: P1 = P2.orbit_closure(P2.fan(1)[0]) sage: P1.embedding_morphism() Scheme morphism: From: 1-d toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined by embedding the torus closure associated to the 1-d cone of Rational polyhedral fan in 2-d lattice N. """ SchemeMorphism.__init__(self, parent) self._defining_cone = defining_cone self._ray_map = ray_map def defining_cone(self): r""" Return the cone corresponding to the torus orbit. OUTPUT: A cone of the fan of the ambient toric variety. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: cone = P2.fan(1)[0] sage: P1 = P2.orbit_closure(cone) sage: P1.embedding_morphism().defining_cone() 1-d cone of Rational polyhedral fan in 2-d lattice N sage: _ is cone True """ return self._defining_cone @cached_method def _reverse_ray_map(self): """ Reverse ``self._ray_map``. OUTPUT: Return a dictionary `{orbit ray generator : preimage ray index}`. Note that the orbit ray generator need not be primitive. Also, the preimage ray is not necessarily unique. EXAMPLES:: sage: P2_112 = toric_varieties.P2_112() sage: P1 = P2_112.orbit_closure(Cone([(1,0)])) sage: f = P1.embedding_morphism() sage: f._ray_map {N(-1, -2): (-2), N(0, 1): (1), N(1, 0): (0)} sage: f._reverse_ray_map() {N(-2): 2, N(1): 1} """ orbit = self.parent().domain() codomain_fan = self.parent().codomain().fan() reverse_ray_dict = dict() for n1, n2 in iteritems(self._ray_map): ray_index = codomain_fan.rays().index(n1) if n2.is_zero(): assert ray_index in self._defining_cone.ambient_ray_indices() continue n2 = orbit.fan().lattice()(n2) n2.set_immutable() reverse_ray_dict[n2] = ray_index return reverse_ray_dict def _repr_defn(self): """ Return a string representation of the definition of ``self``. OUTPUT: String. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: V = P2.orbit_closure(P2.fan(1)[0]); V 1-d toric variety covered by 2 affine patches sage: V.embedding_morphism()._repr_defn() 'Defined by embedding the torus closure associated to the 1-d cone of Rational polyhedral fan in 2-d lattice N.' """ s = 'Defined by embedding the torus closure associated to the ' s += str(self._defining_cone) s += '.' return s def as_polynomial_map(self): """ Express the morphism via homogeneous polynomials. OUTPUT: A :class:`SchemeMorphism_polynomial_toric_variety`. Raises a ``TypeError`` if the morphism cannot be written in terms of homogeneous polynomials. The defining polynomials are not necessarily unique. There are choices if multiple ambient space ray generators project to the same orbit ray generator, and one such choice is made implicitly. The orbit embedding can be written as a polynomial map if and only if each primitive orbit ray generator is the image of at least one primitive ray generator of the ambient toric variety. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: V = P2.orbit_closure(P2.fan(1)[0]); V 1-d toric variety covered by 2 affine patches sage: V.embedding_morphism().as_polynomial_map() Scheme morphism: From: 1-d toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [z0 : z1] to [0 : z1 : z0] If the toric variety is singular, then some orbit closure embeddings cannot be written with homogeneous polynomials:: sage: P2_112 = toric_varieties.P2_112() sage: P1 = P2_112.orbit_closure(Cone([(1,0)])) sage: P1.embedding_morphism().as_polynomial_map() Traceback (most recent call last): ... TypeError: The embedding cannot be written with homogeneous polynomials. """ orbit = self.domain() codomain_fan = self.codomain().fan() R = orbit.coordinate_ring() polys = [ R.one() ] * codomain_fan.nrays() for i in self._defining_cone.ambient_ray_indices(): polys[i] = R.zero() ray_index_map = self._reverse_ray_map() for i, ray in enumerate(orbit.fan().rays()): try: ray_index = ray_index_map[ray] except KeyError: raise TypeError('The embedding cannot be written with homogeneous polynomials.') polys[ray_index] = R.gen(i) return SchemeMorphism_polynomial_toric_variety(self.parent(), polys) def pullback_divisor(self, divisor): r""" Pull back a toric divisor. INPUT: - ``divisor`` -- a torus-invariant QQ-Cartier divisor on the codomain of the embedding map. OUTPUT: A divisor on the domain of the embedding map (the orbit closure) that is isomorphic to the pull-back divisor `f^*(D)` but with possibly different linearization. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: P1 = P2.orbit_closure(P2.fan(1)[0]) sage: f = P1.embedding_morphism() sage: D = P2.divisor([1,2,3]); D V(x) + 2*V(y) + 3*V(z) sage: f.pullback_divisor(D) 4*V(z0) + 2*V(z1) """ from sage.schemes.toric.divisor import is_ToricDivisor if not (is_ToricDivisor(divisor) and divisor.is_QQ_Cartier()): raise ValueError('The divisor must be torus-invariant and QQ-Cartier.') m = divisor.m(self._defining_cone) values = [] codomain_rays = self.codomain().fan().rays() for ray in self.domain().fan().rays(): ray = codomain_rays[self._reverse_ray_map()[ray]] value = divisor.function_value(ray) - m*ray values.append(value) return self.domain().divisor(values) ############################################################################ # A morphism of toric varieties determined by a fan morphism class SchemeMorphism_fan_toric_variety(SchemeMorphism, Morphism): """ Construct a morphism determined by a fan morphism .. WARNING:: You should not create objects of this class directly. Use the :meth:`~sage.schemes.generic.scheme.hom` method of :class:`toric varieties <sage.schemes.toric.variety.ToricVariety_field>` instead. INPUT: - ``parent`` -- Hom-set whose domain and codomain are toric varieties. - ``fan_morphism`` -- A morphism of fans whose domain and codomain fans equal the fans of the domain and codomain in the ``parent`` Hom-set. - ``check`` -- boolean (optional, default:``True``). Whether to check the input for consistency. .. WARNING:: A fibration is a dominant morphism; if you are interested in these then you have to make sure that your fan morphism is dominant. For example, this can be achieved by :meth:`factoring the morphism <sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety.factor>`. See :class:`SchemeMorphism_fan_toric_variety_dominant` for additional functionality for fibrations. OUTPUT: A :class:`~sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety`. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: f = P1.hom(matrix([[1,0]]), P1xP1); f Scheme morphism: From: 1-d CPR-Fano toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined by sending Rational polyhedral fan in 1-d lattice N to Rational polyhedral fan in 2-d lattice N. sage: type(f) <class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety'> Slightly more explicit construction:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: hom_set = P1xP1.Hom(P1) sage: fm = FanMorphism( matrix(ZZ,[[1],[0]]), P1xP1.fan(), P1.fan() ) sage: hom_set(fm) Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: 1-d CPR-Fano toric variety covered by 2 affine patches Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N. sage: P1xP1.hom(fm, P1) Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: 1-d CPR-Fano toric variety covered by 2 affine patches Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N. """ def __init__(self, parent, fan_morphism, check=True): r""" See :class:`SchemeMorphism_polynomial_toric_variety` for documentation. TESTS:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: hom_set = P1xP1.Hom(P1) sage: fan_morphism = FanMorphism( matrix(ZZ,[[1],[0]]), P1xP1.fan(), P1.fan() ) sage: from sage.schemes.toric.morphism import SchemeMorphism_fan_toric_variety sage: SchemeMorphism_fan_toric_variety(hom_set, fan_morphism) Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: 1-d CPR-Fano toric variety covered by 2 affine patches Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N. """ SchemeMorphism.__init__(self, parent) if check and self.domain().fan()!=fan_morphism.domain_fan(): raise ValueError('The fan morphism domain must be the fan of the domain.') if check and self.codomain().fan()!=fan_morphism.codomain_fan(): raise ValueError('The fan morphism codomain must be the fan of the codomain.') self._fan_morphism = fan_morphism def _richcmp_(self, right, op): r""" Compare ``self`` and ``right``. INPUT: - ``right`` -- another toric morphism OUTPUT: - boolean Comparison is done first by domain, then by codomain, then by fan morphism. TESTS:: sage: A2 = toric_varieties.A2() sage: P3 = toric_varieties.P(3) sage: m = matrix([(2,0,0), (1,1,0)]) sage: phi = A2.hom(m, P3) sage: phi == phi True sage: phi == prod(phi.factor()) True sage: phi == phi.factor()[0] False """ if not isinstance(right, SchemeMorphism_fan_toric_variety): return NotImplemented lx = self.domain() rx = right.domain() if lx != rx: return richcmp_not_equal(lx, rx, op) lx = self.codomain() rx = right.codomain() if lx != rx: return richcmp_not_equal(lx, rx, op) return richcmp(self.fan_morphism(), right.fan_morphism(), op) def _composition_(self, right, homset): """ Return the composition of ``self`` and ``right``. INPUT: - ``right`` -- a toric morphism defined by a fan morphism. OUTPUT: - a toric morphism. EXAMPLES:: sage: A2 = toric_varieties.A2() sage: P3 = toric_varieties.P(3) sage: m = matrix([(2,0,0), (1,1,0)]) sage: phi = A2.hom(m, P3) sage: phi1, phi2, phi3 = phi.factor() sage: phi1 * phi2 Scheme morphism: From: 2-d affine toric variety To: 3-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined by sending Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)> to Rational polyhedral fan in 3-d lattice N. sage: phi1 * phi2 * phi3 == phi True """ f = self.fan_morphism() * right.fan_morphism() return homset(f, self.codomain()) def _repr_defn(self): """ Return a string representation of the definition of ``self``. OUTPUT: String. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: f = P1xP1.hom(matrix([[1],[0]]), P1) sage: f._repr_defn() 'Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N.' """ s = 'Defined by sending ' s += str(self.domain().fan()) s += ' to ' s += str(self.codomain().fan()) s += '.' return s def factor(self): r""" Factor ``self`` into injective * birational * surjective morphisms. OUTPUT: - a triple of toric morphisms `(\phi_i, \phi_b, \phi_s)`, such that `\phi_s` is surjective, `\phi_b` is birational, `\phi_i` is injective, and ``self`` is equal to `\phi_i \circ \phi_b \circ \phi_s`. The intermediate varieties are universal in the following sense. Let ``self`` map `X` to `X'` and let `X_s`, `X_i` sit in between, that is, .. MATH:: X \twoheadrightarrow X_s \to X_i \hookrightarrow X'. Then any toric morphism from `X` coinciding with ``self`` on the maximal torus factors through `X_s` and any toric morphism into `X'` coinciding with ``self`` on the maximal torus factors through `X_i`. In particular, `X_i` is the closure of the image of ``self`` in `X'`. See :meth:`~sage.geometry.fan_morphism.FanMorphism.factor` for a description of the toric algorithm. EXAMPLES: We map an affine plane into a projective 3-space in such a way, that it becomes "a double cover of a chart of the blow up of one of the coordinate planes":: sage: A2 = toric_varieties.A2() sage: P3 = toric_varieties.P(3) sage: m = matrix([(2,0,0), (1,1,0)]) sage: phi = A2.hom(m, P3) sage: phi.as_polynomial_map() Scheme morphism: From: 2-d affine toric variety To: 3-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined on coordinates by sending [x : y] to [x^2*y : y : 1 : 1] sage: phi.is_surjective(), phi.is_birational(), phi.is_injective() (False, False, False) sage: phi_i, phi_b, phi_s = phi.factor() sage: phi_s.is_surjective(), phi_b.is_birational(), phi_i.is_injective() (True, True, True) sage: prod(phi.factor()) == phi True Double cover (surjective):: sage: phi_s.as_polynomial_map() Scheme morphism: From: 2-d affine toric variety To: 2-d affine toric variety Defn: Defined on coordinates by sending [x : y] to [x^2 : y] Blowup chart (birational):: sage: phi_b.as_polynomial_map() Scheme morphism: From: 2-d affine toric variety To: 2-d toric variety covered by 3 affine patches Defn: Defined on coordinates by sending [z0 : z1] to [z0*z1 : z1 : 1] Coordinate plane inclusion (injective):: sage: phi_i.as_polynomial_map() Scheme morphism: From: 2-d toric variety covered by 3 affine patches To: 3-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined on coordinates by sending [z0 : z1 : z2] to [z0 : z1 : z2 : z2] """ phi_i, phi_b, phi_s = self.fan_morphism().factor() from sage.schemes.toric.all import ToricVariety X = self.domain() X_s = ToricVariety(phi_s.codomain_fan()) X_i = ToricVariety(phi_i.domain_fan()) X_prime = self.codomain() return X_i.hom(phi_i, X_prime), X_s.hom(phi_b, X_i), X.hom(phi_s, X_s) def fan_morphism(self): """ Return the defining fan morphism. OUTPUT: A :class:`~sage.geometry.fan_morphism.FanMorphism`. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: f = P1xP1.hom(matrix([[1],[0]]), P1) sage: f.fan_morphism() Fan morphism defined by the matrix [1] [0] Domain fan: Rational polyhedral fan in 2-d lattice N Codomain fan: Rational polyhedral fan in 1-d lattice N """ return self._fan_morphism def as_polynomial_map(self): """ Express the morphism via homogeneous polynomials. OUTPUT: A :class:`SchemeMorphism_polynomial_toric_variety`. Raises a ``TypeError`` if the morphism cannot be written in terms of homogeneous polynomials. EXAMPLES:: sage: A1 = toric_varieties.A1() sage: square = A1.hom(matrix([[2]]), A1) sage: square.as_polynomial_map() Scheme endomorphism of 1-d affine toric variety Defn: Defined on coordinates by sending [z] to [z^2] sage: P1 = toric_varieties.P1() sage: patch = A1.hom(matrix([[1]]), P1) sage: patch.as_polynomial_map() Scheme morphism: From: 1-d affine toric variety To: 1-d CPR-Fano toric variety covered by 2 affine patches Defn: Defined on coordinates by sending [z] to [z : 1] """ R = self.domain().coordinate_ring() phi = self.fan_morphism() polys = [R.one()] * self.codomain().ngens() for rho, x in zip(phi.domain_fan(1), R.gens()): ray = rho.ray(0) sigma = phi.image_cone(rho) degrees = sigma.rays().matrix().solve_left(phi(ray)) for i, d in zip(sigma.ambient_ray_indices(), degrees): try: d = ZZ(d) except TypeError: raise TypeError('The fan morphism cannot be written in ' 'homogeneous polynomials.') polys[i] *= x**d if phi.domain_fan().virtual_rays(): raise NotImplementedError("polynomial representations for fans " "with virtual rays are not implemented yet") return SchemeMorphism_polynomial_toric_variety(self.parent(), polys) def is_bundle(self): r""" Check if ``self`` is a bundle. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_bundle` for fan morphisms for details. OUTPUT: - ``True`` if ``self`` is a bundle, ``False`` otherwise. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: P1xP1.hom(matrix([[1],[0]]), P1).is_bundle() True """ return self.fan_morphism().is_bundle() def is_fibration(self): r""" Check if ``self`` is a fibration. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_fibration` for fan morphisms for details. OUTPUT: - ``True`` if ``self`` is a fibration, ``False`` otherwise. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: P1xP1.hom(matrix([[1],[0]]), P1).is_fibration() True """ return self.fan_morphism().is_fibration() def is_injective(self): r""" Check if ``self`` is injective. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_injective` for fan morphisms for a description of the toric algorithm. OUTPUT: Boolean. Whether ``self`` is injective. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: P1xP1.hom(matrix([[1],[0]]), P1).is_injective() False sage: X = toric_varieties.A(2) sage: m = identity_matrix(2) sage: f = X.hom(m, X) sage: f.is_injective() True sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])])) sage: f = Y.hom(m, X) sage: f.is_injective() False """ return self.fan_morphism().is_injective() def is_surjective(self): r""" Check if ``self`` is surjective. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_surjective` for fan morphisms for a description of the toric algorithm. OUTPUT: Boolean. Whether ``self`` is surjective. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: P1xP1.hom(matrix([[1],[0]]), P1).is_surjective() True sage: X = toric_varieties.A(2) sage: m = identity_matrix(2) sage: f = X.hom(m, X) sage: f.is_surjective() True sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])])) sage: f = Y.hom(m, X) sage: f.is_surjective() False """ return self.fan_morphism().is_surjective() def is_birational(self): r""" Check if ``self`` is birational. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_birational` for fan morphisms for a description of the toric algorithm. OUTPUT: Boolean. Whether ``self`` is birational. EXAMPLES:: sage: dP8 = toric_varieties.dP8() sage: P2 = toric_varieties.P2() sage: dP8.hom(identity_matrix(2), P2).is_birational() True sage: X = toric_varieties.A(2) sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])])) sage: m = identity_matrix(2) sage: f = Y.hom(m, X) sage: f.is_birational() True """ return self.fan_morphism().is_birational() def is_dominant(self): r""" Return whether ``self`` is dominant. See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_dominant` for fan morphisms for a description of the toric algorithm. OUTPUT: Boolean. Whether ``self`` is a dominant scheme morphism. EXAMPLES:: sage: P1 = toric_varieties.P1() sage: A1 = toric_varieties.A1() sage: phi = A1.hom(identity_matrix(1), P1); phi Scheme morphism: From: 1-d affine toric variety To: 1-d CPR-Fano toric variety covered by 2 affine patches Defn: Defined by sending Rational polyhedral fan in 1-d lattice N to Rational polyhedral fan in 1-d lattice N. sage: phi.is_dominant() True sage: phi.is_surjective() False """ return self.fan_morphism().is_dominant() def pullback_divisor(self, divisor): r""" Pull back a toric divisor. INPUT: - ``divisor`` -- a torus-invariant QQ-Cartier divisor on the codomain of ``self``. OUTPUT: The pull-back divisor `f^*(D)`. EXAMPLES:: sage: A2_Z2 = toric_varieties.A2_Z2() sage: A2 = toric_varieties.A2() sage: f = A2.hom( matrix([[1,0],[1,2]]), A2_Z2) sage: f.pullback_divisor(A2_Z2.divisor(0)) V(x) sage: A1 = toric_varieties.A1() sage: square = A1.hom(matrix([[2]]), A1) sage: D = A1.divisor(0); D V(z) sage: square.pullback_divisor(D) 2*V(z) """ from sage.schemes.toric.divisor import is_ToricDivisor if not (is_ToricDivisor(divisor) and divisor.is_QQ_Cartier()): raise ValueError('The divisor must be torus-invariant and QQ-Cartier.') fm = self.fan_morphism() values = [] for ray in self.domain().fan().rays(): value = divisor.function_value(fm(ray)) values.append(value) return self.domain().divisor(values) ############################################################################ # A morphism of toric varieties determined by a dominant fan morphism class SchemeMorphism_fan_toric_variety_dominant(SchemeMorphism_fan_toric_variety): """ Construct a morphism determined by a dominant fan morphism. A dominant morphism is one that is surjective onto a dense subset. In the context of toric morphisms, this means that it is onto the big torus orbit. .. WARNING:: You should not create objects of this class directly. Use the :meth:`~sage.schemes.generic.scheme.hom` method of :class:`toric varieties <sage.schemes.toric.variety.ToricVariety_field>` instead. INPUT: See :class:`SchemeMorphism_fan_toric_variety`. The given fan morphism :meth:`must be dominant <sage.geometry.fan_morphism.FanMorphism.is_dominant>`. OUTPUT: A :class:`~sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant`. EXAMPLES:: sage: P2 = toric_varieties.P2() sage: dP8 = toric_varieties.dP8() sage: f = dP8.hom(identity_matrix(2), P2); f Scheme morphism: From: 2-d CPR-Fano toric variety covered by 4 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 2-d lattice N. sage: type(f) <class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant'> """ @cached_method def fiber_generic(self): """ Return the generic fiber. OUTPUT: - a tuple `(X, n)`, where `X` is a :class:`toric variety <sage.schemes.toric.variety.ToricVariety_field>` with the embedding morphism into domain of ``self`` and `n` is an integer. The fiber over the base point with homogeneous coordinates `[1:1:\cdots:1]` consists of `n` disjoint toric varieties isomorphic to `X`. Note that fibers of a dominant toric morphism are isomorphic over all points of a fixed torus orbit of its codomain, in particular over all points of the maximal torus, so it makes sense to talk about "the generic" fiber. The embedding of `X` is a toric morphism with the :meth:`~sage.geometry.fan_morphism.FanMorphism.domain_fan` being the :meth:`~sage.geometry.fan_morphism.FanMorphism.kernel_fan` of the defining fan morphism. By contrast, embeddings of fiber components over lower-dimensional torus orbits of the image are not toric morphisms. Use :meth:`fiber_component` for the latter (non-generic) fibers. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: fiber = P1xP1.hom(matrix([[1],[0]]), P1).fiber_generic() sage: fiber (1-d toric variety covered by 2 affine patches, 1) sage: f = fiber[0].embedding_morphism(); f Scheme morphism: From: 1-d toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined by sending Rational polyhedral fan in Sublattice <N(0, 1)> to Rational polyhedral fan in 2-d lattice N. sage: f.as_polynomial_map() Scheme morphism: From: 1-d toric variety covered by 2 affine patches To: 2-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined on coordinates by sending [z0 : z1] to [1 : 1 : z0 : z1] sage: A1 = toric_varieties.A1() sage: fan = Fan([(0,1,2)], [(1,1,0),(1,0,1),(1,-1,-1)]) sage: fan = fan.subdivide(new_rays=[(1,0,0)]) sage: f = ToricVariety(fan).hom(matrix([[1],[0],[0]]), A1) sage: f.fiber_generic() (2-d affine toric variety, 1) sage: _[0].fan().generating_cones() (0-d cone of Rational polyhedral fan in Sublattice <N(0, 1, 0), N(0, 0, 1)>,) """ from sage.schemes.toric.variety import ToricVariety fm = self.fan_morphism() X = ToricVariety(fm.kernel_fan()) m = X.fan().lattice().echelonized_basis_matrix() N = fm.domain() # May be a sublattice as well m *= N.basis_matrix().solve_right(identity_matrix(N.dimension())) X._embedding_morphism = X.hom(m, self.domain()) return X, fm.index() def fiber_component(self, domain_cone, multiplicity=False): r""" Return a fiber component corresponding to ``domain_cone``. INPUT: - ``domain_cone`` -- a cone of the domain fan of ``self``. - ``multiplicity`` (default: ``False``) -- whether to return the number of fiber components corresponding to ``domain_cone`` as well. OUTPUT: - either `X` or a tuple `(X, n)`, where `X` is a :class:`toric variety <sage.schemes.toric.variety.ToricVariety_field>` with the embedding morphism into domain of ``self`` and `n` is an integer. Let `\phi: \Sigma \to \Sigma'` be the :class:`fan morphism <sage.geometry.fan_morphism.FanMorphism>` corresponding to ``self``. Let `\sigma \in \Sigma` and `\sigma' \in \Sigma'` be the :meth:`~sage.geometry.fan_morphism.FanMorphism.image_cone` of `\sigma`. The fiber over any point of the torus orbit corresponding to `\sigma'` consists of `n` isomorphic connected components with each component being a union of toric varieties intersecting along their torus invariant subvarieties. The latter correspond to :meth:`~sage.geometry.fan_morphism.FanMorphism.preimage_cones` of `\sigma'` and `X` is one of the `n` components corresponding to `\sigma`. The irreducible components correspond to :meth:`~sage.geometry.fan_morphism.FanMorphism.primitive_preimage_cones`. EXAMPLES:: sage: polytope = LatticePolytope( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope) sage: P2 = toric_varieties.P2() sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]]) sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: primitive_cones = fibration.fan_morphism().primitive_preimage_cones(P2.fan(1)[0]) sage: primitive_cone = primitive_cones[0] sage: fibration.fiber_component(primitive_cone) 2-d toric variety covered by 4 affine patches sage: fibration.fiber_component(primitive_cone, True) (2-d toric variety covered by 4 affine patches, 1) sage: for primitive_cone in primitive_cones: ....: print(fibration.fiber_component(primitive_cone)) 2-d toric variety covered by 4 affine patches 2-d toric variety covered by 3 affine patches 2-d toric variety covered by 3 affine patches """ domain_cone = self.domain().fan().embed(domain_cone) if domain_cone.is_trivial(): if multiplicity: return self.fiber_generic() else: return self.fiber_generic()[0] embedding = SchemeMorphism_fan_fiber_component_toric_variety(self, domain_cone) if multiplicity: return embedding.domain(), \ self.fan_morphism().index(embedding.base_cone()) else: return embedding.domain() @cached_method def fiber_dimension(self, codomain_cone): r""" Return the dimension of the fiber over a particular torus orbit in the base. INPUT: - ``codomain_cone`` -- a cone `\sigma` of the codomain, specifying a torus orbit `O(\sigma)`. OUTPUT: An integer. The dimension of the fiber over the torus orbit corresponding to ``codomain_cone``. If the fiber is the empty set, ``-1`` is returned. Note that all fibers over this torus orbit are isomorphic, and therefore have the same dimension. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: f = P1xP1.hom(matrix([[1],[0]]), P1) sage: f.fiber_dimension(P1.fan(0)[0]) 1 sage: f.fiber_dimension(P1.fan(1)[0]) 1 sage: f.fiber_dimension(P1.fan(1)[1]) 1 Here is a more complicated example that is not a flat fibration:: sage: A2_Z2 = toric_varieties.A2_Z2() sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)]) sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2) sage: blowup.fiber_dimension(A2_Z2.fan(0)[0]) 0 sage: blowup.fiber_dimension(A2_Z2.fan(1)[0]) 0 sage: blowup.fiber_dimension(A2_Z2.fan(2)[0]) 1 This corresponds to the three different fibers:: sage: blowup.fiber_generic() (0-d affine toric variety, 1) sage: blowup.fiber_component(Cone([(1,0)])) 0-d affine toric variety sage: blowup.fiber_component(Cone([(1,1)])) 1-d toric variety covered by 2 affine patches """ dim = [] fm = self.fan_morphism() base_dim = codomain_cone.dim() for c in fm.primitive_preimage_cones(codomain_cone): dim.append(base_dim - c.dim()) if dim: return max(dim) + self.domain().dimension() - self.codomain().dimension() else: return ZZ(-1) def fiber_graph(self, codomain_cone): r""" Return the fiber over a given torus orbit in the codomain. INPUT: - ``codomain_cone`` -- a cone `\sigma` of the codomain, specifying a torus orbit `O(\sigma)`. OUTPUT: A graph whose nodes are the irreducible components of a connected component of the fiber over a point of `O(\sigma)`. If two irreducible components intersect, the corresponding nodes of the graph are joined by an edge. Note that irreducible components do not have to be of the same dimension. .. SEEALSO:: :meth:`~SchemeMorphism_fan_toric_variety_dominant.fiber_component`. EXAMPLES:: sage: polytope = Polyhedron( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4)) sage: P2 = toric_varieties.P2() sage: proj34 = block_matrix(2,1,[zero_matrix(2,2), identity_matrix(2)]) sage: fm = FanMorphism(proj34, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: fibration.fiber_graph( P2.fan(0)[0] ) Graph on 1 vertex sage: for c1 in P2.fan(1): ....: fibration.fiber_graph(c1) Graph on 1 vertex Graph on 1 vertex Graph on 4 vertices sage: fibration.fiber_graph(P2.fan(1)[2]).get_vertices() {0: 2-d toric variety covered by 4 affine patches, 1: 2-d toric variety covered by 3 affine patches, 2: 2-d toric variety covered by 3 affine patches, 3: 2-d toric variety covered by 4 affine patches} sage: fibration Scheme morphism: From: 4-d toric variety covered by 18 affine patches To: 2-d CPR-Fano toric variety covered by 3 affine patches Defn: Defined by sending Rational polyhedral fan in 4-d lattice N to Rational polyhedral fan in 2-d lattice N. """ fm = self.fan_morphism() prim = fm.primitive_preimage_cones(codomain_cone) n = len(prim) def is_union_in_fan(self, c0, c1): indices = c0.ambient_ray_indices() + c1.ambient_ray_indices() try: fm.domain_fan().cone_containing(*indices) return True except ValueError: return False m = matrix(ZZ, n, n, lambda i,j:is_union_in_fan(self,prim[i], prim[j])) for i in range(n): m[i, i] = 0 from sage.graphs.graph import Graph graph = Graph(m, loops=False, multiedges=False) for i in range(n): graph.set_vertex(i, self.fiber_component(prim[i])) return graph ############################################################################ # The embedding morphism of a fiber component class SchemeMorphism_fan_fiber_component_toric_variety(SchemeMorphism): """ The embedding of a fiber component of a toric morphism. Note that the embedding map of a fiber component of a toric morphism is itself not a toric morphism! INPUT: - ``toric_morphism`` -- a toric morphism. The toric morphism whose fiber component we are describing. - ``defining_cone`` -- a cone of the fan of the domain of ``toric_morphism``. See :meth:`~SchemeMorphism_fan_toric_variety_dominant.fiber_component` for details. EXAMPLES:: sage: polytope = Polyhedron( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4)) sage: P2 = toric_varieties.P2() sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]]) sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: primitive_cones = fibration.fan_morphism().primitive_preimage_cones(P2.fan(1)[0]) sage: primitive_cone = primitive_cones[0] sage: fiber_component = fibration.fiber_component(primitive_cone) sage: fiber_component 2-d toric variety covered by 4 affine patches sage: fiber_component.embedding_morphism() Scheme morphism: From: 2-d toric variety covered by 4 affine patches To: 4-d toric variety covered by 23 affine patches Defn: Defined by embedding a fiber component corresponding to 1-d cone of Rational polyhedral fan in 4-d lattice N. sage: fiber_component.embedding_morphism().as_polynomial_map() Scheme morphism: From: 2-d toric variety covered by 4 affine patches To: 4-d toric variety covered by 23 affine patches Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to [1 : 1 : 1 : 1 : z1 : 0 : 1 : z0 : 1 : 1 : 1 : z2 : z3 : 1 : 1] sage: type(fiber_component.embedding_morphism()) <class 'sage.schemes.toric.morphism.SchemeMorphism_fan_fiber_component_toric_variety'> """ def __init__(self, toric_morphism, defining_cone): """ The Python constructor. TESTS:: sage: polytope = Polyhedron( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4)) sage: P2 = toric_varieties.P2() sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]]) sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: primitive_cone = Cone([(-1, 2, -1, 0)]) sage: fibration.fiber_component(primitive_cone).embedding_morphism() Scheme morphism: From: 2-d toric variety covered by 3 affine patches To: 4-d toric variety covered by 23 affine patches Defn: Defined by embedding a fiber component corresponding to 1-d cone of Rational polyhedral fan in 4-d lattice N. """ fm = toric_morphism.fan_morphism() self._fan_morphism = fm defining_cone = fm.domain_fan().embed(defining_cone) self._defining_cone = defining_cone self._base_cone = fm.image_cone(defining_cone) fc = self._make_fiber_component() fc._embedding_morphism = self parent = fc.Hom(toric_morphism.domain()) SchemeMorphism.__init__(self, parent) def _repr_defn(self): """ Return a string representation of the definition of ``self``. OUTPUT: String. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)])) sage: fc.embedding_morphism()._repr_defn() 'Defined by embedding a fiber component corresponding to 1-d cone of Rational polyhedral fan in 2-d lattice N.' """ return 'Defined by embedding a fiber component corresponding to {}.'.format(self.defining_cone()) def as_polynomial_map(self): """ Express the embedding morphism via homogeneous polynomials. OUTPUT: A :class:`SchemeMorphism_polynomial_toric_variety`. Raises a ``ValueError`` if the morphism cannot be written in terms of homogeneous polynomials. EXAMPLES:: sage: polytope = Polyhedron( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4)) sage: P2 = toric_varieties.P2() sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]]) sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: primitive_cone = Cone([(0, 1, 0, 0)]) sage: f = fibration.fiber_component(primitive_cone).embedding_morphism() sage: f.as_polynomial_map() Scheme morphism: From: 2-d toric variety covered by 4 affine patches To: 4-d toric variety covered by 23 affine patches Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to [1 : 1 : 1 : 1 : z1 : 0 : 1 : z0 : 1 : 1 : 1 : z2 : z3 : 1 : 1] sage: primitive_cone = Cone([(-1, 2, -1, 0)]) sage: f = fibration.fiber_component(primitive_cone).embedding_morphism() sage: f.as_polynomial_map() Traceback (most recent call last): ... ValueError: The morphism cannot be written using homogeneous polynomials. """ fc = self.domain() toric_variety = self.codomain() R = fc.coordinate_ring() polys = [R.one()] * toric_variety.fan().nrays() for i in self.defining_cone().ambient_ray_indices(): polys[i] = R.zero() for ray, x in zip(fc.fan().rays(), R.gens()): try: ray_index = self._ray_index_map[ray] except KeyError: raise ValueError('The morphism cannot be written using homogeneous polynomials.') polys[ray_index] = x return SchemeMorphism_polynomial_toric_variety(self.parent(), polys) def _make_fiber_component(self): """ Construct the fiber component as a toric variety. OUTPUT: The fiber component as a toric variety. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)])) sage: f = fc.embedding_morphism() sage: f._ray_index_map # indirect doctest {N(-1): 3, N(1): 2} TESTS:: sage: A2_Z2 = toric_varieties.A2_Z2() sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)]) sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2) sage: blowup.fiber_generic() (0-d affine toric variety, 1) sage: blowup.fiber_component(Cone([(1,0)])) 0-d affine toric variety sage: blowup.fiber_component(Cone([(1,1)])) 1-d toric variety covered by 2 affine patches sage: P1 = toric_varieties.P1() sage: f = P1.hom(matrix([2]), P1) sage: f.fiber_component(P1.fan(1)[0]) 0-d affine toric variety sage: f.fan_morphism().index(P1.fan(1)[0]) 1 sage: f.fiber_generic() (0-d affine toric variety, 2) """ fm = self._fan_morphism defining_cone = self._defining_cone base_cone = self._base_cone ker = fm.kernel().basis() m = fm.matrix() * base_cone.lattice().basis_matrix() base_cone_preimg = [m.solve_left(r) for r in base_cone.rays()] L = fm.domain_fan().lattice().span(ker+base_cone_preimg).saturation() cone_L = Cone([L.coordinates(r) for r in defining_cone.rays()]) L_quotient = cone_L.sublattice_quotient() def projection(ray): ray_L = L.coordinates(ray) return vector(ZZ, L_quotient(ray_L)) cones = [] star_rays = set() for cone in fm.relative_star_generators(defining_cone): star_rays.update(cone.rays()) projected_rays = [ projection(r) for r in cone.rays() ] cones.append(Cone(projected_rays)) fiber_fan = Fan(cones) ray_index_map = dict() for ray in star_rays: ray_index = fm.domain_fan().rays().index(ray) projected_ray = fiber_fan.lattice()(projection(ray)) if projected_ray.is_zero(): assert ray in defining_cone.rays() continue projected_ray.set_immutable() ray_index_map[projected_ray] = ray_index self._ray_index_map = ray_index_map from sage.schemes.toric.variety import ToricVariety return ToricVariety(fiber_fan) def defining_cone(self): r""" Return the cone corresponding to the fiber torus orbit. OUTPUT: A cone of the fan of the total space of the toric fibration. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)])) sage: f = fc.embedding_morphism() sage: f.defining_cone().rays() N(1, 0) in 2-d lattice N sage: f.base_cone().rays() N(1) in 1-d lattice N """ return self._defining_cone def base_cone(self): r""" Return the base cone `\sigma`. The fiber is constant over the base orbit closure `V(\sigma)`. OUTPUT: A cone of the base of the toric fibration. EXAMPLES:: sage: P1xP1 = toric_varieties.P1xP1() sage: P1 = toric_varieties.P1() sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)])) sage: f = fc.embedding_morphism() sage: f.defining_cone().rays() N(1, 0) in 2-d lattice N sage: f.base_cone().rays() N(1) in 1-d lattice N """ return self._base_cone def _image_ray_multiplicity(self, fiber_ray): """ Find the image ray of ``fiber_ray`` with multiplicity in the relative star. INPUT: A ray of the domain fan (the fiber component). OUTPUT: A pair ``(codomain ray index, multiplicity)`` EXAMPLES:: sage: polytope = Polyhedron( ....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0), ....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)]) sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4)) sage: P2 = toric_varieties.P2() sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]]) sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True) sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2) sage: primitive_cone = Cone([(-1, 2, -1, 0)]) sage: fc = fibration.fiber_component(primitive_cone) sage: f = fc.embedding_morphism() sage: for r in fc.fan().rays(): ....: print("{} {}".format(r, f._image_ray_multiplicity(r))) N(0, 1) (5, 1) N(1, -3) (9, 2) N(-1, 2) (11, 1) sage: f._ray_index_map {N(-3, 4): 10, N(-1, 2): 11, N(0, 1): 5, N(1, 0): 4, N(2, -6): 9} """ try: image_ray_index = self._ray_index_map[fiber_ray] return (image_ray_index, 1) except KeyError: pass multiplicity = None image_ray_index = None for ray, index in iteritems(self._ray_index_map): d = gcd(ray) if d * fiber_ray != ray: continue if multiplicity is not None and d>multiplicity: continue multiplicity = d image_ray_index = index return (image_ray_index, multiplicity) def pullback_divisor(self, divisor): r""" Pull back a toric divisor. INPUT: - ``divisor`` -- a torus-invariant QQ-Cartier divisor on the codomain of the embedding map. OUTPUT: A divisor on the domain of the embedding map (irreducible component of a fiber of a toric morphism) that is isomorphic to the pull-back divisor `f^*(D)` but with possibly different linearization. EXAMPLES:: sage: A1 = toric_varieties.A1() sage: fan = Fan([(0,1,2)], [(1,1,0),(1,0,1),(1,-1,-1)]).subdivide(new_rays=[(1,0,0)]) sage: f = ToricVariety(fan).hom(matrix([[1],[0],[0]]), A1) sage: D = f.domain().divisor([1,1,3,4]); D V(z0) + V(z1) + 3*V(z2) + 4*V(z3) sage: fc = f.fiber_component(Cone([(1,1,0)])) sage: fc.embedding_morphism().pullback_divisor(D) 3*V(z0) + 2*V(z2) sage: fc = f.fiber_component(Cone([(1,0,0)])) sage: fc.embedding_morphism().pullback_divisor(D) -3*V(z0) - 3*V(z1) - V(z2) """ from sage.schemes.toric.divisor import is_ToricDivisor if not (is_ToricDivisor(divisor) and divisor.is_QQ_Cartier()): raise ValueError('The divisor must be torus-invariant and QQ-Cartier.') m = divisor.m(self.defining_cone()) values = [] codomain_rays = self.codomain().fan().rays() for ray in self.domain().fan().rays(): image_ray_index, multiplicity = self._image_ray_multiplicity(ray) image_ray = codomain_rays[image_ray_index] value = divisor.function_value(image_ray) - m*image_ray value /= multiplicity values.append(value) return self.domain().divisor(values)
the-stack_106_22394
#-------------------------------------------------------------------------------- # DESCRIPTION: # a. This example uses the Keithley DAQ6510 to perform temperature # scanning # b. For storing results to the cloud, we introduce the streaming # tools provided by Initial State # i. To install the Python driver for the streaming tools # open a command prompt or terminal # ii. Issue the following command: # aa. On Win10: pip install ISStreamer # bb. On Linux: sudo pip install ISStreamer # or sudo pip3 install ISStreamer #-------------------------------------------------------------------------------- import socket import struct import math import time import Keithley_DMM6500_Sockets_Driver as kei from ISStreamer.Streamer import Streamer def writeToInitialState(ch101, ch110, ch115, ch120): streamer.log("CH101", ch101) streamer.log("CH110", ch110) streamer.log("CH115", ch115) streamer.log("CH120", ch120) return #===== MAIN PROGRAM STARTS HERE ===== ipAddress1 = "192.168.1.165" port = 5025 timeout = 20.0 myFile = "dmm_functions.tsp" bucketName = time.strftime("DAQ6510_Data_%Y-%m-%d_%H-%M-%S") myAccessKey = "YOUR_ACCESS_KEY_GOES_HERE" streamer = Streamer(bucket_name=bucketName, access_key=myAccessKey) DAQ6510 = kei.DMM6500() myID = DAQ6510.Connect(ipAddress1, 5025, 20000, 1, 1) DAQ6510.echoCmd = 0 scanCount = 360 * 40 # setting up for a 40-hour scan scanInterval = 10.0 # for this setup, limit to no less than 5s intervals print(myID) t1 = time.time() DAQ6510.LoadScriptFile(myFile) DAQ6510.SendCmd("do_beep(1.0, 3500)") DAQ6510.Reset() DAQ6510.SetFunction_Temperature("101,110,115,120", DAQ6510.Transducer.TC, DAQ6510.TCType.K) DAQ6510.SetScan_BasicAttributes("101,110,115,120", scanCount, scanInterval) DAQ6510.Init() startIndex = 1 endIndex = 4 chanCnt = 4 targetCnt = scanCount * 4 loopCnt = 1 accumCnt = DAQ6510.QueryCmd("print(defbuffer1.n)", 8) while(endIndex < (targetCnt+1)): myData = DAQ6510.GetScan_Data(chanCnt, startIndex, endIndex) print("Scan {}: {}".format(loopCnt, myData)) myDataList = myData.split(",") writeToInitialState(float(myDataList[0]), float(myDataList[1]), float(myDataList[2]), float(myDataList[3])) startIndex += chanCnt endIndex += chanCnt loopCnt += 1 time.sleep(1.0) streamer.close() DAQ6510.Disconnect() t2 = time.time() # Notify the user of completion and the test time achieved. print("done") print("{0:.6f} s".format(t2-t1)) input("Press Enter to continue...") exit() exit()
the-stack_106_22395
################################################################################ # Copyright (c) 2020-2021, Berkeley Design Technology, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ################################################################################ from datetime import datetime, timezone from typing import Dict, List, Optional, Union from app.db.schema import StatisticsModel from sqlalchemy.exc import IntegrityError from sqlalchemy.orm import Session from sqlalchemy.orm.exc import NoResultFound def create_statistic( db_session: Session, statistic_information: Dict = {} ) -> Union[StatisticsModel, IntegrityError]: """ Register new statistic entry. Arguments: db_session {Session} -- Database session. statistic_information {Dict} -- New statistic information. Returns: Union[StatisticsModel, IntegrityError] -- Statistic instance that was added to the database or an exception in case a statistic already exists. """ try: statistic = StatisticsModel(**statistic_information) db_session.add(statistic) db_session.commit() db_session.refresh(statistic) return statistic except IntegrityError: db_session.rollback() raise def get_statistic( db_session: Session, device_id: str, datetime: datetime ) -> Union[StatisticsModel, NoResultFound]: """ Get a specific statistic. Arguments: db_session {Session} -- Database session. device_id {str} -- Jetson id which sent the information. datetime {datetime} -- Datetime when the device registered the information. Returns: Union[StatisticsModel, NoResultFound] -- Statistic instance defined by device_id and datetime or an exception in case there's no matching statistic. """ try: return get_statistic_by_id_and_datetime(db_session, device_id, datetime) except NoResultFound: raise def get_statistics( db_session: Session, device_id: Optional[str] = None ) -> List[StatisticsModel]: """ Get all statistics. Arguments: db_session {Session} -- Database session. device_id {Optional[str]} -- Device id. Returns: List[StatisticsModel] -- All statistic instances present in the database or all statistics from a specific device. """ if device_id: # Get all statistics from a specific device query = db_session.query(StatisticsModel) return query.filter(StatisticsModel.device_id == device_id).all() else: # Get all statistics from form the database return db_session.query(StatisticsModel).all() def get_statistics_from_to( db_session: Session, device_id: str, from_date: Optional[str] = None, to_date: Optional[str] = None, ) -> List[StatisticsModel]: """ Get all statistics within a datetime range. Arguments: db_session {Session} -- Database session. device_id {str} -- Device id. from_date {Optional[str]} -- Beginning of datetime range. to_date {Optional[str]} -- End of datetime range. Returns: List[StatisticsModel] -- All statistic instances present in the database within a given datetime range. """ query = db_session.query(StatisticsModel) query = query.filter(StatisticsModel.device_id == device_id) if to_date is None: # By default, show information until the current day to_date = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%S") if from_date: return query.filter( StatisticsModel.datetime.between(from_date, to_date) ).all() return query.filter(StatisticsModel.datetime <= to_date).all() def update_statistic( db_session: Session, device_id: str, datetime: datetime, new_statistic_information: Dict = {}, ) -> Union[StatisticsModel, NoResultFound]: """ Modify a specific statistic. Arguments: db_session {Session} -- Database session. device_id {str} -- Jetson id which sent the information. datetime {datetime} -- Datetime when the device registered the information. new_statistic_information {Dict} -- New statistic information. Returns: Union[StatisticsModel, NoResultFound] -- Updated statistic instance defined by device_id and datetime or an exception in case there's no matching statistic. """ try: try: # Remove device id as it can't be modified del new_statistic_information["device_id"] except KeyError: pass try: # Remove datetime as it can't be modified del new_statistic_information["datetime"] except KeyError: pass statistic = get_statistic_by_id_and_datetime( db_session, device_id, datetime ) for key, value in new_statistic_information.items(): if hasattr(statistic, key): setattr(statistic, key, value) db_session.commit() return statistic except NoResultFound: raise def delete_statistic( db_session: Session, device_id: str, datetime: datetime ) -> Union[StatisticsModel, NoResultFound]: """ Delete a specific statistic. Arguments: db_session {Session} -- Database session. device_id {str} -- Jetson id which sent the information. datetime {datetime} -- Datetime when the device registered the information. Returns: Union[StatisticsModel, NoResultFound] -- Statistic instance that was deleted or an exception in case there's no matching statistic. """ try: statistic = get_statistic_by_id_and_datetime( db_session, device_id, datetime ) db_session.delete(statistic) db_session.commit() return statistic except NoResultFound: raise def get_statistic_by_id_and_datetime( db_session: Session, device_id: str, datetime: datetime ) -> Union[StatisticsModel, NoResultFound]: """ Get a statistic using the table's primary keys. Arguments: db_session {Session} -- Database session. device_id {str} -- Jetson id which sent the information. datetime {datetime} -- Datetime when the device registered the information. Returns: Union[StatisticsModel, NoResultFound] -- Statistic instance defined by device_id and datetime or an exception in case there's no matching statistic. """ statistic = db_session.query(StatisticsModel).get((device_id, datetime)) if not statistic: raise NoResultFound() return statistic
the-stack_106_22396
import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = 'default' root_dir = None data = [] utterance_ids = [ [19, 198, '000000', '000000'], [26, 495, '000004', '000000'], ] original_text = 'this is the original text.' normalized_text = 'this is the normalized text.' @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() base_dir = os.path.join(cls.root_dir, 'LibriTTS', 'train-clean-100') for i, utterance_id in enumerate(cls.utterance_ids): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype='int16', seed=i) save_wav(path, data, 24000) cls.data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, 'w') as file_: file_.write(cls.original_text) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, 'w') as file_: file_.write(cls.normalized_text) def _test_libritts(self, dataset): n_ites = 0 for i, (waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id) in enumerate(dataset): expected_ids = self.utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self.original_text assert normalized_text == self.normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self.utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
the-stack_106_22398
import contextlib from subprocess import list2cmdline from rrmngmnt.executor import Executor import six class FakeFile(six.StringIO): def __init__(self, *args, **kwargs): six.StringIO.__init__(self, *args, **kwargs) self.data = None def __exit__(self, *args): self.close() def __enter__(self): return self def close(self): self.seek(0) self.data = self.read() six.StringIO.close(self) class ByteFakeFile(six.BytesIO): def __init__(self, buf=six.b('')): six.BytesIO.__init__(self, six.b(buf)) self.data = None def __exit__(self, *args): self.close() def __enter__(self): return self def close(self): self.seek(0) self.data = self.read().decode("utf-8", errors="replace") six.BytesIO.close(self) class FakeExecutor(Executor): cmd_to_data = None files_content = {} class Session(Executor.Session): def __init__(self, executor, timeout=None, use_pkey=False): super(FakeExecutor.Session, self).__init__(executor) self._timeout = timeout def open(self): pass def get_data(self, cmd): cmd = list2cmdline(cmd) try: return self._executor.cmd_to_data[cmd] except KeyError: raise Exception("There are no data for '%s'" % cmd) def get_file_data(self, name): try: data = self._executor.files_content[name] except KeyError: raise Exception("There is not such file %s" % name) if isinstance(data, FakeFile): data = data.data return data def command(self, cmd): return FakeExecutor.Command(cmd, self) def run_cmd(self, cmd, input_=None, timeout=None): cmd = self.command(cmd) return cmd.run(input_, timeout) def open_file(self, name, mode): try: data = self.get_file_data(name) except Exception: if mode[0] not in ('w', 'a'): raise else: data = '' if len(mode) == 2 and mode[1] == 'b': data = ByteFakeFile(data) else: data = FakeFile(data) if mode[0] == 'w': data.seek(0) self._executor.files_content[name] = data return data class Command(Executor.Command): def get_rc(self): return self._rc def run(self, input_, timeout=None): with self.execute() as (in_, out, err): if input_: in_.write(input_) self.out = out.read() self.err = err.read() return self.rc, self.out, self.err @contextlib.contextmanager def execute(self, bufsize=-1, timeout=None): rc, out, err = self._ss.get_data(self.cmd) yield six.StringIO(), six.StringIO(out), six.StringIO(err) self._rc = rc def __init__(self, user, address): super(FakeExecutor, self).__init__(user) self.address = address def session(self, timeout=None): return FakeExecutor.Session(self, timeout) def run_cmd(self, cmd, input_=None, tcp_timeout=None, io_timeout=None): with self.session(tcp_timeout) as session: return session.run_cmd(cmd, input_, io_timeout) if __name__ == "__main__": from rrmngmnt import RootUser u = RootUser('password') e = FakeExecutor(u) e.cmd_to_data = {'echo ahoj': (0, 'ahoj', '')} print(e.run_cmd(['echo', 'ahoj'])) with e.session() as ss: with ss.open_file('/tmp/a', 'w') as fh: fh.write("ahoj") print(e.files_content['/tmp/a'], e.files_content['/tmp/a'].data)
the-stack_106_22399
# module corpus.py # # Copyright (c) 2015 Rafael Reis # """ corpus module - Classes and functions to read and process corpus data. """ __version__="1.0" __author__ = "Rafael Reis <[email protected]>" import re def groupByFeed(c): feeds = [] p = c.next() lastIndex = p.index text = p.sentence.replace('\n', "") feed = Feed() feed.addPiece(p) while p: p = c.next() if p: if p.index != lastIndex: #print(text, '\n') feeds.append(feed) text = p.sentence.replace('\n', "") lastIndex = p.index feed = Feed([]) else: text += " " + p.sentence feed.addPiece(p) return feeds class CorpusAd: """ Class that represents a corpus in the AD format. In order to creat an object of this class, you must pass a fileName to the constructor. """ def __init__(self, fileName=None, speechVerbs=None): """ Receives a fileName as an argument. The fileName must be a valid corpus in the AD format. """ if not fileName: raise InvalidArgumentException('You must inform a valid fileName!') self.isFloresta = False if "Floresta" in fileName: self.isFloresta = True self.fileName = fileName with open(fileName, 'r') as f: self.raw = f.readlines() self.i = 0 # Index of the last line read. It'll be used in the "next" method. self.rawLen = len(self.raw) if speechVerbs: self.verbs = speechVerbs else: self.verbs = SpeechVerbs() def next(self): p = Piece() begin = self.goToSentenceBegin() #p.sentence = self.getSentenceDescription() if not begin: return None lastNode = Node() lastNode.child = [] while not self.isSentenceEnd(): if self.isSentenceDescription(): p.id, p.sentence = self.getSentenceDescription() elif self.isSource(): p.index = self.getPieceIndex() p.source = self.raw[self.i].replace('\n', ''); elif self.isValidLevel() or self.raw[self.i] == "\"\n" or self.raw[self.i] == ",\n": currLevel = self.getCurrentLevel() newNode = Node() newNode.child = [] newNode.level = currLevel newNode.line = self.i newNode.raw = self.raw[self.i] newNode.type, newNode.stype, newNode.txt = self.getInfo() newNode.pos = self.getPos(newNode.stype) speechVerb = self.getSpeechVerb(newNode.stype) newNode.speechVerb = speechVerb newNode.anterior = lastNode lastNode.posterior = newNode #print("########################") #print("# raw: ", newNode.raw) #print("# level: ", newNode.level) # Node traversing depends on if Corpus is Floresta or Bosque if self.isFloresta: if currLevel > lastNode.level and lastNode.level != 0: # Child from lastNode newNode.parent = lastNode #print("DEBUG 1") elif currLevel == lastNode.level: # Sibbling of lastNode newNode.parent = lastNode.parent newNode.previous = lastNode lastNode.next = newNode #print("DEBUG 2") elif currLevel == 0 or lastNode.level == 0: newNode.previous = lastNode lastNode.next = newNode #print("DEBUG 3") elif lastNode.parent: #print("DEBUG 4") newNode.parent = lastNode.parent while newNode.parent and newNode.parent.level >= newNode.level: if newNode.parent.parent: newNode.parent = newNode.parent.parent else: newNode.parent = None if newNode.parent: newNode.parent.child[-1].next = newNode newNode.previous = newNode.parent.child[-1] if newNode.parent: #print("# parent: ", newNode.parent.raw) newNode.parent.child.append(newNode) else: # Corpus is Bosque if currLevel > lastNode.level: # Child from lastNode newNode.parent = lastNode elif currLevel == lastNode.level: # Sibbling of lastNode newNode.parent = lastNode.parent newNode.previous = lastNode lastNode.next = newNode else: #currLevel < previousLevel newNode.parent = lastNode.parent while newNode.parent.level >= newNode.level: newNode.parent = newNode.parent.parent newNode.parent.child[-1].next = newNode newNode.previous = newNode.parent.child[-1] newNode.parent.child.append(newNode) lastNode = newNode p.nodes.append(newNode) if speechVerb: p.speechVerb = speechVerb p.speechNodes.append(newNode) #print('node: ' + str(newNode.line) + ' ' + newNode.txt + ' ' + str(len(newNode.child))) self.i += 1 return p def isSentenceBegin(self): #return self.raw[self.i] == "<s>\n" return re.match(r'^<s' , self.raw[self.i]) def isSentenceDescription(self): return re.match(r'^C[FP]\d+-\d+' , self.raw[self.i]) def goToSentenceBegin(self): while self.i < self.rawLen and not self.isSentenceBegin(): self.i += 1 if self.i >= self.rawLen: return None return 1 def getSentenceDescription(self): m = re.search(r'^(?P<ID>C[FP]\d+-\d+)\w*( )?(?P<SENT>.+)$', self.raw[self.i]) i = m.group('ID') s = m.group('SENT') return i, s def isSentenceEnd(self): return self.raw[self.i] == "</s>\n" def isValidLevel(self): return re.match(r'^=+' , self.raw[self.i]) def isSource(self): return re.match(r'^SOURCE:' , self.raw[self.i]) or re.match(r'^SOURCECETENFolha' , self.raw[self.i]) def getCurrentLevel(self): levels = re.findall('=', self.raw[self.i]) return len(levels) def getPieceIndex(self): m = re.search(r' n=(?P<INDEX>\d+) ', self.raw[self.i]) or re.search(r' id=(?P<INDEX>\d+) ', self.raw[self.i]) if not m: raise NameError('SOURCE: sem n=\d+ : ' + self.raw[self.i]) return int(m.group('INDEX')) def getInfo(self): info = re.sub(r'=+', "", self.raw[self.i]).replace("\n", "") if len(info) == 1 or info.find(":") == -1: return info, None, info else: #m = re.search(r'(?P<TYPE>.+):(?P<TAIL>.*)$', info) m = re.search(r'(?P<TYPE>(.+?)):(?P<TAIL>.*)$', info) txt = '' if info.find(")") > 0: n = re.search(r'\)([ \t]*)(?P<TEXT>[^ ]*)$', info) txt = n.group('TEXT').strip() return m.group('TYPE'), m.group('TAIL'), txt def getSpeechVerb(self, s): if s: v = None if ("v-fin" in s): m = re.search(r'.*v-fin\(\'(?P<VERB>(\w|-)+)\'', s) or re.search(r'.*v-fin\(\"(?P<VERB>(\w|-)+)\"', s) v = m.group('VERB') if v and v in self.verbs.all: return v return '' def getPos(self, tail): pos = '' if tail: m = re.search(r'(?P<POS>\w+)\(', tail) if m: if tail.find("<n>") > 0: pos = "N" elif tail.find("<adv>") > 0: pos = "ADV" else: pos = m.group('POS').upper() else: pos = tail return pos class SpeechVerbs: def __init__(self): self.verbs = self.loadSpeechVerbs() self.all = self.verbs[0] self.pattern1 = self.verbs[1] self.pattern2 = self.verbs[2] self.pattern3 = self.verbs[3] self.pattern4 = self.verbs[4] self.pattern5 = self.verbs[5] self.pattern6 = self.verbs[6] self.pattern7 = self.verbs[7] def loadSpeechVerbs(self): verbs = [[], [], [], [], [], [], [], []] s = set() i = 1 with open('verbos_dizer_ACDC.txt', 'r') as f: for line in f: if re.match(r'#(?P<INDEX>\d+)', line): m = re.search(r'#(?P<INDEX>\d+)\n', line) i = int(m.group('INDEX')) else: line = line.strip() s.add(line) verbs[i].append(line) verbs[0] = list(s) return verbs def __len__(self): return len(self.verbs) class Feed: def __init__(self, pieces=[]): self.pieces = pieces def addPiece(self, piece): self.pieces.append(piece) class Piece: def __init__(self): self.start = 0 self.end = 0 self.sentence = "" self.nodes = [] self.speechNodes = [] self.speechVerb = "" self.index = 0 self.id = "" self.indexSpeechVerb = 0 self.source = "" self.roots = [] class Node: def __init__(self, type=None, stype=None, child=[], parent=None, next=None, previous=None, line=None, level=0): self.type = type self.stype = stype self.child = child self.parent = parent self.next = next self.previous = previous self.line = line self.level = level self.txt = '' self.raw = '' self.posterior = None self.anterior = None self.quote = False self.author = False self.dep = '' self.nosubj = False self.pattern = '' def text(self): t = self.txt if t: t = ' ' + t for c in self.child: t += c.text() return t def markQuote(self): self.quote = True for c in self.child: c.markQuote() def markNosubj(self): self.nosubj = True for c in self.child: c.markNosubj() def markAuthor(self): self.author = True for c in self.child: c.markAuthor() def markDep(self, label): if self.dep == '': self.dep = label for c in self.child: c.markDep(label) def markPattern(self, label): self.pattern = label for c in self.child: c.markPattern(label) class InvalidArgumentException(Exception): pass
the-stack_106_22400
# Copyright 2014, Doug Wiegley, A10 Networks. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals from acos_client.v21 import base class BaseSSL(base.BaseV21): def get(self, name, **kwargs): return self._post(("slb.template.%s.search" % self.template_type), {'name': name}, **kwargs) def _set(self, action, name, cert_name, key_name, **kwargs): params = { "%s_template" % self.template_type: { "cert_name": cert_name, "key_name": key_name, "name": name } } self._post(action, params, **kwargs) def create(self, name, cert_name, key_name, **kwargs): self._set(("slb.template.%s.create" % self.template_type), name, cert_name, key_name, **kwargs) def update(self, name, cert_name, key_name, **kwargs): self._set(("slb.template.%s.update" % self.template_type), name, cert_name, key_name, **kwargs) def delete(self, name, **kwargs): self._post(("slb.template.%s.delete" % self.template_type), {"name": name}, **kwargs) class ClientSSL(BaseSSL): template_type = "client_ssl" class ServerSSL(BaseSSL): template_type = "server_ssl"
the-stack_106_22403
from abc import ABC, abstractmethod from color_palette import ColorPalette from functools import reduce from random import randint class DoomFire(ABC): def __init__(self, width, height, pixel_size = 4, decay_rate = 2, \ windforce = 1, fire_source_inc = (4, 6), \ fire_source_enabled = True, color_palette = ColorPalette()): self.width = width self.height = height self.pixel_size = pixel_size self.decay_rate = decay_rate self.windforce = windforce self.fire_source_inc = fire_source_inc self.color_palette = color_palette self.max_intensity = len(self.color_palette.get_colors()) - 1 self.pixels_array = [0] * self.width * self.height self.fire_source_enabled = fire_source_enabled if self.fire_source_enabled: self.create_fire_source() def create_fire_source(self): self.pixels_array[-self.width:] = [self.max_intensity] * self.width self.fire_source_enabled = True def destroy_fire_source(self): self.pixels_array[-self.width:] = [0] * self.width self.fire_source_enabled = False def has_fire_source(self): return self.fire_source_enabled def increase_fire_source(self): fire_source_row = self.pixels_array[-self.width:] for i, f in enumerate(fire_source_row): if f == self.max_intensity: continue inc = randint(self.fire_source_inc[0], self.fire_source_inc[1]) fire_source_row[i] += inc if f + inc <= self.max_intensity else \ self.max_intensity - f self.pixels_array[-self.width:] = fire_source_row fire_source_row_sum = reduce(lambda x, y: x + y, fire_source_row) if fire_source_row_sum > 0 and not self.fire_source_enabled: self.fire_source_enabled = True def decrease_fire_source(self): fire_source_row = self.pixels_array[-self.width:] for i, f in enumerate(fire_source_row): if f == 0: continue dec = randint(self.fire_source_inc[0], self.fire_source_inc[1]) fire_source_row[i] -= dec if f - dec >= 0 else f self.pixels_array[-self.width:] = fire_source_row fire_source_row_sum = reduce(lambda x, y: x + y, fire_source_row) if fire_source_row_sum == 0 and self.fire_source_enabled: self.fire_source_enabled = False def update(self): for j in range(self.width): for i in range(self.height - 1): current_pixel_index = i * self.width + j below_pixel_index = current_pixel_index + self.width below_pixel_intensity = self.pixels_array[below_pixel_index] decay = randint(0, self.decay_rate) new_pixel_intensity = 0 if below_pixel_intensity - decay > 0: new_pixel_intensity = below_pixel_intensity - decay wind_direction = randint(-self.windforce, self.windforce) # Checking if the wind direction exceeds the boundaries of # pixels array and if it does, reverse it if current_pixel_index + wind_direction >= \ len(self.pixels_array) or current_pixel_index + \ wind_direction < 0: wind_direction = -wind_direction pixel_neighbor_index = current_pixel_index + wind_direction self.pixels_array[pixel_neighbor_index] = new_pixel_intensity @abstractmethod def render(self): pass
the-stack_106_22406
""" Created on Feb 9, 2016 @author: Chris Smith """ from __future__ import division, print_function, absolute_import, unicode_literals import os from warnings import warn import numpy as np import h5py from skimage.measure import block_reduce from skimage.util import crop from sidpy.sid import Translator from sidpy.hdf.hdf_utils import write_simple_attrs from pyUSID.io.write_utils import Dimension, calc_chunks from pyUSID.io.hdf_utils import create_indexed_group, write_main_dataset from .image import read_image from .df_utils import dm4reader from .df_utils.dm_utils import parse_dm4_parms, read_dm3 class OneViewTranslator(Translator): """ Translate Pytchography data from a set of images to an HDF5 file """ def __init__(self, *args, **kwargs): super(OneViewTranslator, self).__init__(*args, **kwargs) self.rebin = False self.bin_factor = 1 self.h5_f = None self.binning_func = self.__no_bin self.bin_func = None self.h5_main = None self.root_image_list = list() self.crop_method = 'percent' self.crop_ammount = None self.image_list_tag = None def translate(self, h5_path, image_path, bin_factor=None, bin_func=np.mean, start_image=0, scan_size_x=None, scan_size_y=None, crop_ammount=None, crop_method='percent'): """ Basic method that adds Ptychography data to existing hdf5 thisfile You must have already done the basic translation with BEodfTranslator Parameters ---------------- h5_path : str Absolute path to where the HDF5 file should be located image_path : str Absolute path to folder holding the image files bin_factor : array_like of uint, optional Downsampling factor for each dimension. Default is None. bin_func : callable, optional Function which will be called to calculate the return value of each block. Function must implement an axis parameter, i.e. numpy.mean. Ignored if bin_factor is None. Default is numpy.mean. start_image : int, optional Integer denoting which image in the file path should be considered the starting point. Default is 0, start with the first image on the list. scan_size_x : int, optional Number of Ronchigrams in the x direction. Default is None, value will be determined from the number of images and `scan_size_y` if it is given. scan_size_y : int, optional Number of Ronchigrams in the y direction. Default is None, value will be determined from the number of images and `scan_size_x` if it is given. crop_ammount : uint or list of uints, optional How much should be cropped from the original image. Can be a single unsigned integer or a list of unsigned integers. A single integer will crop the same ammount from all edges. A list of two integers will crop the x-dimension by the first integer and the y-dimension by the second integer. A list of 4 integers will crop the image as [left, right, top, bottom]. crop_method : str, optional Which cropping method should be used. How much of the image is removed is determined by the value of `crop_ammount`. 'percent' - A percentage of the image is removed. 'absolute' - The specific number of pixel is removed. Returns ---------- h5_main : h5py.Dataset HDF5 Dataset object that contains the flattened images """ # Open the hdf5 file and delete any contents if os.path.exists(h5_path): os.remove(h5_path) h5_f = h5py.File(h5_path, 'w') self.h5_f = h5_f self.crop_method = crop_method self.crop_ammount = crop_ammount ''' Get the list of all files with the .tif extension and the number of files in the list ''' image_path = os.path.abspath(image_path) root_file_list, file_list = self._parse_file_path(image_path) size, image_parms = self._getimageparms(file_list[0]) usize, vsize = size self.image_list_tag = image_parms.pop('Image_Tag', None) tmp, _ = read_image(file_list[0]) if crop_ammount is not None: tmp = self.crop_ronc(tmp) usize, vsize = tmp.shape num_files = len(file_list) if scan_size_x is None and scan_size_y is None: scan_size_x = int(np.sqrt(num_files)) scan_size_y = int(num_files/scan_size_x) elif scan_size_x is None: scan_size_x = int(num_files/scan_size_y) elif scan_size_y is None: scan_size_y = int(num_files/scan_size_x) ''' Check if a bin_factor is given. Set up binning objects if it is. ''' if bin_factor is not None: self.rebin = True if isinstance(bin_factor, int): self.bin_factor = (bin_factor, bin_factor) elif len(bin_factor) == 2: self.bin_factor = tuple(bin_factor) else: raise ValueError('Input parameter `bin_factor` must be a length 2 array_like or an integer.\n' + '{} was given.'.format(bin_factor)) usize = int(usize / self.bin_factor[0]) vsize = int(vsize / self.bin_factor[1]) self.binning_func = block_reduce self.bin_func = bin_func num_files = scan_size_x * scan_size_y h5_main, h5_mean_spec, h5_ronch = self._setupH5(usize, vsize, np.float32, scan_size_x, scan_size_y, image_parms) for root_file in root_file_list: print('Saving the root image located at {}.'.format(root_file)) self._create_root_image(root_file) self._read_data(file_list[start_image:start_image + num_files], h5_main, h5_mean_spec, h5_ronch, image_path) self.h5_f.close() return def _create_root_image(self, image_path): """ Create the Groups and Datasets for a single root image Parameters ---------- image_path : str Path to the image file Returns ------- None """ image, image_parms = read_dm3(image_path) if image.ndim == 3: image = np.sum(image, axis=0) ''' Create the Measurement and Channel Groups to hold the image Datasets ''' meas_grp = create_indexed_group(self.h5_f, 'Measurement') chan_grp = create_indexed_group(meas_grp, 'Channel') ''' Set the Measurement Group attributes ''' usize, vsize = image.shape image_parms['image_size_u'] = usize image_parms['image_size_v'] = vsize image_parms['translator'] = 'OneView' image_parms['num_pixels'] = image.size write_simple_attrs(meas_grp, image_parms) ''' Build Spectroscopic and Position dimensions ''' spec_desc = Dimension('Image', 'a.u.', [1]) pos_desc = [Dimension('X', 'pixel', np.arange(image.shape[0])), Dimension('Y', 'pixel', np.arange(image.shape[1]))] h5_image = write_main_dataset(chan_grp, np.reshape(image, (-1, 1)), 'Raw_Data', 'Intensity', 'a.u.', pos_desc, spec_desc) self.root_image_list.append(h5_image) def _read_data(self, file_list, h5_main, h5_mean_spec, h5_ronch, image_path): """ Iterates over the images in `file_list`, reading each image and downsampling if reqeusted, and writes the flattened image to file. Also builds the Mean_Ronchigram and the Spectroscopic_Mean datasets at the same time. Parameters ---------- file_list : list of str List of all files in `image_path` that will be read h5_main : h5py.Dataset Dataset which will hold the Ronchigrams h5_mean_spec : h5py.Dataset Dataset which will hold the Spectroscopic Mean h5_ronch : h5py.Dataset Dataset which will hold the Mean Ronchigram image_path : str Absolute file path to the directory which hold the images Returns ------- None """ mean_ronch = np.zeros(h5_ronch.shape, dtype=np.float32) num_files = len(file_list) for ifile, thisfile in enumerate(file_list): selected = (ifile + 1) % int(round(num_files / 16)) == 0 if selected: print('Processing file...{}% - reading: {}'.format(round(100 * ifile / num_files), thisfile)) image, _ = read_image(os.path.join(image_path, thisfile), get_parms=False, header=self.image_list_tag) # image, _ = read_image(os.path.join(image_path, thisfile), get_parms=False) image = self.crop_ronc(image) image = self.binning_func(image, self.bin_factor, self.bin_func) image = image.flatten() h5_main[ifile, :] = image h5_mean_spec[ifile] = np.mean(image) mean_ronch += image self.h5_f.flush() h5_ronch[:] = mean_ronch / num_files self.h5_f.flush() def crop_ronc(self, ronc): """ Crop the input Ronchigram by the specified ammount using the specified method. Parameters ---------- ronc : numpy.array Input image to be cropped. Returns ------- cropped_ronc : numpy.array Cropped image """ if self.crop_ammount is None: return ronc crop_ammount = self.crop_ammount crop_method = self.crop_method if crop_method == 'percent': crop_ammount = np.round(np.atleast_2d(crop_ammount)/100.0*ronc.shape) crop_ammount = tuple([tuple(row) for row in crop_ammount.astype(np.uint32)]) elif crop_method == 'absolute': if isinstance(crop_ammount, int): pass elif len(crop_ammount) == 2: crop_ammount = ((crop_ammount[0],), (crop_ammount[1],)) elif len(crop_ammount) == 4: crop_ammount = ((crop_ammount[0], crop_ammount[1]), (crop_ammount[2], crop_ammount[3])) else: raise ValueError('The crop_ammount should be an integer or list of 2 or 4 integers.') else: raise ValueError('Allowed values of crop_method are percent and absolute.') cropped_ronc = crop(ronc, crop_ammount) if any([dim == 0 for dim in cropped_ronc.shape]): warn("Requested crop ammount is greater than the image size. No cropping will be done.") return ronc return cropped_ronc @staticmethod def downSampRoncVec(ronch_vec, binning_factor): """ Downsample the image by taking the mean over nearby values Parameters ---------- ronch_vec : ndarray Image data binning_factor : int factor to reduce the size of the image by Returns ------- ronc_mat3_mean : ndarray Flattened downsampled image """ ccd_pix = int(np.sqrt(ronch_vec.size)) ronc_mat = ronch_vec.reshape(ccd_pix, ccd_pix) ronc_mat2 = ronc_mat.reshape(ccd_pix, ccd_pix / binning_factor, binning_factor) ronc_mat2_mean = ronc_mat2.mean(2) # take the mean along the 3rd dimension ronc_mat3 = ronc_mat2_mean.reshape(ccd_pix / binning_factor, binning_factor, -1) ronc_mat3_mean = ronc_mat3.mean(1) return ronc_mat3_mean.reshape(-1) @staticmethod def _parse_file_path(image_folder): """ Returns a list of all files in the directory given by path Parameters --------------- path : string / unicode absolute path to directory containing files Returns ---------- file_list : list of strings names of all files in directory located at path """ file_list = list() root_file_list = list() allowed_image_types = ['.dm3', '.dm4', '.jpg', '.png', '.tif', '.tiff', '.jpeg', '.bmp'] for root, dirs, files in os.walk(image_folder): for thisfile in files: _, ext = os.path.splitext(thisfile) if ext not in allowed_image_types: continue if root == image_folder: root_file_list.append(os.path.join(image_folder, thisfile)) else: file_list.append(os.path.join(root, thisfile)) return root_file_list, file_list @staticmethod def _getimageparms(image): """ Returns the x and y size of the image in pixels Parameters ------------ image : string / unicode absolute path to the dm4 file Returns ----------- size : unsigned integer x and y dimenstions of image parms : dict Image parameters from the dm4 file """ dm4_file = dm4reader.DM4File.open(image) tags = dm4_file.read_directory() parms = parse_dm4_parms(dm4_file, tags, '') u_size = parms['Root_ImageList_SubDir_000_ImageData_Dimensions_Tag_000'] v_size = parms['Root_ImageList_SubDir_000_ImageData_Dimensions_Tag_001'] size = u_size, v_size return size, parms def _setupH5(self, usize, vsize, data_type, scan_size_x, scan_size_y, image_parms): """ Setup the HDF5 file in which to store the data including creating the Position and Spectroscopic datasets Parameters ---------- usize : int Number of pixel columns in the images vsize : int Number of pixel rows in the images data_type : type Data type to save image as scan_size_x : int Number of images in the x dimension scan_size_y : int Number of images in the y dimension image_parms : dict Dictionary of parameters Returns ------- h5_main : h5py.Dataset HDF5 Dataset that the images will be written into h5_mean_spec : h5py.Dataset HDF5 Dataset that the mean over all positions will be written into h5_ronch : h5py.Dataset HDF5 Dateset that the mean over all Spectroscopic steps will be written into """ num_pixels = usize * vsize num_files = scan_size_x * scan_size_y root_parms = dict() root_parms['data_type'] = 'PtychographyData' main_parms = {'num_images': num_files, 'image_size_u': usize, 'image_size_v': vsize, 'num_pixels': num_pixels, 'translator': 'Ptychography', 'scan_size_x': scan_size_x, 'scan_size_y': scan_size_y} main_parms.update(image_parms) # Create the hdf5 data Group write_simple_attrs(self.h5_f, root_parms) meas_grp = create_indexed_group(self.h5_f, 'Measurement') write_simple_attrs(meas_grp, main_parms) chan_grp = create_indexed_group(meas_grp, 'Channel') # Build the Position and Spectroscopic Datasets spec_desc = [Dimension('U', 'pixel', np.arange(usize)), Dimension('V', 'pixel', np.arange(vsize))] pos_desc = [Dimension('X', 'pixel', np.arange(scan_size_x)), Dimension('Y', 'pixel', np.arange(scan_size_y))] ds_chunking = calc_chunks([num_files, num_pixels], data_type(0).itemsize, unit_chunks=(1, num_pixels)) # Allocate space for Main_Data and Pixel averaged Data h5_main = write_main_dataset(chan_grp, (num_files, num_pixels), 'Raw_Data', 'Intensity', 'a.u.', pos_desc, spec_desc, chunks=ds_chunking, dtype=data_type) h5_ronch= chan_grp.create_dataset('Mean_Ronchigram', shape=[num_pixels], dtype=np.float32) h5_mean_spec = chan_grp.create_dataset('Spectroscopic_Mean', shape=[num_files], dtype=np.float32) self.h5_f.flush() return h5_main, h5_mean_spec, h5_ronch @staticmethod def __no_bin(image, *args, **kwargs): """ Does absolutely nothing to the image. Exists so that we can have a bin function to call whether we actually rebin the image or not. Parameters ---------- image : ndarray Image args: Argument list kwargs: Keyword argument list Returns ------- image : ndarray The input image """ return image
the-stack_106_22407
import requests from bs4 import BeautifulSoup from .classes import work from .utility import file_management, parse_paths from .classes import author from .utility import pdf_generation """ ACADEMIA.EDU WEB SCRAPER and AUTOMATIC (Basic) PDF CV GENERATOR A PYTHON-A-THON 2016 PROJECT by ZACHARY CACERES www.python-a-thon.com """ def get_user(): url = input("Please paste the URL of the Academia.edu page: ") return url.strip() def query_website(url): r = requests.get('{0}'.format(url)) return r.text def convert_html_to_soup(site_text): html = site_text soup = BeautifulSoup(html, 'html.parser') return soup def extract_prof_data(html_results_file, soup): name = None affiliation = None interests = None portrait_url = None bio = None # Get Professor Name prof_name = soup.select(parse_paths.PROF_NAME_PATH) for p in prof_name: name = p.text #Get Affiliations affiliations = soup.select(parse_paths.PROF_AFFILIATION_PATH) for aff in affiliations: affiliation = aff.text #Get Research Interests research_interests = soup.select(parse_paths.PROF_RESEARCH_INTERESTS_PATH) for interest in research_interests: interests = interest.text # Get Url to Portrait portrait = soup.select(parse_paths.PROF_PORTRAIT_PATH) for p in portrait: if p.has_attr('src'): portrait_url = p['src'] print("PORTRAIT: {0}".format(portrait_url)) # Get Biography biography = soup.select(parse_paths.PROF_BIO_PATH) for b in biography: bio = b.text # Makes a new Author object make_author(html_results_file, name, affiliation, interests, portrait_url, bio) return name def extract_work_data(soup): # Lists to assemble top ten works on Academia.edu total_titles = [] total_abstracts = [] total_download_urls = [] # Get Total Works total_works = soup.select(parse_paths.WORKS_PATH) print("–––––– AUTHOR HAS {0} TOTAL WORKS ––––––––".format(len(total_works))) for work in total_works: # Get Titles title = work.select(parse_paths.TITLES_PATH) for t in title: # Number of titles determines number of works on the author's page total_titles.append(t.text) # Get Abstracts abstract = work.select(parse_paths.ABSTRACT_UNTRUNCATED_PATH) """ Looks through list of elements at work abstracts and download_urls path in parse_paths module. If element is found, append text to total_abstracts and total_download_urls list if not, append None type so that lists are created with proper number of elements. """ if len(abstract) == 0: total_abstracts.append(None) else: for a in abstract: total_abstracts.append(a.text) # Get Download URLS download_urls = work.select(parse_paths.DOWNLOAD_URL_PATH) if len(download_urls) == 0: total_download_urls.append(None) else: for link in download_urls: if link.has_attr('href'): total_download_urls.append(link['href']) else: total_download_urls.append(None) print("WARNING: Link was found but has NO HREF!") print("––––– AUTHOR OVERVIEW –––––––") print("Total Titles is: {0}".format(len(total_titles))) print("Total Abstracts length is: {0}".format(len(total_abstracts))) print("Total Download URLs is: {0}".format(len(total_download_urls))) generate_work_lists(total_titles, total_abstracts, total_download_urls) def generate_work_lists (total_titles, total_abstracts, total_download_urls): counter = 0 for t in total_titles: print("Making work at index {0} with title {1}".format(counter, t)) temp_abs = total_abstracts[counter] temp_download = total_download_urls[counter] make_work(t, temp_abs, temp_download) counter += 1 def make_author(html_results_file, name, affiliation, interests, portrait_url, bio): prof = author.Author(name, affiliation, interests, portrait_url, bio) # Construct new author object file_management.add_prof_data_to_text_file(html_results_file, prof) def make_work(title, abstract, download_url): new_work.append(work.Work(title, abstract, download_url)) print("NEW WORK is {0}".format(len(new_work))) new_work = [] def process_input_to_request_pdf(url): if not url: url = get_user() cv = process_pdf_request(url) return cv else: cv = process_pdf_request(url) return cv def process_pdf_request(url): html_results_file = file_management.create_text_file() site_text = query_website(url) soup = convert_html_to_soup(site_text) prof_name = extract_prof_data(html_results_file, soup) extract_work_data(soup) file_management.add_work_data_to_text_file(html_results_file, new_work) html_results_file.close() # File must be closed for PDFKit to print to file correctly final_cv = pdf_generation.generate_pdf(prof_name) return final_cv if __name__ == '__main__': process_input_to_request_pdf()
the-stack_106_22408
import os import tensorflow as tf class LogSaver: def __init__(self, logs_path, model_name, dateset_name, mode): if not os.path.isdir(logs_path): os.makedirs(logs_path) self.train_writer = tf.summary.create_file_writer( '{}/{}/{}/{}/train/'.format(logs_path, dateset_name, model_name, mode)) self.valid_writer = tf.summary.create_file_writer( '{}/{}/{}/{}/valid/'.format(logs_path, dateset_name, model_name, mode)) def log_train(self, loss, acc, bce, global_step): with self.train_writer.as_default(): tf.summary.scalar('loss', loss, step=global_step) tf.summary.scalar('acc', acc, step=global_step) tf.summary.scalar('entropy', bce, step=global_step) def log_valid(self, acc, bce, global_step): with self.valid_writer.as_default(): tf.summary.scalar('acc', acc, step=global_step) tf.summary.scalar('entropy', bce, step=global_step)
the-stack_106_22411
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import atexit import concurrent.futures import json import logging import threading import traceback from collections import OrderedDict from contextlib import contextmanager from types import MappingProxyType, TracebackType from typing import ( Any, Callable, Iterator, MutableSequence, Optional, Sequence, Tuple, Type, Union, ) from opentelemetry import context as context_api from opentelemetry import trace as trace_api from opentelemetry.sdk import util from opentelemetry.sdk.resources import Resource from opentelemetry.sdk.trace import sampling from opentelemetry.sdk.util import BoundedDict, BoundedList from opentelemetry.sdk.util.instrumentation import InstrumentationInfo from opentelemetry.trace import SpanContext from opentelemetry.trace.propagation import SPAN_KEY from opentelemetry.trace.status import ( EXCEPTION_STATUS_FIELD, Status, StatusCanonicalCode, ) from opentelemetry.util import time_ns, types logger = logging.getLogger(__name__) MAX_NUM_ATTRIBUTES = 1000 MAX_NUM_EVENTS = 1000 MAX_NUM_LINKS = 1000 VALID_ATTR_VALUE_TYPES = (bool, str, int, float) class SpanProcessor: """Interface which allows hooks for SDK's `Span` start and end method invocations. Span processors can be registered directly using :func:`TracerProvider.add_span_processor` and they are invoked in the same order as they were registered. """ def on_start( self, span: "Span", parent_context: Optional[context_api.Context] = None, ) -> None: """Called when a :class:`opentelemetry.trace.Span` is started. This method is called synchronously on the thread that starts the span, therefore it should not block or throw an exception. Args: span: The :class:`opentelemetry.trace.Span` that just started. parent_context: The parent context of the span that just started. """ def on_end(self, span: "Span") -> None: """Called when a :class:`opentelemetry.trace.Span` is ended. This method is called synchronously on the thread that ends the span, therefore it should not block or throw an exception. Args: span: The :class:`opentelemetry.trace.Span` that just ended. """ def shutdown(self) -> None: """Called when a :class:`opentelemetry.sdk.trace.Tracer` is shutdown. """ def force_flush(self, timeout_millis: int = 30000) -> bool: """Export all ended spans to the configured Exporter that have not yet been exported. Args: timeout_millis: The maximum amount of time to wait for spans to be exported. Returns: False if the timeout is exceeded, True otherwise. """ class SynchronousMultiSpanProcessor(SpanProcessor): """Implementation of class:`SpanProcessor` that forwards all received events to a list of span processors sequentially. The underlying span processors are called in sequential order as they were added. """ def __init__(self): # use a tuple to avoid race conditions when adding a new span and # iterating through it on "on_start" and "on_end". self._span_processors = () # type: Tuple[SpanProcessor, ...] self._lock = threading.Lock() def add_span_processor(self, span_processor: SpanProcessor) -> None: """Adds a SpanProcessor to the list handled by this instance.""" with self._lock: self._span_processors = self._span_processors + (span_processor,) def on_start( self, span: "Span", parent_context: Optional[context_api.Context] = None, ) -> None: for sp in self._span_processors: sp.on_start(span, parent_context=parent_context) def on_end(self, span: "Span") -> None: for sp in self._span_processors: sp.on_end(span) def shutdown(self) -> None: """Sequentially shuts down all underlying span processors. """ for sp in self._span_processors: sp.shutdown() def force_flush(self, timeout_millis: int = 30000) -> bool: """Sequentially calls force_flush on all underlying :class:`SpanProcessor` Args: timeout_millis: The maximum amount of time over all span processors to wait for spans to be exported. In case the first n span processors exceeded the timeout followup span processors will be skipped. Returns: True if all span processors flushed their spans within the given timeout, False otherwise. """ deadline_ns = time_ns() + timeout_millis * 1000000 for sp in self._span_processors: current_time_ns = time_ns() if current_time_ns >= deadline_ns: return False if not sp.force_flush((deadline_ns - current_time_ns) // 1000000): return False return True class ConcurrentMultiSpanProcessor(SpanProcessor): """Implementation of :class:`SpanProcessor` that forwards all received events to a list of span processors in parallel. Calls to the underlying span processors are forwarded in parallel by submitting them to a thread pool executor and waiting until each span processor finished its work. Args: num_threads: The number of threads managed by the thread pool executor and thus defining how many span processors can work in parallel. """ def __init__(self, num_threads: int = 2): # use a tuple to avoid race conditions when adding a new span and # iterating through it on "on_start" and "on_end". self._span_processors = () # type: Tuple[SpanProcessor, ...] self._lock = threading.Lock() self._executor = concurrent.futures.ThreadPoolExecutor( max_workers=num_threads ) def add_span_processor(self, span_processor: SpanProcessor) -> None: """Adds a SpanProcessor to the list handled by this instance.""" with self._lock: self._span_processors = self._span_processors + (span_processor,) def _submit_and_await( self, func: Callable[[SpanProcessor], Callable[..., None]], *args: Any, **kwargs: Any ): futures = [] for sp in self._span_processors: future = self._executor.submit(func(sp), *args, **kwargs) futures.append(future) for future in futures: future.result() def on_start( self, span: "Span", parent_context: Optional[context_api.Context] = None, ) -> None: self._submit_and_await( lambda sp: sp.on_start, span, parent_context=parent_context ) def on_end(self, span: "Span") -> None: self._submit_and_await(lambda sp: sp.on_end, span) def shutdown(self) -> None: """Shuts down all underlying span processors in parallel.""" self._submit_and_await(lambda sp: sp.shutdown) def force_flush(self, timeout_millis: int = 30000) -> bool: """Calls force_flush on all underlying span processors in parallel. Args: timeout_millis: The maximum amount of time to wait for spans to be exported. Returns: True if all span processors flushed their spans within the given timeout, False otherwise. """ futures = [] for sp in self._span_processors: # type: SpanProcessor future = self._executor.submit(sp.force_flush, timeout_millis) futures.append(future) timeout_sec = timeout_millis / 1e3 done_futures, not_done_futures = concurrent.futures.wait( futures, timeout_sec ) if not_done_futures: return False for future in done_futures: if not future.result(): return False return True class EventBase(abc.ABC): def __init__(self, name: str, timestamp: Optional[int] = None) -> None: self._name = name if timestamp is None: self._timestamp = time_ns() else: self._timestamp = timestamp @property def name(self) -> str: return self._name @property def timestamp(self) -> int: return self._timestamp @property @abc.abstractmethod def attributes(self) -> types.Attributes: pass class Event(EventBase): """A text annotation with a set of attributes. Args: name: Name of the event. attributes: Attributes of the event. timestamp: Timestamp of the event. If `None` it will filled automatically. """ def __init__( self, name: str, attributes: types.Attributes = None, timestamp: Optional[int] = None, ) -> None: super().__init__(name, timestamp) self._attributes = attributes @property def attributes(self) -> types.Attributes: return self._attributes def _is_valid_attribute_value(value: types.AttributeValue) -> bool: """Checks if attribute value is valid. An attribute value is valid if it is one of the valid types. If the value is a sequence, it is only valid if all items in the sequence are of valid type, not a sequence, and are of the same type. """ if isinstance(value, Sequence): if len(value) == 0: return True first_element_type = type(value[0]) if first_element_type not in VALID_ATTR_VALUE_TYPES: logger.warning( "Invalid type %s in attribute value sequence. Expected one of " "%s or a sequence of those types", first_element_type.__name__, [valid_type.__name__ for valid_type in VALID_ATTR_VALUE_TYPES], ) return False for element in list(value)[1:]: if not isinstance(element, first_element_type): logger.warning( "Mixed types %s and %s in attribute value sequence", first_element_type.__name__, type(element).__name__, ) return False elif not isinstance(value, VALID_ATTR_VALUE_TYPES): logger.warning( "Invalid type %s for attribute value. Expected one of %s or a " "sequence of those types", type(value).__name__, [valid_type.__name__ for valid_type in VALID_ATTR_VALUE_TYPES], ) return False return True def _filter_attribute_values(attributes: types.Attributes): if attributes: for attr_key, attr_value in list(attributes.items()): if _is_valid_attribute_value(attr_value): if isinstance(attr_value, MutableSequence): attributes[attr_key] = tuple(attr_value) else: attributes.pop(attr_key) def _create_immutable_attributes(attributes): return MappingProxyType(attributes.copy() if attributes else {}) class Span(trace_api.Span): """See `opentelemetry.trace.Span`. Users should create `Span` objects via the `Tracer` instead of this constructor. Args: name: The name of the operation this span represents context: The immutable span context parent: This span's parent's `opentelemetry.trace.SpanContext`, or None if this is a root span sampler: The sampler used to create this span trace_config: TODO resource: Entity producing telemetry attributes: The span's attributes to be exported events: Timestamped events to be exported links: Links to other spans to be exported span_processor: `SpanProcessor` to invoke when starting and ending this `Span`. """ def __new__(cls, *args, **kwargs): if cls is Span: raise TypeError("Span must be instantiated via a tracer.") return super().__new__(cls) def __init__( self, name: str, context: trace_api.SpanContext, parent: Optional[trace_api.SpanContext] = None, sampler: Optional[sampling.Sampler] = None, trace_config: None = None, # TODO resource: Resource = Resource.create({}), attributes: types.Attributes = None, # TODO events: Sequence[Event] = None, # TODO links: Sequence[trace_api.Link] = (), kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL, span_processor: SpanProcessor = SpanProcessor(), instrumentation_info: InstrumentationInfo = None, set_status_on_exception: bool = True, ) -> None: self.name = name self.context = context self.parent = parent self.sampler = sampler self.trace_config = trace_config self.resource = resource self.kind = kind self._set_status_on_exception = set_status_on_exception self.span_processor = span_processor self.status = None self._lock = threading.Lock() _filter_attribute_values(attributes) if not attributes: self.attributes = self._new_attributes() else: self.attributes = BoundedDict.from_map( MAX_NUM_ATTRIBUTES, attributes ) self.events = self._new_events() if events: for event in events: _filter_attribute_values(event.attributes) # pylint: disable=protected-access event._attributes = _create_immutable_attributes( event.attributes ) self.events.append(event) if links is None: self.links = self._new_links() else: self.links = BoundedList.from_seq(MAX_NUM_LINKS, links) self._end_time = None # type: Optional[int] self._start_time = None # type: Optional[int] self.instrumentation_info = instrumentation_info @property def start_time(self): return self._start_time @property def end_time(self): return self._end_time def __repr__(self): return '{}(name="{}", context={})'.format( type(self).__name__, self.name, self.context ) @staticmethod def _new_attributes(): return BoundedDict(MAX_NUM_ATTRIBUTES) @staticmethod def _new_events(): return BoundedList(MAX_NUM_EVENTS) @staticmethod def _new_links(): return BoundedList(MAX_NUM_LINKS) @staticmethod def _format_context(context): x_ctx = OrderedDict() x_ctx["trace_id"] = trace_api.format_trace_id(context.trace_id) x_ctx["span_id"] = trace_api.format_span_id(context.span_id) x_ctx["trace_state"] = repr(context.trace_state) return x_ctx @staticmethod def _format_attributes(attributes): if isinstance(attributes, BoundedDict): return attributes._dict # pylint: disable=protected-access if isinstance(attributes, MappingProxyType): return attributes.copy() return attributes @staticmethod def _format_events(events): f_events = [] for event in events: f_event = OrderedDict() f_event["name"] = event.name f_event["timestamp"] = util.ns_to_iso_str(event.timestamp) f_event["attributes"] = Span._format_attributes(event.attributes) f_events.append(f_event) return f_events @staticmethod def _format_links(links): f_links = [] for link in links: f_link = OrderedDict() f_link["context"] = Span._format_context(link.context) f_link["attributes"] = Span._format_attributes(link.attributes) f_links.append(f_link) return f_links def to_json(self, indent=4): parent_id = None if self.parent is not None: if isinstance(self.parent, Span): ctx = self.parent.context parent_id = trace_api.format_span_id(ctx.span_id) elif isinstance(self.parent, SpanContext): parent_id = trace_api.format_span_id(self.parent.span_id) start_time = None if self.start_time: start_time = util.ns_to_iso_str(self.start_time) end_time = None if self.end_time: end_time = util.ns_to_iso_str(self.end_time) if self.status is not None: status = OrderedDict() status["canonical_code"] = str(self.status.canonical_code.name) if self.status.description: status["description"] = self.status.description f_span = OrderedDict() f_span["name"] = self.name f_span["context"] = self._format_context(self.context) f_span["kind"] = str(self.kind) f_span["parent_id"] = parent_id f_span["start_time"] = start_time f_span["end_time"] = end_time if self.status is not None: f_span["status"] = status f_span["attributes"] = self._format_attributes(self.attributes) f_span["events"] = self._format_events(self.events) f_span["links"] = self._format_links(self.links) f_span["resource"] = self.resource.attributes return json.dumps(f_span, indent=indent) def get_span_context(self): return self.context def set_attribute(self, key: str, value: types.AttributeValue) -> None: with self._lock: if not self.is_recording(): return has_ended = self.end_time is not None if has_ended: logger.warning("Setting attribute on ended span.") return if not key: logger.warning("invalid key (empty or null)") return if _is_valid_attribute_value(value): # Freeze mutable sequences defensively if isinstance(value, MutableSequence): value = tuple(value) if isinstance(value, bytes): try: value = value.decode() except ValueError: logger.warning("Byte attribute could not be decoded.") return with self._lock: self.attributes[key] = value def _add_event(self, event: EventBase) -> None: with self._lock: if not self.is_recording(): return has_ended = self.end_time is not None if has_ended: logger.warning("Calling add_event() on an ended span.") return self.events.append(event) def add_event( self, name: str, attributes: types.Attributes = None, timestamp: Optional[int] = None, ) -> None: _filter_attribute_values(attributes) attributes = _create_immutable_attributes(attributes) self._add_event( Event( name=name, attributes=attributes, timestamp=time_ns() if timestamp is None else timestamp, ) ) def start( self, start_time: Optional[int] = None, parent_context: Optional[context_api.Context] = None, ) -> None: with self._lock: if not self.is_recording(): return has_started = self.start_time is not None if not has_started: self._start_time = ( start_time if start_time is not None else time_ns() ) if has_started: logger.warning("Calling start() on a started span.") return self.span_processor.on_start(self, parent_context=parent_context) def end(self, end_time: Optional[int] = None) -> None: with self._lock: if not self.is_recording(): return if self.start_time is None: raise RuntimeError("Calling end() on a not started span.") has_ended = self.end_time is not None if not has_ended: if self.status is None: self.status = Status(canonical_code=StatusCanonicalCode.OK) self._end_time = ( end_time if end_time is not None else time_ns() ) if has_ended: logger.warning("Calling end() on an ended span.") return self.span_processor.on_end(self) def update_name(self, name: str) -> None: with self._lock: has_ended = self.end_time is not None if has_ended: logger.warning("Calling update_name() on an ended span.") return self.name = name def is_recording(self) -> bool: return True def set_status(self, status: trace_api.Status) -> None: with self._lock: has_ended = self.end_time is not None if has_ended: logger.warning("Calling set_status() on an ended span.") return self.status = status def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: """Ends context manager and calls `end` on the `Span`.""" if ( self.status is None and self._set_status_on_exception and exc_val is not None ): self.set_status( Status( canonical_code=StatusCanonicalCode.UNKNOWN, description="{}: {}".format(exc_type.__name__, exc_val), ) ) super().__exit__(exc_type, exc_val, exc_tb) def record_exception(self, exception: Exception) -> None: """Records an exception as a span event.""" try: stacktrace = traceback.format_exc() except Exception: # pylint: disable=broad-except # workaround for python 3.4, format_exc can raise # an AttributeError if the __context__ on # an exception is None stacktrace = "Exception occurred on stacktrace formatting" self.add_event( name="exception", attributes={ "exception.type": exception.__class__.__name__, "exception.message": str(exception), "exception.stacktrace": stacktrace, }, ) class _Span(Span): """Protected implementation of `opentelemetry.trace.Span`. This constructor should only be used internally. """ class Tracer(trace_api.Tracer): """See `opentelemetry.trace.Tracer`. Args: name: The name of the tracer. shutdown_on_exit: Register an atexit hook to shut down the tracer when the application exits. """ def __init__( self, source: "TracerProvider", instrumentation_info: InstrumentationInfo, ) -> None: self.source = source self.instrumentation_info = instrumentation_info def start_as_current_span( self, name: str, context: Optional[context_api.Context] = None, kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL, attributes: types.Attributes = None, links: Sequence[trace_api.Link] = (), record_exception: bool = True, ) -> Iterator[trace_api.Span]: span = self.start_span(name, context, kind, attributes, links) return self.use_span( span, end_on_exit=True, record_exception=record_exception ) def start_span( # pylint: disable=too-many-locals self, name: str, context: Optional[context_api.Context] = None, kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL, attributes: types.Attributes = None, links: Sequence[trace_api.Link] = (), start_time: Optional[int] = None, set_status_on_exception: bool = True, ) -> trace_api.Span: parent_span_context = trace_api.get_current_span( context ).get_span_context() if parent_span_context is not None and not isinstance( parent_span_context, trace_api.SpanContext ): raise TypeError( "parent_span_context must be a SpanContext or None." ) if parent_span_context is None or not parent_span_context.is_valid: parent_span_context = None trace_id = self.source.ids_generator.generate_trace_id() trace_flags = None trace_state = None else: trace_id = parent_span_context.trace_id trace_flags = parent_span_context.trace_flags trace_state = parent_span_context.trace_state # The sampler decides whether to create a real or no-op span at the # time of span creation. No-op spans do not record events, and are not # exported. # The sampler may also add attributes to the newly-created span, e.g. # to include information about the sampling result. sampling_result = self.source.sampler.should_sample( parent_span_context, trace_id, name, attributes, links, ) trace_flags = ( trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED) if sampling_result.decision.is_sampled() else trace_api.TraceFlags(trace_api.TraceFlags.DEFAULT) ) span_context = trace_api.SpanContext( trace_id, self.source.ids_generator.generate_span_id(), is_remote=False, trace_flags=trace_flags, trace_state=trace_state, ) # Only record if is_recording() is true if sampling_result.decision.is_recording(): # pylint:disable=protected-access span = _Span( name=name, context=span_context, parent=parent_span_context, sampler=self.source.sampler, resource=self.source.resource, attributes=sampling_result.attributes.copy(), span_processor=self.source._active_span_processor, kind=kind, links=links, instrumentation_info=self.instrumentation_info, set_status_on_exception=set_status_on_exception, ) span.start(start_time=start_time, parent_context=context) else: span = trace_api.DefaultSpan(context=span_context) return span @contextmanager def use_span( self, span: trace_api.Span, end_on_exit: bool = False, record_exception: bool = True, ) -> Iterator[trace_api.Span]: try: token = context_api.attach(context_api.set_value(SPAN_KEY, span)) try: yield span finally: context_api.detach(token) except Exception as error: # pylint: disable=broad-except # pylint:disable=protected-access if isinstance(span, Span): if record_exception: span.record_exception(error) if span.status is None and span._set_status_on_exception: span.set_status( Status( canonical_code=getattr( error, EXCEPTION_STATUS_FIELD, StatusCanonicalCode.UNKNOWN, ), description="{}: {}".format( type(error).__name__, error ), ) ) raise finally: if end_on_exit: span.end() class TracerProvider(trace_api.TracerProvider): def __init__( self, sampler: sampling.Sampler = sampling.DEFAULT_ON, resource: Resource = Resource.create({}), shutdown_on_exit: bool = True, active_span_processor: Union[ SynchronousMultiSpanProcessor, ConcurrentMultiSpanProcessor ] = None, ids_generator: trace_api.IdsGenerator = None, ): self._active_span_processor = ( active_span_processor or SynchronousMultiSpanProcessor() ) if ids_generator is None: self.ids_generator = trace_api.RandomIdsGenerator() else: self.ids_generator = ids_generator self.resource = resource self.sampler = sampler self._atexit_handler = None if shutdown_on_exit: self._atexit_handler = atexit.register(self.shutdown) def get_tracer( self, instrumenting_module_name: str, instrumenting_library_version: str = "", ) -> "trace_api.Tracer": if not instrumenting_module_name: # Reject empty strings too. instrumenting_module_name = "ERROR:MISSING MODULE NAME" logger.error("get_tracer called with missing module name.") return Tracer( self, InstrumentationInfo( instrumenting_module_name, instrumenting_library_version ), ) def add_span_processor(self, span_processor: SpanProcessor) -> None: """Registers a new :class:`SpanProcessor` for this `TracerProvider`. The span processors are invoked in the same order they are registered. """ # no lock here because add_span_processor is thread safe for both # SynchronousMultiSpanProcessor and ConcurrentMultiSpanProcessor. self._active_span_processor.add_span_processor(span_processor) def shutdown(self): """Shut down the span processors added to the tracer.""" self._active_span_processor.shutdown() if self._atexit_handler is not None: atexit.unregister(self._atexit_handler) self._atexit_handler = None def force_flush(self, timeout_millis: int = 30000) -> bool: """Requests the active span processor to process all spans that have not yet been processed. By default force flush is called sequentially on all added span processors. This means that span processors further back in the list have less time to flush their spans. To have span processors flush their spans in parallel it is possible to initialize the tracer provider with an instance of `ConcurrentMultiSpanProcessor` at the cost of using multiple threads. Args: timeout_millis: The maximum amount of time to wait for spans to be processed. Returns: False if the timeout is exceeded, True otherwise. """ return self._active_span_processor.force_flush(timeout_millis)
the-stack_106_22412
import vcr from time import sleep from unittest import TestCase from contentful_management.environment import Environment from contentful_management.errors import NotFoundError from .test_helper import CLIENT, PLAYGROUND_SPACE BASE_ENVIRONMENT_ITEM = { 'sys': { 'id': 'foo', 'type': 'Environment', 'space': { 'sys': { 'id': 'foobar', 'type': 'Link', 'linkType': 'Space' } } }, 'name': 'foo' } class EnvironmentTest(TestCase): def test_entry(self): entry = Environment(BASE_ENVIRONMENT_ITEM) self.assertEqual(str(entry), "<Environment[foo] id='foo'>") def test_entry_to_json(self): entry = Environment(BASE_ENVIRONMENT_ITEM) self.assertEqual(entry.to_json(), BASE_ENVIRONMENT_ITEM) def test_entry_to_link(self): entry = Environment(BASE_ENVIRONMENT_ITEM) self.assertEqual(entry.to_link().to_json(), { 'sys': { 'id': 'foo', 'type': 'Link', 'linkType': 'Environment' } }) @vcr.use_cassette('fixtures/environment/all.yaml') def test_environments(self): environments = CLIENT.environments(PLAYGROUND_SPACE).all() self.assertEqual(str(environments[0]), "<Environment[master] id='master'>") @vcr.use_cassette('fixtures/environment/no_id_create.yaml') def test_create_environment_without_id_raises_404(self): with self.assertRaises(NotFoundError): CLIENT.environments(PLAYGROUND_SPACE).create(None, { 'name': 'SDK Tests - No ID' }) @vcr.use_cassette('fixtures/environment/create.yaml') def test_create_environment_with_id(self): environment = CLIENT.environments(PLAYGROUND_SPACE).create('sdk_tests', { 'name': 'SDK Tests' }) self.assertEqual(environment.name, 'SDK Tests') self.assertEqual(environment.id, 'sdk_tests') @vcr.use_cassette('fixtures/environment/create_different_source.yaml') def test_create_environment_with_different_source(self): master = CLIENT.environments(PLAYGROUND_SPACE).find('master') self.assertNotEqual(len(master.entries().all()), 0) non_master_source = CLIENT.environments(PLAYGROUND_SPACE).create('non-master-py', { 'name': 'Non Master - Python', 'source_environment_id': 'source' }) sleep(5) # Need to sleep to ensure environment is ready non_master_source.reload() self.assertEqual(len(non_master_source.entries().all()), 0) @vcr.use_cassette('fixtures/environment/find.yaml') def test_update_environment(self): environment = CLIENT.environments(PLAYGROUND_SPACE).find('sdk_tests') self.assertEqual(environment.name, 'SDK Tests') with vcr.use_cassette('fixtures/environment/update.yaml'): environment.name = 'something else' environment.save() self.assertEqual(environment.name, 'something else') @vcr.use_cassette('fixtures/environment/find.yaml') def test_delete_environment(self): environment = CLIENT.environments(PLAYGROUND_SPACE).find('sdk_tests') with vcr.use_cassette('fixtures/environment/delete.yaml'): environment.delete() with vcr.use_cassette('fixtures/environment/not_found.yaml'): with self.assertRaises(NotFoundError): CLIENT.environments(PLAYGROUND_SPACE).find('sdk_tests') @vcr.use_cassette('fixtures/environment/delete.yaml') def test_delete_environment_directly_from_client_proxy(self): CLIENT.environments(PLAYGROUND_SPACE).delete('sdk_tests') @vcr.use_cassette('fixtures/environment/find_2.yaml') def test_fetch_entries_from_an_environment(self): environment = CLIENT.environments(PLAYGROUND_SPACE).find('testing') with vcr.use_cassette('fixtures/environment/all_entries.yaml'): entries = environment.entries().all() self.assertEqual(str(entries[0]), "<Entry[cat] id='IJLRrADsqq2AmwcugoYeK'>") @vcr.use_cassette('fixtures/environment/find_2.yaml') def test_environment_proxies(self): environment = CLIENT.environments(PLAYGROUND_SPACE).find('testing') self.assertEqual(str(environment.entries()), "<EnvironmentEntriesProxy space_id='facgnwwgj5fe' environment_id='testing'>") self.assertEqual(str(environment.assets()), "<EnvironmentAssetsProxy space_id='facgnwwgj5fe' environment_id='testing'>") self.assertEqual(str(environment.content_types()), "<EnvironmentContentTypesProxy space_id='facgnwwgj5fe' environment_id='testing'>") self.assertEqual(str(environment.locales()), "<EnvironmentLocalesProxy space_id='facgnwwgj5fe' environment_id='testing'>") self.assertEqual(str(environment.ui_extensions()), "<EnvironmentUIExtensionsProxy space_id='facgnwwgj5fe' environment_id='testing'>")
the-stack_106_22413
import json from collections import Counter import re from VQA.PythonHelperTools.vqaTools.vqa import VQA import random import numpy as np from VQAGenerator import VQAGenerator import VQAModel from matplotlib import pyplot as plt import os from PIL import Image, ImageOps from keras.models import load_model from random import randint from Environment import DATADIR from typing import NamedTuple import time from VQAConfig import VQAConfig def trainConfig(config: VQAConfig,recompile=False): training_generator = VQAGenerator(True,False, config) if config.modelIdentifier: model = load_model(DATADIR+'/Results/'+config.testName+'/model_'+config.modelIdentifier+'_'+str(config.epoch)+'.keras') else: model = VQAModel.createModel(training_generator.questionLength, training_generator.answerLength, training_generator.gloveEncoding(), config) # model.get_layer('noise_layer_image').stddev = config.noise # model.get_layer('noise_layer_question').stddev = config.noise prediction_generator = VQAGenerator(False,True, config) eval_model = VQAModel.evalModel(model) img = prediction_generator.getImage(0) if not os.path.exists(DATADIR+'/Results/'+config.testName): os.mkdir(DATADIR+'/Results/'+config.testName) t = time.localtime() timestamp = time.strftime('%b-%d-%Y_%H%M', t) result_str =str(timestamp)+"\n\n"+ str(config) +'\n\n' with open(DATADIR+'/Results/'+config.testName+'/results-'+timestamp+'.txt', "w") as text_file: text_file.write(result_str) if recompile: model.compile(optimizer=config.optimizer, loss=config.loss) best = 0 for i in range(config.epoch+1,config.stop): # if i == 1 and config.loss=='binary_crossentropy': # model.compile(optimizer="adam", loss="categorical_crossentropy") # if i == 3 and config.loss=='binary_crossentropy': # model.compile(optimizer=config.optimizer, loss=config.loss) model.fit_generator(training_generator, epochs=1,workers=6) model.save(DATADIR+'/Results/'+config.testName+'/model_'+timestamp+"_"+str(i)+'.keras') print("Test set") prediction = eval_model.predict_generator(prediction_generator,workers=6, steps= None if i>6 else 128) test_accuracy, results = prediction_generator.evaluate(prediction) print("Training set") training_generator.predict = True prediction = eval_model.predict_generator(training_generator,workers=6, steps=128) train_accuracy, _ = training_generator.evaluate(prediction) training_generator.predict = False result_str += "{0:2d}, {1:6.4f}, {2:6.4f}\n".format(i,test_accuracy,train_accuracy) with open(DATADIR+'/Results/'+config.testName+'/results-'+timestamp+'.txt', "w") as text_file: text_file.write(result_str) with open(DATADIR+'/Results/'+config.testName+'/answers-'+timestamp+"_"+str(i)+'.json', 'w') as fp: json.dump(results, fp) if test_accuracy > best: print("best") best = test_accuracy if __name__ == '__main__': trainConfig(VQAConfig( testName='test_name', gloveName='glove.42B.300d', gloveSize=300, dropout=True, augmentations=None, stop=30, gatedTanh=True, initializer="he_normal", batchNorm=False, embedding='gru', imageFeaturemapSize=24, imageFeatureChannels=1536, predictNormalizer='sigmoid', loss='categorical_crossentropy', optimizer='adam', ) )
the-stack_106_22414
""" Classes allowing "generic" relations through ContentType and object-id fields. """ from __future__ import unicode_literals from collections import defaultdict from functools import partial from django.core.exceptions import ObjectDoesNotExist from django.db import connection from django.db import models, router, DEFAULT_DB_ALIAS from django.db.models import signals from django.db.models.fields.related import ForeignObject, ForeignObjectRel from django.db.models.related import PathInfo from django.db.models.sql.where import Constraint from django.forms import ModelForm, ALL_FIELDS from django.forms.models import (BaseModelFormSet, modelformset_factory, save_instance, modelform_defines_fields) from django.contrib.admin.options import InlineModelAdmin, flatten_fieldsets from django.contrib.contenttypes.models import ContentType from django.utils import six from django.utils.deprecation import RenameMethodsBase from django.utils.encoding import smart_text class RenameGenericForeignKeyMethods(RenameMethodsBase): renamed_methods = ( ('get_prefetch_query_set', 'get_prefetch_queryset', DeprecationWarning), ) class GenericForeignKey(six.with_metaclass(RenameGenericForeignKeyMethods)): """ Provides a generic relation to any object through content-type/object-id fields. """ def __init__(self, ct_field="content_type", fk_field="object_id", for_concrete_model=True): self.ct_field = ct_field self.fk_field = fk_field self.for_concrete_model = for_concrete_model def contribute_to_class(self, cls, name): self.name = name self.model = cls self.cache_attr = "_%s_cache" % name cls._meta.add_virtual_field(self) # For some reason I don't totally understand, using weakrefs here doesn't work. signals.pre_init.connect(self.instance_pre_init, sender=cls, weak=False) # Connect myself as the descriptor for this field setattr(cls, name, self) def instance_pre_init(self, signal, sender, args, kwargs, **_kwargs): """ Handles initializing an object with the generic FK instead of content-type/object-id fields. """ if self.name in kwargs: value = kwargs.pop(self.name) kwargs[self.ct_field] = self.get_content_type(obj=value) kwargs[self.fk_field] = value._get_pk_val() def get_content_type(self, obj=None, id=None, using=None): if obj is not None: return ContentType.objects.db_manager(obj._state.db).get_for_model( obj, for_concrete_model=self.for_concrete_model) elif id: return ContentType.objects.db_manager(using).get_for_id(id) else: # This should never happen. I love comments like this, don't you? raise Exception("Impossible arguments to GFK.get_content_type!") def get_prefetch_queryset(self, instances): # For efficiency, group the instances by content type and then do one # query per model fk_dict = defaultdict(set) # We need one instance for each group in order to get the right db: instance_dict = {} ct_attname = self.model._meta.get_field(self.ct_field).get_attname() for instance in instances: # We avoid looking for values if either ct_id or fkey value is None ct_id = getattr(instance, ct_attname) if ct_id is not None: fk_val = getattr(instance, self.fk_field) if fk_val is not None: fk_dict[ct_id].add(fk_val) instance_dict[ct_id] = instance ret_val = [] for ct_id, fkeys in fk_dict.items(): instance = instance_dict[ct_id] ct = self.get_content_type(id=ct_id, using=instance._state.db) ret_val.extend(ct.get_all_objects_for_this_type(pk__in=fkeys)) # For doing the join in Python, we have to match both the FK val and the # content type, so we use a callable that returns a (fk, class) pair. def gfk_key(obj): ct_id = getattr(obj, ct_attname) if ct_id is None: return None else: model = self.get_content_type(id=ct_id, using=obj._state.db).model_class() return (model._meta.pk.get_prep_value(getattr(obj, self.fk_field)), model) return (ret_val, lambda obj: (obj._get_pk_val(), obj.__class__), gfk_key, True, self.cache_attr) def is_cached(self, instance): return hasattr(instance, self.cache_attr) def __get__(self, instance, instance_type=None): if instance is None: return self try: return getattr(instance, self.cache_attr) except AttributeError: rel_obj = None # Make sure to use ContentType.objects.get_for_id() to ensure that # lookups are cached (see ticket #5570). This takes more code than # the naive ``getattr(instance, self.ct_field)``, but has better # performance when dealing with GFKs in loops and such. f = self.model._meta.get_field(self.ct_field) ct_id = getattr(instance, f.get_attname(), None) if ct_id: ct = self.get_content_type(id=ct_id, using=instance._state.db) try: rel_obj = ct.get_object_for_this_type(pk=getattr(instance, self.fk_field)) except ObjectDoesNotExist: pass setattr(instance, self.cache_attr, rel_obj) return rel_obj def __set__(self, instance, value): ct = None fk = None if value is not None: ct = self.get_content_type(obj=value) fk = value._get_pk_val() setattr(instance, self.ct_field, ct) setattr(instance, self.fk_field, fk) setattr(instance, self.cache_attr, value) class GenericRelation(ForeignObject): """Provides an accessor to generic related objects (e.g. comments)""" def __init__(self, to, **kwargs): kwargs['verbose_name'] = kwargs.get('verbose_name', None) kwargs['rel'] = GenericRel( self, to, related_name=kwargs.pop('related_name', None), limit_choices_to=kwargs.pop('limit_choices_to', None),) # Override content-type/object-id field names on the related class self.object_id_field_name = kwargs.pop("object_id_field", "object_id") self.content_type_field_name = kwargs.pop("content_type_field", "content_type") self.for_concrete_model = kwargs.pop("for_concrete_model", True) kwargs['blank'] = True kwargs['editable'] = False kwargs['serialize'] = False # This construct is somewhat of an abuse of ForeignObject. This field # represents a relation from pk to object_id field. But, this relation # isn't direct, the join is generated reverse along foreign key. So, # the from_field is object_id field, to_field is pk because of the # reverse join. super(GenericRelation, self).__init__( to, to_fields=[], from_fields=[self.object_id_field_name], **kwargs) def resolve_related_fields(self): self.to_fields = [self.model._meta.pk.name] return [(self.rel.to._meta.get_field_by_name(self.object_id_field_name)[0], self.model._meta.pk)] def get_reverse_path_info(self): opts = self.rel.to._meta target = opts.get_field_by_name(self.object_id_field_name)[0] return [PathInfo(self.model._meta, opts, (target,), self.rel, True, False)] def get_choices_default(self): return super(GenericRelation, self).get_choices(include_blank=False) def value_to_string(self, obj): qs = getattr(obj, self.name).all() return smart_text([instance._get_pk_val() for instance in qs]) def get_joining_columns(self, reverse_join=False): if not reverse_join: # This error message is meant for the user, and from user # perspective this is a reverse join along the GenericRelation. raise ValueError('Joining in reverse direction not allowed.') return super(GenericRelation, self).get_joining_columns(reverse_join) def contribute_to_class(self, cls, name): super(GenericRelation, self).contribute_to_class(cls, name, virtual_only=True) # Save a reference to which model this class is on for future use self.model = cls # Add the descriptor for the relation setattr(cls, self.name, ReverseGenericRelatedObjectsDescriptor(self, self.for_concrete_model)) def contribute_to_related_class(self, cls, related): pass def set_attributes_from_rel(self): pass def get_internal_type(self): return "ManyToManyField" def get_content_type(self): """ Returns the content type associated with this field's model. """ return ContentType.objects.get_for_model(self.model, for_concrete_model=self.for_concrete_model) def get_extra_restriction(self, where_class, alias, remote_alias): field = self.rel.to._meta.get_field_by_name(self.content_type_field_name)[0] contenttype_pk = self.get_content_type().pk cond = where_class() cond.add((Constraint(remote_alias, field.column, field), 'exact', contenttype_pk), 'AND') return cond def bulk_related_objects(self, objs, using=DEFAULT_DB_ALIAS): """ Return all objects related to ``objs`` via this ``GenericRelation``. """ return self.rel.to._base_manager.db_manager(using).filter(**{ "%s__pk" % self.content_type_field_name: ContentType.objects.db_manager(using).get_for_model( self.model, for_concrete_model=self.for_concrete_model).pk, "%s__in" % self.object_id_field_name: [obj.pk for obj in objs] }) class ReverseGenericRelatedObjectsDescriptor(object): """ This class provides the functionality that makes the related-object managers available as attributes on a model class, for fields that have multiple "remote" values and have a GenericRelation defined in their model (rather than having another model pointed *at* them). In the example "article.publications", the publications attribute is a ReverseGenericRelatedObjectsDescriptor instance. """ def __init__(self, field, for_concrete_model=True): self.field = field self.for_concrete_model = for_concrete_model def __get__(self, instance, instance_type=None): if instance is None: return self # Dynamically create a class that subclasses the related model's # default manager. rel_model = self.field.rel.to superclass = rel_model._default_manager.__class__ RelatedManager = create_generic_related_manager(superclass) qn = connection.ops.quote_name content_type = ContentType.objects.db_manager(instance._state.db).get_for_model( instance, for_concrete_model=self.for_concrete_model) join_cols = self.field.get_joining_columns(reverse_join=True)[0] manager = RelatedManager( model = rel_model, instance = instance, source_col_name = qn(join_cols[0]), target_col_name = qn(join_cols[1]), content_type = content_type, content_type_field_name = self.field.content_type_field_name, object_id_field_name = self.field.object_id_field_name, prefetch_cache_name = self.field.attname, ) return manager def __set__(self, instance, value): manager = self.__get__(instance) manager.clear() for obj in value: manager.add(obj) def create_generic_related_manager(superclass): """ Factory function for a manager that subclasses 'superclass' (which is a Manager) and adds behavior for generic related objects. """ class GenericRelatedObjectManager(superclass): def __init__(self, model=None, instance=None, symmetrical=None, source_col_name=None, target_col_name=None, content_type=None, content_type_field_name=None, object_id_field_name=None, prefetch_cache_name=None): super(GenericRelatedObjectManager, self).__init__() self.model = model self.content_type = content_type self.symmetrical = symmetrical self.instance = instance self.source_col_name = source_col_name self.target_col_name = target_col_name self.content_type_field_name = content_type_field_name self.object_id_field_name = object_id_field_name self.prefetch_cache_name = prefetch_cache_name self.pk_val = self.instance._get_pk_val() self.core_filters = { '%s__pk' % content_type_field_name: content_type.id, '%s__exact' % object_id_field_name: instance._get_pk_val(), } def get_queryset(self): try: return self.instance._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): db = self._db or router.db_for_read(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).get_queryset().using(db).filter(**self.core_filters) def get_prefetch_queryset(self, instances): db = self._db or router.db_for_read(self.model, instance=instances[0]) query = { '%s__pk' % self.content_type_field_name: self.content_type.id, '%s__in' % self.object_id_field_name: set(obj._get_pk_val() for obj in instances) } qs = super(GenericRelatedObjectManager, self).get_queryset().using(db).filter(**query) # We (possibly) need to convert object IDs to the type of the # instances' PK in order to match up instances: object_id_converter = instances[0]._meta.pk.to_python return (qs, lambda relobj: object_id_converter(getattr(relobj, self.object_id_field_name)), lambda obj: obj._get_pk_val(), False, self.prefetch_cache_name) def add(self, *objs): for obj in objs: if not isinstance(obj, self.model): raise TypeError("'%s' instance expected" % self.model._meta.object_name) setattr(obj, self.content_type_field_name, self.content_type) setattr(obj, self.object_id_field_name, self.pk_val) obj.save() add.alters_data = True def remove(self, *objs): db = router.db_for_write(self.model, instance=self.instance) for obj in objs: obj.delete(using=db) remove.alters_data = True def clear(self): db = router.db_for_write(self.model, instance=self.instance) for obj in self.all(): obj.delete(using=db) clear.alters_data = True def create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).create(**kwargs) create.alters_data = True return GenericRelatedObjectManager class GenericRel(ForeignObjectRel): def __init__(self, field, to, related_name=None, limit_choices_to=None): super(GenericRel, self).__init__(field, to, related_name, limit_choices_to) class BaseGenericInlineFormSet(BaseModelFormSet): """ A formset for generic inline objects to a parent. """ def __init__(self, data=None, files=None, instance=None, save_as_new=None, prefix=None, queryset=None, **kwargs): opts = self.model._meta self.instance = instance self.rel_name = '-'.join(( opts.app_label, opts.model_name, self.ct_field.name, self.ct_fk_field.name, )) if self.instance is None or self.instance.pk is None: qs = self.model._default_manager.none() else: if queryset is None: queryset = self.model._default_manager qs = queryset.filter(**{ self.ct_field.name: ContentType.objects.get_for_model( self.instance, for_concrete_model=self.for_concrete_model), self.ct_fk_field.name: self.instance.pk, }) super(BaseGenericInlineFormSet, self).__init__( queryset=qs, data=data, files=files, prefix=prefix, **kwargs ) @classmethod def get_default_prefix(cls): opts = cls.model._meta return '-'.join((opts.app_label, opts.model_name, cls.ct_field.name, cls.ct_fk_field.name, )) def save_new(self, form, commit=True): kwargs = { self.ct_field.get_attname(): ContentType.objects.get_for_model( self.instance, for_concrete_model=self.for_concrete_model).pk, self.ct_fk_field.get_attname(): self.instance.pk, } new_obj = self.model(**kwargs) return save_instance(form, new_obj, commit=commit) def generic_inlineformset_factory(model, form=ModelForm, formset=BaseGenericInlineFormSet, ct_field="content_type", fk_field="object_id", fields=None, exclude=None, extra=3, can_order=False, can_delete=True, max_num=None, formfield_callback=None, validate_max=False, for_concrete_model=True): """ Returns a ``GenericInlineFormSet`` for the given kwargs. You must provide ``ct_field`` and ``fk_field`` if they are different from the defaults ``content_type`` and ``object_id`` respectively. """ opts = model._meta # if there is no field called `ct_field` let the exception propagate ct_field = opts.get_field(ct_field) if not isinstance(ct_field, models.ForeignKey) or ct_field.rel.to != ContentType: raise Exception("fk_name '%s' is not a ForeignKey to ContentType" % ct_field) fk_field = opts.get_field(fk_field) # let the exception propagate if exclude is not None: exclude = list(exclude) exclude.extend([ct_field.name, fk_field.name]) else: exclude = [ct_field.name, fk_field.name] FormSet = modelformset_factory(model, form=form, formfield_callback=formfield_callback, formset=formset, extra=extra, can_delete=can_delete, can_order=can_order, fields=fields, exclude=exclude, max_num=max_num, validate_max=validate_max) FormSet.ct_field = ct_field FormSet.ct_fk_field = fk_field FormSet.for_concrete_model = for_concrete_model return FormSet class GenericInlineModelAdmin(InlineModelAdmin): ct_field = "content_type" ct_fk_field = "object_id" formset = BaseGenericInlineFormSet def get_formset(self, request, obj=None, **kwargs): if self.declared_fieldsets: fields = flatten_fieldsets(self.declared_fieldsets) else: fields = None if self.exclude is None: exclude = [] else: exclude = list(self.exclude) exclude.extend(self.get_readonly_fields(request, obj)) if self.exclude is None and hasattr(self.form, '_meta') and self.form._meta.exclude: # Take the custom ModelForm's Meta.exclude into account only if the # GenericInlineModelAdmin doesn't define its own. exclude.extend(self.form._meta.exclude) exclude = exclude or None can_delete = self.can_delete and self.has_delete_permission(request, obj) defaults = { "ct_field": self.ct_field, "fk_field": self.ct_fk_field, "form": self.form, "formfield_callback": partial(self.formfield_for_dbfield, request=request), "formset": self.formset, "extra": self.extra, "can_delete": can_delete, "can_order": False, "fields": fields, "max_num": self.max_num, "exclude": exclude } defaults.update(kwargs) if defaults['fields'] is None and not modelform_defines_fields(defaults['form']): defaults['fields'] = ALL_FIELDS return generic_inlineformset_factory(self.model, **defaults) class GenericStackedInline(GenericInlineModelAdmin): template = 'admin/edit_inline/stacked.html' class GenericTabularInline(GenericInlineModelAdmin): template = 'admin/edit_inline/tabular.html'
the-stack_106_22416
# content of conftest.py from kueventparser import events def make_test_event(uri: str, ) -> events.Event: """テスト用のEventクラス作成関数. Args: uri('str'): URI Returns: list: list for event """ import datetime as dt import pytz from bs4 import BeautifulSoup # jst の設定 jst = pytz.timezone('Asia/Tokyo') # soupでassertion用のデータを抜き出す. data_soup = BeautifulSoup(open(uri, encoding="utf-8"), "lxml-xml", from_encoding="utf-8") title = data_soup.title.string url = data_soup.url.string location = data_soup.location.string s = data_soup.start_date s_date = dt.date(int(s.year.text), int(s.month.text), int(s.day.text)) e = data_soup.end_date e_date = dt.date(int(e.year.text), int(e.month.text), int(e.day.text)) start = dt.time(9, 0, tzinfo=jst) end = dt.time(21, 30, tzinfo=jst) description = "" for string in data_soup.description.stripped_strings: description += string description += "\n" # Eventの作成. event = events.Event(title=title, url=url, location=location, description=description, start_date=s_date, end_date=e_date, start=start, end=end) return event
the-stack_106_22419
import os import random import StringIO from datetime import datetime import dj_database_url from fabric.api import cd, env, execute, get, local, put, require, run, settings, shell_env, task from fabric.context_managers import quiet from fabric.operations import prompt from gitric import api as gitric # This is the definition of your environments. Every item of the ENVIRONMENTS # dict will be made available as a fabric task and the properties you put in a # particular environment will be made available in the `env` variable. ENVIRONMENTS = { 'prod': { 'root': '/var/www/django_app/prod/', 'hosts': ['root@myhost'], # You can set settings that will be automatically deployed when running # the `bootstrap` command # 'settings': { # 'ALLOWED_HOSTS': 'www.myhost.com', # } }, 'dev': { 'root': '/var/www/django_app/staging/', 'hosts': ['root@myhost'], # You can set settings that will be automatically deployed when running # the `bootstrap` command # 'settings': { # 'ALLOWED_HOSTS': 'www.myhost.com', # } } } env.project_name = 'django_app' def ls(path): """ Return the list of the files in the given directory, omitting . and ... """ with cd(path), quiet(): files = run('for i in *; do echo $i; done') files_list = files.replace('\r', '').split('\n') return files_list def git_push(commit): """ Push the current tree to the remote server and reset the remote git repository to the given commit. The commit can be any git object, be it a hash, a tag or a branch. """ gitric.git_seed(get_project_root(), commit) gitric.git_reset(get_project_root(), 'master') def get_project_root(): """ Return the path to the root of the project on the remote server. """ return os.path.join(env.root, env.project_name) def get_virtualenv_root(): """ Return the path to the virtual environment on the remote server. """ return os.path.join(env.root, 'venv') def get_backups_root(): """ Return the path to the backups directory on the remote server. """ return os.path.join(env.root, 'backups') def run_in_virtualenv(cmd, args): """ Run the given command from the remote virtualenv. """ return run('%s %s' % (os.path.join(get_virtualenv_root(), 'bin', cmd), args)) def run_pip(args): """ Run the pip command in the remote virtualenv. """ return run_in_virtualenv('pip', args) def run_python(args): """ Run the python command in the remote virtualenv. """ return run_in_virtualenv('python', args) def install_requirements(): """ Install the requirements from the base.txt file to the remote virtualenv. """ with cd(get_project_root()): run_pip("install -r requirements/base.txt") def migrate_database(): with cd(get_project_root()): run_python("manage.py migrate") def collect_static(): """ Collect static files to the STATIC_ROOT directory. """ with cd(get_project_root()): run_python("manage.py collectstatic --noinput") def restart_process(): """ Restart the WSGI process by touching the wsgi.py file. """ run('touch %s' % os.path.join(get_project_root(), env.project_name, 'wsgi.py')) def generate_secret_key(): """ Generate a random secret key, suitable to be used as a SECRET_KEY setting. """ return ''.join( [random.SystemRandom().choice('abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)') for i in range(50)] ) def create_structure(): """ Create the basic directory structure on the remote server. """ run('mkdir -p %s' % env.root) with cd(env.root): run('mkdir -p static backups') run('python3 -m venv venv') @task def sync_settings(): """ Copy all settings defined in the environment to the server. """ for setting, value in env.settings.items(): set_setting(setting, value=value) def set_setting(setting_key, value=None, description=None): """ Sets the given setting to the given value on the remote server. If the value is not provided, the user will be prompted for it. TODO: use the description parameter to display a help text. """ if value is None: value = prompt("Please provide value for setting %s: " % setting_key) with cd(os.path.join(get_project_root(), 'envdir')): put(StringIO.StringIO(value), setting_key) @task def bootstrap(): """ Deploy the project for the first time. This will create the directory structure, push the project and set the basic settings. This task needs to be called alongside an environment task, eg. ``fab prod bootstrap``. """ create_structure() execute(git_push, commit='master') required_settings = set(['DATABASE_URL', 'MEDIA_ROOT', 'STATIC_ROOT', 'MEDIA_URL', 'STATIC_URL', 'ALLOWED_HOSTS']) if hasattr(env, 'settings'): for setting, value in env.settings.items(): set_setting(setting, value=value) # Ask for settings that are required but were not set in the parameters # file for setting in required_settings - set(env.settings.keys()): set_setting(setting) set_setting('DJANGO_SETTINGS_MODULE', value='%s.settings.base' % env.project_name) set_setting('SECRET_KEY', value=generate_secret_key()) execute(install_requirements) execute(collect_static) execute(migrate_database) execute(restart_process) @task def compile_assets(): local('npm install') local('npm run build') local( "rsync -e 'ssh -p {port}' -r --exclude *.map --exclude *.swp static/ " "{user}@{host}:{path}".format(host=env.host, user=env.user, port=env.port, path=os.path.join(get_project_root(), 'static'))) @task def deploy(tag): require('root', 'project_name') execute(git_push, commit='@') dump_db(get_backups_root()) execute(install_requirements) execute(compile_assets) execute(collect_static) execute(migrate_database) execute(restart_process) execute(clean_old_database_backups, nb_backups_to_keep=10) def dump_db(destination): """ Dump the database to the given directory and return the path to the file created. This creates a gzipped SQL file. """ with cd(get_project_root()), quiet(): db_credentials = run('cat envdir/DATABASE_URL') db_credentials_dict = dj_database_url.parse(db_credentials) if not is_supported_db_engine(db_credentials_dict['ENGINE']): raise NotImplementedError( "The dump_db task doesn't support the remote database engine" ) outfile = os.path.join(destination, datetime.now().strftime('%Y-%m-%d_%H%M%S.sql.gz')) with shell_env(PGPASSWORD=db_credentials_dict['PASSWORD'].replace('$', '\$')): run('pg_dump -O -x -h {host} -U {user} {db}|gzip > {outfile}'.format( host=db_credentials_dict['HOST'], user=db_credentials_dict['USER'], db=db_credentials_dict['NAME'], outfile=outfile)) return outfile @task def fetch_db(destination='.'): """ Dump the database on the remote host and retrieve it locally. The destination parameter controls where the dump should be stored locally. """ require('root') dump_path = dump_db('~') get(dump_path, destination) run('rm %s' % dump_path) return os.path.basename(dump_path) @task def import_db(dump_file=None): """ Restore the given database dump. The dump must be a gzipped SQL dump. If the dump_file parameter is not set, the database will be dumped and retrieved from the remote host. """ with open('envdir/DATABASE_URL', 'r') as db_credentials_file: db_credentials = db_credentials_file.read() db_credentials_dict = dj_database_url.parse(db_credentials) if not is_supported_db_engine(db_credentials_dict['ENGINE']): raise NotImplementedError( "The import_db task doesn't support your database engine" ) if dump_file is None: dump_file = fetch_db() db_info = { 'host': db_credentials_dict['HOST'], 'user': db_credentials_dict['USER'], 'db': db_credentials_dict['NAME'], 'db_dump': dump_file } with shell_env(PGPASSWORD=db_credentials_dict['PASSWORD']): with settings(warn_only=True): local('dropdb -h {host} -U {user} {db}'.format(**db_info)) local('createdb -h {host} -U {user} {db}'.format(**db_info)) local('gunzip -c {db_dump}|psql -h {host} -U {user} {db}'.format( **db_info )) @task def clean_old_database_backups(nb_backups_to_keep): """ Remove old database backups from the system and keep `nb_backups_to_keep`. """ backups = ls(get_backups_root()) backups = sorted(backups, reverse=True) if len(backups) > nb_backups_to_keep: backups_to_delete = backups[nb_backups_to_keep:] for backup_to_delete in backups_to_delete: run('rm "%s"' % os.path.join(get_backups_root(), backup_to_delete)) print("%d backups deleted." % len(backups_to_delete)) else: print("No backups to delete.") def is_supported_db_engine(engine): return engine == 'django.db.backends.postgresql_psycopg2' # Environment handling stuff ############################ def get_environment_func(key, value): def load_environment(): env.update(value) env.environment = key load_environment.__name__ = key load_environment.__doc__ = "Definition of the %s environment." % key return load_environment def load_environments(environments): for (key, values) in environments.items(): globals()[key] = task(get_environment_func(key, values)) load_environments(ENVIRONMENTS)
the-stack_106_22421
# Copyright (C) 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Handles all requests relating to transferring ownership of volumes. """ import hashlib import hmac import os from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils import six from cinder.db import base from cinder import exception from cinder.i18n import _, _LE, _LI, _LW from cinder import quota from cinder.volume import api as volume_api from cinder.volume import utils as volume_utils volume_transfer_opts = [ cfg.IntOpt('volume_transfer_salt_length', default=8, help='The number of characters in the salt.'), cfg.IntOpt('volume_transfer_key_length', default=16, help='The number of characters in the ' 'autogenerated auth key.'), ] CONF = cfg.CONF CONF.register_opts(volume_transfer_opts) LOG = logging.getLogger(__name__) QUOTAS = quota.QUOTAS class API(base.Base): """API for interacting volume transfers.""" def __init__(self, db_driver=None): self.volume_api = volume_api.API() super(API, self).__init__(db_driver) def get(self, context, transfer_id): rv = self.db.transfer_get(context, transfer_id) return dict(rv) def delete(self, context, transfer_id): """Make the RPC call to delete a volume transfer.""" volume_api.check_policy(context, 'delete_transfer') transfer = self.db.transfer_get(context, transfer_id) volume_ref = self.db.volume_get(context, transfer.volume_id) volume_utils.notify_about_volume_usage(context, volume_ref, "transfer.delete.start") if volume_ref['status'] != 'awaiting-transfer': LOG.error(_LE("Volume in unexpected state")) self.db.transfer_destroy(context, transfer_id) volume_utils.notify_about_volume_usage(context, volume_ref, "transfer.delete.end") def get_all(self, context, filters=None): filters = filters or {} volume_api.check_policy(context, 'get_all_transfers') if context.is_admin and 'all_tenants' in filters: transfers = self.db.transfer_get_all(context) else: transfers = self.db.transfer_get_all_by_project(context, context.project_id) return transfers def _get_random_string(self, length): """Get a random hex string of the specified length.""" rndstr = "" # Note that the string returned by this function must contain only # characters that the recipient can enter on their keyboard. The # function ssh224().hexdigit() achieves this by generating a hash # which will only contain hexidecimal digits. while len(rndstr) < length: rndstr += hashlib.sha224(os.urandom(255)).hexdigest() return rndstr[0:length] def _get_crypt_hash(self, salt, auth_key): """Generate a random hash based on the salt and the auth key.""" if not isinstance(salt, (six.binary_type, six.text_type)): salt = str(salt) if isinstance(salt, six.text_type): salt = salt.encode('utf-8') if not isinstance(auth_key, (six.binary_type, six.text_type)): auth_key = str(auth_key) if isinstance(auth_key, six.text_type): auth_key = auth_key.encode('utf-8') return hmac.new(salt, auth_key, hashlib.sha1).hexdigest() def create(self, context, volume_id, display_name): """Creates an entry in the transfers table.""" volume_api.check_policy(context, 'create_transfer') LOG.info(_LI("Generating transfer record for volume %s"), volume_id) volume_ref = self.db.volume_get(context, volume_id) if volume_ref['status'] != "available": raise exception.InvalidVolume(reason=_("status must be available")) volume_utils.notify_about_volume_usage(context, volume_ref, "transfer.create.start") # The salt is just a short random string. salt = self._get_random_string(CONF.volume_transfer_salt_length) auth_key = self._get_random_string(CONF.volume_transfer_key_length) crypt_hash = self._get_crypt_hash(salt, auth_key) # TODO(ollie): Transfer expiry needs to be implemented. transfer_rec = {'volume_id': volume_id, 'display_name': display_name, 'salt': salt, 'crypt_hash': crypt_hash, 'expires_at': None} try: transfer = self.db.transfer_create(context, transfer_rec) except Exception: LOG.error(_LE("Failed to create transfer record " "for %s"), volume_id) raise volume_utils.notify_about_volume_usage(context, volume_ref, "transfer.create.end") return {'id': transfer['id'], 'volume_id': transfer['volume_id'], 'display_name': transfer['display_name'], 'auth_key': auth_key, 'created_at': transfer['created_at']} def accept(self, context, transfer_id, auth_key): """Accept a volume that has been offered for transfer.""" # We must use an elevated context to see the volume that is still # owned by the donor. volume_api.check_policy(context, 'accept_transfer') transfer = self.db.transfer_get(context.elevated(), transfer_id) crypt_hash = self._get_crypt_hash(transfer['salt'], auth_key) if crypt_hash != transfer['crypt_hash']: msg = (_("Attempt to transfer %s with invalid auth key.") % transfer_id) LOG.error(msg) raise exception.InvalidAuthKey(reason=msg) volume_id = transfer['volume_id'] vol_ref = self.db.volume_get(context.elevated(), volume_id) volume_utils.notify_about_volume_usage(context, vol_ref, "transfer.accept.start") try: reservations = QUOTAS.reserve(context, volumes=1, gigabytes=vol_ref['size']) except exception.OverQuota as e: overs = e.kwargs['overs'] usages = e.kwargs['usages'] quotas = e.kwargs['quotas'] def _consumed(name): return (usages[name]['reserved'] + usages[name]['in_use']) if 'gigabytes' in overs: msg = _LW("Quota exceeded for %(s_pid)s, tried to create " "%(s_size)sG volume (%(d_consumed)dG of " "%(d_quota)dG already consumed)") LOG.warning(msg, {'s_pid': context.project_id, 's_size': vol_ref['size'], 'd_consumed': _consumed('gigabytes'), 'd_quota': quotas['gigabytes']}) raise exception.VolumeSizeExceedsAvailableQuota( requested=vol_ref['size'], consumed=_consumed('gigabytes'), quota=quotas['gigabytes']) elif 'volumes' in overs: msg = _LW("Quota exceeded for %(s_pid)s, tried to create " "volume (%(d_consumed)d volumes " "already consumed)") LOG.warning(msg, {'s_pid': context.project_id, 'd_consumed': _consumed('volumes')}) raise exception.VolumeLimitExceeded(allowed=quotas['volumes']) try: donor_id = vol_ref['project_id'] donor_reservations = QUOTAS.reserve(context.elevated(), project_id=donor_id, volumes=-1, gigabytes=-vol_ref['size']) except Exception: donor_reservations = None LOG.exception(_LE("Failed to update quota donating volume" " transfer id %s"), transfer_id) try: # Transfer ownership of the volume now, must use an elevated # context. self.volume_api.accept_transfer(context, vol_ref, context.user_id, context.project_id) self.db.transfer_accept(context.elevated(), transfer_id, context.user_id, context.project_id) QUOTAS.commit(context, reservations) if donor_reservations: QUOTAS.commit(context, donor_reservations, project_id=donor_id) LOG.info(_LI("Volume %s has been transferred."), volume_id) except Exception: with excutils.save_and_reraise_exception(): QUOTAS.rollback(context, reservations) if donor_reservations: QUOTAS.rollback(context, donor_reservations, project_id=donor_id) vol_ref = self.db.volume_get(context, volume_id) volume_utils.notify_about_volume_usage(context, vol_ref, "transfer.accept.end") return {'id': transfer_id, 'display_name': transfer['display_name'], 'volume_id': vol_ref['id']}
the-stack_106_22422
import pytest import cftime from datetime import datetime from unittest.mock import Mock, call, patch, sentinel import unittest import iris import numpy as np from forest.drivers import gridded_forecast class Test_empty_image(unittest.TestCase): def test(self): result = gridded_forecast.empty_image() self.assertEqual(result.keys(), {'x', 'y', 'dw', 'dh', 'image', 'name', 'units', 'valid', 'initial', 'length', 'level'}) for value in result.values(): self.assertEqual(value, []) @patch('forest.drivers.gridded_forecast._to_datetime') class Test_coordinates(unittest.TestCase): def test_surface_and_times(self, to_datetime): valid = datetime(2019, 10, 10, 9) initial = datetime(2019, 10, 10, 3) to_datetime.side_effect = [valid, initial] result = gridded_forecast.coordinates(sentinel.valid, sentinel.initial, [], None) self.assertEqual(to_datetime.mock_calls, [call(sentinel.valid), call(sentinel.initial)]) self.assertEqual(result, {'valid': [valid], 'initial': [initial], 'length': ['T+6'], 'level': ['Surface']}) def test_surface_no_pressures(self, to_datetime): result = gridded_forecast.coordinates(None, None, [], 950) self.assertEqual(result['level'], ['Surface']) def test_surface_no_pressure(self, to_datetime): result = gridded_forecast.coordinates(None, None, [1000, 900], None) self.assertEqual(result['level'], ['Surface']) def test_pressure(self, to_datetime): result = gridded_forecast.coordinates(None, None, [1000, 900], 900) self.assertEqual(result['level'], ['900 hPa']) class Test_is_valid_cube(unittest.TestCase): def setUp(self): lon = iris.coords.DimCoord(range(5), 'longitude') lat = iris.coords.DimCoord(range(4), 'latitude') time = iris.coords.DimCoord(range(3), 'time') other = iris.coords.DimCoord(range(2), long_name='other') frt = iris.coords.AuxCoord(range(1), 'forecast_reference_time') cube = iris.cube.Cube(np.empty((2, 3, 4, 5)), 'air_temperature', dim_coords_and_dims=[(other, 0), (time, 1), (lat, 2), (lon, 3)], aux_coords_and_dims=[(frt, ())]) self.cube = cube def test_ok(self): cube = self.cube[0] self.assertTrue(gridded_forecast._is_valid_cube(cube)) def test_1d(self): cube = self.cube[0, 0, 0] self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_4d(self): cube = self.cube self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_2d_missing_time_coord(self): cube = self.cube[0, 0] cube.remove_coord(cube.coord('time')) self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_missing_frt_coord(self): cube = self.cube[0] cube.remove_coord(cube.coord('forecast_reference_time')) self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_missing_dim_coord(self): cube = self.cube[0] cube.remove_coord(cube.dim_coords[0]) self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_invalid_dim_coord(self): cube = self.cube[0] cube.dim_coords[2].rename('projection_x_coordinate') self.assertFalse(gridded_forecast._is_valid_cube(cube)) def test_transposed(self): cube = self.cube[0] cube.transpose() self.assertFalse(gridded_forecast._is_valid_cube(cube)) class Test_load(unittest.TestCase): @patch('forest.drivers.gridded_forecast._is_valid_cube') @patch('iris.load') def test_all_unique(self, load, is_valid_cube): cube1 = Mock(**{'name.return_value': 'foo'}) cube2 = Mock(**{'name.return_value': 'bar'}) load.return_value = [cube1, cube2] is_valid_cube.return_value = True result = gridded_forecast._load(sentinel.pattern) load.assert_called_once_with(sentinel.pattern) self.assertEqual(is_valid_cube.mock_calls, [call(cube1), call(cube2)]) self.assertEqual(result, {'foo': cube1, 'bar': cube2}) @patch('forest.drivers.gridded_forecast._is_valid_cube') @patch('iris.load') def test_duplicate_name(self, load, is_valid_cube): cube1 = Mock(**{'name.return_value': 'foo'}) cube2 = Mock(**{'name.return_value': 'foo'}) load.return_value = [cube1, cube2] is_valid_cube.return_value = True result = gridded_forecast._load(sentinel.pattern) load.assert_called_once_with(sentinel.pattern) self.assertEqual(is_valid_cube.mock_calls, [call(cube1), call(cube2)]) self.assertEqual(result, {'foo (1)': cube1, 'foo (2)': cube2}) @patch('forest.drivers.gridded_forecast._is_valid_cube') @patch('iris.load') def test_none_valid(self, load, is_valid_cube): load.return_value = ['foo', 'bar'] is_valid_cube.return_value = False with self.assertRaises(AssertionError): gridded_forecast._load(None) class Test_ImageLoader(unittest.TestCase): def test_init(self): result = gridded_forecast.ImageLoader(sentinel.label, sentinel.cubes) self.assertEqual(result._label, sentinel.label) self.assertEqual(result._cubes, sentinel.cubes) @patch('forest.drivers.gridded_forecast.empty_image') @patch('iris.Constraint') @patch('forest.drivers.gridded_forecast._to_datetime') def test_empty(self, to_datetime, constraint, empty_image): original_cube = Mock() original_cube.extract.return_value = None image_loader = gridded_forecast.ImageLoader(sentinel.label, {'foo': original_cube}) to_datetime.return_value = sentinel.valid_datetime constraint.return_value = sentinel.constraint empty_image.return_value = sentinel.empty_image result = image_loader.image( Mock(variable='foo', valid_time=sentinel.valid)) to_datetime.assert_called_once_with(sentinel.valid) constraint.assert_called_once_with(time=sentinel.valid_datetime) original_cube.extract.assert_called_once_with(sentinel.constraint) self.assertEqual(result, sentinel.empty_image) @patch('forest.drivers.gridded_forecast.coordinates') @patch('forest.geo.stretch_image') @patch('iris.Constraint') @patch('forest.drivers.gridded_forecast._to_datetime') def test_image(self, to_datetime, constraint, stretch_image, coordinates): cube = Mock() cube.coord.side_effect = [Mock(points=sentinel.longitudes), Mock(points=sentinel.latitudes)] cube.units.__str__ = lambda self: 'my-units' original_cube = Mock() original_cube.extract.return_value = cube image_loader = gridded_forecast.ImageLoader('my-label', {'foo': original_cube}) to_datetime.return_value = sentinel.valid_datetime constraint.return_value = sentinel.constraint stretch_image.return_value = {'stretched_image': True} coordinates.return_value = {'coordinates': True} state = Mock(variable='foo', valid_time=sentinel.valid, initial_time=sentinel.initial, pressures=sentinel.pressures, pressure=sentinel.pressure) result = image_loader.image(state) self.assertEqual(cube.coord.mock_calls, [call('longitude'), call('latitude')]) stretch_image.assert_called_once_with(sentinel.longitudes, sentinel.latitudes, cube.data) coordinates.assert_called_once_with(sentinel.valid, sentinel.initial, sentinel.pressures, sentinel.pressure) self.assertEqual(result, {'stretched_image': True, 'coordinates': True, 'name': ['my-label'], 'units': ['my-units']}) class Test_Navigator(unittest.TestCase): def test_init(self): result = gridded_forecast.Navigator(sentinel.cubes) self.assertEqual(result._cubes, sentinel.cubes) def test_variables(self): navigator = Mock(_cubes={'one': 1, 'two': 2, 'three': 3}) result = gridded_forecast.Navigator.variables(navigator, None) self.assertEqual(list(sorted(result)), ['one', 'three', 'two']) def test_initial_times(self): cube1 = Mock() cube1.coord.return_value.cell().point = '2019-10-18' cube2 = Mock() cube2.coord.return_value.cell().point = '2019-10-19' cube3 = Mock() cube3.coord.return_value.cell().point = '2019-10-18' navigator = Mock() navigator._cubes.values.return_value = [cube1, cube2, cube3] result = gridded_forecast.Navigator.initial_times(navigator, None, None) navigator._cubes.values.assert_called_once_with() cube1.coord.assert_called_once_with('forecast_reference_time') cube2.coord.assert_called_once_with('forecast_reference_time') cube3.coord.assert_called_once_with('forecast_reference_time') self.assertEqual(list(sorted(result)), ['2019-10-18', '2019-10-19']) def test_valid_times(self): cube1 = Mock() cube1.coord.return_value.cells.return_value = [Mock(point='p1'), Mock(point='p2')] navigator = Mock() navigator._cubes = {'first': cube1, 'second': None} result = gridded_forecast.Navigator.valid_times(navigator, None, 'first', None) cube1.coord.assert_called_once_with('time') self.assertEqual(result, ['p1', 'p2']) def test_pressures(self): cube1 = Mock() cube1.coord.return_value.cells.return_value = [Mock(point='p1'), Mock(point='p2')] navigator = Mock() navigator._cubes = {'first': cube1, 'second': None} result = gridded_forecast.Navigator.pressures(navigator, None, 'first', None) cube1.coord.assert_called_once_with('pressure') self.assertEqual(result, ['p1', 'p2']) def test_pressures_empty(self): cube1 = Mock() cube1.coord.side_effect = iris.exceptions.CoordinateNotFoundError navigator = Mock() navigator._cubes = {'first': cube1, 'second': None} result = gridded_forecast.Navigator.pressures(navigator, None, 'first', None) cube1.coord.assert_called_once_with('pressure') self.assertEqual(result, [])
the-stack_106_22423
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from xml.etree.ElementTree import ParseError import requests from lxml import etree from six import ensure_text from checks import AgentCheck from utils.util import _is_affirmative from . import metrics, validation class IbmWasCheck(AgentCheck): SERVICE_CHECK_CONNECT = "ibm_was.can_connect" METRIC_PREFIX = 'ibm_was' def __init__(self, name, init_config, instance, aggregator=None): super(IbmWasCheck, self).__init__(name, init_config, instance, aggregator) self.instance = instance self.metric_type_mapping = { 'AverageStatistic': self.gauge, 'BoundedRangeStatistic': self.gauge, 'CountStatistic': self.monotonic_count, 'DoubleStatistic': self.rate, 'RangeStatistic': self.gauge, 'TimeStatistic': self.gauge, } self.url = self.instance.get('servlet_url') self.custom_queries = self.instance.get('custom_queries', []) self.custom_queries_units_gauge = set(self.instance.get('custom_queries_units_gauge', [])) self.custom_tags = self.instance.get('tags', []) self.collect_stats = self.setup_configured_stats() self.nested_tags, self.metric_categories = self.append_custom_queries() self.custom_stats = set(self.nested_tags) self.service_check_tags = self.custom_tags + ['url:{}'.format(self.url)] # parse HTTP options username = self.instance.get('username') password = self.instance.get('password') tls_verify = _is_affirmative(self.instance.get('tls_verify', True)) tls_cert = self.instance.get('tls_cert') tls_private_key = self.instance.get('tls_private_key') tls_ca_cert = self.instance.get('tls_ca_cert') # http://docs.python-requests.org/en/master/user/authentication/ auth = None if username and password: auth = (username, password) # http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification verify = True if isinstance(tls_ca_cert, str): verify = tls_ca_cert elif not tls_verify: verify = False # http://docs.python-requests.org/en/master/user/advanced/#client-side-certificates cert = None if isinstance(tls_cert, str): if isinstance(tls_private_key, str): cert = (tls_cert, tls_private_key) else: cert = tls_cert self.http_options = {'auth': auth, 'cert': cert, 'verify': verify} def check(self, _): if not self.url: raise ValueError("Please specify a servlet_url in the configuration file") data = self.make_request() try: server_data_xml = etree.fromstring(data) except ParseError as e: self.submit_service_checks(AgentCheck.CRITICAL) self.log.error("Unable to parse the XML response: {}".format(e)) return node_list = self.get_node_from_root(server_data_xml, "Node") for node in node_list: server_list = self.get_node_from_root(node, 'Server') node_tags = list(self.custom_tags) node_tags.append('node:{}'.format(node.get('name'))) for server in server_list: server_tags = ['server:{}'.format(server.get('name'))] server_tags.extend(node_tags) for category, prefix in self.metric_categories.items(): self.log.debug("Collecting %s stats", category) if self.collect_stats.get(category): stats = self.get_node_from_name(server, category) self.process_stats(stats, prefix, server_tags) def get_node_from_name(self, xml_data, path): # XMLPath returns a list, but there should only be one element here since the function starts # the search within a given Node/Server data = xml_data.xpath('.//Stat[normalize-space(@name)="{}"]'.format(path)) if len(data): return data[0] else: self.warning('Error finding {} stats in XML output.'.format(path)) return [] def get_node_from_root(self, xml_data, path): return xml_data.findall(path) def process_stats(self, stats, prefix, tags, recursion_level=0): """ The XML will have Stat Nodes and Nodes that contain the metrics themselves This code recursively goes through each Stat Node to properly setup tags where each Stat will have a different tag key depending on the context. """ for child in stats: if child.tag in metrics.METRIC_VALUE_FIELDS: self.submit_metrics(child, prefix, tags) elif child.tag in metrics.CATEGORY_FIELDS: tag_list = self.nested_tags.get(prefix) if tag_list and len(tag_list) > recursion_level: recursion_tags = tags + ['{}:{}'.format(tag_list[recursion_level], child.get('name'))] else: recursion_tags = tags self.process_stats(child, prefix, recursion_tags, recursion_level + 1) def submit_metrics(self, child, prefix, tags): value = child.get(metrics.METRIC_VALUE_FIELDS[child.tag]) metric_name = self.normalize( ensure_text(child.get('name')), prefix='{}.{}'.format(self.METRIC_PREFIX, prefix), fix_case=True ) tag = child.tag if ( child.get('unit') in self.custom_queries_units_gauge and prefix in self.custom_stats and tag == 'CountStatistic' ): tag = 'TimeStatistic' self.metric_type_mapping[tag](metric_name, value, tags=tags) # creates new JVM metrics correctly as gauges if prefix == "jvm": jvm_metric_name = "{}_gauge".format(metric_name) self.gauge(jvm_metric_name, value, tags=tags) def make_request(self): try: resp = requests.get(self.url, **self.http_options) resp.raise_for_status() self.submit_service_checks(AgentCheck.OK) except (requests.HTTPError, requests.ConnectionError) as e: self.warning( "Couldn't connect to URL: {} with exception: {}. Please verify the address is reachable".format(self.url, e) ) self.submit_service_checks(AgentCheck.CRITICAL) raise e return resp.content def submit_service_checks(self, value): self.gauge(self.SERVICE_CHECK_CONNECT, 1 if value == AgentCheck.OK else 0, tags=list(self.service_check_tags)) self.service_check(self.SERVICE_CHECK_CONNECT, value, tags=list(self.service_check_tags)) def append_custom_queries(self): custom_recursion_tags = {} custom_metric_categories = {} for query in self.custom_queries: validation.validate_query(query) custom_metric_categories[query['stat']] = query['metric_prefix'] custom_recursion_tags[query['metric_prefix']] = [key for key in query.get('tag_keys', [])] self.collect_stats[query['stat']] = True return ( dict(metrics.NESTED_TAGS, **custom_recursion_tags), dict(metrics.METRIC_CATEGORIES, **custom_metric_categories), ) def setup_configured_stats(self): collect_stats = {} for category, prefix in metrics.METRIC_CATEGORIES.items(): if _is_affirmative(self.instance.get('collect_{}_stats'.format(prefix), True)): collect_stats[category] = True return collect_stats
the-stack_106_22425
#!/usr/bin/env python import sys import os from setuptools import setup, find_packages, __version__ v = sys.version_info if sys.version_info < (3, 5): msg = "FAIL: Requires Python 3.5 or later, " \ "but setup.py was run using {}.{}.{}" v = sys.version_info print(msg.format(v.major, v.minor, v.micro)) # noinspection PyPackageRequirements print("NOTE: Installation failed. Run setup.py using python3") sys.exit(1) try: SETUP_DIRNAME = os.path.dirname(__file__) except NameError: # We're probably being frozen, and __file__ triggered this NameError # Work around this SETUP_DIRNAME = os.path.dirname(sys.argv[0]) if SETUP_DIRNAME != '': os.chdir(SETUP_DIRNAME) SETUP_DIRNAME = os.path.abspath(SETUP_DIRNAME) METADATA = os.path.join(SETUP_DIRNAME, 'indy_node', '__metadata__.py') # Load the metadata using exec() so we don't trigger an import of # ioflo.__init__ exec(compile(open(METADATA).read(), METADATA, 'exec')) BASE_DIR = os.path.join(os.path.expanduser("~"), ".indy") LOG_DIR = os.path.join(BASE_DIR, "log") CONFIG_FILE = os.path.join(BASE_DIR, "indy_config.py") tests_require = ['pytest', 'pytest-xdist', 'python3-indy==1.3.1-dev-403'] setup( name='indy-node-dev', version=__version__, description='Indy node', url='https://github.com/hyperledger/indy-node', author=__author__, author_email='[email protected]', license=__license__, keywords='Indy Node', packages=find_packages(exclude=['docs', 'docs*']) + [ 'data'], package_data={ '': ['*.txt', '*.md', '*.rst', '*.json', '*.conf', '*.html', '*.css', '*.ico', '*.png', 'LICENSE', 'LEGAL', '*.indy']}, include_package_data=True, data_files=[( (BASE_DIR, ['data/nssm_original.exe']) )], install_requires=['indy-plenum-dev==1.2.305', 'indy-anoncreds-dev==1.0.32', 'python-dateutil', 'timeout-decorator'], setup_requires=['pytest-runner'], extras_require={ 'tests': tests_require }, tests_require=tests_require, scripts=['scripts/indy', 'scripts/change_node_ha', 'scripts/add_new_node', 'scripts/reset_client', 'scripts/start_indy_node', 'scripts/start_node_control_tool', 'scripts/clear_node.py', 'scripts/get_keys', 'scripts/generate_indy_pool_transactions', 'scripts/init_indy_keys', 'scripts/upgrade_indy_node_ubuntu1604.sh', 'scripts/upgrade_indy_node_ubuntu1604_test.sh', 'scripts/upgrade_indy_node.bat', 'scripts/upgrade_indy_node_test.bat', 'scripts/restart_indy_node_ubuntu1604.sh', 'scripts/restart_indy_node.bat', 'scripts/restart_sovrin_node_ubuntu1604.sh', 'scripts/complete_rebranding_upgrade_ubuntu1604.sh', 'scripts/install_indy_node.bat', 'scripts/delete_indy_node.bat', 'scripts/restart_upgrade_agent.bat', 'scripts/install_nssm.bat', 'scripts/read_ledger', 'scripts/test_some_write_keys_others_read_them', 'scripts/test_users_write_and_read_own_keys', 'scripts/validator-info', 'scripts/init_bls_keys', 'scripts/enable_bls', 'scripts/create_dirs.sh', 'scripts/indy_old_cli_export_dids', 'scripts/setup_iptables', 'scripts/setup_indy_node_iptables'] )
the-stack_106_22428
from collections import deque import gym import gym_minigrid import numpy as np import sys import unittest import ray from ray import tune from ray.rllib.agents.callbacks import DefaultCallbacks import ray.rllib.agents.ppo as ppo from ray.rllib.utils.test_utils import check_learning_achieved, \ framework_iterator from ray.rllib.utils.numpy import one_hot from ray.tune import register_env class MyCallBack(DefaultCallbacks): def __init__(self): super().__init__() self.deltas = [] def on_postprocess_trajectory(self, *, worker, episode, agent_id, policy_id, policies, postprocessed_batch, original_batches, **kwargs): pos = np.argmax(postprocessed_batch["obs"], -1) x, y = pos % 8, pos // 8 self.deltas.extend((x**2 + y**2)**0.5) def on_sample_end(self, *, worker, samples, **kwargs): print("mean. distance from origin={}".format(np.mean(self.deltas))) self.deltas = [] class OneHotWrapper(gym.core.ObservationWrapper): def __init__(self, env, vector_index, framestack): super().__init__(env) self.framestack = framestack # 49=7x7 field of vision; 11=object types; 6=colors; 3=state types. # +4: Direction. self.single_frame_dim = 49 * (11 + 6 + 3) + 4 self.init_x = None self.init_y = None self.x_positions = [] self.y_positions = [] self.x_y_delta_buffer = deque(maxlen=100) self.vector_index = vector_index self.frame_buffer = deque(maxlen=self.framestack) for _ in range(self.framestack): self.frame_buffer.append(np.zeros((self.single_frame_dim, ))) self.observation_space = gym.spaces.Box( 0.0, 1.0, shape=(self.single_frame_dim * self.framestack, ), dtype=np.float32) def observation(self, obs): # Debug output: max-x/y positions to watch exploration progress. if self.step_count == 0: for _ in range(self.framestack): self.frame_buffer.append(np.zeros((self.single_frame_dim, ))) if self.vector_index == 0: if self.x_positions: max_diff = max( np.sqrt((np.array(self.x_positions) - self.init_x)**2 + (np.array(self.y_positions) - self.init_y)**2)) self.x_y_delta_buffer.append(max_diff) print("100-average dist travelled={}".format( np.mean(self.x_y_delta_buffer))) self.x_positions = [] self.y_positions = [] self.init_x = self.agent_pos[0] self.init_y = self.agent_pos[1] # Are we carrying the key? # if self.carrying is not None: # print("Carrying KEY!!") self.x_positions.append(self.agent_pos[0]) self.y_positions.append(self.agent_pos[1]) # One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten. objects = one_hot(obs[:, :, 0], depth=11) colors = one_hot(obs[:, :, 1], depth=6) states = one_hot(obs[:, :, 2], depth=3) # Is the door we see open? # for x in range(7): # for y in range(7): # if objects[x, y, 4] == 1.0 and states[x, y, 0] == 1.0: # print("Door OPEN!!") all_ = np.concatenate([objects, colors, states], -1) all_flat = np.reshape(all_, (-1, )) direction = one_hot( np.array(self.agent_dir), depth=4).astype(np.float32) single_frame = np.concatenate([all_flat, direction]) self.frame_buffer.append(single_frame) return np.concatenate(self.frame_buffer) def env_maker(config): name = config.get("name", "MiniGrid-Empty-5x5-v0") framestack = config.get("framestack", 4) env = gym.make(name) # Only use image portion of observation (discard goal and direction). env = gym_minigrid.wrappers.ImgObsWrapper(env) env = OneHotWrapper( env, config.vector_index if hasattr(config, "vector_index") else 0, framestack=framestack) return env register_env("mini-grid", env_maker) CONV_FILTERS = [[16, [11, 11], 3], [32, [9, 9], 3], [64, [5, 5], 3]] class TestCuriosity(unittest.TestCase): @classmethod def setUpClass(cls): ray.init(num_cpus=3) @classmethod def tearDownClass(cls): ray.shutdown() def test_curiosity_on_frozen_lake(self): config = ppo.DEFAULT_CONFIG.copy() # A very large frozen-lake that's hard for a random policy to solve # due to 0.0 feedback. config["env"] = "FrozenLake-v1" config["env_config"] = { "desc": [ "SFFFFFFF", "FFFFFFFF", "FFFFFFFF", "FFFFFFFF", "FFFFFFFF", "FFFFFFFF", "FFFFFFFF", "FFFFFFFG", ], "is_slippery": False } # Print out observations to see how far we already get inside the Env. config["callbacks"] = MyCallBack # Limit horizon to make it really hard for non-curious agent to reach # the goal state. config["horizon"] = 16 # Local only. config["num_workers"] = 0 config["lr"] = 0.001 num_iterations = 10 for _ in framework_iterator(config, frameworks=("tf", "torch")): # W/ Curiosity. Expect to learn something. config["exploration_config"] = { "type": "Curiosity", "eta": 0.2, "lr": 0.001, "feature_dim": 128, "feature_net_config": { "fcnet_hiddens": [], "fcnet_activation": "relu", }, "sub_exploration": { "type": "StochasticSampling", } } trainer = ppo.PPOTrainer(config=config) learnt = False for i in range(num_iterations): result = trainer.train() print(result) if result["episode_reward_max"] > 0.0: print("Reached goal after {} iters!".format(i)) learnt = True break trainer.stop() self.assertTrue(learnt) # Disable this check for now. Add too much flakyness to test. # if fw == "tf": # # W/o Curiosity. Expect to learn nothing. # print("Trying w/o curiosity (not expected to learn).") # config["exploration_config"] = { # "type": "StochasticSampling", # } # trainer = ppo.PPOTrainer(config=config) # rewards_wo = 0.0 # for _ in range(num_iterations): # result = trainer.train() # rewards_wo += result["episode_reward_mean"] # print(result) # trainer.stop() # self.assertTrue(rewards_wo == 0.0) # print("Did not reach goal w/o curiosity!") def test_curiosity_on_partially_observable_domain(self): config = ppo.DEFAULT_CONFIG.copy() config["env"] = "mini-grid" config["env_config"] = { # Also works with: # - MiniGrid-MultiRoom-N4-S5-v0 # - MiniGrid-MultiRoom-N2-S4-v0 "name": "MiniGrid-Empty-8x8-v0", "framestack": 1, # seems to work even w/o framestacking } config["horizon"] = 15 # Make it impossible to reach goal by chance. config["num_envs_per_worker"] = 4 config["model"]["fcnet_hiddens"] = [256, 256] config["model"]["fcnet_activation"] = "relu" config["num_sgd_iter"] = 8 config["num_workers"] = 0 config["exploration_config"] = { "type": "Curiosity", # For the feature NN, use a non-LSTM fcnet (same as the one # in the policy model). "eta": 0.1, "lr": 0.0003, # 0.0003 or 0.0005 seem to work fine as well. "feature_dim": 64, # No actual feature net: map directly from observations to feature # vector (linearly). "feature_net_config": { "fcnet_hiddens": [], "fcnet_activation": "relu", }, "sub_exploration": { "type": "StochasticSampling", } } min_reward = 0.001 stop = { "training_iteration": 25, "episode_reward_mean": min_reward, } for _ in framework_iterator(config, frameworks="torch"): # To replay: # trainer = ppo.PPOTrainer(config=config) # trainer.restore("[checkpoint file]") # env = env_maker(config["env_config"]) # s = env.reset() # for _ in range(10000): # s, r, d, _ = env.step(trainer.compute_single_action(s)) # if d: # s = env.reset() # env.render() results = tune.run("PPO", config=config, stop=stop, verbose=1) check_learning_achieved(results, min_reward) iters = results.trials[0].last_result["training_iteration"] print("Reached in {} iterations.".format(iters)) # config_wo = config.copy() # config_wo["exploration_config"] = {"type": "StochasticSampling"} # stop_wo = stop.copy() # stop_wo["training_iteration"] = iters # results = tune.run( # "PPO", config=config_wo, stop=stop_wo, verbose=1) # try: # check_learning_achieved(results, min_reward) # except ValueError: # print("Did not learn w/o curiosity (expected).") # else: # raise ValueError("Learnt w/o curiosity (not expected)!") if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
the-stack_106_22430
# -*- coding: utf-8 -*- import re, json, glob, argparse from gensim.corpora import WikiCorpus, Dictionary from gensim.utils import to_unicode """ Creates a corpus from Wikipedia dump file. Inspired by: https://www.kdnuggets.com/2017/11/building-wikipedia-text-corpus-nlp.html """ def make_corpus(in_f, out_f): """Convert Wikipedia xml dump file to text corpus""" output = open(out_f, 'w', encoding = "utf-8") wiki = WikiCorpus(in_f, tokenizer_func=tokenize, dictionary=Dictionary()) i = 0 for text in wiki.get_texts(): output.write(bytes(' '.join(text), 'utf-8').decode('utf-8') + '\n') i = i + 1 if (i % 10000 == 0): print('Processed ' + str(i) + ' articles') output.close() print('Processing complete!') WIKI_REMOVE_CHARS = re.compile("'+|(=+.{2,30}=+)|__TOC__|(ファイル:).+|:(en|de|it|fr|es|kr|zh|no|fi):|\n", re.UNICODE) WIKI_SPACE_CHARS = re.compile("(\\s|゙|゚| )+", re.UNICODE) EMAIL_PATTERN = re.compile("(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", re.UNICODE) URL_PATTERN = re.compile("(ftp|http|https)?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+", re.UNICODE) WIKI_REMOVE_TOKEN_CHARS = re.compile("(\\*$|:$|^파일:.+|^;)", re.UNICODE) MULTIPLE_SPACES = re.compile(' +', re.UNICODE) def tokenize(content, token_min_len=2, token_max_len=100, lower=True): content = re.sub(EMAIL_PATTERN, ' ', content) # remove email pattern content = re.sub(URL_PATTERN, ' ', content) # remove url pattern content = re.sub(WIKI_REMOVE_CHARS, ' ', content) # remove unnecessary chars content = re.sub(WIKI_SPACE_CHARS, ' ', content) content = re.sub(MULTIPLE_SPACES, ' ', content) tokens = content.replace(", )", "").split(" ") result = [] for token in tokens: if not token.startswith('_'): token_candidate = to_unicode(re.sub(WIKI_REMOVE_TOKEN_CHARS, '', token)) else: token_candidate = "" if len(token_candidate) > 0: result.append(token_candidate) return result def process_nsmc(corpus_path, output_fname, process_json=True, with_label=True): if process_json: file_paths = glob.glob(corpus_path + "/*") with open(output_fname, 'w', encoding='utf-8') as f: for path in file_paths: contents = json.load(open(path)) for content in contents: sentence = content['review'].strip() if len(sentence) > 0: f.writelines(sentence + "\u241E" + content['movie_id'] + "\n") else: with open(corpus_path, 'r', encoding='utf-8') as f1, \ open(output_fname, 'w', encoding='utf-8') as f2: next(f1) # skip head line for line in f1: _, sentence, label = line.strip().split('\t') if not sentence: continue if with_label: f2.writelines(sentence + "\u241E" + label + "\n") else: f2.writelines(sentence + "\n") def process_korQuAD(corpus_fname, output_fname): with open(corpus_fname) as f1, open(output_fname, 'w', encoding='utf-8') as f2: dataset_json = json.load(f1) dataset = dataset_json['data'] for article in dataset: w_lines = [] for paragraph in article['paragraphs']: w_lines.append(paragraph['context']) for qa in paragraph['qas']: q_text = qa['question'] for a in qa['answers']: a_text = a['text'] w_lines.append(q_text + " " + a_text) for line in w_lines: f2.writelines(line + "\n") def process_documents(corpus_fname, output_fname): with open(corpus_fname) as f1, open(output_fname, 'w', encoding='utf-8') as f2: for line in f1: sentences = re.split("(?<=[.!?])\s+", line.strip()) for sentence in sentences: f2.writelines(sentence + "\n") f2.writelines("\n") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--preprocess_mode', type=str, help='preprocess mode') parser.add_argument('--input_path', type=str, help='Location of input files') parser.add_argument('--output_path', type=str, help='Location of output files') parser.add_argument('--with_label', help='with label', type=str, default="False") args = parser.parse_args() if args.preprocess_mode == "wiki": make_corpus(args.input_path, args.output_path) elif "nsmc" in args.preprocess_mode: process_nsmc(args.input_path, args.output_path, "json" in args.preprocess_mode, args.with_label.lower() == "true") elif args.preprocess_mode == "korquad": process_korQuAD(args.input_path, args.output_path) elif args.preprocess_mode == "process-documents": process_documents(args.input_path, args.output_path)
the-stack_106_22435
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from fvcore.common.timer import Timer from detectron2.structures import BoxMode from fvcore.common.file_io import PathManager from detectron2.data import DatasetCatalog, MetadataCatalog from .lvis_v0_5_categories import LVIS_CATEGORIES """ This file contains functions to parse LVIS-format annotations into dicts in the "Detectron2 format". """ logger = logging.getLogger(__name__) __all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"] def register_lvis_instances(name, metadata, json_file, image_root): """ Register a dataset in LVIS's json annotation format for instance detection and segmentation. Args: name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train". metadata (dict): extra metadata associated with this dataset. It can be an empty dict. json_file (str): path to the json instance annotation file. image_root (str): directory which contains all the images. """ DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name)) MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata ) def load_lvis_json(json_file, image_root, dataset_name=None): """ Load a json file in LVIS's annotation format. Args: json_file (str): full path to the LVIS json annotation file. image_root (str): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). If provided, this function will put "thing_classes" into the metadata associated with this dataset. Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) Notes: 1. This function does not read the image files. The results do not have the "image" field. """ from lvis import LVIS json_file = PathManager.get_local_path(json_file) timer = Timer() lvis_api = LVIS(json_file) if timer.seconds() > 1: logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) if dataset_name is not None: meta = get_lvis_instances_meta(dataset_name) MetadataCatalog.get(dataset_name).set(**meta) # sort indices for reproducible results img_ids = sorted(lvis_api.imgs.keys()) # imgs is a list of dicts, each looks something like: # {'license': 4, # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', # 'file_name': 'COCO_val2014_000000001268.jpg', # 'height': 427, # 'width': 640, # 'date_captured': '2013-11-17 05:57:24', # 'id': 1268} imgs = lvis_api.load_imgs(img_ids) # anns is a list[list[dict]], where each dict is an annotation # record for an object. The inner list enumerates the objects in an image # and the outer list enumerates over images. Example of anns[0]: # [{'segmentation': [[192.81, # 247.09, # ... # 219.03, # 249.06]], # 'area': 1035.749, # 'image_id': 1268, # 'bbox': [192.81, 224.8, 74.73, 33.43], # 'category_id': 16, # 'id': 42986}, # ...] anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] # Sanity check that each annotation has a unique id ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique".format( json_file ) imgs_anns = list(zip(imgs, anns)) logger.info("Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file)) dataset_dicts = [] for (img_dict, anno_dict_list) in imgs_anns: record = {} file_name = img_dict["file_name"] if img_dict["file_name"].startswith("COCO"): # Convert form the COCO 2014 file naming convention of # COCO_[train/val/test]2014_000000000000.jpg to the 2017 naming convention of # 000000000000.jpg (LVIS v1 will fix this naming issue) file_name = file_name[-16:] record["file_name"] = os.path.join(image_root, file_name) record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) record["neg_category_ids"] = img_dict.get("neg_category_ids", []) image_id = record["image_id"] = img_dict["id"] objs = [] for anno in anno_dict_list: # Check that the image_id in this annotation is the same as # the image_id we're looking at. # This fails only when the data parsing logic or the annotation file is buggy. assert anno["image_id"] == image_id obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} obj["category_id"] = anno["category_id"] - 1 # Convert 1-indexed to 0-indexed segm = anno["segmentation"] # list[list[float]] # filter out invalid polygons (< 3 points) valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] assert len(segm) == len( valid_segm ), "Annotation contains an invalid polygon with < 3 points" assert len(segm) > 0 obj["segmentation"] = segm objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts def get_lvis_instances_meta(dataset_name): """ Load LVIS metadata. Args: dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5"). Returns: dict: LVIS metadata with keys: thing_classes """ if "v0.5" in dataset_name: return _get_lvis_instances_meta_v0_5() # There will be a v1 in the future # elif dataset_name == "lvis_v1": # return get_lvis_instances_meta_v1() raise ValueError("No built-in metadata for dataset {}".format(dataset_name)) def _get_lvis_instances_meta_v0_5(): assert len(LVIS_CATEGORIES) == 1230 cat_ids = [k["id"] for k in LVIS_CATEGORIES] assert min(cat_ids) == 1 and max(cat_ids) == len( cat_ids ), "Category ids are not in [1, #categories], as expected" # Ensure that the category list is sorted by id lvis_categories = sorted(LVIS_CATEGORIES, key=lambda x: x["id"]) thing_classes = [k["synonyms"][0] for k in lvis_categories] meta = {"thing_classes": thing_classes} return meta if __name__ == "__main__": """ Test the LVIS json dataset loader. Usage: python -m detectron2.data.datasets.lvis \ path/to/json path/to/image_root dataset_name vis_limit """ import sys import numpy as np from detectron2.utils.logger import setup_logger from PIL import Image import detectron2.data.datasets # noqa # add pre-defined metadata from detectron2.utils.visualizer import Visualizer logger = setup_logger(name=__name__) meta = MetadataCatalog.get(sys.argv[3]) dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3]) logger.info("Done loading {} samples.".format(len(dicts))) dirname = "lvis-data-vis" os.makedirs(dirname, exist_ok=True) for d in dicts[: int(sys.argv[4])]: img = np.array(Image.open(d["file_name"])) visualizer = Visualizer(img, metadata=meta) vis = visualizer.draw_dataset_dict(d) fpath = os.path.join(dirname, os.path.basename(d["file_name"])) vis.save(fpath)
the-stack_106_22438
from typing import Any, Dict, List, Optional import attr import numpy as np import habitat_sim.agent import habitat_sim.bindings as hsim from habitat_sim import errors, utils @attr.s(auto_attribs=True) class GreedyGeodesicFollower(object): r"""Greedily fits actions to follow the geodesic shortest path Args: pathfinder (hsim.PathFinder): Instance of the pathfinder that has the correct navmesh already loaded agent (habitat_sim.agent.Agent): Agent to fit actions for. This agent's current configuration is used to specify the actions. The fitted actions will also correspond to keys in the agents action_space. `None` is used to signify that the goal location has been reached goal_radius (Optional[float]): Specifies how close the agent must get to the goal in order for it to be considered reached. If `None`, 0.75 times the agents step size is used. """ pathfinder: hsim.PathFinder agent: habitat_sim.agent.Agent goal_radius: Optional[float] = attr.ib(default=None) action_mapping: Dict[hsim.GreedyFollowerCodes, Any] = attr.ib( init=False, factory=dict, repr=False ) impl: hsim.GreedyGeodesicFollowerImpl = attr.ib( init=False, default=None, repr=False ) forward_spec: habitat_sim.agent.ActuationSpec = attr.ib( init=False, default=None, repr=False ) left_spec: habitat_sim.agent.ActuationSpec = attr.ib( init=False, default=None, repr=False ) right_spec: habitat_sim.agent.ActuationSpec = attr.ib( init=False, default=None, repr=False ) def __attrs_post_init__(self): self.action_mapping[hsim.GreedyFollowerCodes.STOP] = None key, spec = self._find_action("move_forward") self.forward_spec = spec self.action_mapping[hsim.GreedyFollowerCodes.FORWARD] = key key, spec = self._find_action("turn_left") self.left_spec = spec self.action_mapping[hsim.GreedyFollowerCodes.LEFT] = key key, spec = self._find_action("turn_right") self.right_spec = spec self.action_mapping[hsim.GreedyFollowerCodes.RIGHT] = key if self.goal_radius is None: self.goal_radius = 0.75 * self.forward_spec.amount self.impl = hsim.GreedyGeodesicFollowerImpl( self.pathfinder, self._move_forward, self._turn_left, self._turn_right, self.goal_radius, self.forward_spec.amount, np.deg2rad(self.left_spec.amount), ) def _find_action(self, name): candidates = list( filter( lambda v: v[1].name == name, self.agent.agent_config.action_space.items(), ) ) assert ( len(candidates) == 1 ), f"Could not find an action spec corresponding to {name}" return candidates[0][0], candidates[0][1].actuation def _move_forward(self, obj: hsim.SceneNode): self.agent.controls(obj, "move_forward", self.forward_spec, True) def _turn_left(self, obj: hsim.SceneNode): self.agent.controls(obj, "turn_left", self.left_spec, True) def _turn_right(self, obj: hsim.SceneNode): self.agent.controls(obj, "turn_right", self.right_spec, True) def next_action_along(self, goal_pos: np.array) -> Any: r"""Find the next action to greedily follow the geodesic shortest path from the agent's current position to get to the goal Args: goal_pos (np.array): The position of the goal Returns: Any: the action to take """ state = self.agent.state next_act = self.impl.next_action_along( state.position, utils.quat_to_coeffs(state.rotation), goal_pos ) if next_act == hsim.GreedyFollowerCodes.ERROR: raise errors.GreedyFollowerError() else: return self.action_mapping[next_act] def find_path(self, goal_pos: np.array) -> List[Any]: r"""Finds the sequence actions that greedily follow the geodesic shortest path from the agent's current position to get to the goal. This is roughly equivilent to just calling `next_action_along` until it returns `None`, but is faster Args: goal_pos (np.array): The position of the goal Returns: List[Any]: The list of actions to take. Ends with `None` """ state = self.agent.state path = self.impl.find_path( state.position, utils.quat_to_coeffs(state.rotation), goal_pos ) if len(path) == 0: raise errors.GreedyFollowerError() path = list(map(lambda v: self.action_mapping[v], path)) return path
the-stack_106_22439
import random from hashlib import md5 from getpass import getpass import pickle import subprocess as sp def randomPass(): def randomString(): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' return ''.join(random.choice(letters) for i in range(4)) def randomNum(): return ''.join(str(random.randint(0,9)) for i in range(4)) return randomString()+'@'+randomNum() def Inscription(): def Inscription_(): Lname=input("Saisir votre nom: ").upper() Fname=input("Saisir votre prénom: ").upper() All=Lname+':'+Fname+':' F=open('personnes.txt','a') F.close() F=open('personnes.txt','r') for line in F: l=line.split(':') if (l[0]==Lname) and (l[1]==Fname): F.close() return False F.close() F=open('personnes.txt','a') F.write(All) F.close() return True if(Inscription_()==False) : print("vous etes deja inscrit.") return False F=open('personnes.txt','r+') i=0 for line in F: i+=1 if(i<10) : code='E00'+str(i) elif(i<100): code='E0'+str(i) else: code='E'+str(i) paswd=randomPass() F.write(code+':'+ str(md5(paswd.encode()).hexdigest())+':'+'OK'+'\n') F.close() print("inscription réussie\nVoici vos informations:\nLogin:",code,"\tPassword:",paswd) def Liste_Candidat(): F=open('candidats.txt','r') print("Liste des candidats: ") i=1 for line in F: l=line.split(':') l[-1]=l[-1][0:-1] print(l[0],"-->",l[1],l[2]) i+=1 print('C'+str(i),"--> blanc\n") F.close() def test_in(choice): c=[] C=open('candidats.txt','r') i=1 for line in C: i+=1 b=line.split(':') c.append(b[0]) c.append('C'+str(i)) C.close() if(choice not in c) : return False return True def Vote(): code=input("Saisir votre code(E...): ").upper() paswd=str(md5(getpass().encode()).hexdigest()) #paswd=str(md5(input("Saisir votre Mot de Passe: ").encode()).hexdigest()) F=open('personnes.txt','a') F.close() F=open('personnes.txt','r+') lines="" u=0 for line in F: l=line.split(':') if(l[-3]==code) and (l[-2]==paswd) : u=1 print("Bienvenue",l[1],l[0]) l[-1]=l[-1][0:-1] if(l[-1]!='OK') : return False Liste_Candidat() choice=input("quelle est votre choix? ").upper() while(test_in(choice)!=True) : choice=input("le choix que vous avez entré ne correspond a aucun code des candidats veuillez rentrez votre choix! ").upper() sure=input("Confirmer votre choix (Y/N): ").upper() while(sure!='Y') : if(sure == 'N') : choice=input("quelle est votre choix? ").upper() while(test_in(choice)!=True) : choice=input("le choix que vous avez entré ne correspond a aucun code des candidats veuillez rentrez votre choix! ").upper() sure=input("Confirmer votre choix (Y/N): ").upper() else: sure=input("Confirmer votre choix (Y/N): ").upper() l[-1]='NO' line=':'.join(l)+'\n' A=open('result.bin','rb') mypick=pickle.Unpickler(A) D=mypick.load() A.close() D[choice]+=1 A=open('result.bin','wb') mypick2=pickle.Pickler(A) mypick2.dump(D) A.close() lines=lines+line if(u==0) : print("code ou mot de passe incorrecte!") F.close() F=open('personnes.txt','w') F.write(lines) F.close() def Statistiques(): print("Résultat de l'élection: ") A=open('result.bin','rb') mypick=pickle.Unpickler(A) D=mypick.load() A.close() n=0 for k in D: n+=D[k] if(n==0) : n=1 A=open('candidats.txt','r') i=1 for lin in A: a=lin.split(':') print(a[1],a[2][0:-1],"-->",D['C'+str(i)],"votes",D['C'+str(i)]*100/n,"%") i+=1 A.close() print("blanc -->",D['C'+str(i)],"votes",D['C'+str(i)]*100/n,"\n") def clear_(): D=Dic_candidat() A=open('result.bin','wb') mypick2=pickle.Pickler(A) mypick2.dump(D) A.close() F=open('personnes.txt','r+') lines="" for line in F: l=line.split(':') l[-1]='OK' line=':'.join(l)+'\n' lines=lines+line F.close() F=open('personnes.txt','w') F.write(lines) F.close() def Dic_candidat(): c=[] C=open('candidats.txt','r') i=1 for line in C: i+=1 b=line.split(':') c.append(b[0]) c.append('C'+str(i)) C.close() D={} for e in c: D[e]=0 return D def prcp(): print("1)- Inscription\n2)- Liste codes --> candidat\n3)- Voter\n4)- Statistiques\n5)- Clear Result\n6)- Quitter") n=input() while(n!='6') : if(n=='1') : Inscription() input("\nappuyer sur ENTRER !!") elif(n=='2'): Liste_Candidat() input("\nappuyer sur ENTRER !!") elif(n=='3'): if(Vote()==False) : print("vous avez deja voté!!! ") input("\nappuyer sur ENTRER") elif(n=='4'): Statistiques() input("\nappuyer sur ENTRER !!") elif(n=='5'): clear_() else: print("veuillez entrer votre choix correctement !!!") for i in range(99999999): pass sp.call('cls',shell=True) print("1)- Inscription\n2)- Liste codes --> candidat\n3)- Voter\n4)- Statistiques\n5)- Clear Result\n6)- Quitter") n=input() prcp()
the-stack_106_22440
# Copyright 2012-2013 Eric Ptak - trouch.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import sleep from myDevices.utils.types import toint, signInteger from myDevices.devices.i2c import I2C from myDevices.devices.analog import ADC class ADS1X1X(ADC, I2C): VALUE = 0x00 CONFIG = 0x01 LO_THRESH = 0x02 HI_THRESH = 0x03 CONFIG_STATUS_MASK = 0x80 CONFIG_CHANNEL_MASK = 0x70 CONFIG_GAIN_MASK = 0x0E CONFIG_MODE_MASK = 0x01 def __init__(self, slave, channelCount, resolution, name): I2C.__init__(self, toint(slave)) ADC.__init__(self, channelCount, resolution, 4.096) self._analogMax = 2**(resolution-1) self.name = name config = self.readRegisters(self.CONFIG, 2) mode = 0 # continuous config[0] &= ~self.CONFIG_MODE_MASK config[0] |= mode gain = 0x1 # FS = +/- 4.096V config[0] &= ~self.CONFIG_GAIN_MASK config[0] |= gain << 1 self.writeRegisters(self.CONFIG, config) def __str__(self): return "%s(slave=0x%02X)" % (self.name, self.slave) def __analogRead__(self, channel, diff=False): config = self.readRegisters(self.CONFIG, 2) config[0] &= ~self.CONFIG_CHANNEL_MASK if diff: config[0] |= channel << 4 else: config[0] |= (channel + 4) << 4 self.writeRegisters(self.CONFIG, config) sleep(0.001) d = self.readRegisters(self.VALUE, 2) value = (d[0] << 8 | d[1]) >> (16-self._analogResolution) return signInteger(value, self._analogResolution) class ADS1014(ADS1X1X): def __init__(self, slave=0x48): ADS1X1X.__init__(self, slave, 1, 12, "ADS1014") class ADS1015(ADS1X1X): def __init__(self, slave=0x48): ADS1X1X.__init__(self, slave, 4, 12, "ADS1015") class ADS1114(ADS1X1X): def __init__(self, slave=0x48): ADS1X1X.__init__(self, slave, 1, 16, "ADS1114") class ADS1115(ADS1X1X): def __init__(self, slave=0x48): ADS1X1X.__init__(self, slave, 4, 16, "ADS1115")
the-stack_106_22442
#!/usr/bin/env python from ansible.module_utils.basic import * import sys import re from collections import defaultdict MODULE_FIELDS = { 'file': {'type': str, 'default': '/etc/hosts'}, 'hosts': {'type': set, 'required': True}, 'ips': {'type': set, 'required': True}, 'append': {'type': bool, 'required': True} } def read_hosts(file): hostsfile = defaultdict(set) with open(file, 'rU') as f: hostslines = [re.split(r'\s+', l.strip().split('#', 2)[0]) for l in f.readlines() if not l.startswith('#') and len(l.strip()) != 0] for h in hostslines: hostsfile[h[0]].update(h[1:]) return hostsfile def main(): module = AnsibleModule(argument_spec=MODULE_FIELDS) oldhostsfile = read_hosts(module.params['file']) hostsfile = defaultdict(set) if module.params['append']: hostsfile.update(oldhostsfile) hosts = module.params['hosts'] for ip in module.params['ips']: hostsfile[ip].update(hosts) changed = hostsfile != oldhostsfile if changed: with open(module.params['file'], 'w') as f: for ip in hostsfile: hostname = list(hostsfile[ip])[0] if hostname == '-': hostname = list(hostsfile[ip])[-1] f.write( f'{str(ip)}\t\t{ hostname }\n' ) module.exit_json(changed=changed, meta=hostsfile) if __name__ == '__main__': main()
the-stack_106_22443
# -*- coding: utf-8 -*- __author__ = "Ngoc Huynh Bao" __email__ = "[email protected]" import os import h5py import numpy as np import warnings from deoxys.keras.callbacks import CSVLogger from ..model.callbacks import DeoxysModelCheckpoint, PredictionCheckpoint, \ DBLogger from ..model import model_from_full_config, model_from_config, load_model from deoxys_vis import plot_log_performance_from_csv, mask_prediction, \ plot_images_w_predictions, read_csv from ..database import Tables, ExperimentAttr, HDF5Attr, SessionAttr, \ SessionStatus class Experiment: MODEL_PATH = '/model' MODEL_NAME = '/model.{epoch:03d}.h5' BEST_MODEL_PATH = '/best' PREDICTION_PATH = '/prediction' PREDICTION_NAME = '/prediction.{epoch:03d}.h5' LOG_FILE = '/logs.csv' PERFORMANCE_PATH = '/performance' PREDICTED_IMAGE_PATH = '/images' TEST_OUTPUT_PATH = '/test' PREDICT_TEST_NAME = '/prediction_test.h5' _max_size = 1 def __init__(self, log_base_path='logs', best_model_monitors='val_loss', best_model_modes='auto'): self.model = None self.architecture = None self.input_params = None self.model_params = None self.train_params = None self.data_reader = None self.weights_file = None self.log_base_path = log_base_path self.best_model_monitors = best_model_monitors if type( best_model_monitors) == list else [best_model_monitors] self.best_model_modes = best_model_modes if type( best_model_modes) == list else \ [best_model_modes] * len(best_model_monitors) for i, (monitor, mode) in enumerate(zip(self.best_model_monitors, self.best_model_modes)): if mode not in ['auto', 'min', 'max']: warnings.warn('ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.' % (mode), RuntimeWarning) mode = 'auto' if mode == 'auto': if 'acc' in monitor or \ monitor.startswith('fmeasure') or \ 'fbeta' in monitor: self.best_model_modes[i] = 'max' else: self.best_model_modes[i] = 'min' def from_full_config(self, file, weights_file=None, **kwargs): self.model = model_from_full_config(file, weights_file=weights_file, **kwargs) return self def from_config(self, architecture, input_params, model_params, train_params, dataset_params, weights_file=None): self.model = model_from_config(architecture, input_params, model_params, train_params, dataset_params, weights_file=weights_file) return self def from_file(self, filename): self.model = load_model(filename) return self def best_model(self): res = {} logger_path = self.log_base_path + self.LOG_FILE if os.path.isfile(logger_path): df = read_csv(logger_path, index_col='epoch', usecols=['epoch'] + self.best_model_monitors) min_df = df.min() min_epoch = df.idxmin() max_df = df.max() max_epoch = df.idxmax() for monitor, mode in zip(self.best_model_monitors, self.best_model_modes): if mode == 'min': val = min_df[monitor] epoch = min_epoch[monitor] else: val = max_df[monitor] epoch = max_epoch[monitor] res[monitor] = { 'best': { 'val': val, 'epoch': epoch + 1 }} else: warnings.warn('No log files to check for best model') return res def run_experiment(self, train_history_log=True, model_checkpoint_period=0, prediction_checkpoint_period=0, save_origin_images=False, verbose=1, epochs=None, initial_epoch=None, **custom_kwargs ): log_base_path = self.log_base_path if self._check_run(): if not os.path.exists(log_base_path): os.makedirs(log_base_path) kwargs = custom_kwargs or {} csv_logger_append = False if epochs: kwargs['epochs'] = epochs if initial_epoch: kwargs['initial_epoch'] = initial_epoch if initial_epoch > 0: csv_logger_append = True callbacks = [] if train_history_log: callback = self._create_logger(log_base_path, append=csv_logger_append) callbacks.append(callback) if model_checkpoint_period > 0: if not os.path.exists(log_base_path + self.MODEL_PATH): os.makedirs(log_base_path + self.MODEL_PATH) callback = self._create_model_checkpoint( log_base_path, period=model_checkpoint_period) callbacks.append(callback) if prediction_checkpoint_period > 0: if not os.path.exists(log_base_path + self.PREDICTION_PATH): os.makedirs(log_base_path + self.PREDICTION_PATH) callback = self._create_prediction_checkpoint( log_base_path, prediction_checkpoint_period, use_original=save_origin_images ) callbacks.append(callback) kwargs['callbacks'] = callbacks self.model.fit_train(**kwargs) return self def _plot_performance(self, log_base_path): if not os.path.exists(log_base_path + self.PERFORMANCE_PATH): os.makedirs(log_base_path + self.PERFORMANCE_PATH) if os.path.exists(log_base_path + self.LOG_FILE): print('\nPlotting performance metrics...') plot_log_performance_from_csv( filepath=log_base_path + self.LOG_FILE, output_path=log_base_path + self.PERFORMANCE_PATH) else: raise Warning('No log files for plotting performance') def plot_performance(self): log_base_path = self.log_base_path self._plot_performance(log_base_path) return self def _plot_prediction(self, log_base_path, masked_images, contour=True, base_image_name='x', truth_image_name='y', predicted_image_name='predicted', predicted_image_title_name='Image {index:05d}', img_name='{index:05d}.png'): if os.path.exists(log_base_path + self.PREDICTION_PATH): print('\nCreating prediction images...') # mask images prediced_image_path = log_base_path + self.PREDICTED_IMAGE_PATH if not os.path.exists(prediced_image_path): os.makedirs(prediced_image_path) for filename in os.listdir( log_base_path + self.PREDICTION_PATH): if filename.endswith(".h5") or filename.endswith(".hdf5"): # Create a folder for storing result in that period images_path = prediced_image_path + '/' + filename if not os.path.exists(images_path): os.makedirs(images_path) self._plot_predicted_images( data_path=log_base_path + self.PREDICTION_PATH + '/' + filename, out_path=images_path, images=masked_images, base_image_name=base_image_name, truth_image_name=truth_image_name, predicted_image_name=predicted_image_name, title=predicted_image_title_name, contour=contour, name=img_name) def plot_prediction(self, masked_images, contour=True, base_image_name='x', truth_image_name='y', predicted_image_name='predicted', predicted_image_title_name='Image {index:05d}', img_name='{index:05d}.png'): log_base_path = self.log_base_path self._plot_prediction( log_base_path, masked_images, contour=contour, base_image_name=base_image_name, truth_image_name=truth_image_name, predicted_image_name=predicted_image_name, predicted_image_title_name=predicted_image_title_name, img_name=img_name) return self def _predict_test(self, filepath, use_original_image=False): data_info = self.model.data_reader.test_generator.description total_size = np.product( data_info[0]['shape']) * data_info[0]['total'] / 1e9 # predict directly for data of size < max_size (1GB) if len(data_info) == 1 and total_size < self._max_size: predicted = self.model.predict_test(verbose=1) # Create the h5 file hf = h5py.File(filepath, 'w') hf.create_dataset('predicted', data=predicted) hf.close() if use_original_image: original_data = self.model.data_reader.original_test for key, val in original_data.items(): hf = h5py.File(filepath, 'a') hf.create_dataset(key, data=val) hf.close() else: # Create data from test_generator x = None y = None test_gen = self.model.data_reader.test_generator data_gen = test_gen.generate() for _ in range(test_gen.total_batch): next_x, next_y = next(data_gen) if x is None: x = next_x y = next_y else: x = np.concatenate((x, next_x)) y = np.concatenate((y, next_y)) hf = h5py.File(filepath, 'a') hf.create_dataset('x', data=x) hf.create_dataset('y', data=y) hf.close() # for large data of same size, predict each chunk elif len(data_info) == 1: test_gen = self.model.data_reader.test_generator data_gen = test_gen.generate() next_x, next_y = next(data_gen) predicted = self.model.predict(next_x, verbose=1) input_shape = (data_info[0]['total'],) + data_info[0]['shape'] input_chunks = (1,) + data_info[0]['shape'] target_shape = (data_info[0]['total'],) + next_y.shape[1:] target_chunks = (1,) + next_y.shape[1:] with h5py.File(filepath, 'w') as hf: hf.create_dataset('x', shape=input_shape, chunks=input_chunks, compression='gzip') hf.create_dataset('y', shape=target_shape, chunks=target_chunks, compression='gzip') hf.create_dataset('predicted', shape=target_shape, chunks=target_chunks, compression='gzip') with h5py.File(filepath, 'a') as hf: next_index = len(next_x) hf['x'][:next_index] = next_x hf['y'][:next_index] = next_y hf['predicted'][:next_index] = predicted for _ in range(test_gen.total_batch - 1): next_x, next_y = next(data_gen) predicted = self.model.predict(next_x, verbose=1) curr_index = next_index next_index = curr_index + len(next_x) with h5py.File(filepath, 'a') as hf: hf['x'][curr_index:next_index] = next_x hf['y'][curr_index:next_index] = next_y hf['predicted'][curr_index:next_index] = predicted # data of different size else: test_gen = self.model.data_reader.test_generator data_gen = test_gen.generate() for curr_info_idx, info in enumerate(data_info): next_x, next_y = next(data_gen) predicted = self.model.predict(next_x, verbose=1) input_shape = (info['total'],) + info['shape'] input_chunks = (1,) + info['shape'] target_shape = (info['total'],) + next_y.shape[1:] target_chunks = (1,) + next_y.shape[1:] if curr_info_idx == 0: mode = 'w' else: mode = 'a' with h5py.File(filepath, mode) as hf: hf.create_dataset(f'{curr_info_idx:02d}/x', shape=input_shape, chunks=input_chunks, compression='gzip') hf.create_dataset(f'{curr_info_idx:02d}/y', shape=target_shape, chunks=target_chunks, compression='gzip') hf.create_dataset(f'{curr_info_idx:02d}/predicted', shape=target_shape, chunks=target_chunks, compression='gzip') with h5py.File(filepath, 'a') as hf: next_index = len(next_x) hf[f'{curr_info_idx:02d}/x'][:next_index] = next_x hf[f'{curr_info_idx:02d}/y'][:next_index] = next_y hf[f'{curr_info_idx:02d}/predicted'][ :next_index] = predicted while next_index < info['total']: next_x, next_y = next(data_gen) predicted = self.model.predict(next_x, verbose=1) curr_index = next_index next_index = curr_index + len(next_x) with h5py.File(filepath, 'a') as hf: hf[f'{curr_info_idx:02d}/x'][ curr_index:next_index] = next_x hf[f'{curr_info_idx:02d}/y'][ curr_index:next_index] = next_y hf[f'{curr_info_idx:02d}/predicted'][ curr_index:next_index] = predicted def run_test(self, use_best_model=False, masked_images=None, use_original_image=False, contour=True, base_image_name='x', truth_image_name='y', predicted_image_name='predicted', image_name='{index:05d}.png', image_title_name='Image {index:05d}'): log_base_path = self.log_base_path test_path = log_base_path + self.TEST_OUTPUT_PATH if not os.path.exists(test_path): os.makedirs(test_path) if use_best_model: raise NotImplementedError else: score = self.model.evaluate_test(verbose=1) print(score) filepath = test_path + self.PREDICT_TEST_NAME self._predict_test(filepath, use_original_image=use_original_image) if masked_images: self._plot_predicted_images( data_path=filepath, out_path=test_path, images=masked_images, base_image_name=base_image_name, truth_image_name=truth_image_name, predicted_image_name=predicted_image_name, title=image_title_name, contour=contour, name=image_name) return self def run_lambda(self, lambda_fn, **kwargs): """ Custom action between experiments """ lambda_fn(self, **kwargs) return self def _create_logger(self, base_path, append=False): return CSVLogger(filename=base_path + self.LOG_FILE, append=append) def _create_model_checkpoint(self, base_path, period): return DeoxysModelCheckpoint( period=period, filepath=base_path + self.MODEL_PATH + self.MODEL_NAME) def _create_prediction_checkpoint(self, base_path, period, use_original): return PredictionCheckpoint( filepath=base_path + self.PREDICTION_PATH + self.PREDICTION_NAME, period=period, use_original=use_original) def _plot_predicted_images(self, data_path, out_path, images, contour=True, base_image_name='x', truth_image_name='y', predicted_image_name='predicted', title='Image {index:05d}', name='{index:05d}.png'): hf = h5py.File(data_path, 'r') keys = list(hf.keys()) while 'create_group' in dir(hf[keys[0]]): new_keys = [] for key in keys: new_keys.extend([f'{key}/{k}' for k in hf[key].keys()]) keys = new_keys for index in images: kwargs = {key: hf[key][index] for key in keys} if base_image_name not in kwargs: for key in kwargs: if key.endswith(base_image_name): break prefix = key[:-len(base_image_name)] base_image_name = prefix + base_image_name truth_image_name = prefix + truth_image_name predicted_image_name = prefix + predicted_image_name img_name = out_path + '/' + name.format(index=index, **kwargs) try: if contour: mask_prediction(img_name, image=kwargs[base_image_name], true_mask=kwargs[truth_image_name], pred_mask=kwargs[predicted_image_name], title=title.format(index=index, **kwargs)) else: plot_images_w_predictions( img_name, image=kwargs[base_image_name], true_mask=kwargs[truth_image_name], pred_mask=kwargs[predicted_image_name], title=title.format(index=index, **kwargs)) except Exception as e: print('An error occurred while plotting prediction', e) def _check_run(self): if self.model: if self.model._data_reader: if self.model.is_compiled: return True raise RuntimeError("Cannot run experiment with incomplete model") return False class ExperimentDB(Experiment): # pragma: no cover def __init__(self, dbclient, experiment_id=None, session_id=None, log_base_path='logs', best_model_monitors='val_loss', best_model_modes='auto'): """ An experiment logging performance to a database Parameters ---------- dbclient : deoxys.database.DBClient The database client experiment_id : str, int, or ObjectID the dbclient, optional Experiment id, by default None session_id : str, int, or ObjectID depending of the dbclient, optional Session id, by default None log_base_path : str, optional Base path to log files, by default 'logs' best_model_monitors : str, optional Attribute to monitor, by default 'val_loss' best_model_modes : str, optional One of 'max', 'min', 'auto', by default 'auto' Raises ------ ValueError When both `session_id` and `experiment_id` are not set """ super().__init__(log_base_path, best_model_monitors, best_model_modes) self.dbclient = dbclient if experiment_id is None and session_id is None: raise ValueError('"session_id" or "experiment_id" must be set') if session_id: last_model = self.dbclient.find_max(Tables.MODELS, { HDF5Attr.SESSION_ID: session_id}, HDF5Attr.EPOCH) self.curr_epoch = last_model[HDF5Attr.EPOCH] self.session = dbclient.find_by_id(Tables.SESSIONS, session_id) self._update_epoch(last_model[HDF5Attr.EPOCH]) self.from_file(last_model[HDF5Attr.FILE_LOCATION]) else: insert_res = dbclient.insert(Tables.SESSIONS, { SessionAttr.EXPERIMENT_ID: experiment_id, SessionAttr.CURRENT_EPOCH: 0, SessionAttr.STATUS: 'created' }, time_logs=True) self.session = self.dbclient.find_by_id( Tables.SESSIONS, insert_res.inserted_id) self.curr_epoch = 0 experiment_obj = self.dbclient.find_by_id( Tables.EXPERIMENTS, experiment_id) if ExperimentAttr.CONFIG in experiment_obj: self.from_full_config(experiment_obj[ExperimentAttr.CONFIG]) elif ExperimentAttr.SAVED_MODEL_LOC in experiment_obj: self.from_file(experiment_obj[ExperimentAttr.SAVED_MODEL_LOC]) self.log_base_path = os.path.join( log_base_path, str(self.dbclient.get_id(self.session))) def run_experiment(self, train_history_log=True, model_checkpoint_period=0, prediction_checkpoint_period=0, save_origin_images=False, verbose=1, epochs=None ): log_base_path = self.log_base_path if self._check_run(): if not os.path.exists(log_base_path): os.makedirs(log_base_path) kwargs = {} if epochs: kwargs['epochs'] = epochs + self.curr_epoch kwargs['initial_epoch'] = self.curr_epoch callbacks = [] if train_history_log: callback = self._create_logger(log_base_path, append=self.curr_epoch > 0) callbacks.append(callback) callback = self._create_db_logger() callbacks.append(callback) if model_checkpoint_period > 0: if not os.path.exists(log_base_path + self.MODEL_PATH): os.makedirs(log_base_path + self.MODEL_PATH) callback = self._create_model_checkpoint( log_base_path, period=model_checkpoint_period) callbacks.append(callback) if prediction_checkpoint_period > 0: if not os.path.exists(log_base_path + self.PREDICTION_PATH): os.makedirs(log_base_path + self.PREDICTION_PATH) callback = self._create_prediction_checkpoint( log_base_path, prediction_checkpoint_period, use_original=save_origin_images ) callbacks.append(callback) kwargs['callbacks'] = callbacks self._update_status(SessionStatus.TRAINING) try: self.model.fit_train(**kwargs) self.curr_epoch += epochs self._update_status(SessionStatus.FINISHED) self._update_epoch(self.curr_epoch) except Exception: self._update_status(SessionStatus.FAILED) return self def _create_db_logger(self): return DBLogger(self.dbclient, self.dbclient.get_id(self.session)) def _update_epoch(self, new_epoch): self.dbclient.update_by_id( Tables.SESSIONS, self.dbclient.get_id(self.session), {SessionAttr.CURRENT_EPOCH: new_epoch}, time_logs=True) def _update_status(self, new_status): self.dbclient.update_by_id( Tables.SESSIONS, self.dbclient.get_id(self.session), {SessionAttr.STATUS: new_status}, time_logs=True) def _create_model_checkpoint(self, base_path, period): return DeoxysModelCheckpoint( period=period, filepath=base_path + self.MODEL_PATH + self.MODEL_NAME, dbclient=self.dbclient, session=self.dbclient.get_id(self.session)) def _create_prediction_checkpoint(self, base_path, period, use_original): return PredictionCheckpoint( filepath=base_path + self.PREDICTION_PATH + self.PREDICTION_NAME, period=period, use_original=use_original, dbclient=self.dbclient, session=self.dbclient.get_id(self.session))
the-stack_106_22445
import tensorflow as tf import time, os, sys from py.fm_model import LocalFmModel, DistFmModel PREDICT_BATCH_SIZE = 10000 def _predict(sess, supervisor, is_master_worker, model, model_file, predict_files, score_path, need_to_init): with sess as sess: if is_master_worker: if need_to_init: sess.run(model.init_vars) if not os.path.exists(score_path): os.mkdir(score_path) model.saver.restore(sess, model_file) for fname in predict_files: sess.run(model.file_enqueue_op, feed_dict={model.epoch_id: 0, model.is_training: False, model.data_file: fname, model.weight_file: ''}) sess.run(model.file_close_queue_op) sess.run(model.set_model_loaded) try: while not sess.run(model.model_loaded): print('Waiting for the model to be loaded.') time.sleep(1) fid = 0 while True: _, _, fname, _ = sess.run(model.file_dequeue_op) score_file = score_path + '/' + os.path.basename(fname) + '.score' print('Start processing %s, scores written to %s ...' % (fname, score_file)) with open(score_file, 'w') as o: while True: pred_score, example_num = sess.run([model.pred_score, model.example_num], feed_dict={model.file_id: fid, model.data_file: fname, model.weight_file: ''}) if example_num == 0: break for score in pred_score: o.write(str(score) + '\n') fid += 1 except tf.errors.OutOfRangeError: pass except Exception as ex: if supervisor != None: supervisor.request_stop(ex) raise def dist_predict(ps_hosts, worker_hosts, job_name, task_idx, predict_files, vocabulary_size, vocabulary_block_num, hash_feature_id, factor_num, model_file, score_path): cluster = tf.train.ClusterSpec({'ps': ps_hosts, 'worker': worker_hosts}) server = tf.train.Server(cluster, job_name=job_name, task_index=task_idx) if job_name == 'ps': server.join() elif job_name == 'worker': model = DistFmModel(len(predict_files), cluster, task_idx, 0, vocabulary_size, vocabulary_block_num, hash_feature_id, factor_num, 0, None, None, PREDICT_BATCH_SIZE, 0, 0) sv = tf.train.Supervisor(is_chief=(task_idx == 0), init_op=model.init_vars) _predict(sv.managed_session(server.target, config=tf.ConfigProto(log_device_placement=False)), sv, task_idx == 0, model, model_file, predict_files, score_path, False) else: sys.stderr.write('Invalid Job Name: %s' % job_name) raise Exception def local_predict(predict_files, vocabulary_size, vocabulary_block_num, hash_feature_id, factor_num, model_file, score_path): model = LocalFmModel(len(predict_files), 0, vocabulary_size, vocabulary_block_num, hash_feature_id, factor_num, 0, None, None, PREDICT_BATCH_SIZE, 0, 0) _predict(tf.Session(), None, True, model, model_file, predict_files, score_path, True)
the-stack_106_22446
from __future__ import absolute_import, division, print_function from stripe import error, util, six from stripe.stripe_object import StripeObject from stripe.six.moves.urllib.parse import quote_plus class APIResource(StripeObject): @classmethod def retrieve(cls, id, api_key=None, **params): instance = cls(id, api_key, **params) instance.refresh() return instance def refresh(self): self.refresh_from(self.request('get', self.instance_url())) return self @classmethod def class_name(cls): if cls == APIResource: raise NotImplementedError( 'APIResource is an abstract class. You should perform ' 'actions on its subclasses (e.g. Charge, Customer)') return str(quote_plus(cls.__name__.lower())) @classmethod def class_url(cls): cls_name = cls.class_name() return "/v1/%ss" % (cls_name,) def instance_url(self): id = self.get('id') if not isinstance(id, six.string_types): raise error.InvalidRequestError( 'Could not determine which URL to request: %s instance ' 'has invalid ID: %r, %s. ID should be of type `str` (or' ' `unicode`)' % (type(self).__name__, id, type(id)), 'id') id = util.utf8(id) base = self.class_url() extn = quote_plus(id) return "%s/%s" % (base, extn)
the-stack_106_22447
import math import warnings import tlz as toolz from fsspec.core import get_fs_token_paths from fsspec.implementations.local import LocalFileSystem from fsspec.utils import stringify_path from packaging.version import parse as parse_version from ....base import compute_as_if_collection, tokenize from ....delayed import Delayed from ....highlevelgraph import HighLevelGraph from ....layers import DataFrameIOLayer from ....utils import apply, import_required, natural_sort_key, parse_bytes from ...core import DataFrame, Scalar, new_dd_object from ...methods import concat from .utils import _sort_and_analyze_paths try: import snappy snappy.compress except (ImportError, AttributeError): snappy = None __all__ = ("read_parquet", "to_parquet") NONE_LABEL = "__null_dask_index__" # ---------------------------------------------------------------------- # User API class ParquetFunctionWrapper: """ Parquet Function-Wrapper Class Reads parquet data from disk to produce a partition (given a `part` argument). """ def __init__( self, engine, fs, meta, columns, index, kwargs, common_kwargs, ): self.engine = engine self.fs = fs self.meta = meta self.columns = columns self.index = index # `kwargs` = user-defined kwargs to be passed # identically for all partitions. # # `common_kwargs` = kwargs set by engine to be # passed identically for all # partitions. self.common_kwargs = toolz.merge(common_kwargs, kwargs or {}) def project_columns(self, columns): """Return a new ParquetFunctionWrapper object with a sub-column projection. """ if columns == self.columns: return self return ParquetFunctionWrapper( self.engine, self.fs, self.meta, columns, self.index, None, # Already merged into common_kwargs self.common_kwargs, ) def __call__(self, part): if not isinstance(part, list): part = [part] return read_parquet_part( self.fs, self.engine, self.meta, [(p["piece"], p.get("kwargs", {})) for p in part], self.columns, self.index, self.common_kwargs, ) def read_parquet( path, columns=None, filters=None, categories=None, index=None, storage_options=None, engine="auto", gather_statistics=None, ignore_metadata_file=False, metadata_task_size=None, split_row_groups=None, chunksize=None, aggregate_files=None, **kwargs, ): """ Read a Parquet file into a Dask DataFrame This reads a directory of Parquet data into a Dask.dataframe, one file per partition. It selects the index among the sorted columns if any exist. Parameters ---------- path : str or list Source directory for data, or path(s) to individual parquet files. Prefix with a protocol like ``s3://`` to read from alternative filesystems. To read from multiple files you can pass a globstring or a list of paths, with the caveat that they must all have the same protocol. columns : str or list, default None Field name(s) to read in as columns in the output. By default all non-index fields will be read (as determined by the pandas parquet metadata, if present). Provide a single field name instead of a list to read in the data as a Series. filters : Union[List[Tuple[str, str, Any]], List[List[Tuple[str, str, Any]]]], default None List of filters to apply, like ``[[('col1', '==', 0), ...], ...]``. Using this argument will NOT result in row-wise filtering of the final partitions unless ``engine="pyarrow-dataset"`` is also specified. For other engines, filtering is only performed at the partition level, i.e., to prevent the loading of some row-groups and/or files. For the "pyarrow" engines, predicates can be expressed in disjunctive normal form (DNF). This means that the innermost tuple describes a single column predicate. These inner predicates are combined with an AND conjunction into a larger predicate. The outer-most list then combines all of the combined filters with an OR disjunction. Predicates can also be expressed as a List[Tuple]. These are evaluated as an AND conjunction. To express OR in predictates, one must use the (preferred for "pyarrow") List[List[Tuple]] notation. Note that the "fastparquet" engine does not currently support DNF for the filtering of partitioned columns (List[Tuple] is required). index : str, list or False, default None Field name(s) to use as the output frame index. By default will be inferred from the pandas parquet file metadata (if present). Use False to read all fields as columns. categories : list or dict, default None For any fields listed here, if the parquet encoding is Dictionary, the column will be created with dtype category. Use only if it is guaranteed that the column is encoded as dictionary in all row-groups. If a list, assumes up to 2**16-1 labels; if a dict, specify the number of labels expected; if None, will load categories automatically for data written by dask/fastparquet, not otherwise. storage_options : dict, default None Key/value pairs to be passed on to the file-system backend, if any. engine : str, default 'auto' Parquet reader library to use. Options include: 'auto', 'fastparquet', 'pyarrow', 'pyarrow-dataset', and 'pyarrow-legacy'. Defaults to 'auto', which selects the FastParquetEngine if fastparquet is installed (and ArrowDatasetEngine otherwise). If 'pyarrow' or 'pyarrow-dataset' is specified, the ArrowDatasetEngine (which leverages the pyarrow.dataset API) will be used. If 'pyarrow-legacy' is specified, ArrowLegacyEngine will be used (which leverages the pyarrow.parquet.ParquetDataset API). NOTE: The 'pyarrow-legacy' option (ArrowLegacyEngine) is deprecated for pyarrow>=5. gather_statistics : bool, default None Gather the statistics for each dataset partition. By default, this will only be done if the _metadata file is available. Otherwise, statistics will only be gathered if True, because the footer of every file will be parsed (which is very slow on some systems). ignore_metadata_file : bool, default False Whether to ignore the global ``_metadata`` file (when one is present). If ``True``, or if the global ``_metadata`` file is missing, the parquet metadata may be gathered and processed in parallel. Parallel metadata processing is currently supported for ``ArrowDatasetEngine`` only. metadata_task_size : int, default configurable If parquet metadata is processed in parallel (see ``ignore_metadata_file`` description above), this argument can be used to specify the number of dataset files to be processed by each task in the Dask graph. If this argument is set to ``0``, parallel metadata processing will be disabled. The default values for local and remote filesystems can be specified with the "metadata-task-size-local" and "metadata-task-size-remote" config fields, respectively (see "dataframe.parquet"). split_row_groups : bool or int, default None Default is True if a _metadata file is available or if the dataset is composed of a single file (otherwise defult is False). If True, then each output dataframe partition will correspond to a single parquet-file row-group. If False, each partition will correspond to a complete file. If a positive integer value is given, each dataframe partition will correspond to that number of parquet row-groups (or fewer). Only the "pyarrow" engine supports this argument. chunksize : int or str, default None The desired size of each output ``DataFrame`` partition in terms of total (uncompressed) parquet storage space. If specified, adjacent row-groups and/or files will be aggregated into the same output partition until the cumulative ``total_byte_size`` parquet-metadata statistic reaches this value. Use `aggregate_files` to enable/disable inter-file aggregation. aggregate_files : bool or str, default None Whether distinct file paths may be aggregated into the same output partition. This parameter requires `gather_statistics=True`, and is only used when `chunksize` is specified or when `split_row_groups` is an integer >1. A setting of True means that any two file paths may be aggregated into the same output partition, while False means that inter-file aggregation is prohibited. For "hive-partitioned" datasets, a "partition"-column name can also be specified. In this case, we allow the aggregation of any two files sharing a file path up to, and including, the corresponding directory name. For example, if ``aggregate_files`` is set to ``"section"`` for the directory structure below, ``03.parquet`` and ``04.parquet`` may be aggregated together, but ``01.parquet`` and ``02.parquet`` cannot be. If, however, ``aggregate_files`` is set to ``"region"``, ``01.parquet`` may be aggregated with ``02.parquet``, and ``03.parquet`` may be aggregated with ``04.parquet``:: dataset-path/ ├── region=1/ │ ├── section=a/ │ │ └── 01.parquet │ ├── section=b/ │ └── └── 02.parquet └── region=2/ ├── section=a/ │ ├── 03.parquet └── └── 04.parquet Note that the default behavior of ``aggregate_files`` is False. **kwargs: dict (of dicts) Passthrough key-word arguments for read backend. The top-level keys correspond to the appropriate operation type, and the second level corresponds to the kwargs that will be passed on to the underlying ``pyarrow`` or ``fastparquet`` function. Supported top-level keys: 'dataset' (for opening a ``pyarrow`` dataset), 'file' (for opening a ``fastparquet`` ``ParquetFile``), 'read' (for the backend read function), 'arrow_to_pandas' (for controlling the arguments passed to convert from a ``pyarrow.Table.to_pandas()``) Examples -------- >>> df = dd.read_parquet('s3://bucket/my-parquet-data') # doctest: +SKIP See Also -------- to_parquet pyarrow.parquet.ParquetDataset """ if "read_from_paths" in kwargs: warnings.warn( "`read_from_paths` is no longer supported and will be ignored.", FutureWarning, ) if isinstance(columns, str): df = read_parquet( path, columns=[columns], filters=filters, categories=categories, index=index, storage_options=storage_options, engine=engine, gather_statistics=gather_statistics, ignore_metadata_file=ignore_metadata_file, split_row_groups=split_row_groups, chunksize=chunksize, aggregate_files=aggregate_files, metadata_task_size=metadata_task_size, ) return df[columns] if columns is not None: columns = list(columns) label = "read-parquet-" output_name = label + tokenize( path, columns, filters, categories, index, storage_options, engine, gather_statistics, ignore_metadata_file, metadata_task_size, split_row_groups, chunksize, aggregate_files, ) if isinstance(engine, str): engine = get_engine(engine) if hasattr(path, "name"): path = stringify_path(path) fs, _, paths = get_fs_token_paths(path, mode="rb", storage_options=storage_options) paths = sorted(paths, key=natural_sort_key) # numeric rather than glob ordering auto_index_allowed = False if index is None: # User is allowing auto-detected index auto_index_allowed = True if index and isinstance(index, str): index = [index] if chunksize or ( split_row_groups and int(split_row_groups) > 1 and aggregate_files ): # Require `gather_statistics=True` if `chunksize` is used, # or if `split_row_groups>1` and we are aggregating files. if gather_statistics is False: raise ValueError("read_parquet options require gather_statistics=True") gather_statistics = True read_metadata_result = engine.read_metadata( fs, paths, categories=categories, index=index, gather_statistics=gather_statistics, filters=filters, split_row_groups=split_row_groups, chunksize=chunksize, aggregate_files=aggregate_files, ignore_metadata_file=ignore_metadata_file, metadata_task_size=metadata_task_size, **kwargs, ) # In the future, we may want to give the engine the # option to return a dedicated element for `common_kwargs`. # However, to avoid breaking the API, we just embed this # data in the first element of `parts` for now. # The logic below is inteded to handle backward and forward # compatibility with a user-defined engine. meta, statistics, parts, index = read_metadata_result[:4] common_kwargs = {} aggregation_depth = False if len(parts): # For now, `common_kwargs` and `aggregation_depth` # may be stored in the first element of `parts` common_kwargs = parts[0].pop("common_kwargs", {}) aggregation_depth = parts[0].pop("aggregation_depth", aggregation_depth) # Parse dataset statistics from metadata (if available) parts, divisions, index, index_in_columns = process_statistics( parts, statistics, filters, index, chunksize, split_row_groups, fs, aggregation_depth, ) # Account for index and columns arguments. # Modify `meta` dataframe accordingly meta, index, columns = set_index_columns( meta, index, columns, index_in_columns, auto_index_allowed ) if meta.index.name == NONE_LABEL: meta.index.name = None # Set the index that was previously treated as a column if index_in_columns: meta = meta.set_index(index) if meta.index.name == NONE_LABEL: meta.index.name = None if len(divisions) < 2: # empty dataframe - just use meta graph = {(output_name, 0): meta} divisions = (None, None) else: # Create Blockwise layer layer = DataFrameIOLayer( output_name, columns, parts, ParquetFunctionWrapper( engine, fs, meta, columns, index, kwargs, common_kwargs, ), label=label, ) graph = HighLevelGraph({output_name: layer}, {output_name: set()}) return new_dd_object(graph, output_name, meta, divisions) def check_multi_support(engine): # Helper function to check that the engine # supports a multi-partition read return hasattr(engine, "multi_support") and engine.multi_support() def read_parquet_part(fs, engine, meta, part, columns, index, kwargs): """Read a part of a parquet dataset This function is used by `read_parquet`.""" if isinstance(part, list): if len(part) == 1 or part[0][1] or not check_multi_support(engine): # Part kwargs expected func = engine.read_partition dfs = [ func(fs, rg, columns.copy(), index, **toolz.merge(kwargs, kw)) for (rg, kw) in part ] df = concat(dfs, axis=0) if len(dfs) > 1 else dfs[0] else: # No part specific kwargs, let engine read # list of parts at once df = engine.read_partition( fs, [p[0] for p in part], columns.copy(), index, **kwargs ) else: # NOTE: `kwargs` are the same for all parts, while `part_kwargs` may # be different for each part. rg, part_kwargs = part df = engine.read_partition( fs, rg, columns, index, **toolz.merge(kwargs, part_kwargs) ) if meta.columns.name: df.columns.name = meta.columns.name columns = columns or [] index = index or [] df = df[[c for c in columns if c not in index]] if index == [NONE_LABEL]: df.index.name = None return df def to_parquet( df, path, engine="auto", compression="default", write_index=True, append=False, overwrite=False, ignore_divisions=False, partition_on=None, storage_options=None, custom_metadata=None, write_metadata_file=True, compute=True, compute_kwargs=None, schema=None, **kwargs, ): """Store Dask.dataframe to Parquet files Notes ----- Each partition will be written to a separate file. Parameters ---------- df : dask.dataframe.DataFrame path : string or pathlib.Path Destination directory for data. Prepend with protocol like ``s3://`` or ``hdfs://`` for remote data. engine : {'auto', 'fastparquet', 'pyarrow'}, default 'auto' Parquet library to use. If only one library is installed, it will use that one; if both, it will use 'fastparquet'. compression : string or dict, default 'default' Either a string like ``"snappy"`` or a dictionary mapping column names to compressors like ``{"name": "gzip", "values": "snappy"}``. The default is ``"default"``, which uses the default compression for whichever engine is selected. write_index : boolean, default True Whether or not to write the index. Defaults to True. append : bool, default False If False (default), construct data-set from scratch. If True, add new row-group(s) to an existing data-set. In the latter case, the data-set must exist, and the schema must match the input data. overwrite : bool, default False Whether or not to remove the contents of `path` before writing the dataset. The default is False. If True, the specified path must correspond to a directory (but not the current working directory). This option cannot be set to True if `append=True`. NOTE: `overwrite=True` will remove the original data even if the current write operation fails. Use at your own risk. ignore_divisions : bool, default False If False (default) raises error when previous divisions overlap with the new appended divisions. Ignored if append=False. partition_on : list, default None Construct directory-based partitioning by splitting on these fields' values. Each dask partition will result in one or more datafiles, there will be no global groupby. storage_options : dict, default None Key/value pairs to be passed on to the file-system backend, if any. custom_metadata : dict, default None Custom key/value metadata to include in all footer metadata (and in the global "_metadata" file, if applicable). Note that the custom metadata may not contain the reserved b"pandas" key. write_metadata_file : bool, default True Whether to write the special "_metadata" file. compute : bool, default True If :obj:`True` (default) then the result is computed immediately. If :obj:`False` then a ``dask.dataframe.Scalar`` object is returned for future computation. compute_kwargs : dict, default True Options to be passed in to the compute method schema : Schema object, dict, or {"infer", None}, default None Global schema to use for the output dataset. Alternatively, a `dict` of pyarrow types can be specified (e.g. `schema={"id": pa.string()}`). For this case, fields excluded from the dictionary will be inferred from `_meta_nonempty`. If "infer", the first non-empty and non-null partition will be used to infer the type for "object" columns. If None (default), we let the backend infer the schema for each distinct output partition. If the partitions produce inconsistent schemas, pyarrow will throw an error when writing the shared _metadata file. Note that this argument is ignored by the "fastparquet" engine. **kwargs : Extra options to be passed on to the specific backend. Examples -------- >>> df = dd.read_csv(...) # doctest: +SKIP >>> df.to_parquet('/path/to/output/', ...) # doctest: +SKIP See Also -------- read_parquet: Read parquet data to dask.dataframe """ compute_kwargs = compute_kwargs or {} if compression == "default": if snappy is not None: compression = "snappy" else: compression = None partition_on = partition_on or [] if isinstance(partition_on, str): partition_on = [partition_on] if set(partition_on) - set(df.columns): raise ValueError( "Partitioning on non-existent column. " "partition_on=%s ." "columns=%s" % (str(partition_on), str(list(df.columns))) ) if isinstance(engine, str): engine = get_engine(engine) if hasattr(path, "name"): path = stringify_path(path) fs, _, _ = get_fs_token_paths(path, mode="wb", storage_options=storage_options) # Trim any protocol information from the path before forwarding path = fs._strip_protocol(path) if overwrite: if isinstance(fs, LocalFileSystem): working_dir = fs.expand_path(".")[0] if path.rstrip("/") == working_dir.rstrip("/"): raise ValueError( "Cannot clear the contents of the current working directory!" ) if append: raise ValueError("Cannot use both `overwrite=True` and `append=True`!") if fs.exists(path) and fs.isdir(path): # Only remove path contents if # (1) The path exists # (2) The path is a directory # (3) The path is not the current working directory fs.rm(path, recursive=True) # Save divisions and corresponding index name. This is necessary, # because we may be resetting the index to write the file division_info = {"divisions": df.divisions, "name": df.index.name} if division_info["name"] is None: # As of 0.24.2, pandas will rename an index with name=None # when df.reset_index() is called. The default name is "index", # but dask will always change the name to the NONE_LABEL constant if NONE_LABEL not in df.columns: division_info["name"] = NONE_LABEL elif write_index: raise ValueError( "Index must have a name if __null_dask_index__ is a column." ) else: warnings.warn( "If read back by Dask, column named __null_dask_index__ " "will be set to the index (and renamed to None)." ) # There are some "resrved" names that may be used as the default column # name after resetting the index. However, we don't want to treat it as # a "special" name if the string is already used as a "real" column name. reserved_names = [] for name in ["index", "level_0"]: if name not in df.columns: reserved_names.append(name) # If write_index==True (default), reset the index and record the # name of the original index in `index_cols` (we will set the name # to the NONE_LABEL constant if it is originally `None`). # `fastparquet` will use `index_cols` to specify the index column(s) # in the metadata. `pyarrow` will revert the `reset_index` call # below if `index_cols` is populated (because pyarrow will want to handle # index preservation itself). For both engines, the column index # will be written to "pandas metadata" if write_index=True index_cols = [] if write_index: real_cols = set(df.columns) none_index = list(df._meta.index.names) == [None] df = df.reset_index() if none_index: df.columns = [ c if c not in reserved_names else NONE_LABEL for c in df.columns ] index_cols = [c for c in set(df.columns) - real_cols] else: # Not writing index - might as well drop it df = df.reset_index(drop=True) _to_parquet_kwargs = { "engine", "compression", "write_index", "append", "ignore_divisions", "partition_on", "storage_options", "write_metadata_file", "compute", } kwargs_pass = {k: v for k, v in kwargs.items() if k not in _to_parquet_kwargs} # Engine-specific initialization steps to write the dataset. # Possibly create parquet metadata, and load existing stuff if appending meta, schema, i_offset = engine.initialize_write( df, fs, path, append=append, ignore_divisions=ignore_divisions, partition_on=partition_on, division_info=division_info, index_cols=index_cols, schema=schema, **kwargs_pass, ) # Use i_offset and df.npartitions to define file-name list filenames = ["part.%i.parquet" % (i + i_offset) for i in range(df.npartitions)] # Construct IO graph dsk = {} name = "to-parquet-" + tokenize( df, fs, path, append, ignore_divisions, partition_on, division_info, index_cols, schema, ) part_tasks = [] kwargs_pass["fmd"] = meta kwargs_pass["compression"] = compression kwargs_pass["index_cols"] = index_cols kwargs_pass["schema"] = schema if custom_metadata: if b"pandas" in custom_metadata.keys(): raise ValueError( "User-defined key/value metadata (custom_metadata) can not " "contain a b'pandas' key. This key is reserved by Pandas, " "and overwriting the corresponding value can render the " "entire dataset unreadable." ) kwargs_pass["custom_metadata"] = custom_metadata for d, filename in enumerate(filenames): dsk[(name, d)] = ( apply, engine.write_partition, [ (df._name, d), path, fs, filename, partition_on, write_metadata_file, ], toolz.merge(kwargs_pass, {"head": True}) if d == 0 else kwargs_pass, ) part_tasks.append((name, d)) final_name = "metadata-" + name # Collect metadata and write _metadata if write_metadata_file: dsk[(final_name, 0)] = ( apply, engine.write_metadata, [ part_tasks, meta, fs, path, ], {"append": append, "compression": compression}, ) else: dsk[(final_name, 0)] = (lambda x: None, part_tasks) graph = HighLevelGraph.from_collections(final_name, dsk, dependencies=[df]) if compute: return compute_as_if_collection( Scalar, graph, [(final_name, 0)], **compute_kwargs ) else: return Scalar(graph, final_name, "") def create_metadata_file( paths, root_dir=None, out_dir=None, engine="pyarrow", storage_options=None, split_every=32, compute=True, compute_kwargs=None, fs=None, ): """Construct a global _metadata file from a list of parquet files. Dask's read_parquet function is designed to leverage a global _metadata file whenever one is available. The to_parquet function will generate this file automatically by default, but it may not exist if the dataset was generated outside of Dask. This utility provides a mechanism to generate a _metadata file from a list of existing parquet files. NOTE: This utility is not yet supported for the "fastparquet" engine. Parameters ---------- paths : list(string) List of files to collect footer metadata from. root_dir : string, optional Root directory of dataset. The `file_path` fields in the new _metadata file will relative to this directory. If None, a common root directory will be inferred. out_dir : string or False, optional Directory location to write the final _metadata file. By default, this will be set to `root_dir`. If False is specified, the global metadata will be returned as an in-memory object (and will not be written to disk). engine : str or Engine, default 'pyarrow' Parquet Engine to use. Only 'pyarrow' is supported if a string is passed. storage_options : dict, optional Key/value pairs to be passed on to the file-system backend, if any. split_every : int, optional The final metadata object that is written to _metadata can be much smaller than the list of footer metadata. In order to avoid the aggregation of all metadata within a single task, a tree reduction is used. This argument specifies the maximum number of metadata inputs to be handled by any one task in the tree. Defaults to 32. compute : bool, optional If True (default) then the result is computed immediately. If False then a ``dask.delayed`` object is returned for future computation. compute_kwargs : dict, optional Options to be passed in to the compute method fs : fsspec object, optional File-system instance to use for file handling. If prefixes have been removed from the elements of ``paths`` before calling this function, an ``fs`` argument must be provided to ensure correct behavior on remote file systems ("naked" paths cannot be used to infer file-system information). """ # Get engine. # Note that "fastparquet" is not yet supported if isinstance(engine, str): if engine not in ("pyarrow", "arrow"): raise ValueError( f"{engine} is not a supported engine for create_metadata_file " "Try engine='pyarrow'." ) engine = get_engine(engine) # Process input path list if fs is None: # Only do this if an fsspec file-system object is not # already defined. The prefixes may already be stripped. fs, _, paths = get_fs_token_paths( paths, mode="rb", storage_options=storage_options ) ap_kwargs = {"root": root_dir} if root_dir else {} paths, root_dir, fns = _sort_and_analyze_paths(paths, fs, **ap_kwargs) out_dir = root_dir if out_dir is None else out_dir # Start constructing a raw graph dsk = {} name = "gen-metadata-" + tokenize(paths, fs) collect_name = "collect-" + name agg_name = "agg-" + name # Define a "collect" task for each file in the input list. # Each tasks will: # 1. Extract the footer metadata from a distinct file # 2. Populate the `file_path` field in the metadata # 3. Return the extracted/modified metadata for p, (fn, path) in enumerate(zip(fns, paths)): key = (collect_name, p, 0) dsk[key] = (engine.collect_file_metadata, path, fs, fn) # Build a reduction tree to aggregate all footer metadata # into a single metadata object. Each task in the tree # will take in a list of metadata objects as input, and will # usually output a single (aggregated) metadata object. # The final task in the tree will write the result to disk # instead of returning it (this behavior is triggered by # passing a file path to `engine.aggregate_metadata`). parts = len(paths) widths = [parts] while parts > 1: parts = math.ceil(parts / split_every) widths.append(parts) height = len(widths) for depth in range(1, height): for group in range(widths[depth]): p_max = widths[depth - 1] lstart = split_every * group lstop = min(lstart + split_every, p_max) dep_task_name = collect_name if depth == 1 else agg_name node_list = [(dep_task_name, p, depth - 1) for p in range(lstart, lstop)] if depth == height - 1: assert group == 0 dsk[name] = (engine.aggregate_metadata, node_list, fs, out_dir) else: dsk[(agg_name, group, depth)] = ( engine.aggregate_metadata, node_list, None, None, ) # There will be no aggregation tasks if there is only one file if len(paths) == 1: dsk[name] = (engine.aggregate_metadata, [(collect_name, 0, 0)], fs, out_dir) # Convert the raw graph to a `Delayed` object graph = HighLevelGraph.from_collections(name, dsk, dependencies=[]) out = Delayed(name, graph) # Optionally compute the result if compute: if compute_kwargs is None: compute_kwargs = dict() out = out.compute(**compute_kwargs) return out _ENGINES = {} def get_engine(engine): """Get the parquet engine backend implementation. Parameters ---------- engine : str, default 'auto' Backend parquet library to use. Options include: 'auto', 'fastparquet', 'pyarrow', 'pyarrow-dataset', and 'pyarrow-legacy'. Defaults to 'auto', which selects the FastParquetEngine if fastparquet is installed (and ArrowLegacyEngine otherwise). If 'pyarrow-dataset' is specified, the ArrowDatasetEngine (which leverages the pyarrow.dataset API) will be used for newer PyArrow versions (>=1.0.0). If 'pyarrow' or 'pyarrow-legacy' are specified, the ArrowLegacyEngine will be used (which leverages the pyarrow.parquet.ParquetDataset API). NOTE: 'pyarrow-dataset' enables row-wise filtering, but requires pyarrow>=1.0. The behavior of 'pyarrow' will most likely change to ArrowDatasetEngine in a future release, and the 'pyarrow-legacy' option will be deprecated once the ParquetDataset API is deprecated. gather_statistics : bool or None (default). Returns ------- A dict containing a ``'read'`` and ``'write'`` function. """ if engine in _ENGINES: return _ENGINES[engine] if engine == "auto": for eng in ["fastparquet", "pyarrow"]: try: return get_engine(eng) except RuntimeError: pass else: raise RuntimeError("Please install either fastparquet or pyarrow") elif engine == "fastparquet": import_required("fastparquet", "`fastparquet` not installed") from .fastparquet import FastParquetEngine _ENGINES["fastparquet"] = eng = FastParquetEngine return eng elif engine in ("pyarrow", "arrow", "pyarrow-legacy", "pyarrow-dataset"): pa = import_required("pyarrow", "`pyarrow` not installed") pa_version = parse_version(pa.__version__) if engine in ("pyarrow", "arrow"): engine = "pyarrow-dataset" elif pa_version.major >= 5 and engine == "pyarrow-legacy": warnings.warn( "`ArrowLegacyEngine` ('pyarrow-legacy') is deprecated for " "pyarrow>=5 and will be removed in a future release. Please " "use `engine='pyarrow'` or `engine='pyarrow-dataset'`.", FutureWarning, ) if engine == "pyarrow-dataset": from .arrow import ArrowDatasetEngine _ENGINES[engine] = eng = ArrowDatasetEngine else: from .arrow import ArrowLegacyEngine _ENGINES[engine] = eng = ArrowLegacyEngine return eng else: raise ValueError( f'Unsupported engine: "{engine}".' ' Valid choices include "pyarrow" and "fastparquet".' ) ##################### # Utility Functions # ##################### def sorted_columns(statistics): """Find sorted columns given row-group statistics This finds all columns that are sorted, along with appropriate divisions values for those columns Returns ------- out: List of {'name': str, 'divisions': List[str]} dictionaries """ if not statistics: return [] out = [] for i, c in enumerate(statistics[0]["columns"]): if not all( "min" in s["columns"][i] and "max" in s["columns"][i] for s in statistics ): continue divisions = [c["min"]] max = c["max"] success = c["min"] is not None for stats in statistics[1:]: c = stats["columns"][i] if c["min"] is None: success = False break if c["min"] >= max: divisions.append(c["min"]) max = c["max"] else: success = False break if success: divisions.append(max) assert divisions == sorted(divisions) out.append({"name": c["name"], "divisions": divisions}) return out def apply_filters(parts, statistics, filters): """Apply filters onto parts/statistics pairs Parameters ---------- parts: list Tokens corresponding to row groups to read in the future statistics: List[dict] List of statistics for each part, including min and max values filters: Union[List[Tuple[str, str, Any]], List[List[Tuple[str, str, Any]]]] List of filters to apply, like ``[[('x', '=', 0), ...], ...]``. This implements partition-level (hive) filtering only, i.e., to prevent the loading of some row-groups and/or files. Predicates can be expressed in disjunctive normal form (DNF). This means that the innermost tuple describes a single column predicate. These inner predicates are combined with an AND conjunction into a larger predicate. The outer-most list then combines all of the combined filters with an OR disjunction. Predicates can also be expressed as a List[Tuple]. These are evaluated as an AND conjunction. To express OR in predictates, one must use the (preferred) List[List[Tuple]] notation. Note that the "fastparquet" engine does not currently support DNF for the filtering of partitioned columns (List[Tuple] is required). Returns ------- parts, statistics: the same as the input, but possibly a subset """ def apply_conjunction(parts, statistics, conjunction): for column, operator, value in conjunction: out_parts = [] out_statistics = [] for part, stats in zip(parts, statistics): if "filter" in stats and stats["filter"]: continue # Filtered by engine try: c = toolz.groupby("name", stats["columns"])[column][0] min = c["min"] max = c["max"] except KeyError: out_parts.append(part) out_statistics.append(stats) else: if ( operator in ("==", "=") and min <= value <= max or operator == "<" and min < value or operator == "<=" and min <= value or operator == ">" and max > value or operator == ">=" and max >= value or operator == "in" and any(min <= item <= max for item in value) ): out_parts.append(part) out_statistics.append(stats) parts, statistics = out_parts, out_statistics return parts, statistics conjunction, *disjunction = filters if isinstance(filters[0], list) else [filters] out_parts, out_statistics = apply_conjunction(parts, statistics, conjunction) for conjunction in disjunction: for part, stats in zip(*apply_conjunction(parts, statistics, conjunction)): if part not in out_parts: out_parts.append(part) out_statistics.append(stats) return out_parts, out_statistics def process_statistics( parts, statistics, filters, index, chunksize, split_row_groups, fs, aggregation_depth, ): """Process row-group column statistics in metadata Used in read_parquet. """ index_in_columns = False if statistics: result = list( zip( *[ (part, stats) for part, stats in zip(parts, statistics) if stats["num-rows"] > 0 ] ) ) parts, statistics = result or [[], []] if filters: parts, statistics = apply_filters(parts, statistics, filters) # Aggregate parts/statistics if we are splitting by row-group if chunksize or (split_row_groups and int(split_row_groups) > 1): parts, statistics = aggregate_row_groups( parts, statistics, chunksize, split_row_groups, fs, aggregation_depth ) out = sorted_columns(statistics) if index and isinstance(index, str): index = [index] if index and out: # Only one valid column out = [o for o in out if o["name"] in index] if index is not False and len(out) == 1: # Use only sorted column with statistics as the index divisions = out[0]["divisions"] if index is None: index_in_columns = True index = [out[0]["name"]] elif index != [out[0]["name"]]: raise ValueError(f"Specified index is invalid.\nindex: {index}") elif index is not False and len(out) > 1: if any(o["name"] == NONE_LABEL for o in out): # Use sorted column matching NONE_LABEL as the index [o] = [o for o in out if o["name"] == NONE_LABEL] divisions = o["divisions"] if index is None: index = [o["name"]] index_in_columns = True elif index != [o["name"]]: raise ValueError(f"Specified index is invalid.\nindex: {index}") else: # Multiple sorted columns found, cannot autodetect the index warnings.warn( "Multiple sorted columns found %s, cannot\n " "autodetect index. Will continue without an index.\n" "To pick an index column, use the index= keyword; to \n" "silence this warning use index=False." "" % [o["name"] for o in out], RuntimeWarning, ) index = False divisions = [None] * (len(parts) + 1) else: divisions = [None] * (len(parts) + 1) else: divisions = [None] * (len(parts) + 1) return parts, divisions, index, index_in_columns def set_index_columns(meta, index, columns, index_in_columns, auto_index_allowed): """Handle index/column arguments, and modify `meta` Used in read_parquet. """ ignore_index_column_intersection = False if columns is None: # User didn't specify columns, so ignore any intersection # of auto-detected values with the index (if necessary) ignore_index_column_intersection = True # Do not allow "un-named" fields to be read in as columns. # These were intended to be un-named indices at write time. _index = index or [] columns = [ c for c in meta.columns if c not in (None, NONE_LABEL) or c in _index ] if not set(columns).issubset(set(meta.columns)): raise ValueError( "The following columns were not found in the dataset %s\n" "The following columns were found %s" % (set(columns) - set(meta.columns), meta.columns) ) if index: if isinstance(index, str): index = [index] if isinstance(columns, str): columns = [columns] if ignore_index_column_intersection: columns = [col for col in columns if col not in index] if set(index).intersection(columns): if auto_index_allowed: raise ValueError( "Specified index and column arguments must not intersect" " (set index=False or remove the detected index from columns).\n" "index: {} | column: {}".format(index, columns) ) else: raise ValueError( "Specified index and column arguments must not intersect.\n" "index: {} | column: {}".format(index, columns) ) # Leaving index as a column in `meta`, because the index # will be reset below (in case the index was detected after # meta was created) if index_in_columns: meta = meta[columns + index] else: meta = meta[columns] else: meta = meta[list(columns)] return meta, index, columns def aggregate_row_groups( parts, stats, chunksize, split_row_groups, fs, aggregation_depth ): if not stats[0].get("file_path_0", None): return parts, stats parts_agg = [] stats_agg = [] use_row_group_criteria = split_row_groups and int(split_row_groups) > 1 use_chunksize_criteria = bool(chunksize) if use_chunksize_criteria: chunksize = parse_bytes(chunksize) next_part, next_stat = [parts[0].copy()], stats[0].copy() for i in range(1, len(parts)): stat, part = stats[i], parts[i] # Criteria #1 for aggregating parts: parts are within the same file same_path = stat["file_path_0"] == next_stat["file_path_0"] multi_path_allowed = False if aggregation_depth: # Criteria #2 for aggregating parts: The part does not include # row-group information, or both parts include the same kind # of row_group aggregation (all None, or all indices) multi_path_allowed = len(part["piece"]) == 1 if not (same_path or multi_path_allowed): rgs = set(list(part["piece"][1]) + list(next_part[-1]["piece"][1])) multi_path_allowed = (rgs == {None}) or (None not in rgs) # Criteria #3 for aggregating parts: The parts share a # directory at the "depth" allowed by `aggregation_depth` if not same_path and multi_path_allowed: if aggregation_depth is True: multi_path_allowed = True elif isinstance(aggregation_depth, int): # Make sure files share the same directory root = stat["file_path_0"].split(fs.sep)[:-aggregation_depth] next_root = next_stat["file_path_0"].split(fs.sep)[ :-aggregation_depth ] multi_path_allowed = root == next_root else: raise ValueError( f"{aggregation_depth} not supported for `aggregation_depth`" ) def _check_row_group_criteria(stat, next_stat): if use_row_group_criteria: return (next_stat["num-row-groups"] + stat["num-row-groups"]) <= int( split_row_groups ) else: return False def _check_chunksize_criteria(stat, next_stat): if use_chunksize_criteria: return ( next_stat["total_byte_size"] + stat["total_byte_size"] ) <= chunksize else: return False stat["num-row-groups"] = stat.get("num-row-groups", 1) next_stat["num-row-groups"] = next_stat.get("num-row-groups", 1) if (same_path or multi_path_allowed) and ( _check_row_group_criteria(stat, next_stat) or _check_chunksize_criteria(stat, next_stat) ): # Update part list next_part.append(part) # Update Statistics next_stat["total_byte_size"] += stat["total_byte_size"] next_stat["num-rows"] += stat["num-rows"] next_stat["num-row-groups"] += stat["num-row-groups"] for col, col_add in zip(next_stat["columns"], stat["columns"]): if col["name"] != col_add["name"]: raise ValueError("Columns are different!!") if "min" in col: col["min"] = min(col["min"], col_add["min"]) if "max" in col: col["max"] = max(col["max"], col_add["max"]) else: parts_agg.append(next_part) stats_agg.append(next_stat) next_part, next_stat = [part.copy()], stat.copy() parts_agg.append(next_part) stats_agg.append(next_stat) return parts_agg, stats_agg DataFrame.to_parquet.__doc__ = to_parquet.__doc__
the-stack_106_22448
import eel import os from FaceRecogniser import FaceRecogniser sr = None @eel.expose def set_known_folder(folder): if folder: try: global sr sr = FaceRecogniser(folder) if sr: return "Success initializing" except Exception as ex: return f"Error initializing -- {ex}" else: return "Error initializing -- No folder" @eel.expose def find_by_picture(picture_location): if picture_location: try: if os.path.exists("interface/temp.png"): os.remove("interface/temp.png") global sr if sr: res, picture = sr.find_by_picture(picture_location) return [res, picture] else: return ["Error finding -- Initialize known photos first", None] except Exception as ex: return [f"Error finding -- {ex}", None] else: return ["Error finding -- No picture", None] @eel.expose def find_by_screenshot(delay): try: if os.path.exists("interface/temp.png"): os.remove("interface/temp.png") global sr if sr: if delay or delay == 0: res, picture = sr.find_by_screenshot(int(delay)) else: res, picture = sr.find_by_screenshot() return [res, picture] else: return ["Error finding -- Initialize known photos first", None] except Exception as ex: return [f"Error finding -- {ex}", None] eel.init("interface") eel.start("main.html", size=(640, 768)) # test_pictures/Ronnie_Radke_June_2015_outtake.jpg
the-stack_106_22452
import tensorflow as tf from .support import initializer, visualize_filters import numpy as np def softmax_layer (input, name = 'softmax'): """ Creates the softmax normalization Args: input: Where is the input of the layer coming from name: Name scope of the layer Returns: tuple: ``(softmax, prediction)``, A softmax output node and prediction output node """ with tf.variable_scope(name) as scope: inference = tf.nn.softmax(input, name = 'inference') predictions = tf.argmax(inference, 1, name = 'predictions') return (inference, predictions) def dot_product_layer(input, params = None, neurons = 1200, name = 'fc', activation = 'relu'): """ Creates a fully connected layer Args: input: Where is the input of the layer coming from neurons: Number of neurons in the layer. params: List of tensors, if supplied will use those params. name: name scope of the layer activation: What kind of activation to use. Returns: tuple: The output node and A list of parameters that are learnable """ with tf.variable_scope(name) as scope: if params is None: weights = tf.Variable(initializer([input.shape[1].value,neurons], name = 'xavier_weights'),\ name = 'weights') bias = tf.Variable(initializer([neurons], name = 'xavier_bias'), name = 'bias') else: weights = params[0] bias = params[1] dot = tf.nn.bias_add(tf.matmul(input, weights, name = 'dot'), bias, name = 'pre-activation') if activation == 'relu': activity = tf.nn.relu(dot, name = 'activity' ) elif activation == 'sigmoid': activity = tf.nn.sigmoid(dot, name = 'activity' ) elif activation == 'identity': activity = dot params = [weights, bias] tf.summary.histogram('weights', weights) tf.summary.histogram('bias', bias) tf.summary.histogram('activity', activity) return (activity, params) def conv_2d_layer (input, neurons = 20, filter_size = (5,5), stride = (1,1,1,1), padding = 'VALID', name = 'conv', activation = 'relu', visualize = False): """ Creates a convolution layer Args: input: (NHWC) Where is the input of the layer coming from neurons: Number of neurons in the layer. name: name scope of the layer filter_size: A tuple of filter size ``(5,5)`` is default. stride: A tuple of x and y axis strides. ``(1,1,1,1)`` is default. name: A name for the scope of tensorflow visualize: If True, will add to summary. Only for first layer at the moment. activation: Activation for the outputs. padding: Padding to be used in convolution. "VALID" is default. Returns: tuple: The output node and A list of parameters that are learnable """ f_shp = [filter_size[0], filter_size[1], input.shape[3].value, neurons] with tf.variable_scope(name) as scope: weights = tf.Variable(initializer( f_shp, name = 'xavier_weights'),\ name = 'weights') bias = tf.Variable(initializer([neurons], name = 'xavier_bias'), name = 'bias') c_out = tf.nn.conv2d( input = input, filter = weights, strides = stride, padding = padding, name = scope.name ) c_out_bias = tf.nn.bias_add(c_out, bias, name = 'pre-activation') if activation == 'relu': activity = tf.nn.relu(c_out_bias, name = 'activity' ) elif activation == 'sigmoid': activity = tf.nn.sigmoid(c_out_bias, name = 'activity' ) elif activation == 'identity': activity = c_out_bias params = [weights, bias] tf.summary.histogram('weights', weights) tf.summary.histogram('bias', bias) tf.summary.histogram('activity', activity) if visualize is True: visualize_filters(weights, name = 'filters_' + name) return (activity, params) def flatten_layer (input, name = 'flatten'): """ This layer returns the flattened output Args: input: a 4D node. name: name scope of the layer. Returns: tensorflow tensor: a 2D node. """ with tf.variable_scope(name) as scope: in_shp = input.get_shape().as_list() output = tf.reshape(input, [-1, in_shp[1]*in_shp[2]*in_shp[3]]) return output def max_pool_2d_layer ( input, pool_size = (1,2,2,1), stride = (1,2,2,1), padding = 'VALID', name = 'pool' ): """ Creates a max pooling layer Args: input: (NHWC) Where is the input of the layer coming from name: name scope of the layer pool_size: A tuple of filter size ``(5,5)`` is default. stride: A tuple of x and y axis strides. ``(1,1,1,1)`` is default. name: A name for the scope of tensorflow padding: Padding to be used in convolution. "VALID" is default. Returns: tensorflow tensor: The output node """ with tf.variable_scope(name) as scope: output = tf.nn.max_pool ( value = input, ksize = pool_size, strides = stride, padding = padding, name = name ) return output def local_response_normalization_layer (input, name = 'lrn'): """ This layer returns the flattened output Args: input: a 4D node. name: name scope of the layer. Returns: tensorflow tensor: a 2D node. """ with tf.variable_scope(name) as scope: output = tf.nn.lrn(input) return output def unflatten_layer (input, channels = 1, name = 'unflatten'): """ This layer returns the unflattened output Args: input: a 2D node. chanels: How many channels are there in the image. (Default = ``1``) name: name scope of the layer. Returns: tensorflow tensor: a 4D node in (NHWC) format that is square in shape. """ with tf.variable_scope(name) as scope: dim = int( np.sqrt( input.shape[1].value / channels ) ) output = tf.reshape(input, [-1, dim, dim, channels]) return output def dropout_layer (input, prob, name ='dropout'): """ This layer drops out nodes with the probability of 0.5 During training time, run a probability of 0.5. During test time run a probability of 1.0. To do this, ensure that the ``prob`` is a ``tf.placeholder``. You can supply this probability with ``feed_dict`` in trainer. Args: input: a 2D node. prob: Probability feeder. name: name scope of the layer. Returns: tensorflow tensor: An output node """ with tf.variable_scope (name) as scope: output = tf.nn.dropout (input, prob) return output if __name__ == '__main__': pass
the-stack_106_22453
# -*- coding: utf-8 -*- """Extract *all* xrefs from OBO documents available.""" import gzip import os from collections import Counter import click import pandas as pd from .xrefs_pipeline import Canonicalizer, _iter_ooh_na_na, _iter_synonyms, get_xref_df, summarize_xref_df from ..cli_utils import verbose_option from ..constants import PYOBO_HOME from ..identifier_utils import UNHANDLED_NAMESPACES directory_option = click.option( '-d', '--directory', type=click.Path(dir_okay=True, file_okay=False, exists=True), default=PYOBO_HOME, ) @click.group() def output(): """Output all OBO documents available.""" @output.command() @directory_option @verbose_option def javerts_xrefs(directory: str): # noqa: D202 """Make the xref dump.""" def _write_tsv(df: pd.DataFrame, name: str) -> None: df.to_csv(os.path.join(directory, name), sep='\t', index=False) xrefs_df = get_xref_df() # Export all xrefs _write_tsv(xrefs_df, 'inspector_javerts_xrefs.tsv.gz') # Export a sample of xrefs _write_tsv(xrefs_df.head(), 'inspector_javerts_xrefs_sample.tsv') # Export a summary dataframe summary_df = summarize_xref_df(xrefs_df) _write_tsv(summary_df, 'inspector_javerts_xrefs_summary.tsv') # Export the namespaces that haven't been handled yet unmapped_path = os.path.join(directory, 'inspector_javerts_unmapped_xrefs.tsv') with open(unmapped_path, 'w') as file: for namespace, items in sorted(UNHANDLED_NAMESPACES.items()): for curie, xref in items: print(curie, namespace, xref, file=file, sep='\t') @output.command() @directory_option @verbose_option def ooh_na_na(directory: str): """Make the prefix-identifier-name dump.""" c = Counter() db_path = os.path.join(directory, 'ooh_na_na.tsv.gz') click.echo(f'Writing Ooh-Na-Na to {db_path}') with gzip.open(db_path, mode='wt') as gzipped_file: print('prefix', 'identifier', 'name', sep='\t', file=gzipped_file) for prefix, identifier, name in _iter_ooh_na_na(): c[prefix] += 1 print(prefix, identifier, name, sep='\t', file=gzipped_file) summary_path = os.path.join(directory, 'ooh_na_na_summary.tsv') click.echo(f'Writing Ooh-Na-Na summary to {summary_path}') with open(summary_path, 'w') as file: for k, v in c.most_common(): print(k, v, sep='\t', file=file) @output.command() @directory_option @verbose_option def synonymsdb(directory: str): """Make the prefix-identifier-synonym dump.""" c = Counter() db_path = os.path.join(directory, 'synonymdb.tsv.gz') click.echo(f'Writing SynonymDB to {db_path}') with gzip.open(db_path, mode='wt') as gzipped_file: print('prefix', 'identifier', 'name', sep='\t', file=gzipped_file) for prefix, identifier, name in _iter_synonyms(): c[prefix] += 1 print(prefix, identifier, name, sep='\t', file=gzipped_file) summary_path = os.path.join(directory, 'synonym_summary.tsv') click.echo(f'Writing SynonymDB summary to {summary_path}') with open(summary_path, 'w') as file: for k, v in c.most_common(): print(k, v, sep='\t', file=file) @output.command() @verbose_option @click.option('-f', '--file', type=click.File('w')) def javerts_remapping(file): """Make a canonical remapping.""" canonicalizer = Canonicalizer.get_default() print('input', 'canonical', sep='\t', file=file) for source, target in canonicalizer.iterate_flat_mapping(): print(source, target, sep='\t', file=file) if __name__ == '__main__': output()
the-stack_106_22454
import hashlib import os import urlparse from abc import ABCMeta, abstractmethod from Queue import Empty from collections import defaultdict, deque from multiprocessing import Queue import manifestinclude import manifestexpected import wpttest from mozlog import structured manifest = None manifest_update = None download_from_github = None def do_delayed_imports(): # This relies on an already loaded module having set the sys.path correctly :( global manifest, manifest_update, download_from_github from manifest import manifest from manifest import update as manifest_update from manifest.download import download_from_github class TestChunker(object): def __init__(self, total_chunks, chunk_number): self.total_chunks = total_chunks self.chunk_number = chunk_number assert self.chunk_number <= self.total_chunks self.logger = structured.get_default_logger() assert self.logger def __call__(self, manifest): raise NotImplementedError class Unchunked(TestChunker): def __init__(self, *args, **kwargs): TestChunker.__init__(self, *args, **kwargs) assert self.total_chunks == 1 def __call__(self, manifest): for item in manifest: yield item class HashChunker(TestChunker): def __call__(self, manifest): chunk_index = self.chunk_number - 1 for test_type, test_path, tests in manifest: h = int(hashlib.md5(test_path).hexdigest(), 16) if h % self.total_chunks == chunk_index: yield test_type, test_path, tests class DirectoryHashChunker(TestChunker): """Like HashChunker except the directory is hashed. This ensures that all tests in the same directory end up in the same chunk. """ def __call__(self, manifest): chunk_index = self.chunk_number - 1 for test_type, test_path, tests in manifest: h = int(hashlib.md5(os.path.dirname(test_path)).hexdigest(), 16) if h % self.total_chunks == chunk_index: yield test_type, test_path, tests class TestFilter(object): def __init__(self, test_manifests, include=None, exclude=None, manifest_path=None, explicit=False): if manifest_path is None or include or explicit: self.manifest = manifestinclude.IncludeManifest.create() self.manifest.set_defaults() else: self.manifest = manifestinclude.get_manifest(manifest_path) if include or explicit: self.manifest.set("skip", "true") if include: for item in include: self.manifest.add_include(test_manifests, item) if exclude: for item in exclude: self.manifest.add_exclude(test_manifests, item) def __call__(self, manifest_iter): for test_type, test_path, tests in manifest_iter: include_tests = set() for test in tests: if self.manifest.include(test): include_tests.add(test) if include_tests: yield test_type, test_path, include_tests class TagFilter(object): def __init__(self, tags): self.tags = set(tags) def __call__(self, test_iter): for test in test_iter: if test.tags & self.tags: yield test class ManifestLoader(object): def __init__(self, test_paths, force_manifest_update=False, manifest_download=False, types=None, meta_filters=None): do_delayed_imports() self.test_paths = test_paths self.force_manifest_update = force_manifest_update self.manifest_download = manifest_download self.types = types self.logger = structured.get_default_logger() self.meta_filters = meta_filters if self.logger is None: self.logger = structured.structuredlog.StructuredLogger("ManifestLoader") def load(self): rv = {} for url_base, paths in self.test_paths.iteritems(): manifest_file = self.load_manifest(url_base=url_base, **paths) path_data = {"url_base": url_base} path_data.update(paths) rv[manifest_file] = path_data return rv def load_manifest(self, tests_path, manifest_path, metadata_path, url_base="/", **kwargs): cache_root = os.path.join(metadata_path, ".cache") if self.manifest_download: download_from_github(manifest_path, tests_path) return manifest.load_and_update(tests_path, manifest_path, url_base, cache_root=cache_root, update=self.force_manifest_update, meta_filters=self.meta_filters, types=self.types) def iterfilter(filters, iter): for f in filters: iter = f(iter) for item in iter: yield item class TestLoader(object): def __init__(self, test_manifests, test_types, run_info, manifest_filters=None, chunk_type="none", total_chunks=1, chunk_number=1, include_https=True, skip_timeout=False): self.test_types = test_types self.run_info = run_info self.manifest_filters = manifest_filters if manifest_filters is not None else [] self.manifests = test_manifests self.tests = None self.disabled_tests = None self.include_https = include_https self.skip_timeout = skip_timeout self.chunk_type = chunk_type self.total_chunks = total_chunks self.chunk_number = chunk_number self.chunker = {"none": Unchunked, "hash": HashChunker, "dir_hash": DirectoryHashChunker}[chunk_type](total_chunks, chunk_number) self._test_ids = None self.directory_manifests = {} self._load_tests() @property def test_ids(self): if self._test_ids is None: self._test_ids = [] for test_dict in [self.disabled_tests, self.tests]: for test_type in self.test_types: self._test_ids += [item.id for item in test_dict[test_type]] return self._test_ids def get_test(self, manifest_file, manifest_test, inherit_metadata, test_metadata): if test_metadata is not None: inherit_metadata.append(test_metadata) test_metadata = test_metadata.get_test(manifest_test.id) return wpttest.from_manifest(manifest_file, manifest_test, inherit_metadata, test_metadata) def load_dir_metadata(self, test_manifest, metadata_path, test_path): rv = [] path_parts = os.path.dirname(test_path).split(os.path.sep) for i in xrange(len(path_parts) + 1): path = os.path.join(metadata_path, os.path.sep.join(path_parts[:i]), "__dir__.ini") if path not in self.directory_manifests: self.directory_manifests[path] = manifestexpected.get_dir_manifest(path, self.run_info) manifest = self.directory_manifests[path] if manifest is not None: rv.append(manifest) return rv def load_metadata(self, test_manifest, metadata_path, test_path): inherit_metadata = self.load_dir_metadata(test_manifest, metadata_path, test_path) test_metadata = manifestexpected.get_manifest( metadata_path, test_path, test_manifest.url_base, self.run_info) return inherit_metadata, test_metadata def iter_tests(self): manifest_items = [] manifests_by_url_base = {} for manifest in sorted(self.manifests.keys(), key=lambda x:x.url_base): manifest_iter = iterfilter(self.manifest_filters, manifest.itertypes(*self.test_types)) manifest_items.extend(manifest_iter) manifests_by_url_base[manifest.url_base] = manifest if self.chunker is not None: manifest_items = self.chunker(manifest_items) for test_type, test_path, tests in manifest_items: manifest_file = manifests_by_url_base[iter(tests).next().url_base] metadata_path = self.manifests[manifest_file]["metadata_path"] inherit_metadata, test_metadata = self.load_metadata(manifest_file, metadata_path, test_path) for test in tests: yield test_path, test_type, self.get_test(manifest_file, test, inherit_metadata, test_metadata) def _load_tests(self): """Read in the tests from the manifest file and add them to a queue""" tests = {"enabled":defaultdict(list), "disabled":defaultdict(list)} for test_path, test_type, test in self.iter_tests(): enabled = not test.disabled() if not self.include_https and test.environment["protocol"] == "https": enabled = False if self.skip_timeout and test.expected() == "TIMEOUT": enabled = False key = "enabled" if enabled else "disabled" tests[key][test_type].append(test) self.tests = tests["enabled"] self.disabled_tests = tests["disabled"] def groups(self, test_types, chunk_type="none", total_chunks=1, chunk_number=1): groups = set() for test_type in test_types: for test in self.tests[test_type]: group = test.url.split("/")[1] groups.add(group) return groups class TestSource(object): __metaclass__ = ABCMeta def __init__(self, test_queue): self.test_queue = test_queue self.current_group = None self.current_metadata = None @abstractmethod # noqa: N805 #@classmethod (doesn't compose with @abstractmethod) def make_queue(cls, tests, **kwargs): pass @classmethod def group_metadata(cls, state): return {"scope": "/"} def group(self): if not self.current_group or len(self.current_group) == 0: try: self.current_group, self.current_metadata = self.test_queue.get(block=False) except Empty: return None, None return self.current_group, self.current_metadata class GroupedSource(TestSource): @classmethod def new_group(cls, state, test, **kwargs): raise NotImplementedError @classmethod def make_queue(cls, tests, **kwargs): test_queue = Queue() groups = [] state = {} for test in tests: if cls.new_group(state, test, **kwargs): group_metadata = cls.group_metadata(state) groups.append((deque(), group_metadata)) group, metadata = groups[-1] group.append(test) test.update_metadata(metadata) for item in groups: test_queue.put(item) return test_queue class SingleTestSource(TestSource): @classmethod def make_queue(cls, tests, **kwargs): test_queue = Queue() processes = kwargs["processes"] queues = [deque([]) for _ in xrange(processes)] metadatas = [cls.group_metadata(None) for _ in xrange(processes)] for test in tests: idx = hash(test.id) % processes group = queues[idx] metadata = metadatas[idx] group.append(test) test.update_metadata(metadata) for item in zip(queues, metadatas): test_queue.put(item) return test_queue class PathGroupedSource(GroupedSource): @classmethod def new_group(cls, state, test, **kwargs): depth = kwargs.get("depth") if depth is True or depth == 0: depth = None path = urlparse.urlsplit(test.url).path.split("/")[1:-1][:depth] rv = path != state.get("prev_path") state["prev_path"] = path return rv @classmethod def group_metadata(cls, state): return {"scope": "/%s" % "/".join(state["prev_path"])}
the-stack_106_22456
""" Modder classes used for domain randomization. Largely based off of the mujoco-py implementation below. https://github.com/openai/mujoco-py/blob/1fe312b09ae7365f0dd9d4d0e453f8da59fae0bf/mujoco_py/modder.py """ import os import numpy as np from collections import defaultdict from PIL import Image from mujoco_py import cymj import robosuite import robosuite.utils.transform_utils as trans class BaseModder(): """ Base class meant to modify simulation attributes mid-sim. Using @random_state ensures that sampling here won't be affected by sampling that happens outside of the modders. Args: sim (MjSim): simulation object random_state (RandomState): instance of np.random.RandomState, specific seed used to randomize these modifications without impacting other numpy seeds / randomizations """ def __init__(self, sim, random_state=None): self.sim = sim if random_state is None: # default to global RandomState instance self.random_state = np.random.mtrand._rand else: self.random_state = random_state def update_sim(self, sim): """ Setter function to update internal sim variable Args: sim (MjSim): MjSim object """ self.sim = sim @property def model(self): """ Returns: MjModel: Mujoco sim model """ # Available for quick convenience access return self.sim.model class LightingModder(BaseModder): """ Modder to modify lighting within a Mujoco simulation. Args: sim (MjSim): MjSim object random_state (RandomState): instance of np.random.RandomState light_names (None or list of str): list of lights to use for randomization. If not provided, all lights in the model are randomized. randomize_position (bool): If True, randomizes position of lighting randomize_direction (bool): If True, randomizes direction of lighting randomize_specular (bool): If True, randomizes specular attribute of lighting randomize_ambient (bool): If True, randomizes ambient attribute of lighting randomize_diffuse (bool): If True, randomizes diffuse attribute of lighting randomize_active (bool): If True, randomizes active nature of lighting position_perturbation_size (float): Magnitude of position randomization direction_perturbation_size (float): Magnitude of direction randomization specular_perturbation_size (float): Magnitude of specular attribute randomization ambient_perturbation_size (float): Magnitude of ambient attribute randomization diffuse_perturbation_size (float): Magnitude of diffuse attribute randomization """ def __init__( self, sim, random_state=None, light_names=None, randomize_position=True, randomize_direction=True, randomize_specular=True, randomize_ambient=True, randomize_diffuse=True, randomize_active=True, position_perturbation_size=0.1, direction_perturbation_size=0.35, # 20 degrees specular_perturbation_size=0.1, ambient_perturbation_size=0.1, diffuse_perturbation_size=0.1, ): super().__init__(sim, random_state=random_state) if light_names is None: light_names = self.sim.model.light_names self.light_names = light_names self.randomize_position = randomize_position self.randomize_direction = randomize_direction self.randomize_specular = randomize_specular self.randomize_ambient = randomize_ambient self.randomize_diffuse = randomize_diffuse self.randomize_active = randomize_active self.position_perturbation_size = position_perturbation_size self.direction_perturbation_size = direction_perturbation_size self.specular_perturbation_size = specular_perturbation_size self.ambient_perturbation_size = ambient_perturbation_size self.diffuse_perturbation_size = diffuse_perturbation_size self.save_defaults() def save_defaults(self): """ Uses the current MjSim state and model to save default parameter values. """ self._defaults = { k : {} for k in self.light_names } for name in self.light_names: self._defaults[name]['pos'] = np.array(self.get_pos(name)) self._defaults[name]['dir'] = np.array(self.get_dir(name)) self._defaults[name]['specular'] = np.array(self.get_specular(name)) self._defaults[name]['ambient'] = np.array(self.get_ambient(name)) self._defaults[name]['diffuse'] = np.array(self.get_diffuse(name)) self._defaults[name]['active'] = self.get_active(name) def restore_defaults(self): """ Reloads the saved parameter values. """ for name in self.light_names: self.set_pos(name, self._defaults[name]['pos']) self.set_dir(name, self._defaults[name]['dir']) self.set_specular(name, self._defaults[name]['specular']) self.set_ambient(name, self._defaults[name]['ambient']) self.set_diffuse(name, self._defaults[name]['diffuse']) self.set_active(name, self._defaults[name]['active']) def randomize(self): """ Randomizes all requested lighting values within the sim """ for name in self.light_names: if self.randomize_position: self._randomize_position(name) if self.randomize_direction: self._randomize_direction(name) if self.randomize_specular: self._randomize_specular(name) if self.randomize_ambient: self._randomize_ambient(name) if self.randomize_diffuse: self._randomize_diffuse(name) if self.randomize_active: self._randomize_active(name) def _randomize_position(self, name): """ Helper function to randomize position of a specific light source Args: name (str): Name of the lighting source to randomize for """ delta_pos = self.random_state.uniform( low=-self.position_perturbation_size, high=self.position_perturbation_size, size=3, ) self.set_pos( name, self._defaults[name]['pos'] + delta_pos, ) def _randomize_direction(self, name): """ Helper function to randomize direction of a specific light source Args: name (str): Name of the lighting source to randomize for """ # sample a small, random axis-angle delta rotation random_axis, random_angle = trans.random_axis_angle(angle_limit=self.direction_perturbation_size, random_state=self.random_state) random_delta_rot = trans.quat2mat(trans.axisangle2quat(random_axis * random_angle)) # rotate direction by this delta rotation and set the new direction new_dir = random_delta_rot.dot(self._defaults[name]['dir']) self.set_dir( name, new_dir, ) def _randomize_specular(self, name): """ Helper function to randomize specular attribute of a specific light source Args: name (str): Name of the lighting source to randomize for """ delta = self.random_state.uniform( low=-self.specular_perturbation_size, high=self.specular_perturbation_size, size=3, ) self.set_specular( name, self._defaults[name]['specular'] + delta, ) def _randomize_ambient(self, name): """ Helper function to randomize ambient attribute of a specific light source Args: name (str): Name of the lighting source to randomize for """ delta = self.random_state.uniform( low=-self.ambient_perturbation_size, high=self.ambient_perturbation_size, size=3, ) self.set_ambient( name, self._defaults[name]['ambient'] + delta, ) def _randomize_diffuse(self, name): """ Helper function to randomize diffuse attribute of a specific light source Args: name (str): Name of the lighting source to randomize for """ delta = self.random_state.uniform( low=-self.diffuse_perturbation_size, high=self.diffuse_perturbation_size, size=3, ) self.set_diffuse( name, self._defaults[name]['diffuse'] + delta, ) def _randomize_active(self, name): """ Helper function to randomize active nature of a specific light source Args: name (str): Name of the lighting source to randomize for """ active = int(self.random_state.uniform() > 0.5) self.set_active( name, active ) def get_pos(self, name): """ Grabs position of a specific light source Args: name (str): Name of the lighting source Returns: np.array: (x,y,z) position of lighting source Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_pos[lightid] def set_pos(self, name, value): """ Sets position of a specific light source Args: name (str): Name of the lighting source value (np.array): (x,y,z) position to set lighting source to Raises: AssertionError: Invalid light name AssertionError: Invalid @value """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name value = list(value) assert len(value) == 3, "Expected 3-dim value, got %s" % value self.model.light_pos[lightid] = value def get_dir(self, name): """ Grabs direction of a specific light source Args: name (str): Name of the lighting source Returns: np.array: (x,y,z) direction of lighting source Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_dir[lightid] def set_dir(self, name, value): """ Sets direction of a specific light source Args: name (str): Name of the lighting source value (np.array): (ax,ay,az) direction to set lighting source to Raises: AssertionError: Invalid light name AssertionError: Invalid @value """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name value = list(value) assert len(value) == 3, "Expected 3-dim value, got %s" % value self.model.light_dir[lightid] = value def get_active(self, name): """ Grabs active nature of a specific light source Args: name (str): Name of the lighting source Returns: int: Whether light source is active (1) or not (0) Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_active[lightid] def set_active(self, name, value): """ Sets active nature of a specific light source Args: name (str): Name of the lighting source value (int): Whether light source is active (1) or not (0) Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name self.model.light_active[lightid] = value def get_specular(self, name): """ Grabs specular attribute of a specific light source Args: name (str): Name of the lighting source Returns: np.array: (r,g,b) specular color of lighting source Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_specular[lightid] def set_specular(self, name, value): """ Sets specular attribute of a specific light source Args: name (str): Name of the lighting source value (np.array): (r,g,b) specular color to set lighting source to Raises: AssertionError: Invalid light name AssertionError: Invalid @value """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name value = list(value) assert len(value) == 3, "Expected 3-dim value, got %s" % value self.model.light_specular[lightid] = value def get_ambient(self, name): """ Grabs ambient attribute of a specific light source Args: name (str): Name of the lighting source Returns: np.array: (r,g,b) ambient color of lighting source Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_ambient[lightid] def set_ambient(self, name, value): """ Sets ambient attribute of a specific light source Args: name (str): Name of the lighting source value (np.array): (r,g,b) ambient color to set lighting source to Raises: AssertionError: Invalid light name AssertionError: Invalid @value """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name value = list(value) assert len(value) == 3, "Expected 3-dim value, got %s" % value self.model.light_ambient[lightid] = value def get_diffuse(self, name): """ Grabs diffuse attribute of a specific light source Args: name (str): Name of the lighting source Returns: np.array: (r,g,b) diffuse color of lighting source Raises: AssertionError: Invalid light name """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name return self.model.light_diffuse[lightid] def set_diffuse(self, name, value): """ Sets diffuse attribute of a specific light source Args: name (str): Name of the lighting source value (np.array): (r,g,b) diffuse color to set lighting source to Raises: AssertionError: Invalid light name AssertionError: Invalid @value """ lightid = self.get_lightid(name) assert lightid > -1, "Unkwnown light %s" % name value = list(value) assert len(value) == 3, "Expected 3-dim value, got %s" % value self.model.light_diffuse[lightid] = value def get_lightid(self, name): """ Grabs unique id number of a specific light source Args: name (str): Name of the lighting source Returns: int: id of lighting source. -1 if not found """ return self.model.light_name2id(name) class CameraModder(BaseModder): """ Modder for modifying camera attributes in mujoco sim Args: sim (MjSim): MjSim object random_state (None or RandomState): instance of np.random.RandomState camera_names (None or list of str): list of camera names to use for randomization. If not provided, all cameras are used for randomization. randomize_position (bool): if True, randomize camera position randomize_rotation (bool): if True, randomize camera rotation randomize_fovy (bool): if True, randomize camera fovy position_perturbation_size (float): size of camera position perturbations to each dimension rotation_perturbation_size (float): magnitude of camera rotation perturbations in axis-angle. Default corresponds to around 5 degrees. fovy_perturbation_size (float): magnitude of camera fovy perturbations (corresponds to focusing) Raises: AssertionError: [No randomization selected] """ def __init__( self, sim, random_state=None, camera_names=None, randomize_position=True, randomize_rotation=True, randomize_fovy=True, position_perturbation_size=0.01, rotation_perturbation_size=0.087, fovy_perturbation_size=5., ): super().__init__(sim, random_state=random_state) assert randomize_position or randomize_rotation or randomize_fovy if camera_names is None: camera_names = self.sim.model.camera_names self.camera_names = camera_names self.randomize_position = randomize_position self.randomize_rotation = randomize_rotation self.randomize_fovy = randomize_fovy self.position_perturbation_size = position_perturbation_size self.rotation_perturbation_size = rotation_perturbation_size self.fovy_perturbation_size = fovy_perturbation_size self.save_defaults() def save_defaults(self): """ Uses the current MjSim state and model to save default parameter values. """ self._defaults = { k : {} for k in self.camera_names } for camera_name in self.camera_names: self._defaults[camera_name]['pos'] = np.array(self.get_pos(camera_name)) self._defaults[camera_name]['quat'] = np.array(self.get_quat(camera_name)) self._defaults[camera_name]['fovy'] = self.get_fovy(camera_name) def restore_defaults(self): """ Reloads the saved parameter values. """ for camera_name in self.camera_names: self.set_pos(camera_name, self._defaults[camera_name]['pos']) self.set_quat(camera_name, self._defaults[camera_name]['quat']) self.set_fovy(camera_name, self._defaults[camera_name]['fovy']) def randomize(self): """ Randomizes all requested camera values within the sim """ for camera_name in self.camera_names: if self.randomize_position: self._randomize_position(camera_name) if self.randomize_rotation: self._randomize_rotation(camera_name) if self.randomize_fovy: self._randomize_fovy(camera_name) def _randomize_position(self, name): """ Helper function to randomize position of a specific camera Args: name (str): Name of the camera to randomize for """ delta_pos = self.random_state.uniform( low=-self.position_perturbation_size, high=self.position_perturbation_size, size=3, ) self.set_pos( name, self._defaults[name]['pos'] + delta_pos, ) def _randomize_rotation(self, name): """ Helper function to randomize orientation of a specific camera Args: name (str): Name of the camera to randomize for """ # sample a small, random axis-angle delta rotation random_axis, random_angle = trans.random_axis_angle(angle_limit=self.rotation_perturbation_size, random_state=self.random_state) random_delta_rot = trans.quat2mat(trans.axisangle2quat(random_axis * random_angle)) # compute new rotation and set it base_rot = trans.quat2mat(trans.convert_quat(self._defaults[name]['quat'], to='xyzw')) new_rot = random_delta_rot.T.dot(base_rot) new_quat = trans.convert_quat(trans.mat2quat(new_rot), to='wxyz') self.set_quat( name, new_quat, ) def _randomize_fovy(self, name): """ Helper function to randomize fovy of a specific camera Args: name (str): Name of the camera to randomize for """ delta_fovy = self.random_state.uniform( low=-self.fovy_perturbation_size, high=self.fovy_perturbation_size, ) self.set_fovy( name, self._defaults[name]['fovy'] + delta_fovy, ) def get_fovy(self, name): """ Grabs fovy of a specific camera Args: name (str): Name of the camera Returns: float: vertical field of view of the camera, expressed in degrees Raises: AssertionError: Invalid camera name """ camid = self.get_camid(name) assert camid > -1, "Unknown camera %s" % name return self.model.cam_fovy[camid] def set_fovy(self, name, value): """ Sets fovy of a specific camera Args: name (str): Name of the camera value (float): vertical field of view of the camera, expressed in degrees Raises: AssertionError: Invalid camera name AssertionError: Invalid value """ camid = self.get_camid(name) assert 0 < value < 180 assert camid > -1, "Unknown camera %s" % name self.model.cam_fovy[camid] = value def get_quat(self, name): """ Grabs orientation of a specific camera Args: name (str): Name of the camera Returns: np.array: (w,x,y,z) orientation of the camera, expressed in quaternions Raises: AssertionError: Invalid camera name """ camid = self.get_camid(name) assert camid > -1, "Unknown camera %s" % name return self.model.cam_quat[camid] def set_quat(self, name, value): """ Sets orientation of a specific camera Args: name (str): Name of the camera value (np.array): (w,x,y,z) orientation of the camera, expressed in quaternions Raises: AssertionError: Invalid camera name AssertionError: Invalid value """ value = list(value) assert len(value) == 4, ( "Expectd value of length 4, instead got %s" % value) camid = self.get_camid(name) assert camid > -1, "Unknown camera %s" % name self.model.cam_quat[camid] = value def get_pos(self, name): """ Grabs position of a specific camera Args: name (str): Name of the camera Returns: np.array: (x,y,z) position of the camera Raises: AssertionError: Invalid camera name """ camid = self.get_camid(name) assert camid > -1, "Unknown camera %s" % name return self.model.cam_pos[camid] def set_pos(self, name, value): """ Sets position of a specific camera Args: name (str): Name of the camera value (np.array): (x,y,z) position of the camera Raises: AssertionError: Invalid camera name AssertionError: Invalid value """ value = list(value) assert len(value) == 3, ( "Expected value of length 3, instead got %s" % value) camid = self.get_camid(name) assert camid > -1 self.model.cam_pos[camid] = value def get_camid(self, name): """ Grabs unique id number of a specific camera Args: name (str): Name of the camera Returns: int: id of camera. -1 if not found """ return self.model.camera_name2id(name) class TextureModder(BaseModder): """ Modify textures in model. Example use: sim = MjSim(...) modder = TextureModder(sim) modder.whiten_materials() # ensures materials won't impact colors modder.set_checker('some_geom', (255, 0, 0), (0, 0, 0)) modder.rand_all('another_geom') Note: in order for the textures to take full effect, you'll need to set the rgba values for all materials to [1, 1, 1, 1], otherwise the texture colors will be modulated by the material colors. Call the `whiten_materials` helper method to set all material colors to white. Args: sim (MjSim): MjSim object random_state (RandomState): instance of np.random.RandomState geom_names ([string]): list of geom names to use for randomization. If not provided, all geoms are used for randomization. randomize_local (bool): if True, constrain RGB color variations to be close to the original RGB colors per geom and texture. Otherwise, RGB color values will be sampled uniformly at random. randomize_material (bool): if True, randomizes material properties associated with a given texture (reflectance, shininess, specular) local_rgb_interpolation (float): determines the size of color variations from the base geom colors when @randomize_local is True. local_material_interpolation (float): determines the size of material variations from the base material when @randomize_local and @randomize_material are both True. texture_variations (list of str): a list of texture variation strings. Each string must be either 'rgb', 'checker', 'noise', or 'gradient' and corresponds to a specific kind of texture randomization. For each geom that has a material and texture, a random variation from this list is sampled and applied. randomize_skybox (bool): if True, apply texture variations to the skybox as well. """ def __init__( self, sim, random_state=None, geom_names=None, randomize_local=False, randomize_material=False, local_rgb_interpolation=0.1, local_material_interpolation=0.2, texture_variations=('rgb', 'checker', 'noise', 'gradient'), randomize_skybox=True, ): super().__init__(sim, random_state=random_state) if geom_names is None: geom_names = self.sim.model.geom_names self.geom_names = geom_names self.randomize_local = randomize_local self.randomize_material = randomize_material self.local_rgb_interpolation = local_rgb_interpolation self.local_material_interpolation = local_material_interpolation self.texture_variations = list(texture_variations) self.randomize_skybox = randomize_skybox self._all_texture_variation_callbacks = { 'rgb' : self.rand_rgb, 'checker' : self.rand_checker, 'noise' : self.rand_noise, 'gradient' : self.rand_gradient, } self._texture_variation_callbacks = { k : self._all_texture_variation_callbacks[k] for k in self.texture_variations } self.save_defaults() def save_defaults(self): """ Uses the current MjSim state and model to save default parameter values. """ self.textures = [Texture(self.model, i) for i in range(self.model.ntex)] # self._build_tex_geom_map() # save copy of original texture bitmaps self._default_texture_bitmaps = [np.array(text.bitmap) for text in self.textures] # These matrices will be used to rapidly synthesize # checker pattern bitmaps self._cache_checker_matrices() self._defaults = { k : {} for k in self.geom_names } if self.randomize_skybox: self._defaults['skybox'] = {} for name in self.geom_names: if self._check_geom_for_texture(name): # store the texture bitmap for this geom tex_id = self._name_to_tex_id(name) self._defaults[name]['texture'] = self._default_texture_bitmaps[tex_id] # store material properties as well (in tuple (reflectance, shininess, specular) form) self._defaults[name]['material'] = self.get_material(name) else: # store geom color self._defaults[name]['rgb'] = np.array(self.get_geom_rgb(name)) if self.randomize_skybox: tex_id = self._name_to_tex_id('skybox') self._defaults['skybox']['texture'] = self._default_texture_bitmaps[tex_id] def restore_defaults(self): """ Reloads the saved parameter values. """ for name in self.geom_names: if self._check_geom_for_texture(name): self.set_texture(name, self._defaults[name]['texture'], perturb=False) self.set_material(name, self._defaults[name]['material'], perturb=False) else: self.set_geom_rgb(name, self._defaults[name]['rgb']) if self.randomize_skybox: self.set_texture('skybox', self._defaults['skybox']['texture'], perturb=False) def randomize(self): """ Overrides mujoco-py implementation to also randomize color for geoms that have no material. """ self.whiten_materials() for name in self.geom_names: if self._check_geom_for_texture(name): # geom has valid texture that can be randomized self._randomize_texture(name) # randomize material if requested if self.randomize_material: self._randomize_material(name) else: # randomize geom color self._randomize_geom_color(name) if self.randomize_skybox: self._randomize_texture("skybox") def _randomize_geom_color(self, name): """ Helper function to randomize color of a specific geom Args: name (str): Name of the geom to randomize for """ if self.randomize_local: random_color = self.random_state.uniform(0, 1, size=3) rgb = (1. - self.local_rgb_interpolation) * self._defaults[name]['rgb'] + self.local_rgb_interpolation * random_color else: rgb = self.random_state.uniform(0, 1, size=3) self.set_geom_rgb(name, rgb) def _randomize_texture(self, name): """ Helper function to randomize texture of a specific geom Args: name (str): Name of the geom to randomize for """ keys = list(self._texture_variation_callbacks.keys()) choice = keys[self.random_state.randint(len(keys))] self._texture_variation_callbacks[choice](name) def _randomize_material(self, name): """ Helper function to randomize material of a specific geom Args: name (str): Name of the geom to randomize for """ # Return immediately if this is the skybox if name == 'skybox': return # Grab material id mat_id = self._name_to_mat_id(name) # Randomize reflectance, shininess, and specular material = self.random_state.uniform(0, 1, size=3) # (reflectance, shininess, specular) self.set_material(name, material, perturb=self.randomize_local) def rand_checker(self, name): """ Generates a random checker pattern for a specific geom Args: name (str): Name of the geom to randomize for """ rgb1, rgb2 = self.get_rand_rgb(2) self.set_checker(name, rgb1, rgb2, perturb=self.randomize_local) def rand_gradient(self, name): """ Generates a random gradient pattern for a specific geom Args: name (str): Name of the geom to randomize for """ rgb1, rgb2 = self.get_rand_rgb(2) vertical = bool(self.random_state.uniform() > 0.5) self.set_gradient(name, rgb1, rgb2, vertical=vertical, perturb=self.randomize_local) def rand_rgb(self, name): """ Generates a random RGB color for a specific geom Args: name (str): Name of the geom to randomize for """ rgb = self.get_rand_rgb() self.set_rgb(name, rgb, perturb=self.randomize_local) def rand_noise(self, name): """ Generates a random RGB noise pattern for a specific geom Args: name (str): Name of the geom to randomize for """ fraction = 0.1 + self.random_state.uniform() * 0.8 rgb1, rgb2 = self.get_rand_rgb(2) self.set_noise(name, rgb1, rgb2, fraction, perturb=self.randomize_local) def whiten_materials(self): """ Extends modder.TextureModder to also whiten geom_rgba Helper method for setting all material colors to white, otherwise the texture modifications won't take full effect. """ for name in self.geom_names: # whiten geom geom_id = self.model.geom_name2id(name) self.model.geom_rgba[geom_id, :] = 1.0 if self._check_geom_for_texture(name): # whiten material mat_id = self.model.geom_matid[geom_id] self.model.mat_rgba[mat_id, :] = 1.0 def get_geom_rgb(self, name): """ Grabs rgb color of a specific geom Args: name (str): Name of the geom Returns: np.array: (r,g,b) geom colors """ geom_id = self.model.geom_name2id(name) return self.model.geom_rgba[geom_id, :3] def set_geom_rgb(self, name, rgb): """ Sets rgb color of a specific geom Args: name (str): Name of the geom rgb (np.array): (r,g,b) geom colors """ geom_id = self.model.geom_name2id(name) self.model.geom_rgba[geom_id, :3] = rgb def get_rand_rgb(self, n=1): """ Grabs a batch of random rgb tuple combos Args: n (int): How many sets of rgb tuples to randomly generate Returns: np.array or n-tuple: if n > 1, each tuple entry is a rgb tuple. else, single (r,g,b) array """ def _rand_rgb(): return np.array(self.random_state.uniform(size=3) * 255, dtype=np.uint8) if n == 1: return _rand_rgb() else: return tuple(_rand_rgb() for _ in range(n)) def get_texture(self, name): """ Grabs texture of a specific geom Args: name (str): Name of the geom Returns: Texture: texture associated with the geom """ tex_id = self._name_to_tex_id(name) texture = self.textures[tex_id] return texture def set_texture(self, name, bitmap, perturb=False): """ Sets the bitmap for the texture that corresponds to geom @name. If @perturb is True, then use the computed bitmap to perturb the default bitmap slightly, instead of replacing it. Args: name (str): Name of the geom bitmap (np.array): 3d-array representing rgb pixel-wise values perturb (bool): Whether to perturb the inputted bitmap or not """ bitmap_to_set = self.get_texture(name).bitmap if perturb: bitmap = (1. - self.local_rgb_interpolation) * self._defaults[name]['texture'] + self.local_rgb_interpolation * bitmap bitmap_to_set[:] = bitmap self.upload_texture(name) def get_material(self, name): """ Grabs material of a specific geom Args: name (str): Name of the geom Returns: np.array: (reflectance, shininess, specular) material properties associated with the geom """ mat_id = self._name_to_mat_id(name) # Material is in tuple form (reflectance, shininess, specular) material = np.array((self.model.mat_reflectance[mat_id], self.model.mat_shininess[mat_id], self.model.mat_specular[mat_id])) return material def set_material(self, name, material, perturb=False): """ Sets the material that corresponds to geom @name. If @perturb is True, then use the computed material to perturb the default material slightly, instead of replacing it. Args: name (str): Name of the geom material (np.array): (reflectance, shininess, specular) material properties associated with the geom perturb (bool): Whether to perturb the inputted material properties or not """ mat_id = self._name_to_mat_id(name) if perturb: material = (1. - self.local_material_interpolation) * self._defaults[name]['material'] + \ self.local_material_interpolation * material self.model.mat_reflectance[mat_id] = material[0] self.model.mat_shininess[mat_id] = material[1] self.model.mat_specular[mat_id] = material[2] def get_checker_matrices(self, name): """ Grabs checker pattern matrix associated with @name. Args: name (str): Name of geom Returns: np.array: 3d-array representing rgb checker pattern """ tex_id = self._name_to_tex_id(name) return self._texture_checker_mats[tex_id] def set_checker(self, name, rgb1, rgb2, perturb=False): """ Use the two checker matrices to create a checker pattern from the two colors, and set it as the texture for geom @name. Args: name (str): Name of geom rgb1 (3-array): (r,g,b) value for one half of checker pattern rgb2 (3-array): (r,g,b) value for other half of checker pattern perturb (bool): Whether to perturb the resulting checker pattern or not """ cbd1, cbd2 = self.get_checker_matrices(name) rgb1 = np.asarray(rgb1).reshape([1, 1, -1]) rgb2 = np.asarray(rgb2).reshape([1, 1, -1]) bitmap = rgb1 * cbd1 + rgb2 * cbd2 self.set_texture(name, bitmap, perturb=perturb) def set_gradient(self, name, rgb1, rgb2, vertical=True, perturb=False): """ Creates a linear gradient from rgb1 to rgb2. Args: name (str): Name of geom rgb1 (3-array): start color rgb2 (3- array): end color vertical (bool): if True, the gradient in the positive y-direction, if False it's in the positive x-direction. perturb (bool): Whether to perturb the resulting gradient pattern or not """ # NOTE: MuJoCo's gradient uses a sigmoid. Here we simplify # and just use a linear gradient... We could change this # to just use a tanh-sigmoid if needed. bitmap = self.get_texture(name).bitmap h, w = bitmap.shape[:2] if vertical: p = np.tile(np.linspace(0, 1, h)[:, None], (1, w)) else: p = np.tile(np.linspace(0, 1, w), (h, 1)) new_bitmap = np.zeros_like(bitmap) for i in range(3): new_bitmap[..., i] = rgb2[i] * p + rgb1[i] * (1.0 - p) self.set_texture(name, new_bitmap, perturb=perturb) def set_rgb(self, name, rgb, perturb=False): """ Just set the texture bitmap for geom @name to a constant rgb value. Args: name (str): Name of geom rgb (3-array): desired (r,g,b) color perturb (bool): Whether to perturb the resulting color pattern or not """ bitmap = self.get_texture(name).bitmap new_bitmap = np.zeros_like(bitmap) new_bitmap[..., :] = np.asarray(rgb) self.set_texture(name, new_bitmap, perturb=perturb) def set_noise(self, name, rgb1, rgb2, fraction=0.9, perturb=False): """ Sets the texture bitmap for geom @name to a noise pattern Args: name (str): name of geom rgb1 (3-array): background color rgb2 (3-array): color of random noise foreground color fraction (float): fraction of pixels with foreground color perturb (bool): Whether to perturb the resulting color pattern or not """ bitmap = self.get_texture(name).bitmap h, w = bitmap.shape[:2] mask = self.random_state.uniform(size=(h, w)) < fraction new_bitmap = np.zeros_like(bitmap) new_bitmap[..., :] = np.asarray(rgb1) new_bitmap[mask, :] = np.asarray(rgb2) self.set_texture(name, new_bitmap, perturb=perturb) def upload_texture(self, name): """ Uploads the texture to the GPU so it's available in the rendering. Args: name (str): name of geom """ texture = self.get_texture(name) if not self.sim.render_contexts: cymj.MjRenderContextOffscreen(self.sim) for render_context in self.sim.render_contexts: render_context.upload_texture(texture.id) def _check_geom_for_texture(self, name): """ Helper function to determined if the geom @name has an assigned material and that the material has an assigned texture. Args: name (str): name of geom Returns: bool: True if specific geom has both material and texture associated, else False """ geom_id = self.model.geom_name2id(name) mat_id = self.model.geom_matid[geom_id] if mat_id < 0: return False tex_id = self.model.mat_texid[mat_id] if tex_id < 0: return False return True def _name_to_tex_id(self, name): """ Helper function to get texture id from geom name. Args: name (str): name of geom Returns: int: id of texture associated with geom Raises: AssertionError: [No texture associated with geom] """ # handle skybox separately if name == 'skybox': skybox_tex_id = -1 for tex_id in range(self.model.ntex): skybox_textype = 2 if self.model.tex_type[tex_id] == skybox_textype: skybox_tex_id = tex_id assert skybox_tex_id >= 0 return skybox_tex_id assert self._check_geom_for_texture(name) geom_id = self.model.geom_name2id(name) mat_id = self.model.geom_matid[geom_id] tex_id = self.model.mat_texid[mat_id] return tex_id def _name_to_mat_id(self, name): """ Helper function to get material id from geom name. Args: name (str): name of geom Returns: int: id of material associated with geom Raises: ValueError: [No material associated with skybox] AssertionError: [No material associated with geom] """ # handle skybox separately if name == 'skybox': raise ValueError("Error: skybox has no material!") assert self._check_geom_for_texture(name) geom_id = self.model.geom_name2id(name) mat_id = self.model.geom_matid[geom_id] return mat_id def _cache_checker_matrices(self): """ Cache two matrices of the form [[1, 0, 1, ...], [0, 1, 0, ...], ...] and [[0, 1, 0, ...], [1, 0, 1, ...], ...] for each texture. To use for fast creation of checkerboard patterns """ self._texture_checker_mats = [] for tex_id in range(self.model.ntex): texture = self.textures[tex_id] h, w = texture.bitmap.shape[:2] self._texture_checker_mats.append(self._make_checker_matrices(h, w)) def _make_checker_matrices(self, h, w): """ Helper function to quickly generate binary matrices used to create checker patterns Args: h (int): Desired height of matrices w (int): Desired width of matrices Returns: 2-tuple: - (np.array): 2d-array representing first half of checker matrix - (np.array): 2d-array representing second half of checker matrix """ re = np.r_[((w + 1) // 2) * [0, 1]] ro = np.r_[((w + 1) // 2) * [1, 0]] cbd1 = np.expand_dims(np.row_stack(((h + 1) // 2) * [re, ro]), -1)[:h, :w] cbd2 = np.expand_dims(np.row_stack(((h + 1) // 2) * [ro, re]), -1)[:h, :w] return cbd1, cbd2 # From mjtTexture MJT_TEXTURE_ENUM = ['2d', 'cube', 'skybox'] class Texture: """ Helper class for operating on the MuJoCo textures. Args: model (MjModel): Mujoco sim model tex_id (int): id of specific texture in mujoco sim """ __slots__ = ['id', 'type', 'height', 'width', 'tex_adr', 'tex_rgb'] def __init__(self, model, tex_id): self.id = tex_id self.type = MJT_TEXTURE_ENUM[model.tex_type[tex_id]] self.height = model.tex_height[tex_id] self.width = model.tex_width[tex_id] self.tex_adr = model.tex_adr[tex_id] self.tex_rgb = model.tex_rgb @property def bitmap(self): """ Grabs color bitmap associated with this texture from the mujoco sim. Returns: np.array: 3d-array representing the rgb texture bitmap """ size = self.height * self.width * 3 data = self.tex_rgb[self.tex_adr:self.tex_adr + size] return data.reshape((self.height, self.width, 3)) class PhysicalParameterModder(BaseModder): """ Modder for various physical parameters of the mujoco model can use to modify parameters stored in MjModel (ie friction, damping, etc.) as well as optimizer parameters like global friction multipliers (eg solimp, solref, etc) To modify a parameteter, use the parameter to be changed as a keyword argument to self.mod and the new value as the value for that argument. Supports arbitray many modifications in a single step. :NOTE: It is necesary to perform sim.forward after performing the modification. :NOTE: Some parameters might not be able to be changed. users are to verify that after the call to forward that the parameter is indeed changed. Args: sim (MjSim): Mujoco sim instance random_state (RandomState): instance of np.random.RandomState, specific seed used to randomize these modifications without impacting other numpy seeds / randomizations """ def __init__(self, sim, random_state=None): super().__init__(sim=sim, random_state=random_state) @property def opt(self): """ Returns: ?: MjModel sim options """ return self.sim.model.opt def __getattr__(self, name): try: opt_attr = getattr(self.opt, name) except AttributeError: opt_attr = None try: model_attr = getattr(self.model, name) except AttributeError: model_attr = None ret = opt_attr if opt_attr is not None else model_attr if callable(ret): def r(*args): return ret(*args) return r return ret def mod(self, **kwargs): """ Method to actually mod. Assumes passing in keyword arguments with key being the parameter to modify and the value being the value to set Feel free to add more as we see fit. Args: **kwargs (dict): Physical parameters to actually modify mid-sim """ for to_mod in kwargs: val = kwargs[to_mod] param = to_mod ind = None if 'geom_friction' in param: joint = param.replace('_geom_friction', '') ind = self.geom_name2id(joint) param = 'geom_friction' elif 'dof_damping' in param: joint = param.replace('_dof_damping', '') param = 'dof_damping' joint = self.joint_name2id(joint) ind = np.zeros(self.nv) for i in range(self.model.nv): if self.dof_jntid[i] == joint: ind[i] = 1 if ind is None: setattr(self, param, val) else: self.__getattr__(param)[ind] = val
the-stack_106_22457
# Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from orquesta import statuses from orquesta.tests.unit.conducting.native import base class CyclicWorkflowConductorTest(base.OrchestraWorkflowConductorTest): def test_cycle(self): wf_name = "cycle" expected_task_seq = [ "prep", "task1", "task2", "task3", "task1", "task2", "task3", "task1", "task2", "task3", ] self.assert_spec_inspection(wf_name) self.assert_conducting_sequences(wf_name, expected_task_seq) def test_cycles(self): wf_name = "cycles" expected_task_seq = [ "prep", "task1", "task2", "task3", "task4", "task2", "task5", "task1", "task2", "task3", "task4", "task2", "task5", "task1", "task2", "task3", "task4", "task2", "task5", ] self.assert_spec_inspection(wf_name) self.assert_conducting_sequences(wf_name, expected_task_seq) def test_rollback_retry(self): wf_name = "rollback-retry" expected_task_seq = ["init", "check", "create", "rollback", "check", "delete"] mock_statuses = [ statuses.SUCCEEDED, # init statuses.FAILED, # check statuses.SUCCEEDED, # create statuses.SUCCEEDED, # rollback statuses.SUCCEEDED, # check statuses.SUCCEEDED, # delete ] self.assert_spec_inspection(wf_name) self.assert_conducting_sequences(wf_name, expected_task_seq, mock_statuses=mock_statuses) def test_cycle_and_fork(self): wf_name = "cycle-fork" expected_task_seq = [ "init", "query", "decide_cheer", "decide_work", "cheer", "notify_work", "toil", "query", "decide_cheer", "decide_work", ] mock_results = [ None, # init True, # query None, # decide_cheer None, # decide_work None, # cheer None, # notify_work None, # toil False, # query None, # decide_cheer None, # decide_work ] self.assert_spec_inspection(wf_name) self.assert_conducting_sequences(wf_name, expected_task_seq, mock_results=mock_results)
the-stack_106_22458
import warnings class OnceTrigger(object): """Trigger based on the starting point of the iteration. This trigger accepts only once at starting point of the iteration. There are two ways to specify the starting point: only starting point in whole iteration or called again when training resumed. Args: call_on_resume (bool): Whether the extension is called again or not when restored from a snapshot. It is set to ``False`` by default. """ def __init__(self, call_on_resume=False): self._flag_first = True self._flag_resumed = call_on_resume def __call__(self, trainer): flag = self._flag_first or self._flag_resumed self._flag_resumed = False self._flag_first = False return flag def serialize(self, serializer): try: self._flag_first = serializer('_flag_first', self._flag_first) except KeyError: warnings.warn( 'The flag is not saved.' 'OnceTrigger guess it is not first when resumed.' 'If this trigger is resumed before first called,' 'it may not work correctly.') self._flag_first = False
the-stack_106_22459
# -*- coding: UTF8 -*- from pupylib.PupyModule import * __class_name__="GetPrivsModule" @config(compat=["windows"], cat="manage") class GetPrivsModule(PupyModule): """ try to get SeDebugPrivilege for the current process """ dependencies=["psutil", "pupwinutils.security"] def init_argparse(self): self.arg_parser = PupyArgumentParser(prog="getprivs", description=self.__doc__) def run(self, args): self.client.conn.modules["pupwinutils.security"].EnablePrivilege("SeDebugPrivilege") self.success("SeDebugPrivilege enabled !")
the-stack_106_22461
import serial import time class BaseCtrl: COMMAND_DELAY = 0.05 def __init__(self, app, device='/dev/ttyUSB0', baudrate=9600, channels=8): self.verify_wait = -1 self.channels = channels self.log = app.log self.log.info("Init %s(%s, baudrate: %d)", self.__class__.__name__, device, baudrate) self.port = serial.Serial(device, baudrate=baudrate, bytesize=8, parity='N', stopbits=1, timeout=1) self.port.reset_input_buffer() self._init() def _init(self): pass def set_verify(self, wait): self.verify_wait= wait if wait >= 0: self.port.reset_input_buffer() def write(self, cmd): self.log.debug("Write: %s", cmd) data = cmd.encode() self.port.write(data) def read(self, size=0): if size > 0: data = self.port.read(size) else: data = self.port.readline() self.log.debug("Read: %s", data) return data def set(self, channel, bright): self.log.error("set({}, {}): to be implemented".format(channel, bright)) def on(self, channel=0): self.log.error("on({}): to be implemented".format(channel)) def off(self, channel=0): self.log.error("off({}): to be implemented".format(channel))
the-stack_106_22463
import logging from time import sleep from typing import List from django.utils import timezone from river.adapters.progression_counter import ProgressionCounter from river.adapters.topics import TopicsManager from river.models import Batch logger = logging.getLogger(__name__) def teardown_after_batch(batch: Batch, topics: TopicsManager): for base_topic in ["batch", "extract", "transform", "load"]: topics.delete(f"{base_topic}.{batch.id}") def clean(counter: ProgressionCounter, topics: TopicsManager): current_batches = Batch.objects.filter(completed_at__isnull=True, canceled_at__isnull=True).prefetch_related( "resources" ) batches_to_delete: List[Batch] = [] for batch in current_batches: resources_progressions = [counter.get(f"{batch.id}:{resource.id}") for resource in batch.resources.all()] if all( [ progression is not None and progression.extracted is not None and ((progression.loaded or 0) + (progression.failed or 0)) >= progression.extracted for progression in resources_progressions ] ): batches_to_delete.append(batch) if batches_to_delete: logger.info(f"Deleting batches: {batches_to_delete}.") for batch in batches_to_delete: teardown_after_batch(batch, topics) batch.completed_at = timezone.now() batch.save() logger.info(f"Batch {batch} deleted.") def run(counter: ProgressionCounter, topics: TopicsManager): while True: clean(counter=counter, topics=topics) sleep(10)
the-stack_106_22464
# 2021 - Borworntat Dendumrongkul class Notify : _version = "1.0.0" _token = "" def __init__(self, _token=""): self.token = _token def version(self): return self._version def setKey(self, token): try: self._token = token return True except: return False def send_sticker(self, pack, idx): payload = { 'message': " ", 'stickerPackageId': pack, 'stickerId': idx } return self.send(payload) def send_message(self, msg): payload = { 'message': msg } return self.send(payload) def send_picture(self, url): payload = { 'message': " ", 'imageThumbnail': url, 'imageFullsize': url } return self.send(payload) def send(self, payload, file=None): if self._token != "": import requests url = "https://notify-api.line.me/api/notify" tok = self._token headers = { "Authorization": "Bearer " + tok } r = requests.post(url, headers=headers, data=payload, files=file) return True else: return False
the-stack_106_22465
# -*- coding: utf-8 -*- import os from unittest import TestCase from unittest.mock import patch, MagicMock from pathlib import Path from collections import namedtuple from sfzlint.cli import sfzlint, sfzlist from sfzlint import settings fixture_dir = Path(__file__).parent / 'fixtures' is_fs_case_insensitive = ( os.path.exists(__file__.upper()) and os.path.exists(__file__.lower())) class ErrMsg(namedtuple('errmsg', ( 'file', 'row', 'column', 'level', 'message'))): def __new__(cls, file, row, column, l_m): level, message = l_m.split(' ', 1) return super().__new__(cls, file, row, column, level, message) def patchargs(path, *args): newargv = ['sfzlint', '--no-pickle', str(fixture_dir / path)] + list(args) def wrapper(fn): return patch('sys.argv', new=newargv)(fn) return wrapper class TestSFZLint(TestCase): def tearDown(self): # Ensure this does not get accidentally set self.assertFalse(settings.pickle) def assert_has_message(self, message, err_list): msglen = len(message) msgs = {e.message[:msglen] for e in err_list} self.assertIn(message, msgs, f'{message} not in {err_list}') @patchargs('basic/valid.sfz') @patch('builtins.print') def test_valid_file(self, print_mock): sfzlint() self.assertFalse(print_mock.called, print_mock.call_args_list) @patchargs('basic/bad.sfz') @patch('builtins.print') def test_invalid_file(self, print_mock): sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] self.assert_has_message('unknown opcode', calls) @patchargs('basic') def test_lint_dir(self): with patch('builtins.print') as print_mock: sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] self.assert_has_message('unknown opcode', calls) @patchargs('include/inbadfile.sfz') def test_include_parse_error(self): with patch('builtins.print') as print_mock: sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':', 3)) for a in print_mock.call_args_list] self.assert_has_message('error loading include', calls) @patchargs('include/hasinc.sfz') @patch('builtins.print') def test_include_define(self, print_mock): sfzlint() self.assertFalse(print_mock.called, print_mock.call_args_list) @patchargs('basic/valid.sfz', '--spec-version', 'v1') @patch('builtins.print') def test_spec_version(self, print_mock): sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] self.assert_has_message('header spec v2 not in', calls) self.assert_has_message('opcode spec v2 is not', calls) @patchargs('basic/nosample.sfz') @patch('builtins.print') def test_missing_sample(self, print_mock): sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] self.assert_has_message('file not found', calls) @patchargs('basic/relsample.sfz') def test_relative_path(self): with patch('builtins.print') as print_mock: sfzlint() self.assertFalse(print_mock.called, print_mock.call_args_list) @patchargs('basic/def_path.sfz') def test_default_path(self): with patch('builtins.print') as print_mock: sfzlint() self.assertFalse(print_mock.called, print_mock.call_args_list) @patchargs('basic/badcase.sfz') def test_bad_case(self): with patch('builtins.print') as print_mock: sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] if (is_fs_case_insensitive): self.assert_has_message('case does not match', calls) else: self.assert_has_message('file not found', calls) @patchargs('include/sub/relpath.sfz', '--rel-path', str(fixture_dir / 'include')) def test_rel_path(self): with patch('builtins.print') as print_mock: sfzlint() self.assertFalse(print_mock.called, print_mock.call_args_list) @patchargs('aria_program.xml') def test_xml_with_defines(self): with patch('builtins.print') as print_mock: sfzlint() self.assertTrue(print_mock.called) calls = [ErrMsg(*a[0][0].split(':')) for a in print_mock.call_args_list] self.assertEqual(1, len(calls), calls) self.assertIn('foo', calls[0].message) class TestSFZList(TestCase): @patch('sys.argv', new=['sfzlist', '--no-pickle']) def test_valid_file(self): print_mock = MagicMock() sfzlist(print_mock) self.assertTrue(print_mock.called) opcodes = {line[0][0].split(' ', 1)[0] for line in print_mock.call_args_list} for test_opcode in ('cutoff2_onccN', 'sample', '*_mod', 'curve_index'): self.assertIn(test_opcode, opcodes) @patch('sys.argv', new=[ 'sfzlist', '--no-pickle', '--path', str(fixture_dir / 'basic')]) def test_path_dir(self): print_mock = MagicMock() sfzlist(print_mock) self.assertTrue(print_mock.called) opcodes = {line[0][0].split(' ', 1)[0] for line in print_mock.call_args_list} for test_opcode in ('foo', 'sw_default', 'amp_velcurve_N'): self.assertIn(test_opcode, opcodes) for test_opcode in ('cutoff2_onccN', 'curve_index', '*_mod'): self.assertNotIn(test_opcode, opcodes)
the-stack_106_22468
#-*-coding:utf-8-*- """ @FileName:observation.py @Description: @Author:qiwenhao @Time:2021/5/12 20:11 @Department:AIStudio研发部 @Copyright:©2011-2021 北京华如科技股份有限公司 @Project:601 """ _OBSINIT = None class ObservationProcessor(object): # 解析数据包 @staticmethod def get_obs(Data): """ 解析状态信息并组包 :param Data: bvrsim 返回的态势信息 :return: 解析后的 bvrsim 态势信息,格式为dict """ # 初始化obs数据结构 if Data is None: print("从引擎中获取的数据为空!") return None obs = {side: dict(platforminfos=[], trackinfos=[], missileinfos=[]) for side in ['blue', 'red']} obs["sim_time"] = Data.CurTime # 仿真时间 obs["xsim_tag"] = Data.XSimTag # 引擎标识 data = Data.IdenInfos try: for info in data: # 己方作战平台信息解析 for platforminfo in info.PlatformInfos: if platforminfo.Identification == "红方": pl_side = "red" elif platforminfo.Identification == "蓝方": pl_side = "blue" else: continue obs[pl_side]['platforminfos'].append( dict( Name=platforminfo.Name, # 飞机的名称 Identification=platforminfo.Identification, # 飞机的标识符(表示飞机是红方还是蓝方) ID=platforminfo.ID, # 飞机的ID(表示飞机的唯一编号) Type=platforminfo.Type, # 飞机的类型(表示飞机的类型,其中有人机类型为 1,无人机类型为2) Availability=platforminfo.Availability, # 飞机的可用性(表示飞机的可用性,范围为0到1,为1表示飞机存活,0表示飞机阵亡) X=platforminfo.X, # 飞机的当前X坐标(表示飞机的X坐标) Y=platforminfo.Y, # 飞机的当前Y坐标(表示飞机的Y坐标) Lon=platforminfo.Lon, # 飞机的当前所在经度(表示飞机的所在经度) Lat=platforminfo.Lat, # 飞机的当前所在纬度(表示飞机的所在纬度) Alt=platforminfo.Alt, # 飞机的当前所在高度(表示飞机的所在高度) Heading=platforminfo.Heading, # 飞机的当前朝向角度(飞机的当前朝向,范围为-180°到180° 朝向0°表示正北,逆时针方向旋转为正数0°到180°,顺时针方向为正数0°到-180°) Pitch=platforminfo.Pitch, # 飞机的当前俯仰角度(飞机的当前俯仰,范围为-90°到90°,朝向高处为正,低处为负) Roll=platforminfo.Roll, # 飞机的当前滚转角度(飞机的当前滚转,范围为-180°到180° ) Speed=platforminfo.Speed, # 飞机的当前速度(飞机的当前速度) CurTime=platforminfo.CurTime, # 当前时间(当前时间) AccMag=platforminfo.AccMag, # 飞机的指令加速度(飞机的指令加速度) NormalG=platforminfo.NormalG, # 飞机的指令过载(飞机的指令过载) IsLocked=platforminfo.IsLocked, # 飞机是否被敌方导弹锁定(飞机是否被敌方导弹锁定) Status=platforminfo.Status, # 飞机的当前状态(飞机的当前状态) LeftWeapon=platforminfo.LeftWeapon # 飞机的当前剩余导弹数(飞机的当前剩余导弹数) ) ) # 目标信息解析 for trackinfo in info.TargetInfos: if trackinfo.Identification == "蓝方": ti_side = "red" elif trackinfo.Identification == "红方": ti_side = "blue" else: continue obs[ti_side]['trackinfos'].append( dict( Name=trackinfo.Name, # 敌方飞机的名称 Identification=trackinfo.Identification, # 敌方飞机的标识符(表示敌方飞机是红方还是蓝方) ID=trackinfo.ID, # 敌方飞机的ID(表示飞机的唯一编号) Type=trackinfo.Type, # 敌方飞机的类型(表示飞机的类型,其中有人机类型为 1,无人机类型为2) Availability=trackinfo.Availability, # 敌方飞机的可用性(表示飞机的可用性,范围为0到1,为1表示飞机存活,0表示飞机阵亡) X=trackinfo.X, # 敌方飞机的当前X坐标(表示飞机的X坐标) Y=trackinfo.Y, # 敌方飞机的当前Y坐标(表示飞机的Y坐标) Lon=trackinfo.Lon, # 敌方飞机的当前所在经度(表示飞机的所在经度) Lat=trackinfo.Lat, # 敌方飞机的当前所在纬度(表示飞机的所在纬度) Alt=trackinfo.Alt, # 敌方飞机的当前所在高度(表示飞机的所在高度) Heading=trackinfo.Heading, # 敌方飞机的当前朝向角度(飞机的当前朝向,范围为-180°到180° 朝向0°表示正北,逆时针方向旋转为正数0°到180°,顺时针方向为正数0°到-180°) Pitch=trackinfo.Pitch, # 敌方飞机的当前俯仰角度(飞机的当前俯仰,范围为-90°到90°,朝向高处为正,低处为负) Roll=trackinfo.Roll, # 敌方飞机的当前滚转角度(飞机的当前滚转,范围为-180°到180° ) Speed=trackinfo.Speed, # 敌方飞机的当前速度(飞机的当前速度) CurTime=trackinfo.CurTime, # 当前时间(当前时间) IsLocked=trackinfo.IsLocked # 敌方飞机是否被敌方导弹锁定(飞机是否被己方导弹锁定) ) ) # 来袭导弹信息解析 for missileinfo in info.MissileInfos: if missileinfo.Identification == "红方": mi_side = "blue" elif missileinfo.Identification == "蓝方": mi_side = "red" else: continue obs[mi_side]['missileinfos'].append( dict( Name=missileinfo.Name, # 敌方导弹的名称 Identification=missileinfo.Identification, # 敌方导弹的标识符(表示敌方导弹是红方还是蓝方) ID=missileinfo.ID, # 敌方导弹的ID(表示导弹的唯一编号) Type=missileinfo.Type, # 敌方导弹的类型(表示导弹的类型,其中导弹类型为 3) Availability=missileinfo.Availability, # 敌方导弹的可用性(表示导弹的可用性,范围为0到1,为1表示飞机存活,0表示导弹已爆炸) X=missileinfo.X, # 敌方导弹的当前X坐标(表示导弹的X坐标) Y=missileinfo.Y, # 敌方导弹的当前Y坐标(表示导弹的Y坐标) Lon=missileinfo.Lon, # 敌方导弹的当前所在经度(表示导弹的所在经度) Lat=missileinfo.Lat, # 敌方导弹的当前所在纬度(表示导弹的所在纬度) Alt=missileinfo.Alt, # 敌方导弹的当前所在高度(表示导弹的所在高度) Heading=missileinfo.Heading, # 敌方导弹的当前朝向角度(导弹的当前朝向,范围为-180°到180° 朝向0°表示正北,逆时针方向旋转为正数0°到180°,顺时针方向为正数0°到-180°) Pitch=missileinfo.Pitch, # 敌方导弹的当前俯仰角度(导弹的当前俯仰,范围为-90°到90°,朝向高处为正,低处为负) Roll=missileinfo.Roll, # 敌方导弹的当前滚转角度(导弹的当前滚转,范围为-180°到180° ) Speed=missileinfo.Speed, # 敌方导弹的当前速度(导弹的当前速度) CurTime=missileinfo.CurTime, # 当前时间(当前时间) LauncherID=missileinfo.LauncherID, # 敌方导弹的发射者ID(敌方导弹的发射者ID) EngageTargetID=missileinfo.EngageTargetID # 敌方已发射导弹攻击目标的ID(我方已发射导弹攻击目标的ID) ) ) # 友方导弹信息解析 for missileinfo in info.MissileInfos: if missileinfo.Identification == "红方": mi_side = "red" elif missileinfo.Identification == "蓝方": mi_side = "blue" else: continue obs[mi_side]['missileinfos'].append( dict( Name=missileinfo.Name, # 我方已发射导弹的名称 Identification=missileinfo.Identification, # 我方已发射导弹的标识符(表示我方已发射导弹是红方还是蓝方) ID=missileinfo.ID, # 我方已发射导弹的ID(表示导弹的唯一编号) Type=missileinfo.Type, # 我方已发射导弹的类型(表示导弹的类型,其中导弹类型为 3) Availability=missileinfo.Availability, # 我方已发射导弹的可用性(表示导弹的可用性,范围为0到1,为1表示飞机存活,0表示导弹已爆炸) X=missileinfo.X, # 我方已发射导弹的当前X坐标(表示导弹的X坐标) Y=missileinfo.Y, # 我方已发射导弹的当前Y坐标(表示导弹的Y坐标) Lon=missileinfo.Lon, # 我方已发射导弹的当前所在经度(表示导弹的所在经度) Lat=missileinfo.Lat, # 我方已发射导弹的当前所在纬度(表示导弹的所在纬度) Alt=missileinfo.Alt, # 我方已发射导弹的当前所在高度(表示导弹的所在高度) Heading=missileinfo.Heading, # 我方已发射导弹的当前朝向角度(导弹的当前朝向,范围为-180°到180° 朝向0°表示正北,逆时针方向旋转为正数0°到180°,顺时针方向为正数0°到-180°) Pitch=missileinfo.Pitch, # 我方已发射导弹的当前俯仰角度(导弹的当前俯仰,范围为-90°到90°,朝向高处为正,低处为负) Roll=missileinfo.Roll, # 我方已发射导弹的当前滚转角度(导弹的当前滚转,范围为-180°到180°) Speed=missileinfo.Speed, # 我方已发射导弹的当前速度(导弹的当前速度) CurTime=missileinfo.CurTime, # 当前时间(当前时间) LauncherID=missileinfo.LauncherID, # 我方已发射导弹的发射者ID(我方已发射导弹的发射者ID) EngageTargetID=missileinfo.EngageTargetID # 我方已发射导弹攻击目标的ID(我方已发射导弹攻击目标的ID) ) ) global _OBSINIT if _OBSINIT is None: _OBSINIT = obs except Exception as e: print("解析数据异常~") return obs
the-stack_106_22469
"""Utility functions for DBus use within Bluezero.""" # Standard libraries import re import subprocess import logging try: # Python 2.7+ from logging import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass # D-Bus import import dbus import dbus.mainloop.glib # python-bluezero constants import from bluezero import constants dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) logger.addHandler(NullHandler()) def bluez_version(): """ get the version of the BlueZ daemon being used on the system :return: String of BlueZ version """ p = subprocess.Popen(['bluetoothctl', '-v'], stdout=subprocess.PIPE) ver = p.communicate() return str(ver[0].decode().rstrip()) def bluez_experimental_mode(): """ Return True if the BlueZ daemon service is in experimental mode :return: True if experimental enabled """ status = subprocess.check_output('service bluetooth status', shell=True) if re.search('--experimental', status.decode('utf-8')) is None: return False else: return True def interfaces_added(path, interfaces): """ Callback for when an interface is added :param path: :param interfaces: :return: """ if constants.DEVICE_INTERFACE in interfaces: logger.debug('Device added at {}'.format(path)) def properties_changed(interface, changed, invalidated, path): """ Callback for when properties are changed :param interface: :param changed: :param invalidated: :param path: :return: """ if constants.DEVICE_INTERFACE in interface: for prop in changed: logger.debug( '{}:{} Property {} new value {}'.format(interface, path, prop, changed[prop])) def get_dbus_obj(dbus_path): """ Get the the DBus object for the given path :param dbus_path: :return: """ bus = dbus.SystemBus() return bus.get_object(constants.BLUEZ_SERVICE_NAME, dbus_path) def get_dbus_iface(iface, dbus_obj): """ Return the DBus interface object for given interface and DBus object :param iface: :param dbus_obj: :return: """ return dbus.Interface(dbus_obj, iface) def get_managed_objects(): """Return the objects currently managed by the DBus Object Manager.""" bus = dbus.SystemBus() manager = dbus.Interface(bus.get_object( constants.BLUEZ_SERVICE_NAME, '/'), constants.DBUS_OM_IFACE) return manager.GetManagedObjects() def get_mac_addr_from_dbus_path(path): """Return the mac addres from a dev_XX_XX_XX_XX_XX_XX dbus path""" return path.split("/")[-1].replace("dev_", '').replace("_", ":") def _get_dbus_path2(objects, parent_path, iface_in, prop, value): """ Find DBus path for given DBus interface with property of a given value. :param objects: Dictionary of objects to search :param parent_path: Parent path to include in search :param iface_in: The interface of interest :param prop: The property to search for :param value: The value of the property being searched for :return: Path of object searched for """ if parent_path is None: return None for path, iface in objects.items(): props = iface.get(iface_in) if props is None: continue if props[prop].lower() == value.lower() and \ path.startswith(parent_path): return path return None def get_dbus_path(adapter=None, device=None, service=None, characteristic=None, descriptor=None): """ Return a DBus path for the given properties :param adapter: Adapter address :param device: Device address :param service: GATT Service UUID :param characteristic: GATT Characteristic UUID :param descriptor: GATT Descriptor UUID :return: DBus path """ bus = dbus.SystemBus() manager = dbus.Interface( bus.get_object(constants.BLUEZ_SERVICE_NAME, '/'), constants.DBUS_OM_IFACE) mngd_objs = manager.GetManagedObjects() _dbus_obj_path = None if adapter is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, '/org/bluez', constants.ADAPTER_INTERFACE, 'Address', adapter) if device is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.DEVICE_INTERFACE, 'Address', device) if service is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.GATT_SERVICE_IFACE, 'UUID', service) if characteristic is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.GATT_CHRC_IFACE, 'UUID', characteristic) if descriptor is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.GATT_DESC_IFACE, 'UUID', descriptor) return _dbus_obj_path def get_profile_path(adapter, device, profile): """ Return a DBus path for the given properties :param adapter: Adapter address :param device: Device address :param profile: :return: """ bus = dbus.SystemBus() manager = dbus.Interface( bus.get_object(constants.BLUEZ_SERVICE_NAME, '/'), constants.DBUS_OM_IFACE) mngd_objs = manager.GetManagedObjects() _dbus_obj_path = None if adapter is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, '/org/bluez', constants.ADAPTER_INTERFACE, 'Address', adapter) if device is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.DEVICE_INTERFACE, 'Address', device) if profile is not None: _dbus_obj_path = _get_dbus_path2(mngd_objs, _dbus_obj_path, constants.GATT_PROFILE_IFACE, 'UUID', profile) return _dbus_obj_path def get_iface(adapter=None, device=None, service=None, characteristic=None, descriptor=None): """ For the given list of properties return the deepest interface :param adapter: Adapter address :param device: Device address :param service: GATT Service UUID :param characteristic: GATT Characteristic UUID :param descriptor: GATT Descriptor UUID :return: DBus Interface """ if adapter is not None: _iface = constants.ADAPTER_INTERFACE if device is not None: _iface = constants.DEVICE_INTERFACE if service is not None: _iface = constants.GATT_SERVICE_IFACE if characteristic is not None: _iface = constants.GATT_CHRC_IFACE if descriptor is not None: _iface = constants.GATT_DESC_IFACE return _iface def get_methods(adapter=None, device=None, service=None, characteristic=None, descriptor=None): """ Get methods available for the specified :param adapter: Adapter Address :param device: Device Address :param service: GATT Service UUID :param characteristic: GATT Characteristic UUID :param descriptor: GATT Descriptor UUID :return: Object of the DBus methods available """ path_obj = get_dbus_path(adapter, device, service, characteristic, descriptor) iface = get_iface(adapter, device, service, characteristic, descriptor) return get_dbus_iface(iface, get_dbus_obj(path_obj)) def get_props(adapter=None, device=None, service=None, characteristic=None, descriptor=None): """ Get properties for the specified object :param adapter: Adapter Address :param device: Device Address :param service: GATT Service UUID :param characteristic: GATT Characteristic UUID :param descriptor: GATT Descriptor UUID :return: Object of the DBus properties available """ path_obj = get_dbus_path(adapter, device, service, characteristic, descriptor) return get_dbus_iface(dbus.PROPERTIES_IFACE, get_dbus_obj(path_obj)) def str_to_dbusarray(word): return dbus.Array([dbus.Byte(ord(letter)) for letter in word], 'y') def bytes_to_dbusarray(bytesarray): return dbus.Array([dbus.Byte(elem) for elem in bytesarray], 'y')
the-stack_106_22471
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This defines a repository rule for configuring the rules' defaults. The default can be specified as follows: ```python === WORKSPACE === load( "@io_bazel_rules_k8s//k8s:with-defaults.bzl", "k8s_defaults", ) k8s_defaults( # This is the name of the generated repository and the rule # it defines. name = "k8s_deploy", # This is the kind of object the generated rule supports manipulating. # If this is specified, it may not be overridden. If not, then it must # be specified. kind = "deployment", ) === BUILD === load("@k8s_deploy//:defaults.bzl", "k8s_deploy") ... ``` """ # Generate an override statement for a particular attribute. def _override(name, attr, value): return """ if "{attr}" in kwargs: fail("Cannot override '{attr}' in '{name}' rule.", attr="{attr}") kwargs["{attr}"] = "{value}" """.format(name=name, attr=attr, value=value) def _impl(repository_ctx): """Core implementation of k8s_defaults.""" # This is required by Bazel. repository_ctx.file("BUILD", "") overrides = [] if repository_ctx.attr.cluster: overrides += [_override(repository_ctx.attr.name, "cluster", repository_ctx.attr.cluster)] if repository_ctx.attr.context: overrides += [_override(repository_ctx.attr.name, "context", repository_ctx.attr.context)] if repository_ctx.attr.user: overrides += [_override(repository_ctx.attr.name, "user", repository_ctx.attr.user)] if repository_ctx.attr.namespace: overrides += [_override(repository_ctx.attr.name, "namespace", repository_ctx.attr.namespace)] if repository_ctx.attr.kind: overrides += [_override(repository_ctx.attr.name, "kind", repository_ctx.attr.kind)] if repository_ctx.attr.image_chroot: overrides += [_override(repository_ctx.attr.name, "image_chroot", repository_ctx.attr.image_chroot)] repository_ctx.file("defaults.bzl", """ load( "@io_bazel_rules_k8s//k8s:object.bzl", _k8s_object="k8s_object" ) def {name}(**kwargs): {overrides} _k8s_object(**kwargs) """.format( name=repository_ctx.attr.name, overrides="\n".join(overrides) )) k8s_defaults = repository_rule( attrs = { "kind": attr.string(mandatory = False), "cluster": attr.string(mandatory = False), "context": attr.string(mandatory = False), "user": attr.string(mandatory = False), "namespace": attr.string(mandatory = False), "image_chroot": attr.string(mandatory = False), }, implementation = _impl, )
the-stack_106_22472
import names import os from tqdm import tqdm to_change_path = '../static/artwork/face-terrors' other_path = '../static/artwork/almost-human' for filename in tqdm(os.listdir(to_change_path)): if not filename.endswith(".png"): continue fn = names.get_first_name() fname = f'{to_change_path}/{fn}.png' fname_other_path = f'{other_path}/{fn}.png' while os.path.isfile(fname) or os.path.isfile(fname_other_path): fn = names.get_first_name() fname = f'{to_change_path}/{fn}.png' fname_other_path = f'{other_path}/{fn}.png' os.rename(f'{to_change_path}/{filename}', fname)
the-stack_106_22474
import json import sys def main(): samples = 1 if len(sys.argv) > 1: samples = sys.argv[1] output_path = sys.argv[2] print ("Generating " + samples + " samples") h_cli_sc = [] broker = open(output_path+"/broker.json", "w") broker_json = json.dumps( { "federates": [{"directory": ".", "exec": "helics_app broker --federates " + str(int(samples) *2), "host": "localhost", "name": "broker_of_"+str(int(samples)*2)}], "name" : "broker"}, indent=4, sort_keys=True) broker.write(broker_json) broker.close() h_cli_sc.append(output_path+"/broker.json") for i in range(int(samples)): send_file_name = output_path+"/pysender"+str(i)+".json" recv_file_name = output_path+"/pyrecv"+str(i)+".json" sender = open(send_file_name, "w") recv = open(recv_file_name, "w") h_cli_sc.append(send_file_name) h_cli_sc.append(recv_file_name) send_name = "pisender"+str(i) s_json = json.dumps( { "federates": [{"directory": ".", "exec": "python3 -u pisender.py " + str(i), "host": "localhost", "name": send_name}], "name" : send_name}, indent=4, sort_keys=True) recv_name = "pireceiver"+str(i) r_json = json.dumps( { "federates": [{"directory": ".", "exec": "python3 -u pireceiver.py " + str(i), "host": "localhost", "name": recv_name}], "name" : recv_name}, indent=4, sort_keys=True) sender.write(s_json) recv.write(r_json) sender.close() recv.close() with open("samples.csv", "w") as f: f.write("\n".join(h_cli_sc)) if __name__ == "__main__": main()
the-stack_106_22476
## factory boy import factory # Own from portfolio.models import Account class AccountFactory(factory.django.DjangoModelFactory): """ Factory for creating accounts """ class Meta: model = Account # Account name by default will be 'Account 1' for the first created # account, 'Account 2' for the next and so on name = factory.Sequence(lambda n: 'Account {0}'.format(n)) base_currency = 'EUR'
the-stack_106_22477
######### global settings ######### GPU = True # running on GPU is highly suggested GPU_ID = 0 TEST_MODE = False # turning on the testmode means the code will run on a small dataset. CLEAN = True # set to "True" if you want to clean the temporary large files after generating result MODEL = 'alexnet-r' # model arch: resnet18, alexnet, resnet50, densenet161 # MODEL_PATH = 'zoo/alexnet-r.pt' # resume model path for robust model DATASET = 'imagenet' # model trained on: places365 or imagenet QUANTILE = 0.005 # the threshold used for activation SEG_THRESHOLD = 0.04 # the threshold used for visualization SCORE_THRESHOLD = 0.04 # the threshold used for IoU score (in HTML file) TOPN = 10 # to show top N image with highest activation for each unit PARALLEL = 1 # how many process is used for tallying (Experiments show that 1 is the fastest) LAYER_SECTION = None CATAGORIES = ["object", "part", "scene", "texture", "color", "material"] # concept categories that are chosen to detect: "object", "part", "scene", "material", "texture", "color" OUTPUT_FOLDER = "result/"+MODEL+"_"+DATASET # result will be stored in this folder MADRYMODEL = True """setting for GoogleNet""" AUXILIARY = True # whether Auxiliary layer are in used ########### sub settings ########### # In most of the case, you don't have to change them. # DATA_DIRECTORY: where broaden dataset locates # IMG_SIZE: image size, alexnet use 227x227 # NUM_CLASSES: how many labels in final prediction # FEATURE_NAMES: the array of layer where features will be extracted # MODEL_FILE: the model file to be probed, "None" means the pretrained model in torchvision # MODEL_PARALLEL: some model is trained in multi-GPU, so there is another way to load them. # WORKERS: how many workers are fetching images # BATCH_SIZE: batch size used in feature extraction # TALLY_BATCH_SIZE: batch size used in tallying # INDEX_FILE: if you turn on the TEST_MODE, actually you should provide this file on your own if MODEL != 'alexnet' or 'alexnet-r': DATA_DIRECTORY = 'dataset/broden1_224' IMG_SIZE = 224 else: DATA_DIRECTORY = 'dataset/broden1_227' IMG_SIZE = 227 if DATASET == 'places365': NUM_CLASSES = 365 elif DATASET == 'imagenet': NUM_CLASSES = 1000 # ResNet18 if MODEL == 'resnet18': FEATURE_NAMES = ['layer4'] if DATASET == 'places365': MODEL_FILE = '../zoo/resnet18_places365.pth.tar' MODEL_PARALLEL = True elif DATASET == 'imagenet': MODEL_FILE = None MODEL_PARALLEL = False elif MODEL == 'densenet161': FEATURE_NAMES = ['features'] if DATASET == 'places365': MODEL_FILE = 'zoo/whole_densenet161_places365_python36.pth.tar' MODEL_PARALLEL = False # ResNet50 elif MODEL == 'resnet50': FEATURE_NAMES = ['conv1', 'layer1', 'layer2', 'layer3', 'layer4'] MODEL_FILE = 'zoo/ResNet50.pt' MODEL_PARALLEL = False elif MODEL == 'resnet50-r': FEATURE_NAMES = ['layer3', 'layer4'] MODEL_FILE = 'zoo/ResNet50_R.pt' MODEL_PARALLEL = False elif MODEL == 'resnet50-sin': FEATURE_NAMES = ['layer3', 'layer4'] MODEL_FILE = 'zoo/resnet50_SIN.pth.tar' MODEL_PARALLEL = True elif MODEL == 'resnet50-sin-in': FEATURE_NAMES = ['layer4'] MODEL_FILE = 'zoo/resnet50_sin_in.pth.tar' MODEL_PARALLEL = True elif MODEL == 'resnet50-ft': FEATURE_NAMES = ['conv1', 'layer1', 'layer2', 'layer3', 'layer4'] MODEL_FILE = 'zoo/resnet50_ft.pth.tar' MODEL_PARALLEL = True # AlexNet elif MODEL == 'alexnet': LAYER_SECTION = 'features' FEATURE_NAMES = ["1", "4", "7", "9", "11"] if DATASET == 'imagenet': MODEL_FILE = 'zoo/alexnet.pth' MODEL_PARALLEL = False elif MODEL == 'alexnet-r': LAYER_SECTION = 'features' FEATURE_NAMES = ["1", "4", "7", "9", "11"] if DATASET == 'imagenet': MODEL_FILE = 'zoo/alexnet-r.pt' MODEL_PARALLEL = False # GoogleNet elif MODEL == 'googlenet': FEATURE_NAMES = ["conv1", "conv2", "conv3", "inception3a", "inception3b", "inception4a", "inception4b", "inception4c", "inception4d", "inception4e", "inception5a", "inception5b"] if DATASET == 'imagenet': MODEL_FILE = 'zoo/GoogleNet.pt' MODEL_PARALLEL = True elif MODEL == 'googlenet-r': FEATURE_NAMES = ["inception4b"] if DATASET == 'imagenet': MODEL_FILE = 'zoo/GoogleNet_R.pt' MODEL_PARALLEL = True if TEST_MODE: WORKERS = 1 BATCH_SIZE = 4 TALLY_BATCH_SIZE = 2 TALLY_AHEAD = 1 INDEX_FILE = 'index_sm.csv' OUTPUT_FOLDER += "_test" else: WORKERS = 12 BATCH_SIZE = 128 TALLY_BATCH_SIZE = 16 TALLY_AHEAD = 4 INDEX_FILE = 'index.csv'
the-stack_106_22480
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 31 18:29:48 2022 @author: fabian """ import pytest import os import pypsa import pandas as pd import numpy as np @pytest.fixture(scope="module") def scipy_network(): csv_folder = os.path.join( os.path.dirname(__file__), "..", "examples", "scigrid-de", "scigrid-with-load-gen-trafos", ) return pypsa.Network(csv_folder) @pytest.fixture(scope="module") def ac_dc_network(): csv_folder = os.path.join( os.path.dirname(__file__), "..", "examples", "ac-dc-meshed", "ac-dc-data" ) return pypsa.Network(csv_folder) @pytest.fixture(scope="module") def ac_dc_network_multiindexed(ac_dc_network): n = ac_dc_network n.snapshots = pd.MultiIndex.from_product([[2013], n.snapshots]) gens_i = n.generators.index n.generators_t.p[gens_i] = np.random.rand(len(n.snapshots), len(gens_i)) return n
the-stack_106_22482
import math import torch import torch.nn as nn import numpy as np # from skimage.measure.simple_metrics import compare_psnr from skimage.metrics import peak_signal_noise_ratio import matplotlib.pyplot as plt def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm') != -1: # nn.init.uniform(m.weight.data, 1.0, 0.02) m.weight.data.normal_(mean=0, std=math.sqrt(2./9./64.)).clamp_(-0.025,0.025) nn.init.constant(m.bias.data, 0.0) def batch_PSNR(img, imclean, data_range): Img = img.data.cpu().numpy().astype(np.float32) Iclean = imclean.data.cpu().numpy().astype(np.float32) plt.figure() plt.title("denoised") plt.imshow(torch.squeeze(img.data.cpu(), 0).permute(1, 2, 0), cmap='gray') plt.figure() plt.title("GT") plt.imshow(torch.squeeze(imclean.data.cpu(), 0).permute(1, 2, 0), cmap='gray') plt.show() PSNR = 0 for i in range(Img.shape[0]): PSNR += peak_signal_noise_ratio(Iclean[i,:,:,:], Img[i,:,:,:], data_range=data_range) return (PSNR/Img.shape[0]) def data_augmentation(image, mode): out = np.transpose(image, (1,2,0)) if mode == 0: # original out = out elif mode == 1: # flip up and down out = np.flipud(out) elif mode == 2: # rotate counterwise 90 degree out = np.rot90(out) elif mode == 3: # rotate 90 degree and flip up and down out = np.rot90(out) out = np.flipud(out) elif mode == 4: # rotate 180 degree out = np.rot90(out, k=2) elif mode == 5: # rotate 180 degree and flip out = np.rot90(out, k=2) out = np.flipud(out) elif mode == 6: # rotate 270 degree out = np.rot90(out, k=3) elif mode == 7: # rotate 270 degree and flip out = np.rot90(out, k=3) out = np.flipud(out) return np.transpose(out, (2,0,1))
the-stack_106_22485
import torch import torch.nn as nn from SelfAttention import SelfAttention class TransformerBlock(nn.Module): def __init__(self, embedding_size, heads, dropout, forward_expansion): super(TransformerBlock, self).__init__() self.attention = SelfAttention(embedding_size, heads) self.norm1 = nn.LayerNorm(embedding_size) self.norm2 = nn.LayerNorm(embedding_size) self.feed_forward = nn.Sequential( nn.Linear(embedding_size, forward_expansion * embedding_size), nn.ReLU(), nn.Linear(forward_expansion * embedding_size, embedding_size), ) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, mask): attention = self.attention(value, key, query, mask) # Add skip connection, normalize then dropout x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) out = self.dropout(self.norm2(forward + x)) return out
the-stack_106_22486
#!/usr/bin/env python from __future__ import print_function import io import logging import argparse from parser import Box from construct import setglobalfullprinting from summary import Summary log = logging.getLogger(__name__) setglobalfullprinting(True) def dump(input_file): with open(input_file, 'rb') as fd: fd.seek(0, io.SEEK_END) eof = fd.tell() fd.seek(0) boxes = [] while fd.tell() < eof: box = Box.parse_stream(fd) boxes.append(box) #print(box) summary = Summary (input_file, boxes) print(summary.data) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Dump all the boxes from an MP4 file") parser.add_argument( "input_file", type=str, metavar="FILE", help="Path to the MP4 file to open", ) args = parser.parse_args() dump(args.input_file)
the-stack_106_22488
#import sys #sys.path.append('c:\\Users\\Thoma\\OneDrive\\Documents\\2021_ORNL\\CartanCodeGit\\cartan-quantum-synthesizer') # -*- coding: utf-8 -*- __docformat__ = 'google' """ A collection of functions useful for exact diagonalization and converting KHK decomposition to a matrix """ import numpy as np from numpy import kron from scipy.linalg import expm, norm import CQS.util.IO as IO #The Pauli Matricies in matrix form X = np.array([[0,1],[1,0]]) #Pauli X Y = np.array([[0,-1j],[1j,0]]) #Pauli Y Z = np.array([[1,0],[0,-1]]) #PauliZ I = np.array([[1,0],[0,1]]) #2x2 idenity paulis = [I,X,Y,Z] # Allows for indexing the Pauli Arrays (Converting from tuple form (0,1,2,3) to string form IXYZ) def Nident (N): """ Generates an N qubit Identity Matrix """ return np.diag(np.ones(2**N)) def PauliExpUnitary(N, co, PauliTuple): """ Generates the Unitary Matrix for a Pauli Exponential Uses e^{i.co.Pauli} = I*cos(a) + i*sin(a)*Pauli Args: N (int): Number of qubits co (float): The coefficient of the Pauli Matrix PauliTuple (Tuple): (PauliString) to exp Returns: The result e<sup>i•co•PauliTuple</sup> = I•cos(co) + i•sin(co)•PauliTuple """ II = Nident(N) U = paulis[PauliTuple[0]] for pauli in PauliTuple[1:]: U = kron(U,paulis[pauli]) #Generates the PauliTuple Matrix Element return np.cos(co)*II + 1j*np.sin(co)*U def exactU(HCos, HTups, time): """ Computes the exact matrix exponential for time evolution at the time t. Takes as an input the real component of the exponential. Args: HCos (List of complex numbers): HTupes (List of (PauliStrings)): time (float - time evolution final time): """ H = np.diag(np.zeros(2**len(HTups[0]))) for (co, term) in zip(HCos, HTups): H = H + IO.tuplesToMatrix(co, term) return expm(1j * time * H) def Trotter(ham, time, N, steps): """ Prepares U_t, the Trotterized input U Args: ham (List of Tuples): Hamiltonian formatted as (co, (PauliString)) time (float): final time to evolve to N (int): number of qubits steps (int): Number of trotter steps to take Returns: The U<sub>trotter</sub>(t) that approximates U<sub>exact</sub>(t) """ timeStep = time/steps U = Nident(N) for (co, pauliTuple) in ham: U = U @ PauliExpUnitary(N, 1*co*timeStep, pauliTuple) finalU = Nident(N) for i in range(steps): finalU = finalU @ U return finalU def KHK(kCoefs, hCoefs, k, h): """ Defines the Unitary for the KHK<sup>†</sup>] Specifically, performs ℿ<sub>i</sub> e<sup>i•k[l]•kCoefs[l]</sup> ℿ<sub>j</sub> e<sup>i•h[j]•hCoefs[j]</sup> ℿ<sub>l</sub> e<sup>i•k[(lenK - l)]•kCoefs[(lenK - l)]</sup> Multiply by t before passing the coefficients for h. Do not multiply h by i, that is automatic. The coefficients should be real for k, imaginary for h Args: kCoefs (List): A list of (real) coefficients for k hCoefs (List): The list of (imaginary) coefficients for the elements in h. k (List of Tuples): The list of (PauliStrings) h (List of Tuples): List of (PauliStrings) for h (in the same indexing) """ N = len(h[0]) KHK = Nident(N) #First loop of K terms: for (term, co) in zip(k, kCoefs): KHK = KHK @ PauliExpUnitary(N, co, term) #H terms for (term, co) in zip(h, hCoefs): KHK = KHK @ PauliExpUnitary(N, co, term) for (term, co) in zip(k[::-1], kCoefs[::-1]): KHK = KHK @ PauliExpUnitary(N, -1*co, term) return KHK
the-stack_106_22490
# coding: utf-8 from __future__ import unicode_literals import base64 import collections import hashlib import itertools import json import netrc import os import random import re import sys import time import math from ..compat import ( compat_cookiejar_Cookie, compat_cookies_SimpleCookie, compat_etree_Element, compat_etree_fromstring, compat_expanduser, compat_getpass, compat_http_client, compat_os_name, compat_str, compat_urllib_error, compat_urllib_parse_unquote, compat_urllib_parse_urlencode, compat_urllib_request, compat_urlparse, compat_xml_parse_error, ) from ..downloader import FileDownloader from ..downloader.f4m import ( get_base_url, remove_encrypted_media, ) from ..utils import ( age_restricted, base_url, bug_reports_message, clean_html, compiled_regex_type, determine_ext, determine_protocol, dict_get, encode_data_uri, error_to_compat_str, extract_attributes, ExtractorError, fix_xml_ampersands, float_or_none, format_field, GeoRestrictedError, GeoUtils, int_or_none, join_nonempty, js_to_json, JSON_LD_RE, mimetype2ext, network_exceptions, NO_DEFAULT, orderedSet, parse_bitrate, parse_codecs, parse_duration, parse_iso8601, parse_m3u8_attributes, parse_resolution, RegexNotFoundError, sanitize_filename, sanitized_Request, str_or_none, str_to_int, strip_or_none, traverse_obj, try_get, unescapeHTML, UnsupportedError, unified_strdate, unified_timestamp, update_Request, update_url_query, url_basename, url_or_none, urljoin, variadic, xpath_element, xpath_text, xpath_with_ns, ) class InfoExtractor(object): """Information Extractor class. Information extractors are the classes that, given a URL, extract information about the video (or videos) the URL refers to. This information includes the real video URL, the video title, author and others. The information is stored in a dictionary which is then passed to the YoutubeDL. The YoutubeDL processes this information possibly downloading the video to the file system, among other possible outcomes. The type field determines the type of the result. By far the most common value (and the default if _type is missing) is "video", which indicates a single video. For a video, the dictionaries must include the following fields: id: Video identifier. title: Video title, unescaped. Additionally, it must contain either a formats entry or a url one: formats: A list of dictionaries for each format available, ordered from worst to best quality. Potential fields: * url The mandatory URL representing the media: for plain file media - HTTP URL of this file, for RTMP - RTMP URL, for HLS - URL of the M3U8 media playlist, for HDS - URL of the F4M manifest, for DASH - HTTP URL to plain file media (in case of unfragmented media) - URL of the MPD manifest or base URL representing the media if MPD manifest is parsed from a string (in case of fragmented media) for MSS - URL of the ISM manifest. * manifest_url The URL of the manifest file in case of fragmented media: for HLS - URL of the M3U8 master playlist, for HDS - URL of the F4M manifest, for DASH - URL of the MPD manifest, for MSS - URL of the ISM manifest. * ext Will be calculated from URL if missing * format A human-readable description of the format ("mp4 container with h264/opus"). Calculated from the format_id, width, height. and format_note fields if missing. * format_id A short description of the format ("mp4_h264_opus" or "19"). Technically optional, but strongly recommended. * format_note Additional info about the format ("3D" or "DASH video") * width Width of the video, if known * height Height of the video, if known * resolution Textual description of width and height * dynamic_range The dynamic range of the video. One of: "SDR" (None), "HDR10", "HDR10+, "HDR12", "HLG, "DV" * tbr Average bitrate of audio and video in KBit/s * abr Average audio bitrate in KBit/s * acodec Name of the audio codec in use * asr Audio sampling rate in Hertz * vbr Average video bitrate in KBit/s * fps Frame rate * vcodec Name of the video codec in use * container Name of the container format * filesize The number of bytes, if known in advance * filesize_approx An estimate for the number of bytes * player_url SWF Player URL (used for rtmpdump). * protocol The protocol that will be used for the actual download, lower-case. One of "http", "https" or one of the protocols defined in downloader.PROTOCOL_MAP * fragment_base_url Base URL for fragments. Each fragment's path value (if present) will be relative to this URL. * fragments A list of fragments of a fragmented media. Each fragment entry must contain either an url or a path. If an url is present it should be considered by a client. Otherwise both path and fragment_base_url must be present. Here is the list of all potential fields: * "url" - fragment's URL * "path" - fragment's path relative to fragment_base_url * "duration" (optional, int or float) * "filesize" (optional, int) * is_from_start Is a live format that can be downloaded from the start. Boolean * preference Order number of this format. If this field is present and not None, the formats get sorted by this field, regardless of all other values. -1 for default (order by other properties), -2 or smaller for less than default. < -1000 to hide the format (if there is another one which is strictly better) * language Language code, e.g. "de" or "en-US". * language_preference Is this in the language mentioned in the URL? 10 if it's what the URL is about, -1 for default (don't know), -10 otherwise, other values reserved for now. * quality Order number of the video quality of this format, irrespective of the file format. -1 for default (order by other properties), -2 or smaller for less than default. * source_preference Order number for this video source (quality takes higher priority) -1 for default (order by other properties), -2 or smaller for less than default. * http_headers A dictionary of additional HTTP headers to add to the request. * stretched_ratio If given and not 1, indicates that the video's pixels are not square. width : height ratio as float. * no_resume The server does not support resuming the (HTTP or RTMP) download. Boolean. * has_drm The format has DRM and cannot be downloaded. Boolean * downloader_options A dictionary of downloader options as described in FileDownloader RTMP formats can also have the additional fields: page_url, app, play_path, tc_url, flash_version, rtmp_live, rtmp_conn, rtmp_protocol, rtmp_real_time url: Final video URL. ext: Video filename extension. format: The video format, defaults to ext (used for --get-format) player_url: SWF Player URL (used for rtmpdump). The following fields are optional: alt_title: A secondary title of the video. display_id An alternative identifier for the video, not necessarily unique, but available before title. Typically, id is something like "4234987", title "Dancing naked mole rats", and display_id "dancing-naked-mole-rats" thumbnails: A list of dictionaries, with the following entries: * "id" (optional, string) - Thumbnail format ID * "url" * "preference" (optional, int) - quality of the image * "width" (optional, int) * "height" (optional, int) * "resolution" (optional, string "{width}x{height}", deprecated) * "filesize" (optional, int) * "http_headers" (dict) - HTTP headers for the request thumbnail: Full URL to a video thumbnail image. description: Full video description. uploader: Full name of the video uploader. license: License name the video is licensed under. creator: The creator of the video. timestamp: UNIX timestamp of the moment the video was uploaded upload_date: Video upload date (YYYYMMDD). If not explicitly set, calculated from timestamp release_timestamp: UNIX timestamp of the moment the video was released. If it is not clear whether to use timestamp or this, use the former release_date: The date (YYYYMMDD) when the video was released. If not explicitly set, calculated from release_timestamp modified_timestamp: UNIX timestamp of the moment the video was last modified. modified_date: The date (YYYYMMDD) when the video was last modified. If not explicitly set, calculated from modified_timestamp uploader_id: Nickname or id of the video uploader. uploader_url: Full URL to a personal webpage of the video uploader. channel: Full name of the channel the video is uploaded on. Note that channel fields may or may not repeat uploader fields. This depends on a particular extractor. channel_id: Id of the channel. channel_url: Full URL to a channel webpage. channel_follower_count: Number of followers of the channel. location: Physical location where the video was filmed. subtitles: The available subtitles as a dictionary in the format {tag: subformats}. "tag" is usually a language code, and "subformats" is a list sorted from lower to higher preference, each element is a dictionary with the "ext" entry and one of: * "data": The subtitles file contents * "url": A URL pointing to the subtitles file It can optionally also have: * "name": Name or description of the subtitles * http_headers: A dictionary of additional HTTP headers to add to the request. "ext" will be calculated from URL if missing automatic_captions: Like 'subtitles'; contains automatically generated captions instead of normal subtitles duration: Length of the video in seconds, as an integer or float. view_count: How many users have watched the video on the platform. like_count: Number of positive ratings of the video dislike_count: Number of negative ratings of the video repost_count: Number of reposts of the video average_rating: Average rating give by users, the scale used depends on the webpage comment_count: Number of comments on the video comments: A list of comments, each with one or more of the following properties (all but one of text or html optional): * "author" - human-readable name of the comment author * "author_id" - user ID of the comment author * "author_thumbnail" - The thumbnail of the comment author * "id" - Comment ID * "html" - Comment as HTML * "text" - Plain text of the comment * "timestamp" - UNIX timestamp of comment * "parent" - ID of the comment this one is replying to. Set to "root" to indicate that this is a comment to the original video. * "like_count" - Number of positive ratings of the comment * "dislike_count" - Number of negative ratings of the comment * "is_favorited" - Whether the comment is marked as favorite by the video uploader * "author_is_uploader" - Whether the comment is made by the video uploader age_limit: Age restriction for the video, as an integer (years) webpage_url: The URL to the video webpage, if given to yt-dlp it should allow to get the same result again. (It will be set by YoutubeDL if it's missing) categories: A list of categories that the video falls in, for example ["Sports", "Berlin"] tags: A list of tags assigned to the video, e.g. ["sweden", "pop music"] cast: A list of the video cast is_live: True, False, or None (=unknown). Whether this video is a live stream that goes on instead of a fixed-length video. was_live: True, False, or None (=unknown). Whether this video was originally a live stream. live_status: 'is_live', 'is_upcoming', 'was_live', 'not_live' or None (=unknown) If absent, automatically set from is_live, was_live start_time: Time in seconds where the reproduction should start, as specified in the URL. end_time: Time in seconds where the reproduction should end, as specified in the URL. chapters: A list of dictionaries, with the following entries: * "start_time" - The start time of the chapter in seconds * "end_time" - The end time of the chapter in seconds * "title" (optional, string) playable_in_embed: Whether this video is allowed to play in embedded players on other sites. Can be True (=always allowed), False (=never allowed), None (=unknown), or a string specifying the criteria for embedability (Eg: 'whitelist') availability: Under what condition the video is available. One of 'private', 'premium_only', 'subscriber_only', 'needs_auth', 'unlisted' or 'public'. Use 'InfoExtractor._availability' to set it __post_extractor: A function to be called just before the metadata is written to either disk, logger or console. The function must return a dict which will be added to the info_dict. This is usefull for additional information that is time-consuming to extract. Note that the fields thus extracted will not be available to output template and match_filter. So, only "comments" and "comment_count" are currently allowed to be extracted via this method. The following fields should only be used when the video belongs to some logical chapter or section: chapter: Name or title of the chapter the video belongs to. chapter_number: Number of the chapter the video belongs to, as an integer. chapter_id: Id of the chapter the video belongs to, as a unicode string. The following fields should only be used when the video is an episode of some series, programme or podcast: series: Title of the series or programme the video episode belongs to. series_id: Id of the series or programme the video episode belongs to, as a unicode string. season: Title of the season the video episode belongs to. season_number: Number of the season the video episode belongs to, as an integer. season_id: Id of the season the video episode belongs to, as a unicode string. episode: Title of the video episode. Unlike mandatory video title field, this field should denote the exact title of the video episode without any kind of decoration. episode_number: Number of the video episode within a season, as an integer. episode_id: Id of the video episode, as a unicode string. The following fields should only be used when the media is a track or a part of a music album: track: Title of the track. track_number: Number of the track within an album or a disc, as an integer. track_id: Id of the track (useful in case of custom indexing, e.g. 6.iii), as a unicode string. artist: Artist(s) of the track. genre: Genre(s) of the track. album: Title of the album the track belongs to. album_type: Type of the album (e.g. "Demo", "Full-length", "Split", "Compilation", etc). album_artist: List of all artists appeared on the album (e.g. "Ash Borer / Fell Voices" or "Various Artists", useful for splits and compilations). disc_number: Number of the disc or other physical medium the track belongs to, as an integer. release_year: Year (YYYY) when the album was released. composer: Composer of the piece Unless mentioned otherwise, the fields should be Unicode strings. Unless mentioned otherwise, None is equivalent to absence of information. _type "playlist" indicates multiple videos. There must be a key "entries", which is a list, an iterable, or a PagedList object, each element of which is a valid dictionary by this specification. Additionally, playlists can have "id", "title", and any other relevent attributes with the same semantics as videos (see above). It can also have the following optional fields: playlist_count: The total number of videos in a playlist. If not given, YoutubeDL tries to calculate it from "entries" _type "multi_video" indicates that there are multiple videos that form a single show, for examples multiple acts of an opera or TV episode. It must have an entries key like a playlist and contain all the keys required for a video at the same time. _type "url" indicates that the video must be extracted from another location, possibly by a different extractor. Its only required key is: "url" - the next URL to extract. The key "ie_key" can be set to the class name (minus the trailing "IE", e.g. "Youtube") if the extractor class is known in advance. Additionally, the dictionary may have any properties of the resolved entity known in advance, for example "title" if the title of the referred video is known ahead of time. _type "url_transparent" entities have the same specification as "url", but indicate that the given additional information is more precise than the one associated with the resolved URL. This is useful when a site employs a video service that hosts the video and its technical metadata, but that video service does not embed a useful title, description etc. Subclasses of this one should re-define the _real_initialize() and _real_extract() methods and define a _VALID_URL regexp. Probably, they should also be added to the list of extractors. Subclasses may also override suitable() if necessary, but ensure the function signature is preserved and that this function imports everything it needs (except other extractors), so that lazy_extractors works correctly _GEO_BYPASS attribute may be set to False in order to disable geo restriction bypass mechanisms for a particular extractor. Though it won't disable explicit geo restriction bypass based on country code provided with geo_bypass_country. _GEO_COUNTRIES attribute may contain a list of presumably geo unrestricted countries for this extractor. One of these countries will be used by geo restriction bypass mechanism right away in order to bypass geo restriction, of course, if the mechanism is not disabled. _GEO_IP_BLOCKS attribute may contain a list of presumably geo unrestricted IP blocks in CIDR notation for this extractor. One of these IP blocks will be used by geo restriction bypass mechanism similarly to _GEO_COUNTRIES. The _WORKING attribute should be set to False for broken IEs in order to warn the users and skip the tests. """ _ready = False _downloader = None _x_forwarded_for_ip = None _GEO_BYPASS = True _GEO_COUNTRIES = None _GEO_IP_BLOCKS = None _WORKING = True _LOGIN_HINTS = { 'any': 'Use --cookies, --username and --password, or --netrc to provide account credentials', 'cookies': ( 'Use --cookies-from-browser or --cookies for the authentication. ' 'See https://github.com/ytdl-org/youtube-dl#how-do-i-pass-cookies-to-youtube-dl for how to manually pass cookies'), 'password': 'Use --username and --password, or --netrc to provide account credentials', } def __init__(self, downloader=None): """Constructor. Receives an optional downloader (a YoutubeDL instance). If a downloader is not passed during initialization, it must be set using "set_downloader()" before "extract()" is called""" self._ready = False self._x_forwarded_for_ip = None self._printed_messages = set() self.set_downloader(downloader) @classmethod def _match_valid_url(cls, url): # This does not use has/getattr intentionally - we want to know whether # we have cached the regexp for *this* class, whereas getattr would also # match the superclass if '_VALID_URL_RE' not in cls.__dict__: if '_VALID_URL' not in cls.__dict__: cls._VALID_URL = cls._make_valid_url() cls._VALID_URL_RE = re.compile(cls._VALID_URL) return cls._VALID_URL_RE.match(url) @classmethod def suitable(cls, url): """Receives a URL and returns True if suitable for this IE.""" # This function must import everything it needs (except other extractors), # so that lazy_extractors works correctly return cls._match_valid_url(url) is not None @classmethod def _match_id(cls, url): return cls._match_valid_url(url).group('id') @classmethod def get_temp_id(cls, url): try: return cls._match_id(url) except (IndexError, AttributeError): return None @classmethod def working(cls): """Getter method for _WORKING.""" return cls._WORKING def initialize(self): """Initializes an instance (authentication, etc).""" self._printed_messages = set() self._initialize_geo_bypass({ 'countries': self._GEO_COUNTRIES, 'ip_blocks': self._GEO_IP_BLOCKS, }) if not self._ready: self._real_initialize() self._ready = True def _initialize_geo_bypass(self, geo_bypass_context): """ Initialize geo restriction bypass mechanism. This method is used to initialize geo bypass mechanism based on faking X-Forwarded-For HTTP header. A random country from provided country list is selected and a random IP belonging to this country is generated. This IP will be passed as X-Forwarded-For HTTP header in all subsequent HTTP requests. This method will be used for initial geo bypass mechanism initialization during the instance initialization with _GEO_COUNTRIES and _GEO_IP_BLOCKS. You may also manually call it from extractor's code if geo bypass information is not available beforehand (e.g. obtained during extraction) or due to some other reason. In this case you should pass this information in geo bypass context passed as first argument. It may contain following fields: countries: List of geo unrestricted countries (similar to _GEO_COUNTRIES) ip_blocks: List of geo unrestricted IP blocks in CIDR notation (similar to _GEO_IP_BLOCKS) """ if not self._x_forwarded_for_ip: # Geo bypass mechanism is explicitly disabled by user if not self.get_param('geo_bypass', True): return if not geo_bypass_context: geo_bypass_context = {} # Backward compatibility: previously _initialize_geo_bypass # expected a list of countries, some 3rd party code may still use # it this way if isinstance(geo_bypass_context, (list, tuple)): geo_bypass_context = { 'countries': geo_bypass_context, } # The whole point of geo bypass mechanism is to fake IP # as X-Forwarded-For HTTP header based on some IP block or # country code. # Path 1: bypassing based on IP block in CIDR notation # Explicit IP block specified by user, use it right away # regardless of whether extractor is geo bypassable or not ip_block = self.get_param('geo_bypass_ip_block', None) # Otherwise use random IP block from geo bypass context but only # if extractor is known as geo bypassable if not ip_block: ip_blocks = geo_bypass_context.get('ip_blocks') if self._GEO_BYPASS and ip_blocks: ip_block = random.choice(ip_blocks) if ip_block: self._x_forwarded_for_ip = GeoUtils.random_ipv4(ip_block) self._downloader.write_debug( '[debug] Using fake IP %s as X-Forwarded-For' % self._x_forwarded_for_ip) return # Path 2: bypassing based on country code # Explicit country code specified by user, use it right away # regardless of whether extractor is geo bypassable or not country = self.get_param('geo_bypass_country', None) # Otherwise use random country code from geo bypass context but # only if extractor is known as geo bypassable if not country: countries = geo_bypass_context.get('countries') if self._GEO_BYPASS and countries: country = random.choice(countries) if country: self._x_forwarded_for_ip = GeoUtils.random_ipv4(country) self._downloader.write_debug( 'Using fake IP %s (%s) as X-Forwarded-For' % (self._x_forwarded_for_ip, country.upper())) def extract(self, url): """Extracts URL information and returns it in list of dicts.""" try: for _ in range(2): try: self.initialize() self.write_debug('Extracting URL: %s' % url) ie_result = self._real_extract(url) if ie_result is None: return None if self._x_forwarded_for_ip: ie_result['__x_forwarded_for_ip'] = self._x_forwarded_for_ip subtitles = ie_result.get('subtitles') if (subtitles and 'live_chat' in subtitles and 'no-live-chat' in self.get_param('compat_opts', [])): del subtitles['live_chat'] return ie_result except GeoRestrictedError as e: if self.__maybe_fake_ip_and_retry(e.countries): continue raise except UnsupportedError: raise except ExtractorError as e: kwargs = { 'video_id': e.video_id or self.get_temp_id(url), 'ie': self.IE_NAME, 'tb': e.traceback or sys.exc_info()[2], 'expected': e.expected, 'cause': e.cause } if hasattr(e, 'countries'): kwargs['countries'] = e.countries raise type(e)(e.msg, **kwargs) except compat_http_client.IncompleteRead as e: raise ExtractorError('A network error has occurred.', cause=e, expected=True, video_id=self.get_temp_id(url)) except (KeyError, StopIteration) as e: raise ExtractorError('An extractor error has occurred.', cause=e, video_id=self.get_temp_id(url)) def __maybe_fake_ip_and_retry(self, countries): if (not self.get_param('geo_bypass_country', None) and self._GEO_BYPASS and self.get_param('geo_bypass', True) and not self._x_forwarded_for_ip and countries): country_code = random.choice(countries) self._x_forwarded_for_ip = GeoUtils.random_ipv4(country_code) if self._x_forwarded_for_ip: self.report_warning( 'Video is geo restricted. Retrying extraction with fake IP %s (%s) as X-Forwarded-For.' % (self._x_forwarded_for_ip, country_code.upper())) return True return False def set_downloader(self, downloader): """Sets the downloader for this IE.""" self._downloader = downloader def _real_initialize(self): """Real initialization process. Redefine in subclasses.""" pass def _real_extract(self, url): """Real extraction process. Redefine in subclasses.""" pass @classmethod def ie_key(cls): """A string for getting the InfoExtractor with get_info_extractor""" return cls.__name__[:-2] @property def IE_NAME(self): return compat_str(type(self).__name__[:-2]) @staticmethod def __can_accept_status_code(err, expected_status): assert isinstance(err, compat_urllib_error.HTTPError) if expected_status is None: return False elif callable(expected_status): return expected_status(err.code) is True else: return err.code in variadic(expected_status) def _request_webpage(self, url_or_request, video_id, note=None, errnote=None, fatal=True, data=None, headers={}, query={}, expected_status=None): """ Return the response handle. See _download_webpage docstring for arguments specification. """ if not self._downloader._first_webpage_request: sleep_interval = self.get_param('sleep_interval_requests') or 0 if sleep_interval > 0: self.to_screen('Sleeping %s seconds ...' % sleep_interval) time.sleep(sleep_interval) else: self._downloader._first_webpage_request = False if note is None: self.report_download_webpage(video_id) elif note is not False: if video_id is None: self.to_screen('%s' % (note,)) else: self.to_screen('%s: %s' % (video_id, note)) # Some sites check X-Forwarded-For HTTP header in order to figure out # the origin of the client behind proxy. This allows bypassing geo # restriction by faking this header's value to IP that belongs to some # geo unrestricted country. We will do so once we encounter any # geo restriction error. if self._x_forwarded_for_ip: if 'X-Forwarded-For' not in headers: headers['X-Forwarded-For'] = self._x_forwarded_for_ip if isinstance(url_or_request, compat_urllib_request.Request): url_or_request = update_Request( url_or_request, data=data, headers=headers, query=query) else: if query: url_or_request = update_url_query(url_or_request, query) if data is not None or headers: url_or_request = sanitized_Request(url_or_request, data, headers) try: return self._downloader.urlopen(url_or_request) except network_exceptions as err: if isinstance(err, compat_urllib_error.HTTPError): if self.__can_accept_status_code(err, expected_status): # Retain reference to error to prevent file object from # being closed before it can be read. Works around the # effects of <https://bugs.python.org/issue15002> # introduced in Python 3.4.1. err.fp._error = err return err.fp if errnote is False: return False if errnote is None: errnote = 'Unable to download webpage' errmsg = '%s: %s' % (errnote, error_to_compat_str(err)) if fatal: raise ExtractorError(errmsg, sys.exc_info()[2], cause=err) else: self.report_warning(errmsg) return False def _download_webpage_handle(self, url_or_request, video_id, note=None, errnote=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return a tuple (page content as string, URL handle). See _download_webpage docstring for arguments specification. """ # Strip hashes from the URL (#1038) if isinstance(url_or_request, (compat_str, str)): url_or_request = url_or_request.partition('#')[0] urlh = self._request_webpage(url_or_request, video_id, note, errnote, fatal, data=data, headers=headers, query=query, expected_status=expected_status) if urlh is False: assert not fatal return False content = self._webpage_read_content(urlh, url_or_request, video_id, note, errnote, fatal, encoding=encoding) return (content, urlh) @staticmethod def _guess_encoding_from_content(content_type, webpage_bytes): m = re.match(r'[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+\s*;\s*charset=(.+)', content_type) if m: encoding = m.group(1) else: m = re.search(br'<meta[^>]+charset=[\'"]?([^\'")]+)[ /\'">]', webpage_bytes[:1024]) if m: encoding = m.group(1).decode('ascii') elif webpage_bytes.startswith(b'\xff\xfe'): encoding = 'utf-16' else: encoding = 'utf-8' return encoding def __check_blocked(self, content): first_block = content[:512] if ('<title>Access to this site is blocked</title>' in content and 'Websense' in first_block): msg = 'Access to this webpage has been blocked by Websense filtering software in your network.' blocked_iframe = self._html_search_regex( r'<iframe src="([^"]+)"', content, 'Websense information URL', default=None) if blocked_iframe: msg += ' Visit %s for more details' % blocked_iframe raise ExtractorError(msg, expected=True) if '<title>The URL you requested has been blocked</title>' in first_block: msg = ( 'Access to this webpage has been blocked by Indian censorship. ' 'Use a VPN or proxy server (with --proxy) to route around it.') block_msg = self._html_search_regex( r'</h1><p>(.*?)</p>', content, 'block message', default=None) if block_msg: msg += ' (Message: "%s")' % block_msg.replace('\n', ' ') raise ExtractorError(msg, expected=True) if ('<title>TTK :: Доступ к ресурсу ограничен</title>' in content and 'blocklist.rkn.gov.ru' in content): raise ExtractorError( 'Access to this webpage has been blocked by decision of the Russian government. ' 'Visit http://blocklist.rkn.gov.ru/ for a block reason.', expected=True) def _webpage_read_content(self, urlh, url_or_request, video_id, note=None, errnote=None, fatal=True, prefix=None, encoding=None): content_type = urlh.headers.get('Content-Type', '') webpage_bytes = urlh.read() if prefix is not None: webpage_bytes = prefix + webpage_bytes if not encoding: encoding = self._guess_encoding_from_content(content_type, webpage_bytes) if self.get_param('dump_intermediate_pages', False): self.to_screen('Dumping request to ' + urlh.geturl()) dump = base64.b64encode(webpage_bytes).decode('ascii') self._downloader.to_screen(dump) if self.get_param('write_pages', False): basen = '%s_%s' % (video_id, urlh.geturl()) trim_length = self.get_param('trim_file_name') or 240 if len(basen) > trim_length: h = '___' + hashlib.md5(basen.encode('utf-8')).hexdigest() basen = basen[:trim_length - len(h)] + h raw_filename = basen + '.dump' filename = sanitize_filename(raw_filename, restricted=True) self.to_screen('Saving request to ' + filename) # Working around MAX_PATH limitation on Windows (see # http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx) if compat_os_name == 'nt': absfilepath = os.path.abspath(filename) if len(absfilepath) > 259: filename = '\\\\?\\' + absfilepath with open(filename, 'wb') as outf: outf.write(webpage_bytes) try: content = webpage_bytes.decode(encoding, 'replace') except LookupError: content = webpage_bytes.decode('utf-8', 'replace') self.__check_blocked(content) return content def _download_webpage( self, url_or_request, video_id, note=None, errnote=None, fatal=True, tries=1, timeout=5, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return the data of the page as a string. Arguments: url_or_request -- plain text URL as a string or a compat_urllib_request.Requestobject video_id -- Video/playlist/item identifier (string) Keyword arguments: note -- note printed before downloading (string) errnote -- note printed in case of an error (string) fatal -- flag denoting whether error should be considered fatal, i.e. whether it should cause ExtractionError to be raised, otherwise a warning will be reported and extraction continued tries -- number of tries timeout -- sleep interval between tries encoding -- encoding for a page content decoding, guessed automatically when not explicitly specified data -- POST data (bytes) headers -- HTTP headers (dict) query -- URL query (dict) expected_status -- allows to accept failed HTTP requests (non 2xx status code) by explicitly specifying a set of accepted status codes. Can be any of the following entities: - an integer type specifying an exact failed status code to accept - a list or a tuple of integer types specifying a list of failed status codes to accept - a callable accepting an actual failed status code and returning True if it should be accepted Note that this argument does not affect success status codes (2xx) which are always accepted. """ success = False try_count = 0 while success is False: try: res = self._download_webpage_handle( url_or_request, video_id, note, errnote, fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) success = True except compat_http_client.IncompleteRead as e: try_count += 1 if try_count >= tries: raise e self._sleep(timeout, video_id) if res is False: return res else: content, _ = res return content def _download_xml_handle( self, url_or_request, video_id, note='Downloading XML', errnote='Unable to download XML', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return a tuple (xml as an compat_etree_Element, URL handle). See _download_webpage docstring for arguments specification. """ res = self._download_webpage_handle( url_or_request, video_id, note, errnote, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) if res is False: return res xml_string, urlh = res return self._parse_xml( xml_string, video_id, transform_source=transform_source, fatal=fatal), urlh def _download_xml( self, url_or_request, video_id, note='Downloading XML', errnote='Unable to download XML', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return the xml as an compat_etree_Element. See _download_webpage docstring for arguments specification. """ res = self._download_xml_handle( url_or_request, video_id, note=note, errnote=errnote, transform_source=transform_source, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) return res if res is False else res[0] def _parse_xml(self, xml_string, video_id, transform_source=None, fatal=True): if transform_source: xml_string = transform_source(xml_string) try: return compat_etree_fromstring(xml_string.encode('utf-8')) except compat_xml_parse_error as ve: errmsg = '%s: Failed to parse XML ' % video_id if fatal: raise ExtractorError(errmsg, cause=ve) else: self.report_warning(errmsg + str(ve)) def _download_json_handle( self, url_or_request, video_id, note='Downloading JSON metadata', errnote='Unable to download JSON metadata', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return a tuple (JSON object, URL handle). See _download_webpage docstring for arguments specification. """ res = self._download_webpage_handle( url_or_request, video_id, note, errnote, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) if res is False: return res json_string, urlh = res return self._parse_json( json_string, video_id, transform_source=transform_source, fatal=fatal), urlh def _download_json( self, url_or_request, video_id, note='Downloading JSON metadata', errnote='Unable to download JSON metadata', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return the JSON object as a dict. See _download_webpage docstring for arguments specification. """ res = self._download_json_handle( url_or_request, video_id, note=note, errnote=errnote, transform_source=transform_source, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) return res if res is False else res[0] def _parse_json(self, json_string, video_id, transform_source=None, fatal=True): if transform_source: json_string = transform_source(json_string) try: return json.loads(json_string) except ValueError as ve: errmsg = '%s: Failed to parse JSON ' % video_id if fatal: raise ExtractorError(errmsg, cause=ve) else: self.report_warning(errmsg + str(ve)) def _parse_socket_response_as_json(self, data, video_id, transform_source=None, fatal=True): return self._parse_json( data[data.find('{'):data.rfind('}') + 1], video_id, transform_source, fatal) def _download_socket_json_handle( self, url_or_request, video_id, note='Polling socket', errnote='Unable to poll socket', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return a tuple (JSON object, URL handle). See _download_webpage docstring for arguments specification. """ res = self._download_webpage_handle( url_or_request, video_id, note, errnote, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) if res is False: return res webpage, urlh = res return self._parse_socket_response_as_json( webpage, video_id, transform_source=transform_source, fatal=fatal), urlh def _download_socket_json( self, url_or_request, video_id, note='Polling socket', errnote='Unable to poll socket', transform_source=None, fatal=True, encoding=None, data=None, headers={}, query={}, expected_status=None): """ Return the JSON object as a dict. See _download_webpage docstring for arguments specification. """ res = self._download_socket_json_handle( url_or_request, video_id, note=note, errnote=errnote, transform_source=transform_source, fatal=fatal, encoding=encoding, data=data, headers=headers, query=query, expected_status=expected_status) return res if res is False else res[0] def report_warning(self, msg, video_id=None, *args, only_once=False, **kwargs): idstr = format_field(video_id, template='%s: ') msg = f'[{self.IE_NAME}] {idstr}{msg}' if only_once: if f'WARNING: {msg}' in self._printed_messages: return self._printed_messages.add(f'WARNING: {msg}') self._downloader.report_warning(msg, *args, **kwargs) def to_screen(self, msg, *args, **kwargs): """Print msg to screen, prefixing it with '[ie_name]'""" self._downloader.to_screen('[%s] %s' % (self.IE_NAME, msg), *args, **kwargs) def write_debug(self, msg, *args, **kwargs): self._downloader.write_debug('[%s] %s' % (self.IE_NAME, msg), *args, **kwargs) def get_param(self, name, default=None, *args, **kwargs): if self._downloader: return self._downloader.params.get(name, default, *args, **kwargs) return default def report_drm(self, video_id, partial=False): self.raise_no_formats('This video is DRM protected', expected=True, video_id=video_id) def report_extraction(self, id_or_name): """Report information extraction.""" self.to_screen('%s: Extracting information' % id_or_name) def report_download_webpage(self, video_id): """Report webpage download.""" self.to_screen('%s: Downloading webpage' % video_id) def report_age_confirmation(self): """Report attempt to confirm age.""" self.to_screen('Confirming age') def report_login(self): """Report attempt to log in.""" self.to_screen('Logging in') def raise_login_required( self, msg='This video is only available for registered users', metadata_available=False, method='any'): if metadata_available and ( self.get_param('ignore_no_formats_error') or self.get_param('wait_for_video')): self.report_warning(msg) if method is not None: msg = '%s. %s' % (msg, self._LOGIN_HINTS[method]) raise ExtractorError(msg, expected=True) def raise_geo_restricted( self, msg='This video is not available from your location due to geo restriction', countries=None, metadata_available=False): if metadata_available and ( self.get_param('ignore_no_formats_error') or self.get_param('wait_for_video')): self.report_warning(msg) else: raise GeoRestrictedError(msg, countries=countries) def raise_no_formats(self, msg, expected=False, video_id=None): if expected and ( self.get_param('ignore_no_formats_error') or self.get_param('wait_for_video')): self.report_warning(msg, video_id) elif isinstance(msg, ExtractorError): raise msg else: raise ExtractorError(msg, expected=expected, video_id=video_id) # Methods for following #608 @staticmethod def url_result(url, ie=None, video_id=None, video_title=None, *, url_transparent=False, **kwargs): """Returns a URL that points to a page that should be processed""" if ie is not None: kwargs['ie_key'] = ie if isinstance(ie, str) else ie.ie_key() if video_id is not None: kwargs['id'] = video_id if video_title is not None: kwargs['title'] = video_title return { **kwargs, '_type': 'url_transparent' if url_transparent else 'url', 'url': url, } def playlist_from_matches(self, matches, playlist_id=None, playlist_title=None, getter=None, ie=None, **kwargs): urls = (self.url_result(self._proto_relative_url(m), ie) for m in orderedSet(map(getter, matches) if getter else matches)) return self.playlist_result(urls, playlist_id, playlist_title, **kwargs) @staticmethod def playlist_result(entries, playlist_id=None, playlist_title=None, playlist_description=None, *, multi_video=False, **kwargs): """Returns a playlist""" if playlist_id: kwargs['id'] = playlist_id if playlist_title: kwargs['title'] = playlist_title if playlist_description is not None: kwargs['description'] = playlist_description return { **kwargs, '_type': 'multi_video' if multi_video else 'playlist', 'entries': entries, } def _search_regex(self, pattern, string, name, default=NO_DEFAULT, fatal=True, flags=0, group=None): """ Perform a regex search on the given string, using a single or a list of patterns returning the first matching group. In case of failure return a default value or raise a WARNING or a RegexNotFoundError, depending on fatal, specifying the field name. """ if isinstance(pattern, (str, compat_str, compiled_regex_type)): mobj = re.search(pattern, string, flags) else: for p in pattern: mobj = re.search(p, string, flags) if mobj: break _name = self._downloader._format_err(name, self._downloader.Styles.EMPHASIS) if mobj: if group is None: # return the first matching group return next(g for g in mobj.groups() if g is not None) elif isinstance(group, (list, tuple)): return tuple(mobj.group(g) for g in group) else: return mobj.group(group) elif default is not NO_DEFAULT: return default elif fatal: raise RegexNotFoundError('Unable to extract %s' % _name) else: self.report_warning('unable to extract %s' % _name + bug_reports_message()) return None def _html_search_regex(self, pattern, string, name, default=NO_DEFAULT, fatal=True, flags=0, group=None): """ Like _search_regex, but strips HTML tags and unescapes entities. """ res = self._search_regex(pattern, string, name, default, fatal, flags, group) if res: return clean_html(res).strip() else: return res def _get_netrc_login_info(self, netrc_machine=None): username = None password = None netrc_machine = netrc_machine or self._NETRC_MACHINE if self.get_param('usenetrc', False): try: netrc_file = compat_expanduser(self.get_param('netrc_location') or '~') if os.path.isdir(netrc_file): netrc_file = os.path.join(netrc_file, '.netrc') info = netrc.netrc(file=netrc_file).authenticators(netrc_machine) if info is not None: username = info[0] password = info[2] else: raise netrc.NetrcParseError( 'No authenticators for %s' % netrc_machine) except (IOError, netrc.NetrcParseError) as err: self.report_warning( 'parsing .netrc: %s' % error_to_compat_str(err)) return username, password def _get_login_info(self, username_option='username', password_option='password', netrc_machine=None): """ Get the login info as (username, password) First look for the manually specified credentials using username_option and password_option as keys in params dictionary. If no such credentials available look in the netrc file using the netrc_machine or _NETRC_MACHINE value. If there's no info available, return (None, None) """ # Attempt to use provided username and password or .netrc data username = self.get_param(username_option) if username is not None: password = self.get_param(password_option) else: username, password = self._get_netrc_login_info(netrc_machine) return username, password def _get_tfa_info(self, note='two-factor verification code'): """ Get the two-factor authentication info TODO - asking the user will be required for sms/phone verify currently just uses the command line option If there's no info available, return None """ tfa = self.get_param('twofactor') if tfa is not None: return tfa return compat_getpass('Type %s and press [Return]: ' % note) # Helper functions for extracting OpenGraph info @staticmethod def _og_regexes(prop): content_re = r'content=(?:"([^"]+?)"|\'([^\']+?)\'|\s*([^\s"\'=<>`]+?))' property_re = (r'(?:name|property)=(?:\'og[:-]%(prop)s\'|"og[:-]%(prop)s"|\s*og[:-]%(prop)s\b)' % {'prop': re.escape(prop)}) template = r'<meta[^>]+?%s[^>]+?%s' return [ template % (property_re, content_re), template % (content_re, property_re), ] @staticmethod def _meta_regex(prop): return r'''(?isx)<meta (?=[^>]+(?:itemprop|name|property|id|http-equiv)=(["\']?)%s\1) [^>]+?content=(["\'])(?P<content>.*?)\2''' % re.escape(prop) def _og_search_property(self, prop, html, name=None, **kargs): prop = variadic(prop) if name is None: name = 'OpenGraph %s' % prop[0] og_regexes = [] for p in prop: og_regexes.extend(self._og_regexes(p)) escaped = self._search_regex(og_regexes, html, name, flags=re.DOTALL, **kargs) if escaped is None: return None return unescapeHTML(escaped) def _og_search_thumbnail(self, html, **kargs): return self._og_search_property('image', html, 'thumbnail URL', fatal=False, **kargs) def _og_search_description(self, html, **kargs): return self._og_search_property('description', html, fatal=False, **kargs) def _og_search_title(self, html, **kargs): kargs.setdefault('fatal', False) return self._og_search_property('title', html, **kargs) def _og_search_video_url(self, html, name='video url', secure=True, **kargs): regexes = self._og_regexes('video') + self._og_regexes('video:url') if secure: regexes = self._og_regexes('video:secure_url') + regexes return self._html_search_regex(regexes, html, name, **kargs) def _og_search_url(self, html, **kargs): return self._og_search_property('url', html, **kargs) def _html_search_meta(self, name, html, display_name=None, fatal=False, **kwargs): name = variadic(name) if display_name is None: display_name = name[0] return self._html_search_regex( [self._meta_regex(n) for n in name], html, display_name, fatal=fatal, group='content', **kwargs) def _dc_search_uploader(self, html): return self._html_search_meta('dc.creator', html, 'uploader') def _rta_search(self, html): # See http://www.rtalabel.org/index.php?content=howtofaq#single if re.search(r'(?ix)<meta\s+name="rating"\s+' r' content="RTA-5042-1996-1400-1577-RTA"', html): return 18 return 0 def _media_rating_search(self, html): # See http://www.tjg-designs.com/WP/metadata-code-examples-adding-metadata-to-your-web-pages/ rating = self._html_search_meta('rating', html) if not rating: return None RATING_TABLE = { 'safe for kids': 0, 'general': 8, '14 years': 14, 'mature': 17, 'restricted': 19, } return RATING_TABLE.get(rating.lower()) def _family_friendly_search(self, html): # See http://schema.org/VideoObject family_friendly = self._html_search_meta( 'isFamilyFriendly', html, default=None) if not family_friendly: return None RATING_TABLE = { '1': 0, 'true': 0, '0': 18, 'false': 18, } return RATING_TABLE.get(family_friendly.lower()) def _twitter_search_player(self, html): return self._html_search_meta('twitter:player', html, 'twitter card player') def _search_json_ld(self, html, video_id, expected_type=None, **kwargs): json_ld_list = list(re.finditer(JSON_LD_RE, html)) default = kwargs.get('default', NO_DEFAULT) # JSON-LD may be malformed and thus `fatal` should be respected. # At the same time `default` may be passed that assumes `fatal=False` # for _search_regex. Let's simulate the same behavior here as well. fatal = kwargs.get('fatal', True) if default is NO_DEFAULT else False json_ld = [] for mobj in json_ld_list: json_ld_item = self._parse_json( mobj.group('json_ld'), video_id, fatal=fatal) if not json_ld_item: continue if isinstance(json_ld_item, dict): json_ld.append(json_ld_item) elif isinstance(json_ld_item, (list, tuple)): json_ld.extend(json_ld_item) if json_ld: json_ld = self._json_ld(json_ld, video_id, fatal=fatal, expected_type=expected_type) if json_ld: return json_ld if default is not NO_DEFAULT: return default elif fatal: raise RegexNotFoundError('Unable to extract JSON-LD') else: self.report_warning('unable to extract JSON-LD %s' % bug_reports_message()) return {} def _json_ld(self, json_ld, video_id, fatal=True, expected_type=None): if isinstance(json_ld, compat_str): json_ld = self._parse_json(json_ld, video_id, fatal=fatal) if not json_ld: return {} info = {} if not isinstance(json_ld, (list, tuple, dict)): return info if isinstance(json_ld, dict): json_ld = [json_ld] INTERACTION_TYPE_MAP = { 'CommentAction': 'comment', 'AgreeAction': 'like', 'DisagreeAction': 'dislike', 'LikeAction': 'like', 'DislikeAction': 'dislike', 'ListenAction': 'view', 'WatchAction': 'view', 'ViewAction': 'view', } def extract_interaction_type(e): interaction_type = e.get('interactionType') if isinstance(interaction_type, dict): interaction_type = interaction_type.get('@type') return str_or_none(interaction_type) def extract_interaction_statistic(e): interaction_statistic = e.get('interactionStatistic') if isinstance(interaction_statistic, dict): interaction_statistic = [interaction_statistic] if not isinstance(interaction_statistic, list): return for is_e in interaction_statistic: if not isinstance(is_e, dict): continue if is_e.get('@type') != 'InteractionCounter': continue interaction_type = extract_interaction_type(is_e) if not interaction_type: continue # For interaction count some sites provide string instead of # an integer (as per spec) with non digit characters (e.g. ",") # so extracting count with more relaxed str_to_int interaction_count = str_to_int(is_e.get('userInteractionCount')) if interaction_count is None: continue count_kind = INTERACTION_TYPE_MAP.get(interaction_type.split('/')[-1]) if not count_kind: continue count_key = '%s_count' % count_kind if info.get(count_key) is not None: continue info[count_key] = interaction_count def extract_chapter_information(e): chapters = [{ 'title': part.get('name'), 'start_time': part.get('startOffset'), 'end_time': part.get('endOffset'), } for part in variadic(e.get('hasPart') or []) if part.get('@type') == 'Clip'] for idx, (last_c, current_c, next_c) in enumerate(zip( [{'end_time': 0}] + chapters, chapters, chapters[1:])): current_c['end_time'] = current_c['end_time'] or next_c['start_time'] current_c['start_time'] = current_c['start_time'] or last_c['end_time'] if None in current_c.values(): self.report_warning(f'Chapter {idx} contains broken data. Not extracting chapters') return if chapters: chapters[-1]['end_time'] = chapters[-1]['end_time'] or info['duration'] info['chapters'] = chapters def extract_video_object(e): assert e['@type'] == 'VideoObject' author = e.get('author') info.update({ 'url': url_or_none(e.get('contentUrl')), 'title': unescapeHTML(e.get('name')), 'description': unescapeHTML(e.get('description')), 'thumbnails': [{'url': url_or_none(url)} for url in variadic(traverse_obj(e, 'thumbnailUrl', 'thumbnailURL'))], 'duration': parse_duration(e.get('duration')), 'timestamp': unified_timestamp(e.get('uploadDate')), # author can be an instance of 'Organization' or 'Person' types. # both types can have 'name' property(inherited from 'Thing' type). [1] # however some websites are using 'Text' type instead. # 1. https://schema.org/VideoObject 'uploader': author.get('name') if isinstance(author, dict) else author if isinstance(author, compat_str) else None, 'filesize': float_or_none(e.get('contentSize')), 'tbr': int_or_none(e.get('bitrate')), 'width': int_or_none(e.get('width')), 'height': int_or_none(e.get('height')), 'view_count': int_or_none(e.get('interactionCount')), }) extract_interaction_statistic(e) extract_chapter_information(e) def traverse_json_ld(json_ld, at_top_level=True): for e in json_ld: if at_top_level and '@context' not in e: continue if at_top_level and set(e.keys()) == {'@context', '@graph'}: traverse_json_ld(variadic(e['@graph'], allowed_types=(dict,)), at_top_level=False) break item_type = e.get('@type') if expected_type is not None and expected_type != item_type: continue rating = traverse_obj(e, ('aggregateRating', 'ratingValue'), expected_type=float_or_none) if rating is not None: info['average_rating'] = rating if item_type in ('TVEpisode', 'Episode'): episode_name = unescapeHTML(e.get('name')) info.update({ 'episode': episode_name, 'episode_number': int_or_none(e.get('episodeNumber')), 'description': unescapeHTML(e.get('description')), }) if not info.get('title') and episode_name: info['title'] = episode_name part_of_season = e.get('partOfSeason') if isinstance(part_of_season, dict) and part_of_season.get('@type') in ('TVSeason', 'Season', 'CreativeWorkSeason'): info.update({ 'season': unescapeHTML(part_of_season.get('name')), 'season_number': int_or_none(part_of_season.get('seasonNumber')), }) part_of_series = e.get('partOfSeries') or e.get('partOfTVSeries') if isinstance(part_of_series, dict) and part_of_series.get('@type') in ('TVSeries', 'Series', 'CreativeWorkSeries'): info['series'] = unescapeHTML(part_of_series.get('name')) elif item_type == 'Movie': info.update({ 'title': unescapeHTML(e.get('name')), 'description': unescapeHTML(e.get('description')), 'duration': parse_duration(e.get('duration')), 'timestamp': unified_timestamp(e.get('dateCreated')), }) elif item_type in ('Article', 'NewsArticle'): info.update({ 'timestamp': parse_iso8601(e.get('datePublished')), 'title': unescapeHTML(e.get('headline')), 'description': unescapeHTML(e.get('articleBody') or e.get('description')), }) if traverse_obj(e, ('video', 0, '@type')) == 'VideoObject': extract_video_object(e['video'][0]) elif item_type == 'VideoObject': extract_video_object(e) if expected_type is None: continue else: break video = e.get('video') if isinstance(video, dict) and video.get('@type') == 'VideoObject': extract_video_object(video) if expected_type is None: continue else: break traverse_json_ld(json_ld) return dict((k, v) for k, v in info.items() if v is not None) def _search_nextjs_data(self, webpage, video_id, *, transform_source=None, fatal=True, **kw): return self._parse_json( self._search_regex( r'(?s)<script[^>]+id=[\'"]__NEXT_DATA__[\'"][^>]*>([^<]+)</script>', webpage, 'next.js data', fatal=fatal, **kw), video_id, transform_source=transform_source, fatal=fatal) def _search_nuxt_data(self, webpage, video_id, context_name='__NUXT__'): ''' Parses Nuxt.js metadata. This works as long as the function __NUXT__ invokes is a pure function. ''' # not all website do this, but it can be changed # https://stackoverflow.com/questions/67463109/how-to-change-or-hide-nuxt-and-nuxt-keyword-in-page-source rectx = re.escape(context_name) js, arg_keys, arg_vals = self._search_regex( (r'<script>window\.%s=\(function\((?P<arg_keys>.*?)\)\{return\s(?P<js>\{.*?\})\}\((?P<arg_vals>.+?)\)\);?</script>' % rectx, r'%s\(.*?\(function\((?P<arg_keys>.*?)\)\{return\s(?P<js>\{.*?\})\}\((?P<arg_vals>.*?)\)' % rectx), webpage, context_name, group=['js', 'arg_keys', 'arg_vals']) args = dict(zip(arg_keys.split(','), arg_vals.split(','))) for key, val in args.items(): if val in ('undefined', 'void 0'): args[key] = 'null' return self._parse_json(js_to_json(js, args), video_id)['data'][0] @staticmethod def _hidden_inputs(html): html = re.sub(r'<!--(?:(?!<!--).)*-->', '', html) hidden_inputs = {} for input in re.findall(r'(?i)(<input[^>]+>)', html): attrs = extract_attributes(input) if not input: continue if attrs.get('type') not in ('hidden', 'submit'): continue name = attrs.get('name') or attrs.get('id') value = attrs.get('value') if name and value is not None: hidden_inputs[name] = value return hidden_inputs def _form_hidden_inputs(self, form_id, html): form = self._search_regex( r'(?is)<form[^>]+?id=(["\'])%s\1[^>]*>(?P<form>.+?)</form>' % form_id, html, '%s form' % form_id, group='form') return self._hidden_inputs(form) class FormatSort: regex = r' *((?P<reverse>\+)?(?P<field>[a-zA-Z0-9_]+)((?P<separator>[~:])(?P<limit>.*?))?)? *$' default = ('hidden', 'aud_or_vid', 'hasvid', 'ie_pref', 'lang', 'quality', 'res', 'fps', 'hdr:12', 'codec:vp9.2', 'size', 'br', 'asr', 'proto', 'ext', 'hasaud', 'source', 'id') # These must not be aliases ytdl_default = ('hasaud', 'lang', 'quality', 'tbr', 'filesize', 'vbr', 'height', 'width', 'proto', 'vext', 'abr', 'aext', 'fps', 'fs_approx', 'source', 'id') settings = { 'vcodec': {'type': 'ordered', 'regex': True, 'order': ['av0?1', 'vp0?9.2', 'vp0?9', '[hx]265|he?vc?', '[hx]264|avc', 'vp0?8', 'mp4v|h263', 'theora', '', None, 'none']}, 'acodec': {'type': 'ordered', 'regex': True, 'order': ['[af]lac', 'wav|aiff', 'opus', 'vorbis', 'aac', 'mp?4a?', 'mp3', 'e-?a?c-?3', 'ac-?3', 'dts', '', None, 'none']}, 'hdr': {'type': 'ordered', 'regex': True, 'field': 'dynamic_range', 'order': ['dv', '(hdr)?12', r'(hdr)?10\+', '(hdr)?10', 'hlg', '', 'sdr', None]}, 'proto': {'type': 'ordered', 'regex': True, 'field': 'protocol', 'order': ['(ht|f)tps', '(ht|f)tp$', 'm3u8.*', '.*dash', 'websocket_frag', 'rtmpe?', '', 'mms|rtsp', 'ws|websocket', 'f4']}, 'vext': {'type': 'ordered', 'field': 'video_ext', 'order': ('mp4', 'webm', 'flv', '', 'none'), 'order_free': ('webm', 'mp4', 'flv', '', 'none')}, 'aext': {'type': 'ordered', 'field': 'audio_ext', 'order': ('m4a', 'aac', 'mp3', 'ogg', 'opus', 'webm', '', 'none'), 'order_free': ('opus', 'ogg', 'webm', 'm4a', 'mp3', 'aac', '', 'none')}, 'hidden': {'visible': False, 'forced': True, 'type': 'extractor', 'max': -1000}, 'aud_or_vid': {'visible': False, 'forced': True, 'type': 'multiple', 'field': ('vcodec', 'acodec'), 'function': lambda it: int(any(v != 'none' for v in it))}, 'ie_pref': {'priority': True, 'type': 'extractor'}, 'hasvid': {'priority': True, 'field': 'vcodec', 'type': 'boolean', 'not_in_list': ('none',)}, 'hasaud': {'field': 'acodec', 'type': 'boolean', 'not_in_list': ('none',)}, 'lang': {'convert': 'float', 'field': 'language_preference', 'default': -1}, 'quality': {'convert': 'float', 'default': -1}, 'filesize': {'convert': 'bytes'}, 'fs_approx': {'convert': 'bytes', 'field': 'filesize_approx'}, 'id': {'convert': 'string', 'field': 'format_id'}, 'height': {'convert': 'float_none'}, 'width': {'convert': 'float_none'}, 'fps': {'convert': 'float_none'}, 'tbr': {'convert': 'float_none'}, 'vbr': {'convert': 'float_none'}, 'abr': {'convert': 'float_none'}, 'asr': {'convert': 'float_none'}, 'source': {'convert': 'float', 'field': 'source_preference', 'default': -1}, 'codec': {'type': 'combined', 'field': ('vcodec', 'acodec')}, 'br': {'type': 'combined', 'field': ('tbr', 'vbr', 'abr'), 'same_limit': True}, 'size': {'type': 'combined', 'same_limit': True, 'field': ('filesize', 'fs_approx')}, 'ext': {'type': 'combined', 'field': ('vext', 'aext')}, 'res': {'type': 'multiple', 'field': ('height', 'width'), 'function': lambda it: (lambda l: min(l) if l else 0)(tuple(filter(None, it)))}, # For compatibility with youtube-dl 'format_id': {'type': 'alias', 'field': 'id'}, 'preference': {'type': 'alias', 'field': 'ie_pref'}, 'language_preference': {'type': 'alias', 'field': 'lang'}, # Deprecated 'dimension': {'type': 'alias', 'field': 'res'}, 'resolution': {'type': 'alias', 'field': 'res'}, 'extension': {'type': 'alias', 'field': 'ext'}, 'bitrate': {'type': 'alias', 'field': 'br'}, 'total_bitrate': {'type': 'alias', 'field': 'tbr'}, 'video_bitrate': {'type': 'alias', 'field': 'vbr'}, 'audio_bitrate': {'type': 'alias', 'field': 'abr'}, 'framerate': {'type': 'alias', 'field': 'fps'}, 'protocol': {'type': 'alias', 'field': 'proto'}, 'source_preference': {'type': 'alias', 'field': 'source'}, 'filesize_approx': {'type': 'alias', 'field': 'fs_approx'}, 'filesize_estimate': {'type': 'alias', 'field': 'size'}, 'samplerate': {'type': 'alias', 'field': 'asr'}, 'video_ext': {'type': 'alias', 'field': 'vext'}, 'audio_ext': {'type': 'alias', 'field': 'aext'}, 'video_codec': {'type': 'alias', 'field': 'vcodec'}, 'audio_codec': {'type': 'alias', 'field': 'acodec'}, 'video': {'type': 'alias', 'field': 'hasvid'}, 'has_video': {'type': 'alias', 'field': 'hasvid'}, 'audio': {'type': 'alias', 'field': 'hasaud'}, 'has_audio': {'type': 'alias', 'field': 'hasaud'}, 'extractor': {'type': 'alias', 'field': 'ie_pref'}, 'extractor_preference': {'type': 'alias', 'field': 'ie_pref'}, } def __init__(self, ie, field_preference): self._order = [] self.ydl = ie._downloader self.evaluate_params(self.ydl.params, field_preference) if ie.get_param('verbose'): self.print_verbose_info(self.ydl.write_debug) def _get_field_setting(self, field, key): if field not in self.settings: if key in ('forced', 'priority'): return False self.ydl.deprecation_warning( f'Using arbitrary fields ({field}) for format sorting is deprecated ' 'and may be removed in a future version') self.settings[field] = {} propObj = self.settings[field] if key not in propObj: type = propObj.get('type') if key == 'field': default = 'preference' if type == 'extractor' else (field,) if type in ('combined', 'multiple') else field elif key == 'convert': default = 'order' if type == 'ordered' else 'float_string' if field else 'ignore' else: default = {'type': 'field', 'visible': True, 'order': [], 'not_in_list': (None,)}.get(key, None) propObj[key] = default return propObj[key] def _resolve_field_value(self, field, value, convertNone=False): if value is None: if not convertNone: return None else: value = value.lower() conversion = self._get_field_setting(field, 'convert') if conversion == 'ignore': return None if conversion == 'string': return value elif conversion == 'float_none': return float_or_none(value) elif conversion == 'bytes': return FileDownloader.parse_bytes(value) elif conversion == 'order': order_list = (self._use_free_order and self._get_field_setting(field, 'order_free')) or self._get_field_setting(field, 'order') use_regex = self._get_field_setting(field, 'regex') list_length = len(order_list) empty_pos = order_list.index('') if '' in order_list else list_length + 1 if use_regex and value is not None: for i, regex in enumerate(order_list): if regex and re.match(regex, value): return list_length - i return list_length - empty_pos # not in list else: # not regex or value = None return list_length - (order_list.index(value) if value in order_list else empty_pos) else: if value.isnumeric(): return float(value) else: self.settings[field]['convert'] = 'string' return value def evaluate_params(self, params, sort_extractor): self._use_free_order = params.get('prefer_free_formats', False) self._sort_user = params.get('format_sort', []) self._sort_extractor = sort_extractor def add_item(field, reverse, closest, limit_text): field = field.lower() if field in self._order: return self._order.append(field) limit = self._resolve_field_value(field, limit_text) data = { 'reverse': reverse, 'closest': False if limit is None else closest, 'limit_text': limit_text, 'limit': limit} if field in self.settings: self.settings[field].update(data) else: self.settings[field] = data sort_list = ( tuple(field for field in self.default if self._get_field_setting(field, 'forced')) + (tuple() if params.get('format_sort_force', False) else tuple(field for field in self.default if self._get_field_setting(field, 'priority'))) + tuple(self._sort_user) + tuple(sort_extractor) + self.default) for item in sort_list: match = re.match(self.regex, item) if match is None: raise ExtractorError('Invalid format sort string "%s" given by extractor' % item) field = match.group('field') if field is None: continue if self._get_field_setting(field, 'type') == 'alias': alias, field = field, self._get_field_setting(field, 'field') if alias not in ('format_id', 'preference', 'language_preference'): self.ydl.deprecation_warning( f'Format sorting alias {alias} is deprecated ' f'and may be removed in a future version. Please use {field} instead') reverse = match.group('reverse') is not None closest = match.group('separator') == '~' limit_text = match.group('limit') has_limit = limit_text is not None has_multiple_fields = self._get_field_setting(field, 'type') == 'combined' has_multiple_limits = has_limit and has_multiple_fields and not self._get_field_setting(field, 'same_limit') fields = self._get_field_setting(field, 'field') if has_multiple_fields else (field,) limits = limit_text.split(':') if has_multiple_limits else (limit_text,) if has_limit else tuple() limit_count = len(limits) for (i, f) in enumerate(fields): add_item(f, reverse, closest, limits[i] if i < limit_count else limits[0] if has_limit and not has_multiple_limits else None) def print_verbose_info(self, write_debug): if self._sort_user: write_debug('Sort order given by user: %s' % ', '.join(self._sort_user)) if self._sort_extractor: write_debug('Sort order given by extractor: %s' % ', '.join(self._sort_extractor)) write_debug('Formats sorted by: %s' % ', '.join(['%s%s%s' % ( '+' if self._get_field_setting(field, 'reverse') else '', field, '%s%s(%s)' % ('~' if self._get_field_setting(field, 'closest') else ':', self._get_field_setting(field, 'limit_text'), self._get_field_setting(field, 'limit')) if self._get_field_setting(field, 'limit_text') is not None else '') for field in self._order if self._get_field_setting(field, 'visible')])) def _calculate_field_preference_from_value(self, format, field, type, value): reverse = self._get_field_setting(field, 'reverse') closest = self._get_field_setting(field, 'closest') limit = self._get_field_setting(field, 'limit') if type == 'extractor': maximum = self._get_field_setting(field, 'max') if value is None or (maximum is not None and value >= maximum): value = -1 elif type == 'boolean': in_list = self._get_field_setting(field, 'in_list') not_in_list = self._get_field_setting(field, 'not_in_list') value = 0 if ((in_list is None or value in in_list) and (not_in_list is None or value not in not_in_list)) else -1 elif type == 'ordered': value = self._resolve_field_value(field, value, True) # try to convert to number val_num = float_or_none(value, default=self._get_field_setting(field, 'default')) is_num = self._get_field_setting(field, 'convert') != 'string' and val_num is not None if is_num: value = val_num return ((-10, 0) if value is None else (1, value, 0) if not is_num # if a field has mixed strings and numbers, strings are sorted higher else (0, -abs(value - limit), value - limit if reverse else limit - value) if closest else (0, value, 0) if not reverse and (limit is None or value <= limit) else (0, -value, 0) if limit is None or (reverse and value == limit) or value > limit else (-1, value, 0)) def _calculate_field_preference(self, format, field): type = self._get_field_setting(field, 'type') # extractor, boolean, ordered, field, multiple get_value = lambda f: format.get(self._get_field_setting(f, 'field')) if type == 'multiple': type = 'field' # Only 'field' is allowed in multiple for now actual_fields = self._get_field_setting(field, 'field') value = self._get_field_setting(field, 'function')(get_value(f) for f in actual_fields) else: value = get_value(field) return self._calculate_field_preference_from_value(format, field, type, value) def calculate_preference(self, format): # Determine missing protocol if not format.get('protocol'): format['protocol'] = determine_protocol(format) # Determine missing ext if not format.get('ext') and 'url' in format: format['ext'] = determine_ext(format['url']) if format.get('vcodec') == 'none': format['audio_ext'] = format['ext'] if format.get('acodec') != 'none' else 'none' format['video_ext'] = 'none' else: format['video_ext'] = format['ext'] format['audio_ext'] = 'none' # if format.get('preference') is None and format.get('ext') in ('f4f', 'f4m'): # Not supported? # format['preference'] = -1000 # Determine missing bitrates if format.get('tbr') is None: if format.get('vbr') is not None and format.get('abr') is not None: format['tbr'] = format.get('vbr', 0) + format.get('abr', 0) else: if format.get('vcodec') != 'none' and format.get('vbr') is None: format['vbr'] = format.get('tbr') - format.get('abr', 0) if format.get('acodec') != 'none' and format.get('abr') is None: format['abr'] = format.get('tbr') - format.get('vbr', 0) return tuple(self._calculate_field_preference(format, field) for field in self._order) def _sort_formats(self, formats, field_preference=[]): if not formats: return format_sort = self.FormatSort(self, field_preference) formats.sort(key=lambda f: format_sort.calculate_preference(f)) def _check_formats(self, formats, video_id): if formats: formats[:] = filter( lambda f: self._is_valid_url( f['url'], video_id, item='%s video format' % f.get('format_id') if f.get('format_id') else 'video'), formats) @staticmethod def _remove_duplicate_formats(formats): format_urls = set() unique_formats = [] for f in formats: if f['url'] not in format_urls: format_urls.add(f['url']) unique_formats.append(f) formats[:] = unique_formats def _is_valid_url(self, url, video_id, item='video', headers={}): url = self._proto_relative_url(url, scheme='http:') # For now assume non HTTP(S) URLs always valid if not (url.startswith('http://') or url.startswith('https://')): return True try: self._request_webpage(url, video_id, 'Checking %s URL' % item, headers=headers) return True except ExtractorError as e: self.to_screen( '%s: %s URL is invalid, skipping: %s' % (video_id, item, error_to_compat_str(e.cause))) return False def http_scheme(self): """ Either "http:" or "https:", depending on the user's preferences """ return ( 'http:' if self.get_param('prefer_insecure', False) else 'https:') def _proto_relative_url(self, url, scheme=None): if url is None: return url if url.startswith('//'): if scheme is None: scheme = self.http_scheme() return scheme + url else: return url def _sleep(self, timeout, video_id, msg_template=None): if msg_template is None: msg_template = '%(video_id)s: Waiting for %(timeout)s seconds' msg = msg_template % {'video_id': video_id, 'timeout': timeout} self.to_screen(msg) time.sleep(timeout) def _extract_f4m_formats(self, manifest_url, video_id, preference=None, quality=None, f4m_id=None, transform_source=lambda s: fix_xml_ampersands(s).strip(), fatal=True, m3u8_id=None, data=None, headers={}, query={}): manifest = self._download_xml( manifest_url, video_id, 'Downloading f4m manifest', 'Unable to download f4m manifest', # Some manifests may be malformed, e.g. prosiebensat1 generated manifests # (see https://github.com/ytdl-org/youtube-dl/issues/6215#issuecomment-121704244) transform_source=transform_source, fatal=fatal, data=data, headers=headers, query=query) if manifest is False: return [] return self._parse_f4m_formats( manifest, manifest_url, video_id, preference=preference, quality=quality, f4m_id=f4m_id, transform_source=transform_source, fatal=fatal, m3u8_id=m3u8_id) def _parse_f4m_formats(self, manifest, manifest_url, video_id, preference=None, quality=None, f4m_id=None, transform_source=lambda s: fix_xml_ampersands(s).strip(), fatal=True, m3u8_id=None): if not isinstance(manifest, compat_etree_Element) and not fatal: return [] # currently yt-dlp cannot decode the playerVerificationChallenge as Akamai uses Adobe Alchemy akamai_pv = manifest.find('{http://ns.adobe.com/f4m/1.0}pv-2.0') if akamai_pv is not None and ';' in akamai_pv.text: playerVerificationChallenge = akamai_pv.text.split(';')[0] if playerVerificationChallenge.strip() != '': return [] formats = [] manifest_version = '1.0' media_nodes = manifest.findall('{http://ns.adobe.com/f4m/1.0}media') if not media_nodes: manifest_version = '2.0' media_nodes = manifest.findall('{http://ns.adobe.com/f4m/2.0}media') # Remove unsupported DRM protected media from final formats # rendition (see https://github.com/ytdl-org/youtube-dl/issues/8573). media_nodes = remove_encrypted_media(media_nodes) if not media_nodes: return formats manifest_base_url = get_base_url(manifest) bootstrap_info = xpath_element( manifest, ['{http://ns.adobe.com/f4m/1.0}bootstrapInfo', '{http://ns.adobe.com/f4m/2.0}bootstrapInfo'], 'bootstrap info', default=None) vcodec = None mime_type = xpath_text( manifest, ['{http://ns.adobe.com/f4m/1.0}mimeType', '{http://ns.adobe.com/f4m/2.0}mimeType'], 'base URL', default=None) if mime_type and mime_type.startswith('audio/'): vcodec = 'none' for i, media_el in enumerate(media_nodes): tbr = int_or_none(media_el.attrib.get('bitrate')) width = int_or_none(media_el.attrib.get('width')) height = int_or_none(media_el.attrib.get('height')) format_id = join_nonempty(f4m_id, tbr or i) # If <bootstrapInfo> is present, the specified f4m is a # stream-level manifest, and only set-level manifests may refer to # external resources. See section 11.4 and section 4 of F4M spec if bootstrap_info is None: media_url = None # @href is introduced in 2.0, see section 11.6 of F4M spec if manifest_version == '2.0': media_url = media_el.attrib.get('href') if media_url is None: media_url = media_el.attrib.get('url') if not media_url: continue manifest_url = ( media_url if media_url.startswith('http://') or media_url.startswith('https://') else ((manifest_base_url or '/'.join(manifest_url.split('/')[:-1])) + '/' + media_url)) # If media_url is itself a f4m manifest do the recursive extraction # since bitrates in parent manifest (this one) and media_url manifest # may differ leading to inability to resolve the format by requested # bitrate in f4m downloader ext = determine_ext(manifest_url) if ext == 'f4m': f4m_formats = self._extract_f4m_formats( manifest_url, video_id, preference=preference, quality=quality, f4m_id=f4m_id, transform_source=transform_source, fatal=fatal) # Sometimes stream-level manifest contains single media entry that # does not contain any quality metadata (e.g. http://matchtv.ru/#live-player). # At the same time parent's media entry in set-level manifest may # contain it. We will copy it from parent in such cases. if len(f4m_formats) == 1: f = f4m_formats[0] f.update({ 'tbr': f.get('tbr') or tbr, 'width': f.get('width') or width, 'height': f.get('height') or height, 'format_id': f.get('format_id') if not tbr else format_id, 'vcodec': vcodec, }) formats.extend(f4m_formats) continue elif ext == 'm3u8': formats.extend(self._extract_m3u8_formats( manifest_url, video_id, 'mp4', preference=preference, quality=quality, m3u8_id=m3u8_id, fatal=fatal)) continue formats.append({ 'format_id': format_id, 'url': manifest_url, 'manifest_url': manifest_url, 'ext': 'flv' if bootstrap_info is not None else None, 'protocol': 'f4m', 'tbr': tbr, 'width': width, 'height': height, 'vcodec': vcodec, 'preference': preference, 'quality': quality, }) return formats def _m3u8_meta_format(self, m3u8_url, ext=None, preference=None, quality=None, m3u8_id=None): return { 'format_id': join_nonempty(m3u8_id, 'meta'), 'url': m3u8_url, 'ext': ext, 'protocol': 'm3u8', 'preference': preference - 100 if preference else -100, 'quality': quality, 'resolution': 'multiple', 'format_note': 'Quality selection URL', } def _report_ignoring_subs(self, name): self.report_warning(bug_reports_message( f'Ignoring subtitle tracks found in the {name} manifest; ' 'if any subtitle tracks are missing,' ), only_once=True) def _extract_m3u8_formats(self, *args, **kwargs): fmts, subs = self._extract_m3u8_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('HLS') return fmts def _extract_m3u8_formats_and_subtitles( self, m3u8_url, video_id, ext=None, entry_protocol='m3u8_native', preference=None, quality=None, m3u8_id=None, note=None, errnote=None, fatal=True, live=False, data=None, headers={}, query={}): res = self._download_webpage_handle( m3u8_url, video_id, note='Downloading m3u8 information' if note is None else note, errnote='Failed to download m3u8 information' if errnote is None else errnote, fatal=fatal, data=data, headers=headers, query=query) if res is False: return [], {} m3u8_doc, urlh = res m3u8_url = urlh.geturl() return self._parse_m3u8_formats_and_subtitles( m3u8_doc, m3u8_url, ext=ext, entry_protocol=entry_protocol, preference=preference, quality=quality, m3u8_id=m3u8_id, note=note, errnote=errnote, fatal=fatal, live=live, data=data, headers=headers, query=query, video_id=video_id) def _parse_m3u8_formats_and_subtitles( self, m3u8_doc, m3u8_url=None, ext=None, entry_protocol='m3u8_native', preference=None, quality=None, m3u8_id=None, live=False, note=None, errnote=None, fatal=True, data=None, headers={}, query={}, video_id=None): formats, subtitles = [], {} has_drm = re.search('|'.join([ r'#EXT-X-FAXS-CM:', # Adobe Flash Access r'#EXT-X-(?:SESSION-)?KEY:.*?URI="skd://', # Apple FairPlay ]), m3u8_doc) def format_url(url): return url if re.match(r'^https?://', url) else compat_urlparse.urljoin(m3u8_url, url) if self.get_param('hls_split_discontinuity', False): def _extract_m3u8_playlist_indices(manifest_url=None, m3u8_doc=None): if not m3u8_doc: if not manifest_url: return [] m3u8_doc = self._download_webpage( manifest_url, video_id, fatal=fatal, data=data, headers=headers, note=False, errnote='Failed to download m3u8 playlist information') if m3u8_doc is False: return [] return range(1 + sum(line.startswith('#EXT-X-DISCONTINUITY') for line in m3u8_doc.splitlines())) else: def _extract_m3u8_playlist_indices(*args, **kwargs): return [None] # References: # 1. https://tools.ietf.org/html/draft-pantos-http-live-streaming-21 # 2. https://github.com/ytdl-org/youtube-dl/issues/12211 # 3. https://github.com/ytdl-org/youtube-dl/issues/18923 # We should try extracting formats only from master playlists [1, 4.3.4], # i.e. playlists that describe available qualities. On the other hand # media playlists [1, 4.3.3] should be returned as is since they contain # just the media without qualities renditions. # Fortunately, master playlist can be easily distinguished from media # playlist based on particular tags availability. As of [1, 4.3.3, 4.3.4] # master playlist tags MUST NOT appear in a media playlist and vice versa. # As of [1, 4.3.3.1] #EXT-X-TARGETDURATION tag is REQUIRED for every # media playlist and MUST NOT appear in master playlist thus we can # clearly detect media playlist with this criterion. if '#EXT-X-TARGETDURATION' in m3u8_doc: # media playlist, return as is formats = [{ 'format_id': join_nonempty(m3u8_id, idx), 'format_index': idx, 'url': m3u8_url or encode_data_uri(m3u8_doc.encode('utf-8'), 'application/x-mpegurl'), 'ext': ext, 'protocol': entry_protocol, 'preference': preference, 'quality': quality, 'has_drm': has_drm, } for idx in _extract_m3u8_playlist_indices(m3u8_doc=m3u8_doc)] return formats, subtitles groups = {} last_stream_inf = {} def extract_media(x_media_line): media = parse_m3u8_attributes(x_media_line) # As per [1, 4.3.4.1] TYPE, GROUP-ID and NAME are REQUIRED media_type, group_id, name = media.get('TYPE'), media.get('GROUP-ID'), media.get('NAME') if not (media_type and group_id and name): return groups.setdefault(group_id, []).append(media) # <https://tools.ietf.org/html/rfc8216#section-4.3.4.1> if media_type == 'SUBTITLES': # According to RFC 8216 §4.3.4.2.1, URI is REQUIRED in the # EXT-X-MEDIA tag if the media type is SUBTITLES. # However, lack of URI has been spotted in the wild. # e.g. NebulaIE; see https://github.com/yt-dlp/yt-dlp/issues/339 if not media.get('URI'): return url = format_url(media['URI']) sub_info = { 'url': url, 'ext': determine_ext(url), } if sub_info['ext'] == 'm3u8': # Per RFC 8216 §3.1, the only possible subtitle format m3u8 # files may contain is WebVTT: # <https://tools.ietf.org/html/rfc8216#section-3.1> sub_info['ext'] = 'vtt' sub_info['protocol'] = 'm3u8_native' lang = media.get('LANGUAGE') or 'und' subtitles.setdefault(lang, []).append(sub_info) if media_type not in ('VIDEO', 'AUDIO'): return media_url = media.get('URI') if media_url: manifest_url = format_url(media_url) formats.extend({ 'format_id': join_nonempty(m3u8_id, group_id, name, idx), 'format_note': name, 'format_index': idx, 'url': manifest_url, 'manifest_url': m3u8_url, 'language': media.get('LANGUAGE'), 'ext': ext, 'protocol': entry_protocol, 'preference': preference, 'quality': quality, 'vcodec': 'none' if media_type == 'AUDIO' else None, } for idx in _extract_m3u8_playlist_indices(manifest_url)) def build_stream_name(): # Despite specification does not mention NAME attribute for # EXT-X-STREAM-INF tag it still sometimes may be present (see [1] # or vidio test in TestInfoExtractor.test_parse_m3u8_formats) # 1. http://www.vidio.com/watch/165683-dj_ambred-booyah-live-2015 stream_name = last_stream_inf.get('NAME') if stream_name: return stream_name # If there is no NAME in EXT-X-STREAM-INF it will be obtained # from corresponding rendition group stream_group_id = last_stream_inf.get('VIDEO') if not stream_group_id: return stream_group = groups.get(stream_group_id) if not stream_group: return stream_group_id rendition = stream_group[0] return rendition.get('NAME') or stream_group_id # parse EXT-X-MEDIA tags before EXT-X-STREAM-INF in order to have the # chance to detect video only formats when EXT-X-STREAM-INF tags # precede EXT-X-MEDIA tags in HLS manifest such as [3]. for line in m3u8_doc.splitlines(): if line.startswith('#EXT-X-MEDIA:'): extract_media(line) for line in m3u8_doc.splitlines(): if line.startswith('#EXT-X-STREAM-INF:'): last_stream_inf = parse_m3u8_attributes(line) elif line.startswith('#') or not line.strip(): continue else: tbr = float_or_none( last_stream_inf.get('AVERAGE-BANDWIDTH') or last_stream_inf.get('BANDWIDTH'), scale=1000) manifest_url = format_url(line.strip()) for idx in _extract_m3u8_playlist_indices(manifest_url): format_id = [m3u8_id, None, idx] # Bandwidth of live streams may differ over time thus making # format_id unpredictable. So it's better to keep provided # format_id intact. if not live: stream_name = build_stream_name() format_id[1] = stream_name or '%d' % (tbr or len(formats)) f = { 'format_id': join_nonempty(*format_id), 'format_index': idx, 'url': manifest_url, 'manifest_url': m3u8_url, 'tbr': tbr, 'ext': ext, 'fps': float_or_none(last_stream_inf.get('FRAME-RATE')), 'protocol': entry_protocol, 'preference': preference, 'quality': quality, } resolution = last_stream_inf.get('RESOLUTION') if resolution: mobj = re.search(r'(?P<width>\d+)[xX](?P<height>\d+)', resolution) if mobj: f['width'] = int(mobj.group('width')) f['height'] = int(mobj.group('height')) # Unified Streaming Platform mobj = re.search( r'audio.*?(?:%3D|=)(\d+)(?:-video.*?(?:%3D|=)(\d+))?', f['url']) if mobj: abr, vbr = mobj.groups() abr, vbr = float_or_none(abr, 1000), float_or_none(vbr, 1000) f.update({ 'vbr': vbr, 'abr': abr, }) codecs = parse_codecs(last_stream_inf.get('CODECS')) f.update(codecs) audio_group_id = last_stream_inf.get('AUDIO') # As per [1, 4.3.4.1.1] any EXT-X-STREAM-INF tag which # references a rendition group MUST have a CODECS attribute. # However, this is not always respected, for example, [2] # contains EXT-X-STREAM-INF tag which references AUDIO # rendition group but does not have CODECS and despite # referencing an audio group it represents a complete # (with audio and video) format. So, for such cases we will # ignore references to rendition groups and treat them # as complete formats. if audio_group_id and codecs and f.get('vcodec') != 'none': audio_group = groups.get(audio_group_id) if audio_group and audio_group[0].get('URI'): # TODO: update acodec for audio only formats with # the same GROUP-ID f['acodec'] = 'none' if not f.get('ext'): f['ext'] = 'm4a' if f.get('vcodec') == 'none' else 'mp4' formats.append(f) # for DailyMotion progressive_uri = last_stream_inf.get('PROGRESSIVE-URI') if progressive_uri: http_f = f.copy() del http_f['manifest_url'] http_f.update({ 'format_id': f['format_id'].replace('hls-', 'http-'), 'protocol': 'http', 'url': progressive_uri, }) formats.append(http_f) last_stream_inf = {} return formats, subtitles def _extract_m3u8_vod_duration( self, m3u8_vod_url, video_id, note=None, errnote=None, data=None, headers={}, query={}): m3u8_vod = self._download_webpage( m3u8_vod_url, video_id, note='Downloading m3u8 VOD manifest' if note is None else note, errnote='Failed to download VOD manifest' if errnote is None else errnote, fatal=False, data=data, headers=headers, query=query) return self._parse_m3u8_vod_duration(m3u8_vod or '', video_id) def _parse_m3u8_vod_duration(self, m3u8_vod, video_id): if '#EXT-X-PLAYLIST-TYPE:VOD' not in m3u8_vod: return None return int(sum( float(line[len('#EXTINF:'):].split(',')[0]) for line in m3u8_vod.splitlines() if line.startswith('#EXTINF:'))) or None @staticmethod def _xpath_ns(path, namespace=None): if not namespace: return path out = [] for c in path.split('/'): if not c or c == '.': out.append(c) else: out.append('{%s}%s' % (namespace, c)) return '/'.join(out) def _extract_smil_formats_and_subtitles(self, smil_url, video_id, fatal=True, f4m_params=None, transform_source=None): smil = self._download_smil(smil_url, video_id, fatal=fatal, transform_source=transform_source) if smil is False: assert not fatal return [], {} namespace = self._parse_smil_namespace(smil) fmts = self._parse_smil_formats( smil, smil_url, video_id, namespace=namespace, f4m_params=f4m_params) subs = self._parse_smil_subtitles( smil, namespace=namespace) return fmts, subs def _extract_smil_formats(self, *args, **kwargs): fmts, subs = self._extract_smil_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('SMIL') return fmts def _extract_smil_info(self, smil_url, video_id, fatal=True, f4m_params=None): smil = self._download_smil(smil_url, video_id, fatal=fatal) if smil is False: return {} return self._parse_smil(smil, smil_url, video_id, f4m_params=f4m_params) def _download_smil(self, smil_url, video_id, fatal=True, transform_source=None): return self._download_xml( smil_url, video_id, 'Downloading SMIL file', 'Unable to download SMIL file', fatal=fatal, transform_source=transform_source) def _parse_smil(self, smil, smil_url, video_id, f4m_params=None): namespace = self._parse_smil_namespace(smil) formats = self._parse_smil_formats( smil, smil_url, video_id, namespace=namespace, f4m_params=f4m_params) subtitles = self._parse_smil_subtitles(smil, namespace=namespace) video_id = os.path.splitext(url_basename(smil_url))[0] title = None description = None upload_date = None for meta in smil.findall(self._xpath_ns('./head/meta', namespace)): name = meta.attrib.get('name') content = meta.attrib.get('content') if not name or not content: continue if not title and name == 'title': title = content elif not description and name in ('description', 'abstract'): description = content elif not upload_date and name == 'date': upload_date = unified_strdate(content) thumbnails = [{ 'id': image.get('type'), 'url': image.get('src'), 'width': int_or_none(image.get('width')), 'height': int_or_none(image.get('height')), } for image in smil.findall(self._xpath_ns('.//image', namespace)) if image.get('src')] return { 'id': video_id, 'title': title or video_id, 'description': description, 'upload_date': upload_date, 'thumbnails': thumbnails, 'formats': formats, 'subtitles': subtitles, } def _parse_smil_namespace(self, smil): return self._search_regex( r'(?i)^{([^}]+)?}smil$', smil.tag, 'namespace', default=None) def _parse_smil_formats(self, smil, smil_url, video_id, namespace=None, f4m_params=None, transform_rtmp_url=None): base = smil_url for meta in smil.findall(self._xpath_ns('./head/meta', namespace)): b = meta.get('base') or meta.get('httpBase') if b: base = b break formats = [] rtmp_count = 0 http_count = 0 m3u8_count = 0 imgs_count = 0 srcs = set() media = smil.findall(self._xpath_ns('.//video', namespace)) + smil.findall(self._xpath_ns('.//audio', namespace)) for medium in media: src = medium.get('src') if not src or src in srcs: continue srcs.add(src) bitrate = float_or_none(medium.get('system-bitrate') or medium.get('systemBitrate'), 1000) filesize = int_or_none(medium.get('size') or medium.get('fileSize')) width = int_or_none(medium.get('width')) height = int_or_none(medium.get('height')) proto = medium.get('proto') ext = medium.get('ext') src_ext = determine_ext(src) streamer = medium.get('streamer') or base if proto == 'rtmp' or streamer.startswith('rtmp'): rtmp_count += 1 formats.append({ 'url': streamer, 'play_path': src, 'ext': 'flv', 'format_id': 'rtmp-%d' % (rtmp_count if bitrate is None else bitrate), 'tbr': bitrate, 'filesize': filesize, 'width': width, 'height': height, }) if transform_rtmp_url: streamer, src = transform_rtmp_url(streamer, src) formats[-1].update({ 'url': streamer, 'play_path': src, }) continue src_url = src if src.startswith('http') else compat_urlparse.urljoin(base, src) src_url = src_url.strip() if proto == 'm3u8' or src_ext == 'm3u8': m3u8_formats = self._extract_m3u8_formats( src_url, video_id, ext or 'mp4', m3u8_id='hls', fatal=False) if len(m3u8_formats) == 1: m3u8_count += 1 m3u8_formats[0].update({ 'format_id': 'hls-%d' % (m3u8_count if bitrate is None else bitrate), 'tbr': bitrate, 'width': width, 'height': height, }) formats.extend(m3u8_formats) elif src_ext == 'f4m': f4m_url = src_url if not f4m_params: f4m_params = { 'hdcore': '3.2.0', 'plugin': 'flowplayer-3.2.0.1', } f4m_url += '&' if '?' in f4m_url else '?' f4m_url += compat_urllib_parse_urlencode(f4m_params) formats.extend(self._extract_f4m_formats(f4m_url, video_id, f4m_id='hds', fatal=False)) elif src_ext == 'mpd': formats.extend(self._extract_mpd_formats( src_url, video_id, mpd_id='dash', fatal=False)) elif re.search(r'\.ism/[Mm]anifest', src_url): formats.extend(self._extract_ism_formats( src_url, video_id, ism_id='mss', fatal=False)) elif src_url.startswith('http') and self._is_valid_url(src, video_id): http_count += 1 formats.append({ 'url': src_url, 'ext': ext or src_ext or 'flv', 'format_id': 'http-%d' % (bitrate or http_count), 'tbr': bitrate, 'filesize': filesize, 'width': width, 'height': height, }) for medium in smil.findall(self._xpath_ns('.//imagestream', namespace)): src = medium.get('src') if not src or src in srcs: continue srcs.add(src) imgs_count += 1 formats.append({ 'format_id': 'imagestream-%d' % (imgs_count), 'url': src, 'ext': mimetype2ext(medium.get('type')), 'acodec': 'none', 'vcodec': 'none', 'width': int_or_none(medium.get('width')), 'height': int_or_none(medium.get('height')), 'format_note': 'SMIL storyboards', }) return formats def _parse_smil_subtitles(self, smil, namespace=None, subtitles_lang='en'): urls = [] subtitles = {} for num, textstream in enumerate(smil.findall(self._xpath_ns('.//textstream', namespace))): src = textstream.get('src') if not src or src in urls: continue urls.append(src) ext = textstream.get('ext') or mimetype2ext(textstream.get('type')) or determine_ext(src) lang = textstream.get('systemLanguage') or textstream.get('systemLanguageName') or textstream.get('lang') or subtitles_lang subtitles.setdefault(lang, []).append({ 'url': src, 'ext': ext, }) return subtitles def _extract_xspf_playlist(self, xspf_url, playlist_id, fatal=True): xspf = self._download_xml( xspf_url, playlist_id, 'Downloading xpsf playlist', 'Unable to download xspf manifest', fatal=fatal) if xspf is False: return [] return self._parse_xspf( xspf, playlist_id, xspf_url=xspf_url, xspf_base_url=base_url(xspf_url)) def _parse_xspf(self, xspf_doc, playlist_id, xspf_url=None, xspf_base_url=None): NS_MAP = { 'xspf': 'http://xspf.org/ns/0/', 's1': 'http://static.streamone.nl/player/ns/0', } entries = [] for track in xspf_doc.findall(xpath_with_ns('./xspf:trackList/xspf:track', NS_MAP)): title = xpath_text( track, xpath_with_ns('./xspf:title', NS_MAP), 'title', default=playlist_id) description = xpath_text( track, xpath_with_ns('./xspf:annotation', NS_MAP), 'description') thumbnail = xpath_text( track, xpath_with_ns('./xspf:image', NS_MAP), 'thumbnail') duration = float_or_none( xpath_text(track, xpath_with_ns('./xspf:duration', NS_MAP), 'duration'), 1000) formats = [] for location in track.findall(xpath_with_ns('./xspf:location', NS_MAP)): format_url = urljoin(xspf_base_url, location.text) if not format_url: continue formats.append({ 'url': format_url, 'manifest_url': xspf_url, 'format_id': location.get(xpath_with_ns('s1:label', NS_MAP)), 'width': int_or_none(location.get(xpath_with_ns('s1:width', NS_MAP))), 'height': int_or_none(location.get(xpath_with_ns('s1:height', NS_MAP))), }) self._sort_formats(formats) entries.append({ 'id': playlist_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'formats': formats, }) return entries def _extract_mpd_formats(self, *args, **kwargs): fmts, subs = self._extract_mpd_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('DASH') return fmts def _extract_mpd_formats_and_subtitles( self, mpd_url, video_id, mpd_id=None, note=None, errnote=None, fatal=True, data=None, headers={}, query={}): res = self._download_xml_handle( mpd_url, video_id, note='Downloading MPD manifest' if note is None else note, errnote='Failed to download MPD manifest' if errnote is None else errnote, fatal=fatal, data=data, headers=headers, query=query) if res is False: return [], {} mpd_doc, urlh = res if mpd_doc is None: return [], {} mpd_base_url = base_url(urlh.geturl()) return self._parse_mpd_formats_and_subtitles( mpd_doc, mpd_id, mpd_base_url, mpd_url) def _parse_mpd_formats(self, *args, **kwargs): fmts, subs = self._parse_mpd_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('DASH') return fmts def _parse_mpd_formats_and_subtitles( self, mpd_doc, mpd_id=None, mpd_base_url='', mpd_url=None): """ Parse formats from MPD manifest. References: 1. MPEG-DASH Standard, ISO/IEC 23009-1:2014(E), http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip 2. https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP """ if not self.get_param('dynamic_mpd', True): if mpd_doc.get('type') == 'dynamic': return [], {} namespace = self._search_regex(r'(?i)^{([^}]+)?}MPD$', mpd_doc.tag, 'namespace', default=None) def _add_ns(path): return self._xpath_ns(path, namespace) def is_drm_protected(element): return element.find(_add_ns('ContentProtection')) is not None def extract_multisegment_info(element, ms_parent_info): ms_info = ms_parent_info.copy() # As per [1, 5.3.9.2.2] SegmentList and SegmentTemplate share some # common attributes and elements. We will only extract relevant # for us. def extract_common(source): segment_timeline = source.find(_add_ns('SegmentTimeline')) if segment_timeline is not None: s_e = segment_timeline.findall(_add_ns('S')) if s_e: ms_info['total_number'] = 0 ms_info['s'] = [] for s in s_e: r = int(s.get('r', 0)) ms_info['total_number'] += 1 + r ms_info['s'].append({ 't': int(s.get('t', 0)), # @d is mandatory (see [1, 5.3.9.6.2, Table 17, page 60]) 'd': int(s.attrib['d']), 'r': r, }) start_number = source.get('startNumber') if start_number: ms_info['start_number'] = int(start_number) timescale = source.get('timescale') if timescale: ms_info['timescale'] = int(timescale) segment_duration = source.get('duration') if segment_duration: ms_info['segment_duration'] = float(segment_duration) def extract_Initialization(source): initialization = source.find(_add_ns('Initialization')) if initialization is not None: ms_info['initialization_url'] = initialization.attrib['sourceURL'] segment_list = element.find(_add_ns('SegmentList')) if segment_list is not None: extract_common(segment_list) extract_Initialization(segment_list) segment_urls_e = segment_list.findall(_add_ns('SegmentURL')) if segment_urls_e: ms_info['segment_urls'] = [segment.attrib['media'] for segment in segment_urls_e] else: segment_template = element.find(_add_ns('SegmentTemplate')) if segment_template is not None: extract_common(segment_template) media = segment_template.get('media') if media: ms_info['media'] = media initialization = segment_template.get('initialization') if initialization: ms_info['initialization'] = initialization else: extract_Initialization(segment_template) return ms_info mpd_duration = parse_duration(mpd_doc.get('mediaPresentationDuration')) formats, subtitles = [], {} stream_numbers = collections.defaultdict(int) for period in mpd_doc.findall(_add_ns('Period')): period_duration = parse_duration(period.get('duration')) or mpd_duration period_ms_info = extract_multisegment_info(period, { 'start_number': 1, 'timescale': 1, }) for adaptation_set in period.findall(_add_ns('AdaptationSet')): adaption_set_ms_info = extract_multisegment_info(adaptation_set, period_ms_info) for representation in adaptation_set.findall(_add_ns('Representation')): representation_attrib = adaptation_set.attrib.copy() representation_attrib.update(representation.attrib) # According to [1, 5.3.7.2, Table 9, page 41], @mimeType is mandatory mime_type = representation_attrib['mimeType'] content_type = representation_attrib.get('contentType', mime_type.split('/')[0]) codecs = parse_codecs(representation_attrib.get('codecs', '')) if content_type not in ('video', 'audio', 'text'): if mime_type == 'image/jpeg': content_type = mime_type elif codecs['vcodec'] != 'none': content_type = 'video' elif codecs['acodec'] != 'none': content_type = 'audio' elif codecs.get('tcodec', 'none') != 'none': content_type = 'text' elif mimetype2ext(mime_type) in ('tt', 'dfxp', 'ttml', 'xml', 'json'): content_type = 'text' else: self.report_warning('Unknown MIME type %s in DASH manifest' % mime_type) continue base_url = '' for element in (representation, adaptation_set, period, mpd_doc): base_url_e = element.find(_add_ns('BaseURL')) if base_url_e is not None: base_url = base_url_e.text + base_url if re.match(r'^https?://', base_url): break if mpd_base_url and base_url.startswith('/'): base_url = compat_urlparse.urljoin(mpd_base_url, base_url) elif mpd_base_url and not re.match(r'^https?://', base_url): if not mpd_base_url.endswith('/'): mpd_base_url += '/' base_url = mpd_base_url + base_url representation_id = representation_attrib.get('id') lang = representation_attrib.get('lang') url_el = representation.find(_add_ns('BaseURL')) filesize = int_or_none(url_el.attrib.get('{http://youtube.com/yt/2012/10/10}contentLength') if url_el is not None else None) bandwidth = int_or_none(representation_attrib.get('bandwidth')) if representation_id is not None: format_id = representation_id else: format_id = content_type if mpd_id: format_id = mpd_id + '-' + format_id if content_type in ('video', 'audio'): f = { 'format_id': format_id, 'manifest_url': mpd_url, 'ext': mimetype2ext(mime_type), 'width': int_or_none(representation_attrib.get('width')), 'height': int_or_none(representation_attrib.get('height')), 'tbr': float_or_none(bandwidth, 1000), 'asr': int_or_none(representation_attrib.get('audioSamplingRate')), 'fps': int_or_none(representation_attrib.get('frameRate')), 'language': lang if lang not in ('mul', 'und', 'zxx', 'mis') else None, 'format_note': 'DASH %s' % content_type, 'filesize': filesize, 'container': mimetype2ext(mime_type) + '_dash', **codecs } elif content_type == 'text': f = { 'ext': mimetype2ext(mime_type), 'manifest_url': mpd_url, 'filesize': filesize, } elif content_type == 'image/jpeg': # See test case in VikiIE # https://www.viki.com/videos/1175236v-choosing-spouse-by-lottery-episode-1 f = { 'format_id': format_id, 'ext': 'mhtml', 'manifest_url': mpd_url, 'format_note': 'DASH storyboards (jpeg)', 'acodec': 'none', 'vcodec': 'none', } if is_drm_protected(adaptation_set) or is_drm_protected(representation): f['has_drm'] = True representation_ms_info = extract_multisegment_info(representation, adaption_set_ms_info) def prepare_template(template_name, identifiers): tmpl = representation_ms_info[template_name] # First of, % characters outside $...$ templates # must be escaped by doubling for proper processing # by % operator string formatting used further (see # https://github.com/ytdl-org/youtube-dl/issues/16867). t = '' in_template = False for c in tmpl: t += c if c == '$': in_template = not in_template elif c == '%' and not in_template: t += c # Next, $...$ templates are translated to their # %(...) counterparts to be used with % operator if representation_id is not None: t = t.replace('$RepresentationID$', representation_id) t = re.sub(r'\$(%s)\$' % '|'.join(identifiers), r'%(\1)d', t) t = re.sub(r'\$(%s)%%([^$]+)\$' % '|'.join(identifiers), r'%(\1)\2', t) t.replace('$$', '$') return t # @initialization is a regular template like @media one # so it should be handled just the same way (see # https://github.com/ytdl-org/youtube-dl/issues/11605) if 'initialization' in representation_ms_info: initialization_template = prepare_template( 'initialization', # As per [1, 5.3.9.4.2, Table 15, page 54] $Number$ and # $Time$ shall not be included for @initialization thus # only $Bandwidth$ remains ('Bandwidth', )) representation_ms_info['initialization_url'] = initialization_template % { 'Bandwidth': bandwidth, } def location_key(location): return 'url' if re.match(r'^https?://', location) else 'path' if 'segment_urls' not in representation_ms_info and 'media' in representation_ms_info: media_template = prepare_template('media', ('Number', 'Bandwidth', 'Time')) media_location_key = location_key(media_template) # As per [1, 5.3.9.4.4, Table 16, page 55] $Number$ and $Time$ # can't be used at the same time if '%(Number' in media_template and 's' not in representation_ms_info: segment_duration = None if 'total_number' not in representation_ms_info and 'segment_duration' in representation_ms_info: segment_duration = float_or_none(representation_ms_info['segment_duration'], representation_ms_info['timescale']) representation_ms_info['total_number'] = int(math.ceil( float_or_none(period_duration, segment_duration, default=0))) representation_ms_info['fragments'] = [{ media_location_key: media_template % { 'Number': segment_number, 'Bandwidth': bandwidth, }, 'duration': segment_duration, } for segment_number in range( representation_ms_info['start_number'], representation_ms_info['total_number'] + representation_ms_info['start_number'])] else: # $Number*$ or $Time$ in media template with S list available # Example $Number*$: http://www.svtplay.se/klipp/9023742/stopptid-om-bjorn-borg # Example $Time$: https://play.arkena.com/embed/avp/v2/player/media/b41dda37-d8e7-4d3f-b1b5-9a9db578bdfe/1/129411 representation_ms_info['fragments'] = [] segment_time = 0 segment_d = None segment_number = representation_ms_info['start_number'] def add_segment_url(): segment_url = media_template % { 'Time': segment_time, 'Bandwidth': bandwidth, 'Number': segment_number, } representation_ms_info['fragments'].append({ media_location_key: segment_url, 'duration': float_or_none(segment_d, representation_ms_info['timescale']), }) for num, s in enumerate(representation_ms_info['s']): segment_time = s.get('t') or segment_time segment_d = s['d'] add_segment_url() segment_number += 1 for r in range(s.get('r', 0)): segment_time += segment_d add_segment_url() segment_number += 1 segment_time += segment_d elif 'segment_urls' in representation_ms_info and 's' in representation_ms_info: # No media template # Example: https://www.youtube.com/watch?v=iXZV5uAYMJI # or any YouTube dashsegments video fragments = [] segment_index = 0 timescale = representation_ms_info['timescale'] for s in representation_ms_info['s']: duration = float_or_none(s['d'], timescale) for r in range(s.get('r', 0) + 1): segment_uri = representation_ms_info['segment_urls'][segment_index] fragments.append({ location_key(segment_uri): segment_uri, 'duration': duration, }) segment_index += 1 representation_ms_info['fragments'] = fragments elif 'segment_urls' in representation_ms_info: # Segment URLs with no SegmentTimeline # Example: https://www.seznam.cz/zpravy/clanek/cesko-zasahne-vitr-o-sile-vichrice-muze-byt-i-zivotu-nebezpecny-39091 # https://github.com/ytdl-org/youtube-dl/pull/14844 fragments = [] segment_duration = float_or_none( representation_ms_info['segment_duration'], representation_ms_info['timescale']) if 'segment_duration' in representation_ms_info else None for segment_url in representation_ms_info['segment_urls']: fragment = { location_key(segment_url): segment_url, } if segment_duration: fragment['duration'] = segment_duration fragments.append(fragment) representation_ms_info['fragments'] = fragments # If there is a fragments key available then we correctly recognized fragmented media. # Otherwise we will assume unfragmented media with direct access. Technically, such # assumption is not necessarily correct since we may simply have no support for # some forms of fragmented media renditions yet, but for now we'll use this fallback. if 'fragments' in representation_ms_info: f.update({ # NB: mpd_url may be empty when MPD manifest is parsed from a string 'url': mpd_url or base_url, 'fragment_base_url': base_url, 'fragments': [], 'protocol': 'http_dash_segments' if mime_type != 'image/jpeg' else 'mhtml', }) if 'initialization_url' in representation_ms_info: initialization_url = representation_ms_info['initialization_url'] if not f.get('url'): f['url'] = initialization_url f['fragments'].append({location_key(initialization_url): initialization_url}) f['fragments'].extend(representation_ms_info['fragments']) if not period_duration: period_duration = try_get( representation_ms_info, lambda r: sum(frag['duration'] for frag in r['fragments']), float) else: # Assuming direct URL to unfragmented media. f['url'] = base_url if content_type in ('video', 'audio', 'image/jpeg'): f['manifest_stream_number'] = stream_numbers[f['url']] stream_numbers[f['url']] += 1 formats.append(f) elif content_type == 'text': subtitles.setdefault(lang or 'und', []).append(f) return formats, subtitles def _extract_ism_formats(self, *args, **kwargs): fmts, subs = self._extract_ism_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('ISM') return fmts def _extract_ism_formats_and_subtitles(self, ism_url, video_id, ism_id=None, note=None, errnote=None, fatal=True, data=None, headers={}, query={}): res = self._download_xml_handle( ism_url, video_id, note='Downloading ISM manifest' if note is None else note, errnote='Failed to download ISM manifest' if errnote is None else errnote, fatal=fatal, data=data, headers=headers, query=query) if res is False: return [], {} ism_doc, urlh = res if ism_doc is None: return [], {} return self._parse_ism_formats_and_subtitles(ism_doc, urlh.geturl(), ism_id) def _parse_ism_formats_and_subtitles(self, ism_doc, ism_url, ism_id=None): """ Parse formats from ISM manifest. References: 1. [MS-SSTR]: Smooth Streaming Protocol, https://msdn.microsoft.com/en-us/library/ff469518.aspx """ if ism_doc.get('IsLive') == 'TRUE': return [], {} duration = int(ism_doc.attrib['Duration']) timescale = int_or_none(ism_doc.get('TimeScale')) or 10000000 formats = [] subtitles = {} for stream in ism_doc.findall('StreamIndex'): stream_type = stream.get('Type') if stream_type not in ('video', 'audio', 'text'): continue url_pattern = stream.attrib['Url'] stream_timescale = int_or_none(stream.get('TimeScale')) or timescale stream_name = stream.get('Name') stream_language = stream.get('Language', 'und') for track in stream.findall('QualityLevel'): fourcc = track.get('FourCC') or ('AACL' if track.get('AudioTag') == '255' else None) # TODO: add support for WVC1 and WMAP if fourcc not in ('H264', 'AVC1', 'AACL', 'TTML'): self.report_warning('%s is not a supported codec' % fourcc) continue tbr = int(track.attrib['Bitrate']) // 1000 # [1] does not mention Width and Height attributes. However, # they're often present while MaxWidth and MaxHeight are # missing, so should be used as fallbacks width = int_or_none(track.get('MaxWidth') or track.get('Width')) height = int_or_none(track.get('MaxHeight') or track.get('Height')) sampling_rate = int_or_none(track.get('SamplingRate')) track_url_pattern = re.sub(r'{[Bb]itrate}', track.attrib['Bitrate'], url_pattern) track_url_pattern = compat_urlparse.urljoin(ism_url, track_url_pattern) fragments = [] fragment_ctx = { 'time': 0, } stream_fragments = stream.findall('c') for stream_fragment_index, stream_fragment in enumerate(stream_fragments): fragment_ctx['time'] = int_or_none(stream_fragment.get('t')) or fragment_ctx['time'] fragment_repeat = int_or_none(stream_fragment.get('r')) or 1 fragment_ctx['duration'] = int_or_none(stream_fragment.get('d')) if not fragment_ctx['duration']: try: next_fragment_time = int(stream_fragment[stream_fragment_index + 1].attrib['t']) except IndexError: next_fragment_time = duration fragment_ctx['duration'] = (next_fragment_time - fragment_ctx['time']) / fragment_repeat for _ in range(fragment_repeat): fragments.append({ 'url': re.sub(r'{start[ _]time}', compat_str(fragment_ctx['time']), track_url_pattern), 'duration': fragment_ctx['duration'] / stream_timescale, }) fragment_ctx['time'] += fragment_ctx['duration'] if stream_type == 'text': subtitles.setdefault(stream_language, []).append({ 'ext': 'ismt', 'protocol': 'ism', 'url': ism_url, 'manifest_url': ism_url, 'fragments': fragments, '_download_params': { 'stream_type': stream_type, 'duration': duration, 'timescale': stream_timescale, 'fourcc': fourcc, 'language': stream_language, 'codec_private_data': track.get('CodecPrivateData'), } }) elif stream_type in ('video', 'audio'): formats.append({ 'format_id': join_nonempty(ism_id, stream_name, tbr), 'url': ism_url, 'manifest_url': ism_url, 'ext': 'ismv' if stream_type == 'video' else 'isma', 'width': width, 'height': height, 'tbr': tbr, 'asr': sampling_rate, 'vcodec': 'none' if stream_type == 'audio' else fourcc, 'acodec': 'none' if stream_type == 'video' else fourcc, 'protocol': 'ism', 'fragments': fragments, 'has_drm': ism_doc.find('Protection') is not None, '_download_params': { 'stream_type': stream_type, 'duration': duration, 'timescale': stream_timescale, 'width': width or 0, 'height': height or 0, 'fourcc': fourcc, 'language': stream_language, 'codec_private_data': track.get('CodecPrivateData'), 'sampling_rate': sampling_rate, 'channels': int_or_none(track.get('Channels', 2)), 'bits_per_sample': int_or_none(track.get('BitsPerSample', 16)), 'nal_unit_length_field': int_or_none(track.get('NALUnitLengthField', 4)), }, }) return formats, subtitles def _parse_html5_media_entries(self, base_url, webpage, video_id, m3u8_id=None, m3u8_entry_protocol='m3u8_native', mpd_id=None, preference=None, quality=None): def absolute_url(item_url): return urljoin(base_url, item_url) def parse_content_type(content_type): if not content_type: return {} ctr = re.search(r'(?P<mimetype>[^/]+/[^;]+)(?:;\s*codecs="?(?P<codecs>[^"]+))?', content_type) if ctr: mimetype, codecs = ctr.groups() f = parse_codecs(codecs) f['ext'] = mimetype2ext(mimetype) return f return {} def _media_formats(src, cur_media_type, type_info={}): full_url = absolute_url(src) ext = type_info.get('ext') or determine_ext(full_url) if ext == 'm3u8': is_plain_url = False formats = self._extract_m3u8_formats( full_url, video_id, ext='mp4', entry_protocol=m3u8_entry_protocol, m3u8_id=m3u8_id, preference=preference, quality=quality, fatal=False) elif ext == 'mpd': is_plain_url = False formats = self._extract_mpd_formats( full_url, video_id, mpd_id=mpd_id, fatal=False) else: is_plain_url = True formats = [{ 'url': full_url, 'vcodec': 'none' if cur_media_type == 'audio' else None, }] return is_plain_url, formats entries = [] # amp-video and amp-audio are very similar to their HTML5 counterparts # so we wll include them right here (see # https://www.ampproject.org/docs/reference/components/amp-video) # For dl8-* tags see https://delight-vr.com/documentation/dl8-video/ _MEDIA_TAG_NAME_RE = r'(?:(?:amp|dl8(?:-live)?)-)?(video|audio)' media_tags = [(media_tag, media_tag_name, media_type, '') for media_tag, media_tag_name, media_type in re.findall(r'(?s)(<(%s)[^>]*/>)' % _MEDIA_TAG_NAME_RE, webpage)] media_tags.extend(re.findall( # We only allow video|audio followed by a whitespace or '>'. # Allowing more characters may end up in significant slow down (see # https://github.com/ytdl-org/youtube-dl/issues/11979, example URL: # http://www.porntrex.com/maps/videositemap.xml). r'(?s)(<(?P<tag>%s)(?:\s+[^>]*)?>)(.*?)</(?P=tag)>' % _MEDIA_TAG_NAME_RE, webpage)) for media_tag, _, media_type, media_content in media_tags: media_info = { 'formats': [], 'subtitles': {}, } media_attributes = extract_attributes(media_tag) src = strip_or_none(media_attributes.get('src')) if src: _, formats = _media_formats(src, media_type) media_info['formats'].extend(formats) media_info['thumbnail'] = absolute_url(media_attributes.get('poster')) if media_content: for source_tag in re.findall(r'<source[^>]+>', media_content): s_attr = extract_attributes(source_tag) # data-video-src and data-src are non standard but seen # several times in the wild src = strip_or_none(dict_get(s_attr, ('src', 'data-video-src', 'data-src'))) if not src: continue f = parse_content_type(s_attr.get('type')) is_plain_url, formats = _media_formats(src, media_type, f) if is_plain_url: # width, height, res, label and title attributes are # all not standard but seen several times in the wild labels = [ s_attr.get(lbl) for lbl in ('label', 'title') if str_or_none(s_attr.get(lbl)) ] width = int_or_none(s_attr.get('width')) height = (int_or_none(s_attr.get('height')) or int_or_none(s_attr.get('res'))) if not width or not height: for lbl in labels: resolution = parse_resolution(lbl) if not resolution: continue width = width or resolution.get('width') height = height or resolution.get('height') for lbl in labels: tbr = parse_bitrate(lbl) if tbr: break else: tbr = None f.update({ 'width': width, 'height': height, 'tbr': tbr, 'format_id': s_attr.get('label') or s_attr.get('title'), }) f.update(formats[0]) media_info['formats'].append(f) else: media_info['formats'].extend(formats) for track_tag in re.findall(r'<track[^>]+>', media_content): track_attributes = extract_attributes(track_tag) kind = track_attributes.get('kind') if not kind or kind in ('subtitles', 'captions'): src = strip_or_none(track_attributes.get('src')) if not src: continue lang = track_attributes.get('srclang') or track_attributes.get('lang') or track_attributes.get('label') media_info['subtitles'].setdefault(lang, []).append({ 'url': absolute_url(src), }) for f in media_info['formats']: f.setdefault('http_headers', {})['Referer'] = base_url if media_info['formats'] or media_info['subtitles']: entries.append(media_info) return entries def _extract_akamai_formats(self, *args, **kwargs): fmts, subs = self._extract_akamai_formats_and_subtitles(*args, **kwargs) if subs: self._report_ignoring_subs('akamai') return fmts def _extract_akamai_formats_and_subtitles(self, manifest_url, video_id, hosts={}): signed = 'hdnea=' in manifest_url if not signed: # https://learn.akamai.com/en-us/webhelp/media-services-on-demand/stream-packaging-user-guide/GUID-BE6C0F73-1E06-483B-B0EA-57984B91B7F9.html manifest_url = re.sub( r'(?:b=[\d,-]+|(?:__a__|attributes)=off|__b__=\d+)&?', '', manifest_url).strip('?') formats = [] subtitles = {} hdcore_sign = 'hdcore=3.7.0' f4m_url = re.sub(r'(https?://[^/]+)/i/', r'\1/z/', manifest_url).replace('/master.m3u8', '/manifest.f4m') hds_host = hosts.get('hds') if hds_host: f4m_url = re.sub(r'(https?://)[^/]+', r'\1' + hds_host, f4m_url) if 'hdcore=' not in f4m_url: f4m_url += ('&' if '?' in f4m_url else '?') + hdcore_sign f4m_formats = self._extract_f4m_formats( f4m_url, video_id, f4m_id='hds', fatal=False) for entry in f4m_formats: entry.update({'extra_param_to_segment_url': hdcore_sign}) formats.extend(f4m_formats) m3u8_url = re.sub(r'(https?://[^/]+)/z/', r'\1/i/', manifest_url).replace('/manifest.f4m', '/master.m3u8') hls_host = hosts.get('hls') if hls_host: m3u8_url = re.sub(r'(https?://)[^/]+', r'\1' + hls_host, m3u8_url) m3u8_formats, m3u8_subtitles = self._extract_m3u8_formats_and_subtitles( m3u8_url, video_id, 'mp4', 'm3u8_native', m3u8_id='hls', fatal=False) formats.extend(m3u8_formats) subtitles = self._merge_subtitles(subtitles, m3u8_subtitles) http_host = hosts.get('http') if http_host and m3u8_formats and not signed: REPL_REGEX = r'https?://[^/]+/i/([^,]+),([^/]+),([^/]+)\.csmil/.+' qualities = re.match(REPL_REGEX, m3u8_url).group(2).split(',') qualities_length = len(qualities) if len(m3u8_formats) in (qualities_length, qualities_length + 1): i = 0 for f in m3u8_formats: if f['vcodec'] != 'none': for protocol in ('http', 'https'): http_f = f.copy() del http_f['manifest_url'] http_url = re.sub( REPL_REGEX, protocol + r'://%s/\g<1>%s\3' % (http_host, qualities[i]), f['url']) http_f.update({ 'format_id': http_f['format_id'].replace('hls-', protocol + '-'), 'url': http_url, 'protocol': protocol, }) formats.append(http_f) i += 1 return formats, subtitles def _extract_wowza_formats(self, url, video_id, m3u8_entry_protocol='m3u8_native', skip_protocols=[]): query = compat_urlparse.urlparse(url).query url = re.sub(r'/(?:manifest|playlist|jwplayer)\.(?:m3u8|f4m|mpd|smil)', '', url) mobj = re.search( r'(?:(?:http|rtmp|rtsp)(?P<s>s)?:)?(?P<url>//[^?]+)', url) url_base = mobj.group('url') http_base_url = '%s%s:%s' % ('http', mobj.group('s') or '', url_base) formats = [] def manifest_url(manifest): m_url = '%s/%s' % (http_base_url, manifest) if query: m_url += '?%s' % query return m_url if 'm3u8' not in skip_protocols: formats.extend(self._extract_m3u8_formats( manifest_url('playlist.m3u8'), video_id, 'mp4', m3u8_entry_protocol, m3u8_id='hls', fatal=False)) if 'f4m' not in skip_protocols: formats.extend(self._extract_f4m_formats( manifest_url('manifest.f4m'), video_id, f4m_id='hds', fatal=False)) if 'dash' not in skip_protocols: formats.extend(self._extract_mpd_formats( manifest_url('manifest.mpd'), video_id, mpd_id='dash', fatal=False)) if re.search(r'(?:/smil:|\.smil)', url_base): if 'smil' not in skip_protocols: rtmp_formats = self._extract_smil_formats( manifest_url('jwplayer.smil'), video_id, fatal=False) for rtmp_format in rtmp_formats: rtsp_format = rtmp_format.copy() rtsp_format['url'] = '%s/%s' % (rtmp_format['url'], rtmp_format['play_path']) del rtsp_format['play_path'] del rtsp_format['ext'] rtsp_format.update({ 'url': rtsp_format['url'].replace('rtmp://', 'rtsp://'), 'format_id': rtmp_format['format_id'].replace('rtmp', 'rtsp'), 'protocol': 'rtsp', }) formats.extend([rtmp_format, rtsp_format]) else: for protocol in ('rtmp', 'rtsp'): if protocol not in skip_protocols: formats.append({ 'url': '%s:%s' % (protocol, url_base), 'format_id': protocol, 'protocol': protocol, }) return formats def _find_jwplayer_data(self, webpage, video_id=None, transform_source=js_to_json): mobj = re.search( r'(?s)jwplayer\((?P<quote>[\'"])[^\'" ]+(?P=quote)\)(?!</script>).*?\.setup\s*\((?P<options>[^)]+)\)', webpage) if mobj: try: jwplayer_data = self._parse_json(mobj.group('options'), video_id=video_id, transform_source=transform_source) except ExtractorError: pass else: if isinstance(jwplayer_data, dict): return jwplayer_data def _extract_jwplayer_data(self, webpage, video_id, *args, **kwargs): jwplayer_data = self._find_jwplayer_data( webpage, video_id, transform_source=js_to_json) return self._parse_jwplayer_data( jwplayer_data, video_id, *args, **kwargs) def _parse_jwplayer_data(self, jwplayer_data, video_id=None, require_title=True, m3u8_id=None, mpd_id=None, rtmp_params=None, base_url=None): # JWPlayer backward compatibility: flattened playlists # https://github.com/jwplayer/jwplayer/blob/v7.4.3/src/js/api/config.js#L81-L96 if 'playlist' not in jwplayer_data: jwplayer_data = {'playlist': [jwplayer_data]} entries = [] # JWPlayer backward compatibility: single playlist item # https://github.com/jwplayer/jwplayer/blob/v7.7.0/src/js/playlist/playlist.js#L10 if not isinstance(jwplayer_data['playlist'], list): jwplayer_data['playlist'] = [jwplayer_data['playlist']] for video_data in jwplayer_data['playlist']: # JWPlayer backward compatibility: flattened sources # https://github.com/jwplayer/jwplayer/blob/v7.4.3/src/js/playlist/item.js#L29-L35 if 'sources' not in video_data: video_data['sources'] = [video_data] this_video_id = video_id or video_data['mediaid'] formats = self._parse_jwplayer_formats( video_data['sources'], video_id=this_video_id, m3u8_id=m3u8_id, mpd_id=mpd_id, rtmp_params=rtmp_params, base_url=base_url) subtitles = {} tracks = video_data.get('tracks') if tracks and isinstance(tracks, list): for track in tracks: if not isinstance(track, dict): continue track_kind = track.get('kind') if not track_kind or not isinstance(track_kind, compat_str): continue if track_kind.lower() not in ('captions', 'subtitles'): continue track_url = urljoin(base_url, track.get('file')) if not track_url: continue subtitles.setdefault(track.get('label') or 'en', []).append({ 'url': self._proto_relative_url(track_url) }) entry = { 'id': this_video_id, 'title': unescapeHTML(video_data['title'] if require_title else video_data.get('title')), 'description': clean_html(video_data.get('description')), 'thumbnail': urljoin(base_url, self._proto_relative_url(video_data.get('image'))), 'timestamp': int_or_none(video_data.get('pubdate')), 'duration': float_or_none(jwplayer_data.get('duration') or video_data.get('duration')), 'subtitles': subtitles, } # https://github.com/jwplayer/jwplayer/blob/master/src/js/utils/validator.js#L32 if len(formats) == 1 and re.search(r'^(?:http|//).*(?:youtube\.com|youtu\.be)/.+', formats[0]['url']): entry.update({ '_type': 'url_transparent', 'url': formats[0]['url'], }) else: self._sort_formats(formats) entry['formats'] = formats entries.append(entry) if len(entries) == 1: return entries[0] else: return self.playlist_result(entries) def _parse_jwplayer_formats(self, jwplayer_sources_data, video_id=None, m3u8_id=None, mpd_id=None, rtmp_params=None, base_url=None): urls = [] formats = [] for source in jwplayer_sources_data: if not isinstance(source, dict): continue source_url = urljoin( base_url, self._proto_relative_url(source.get('file'))) if not source_url or source_url in urls: continue urls.append(source_url) source_type = source.get('type') or '' ext = mimetype2ext(source_type) or determine_ext(source_url) if source_type == 'hls' or ext == 'm3u8': formats.extend(self._extract_m3u8_formats( source_url, video_id, 'mp4', entry_protocol='m3u8_native', m3u8_id=m3u8_id, fatal=False)) elif source_type == 'dash' or ext == 'mpd': formats.extend(self._extract_mpd_formats( source_url, video_id, mpd_id=mpd_id, fatal=False)) elif ext == 'smil': formats.extend(self._extract_smil_formats( source_url, video_id, fatal=False)) # https://github.com/jwplayer/jwplayer/blob/master/src/js/providers/default.js#L67 elif source_type.startswith('audio') or ext in ( 'oga', 'aac', 'mp3', 'mpeg', 'vorbis'): formats.append({ 'url': source_url, 'vcodec': 'none', 'ext': ext, }) else: height = int_or_none(source.get('height')) if height is None: # Often no height is provided but there is a label in # format like "1080p", "720p SD", or 1080. height = int_or_none(self._search_regex( r'^(\d{3,4})[pP]?(?:\b|$)', compat_str(source.get('label') or ''), 'height', default=None)) a_format = { 'url': source_url, 'width': int_or_none(source.get('width')), 'height': height, 'tbr': int_or_none(source.get('bitrate')), 'ext': ext, } if source_url.startswith('rtmp'): a_format['ext'] = 'flv' # See com/longtailvideo/jwplayer/media/RTMPMediaProvider.as # of jwplayer.flash.swf rtmp_url_parts = re.split( r'((?:mp4|mp3|flv):)', source_url, 1) if len(rtmp_url_parts) == 3: rtmp_url, prefix, play_path = rtmp_url_parts a_format.update({ 'url': rtmp_url, 'play_path': prefix + play_path, }) if rtmp_params: a_format.update(rtmp_params) formats.append(a_format) return formats def _live_title(self, name): self._downloader.deprecation_warning('yt_dlp.InfoExtractor._live_title is deprecated and does not work as expected') return name def _int(self, v, name, fatal=False, **kwargs): res = int_or_none(v, **kwargs) if res is None: msg = 'Failed to extract %s: Could not parse value %r' % (name, v) if fatal: raise ExtractorError(msg) else: self.report_warning(msg) return res def _float(self, v, name, fatal=False, **kwargs): res = float_or_none(v, **kwargs) if res is None: msg = 'Failed to extract %s: Could not parse value %r' % (name, v) if fatal: raise ExtractorError(msg) else: self.report_warning(msg) return res def _set_cookie(self, domain, name, value, expire_time=None, port=None, path='/', secure=False, discard=False, rest={}, **kwargs): cookie = compat_cookiejar_Cookie( 0, name, value, port, port is not None, domain, True, domain.startswith('.'), path, True, secure, expire_time, discard, None, None, rest) self._downloader.cookiejar.set_cookie(cookie) def _get_cookies(self, url): """ Return a compat_cookies_SimpleCookie with the cookies for the url """ req = sanitized_Request(url) self._downloader.cookiejar.add_cookie_header(req) return compat_cookies_SimpleCookie(req.get_header('Cookie')) def _apply_first_set_cookie_header(self, url_handle, cookie): """ Apply first Set-Cookie header instead of the last. Experimental. Some sites (e.g. [1-3]) may serve two cookies under the same name in Set-Cookie header and expect the first (old) one to be set rather than second (new). However, as of RFC6265 the newer one cookie should be set into cookie store what actually happens. We will workaround this issue by resetting the cookie to the first one manually. 1. https://new.vk.com/ 2. https://github.com/ytdl-org/youtube-dl/issues/9841#issuecomment-227871201 3. https://learning.oreilly.com/ """ for header, cookies in url_handle.headers.items(): if header.lower() != 'set-cookie': continue if sys.version_info[0] >= 3: cookies = cookies.encode('iso-8859-1') cookies = cookies.decode('utf-8') cookie_value = re.search( r'%s=(.+?);.*?\b[Dd]omain=(.+?)(?:[,;]|$)' % cookie, cookies) if cookie_value: value, domain = cookie_value.groups() self._set_cookie(domain, cookie, value) break def get_testcases(self, include_onlymatching=False): t = getattr(self, '_TEST', None) if t: assert not hasattr(self, '_TESTS'), \ '%s has _TEST and _TESTS' % type(self).__name__ tests = [t] else: tests = getattr(self, '_TESTS', []) for t in tests: if not include_onlymatching and t.get('only_matching', False): continue t['name'] = type(self).__name__[:-len('IE')] yield t def is_suitable(self, age_limit): """ Test whether the extractor is generally suitable for the given age limit (i.e. pornographic sites are not, all others usually are) """ any_restricted = False for tc in self.get_testcases(include_onlymatching=False): if tc.get('playlist', []): tc = tc['playlist'][0] is_restricted = age_restricted( tc.get('info_dict', {}).get('age_limit'), age_limit) if not is_restricted: return True any_restricted = any_restricted or is_restricted return not any_restricted def extract_subtitles(self, *args, **kwargs): if (self.get_param('writesubtitles', False) or self.get_param('listsubtitles')): return self._get_subtitles(*args, **kwargs) return {} def _get_subtitles(self, *args, **kwargs): raise NotImplementedError('This method must be implemented by subclasses') def extract_comments(self, *args, **kwargs): if not self.get_param('getcomments'): return None generator = self._get_comments(*args, **kwargs) def extractor(): comments = [] interrupted = True try: while True: comments.append(next(generator)) except StopIteration: interrupted = False except KeyboardInterrupt: self.to_screen('Interrupted by user') except Exception as e: if self.get_param('ignoreerrors') is not True: raise self._downloader.report_error(e) comment_count = len(comments) self.to_screen(f'Extracted {comment_count} comments') return { 'comments': comments, 'comment_count': None if interrupted else comment_count } return extractor def _get_comments(self, *args, **kwargs): raise NotImplementedError('This method must be implemented by subclasses') @staticmethod def _merge_subtitle_items(subtitle_list1, subtitle_list2): """ Merge subtitle items for one language. Items with duplicated URLs will be dropped. """ list1_urls = set([item['url'] for item in subtitle_list1]) ret = list(subtitle_list1) ret.extend([item for item in subtitle_list2 if item['url'] not in list1_urls]) return ret @classmethod def _merge_subtitles(cls, *dicts, target=None): """ Merge subtitle dictionaries, language by language. """ if target is None: target = {} for d in dicts: for lang, subs in d.items(): target[lang] = cls._merge_subtitle_items(target.get(lang, []), subs) return target def extract_automatic_captions(self, *args, **kwargs): if (self.get_param('writeautomaticsub', False) or self.get_param('listsubtitles')): return self._get_automatic_captions(*args, **kwargs) return {} def _get_automatic_captions(self, *args, **kwargs): raise NotImplementedError('This method must be implemented by subclasses') def mark_watched(self, *args, **kwargs): if not self.get_param('mark_watched', False): return if (self._get_login_info()[0] is not None or self.get_param('cookiefile') or self.get_param('cookiesfrombrowser')): self._mark_watched(*args, **kwargs) def _mark_watched(self, *args, **kwargs): raise NotImplementedError('This method must be implemented by subclasses') def geo_verification_headers(self): headers = {} geo_verification_proxy = self.get_param('geo_verification_proxy') if geo_verification_proxy: headers['Ytdl-request-proxy'] = geo_verification_proxy return headers def _generic_id(self, url): return compat_urllib_parse_unquote(os.path.splitext(url.rstrip('/').split('/')[-1])[0]) def _generic_title(self, url): return compat_urllib_parse_unquote(os.path.splitext(url_basename(url))[0]) @staticmethod def _availability(is_private=None, needs_premium=None, needs_subscription=None, needs_auth=None, is_unlisted=None): all_known = all(map( lambda x: x is not None, (is_private, needs_premium, needs_subscription, needs_auth, is_unlisted))) return ( 'private' if is_private else 'premium_only' if needs_premium else 'subscriber_only' if needs_subscription else 'needs_auth' if needs_auth else 'unlisted' if is_unlisted else 'public' if all_known else None) def _configuration_arg(self, key, default=NO_DEFAULT, *, ie_key=None, casesense=False): ''' @returns A list of values for the extractor argument given by "key" or "default" if no such key is present @param default The default value to return when the key is not present (default: []) @param casesense When false, the values are converted to lower case ''' val = traverse_obj( self._downloader.params, ('extractor_args', (ie_key or self.ie_key()).lower(), key)) if val is None: return [] if default is NO_DEFAULT else default return list(val) if casesense else [x.lower() for x in val] def _yes_playlist(self, playlist_id, video_id, smuggled_data=None, *, playlist_label='playlist', video_label='video'): if not playlist_id or not video_id: return not video_id no_playlist = (smuggled_data or {}).get('force_noplaylist') if no_playlist is not None: return not no_playlist video_id = '' if video_id is True else f' {video_id}' playlist_id = '' if playlist_id is True else f' {playlist_id}' if self.get_param('noplaylist'): self.to_screen(f'Downloading just the {video_label}{video_id} because of --no-playlist') return False self.to_screen(f'Downloading {playlist_label}{playlist_id} - add --no-playlist to download just the {video_label}{video_id}') return True class SearchInfoExtractor(InfoExtractor): """ Base class for paged search queries extractors. They accept URLs in the format _SEARCH_KEY(|all|[0-9]):{query} Instances should define _SEARCH_KEY and optionally _MAX_RESULTS """ _MAX_RESULTS = float('inf') @classmethod def _make_valid_url(cls): return r'%s(?P<prefix>|[1-9][0-9]*|all):(?P<query>[\s\S]+)' % cls._SEARCH_KEY def _real_extract(self, query): prefix, query = self._match_valid_url(query).group('prefix', 'query') if prefix == '': return self._get_n_results(query, 1) elif prefix == 'all': return self._get_n_results(query, self._MAX_RESULTS) else: n = int(prefix) if n <= 0: raise ExtractorError('invalid download number %s for query "%s"' % (n, query)) elif n > self._MAX_RESULTS: self.report_warning('%s returns max %i results (you requested %i)' % (self._SEARCH_KEY, self._MAX_RESULTS, n)) n = self._MAX_RESULTS return self._get_n_results(query, n) def _get_n_results(self, query, n): """Get a specified number of results for a query. Either this function or _search_results must be overridden by subclasses """ return self.playlist_result( itertools.islice(self._search_results(query), 0, None if n == float('inf') else n), query, query) def _search_results(self, query): """Returns an iterator of search results""" raise NotImplementedError('This method must be implemented by subclasses') @property def SEARCH_KEY(self): return self._SEARCH_KEY
the-stack_106_22492
#!/usr/bin/env python # CREATED:2014-01-18 14:09:05 by Brian McFee <[email protected]> # unit tests for util routines # Disable cache import os try: os.environ.pop('LIBROSA_CACHE_DIR') except: pass import platform import numpy as np import scipy.sparse from nose.tools import raises, eq_ import six import warnings import librosa from test_core import srand warnings.resetwarnings() warnings.simplefilter('always') np.set_printoptions(precision=3) def test_example_audio_file(): assert os.path.exists(librosa.util.example_audio_file()) def test_frame(): # Generate a random time series def __test(P): srand() frame, hop = P y = np.random.randn(8000) y_frame = librosa.util.frame(y, frame_length=frame, hop_length=hop) for i in range(y_frame.shape[1]): assert np.allclose(y_frame[:, i], y[i * hop:(i * hop + frame)]) for frame in [256, 1024, 2048]: for hop_length in [64, 256, 512]: yield (__test, [frame, hop_length]) def test_frame_fail(): __test = raises(librosa.ParameterError)(librosa.util.frame) # First fail, not an ndarray yield __test, list(range(10)), 5, 1 # Second fail: wrong ndims yield __test, np.zeros((10, 10)), 5, 1 # Third fail: too short yield __test, np.zeros(10), 20, 1 # Fourth fail: bad hop length yield __test, np.zeros(10), 20, -1 # Fifth fail: discontiguous input yield __test, np.zeros(20)[::2], 10, 1 def test_pad_center(): def __test(y, n, axis, mode): y_out = librosa.util.pad_center(y, n, axis=axis, mode=mode) n_len = y.shape[axis] n_pad = int((n - n_len) / 2) eq_slice = [slice(None)] * y.ndim eq_slice[axis] = slice(n_pad, n_pad + n_len) assert np.allclose(y, y_out[eq_slice]) @raises(librosa.ParameterError) def __test_fail(y, n, axis, mode): librosa.util.pad_center(y, n, axis=axis, mode=mode) for shape in [(16,), (16, 16)]: y = np.ones(shape) for axis in [0, -1]: for mode in ['constant', 'edge', 'reflect']: for n in [0, 10]: yield __test, y, n + y.shape[axis], axis, mode for n in [0, 10]: yield __test_fail, y, n, axis, mode def test_fix_length(): def __test(y, n, axis): y_out = librosa.util.fix_length(y, n, axis=axis) eq_slice = [slice(None)] * y.ndim eq_slice[axis] = slice(y.shape[axis]) if n > y.shape[axis]: assert np.allclose(y, y_out[eq_slice]) else: assert np.allclose(y[eq_slice], y) for shape in [(16,), (16, 16)]: y = np.ones(shape) for axis in [0, -1]: for n in [-5, 0, 5]: yield __test, y, n + y.shape[axis], axis def test_fix_frames(): srand() @raises(librosa.ParameterError) def __test_fail(frames, x_min, x_max, pad): librosa.util.fix_frames(frames, x_min, x_max, pad) def __test_pass(frames, x_min, x_max, pad): f_fix = librosa.util.fix_frames(frames, x_min=x_min, x_max=x_max, pad=pad) if x_min is not None: if pad: assert f_fix[0] == x_min assert np.all(f_fix >= x_min) if x_max is not None: if pad: assert f_fix[-1] == x_max assert np.all(f_fix <= x_max) for low in [-20, 0, 20]: for high in [low + 20, low + 50, low + 100]: frames = np.random.randint(low, high=high, size=15) for x_min in [None, 0, 20]: for x_max in [None, 20, 100]: for pad in [False, True]: if np.any(frames < 0): yield __test_fail, frames, x_min, x_max, pad else: yield __test_pass, frames, x_min, x_max, pad def test_normalize(): srand() def __test_pass(X, norm, axis): X_norm = librosa.util.normalize(X, norm=norm, axis=axis) # Shape and dtype checks assert X_norm.dtype == X.dtype assert X_norm.shape == X.shape if norm is None: assert np.allclose(X, X_norm) return X_norm = np.abs(X_norm) if norm == np.inf: values = np.max(X_norm, axis=axis) elif norm == -np.inf: values = np.min(X_norm, axis=axis) elif norm == 0: # XXX: normalization here isn't quite right values = np.ones(1) else: values = np.sum(X_norm**norm, axis=axis)**(1./norm) assert np.allclose(values, np.ones_like(values)) @raises(librosa.ParameterError) def __test_fail(X, norm, axis): librosa.util.normalize(X, norm=norm, axis=axis) for ndims in [1, 2, 3]: X = np.random.randn(* ([16] * ndims)) for axis in range(X.ndim): for norm in [np.inf, -np.inf, 0, 0.5, 1.0, 2.0, None]: yield __test_pass, X, norm, axis for norm in ['inf', -0.5, -2]: yield __test_fail, X, norm, axis # And test for non-finite failure X[0] = np.nan yield __test_fail, X, np.inf, 0 X[0] = np.inf yield __test_fail, X, np.inf, 0 X[0] = -np.inf yield __test_fail, X, np.inf, 0 def test_normalize_threshold(): x = np.asarray([[0, 1, 2, 3]]) def __test(threshold, result): assert np.allclose(librosa.util.normalize(x, threshold=threshold), result) yield __test, None, [[0, 1, 1, 1]] yield __test, 1, [[0, 1, 1, 1]] yield __test, 2, [[0, 1, 1, 1]] yield __test, 3, [[0, 1, 2, 1]] yield __test, 4, [[0, 1, 2, 3]] yield raises(librosa.ParameterError)(__test), 0, [[0, 1, 1, 1]] yield raises(librosa.ParameterError)(__test), -1, [[0, 1, 1, 1]] def test_normalize_fill(): def __test(fill, norm, threshold, axis, x, result): xn = librosa.util.normalize(x, axis=axis, fill=fill, threshold=threshold, norm=norm) assert np.allclose(xn, result), (xn, np.asarray(result)) x = np.asarray([[0, 1, 2, 3]], dtype=np.float32) axis = 0 norm = np.inf threshold = 2 # Test with inf norm yield __test, None, norm, threshold, axis, x, [[0, 1, 1, 1]] yield __test, False, norm, threshold, axis, x, [[0, 0, 1, 1]] yield __test, True, norm, threshold, axis, x, [[1, 1, 1, 1]] # Test with l0 norm norm = 0 yield __test, None, norm, threshold, axis, x, [[0, 1, 2, 3]] yield __test, False, norm, threshold, axis, x, [[0, 0, 0, 0]] yield raises(librosa.ParameterError)(__test), True, norm, threshold, axis, x, [[0, 0, 0, 0]] # Test with l1 norm norm = 1 yield __test, None, norm, threshold, axis, x, [[0, 1, 1, 1]] yield __test, False, norm, threshold, axis, x, [[0, 0, 1, 1]] yield __test, True, norm, threshold, axis, x, [[1, 1, 1, 1]] # And with l2 norm norm = 2 x = np.repeat(x, 2, axis=0) s = np.sqrt(2)/2 # First two columns are left as is, second two map to sqrt(2)/2 yield __test, None, norm, threshold, axis, x, [[0, 1, s, s], [0, 1, s, s]] # First two columns are zeroed, second two map to sqrt(2)/2 yield __test, False, norm, threshold, axis, x, [[0, 0, s, s], [0, 0, s, s]] # All columns map to sqrt(2)/2 yield __test, True, norm, threshold, axis, x, [[s, s, s, s], [s, s, s, s]] # And test the bad-fill case yield raises(librosa.ParameterError)(__test), 3, norm, threshold, axis, x, x # And an all-axes test axis = None threshold = None norm = 2 yield __test, None, norm, threshold, axis, np.asarray([[3, 0], [0, 4]]), np.asarray([[0, 0], [0, 0]]) yield __test, None, norm, threshold, axis, np.asarray([[3., 0], [0, 4]]), np.asarray([[0.6, 0], [0, 0.8]]) def test_axis_sort(): srand() def __test_pass(data, axis, index, value): if index: Xsorted, idx = librosa.util.axis_sort(data, axis=axis, index=index, value=value) cmp_slice = [slice(None)] * X.ndim cmp_slice[axis] = idx assert np.allclose(X[cmp_slice], Xsorted) else: Xsorted = librosa.util.axis_sort(data, axis=axis, index=index, value=value) compare_axis = np.mod(1 - axis, 2) if value is None: value = np.argmax sort_values = value(Xsorted, axis=compare_axis) assert np.allclose(sort_values, np.sort(sort_values)) @raises(librosa.ParameterError) def __test_fail(data, axis, index, value): librosa.util.axis_sort(data, axis=axis, index=index, value=value) for ndim in [1, 2, 3]: X = np.random.randn(*([10] * ndim)) for axis in [0, 1, -1]: for index in [False, True]: for value in [None, np.min, np.mean, np.max]: if ndim == 2: yield __test_pass, X, axis, index, value else: yield __test_fail, X, axis, index, value def test_match_intervals_empty(): @raises(librosa.ParameterError) def __test(int_from, int_to): librosa.util.match_intervals(int_from, int_to) ints = np.asarray([[0, 2], [0, 4], [3, 6]]) # true matches for the above yield __test, ints, ints[:0] yield __test, ints[:0], ints def test_match_intervals_strict(): def __test(int_from, int_to, matches): test_matches = librosa.util.match_intervals(int_from, int_to, strict=True) assert np.array_equal(matches, test_matches) int_from = np.asarray([[0, 3], [2, 4], [5, 7]]) int_to = np.asarray([[0, 2], [0, 4], [3, 6]]) # true matches for the above matches = np.asarray([1, 1, 2]) yield __test, int_from, int_to, matches # Without the [3, 6] interval, the source [5, 7] has no match yield raises(librosa.ParameterError)(__test), int_from, int_to[:-1], matches def test_match_intervals_nonstrict(): def __test(int_from, int_to, matches): test_matches = librosa.util.match_intervals(int_from, int_to, strict=False) assert np.array_equal(matches, test_matches) int_from = np.asarray([[0, 3], [2, 4], [5, 7]]) int_to = np.asarray([[0, 2], [0, 4], [3, 6]]) # true matches for the above matches = np.asarray([1, 1, 2]) yield __test, int_from, int_to, matches # Without the [3, 6] interval, the source [5, 7] should match [2, 4] yield __test, int_from, int_to[:-1], np.asarray([1, 1, 1]) def test_match_events(): def __make_events(n): srand() return np.abs(np.random.randn(n)) def __is_best(y, ev1, ev2): for i in range(len(y)): values = np.asarray([np.abs(ev1[i] - e2) for e2 in ev2]) if np.any(values < values[y[i]]): return False return True def __test(n, m): ev1 = __make_events(n) ev2 = __make_events(m) y_pred = librosa.util.match_events(ev1, ev2) assert __is_best(y_pred, ev1, ev2) @raises(librosa.ParameterError) def __test_fail(n, m): ev1 = __make_events(n) ev2 = __make_events(m) librosa.util.match_events(ev1, ev2) for n in [0, 1, 5, 20, 100]: for m in [0, 1, 5, 20, 100]: if n == 0 or m == 0: yield __test_fail, n, m else: yield __test, n, m def test_match_events_onesided(): events_from = np.asarray([5, 15, 25]) events_to = np.asarray([0, 10, 20, 30]) def __test(left, right, target): match = librosa.util.match_events(events_from, events_to, left=left, right=right) assert np.allclose(target, events_to[match]) yield __test, False, True, [10, 20, 30] yield __test, True, False, [0, 10, 20] # Make a right-sided fail events_from[0] = 40 yield raises(librosa.ParameterError)(__test), False, True, [10, 20, 30] # Make a left-sided fail events_from[0] = -1 yield raises(librosa.ParameterError)(__test), True, False, [10, 20, 30] # Make a two-sided fail events_from[0] = -1 yield raises(librosa.ParameterError)(__test), False, False, [10, 20, 30] # Make a two-sided success events_to[:-1] = events_from yield __test, False, False, events_from def test_localmax(): def __test(ndim, axis): srand() data = np.random.randn(*([20] * ndim)) lm = librosa.util.localmax(data, axis=axis) for hits in np.argwhere(lm): for offset in [-1, 1]: compare_idx = hits.copy() compare_idx[axis] += offset if compare_idx[axis] < 0: continue if compare_idx[axis] >= data.shape[axis]: continue if offset < 0: assert data[tuple(hits)] > data[tuple(compare_idx)] else: assert data[tuple(hits)] >= data[tuple(compare_idx)] for ndim in range(1, 5): for axis in range(ndim): yield __test, ndim, axis def test_peak_pick(): def __test(n, pre_max, post_max, pre_avg, post_avg, delta, wait): srand() # Generate a test signal x = np.random.randn(n)**2 peaks = librosa.util.peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait) for i in peaks: # Test 1: is it a peak in this window? s = i - pre_max if s < 0: s = 0 t = i + post_max diff = x[i] - np.max(x[s:t]) assert diff > 0 or np.isclose(diff, 0, rtol=1e-3, atol=1e-4) # Test 2: is it a big enough peak to count? s = i - pre_avg if s < 0: s = 0 t = i + post_avg diff = x[i] - (delta + np.mean(x[s:t])) assert diff > 0 or np.isclose(diff, 0, rtol=1e-3, atol=1e-4) # Test 3: peak separation assert not np.any(np.diff(peaks) <= wait) @raises(librosa.ParameterError) def __test_shape_fail(): x = np.eye(10) librosa.util.peak_pick(x, 1, 1, 1, 1, 0.5, 1) yield __test_shape_fail win_range = [-1, 0, 1, 10] for n in [1, 5, 10, 100]: for pre_max in win_range: for post_max in win_range: for pre_avg in win_range: for post_avg in win_range: for wait in win_range: for delta in [-1, 0.05, 100.0]: tf = __test if pre_max < 0: tf = raises(librosa.ParameterError)(__test) if pre_avg < 0: tf = raises(librosa.ParameterError)(__test) if delta < 0: tf = raises(librosa.ParameterError)(__test) if wait < 0: tf = raises(librosa.ParameterError)(__test) if post_max <= 0: tf = raises(librosa.ParameterError)(__test) if post_avg <= 0: tf = raises(librosa.ParameterError)(__test) yield (tf, n, pre_max, post_max, pre_avg, post_avg, delta, wait) def test_sparsify_rows(): def __test(n, d, q): srand() X = np.random.randn(*([d] * n))**4 X = np.asarray(X) xs = librosa.util.sparsify_rows(X, quantile=q) if ndim == 1: X = X.reshape((1, -1)) assert np.allclose(xs.shape, X.shape) # And make sure that xs matches X on nonzeros xsd = np.asarray(xs.todense()) for i in range(xs.shape[0]): assert np.allclose(xsd[i, xs[i].indices], X[i, xs[i].indices]) # Compute row-wise magnitude marginals v_in = np.sum(np.abs(X), axis=-1) v_out = np.sum(np.abs(xsd), axis=-1) # Ensure that v_out retains 1-q fraction of v_in assert np.all(v_out >= (1.0 - q) * v_in) for ndim in range(1, 4): for d in [1, 5, 10, 100]: for q in [-1, 0.0, 0.01, 0.25, 0.5, 0.99, 1.0, 2.0]: tf = __test if ndim not in [1, 2]: tf = raises(librosa.ParameterError)(__test) if not 0.0 <= q < 1: tf = raises(librosa.ParameterError)(__test) yield tf, ndim, d, q def test_files(): # Expected output output = [os.path.join(os.path.abspath(os.path.curdir), 'data', s) for s in ['test1_22050.wav', 'test1_44100.wav', 'test2_8000.wav']] def __test(searchdir, ext, recurse, case_sensitive, limit, offset): files = librosa.util.find_files(searchdir, ext=ext, recurse=recurse, case_sensitive=case_sensitive, limit=limit, offset=offset) s1 = slice(offset, None) s2 = slice(limit) assert set(files) == set(output[s1][s2]), (files, output[s1][s2]) if platform.system() == 'Windows': cases = [False] else: cases = [False, True] for searchdir in [os.path.curdir, os.path.join(os.path.curdir, 'data')]: for ext in [None, 'wav', 'WAV', ['wav'], ['WAV']]: for recurse in [False, True]: for case_sensitive in cases: for limit in [None, 1, 2]: for offset in [0, 1, -1]: tf = __test if searchdir == os.path.curdir and not recurse: tf = raises(AssertionError)(__test) if (ext is not None and case_sensitive and (ext == 'WAV' or set(ext) == set(['WAV']))): tf = raises(AssertionError)(__test) yield (tf, searchdir, ext, recurse, case_sensitive, limit, offset) def test_valid_int(): def __test(x_in, cast): z = librosa.util.valid_int(x_in, cast) assert isinstance(z, int) if cast is None: assert z == int(np.floor(x_in)) else: assert z == int(cast(x_in)) __test_fail = raises(librosa.ParameterError)(__test) for x in np.linspace(-2, 2, num=6): for cast in [None, np.floor, np.ceil, 7]: if cast is None or six.callable(cast): yield __test, x, cast else: yield __test_fail, x, cast def test_valid_intervals(): def __test(intval): librosa.util.valid_intervals(intval) for d in range(1, 4): for n in range(1, 4): ivals = np.ones(d * [n]) for m in range(1, 3): slices = [slice(m)] * d if m == 2 and d == 2 and n > 1: yield __test, ivals[slices] else: yield raises(librosa.ParameterError)(__test), ivals[slices] # Test for issue #712: intervals must have non-negative duration yield raises(librosa.ParameterError)(__test), np.asarray([[0, 1], [2, 1]]) def test_warning_deprecated(): @librosa.util.decorators.deprecated('old_version', 'new_version') def __dummy(): return True warnings.resetwarnings() warnings.simplefilter('always') with warnings.catch_warnings(record=True) as out: x = __dummy() # Make sure we still get the right value assert x is True # And that the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert 'deprecated' in str(out[0].message).lower() def test_warning_moved(): @librosa.util.decorators.moved('from', 'old_version', 'new_version') def __dummy(): return True warnings.resetwarnings() warnings.simplefilter('always') with warnings.catch_warnings(record=True) as out: x = __dummy() # Make sure we still get the right value assert x is True # And that the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert 'moved' in str(out[0].message).lower() def test_warning_rename_kw_pass(): warnings.resetwarnings() warnings.simplefilter('always') ov = librosa.util.Deprecated() nv = 23 with warnings.catch_warnings(record=True) as out: v = librosa.util.rename_kw('old', ov, 'new', nv, '0', '1') eq_(v, nv) # Make sure no warning triggered assert len(out) == 0 def test_warning_rename_kw_fail(): warnings.resetwarnings() warnings.simplefilter('always') ov = 27 nv = 23 with warnings.catch_warnings(record=True) as out: v = librosa.util.rename_kw('old', ov, 'new', nv, '0', '1') eq_(v, ov) # Make sure the warning triggered assert len(out) > 0 # And that the category is correct assert out[0].category is DeprecationWarning # And that it says the right thing (roughly) assert 'renamed' in str(out[0].message).lower() def test_index_to_slice(): def __test(idx, idx_min, idx_max, step, pad): slices = librosa.util.index_to_slice(idx, idx_min=idx_min, idx_max=idx_max, step=step, pad=pad) if pad: if idx_min is not None: eq_(slices[0].start, idx_min) if idx.min() != idx_min: slices = slices[1:] if idx_max is not None: eq_(slices[-1].stop, idx_max) if idx.max() != idx_max: slices = slices[:-1] if idx_min is not None: idx = idx[idx >= idx_min] if idx_max is not None: idx = idx[idx <= idx_max] idx = np.unique(idx) eq_(len(slices), len(idx) - 1) for sl, start, stop in zip(slices, idx, idx[1:]): eq_(sl.start, start) eq_(sl.stop, stop) eq_(sl.step, step) for indices in [np.arange(10, 90, 10), np.arange(10, 90, 15)]: for idx_min in [None, 5, 15]: for idx_max in [None, 85, 100]: for step in [None, 2]: for pad in [False, True]: yield __test, indices, idx_min, idx_max, step, pad def test_sync(): def __test_pass(axis, data, idx): # By default, mean aggregation dsync = librosa.util.sync(data, idx, axis=axis) if data.ndim == 1 or axis == -1: assert np.allclose(dsync, 2 * np.ones_like(dsync)) else: assert np.allclose(dsync, data) # Explicit mean aggregation dsync = librosa.util.sync(data, idx, aggregate=np.mean, axis=axis) if data.ndim == 1 or axis == -1: assert np.allclose(dsync, 2 * np.ones_like(dsync)) else: assert np.allclose(dsync, data) # Max aggregation dsync = librosa.util.sync(data, idx, aggregate=np.max, axis=axis) if data.ndim == 1 or axis == -1: assert np.allclose(dsync, 4 * np.ones_like(dsync)) else: assert np.allclose(dsync, data) # Min aggregation dsync = librosa.util.sync(data, idx, aggregate=np.min, axis=axis) if data.ndim == 1 or axis == -1: assert np.allclose(dsync, np.zeros_like(dsync)) else: assert np.allclose(dsync, data) # Test for dtype propagation assert dsync.dtype == data.dtype @raises(librosa.ParameterError) def __test_fail(data, idx): librosa.util.sync(data, idx) for ndim in [1, 2, 3]: shaper = [1] * ndim shaper[-1] = -1 data = np.mod(np.arange(135), 5) frames = np.flatnonzero(data[0] == 0) slices = [slice(start, stop) for (start, stop) in zip(frames, frames[1:])] data = np.reshape(data, shaper) for axis in [0, -1]: # Test with list of indices yield __test_pass, axis, data, list(frames) # Test with ndarray of indices yield __test_pass, axis, data, frames # Test with list of slices yield __test_pass, axis, data, slices for bad_idx in [['foo', 'bar'], [None], [slice(None), None]]: yield __test_fail, data, bad_idx def test_roll_sparse(): srand() def __test(fmt, shift, axis, X): X_sparse = X.asformat(fmt) X_dense = X.toarray() Xs_roll = librosa.util.roll_sparse(X_sparse, shift, axis=axis) assert scipy.sparse.issparse(Xs_roll) eq_(Xs_roll.format, X_sparse.format) Xd_roll = librosa.util.roll_sparse(X_dense, shift, axis=axis) assert np.allclose(Xs_roll.toarray(), Xd_roll), (X_dense, Xs_roll.toarray(), Xd_roll) Xd_roll_np = np.roll(X_dense, shift, axis=axis) assert np.allclose(Xd_roll, Xd_roll_np) X = scipy.sparse.lil_matrix(np.random.randint(0, high=10, size=(16, 16))) for fmt in ['csr', 'csc', 'lil', 'dok', 'coo']: for shift in [0, 8, -8, 20, -20]: for axis in [0, 1, -1]: yield __test, fmt, shift, axis, X @raises(librosa.ParameterError) def test_roll_sparse_bad_axis(): X = scipy.sparse.eye(5, format='csr') librosa.util.roll_sparse(X, 3, axis=2) def test_softmask(): def __test(power, split_zeros): srand() X = np.abs(np.random.randn(10, 10)) X_ref = np.abs(np.random.randn(10, 10)) # Zero out some rows X[3, :] = 0 X_ref[3, :] = 0 M = librosa.util.softmask(X, X_ref, power=power, split_zeros=split_zeros) assert np.all(0 <= M) and np.all(M <= 1) if split_zeros and np.isfinite(power): assert np.allclose(M[3, :], 0.5) else: assert not np.any(M[3, :]), M[3] for power in [1, 2, 50, 100, np.inf]: for split_zeros in [False, True]: yield __test, power, split_zeros def test_softmask_int(): X = 2 * np.ones((3, 3), dtype=np.int32) X_ref = np.vander(np.arange(3)) M1 = librosa.util.softmask(X, X_ref, power=1) M2 = librosa.util.softmask(X_ref, X, power=1) assert np.allclose(M1 + M2, 1) def test_softmask_fail(): failure = raises(librosa.ParameterError)(librosa.util.softmask) yield failure, -np.ones(3), np.ones(3), 1, False yield failure, np.ones(3), -np.ones(3), 1, False yield failure, np.ones(3), np.ones(4), 1, False yield failure, np.ones(3), np.ones(3), 0, False yield failure, np.ones(3), np.ones(3), -1, False def test_tiny(): def __test(x, value): eq_(value, librosa.util.tiny(x)) for x, value in [(1, np.finfo(np.float32).tiny), (np.ones(3, dtype=int), np.finfo(np.float32).tiny), (np.ones(3, dtype=np.float32), np.finfo(np.float32).tiny), (1.0, np.finfo(np.float64).tiny), (np.ones(3, dtype=np.float64), np.finfo(np.float64).tiny), (1j, np.finfo(np.complex128).tiny), (np.ones(3, dtype=np.complex64), np.finfo(np.complex64).tiny), (np.ones(3, dtype=np.complex128), np.finfo(np.complex128).tiny)]: yield __test, x, value def test_optional_jit(): @librosa.util.decorators.optional_jit(nopython=True) def __func1(x): return x**2 @librosa.util.decorators.optional_jit def __func2(x): return x**2 def __test(f): y = f(2) eq_(y, 2**2) yield __test, __func1 yield __test, __func2 def test_util_fill_off_diagonal_8_8(): # Case 1: Square matrix (N=M) mut_x = np.ones((8, 8)) librosa.util.fill_off_diagonal(mut_x, 0.25) gt_x = np.array([[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) assert np.array_equal(mut_x, gt_x) assert np.array_equal(mut_x, gt_x.T) def test_util_fill_off_diagonal_8_12(): # Case 2a: N!=M mut_x = np.ones((8, 12)) librosa.util.fill_off_diagonal(mut_x, 0.25) gt_x = np.array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) assert np.array_equal(mut_x, gt_x) # Case 2b: (N!=M).T mut_x = np.ones((8, 12)).T librosa.util.fill_off_diagonal(mut_x, 0.25) assert np.array_equal(mut_x, gt_x.T)
the-stack_106_22494
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modifications for Guinet et al. # TODO import io, os, ot, argparse, random import numpy as np from ot.gromov import gromov_wasserstein from utils import * parser = argparse.ArgumentParser(description=" ") parser.add_argument("--embdir", default="data/", type=str) parser.add_argument("--outdir", default="output/", type=str) parser.add_argument( "--lglist", default="en-fr-es-it-pt-de-pl-ru-da-nl-cs", type=str, help="list of languages. The first element is the pivot. Example: en-fr-es to align English, French and Spanish with English as the pivot.", ) parser.add_argument( "--maxload", default=10000, type=int, help="Max number of loaded vectors" ) parser.add_argument( "--uniform", action="store_true", help="switch to uniform probability of picking language pairs", ) # optimization parameters for the square loss parser.add_argument("--epoch", default=2, type=int, help="nb of epochs for square loss") parser.add_argument( "--niter", default=500, type=int, help="max number of iteration per epoch for square loss", ) parser.add_argument( "--lr", default=0.1, type=float, help="learning rate for square loss" ) parser.add_argument("--bsz", default=500, type=int, help="batch size for square loss") # optimization parameters for the RCSLS loss parser.add_argument( "--altepoch", default=100, type=int, help="nb of epochs for RCSLS loss" ) parser.add_argument( "--altlr", default=25, type=float, help="learning rate for RCSLS loss" ) parser.add_argument("--altbsz", type=int, default=1000, help="batch size for RCSLS") args = parser.parse_args() ###### SPECIFIC FUNCTIONS ###### def getknn(sc,x, y, k=10): sidx = np.argpartition(sc, -k, axis=1)[:, -k:] ytopk = y[sidx.flatten(), :] ytopk = ytopk.reshape(sidx.shape[0], sidx.shape[1], y.shape[1]) f = np.sum(sc[np.arange(sc.shape[0])[:, None], sidx]) df = np.dot(ytopk.sum(1).T, x) return f / k, df / k def rcsls(Xi, Xj, Zi, Zj, R, knn=10): X_trans = np.dot(Xi, R.T) f = 2 * np.sum(X_trans * Xj) df = 2 * np.dot(Xj.T, Xi) fk0, dfk0 = getknn(np.dot(X_trans, Zj.T), Xi, Zj, knn) fk1, dfk1 = getknn(np.dot(np.dot(Zi, R.T), Xj.T).T, Xj, Zi, knn) f = f - fk0 - fk1 df = df - dfk0 - dfk1.T return -f / Xi.shape[0], -df.T / Xi.shape[0] def GWmatrix(emb0): N = np.shape(emb0)[0] N2 = 0.5 * np.linalg.norm(emb0, axis=1).reshape(1, N) C2 = np.tile(N2.transpose(), (1, N)) + np.tile(N2, (N, 1)) C2 -= np.dot(emb0, emb0.T) return C2 def g_wasserstein(x_src, x_tgt, C2): N = x_src.shape[0] C1 = GWmatrix(x_src) M = gromov_wasserstein( C1, C2, np.ones(N), np.ones(N), "square_loss" ) # epsilon=0.55,max_iter=100,tol=1e-4 return procrustes(np.dot(M, x_tgt), x_src) def align(EMB, TRANS, lglist, args): nmax, l = args.maxload, len(lglist) # create a list of language pairs to sample from # (default == higher probability to pick a language pair contianing the pivot) # if --uniform: uniform probability of picking a language pair samples = [] for i in range(l): for j in range(l): if j == i: continue if j > 0 and args.uniform == False: samples.append((0, j)) if i > 0 and args.uniform == False: samples.append((i, 0)) samples.append((i, j)) # optimization of the l2 loss print("start optimizing L2 loss") lr0, bsz, nepoch, niter = args.lr, args.bsz, args.epoch, args.niter for epoch in range(nepoch): print("start epoch %d / %d" % (epoch + 1, nepoch)) ones = np.ones(bsz) f, fold, nb, lr = 0.0, 0.0, 0.0, lr0 for it in range(niter): if it > 1 and f > fold + 1e-3: lr /= 2 if lr < 0.05: break fold = f f, nb = 0.0, 0.0 for k in range(100 * (l - 1)): (i, j) = random.choice(samples) embi = EMB[i][np.random.permutation(nmax)[:bsz], :] embj = EMB[j][np.random.permutation(nmax)[:bsz], :] perm = ot.sinkhorn( ones, ones, np.linalg.multi_dot([embi, -TRANS[i], TRANS[j].T, embj.T]), reg=0.025, stopThr=1e-3, ) grad = np.linalg.multi_dot([embi.T, perm, embj]) f -= ( np.trace(np.linalg.multi_dot([TRANS[i].T, grad, TRANS[j]])) / embi.shape[0] ) nb += 1 if i > 0: TRANS[i] = proj_ortho(TRANS[i] + lr * np.dot(grad, TRANS[j])) if j > 0: TRANS[j] = proj_ortho( TRANS[j] + lr * np.dot(grad.transpose(), TRANS[i]) ) print( "iter %d / %d - epoch %d - loss: %.5f lr: %.4f" % (it, niter, epoch + 1, f / nb, lr) ) print( "end of epoch %d - loss: %.5f - lr: %.4f" % (epoch + 1, f / max(nb, 1), lr) ) niter, bsz = max(int(niter / 2), 2), min(1000, bsz * 2) # end for epoch in range(nepoch): # optimization of the RCSLS loss print("start optimizing RCSLS loss") f, fold, nb, lr = 0.0, 0.0, 0.0, args.altlr for epoch in range(args.altepoch): if epoch > 1 and f - fold > -1e-4 * abs(fold): lr /= 2 if lr < 1e-1: break fold = f f, nb = 0.0, 0.0 for k in range(round(nmax / args.altbsz) * 10 * (l - 1)): (i, j) = random.choice(samples) sgdidx = np.random.choice(nmax, size=args.altbsz, replace=False) embi = EMB[i][sgdidx, :] embj = EMB[j][:nmax, :] # crude alignment approximation: T = np.dot(TRANS[i], TRANS[j].T) scores = np.linalg.multi_dot([embi, T, embj.T]) perm = np.zeros_like(scores) perm[np.arange(len(scores)), scores.argmax(1)] = 1 embj = np.dot(perm, embj) # normalization over a subset of embeddings for speed up fi, grad = rcsls(embi, embj, embi, embj, T.T) f += fi nb += 1 if i > 0: TRANS[i] = proj_ortho(TRANS[i] - lr * np.dot(grad, TRANS[j])) if j > 0: TRANS[j] = proj_ortho( TRANS[j] - lr * np.dot(grad.transpose(), TRANS[i]) ) print("epoch %d - loss: %.5f - lr: %.4f" % (epoch + 1, f / max(nb, 1), lr)) # end for epoch in range(args.altepoch): return TRANS def convex_init(X, Y, niter=100, reg=0.05, apply_sqrt=False): n, d = X.shape K_X, K_Y = np.dot(X, X.T), np.dot(Y, Y.T) K_Y *= np.linalg.norm(K_X) / np.linalg.norm(K_Y) K2_X, K2_Y = np.dot(K_X, K_X), np.dot(K_Y, K_Y) P = np.ones([n, n]) / float(n) for it in range(1, niter + 1): G = np.dot(P, K2_X) + np.dot(K2_Y, P) - 2 * np.dot(K_Y, np.dot(P, K_X)) q = ot.sinkhorn(np.ones(n), np.ones(n), G, reg, stopThr=1e-3) alpha = 2.0 / float(2.0 + it) P = alpha * q + (1.0 - alpha) * P return procrustes(np.dot(P, X), Y).T ###### MAIN ###### lglist = args.lglist.split("-") l = len(lglist) # embs: EMB = {} for i in range(l): fn = args.embdir + "/wiki." + lglist[i] + ".vec" _, vecs = load_vectors(fn, maxload=args.maxload) EMB[i] = vecs # init print("Computing initial bilingual apping with Gromov-Wasserstein...") TRANS = {} maxinit = 2000 emb0 = EMB[0][:maxinit, :] C0 = GWmatrix(emb0) TRANS[0] = np.eye(300) for i in range(1, l): print("init " + lglist[i]) embi = EMB[i][:maxinit, :] TRANS[i] = g_wasserstein(embi, emb0, C0) # align align(EMB, TRANS, lglist, args) print("saving matrices in " + args.outdir) languages = "".join(lglist) for i in range(l): save_matrix(args.outdir + "/W-" + languages + "-" + lglist[i], TRANS[i])
the-stack_106_22495
import numpy as np from matplotlib import pyplot as plt import cv2 img = cv2.imread('wiki.jpg',0) hist,bins = np.histogram(img.flatten(),256,[0,256]) cdf = hist.cumsum() cdf_normalized = cdf * hist.max()/ cdf.max() plt.plot(cdf_normalized, color = 'b') plt.hist(img.flatten(),256,[0,256], color = 'r') plt.xlim([0,256]) plt.legend(('cdf','histogram'), loc = 'upper left') plt.show() cdf_m = np.ma.masked_equal(cdf,0) cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min()) cdf = np.ma.filled(cdf_m,0).astype('uint8') img2 = cdf[img] plt.plot(cdf, color = 'b') plt.hist(img2.flatten(),256,[0,256], color = 'r') plt.xlim([0,256]) plt.legend(('cdf','histogram'), loc = 'upper left') plt.show() img = cv2.imread('wiki.jpg',0) equ = cv2.equalizeHist(img) res = np.hstack((img,equ)) #stacking images side-by-side cv2.imwrite('res.png',res)
the-stack_106_22497
#!/usr/bin/python """ anybadge A Python module for generating badges for your projects, with a focus on simplicity and flexibility. """ import os import re # Package information version = __version__ = "0.0.0" __version_info__ = tuple(re.split('[.-]', __version__)) __title__ = "anybadge" __summary__ = "A simple, flexible badge generator." __uri__ = "https://github.com/jongracecox/anybadge" # Set some defaults DEFAULT_FONT = 'DejaVu Sans,Verdana,Geneva,sans-serif' DEFAULT_FONT_SIZE = 11 NUM_PADDING_CHARS = 0 NUM_VALUE_PADDING_CHARS = 0 DEFAULT_COLOR = '#4c1' DEFAULT_TEXT_COLOR = '#fff' MASK_ID_PREFIX = 'anybadge_' # Dictionary for looking up approx pixel widths of # supported fonts and font sizes. FONT_WIDTHS = { 'DejaVu Sans,Verdana,Geneva,sans-serif': { 11: 10 } } # Create a dictionary of colors to make selections # easier. COLORS = { 'white': '#FFFFFF', 'silver': '#C0C0C0', 'gray': '#808080', 'black': '#000000', 'red': '#e05d44', 'brightred': '#FF0000', 'maroon': '#800000', 'olive': '#808000', 'lime': '#00FF00', 'brightyellow': '#FFFF00', 'yellow': '#dfb317', 'green': '#4c1', 'yellowgreen': '#a4a61d', 'aqua': '#00FFFF', 'teal': '#008080', 'blue': '#0000FF', 'navy': '#000080', 'fuchsia': '#FF00FF', 'purple': '#800080', 'orange': '#fe7d37', 'lightgrey': '#9f9f9f', } # Template SVG with placeholders for various items that # will be added during final creation. TEMPLATE_SVG = """<?xml version="1.0" encoding="UTF-8"?> <svg xmlns="http://www.w3.org/2000/svg" width="{{ badge width }}" height="20"> <linearGradient id="b" x2="0" y2="100%"> <stop offset="0" stop-color="#bbb" stop-opacity=".1"/> <stop offset="1" stop-opacity=".1"/> </linearGradient> <mask id="{{ mask id }}"> <rect width="{{ badge width }}" height="20" rx="3" fill="#fff"/> </mask> <g mask="url(#{{ mask id }})"> <path fill="#555" d="M0 0h{{ color split x }}v20H0z"/> <path fill="{{ color }}" d="M{{ color split x }} 0h{{ value width }}v20H{{ color split x }}z"/> <path fill="url(#b)" d="M0 0h{{ badge width }}v20H0z"/> </g> <g fill="{{ label text color }}" text-anchor="middle" font-family="{{ font name }}" font-size="{{ font size }}"> <text x="{{ label anchor shadow }}" y="15" fill="#010101" fill-opacity=".3">{{ label }}</text> <text x="{{ label anchor }}" y="14">{{ label }}</text> </g> <g fill="{{ value text color }}" text-anchor="middle" font-family="{{ font name }}" font-size="{{ font size }}"> <text x="{{ value anchor shadow }}" y="15" fill="#010101" fill-opacity=".3">{{ value }}</text> <text x="{{ value anchor }}" y="14">{{ value }}</text> </g> </svg>""" # Define some templates that can be used for common badge types, saving # from having to provide thresholds and labels each time. BADGE_TEMPLATES = { 'pylint': { 'threshold': '2=red 4=orange 8=yellow 10=green', 'label': 'pylint' }, 'coverage': { 'threshold': '50=red 60=orange 80=yellow 100=green', 'label': 'coverage', 'suffix': '%' } } class Badge(object): """ Badge class used to generate badges. Args: label(str): Badge label text. value(str): Badge value text. font_name(str, optional): Name of font to use. font_size(int, optional): Font size. num_padding_chars(float, optional): Number of padding characters to use to give extra space around text. num_value_padding_chars(float, optional): Number of padding characters to use to give extra space around value. template(str, optional): String containing the SVG template. This should be valid SVG file content with place holders for variables to be populated during rendering. value_prefix(str, optional): Prefix to be placed before value. value_suffix(str, optional): Suffix to be placed after value. thresholds(dict, optional): A dictionary containing thresholds used to select badge color based on the badge value. default_color(str, optional): Badge color as a name or as an HTML color code. use_max_when_value_exceeds(bool, optional): Choose whether to use the maximum threshold value when the badge value exceeds the top threshold. Default is True. value_format(str, optional) String with formatting to be used to format the value text. text_color(str, optional): Text color as a name or as an HTML color code. Examples: Create a simple green badge: >>> badge = Badge('label', 123, default_color='green') Write a badge to file, overwriting any existing file: >>> badge = Badge('label', 123, default_color='green') >>> badge.write_badge('demo.svg', overwrite=True) Here are a number of examples showing thresholds, since there are certain situations that may not be obvious: >>> badge = Badge('pipeline', 'passing', thresholds={'passing': 'green', 'failing': 'red'}) >>> badge.badge_color 'green' 2.32 is not <2 2.32 is < 4, so 2.32 yields orange >>> badge = Badge('pylint', 2.32, thresholds={2: 'red', ... 4: 'orange', ... 8: 'yellow', ... 10: 'green'}) >>> badge.badge_color 'orange' 8 is not <8 8 is <4, so 8 yields orange >>> badge = Badge('pylint', 8, thresholds={2: 'red', ... 4: 'orange', ... 8: 'yellow', ... 10: 'green'}) >>> badge.badge_color 'green' 10 is not <8, but use_max_when_value_exceeds defaults to True, so 10 yields green >>> badge = Badge('pylint', 11, thresholds={2: 'red', ... 4: 'orange', ... 8: 'yellow', ... 10: 'green'}) >>> badge.badge_color 'green' 11 is not <10, and use_max_when_value_exceeds is set to False, so 11 yields the default color '#4c1' >>> badge = Badge('pylint', 11, use_max_when_value_exceeds=False, ... thresholds={2: 'red', 4: 'orange', 8: 'yellow', ... 10: 'green'}) >>> badge.badge_color '#4c1' """ def __init__(self, label, value, font_name=None, font_size=None, num_padding_chars=None, num_value_padding_chars=None, template=None, value_prefix='', value_suffix='', thresholds=None, default_color=None, use_max_when_value_exceeds=True, value_format=None, text_color=None): """Constructor for Badge class.""" # Set defaults if values were not passed if not font_name: font_name = DEFAULT_FONT if not font_size: font_size = DEFAULT_FONT_SIZE if num_padding_chars is None: num_padding_chars = NUM_PADDING_CHARS if num_value_padding_chars is None: num_value_padding_chars = NUM_VALUE_PADDING_CHARS if not template: template = TEMPLATE_SVG if not default_color: default_color = DEFAULT_COLOR if not text_color: text_color = DEFAULT_TEXT_COLOR self.label = label self.value = value self.value_format = value_format if value_format: value_text = str(value_format % self.value_type(value)) else: value_text = str(self.value_type(value)) self.value_prefix = value_prefix self.value_suffix = value_suffix self.value_text = value_prefix + value_text + value_suffix self.font_name = font_name self.font_size = font_size self.num_padding_chars = num_padding_chars self.num_value_padding_chars = num_value_padding_chars self.template = template self.thresholds = thresholds self.default_color = default_color # text_color can be passed as a single value or a pair of comma delimited values self.text_color = text_color text_colors = text_color.split(',') self.label_text_color = text_colors[0] self.value_text_color = text_colors[0] if len(text_colors) > 1: self.value_text_color = text_colors[1] self.use_max_when_value_exceeds = use_max_when_value_exceeds self.mask_id = self.__class__._get_next_mask_id() def __repr__(self): """Return a representation of the Badge object instance. The output of the __repr__ function could be used to recreate the current object. Examples: >>> badge = Badge('example', '123.456') >>> repr(badge) "Badge('example', '123.456')" >>> badge = Badge('example', '123.456', value_suffix='TB') >>> repr(badge) "Badge('example', '123.456', value_suffix='TB')" >>> badge = Badge('example', '123.456', text_color='#111111', value_suffix='TB') >>> repr(badge) "Badge('example', '123.456', value_suffix='TB', text_color='#111111')" """ optional_args = "" if self.font_name != DEFAULT_FONT: optional_args += ", font_name=%s" % repr(self.font_name) if self.font_size != DEFAULT_FONT_SIZE: optional_args += ", font_size=%s" % repr(self.font_size) if self.num_padding_chars != NUM_PADDING_CHARS: optional_args += ", num_padding_chars=%s" % repr(self.num_padding_chars) if self.num_value_padding_chars != NUM_VALUE_PADDING_CHARS: optional_args += ", num_value_padding_chars=%s" % repr(self.num_value_padding_chars) if self.template != TEMPLATE_SVG: optional_args += ", template=%s" % repr(self.template) if self.value_prefix != '': optional_args += ", value_prefix=%s" % repr(self.value_prefix) if self.value_suffix != '': optional_args += ", value_suffix=%s" % repr(self.value_suffix) if self.thresholds: optional_args += ", thresholds=%s" % repr(self.thresholds) if self.default_color != DEFAULT_COLOR: optional_args += ", default_color=%s" % repr(self.default_color) if not self.use_max_when_value_exceeds: optional_args += ", use_max_when_value_exceeds=%s" % repr(self.use_max_when_value_exceeds) if self.value_format: optional_args += ", value_format=%s" % repr(self.value_format) if self.text_color != DEFAULT_TEXT_COLOR: optional_args += ", text_color=%s" % repr(self.text_color) return "%s(%s, %s%s)" % ( self.__class__.__name__, repr(self.label), repr(self.value), optional_args ) @classmethod def _get_next_mask_id(cls): """Return a new mask ID from a singleton sequence maintained on the class. Returns: str """ if not hasattr(cls, 'mask_id'): cls.mask_id = 0 cls.mask_id += 1 return MASK_ID_PREFIX + str(cls.mask_id) @property def value_is_float(self): """Identify whether the value text is a float. Returns: bool """ # If the value is an int then it should not be considered a float. # We need to check this first before we check whether it is a float because the # float check also returns True for an int string. if self.value_is_int: return False try: _ = float(self.value) except ValueError: return False else: return True @property def value_is_int(self): """Identify whether the value text is an int. Returns: bool """ try: a = float(self.value) b = int(self.value) except ValueError: return False else: return a == b @property def value_type(self): """The Python type associated with the value. Returns: type """ if self.value_is_float: return float elif self.value_is_int: return int else: return str @property def label_width(self): """The SVG width of the label text. Returns: int """ return int(self.get_text_width(self.label) + (2.0 * self.num_padding_chars * self.font_width)) @property def value_width(self): """The SVG width of the value text. Returns: int """ return int(self.get_text_width(str(self.value_text)) + (2.0 * self.font_width * self.num_value_padding_chars) + (self.num_padding_chars * self.font_width)) @property def font_width(self): """Return the width multiplier for a font. Returns: int: Maximum pixel width of badges selected font. Example: >>> Badge(label='x', value='1').font_width 10 """ return FONT_WIDTHS[self.font_name][self.font_size] @property def color_split_position(self): """The SVG x position where the color split should occur. Returns: int """ return int(self.font_width + self.label_width + float(self.font_width) * float(self.num_padding_chars)) @property def label_anchor(self): """The SVG x position of the middle anchor for the label text. Returns: float """ return self.color_split_position / 2 @property def value_anchor(self): """The SVG x position of the middle anchor for the value text. Returns: float """ return self.color_split_position + ((self.badge_width - self.color_split_position) / 2) @property def label_anchor_shadow(self): """The SVG x position of the label shadow anchor. Returns: float """ return self.label_anchor + 1 @property def value_anchor_shadow(self): """The SVG x position of the value shadow anchor. Returns: float """ return self.value_anchor + 1 @property def badge_width(self): """The total width of badge. Returns: int Examples: >>> badge = Badge('pylint', '5') >>> badge.badge_width 53 """ padding_char_width = self.get_text_width(' ') padding = int(padding_char_width * (self.num_padding_chars + 3)) return padding + self.label_width + self.value_width @property def badge_svg_text(self): """The badge SVG text. Returns: str """ # Identify whether template is a file or the actual template text if len(self.template.split('\n')) == 1: with open(self.template, mode='r') as file_handle: badge_text = file_handle.read() else: badge_text = self.template return badge_text.replace('{{ badge width }}', str(self.badge_width)) \ .replace('{{ font name }}', self.font_name) \ .replace('{{ font size }}', str(self.font_size)) \ .replace('{{ label }}', self.label) \ .replace('{{ value }}', self.value_text) \ .replace('{{ label anchor }}', str(self.label_anchor)) \ .replace('{{ label anchor shadow }}', str(self.label_anchor_shadow)) \ .replace('{{ value anchor }}', str(self.value_anchor)) \ .replace('{{ value anchor shadow }}', str(self.value_anchor_shadow)) \ .replace('{{ color }}', self.badge_color_code) \ .replace('{{ label text color }}', self.label_text_color) \ .replace('{{ value text color }}', self.value_text_color) \ .replace('{{ color split x }}', str(self.color_split_position)) \ .replace('{{ value width }}', str(self.badge_width - self.color_split_position))\ .replace('{{ mask id }}', self.mask_id) def __str__(self): """Return string representation of badge. This will return the badge SVG text. Returns: str Examples: >>> print(Badge('example', '123')) # doctest: +ELLIPSIS <?xml version="1.0" encoding="UTF-8"?> ... """ return self.badge_svg_text def get_text_width(self, text): """Return the width of text. Args: text(str): Text to get the pixel width of. Returns: int: Pixel width of the given text based on the badges selected font. This implementation assumes a fixed font of: font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11" >>> badge = Badge('x', 1, font_name='DejaVu Sans,Verdana,Geneva,sans-serif', font_size=11) >>> badge.get_text_width('pylint') 34 """ return _get_approx_string_width(text, self.font_width) @property def badge_color(self): """Badge color based on the configured thresholds. Returns: str""" # If no thresholds were passed then return the default color if not self.thresholds: return self.default_color if self.value_type == str: if self.value in self.thresholds: return self.thresholds[self.value] else: return self.default_color # Convert the threshold dictionary into a sorted list of lists threshold_list = [[self.value_type(i[0]), i[1]] for i in self.thresholds.items()] threshold_list.sort(key=lambda x: x[0]) color = None for threshold, color in threshold_list: if float(self.value) < float(threshold): return color # If we drop out the top of the range then return the last max color if color and self.use_max_when_value_exceeds: return color else: return self.default_color @property def badge_color_code(self): """Return the color code for the badge. Returns: str """ color = self.badge_color if color[0] == '#': return color return COLORS[color] def write_badge(self, file_path, overwrite=False): """Write badge to file.""" # Validate path (part 1) if file_path.endswith('/'): raise Exception('File location may not be a directory.') # Get absolute filepath path = os.path.abspath(file_path) if not path.lower().endswith('.svg'): path += '.svg' # Validate path (part 2) if not overwrite and os.path.exists(path): raise Exception('File "{}" already exists.'.format(path)) with open(path, mode='w') as file_handle: file_handle.write(self.badge_svg_text) # Based on the following SO answer: https://stackoverflow.com/a/16008023/6252525 def _get_approx_string_width(text, font_width, fixed_width=False): """ Get the approximate width of a string using a specific average font width. Args: text(str): Text string to calculate width of. font_width(int): Average width of font characters. fixed_width(bool): Indicates that the font is fixed width. Returns: int: Width of string in pixels. Examples: Call the function with a string and the maximum character width of the font you are using: >>> int(_get_approx_string_width('hello', 10)) 29 This example shows the comparison of simplistic calculation based on a fixed width. Given a test string and a fixed font width of 10, we can calculate the width by multiplying the length and the font character with: >>> test_string = 'GOOGLE|ijkl' >>> _get_approx_string_width(test_string, 10, fixed_width=True) 110 Since some characters in the string are thinner than others we expect that the apporximate text width will be narrower than the fixed width calculation: >>> _get_approx_string_width(test_string, 10) 77 """ if fixed_width: return len(text) * font_width size = 0.0 # A dictionary containing percentages that relate to how wide # each character will be represented in a variable width font. # These percentages can be calculated using the ``_get_character_percentage_dict`` function. char_width_percentages = { "lij|' ": 40.0, '![]fI.,:;/\\t': 50.0, '`-(){}r"': 60.0, '*^zcsJkvxy': 70.0, 'aebdhnopqug#$L+<>=?_~FZT0123456789': 70.0, 'BSPEAKVXY&UwNRCHD': 70.0, 'QGOMm%W@': 100.0 } for s in text: percentage = 100.0 for k in char_width_percentages.keys(): if s in k: percentage = char_width_percentages[k] break size += (percentage / 100.0) * float(font_width) return int(size) # This is a helper function that can be used to generate alternate dictionaries # for the _get_approx_string_width function. The function is not needed for # normal operation of this package, and since it depends on the PIL package, # which is not included in the dependencies the function will remain commented out. # # def _get_character_percentage_dict(font_path, font_size): # """Get the dictionary used to estimate variable width font text lengths. # # Args: # font_path(str): Path to valid font file. # font_size(int): Font size to use. # # Returns: dict # # This function can be used to calculate the dictionary used in the # ``get_approx_string_width`` function. # # Examples: # >>> _get_character_percentage_dict('/Library/Fonts/Verdana.ttf', 9) # doctest: +ELLIPSIS # {"lij|' ": 40, '![]fI.,:;/\\\\t': 50, '`-(){}r"': 60, '*^zcsJkvxy': 70, ... # """ # from PIL import ImageFont # # # List of groups in size order, smallest to largest # char_width_groups = [ # "lij|' ", # '![]fI.,:;/\\t', # '`-(){}r"', # '*^zcsJkvxy', # 'aebdhnopqug#$L+<>=?_~FZT' + digits, # 'BSPEAKVXY&UwNRCHD', # 'QGOMm%W@', # ] # # def get_largest_in_group(group): # """Get the widest character from the group.""" # return max([ImageFont.truetype(font_path, font_size).getsize(c)[0] for c in group]) # # largest = char_width_groups[-1] # font_width = get_largest_in_group(largest) # return {group: int((get_largest_in_group(group) / font_width) * 100) # for group in char_width_groups} def parse_args(): """Parse the command line arguments.""" import argparse import textwrap parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ Command line utility to generate .svg badges. This utility can be used to generate .svg badge images, using configurable thresholds for coloring. Values can be passed as string, integer or floating point. The type will be detected automatically. Running the utility with a --file option will result in the .svg image being written to file. Without the --file option the .svg file content will be written to stdout, so can be redirected to a file. Some thresholds have been built in to save time. To use these thresholds you can simply specify the template name instead of threshold value/color pairs. examples: Here are some usage specific examples that may save time on defining thresholds. Pylint anybadge.py --value=2.22 --file=pylint.svg pylint anybadge.py --label=pylint --value=2.22 --file=pylint.svg \\ 2=red 4=orange 8=yellow 10=green Coverage anybadge.py --value=65 --file=coverage.svg coverage anybadge.py --label=coverage --value=65 --suffix='%%' --file=coverage.svg \\ 50=red 60=orange 80=yellow 100=green CI Pipeline anybadge.py --label=pipeline --value=passing --file=pipeline.svg \\ passing=green failing=red ''')) parser.add_argument('-l', '--label', type=str, help='The badge label.') parser.add_argument('-v', '--value', type=str, help='The badge value.', required=True) parser.add_argument('-m', '--value-format', type=str, default=None, help='Formatting string for value (e.g. "%%.2f" for 2dp floats)') parser.add_argument('-c', '--color', type=str, help='For fixed color badges use --color' 'to specify the badge color.', default=DEFAULT_COLOR) parser.add_argument('-p', '--prefix', type=str, help='Optional prefix for value.', default='') parser.add_argument('-s', '--suffix', type=str, help='Optional suffix for value.', default='') parser.add_argument('-d', '--padding', type=int, help='Number of characters to pad on ' 'either side of the badge text.', default=NUM_PADDING_CHARS) parser.add_argument('--value-padding', type=int, help='Number of characters to pad on ' 'either side of the badge value.', default=NUM_VALUE_PADDING_CHARS) parser.add_argument('-n', '--font', type=str, help='Font name. Supported fonts: ' ','.join(['"%s"' % x for x in FONT_WIDTHS.keys()]), default=DEFAULT_FONT) parser.add_argument('-z', '--font-size', type=int, help='Font size.', default=DEFAULT_FONT_SIZE) parser.add_argument('-t', '--template', type=str, help='Location of alternative ' 'template .svg file.', default=TEMPLATE_SVG) parser.add_argument('-u', '--use-max', action='store_true', help='Use the maximum threshold color when the value exceeds the ' 'maximum threshold.') parser.add_argument('-f', '--file', type=str, help='Output file location.') parser.add_argument('-o', '--overwrite', action='store_true', help='Overwrite output file if it already exists.') parser.add_argument('-r', '--text-color', type=str, help='Text color. Single value affects both label' 'and value colors. A comma separated pair ' 'affects label and value text respectively.', default=DEFAULT_TEXT_COLOR) parser.add_argument('args', nargs=argparse.REMAINDER, help='Pairs of <upper>=<color>. ' 'For example 2=red 4=orange 6=yellow 8=good. ' 'Read this as "Less than 2 = red, less than 4 = orange...".') return parser.parse_args() def main(): """Generate a badge based on command line arguments.""" # Parse command line arguments args = parse_args() label = args.label threshold_text = args.args suffix = args.suffix # Check whether thresholds were sent as one word, and is in the # list of templates. If so, swap in the template. if len(args.args) == 1 and args.args[0] in BADGE_TEMPLATES: template_name = args.args[0] template_dict = BADGE_TEMPLATES[template_name] threshold_text = template_dict['threshold'].split(' ') if not args.label: label = template_dict['label'] if not args.suffix and 'suffix' in template_dict: suffix = template_dict['suffix'] if not label: raise ValueError('Label has not been set. Please use --label argument.') # Create threshold list from args threshold_list = [x.split('=') for x in threshold_text] threshold_dict = {x[0]: x[1] for x in threshold_list} # Create badge object badge = Badge(label, args.value, value_prefix=args.prefix, value_suffix=suffix, default_color=args.color, num_padding_chars=args.padding, num_value_padding_chars=args.value_padding, font_name=args.font, font_size=args.font_size, template=args.template, use_max_when_value_exceeds=args.use_max, thresholds=threshold_dict, value_format=args.value_format, text_color=args.text_color) if args.file: # Write badge SVG to file badge.write_badge(args.file, overwrite=args.overwrite) else: print(badge.badge_svg_text) if __name__ == '__main__': main()
the-stack_106_22499
import torch import torch.nn as nn import torch.nn.functional as F from utils.common_utils import try_contiguous def _extract_patches(x, kernel_size, stride, padding): """ :param x: The input feature maps. (batch_size, in_c, h, w) :param kernel_size: the kernel size of the conv filter (tuple of two elements) :param stride: the stride of conv operation (tuple of two elements) :param padding: number of paddings. be a tuple of two elements :return: (batch_size, out_h, out_w, in_c*kh*kw) """ if padding[0] + padding[1] > 0: x = F.pad(x, (padding[1], padding[1], padding[0], padding[0])).data # Actually check dims x = x.unfold(2, kernel_size[0], stride[0]) x = x.unfold(3, kernel_size[1], stride[1]) x = x.transpose_(1, 2).transpose_(2, 3).contiguous() x = x.view( x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5)) return x def _extract_channel_patches(x, kernel_size, stride, padding): """ :param x: The input feature maps. (batch_size, in_c, h, w) :param kernel_size: the kernel size of the conv filter (tuple of two elements) :param stride: the stride of conv operation (tuple of two elements) :param padding: number of paddings. be a tuple of two elements :return: (batch_size, out_h, out_w, in_c*kh*kw) """ if padding[0] + padding[1] > 0: x = F.pad(x, (padding[1], padding[1], padding[0], padding[0])).data # Actually check dims x = x.unfold(2, kernel_size[0], stride[0]) x = x.unfold(3, kernel_size[1], stride[1]) # b * oh * ow * kh * kw * inc x = x.transpose_(1, 2).transpose_(2, 3).transpose_(3, 4).transpose(4, 5).contiguous() x = x.view(x.size(0), x.size(1), x.size(2), x.size(3), x.size(4), x.size(5)) return x def update_running_stat(aa, m_aa, stat_decay): # using inplace operation to save memory! m_aa *= stat_decay / (1 - stat_decay) m_aa += aa m_aa *= (1 - stat_decay) def fetch_mat_weights(layer, use_patch=False): # -> output_dium * input_dim (kh*kw*in_c + [1 if with bias]) if isinstance(layer, nn.Conv2d): if use_patch: weight = layer.weight.transpose(1, 2).transpose(2, 3) # n_out * kh * kw * inc n_out, k_h, k_w, in_c = weight.size() weight = try_contiguous(weight) weight = weight.view(-1, weight.size(-1)) bias = 0 if layer.bias is not None: copied_bias = torch.cat([layer.bias.unsqueeze(1) for _ in range(k_h*k_w)], 1).view(-1, 1) weight = torch.cat([weight, copied_bias], 1) # layer.bias.unsqueeze(1)], 1) bias = 1 weight = weight.view(n_out, k_h*k_w, in_c+bias) else: weight = layer.weight # n_filters * in_c * kh * kw # weight = weight.transpose(1, 2).transpose(2, 3).contiguous() weight = weight.view(weight.size(0), -1) if layer.bias is not None: weight = torch.cat([weight, layer.bias.unsqueeze(1)], 1) elif isinstance(layer, nn.Linear): weight = layer.weight if layer.bias is not None: weight = torch.cat([weight, layer.bias.unsqueeze(1)], 1) else: raise NotImplementedError return weight def mat_to_weight_and_bias(mat, layer): if isinstance(layer, nn.Conv2d): # mat: n_filters * (in_c * kh * kw) k_h, k_w = layer.kernel_size in_c = layer.in_channels out_c = layer.out_channels bias = None if layer.bias is not None: bias = mat[:, -1] mat = mat[:, :-1] weight = mat.view(out_c, in_c, k_h, k_w) elif isinstance(layer, nn.Linear): in_c = layer.in_features out_c = layer.out_features bias = None if layer.bias is not None: bias = mat[:, -1] mat = mat[:, :-1] weight = mat else: raise NotImplementedError return weight, bias class ComputeMatGrad: @classmethod def __call__(cls, input, grad_output, layer): if isinstance(layer, nn.Linear): grad = cls.linear(input, grad_output, layer) elif isinstance(layer, nn.Conv2d): grad = cls.conv2d(input, grad_output, layer) else: raise NotImplementedError return grad @staticmethod def linear(input, grad_output, layer): """ :param input: batch_size * input_dim :param grad_output: batch_size * output_dim :param layer: [nn.module] output_dim * input_dim :return: batch_size * output_dim * (input_dim + [1 if with bias]) """ with torch.no_grad(): if layer.bias is not None: input = torch.cat([input, input.new(input.size(0), 1).fill_(1)], 1) input = input.unsqueeze(1) grad_output = grad_output.unsqueeze(2) grad = torch.bmm(grad_output, input) return grad @staticmethod def conv2d(input, grad_output, layer): """ :param input: batch_size * in_c * in_h * in_w :param grad_output: batch_size * out_c * h * w :param layer: nn.module batch_size * out_c * (in_c*k_h*k_w + [1 if with bias]) :return: """ with torch.no_grad(): input = _extract_patches(input, layer.kernel_size, layer.stride, layer.padding) input = input.view(-1, input.size(-1)) # b * hw * in_c*kh*kw grad_output = grad_output.transpose(1, 2).transpose(2, 3) grad_output = try_contiguous(grad_output).view(grad_output.size(0), -1, grad_output.size(-1)) # b * hw * out_c if layer.bias is not None: input = torch.cat([input, input.new(input.size(0), 1).fill_(1)], 1) input = input.view(grad_output.size(0), -1, input.size(-1)) # b * hw * in_c*kh*kw grad = torch.einsum('abm,abn->amn', (grad_output, input)) return grad class ComputeCovA: @classmethod def compute_cov_a(cls, a, layer): return cls.__call__(a, layer) @classmethod def __call__(cls, a, layer): if isinstance(layer, nn.Linear): cov_a = cls.linear(a, layer) elif isinstance(layer, nn.Conv2d): cov_a = cls.conv2d(a, layer) else: # raise NotImplementedError cov_a = None return cov_a @staticmethod def conv2d(a, layer): batch_size = a.size(0) a = _extract_patches(a, layer.kernel_size, layer.stride, layer.padding) spatial_size = a.size(1) * a.size(2) a = a.view(-1, a.size(-1)) if layer.bias is not None: a = torch.cat([a, a.new(a.size(0), 1).fill_(1)], 1) a = a/spatial_size return a.t() @ (a / batch_size) @staticmethod def linear(a, layer): # a: batch_size * in_dim batch_size = a.size(0) if layer.bias is not None: a = torch.cat([a, a.new(a.size(0), 1).fill_(1)], 1) return a.t() @ (a / batch_size) class ComputeCovG: @classmethod def compute_cov_g(cls, g, layer, batch_averaged=False): """ :param g: gradient :param layer: the corresponding layer :param batch_averaged: if the gradient is already averaged with the batch size? :return: """ # batch_size = g.size(0) return cls.__call__(g, layer, batch_averaged) @classmethod def __call__(cls, g, layer, batch_averaged): if isinstance(layer, nn.Conv2d): cov_g = cls.conv2d(g, layer, batch_averaged) elif isinstance(layer, nn.Linear): cov_g = cls.linear(g, layer, batch_averaged) else: cov_g = None return cov_g @staticmethod def conv2d(g, layer, batch_averaged): # g: batch_size * n_filters * out_h * out_w # n_filters is actually the output dimension (analogous to Linear layer) spatial_size = g.size(2) * g.size(3) batch_size = g.shape[0] g = g.transpose(1, 2).transpose(2, 3) g = try_contiguous(g) g = g.view(-1, g.size(-1)) if batch_averaged: g = g * batch_size g = g * spatial_size cov_g = g.t() @ (g / g.size(0)) return cov_g @staticmethod def linear(g, layer, batch_averaged): # g: batch_size * out_dim batch_size = g.size(0) if batch_averaged: cov_g = g.t() @ (g * batch_size) else: cov_g = g.t() @ (g / batch_size) return cov_g class ComputeCovAPatch(ComputeCovA): @staticmethod def conv2d(a, layer): batch_size = a.size(0) a = _extract_channel_patches(a, layer.kernel_size, layer.stride, layer.padding) spatial_size = a.size(1) * a.size(2) a = a.view(-1, a.size(-1)) patch_size = layer.kernel_size[0] * layer.kernel_size[1] if layer.bias is not None: a = torch.cat([a, a.new(a.size(0), 1).fill_(1./patch_size)], 1) a = a / spatial_size return a.t() @ (a / batch_size / patch_size) if __name__ == '__main__': def test_ComputeCovA(): pass def test_ComputeCovG(): pass
the-stack_106_22500
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """V2 Kubeflow DAG Runner.""" import datetime import json import os from typing import Any, Dict, List, Optional from kfp.pipeline_spec import pipeline_spec_pb2 from tfx import version from tfx.dsl.io import fileio from tfx.orchestration import pipeline as tfx_pipeline from tfx.orchestration import tfx_runner from tfx.orchestration.config import pipeline_config from tfx.orchestration.kubeflow.v2 import pipeline_builder from tfx.utils import telemetry_utils from tfx.utils import version_utils from google.protobuf import json_format _KUBEFLOW_TFX_CMD = ( 'python', '-m', 'tfx.orchestration.kubeflow.v2.container.kubeflow_v2_run_executor') # Current schema version for the API proto. _SCHEMA_VERSION = '2.0.0' # Default TFX container image/commands to use in KubeflowV2DagRunner. _KUBEFLOW_TFX_IMAGE = 'gcr.io/tfx-oss-public/tfx:{}'.format( version_utils.get_image_version()) def _get_current_time(): """Gets the current timestamp.""" return datetime.datetime.now() class KubeflowV2DagRunnerConfig(pipeline_config.PipelineConfig): """Runtime configuration specific to execution on Kubeflow V2 pipelines.""" def __init__(self, display_name: Optional[str] = None, default_image: Optional[str] = None, default_commands: Optional[List[str]] = None, **kwargs): """Constructs a Kubeflow V2 runner config. Args: display_name: Optional human-readable pipeline name. Defaults to the pipeline name passed into `KubeflowV2DagRunner.run()`. default_image: The default TFX image to be used if not overriden by per component specification. default_commands: Optionally specifies the commands of the provided container image. When not provided, the default `ENTRYPOINT` specified in the docker image is used. Note: the commands here refers to the K8S container command, which maps to Docker entrypoint field. If one supplies command but no args are provided for the container, the container will be invoked with the provided command, ignoring the `ENTRYPOINT` and `CMD` defined in the Dockerfile. One can find more details regarding the difference between K8S and Docker conventions at https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes **kwargs: Additional args passed to base PipelineConfig. """ super().__init__(**kwargs) self.display_name = display_name self.default_image = default_image or _KUBEFLOW_TFX_IMAGE if default_commands is None: self.default_commands = _KUBEFLOW_TFX_CMD else: self.default_commands = default_commands class KubeflowV2DagRunner(tfx_runner.TfxRunner): """Kubeflow V2 pipeline runner (currently for managed pipelines). Builds a pipeline job spec in json format based on TFX pipeline DSL object. """ def __init__(self, config: KubeflowV2DagRunnerConfig, output_dir: Optional[str] = None, output_filename: Optional[str] = None): """Constructs an KubeflowV2DagRunner for compiling pipelines. Args: config: An KubeflowV2DagRunnerConfig object to specify runtime configuration when running the pipeline in Kubeflow. output_dir: An optional output directory into which to output the pipeline definition files. Defaults to the current working directory. output_filename: An optional output file name for the pipeline definition file. The file output format will be a JSON-serialized PipelineJob pb message. Defaults to 'pipeline.json'. """ if not isinstance(config, KubeflowV2DagRunnerConfig): raise TypeError('config must be type of KubeflowV2DagRunnerConfig.') super().__init__() self._config = config self._output_dir = output_dir or os.getcwd() self._output_filename = output_filename or 'pipeline.json' def run(self, pipeline: tfx_pipeline.Pipeline, parameter_values: Optional[Dict[str, Any]] = None, write_out: Optional[bool] = True) -> Dict[str, Any]: """Compiles a pipeline DSL object into pipeline file. Args: pipeline: TFX pipeline object. parameter_values: mapping from runtime parameter names to its values. write_out: set to True to actually write out the file to the place designated by output_dir and output_filename. Otherwise return the JSON-serialized pipeline job spec. Returns: Returns the JSON pipeline job spec. Raises: RuntimeError: if trying to write out to a place occupied by an existing file. """ # TODO(b/166343606): Support user-provided labels. # TODO(b/169095387): Deprecate .run() method in favor of the unified API # client. display_name = ( self._config.display_name or pipeline.pipeline_info.pipeline_name) pipeline_spec = pipeline_builder.PipelineBuilder( tfx_pipeline=pipeline, default_image=self._config.default_image, default_commands=self._config.default_commands).build() pipeline_spec.sdk_version = 'tfx-{}'.format(version.__version__) pipeline_spec.schema_version = _SCHEMA_VERSION runtime_config = pipeline_builder.RuntimeConfigBuilder( pipeline_info=pipeline.pipeline_info, parameter_values=parameter_values).build() with telemetry_utils.scoped_labels( {telemetry_utils.LABEL_TFX_RUNNER: 'kubeflow_v2'}): result = pipeline_spec_pb2.PipelineJob( display_name=display_name or pipeline.pipeline_info.pipeline_name, labels=telemetry_utils.make_labels_dict(), runtime_config=runtime_config) result.pipeline_spec.update(json_format.MessageToDict(pipeline_spec)) pipeline_json_dict = json_format.MessageToDict(result) if write_out: if fileio.exists(self._output_dir) and not fileio.isdir(self._output_dir): raise RuntimeError('Output path: %s is pointed to a file.' % self._output_dir) if not fileio.exists(self._output_dir): fileio.makedirs(self._output_dir) with fileio.open( os.path.join(self._output_dir, self._output_filename), 'wb') as f: f.write(json.dumps(pipeline_json_dict, sort_keys=True)) return pipeline_json_dict
the-stack_106_22501
# coding: utf-8 """ Unofficial python library for the SmartRecruiters API The SmartRecruiters API provides a platform to integrate services or applications, build apps and create fully customizable career sites. It exposes SmartRecruiters functionality and allows to connect and build software enhancing it. OpenAPI spec version: 1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class JobStatusHistory(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, total_found=None, content=None): """ JobStatusHistory - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'total_found': 'int', 'content': 'list[JobStatusHistoryContent]' } self.attribute_map = { 'total_found': 'totalFound', 'content': 'content' } self._total_found = total_found self._content = content @property def total_found(self): """ Gets the total_found of this JobStatusHistory. :return: The total_found of this JobStatusHistory. :rtype: int """ return self._total_found @total_found.setter def total_found(self, total_found): """ Sets the total_found of this JobStatusHistory. :param total_found: The total_found of this JobStatusHistory. :type: int """ if total_found is None: raise ValueError("Invalid value for `total_found`, must not be `None`") self._total_found = total_found @property def content(self): """ Gets the content of this JobStatusHistory. :return: The content of this JobStatusHistory. :rtype: list[JobStatusHistoryContent] """ return self._content @content.setter def content(self, content): """ Sets the content of this JobStatusHistory. :param content: The content of this JobStatusHistory. :type: list[JobStatusHistoryContent] """ if content is None: raise ValueError("Invalid value for `content`, must not be `None`") self._content = content def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, JobStatusHistory): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
the-stack_106_22503
""" File: JetSegGraph.py Contents and purpose: Draws the event graph and progress bar Copyright (c) 2008 Android Open Source Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import wx import logging from JetUtils import * from JetDefs import * GRAPH_COLORS = [ '#C0E272', '#85CF89', '#CF9683', '#749EDE', '#9FB5B1', '#B095BF', '#FE546D', '#B3BB97', '#FFFFB8', ] PROGRESS_BAR = '#0000CC' EOS_BAR = '#095000' APP_BAR = '#B3BB97' class Marker(): """ Defines portions of the graph for events """ def __init__(self, sEventType, iEventId, sName, sStartMbt, sEndMbt, iStartMeasure, ppqn): self.sEventType = sEventType self.iEventId = iEventId self.sName = sName self.StartMbt = ConvertStrTimeToTuple(sStartMbt) self.EndMbt = ConvertStrTimeToTuple(sEndMbt) self.iStartMeasure = iStartMeasure self.iStart = 0 self.iEnd = 0 self.iWidth = 0 self.iHeight = 0 self.iTop = 0 self.iUpdate = False self.sColor = '#FFFFB8' self.ppqn = ppqn self.isDirty = False def CalcCoord(self, step, height, ColorFct): """ Calculates the coordinates in pixels for graphing the shaded regions """ #measures iStartM = self.StartMbt[0] - self.iStartMeasure iEndM = self.EndMbt[0] - self.iStartMeasure self.iStart = step * iStartM self.iEnd = step * iEndM #beats self.iStart = self.iStart + ((step / 4.0) * (self.StartMbt[1]-1)) self.iEnd = self.iEnd + ((step / 4.0) * (self.EndMbt[1]-1)) #ticks pctTickOfBeat = (float(self.StartMbt[2]) / float(self.ppqn)) self.iStart = self.iStart + ((pctTickOfBeat * (step / 4.0))) pctTickOfBeat = (float(self.EndMbt[2]) / float(self.ppqn)) self.iEnd = self.iEnd + ((pctTickOfBeat * (step / 4.0))) self.iWidth = self.iEnd - self.iStart self.iHeight = height self.sColor = ColorFct() self.iUpdate = False class SegmentGraph(wx.Panel): """ Draws the player graph bar """ def __init__(self, parent, pos=wx.DefaultPosition, size=wx.DefaultSize, ClickCallbackFct=None, showLabels=True, showClips=True, showAppEvts=True): wx.Panel.__init__(self, parent, -1, pos=pos, size=size, style=wx.BORDER_STATIC) self.iLocationInMs = 0 self.iLengthInMs = 0 self.iLengthInMeasures = 0 self.iMarkerTop = 15 self.iScaleTop = 0 self.iEdges = 5 self.iStartMeasure = 0 self.iMidiMode = False self.ClickCallbackFct = ClickCallbackFct self.iColor = 0 self.showLabels = showLabels self.showClips = showClips self.showAppEvts = showAppEvts self.font = wx.Font(8, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL, False, 'Courier') self.Markers = [] self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) #initialize buffer self.OnSize(None) def ClearGraph(self): """ Clears the graph values """ self.iLocationInMs = 0 self.iLengthInMs = 0 self.iLengthInMeasures = 0 self.iMarkerTop = 15 self.iScaleTop = 0 self.iEdges = 5 self.iStartMeasure = 0 self.iMidiMode = False self.iColor = 0 self.Markers = [] self.iLocationInMs = 0 self.DoDrawing() def LoadSegment(self, segment, segMarker=None, iMidiMode=False, showLabels=True, showClips=True, showAppEvts=True): """ Loads up the segment drawing the graph """ if segment is None: self.ClearGraph() return None self.iMidiMode = iMidiMode self.showLabels = showLabels self.showClips = showClips self.showAppEvts = showAppEvts self.Markers = [] self.iLocationInMs = 0 info = MidiSegInfo(segment) #disable graph for debugging #return info self.iLengthInMs = info.iLengthInMs self.ppqn = info.ppqn self.StartMbt = mbtFct(ConvertStrTimeToTuple(segment.start), 1) self.EndMbt = mbtFct(ConvertStrTimeToTuple(segment.end), 1) self.LengthMbt = None self.iStartMeasure = self.StartMbt[0] self.iLengthInMeasures = self.EndMbt[0] - self.StartMbt[0] for jet_event in segment.jetevents: if self.showClips and jet_event.event_type == JetDefs.E_CLIP: self.AddMarker(JetDefs.E_CLIP, jet_event.event_id, jet_event.event_name, mbtFct(jet_event.event_start,1), mbtFct(jet_event.event_end,1), self.iStartMeasure, self.ppqn) elif jet_event.event_type == JetDefs.E_EOS: self.AddMarker(JetDefs.E_EOS, jet_event.event_id, jet_event.event_name, mbtFct(jet_event.event_end,1), mbtFct(jet_event.event_end,1), self.iStartMeasure, self.ppqn) elif self.showAppEvts and jet_event.event_type == JetDefs.E_APP: self.AddMarker(JetDefs.E_APP, jet_event.event_id, jet_event.event_name, mbtFct(jet_event.event_start,1), mbtFct(jet_event.event_end,1), self.iStartMeasure, self.ppqn) if segMarker is not None: self.AddMarker(JetDefs.E_CLIP, 0, segMarker[0], mbtFct(segMarker[1],1), mbtFct(segMarker[2],1), self.iStartMeasure, self.ppqn) self.DoDrawing() return info def AddMarker(self, sEventType, iEventId, sName, sStartMbt, sEndMbt, iStartMeasure, ppqn): """ Adds a marker to the list """ if not CompareMbt(sStartMbt, sEndMbt): sEndMbt = sStartMbt self.Markers.append(Marker(sEventType, iEventId, sName, sStartMbt, sEndMbt, iStartMeasure, ppqn)) def OnLeftDown(self, event): """ Calls the function assicated with an event """ pt = event.GetPosition() for Marker in self.Markers: if pt[0] >= Marker.iStart and pt[0] <= Marker.iEnd and pt[1] >= Marker.iTop and pt[1] <= Marker.iTop + Marker.iHeight: if self.ClickCallbackFct != None: self.ClickCallbackFct(Marker.sName, Marker.iEventId) def GetAColor(self): """ Gets a color """ color = GRAPH_COLORS[self.iColor] self.iColor = self.iColor + 1 if self.iColor >= len(GRAPH_COLORS): self.iColor = 0 return color def OnSize(self, event=None): """ Repaints for resizing of screen """ if OsWindows(): # The Buffer init is done here, to make sure the buffer is always # the same size as the Window Size = self.GetClientSizeTuple() # Make new offscreen bitmap: this bitmap will always have the # current drawing in it, so it can be used to save the image to # a file, or whatever. self._Buffer = wx.EmptyBitmap(*Size) self.DoDrawing(None) if event is not None: event.Skip() def OnPaint(self, event=None): """ Painting of windows """ if OsWindows(): dc = wx.BufferedPaintDC(self, self._Buffer) else: dc = wx.AutoBufferedPaintDC(self) dc.Background = wx.Brush(wx.WHITE) self.DoDrawing(dc) def DoDrawing(self, dc=None): """ Does the actual drawing of the control """ if dc is None: if OsWindows(): dc = wx.BufferedDC(wx.ClientDC(self), self._Buffer) else: dc = wx.AutoBufferedPaintDC(self) dc.Background = wx.Brush(wx.WHITE) dc.Clear() self.iColor = 0 gWidth, gHeight = self.GetSize() gWidth = gWidth - (self.iEdges * 2) step = int(gWidth / (self.iLengthInMeasures + .01)) for Marker in self.Markers: Marker.CalcCoord(step, gHeight, self.GetAColor) """ eliminate overlaps; establish colors """ iClips = 0 iMarkers = 0 for index, Marker in enumerate(self.Markers): if Marker.sEventType == JetDefs.E_CLIP: iClips = iClips + 1 iOverlaps = 1 for index1, Marker1 in enumerate(self.Markers): if Marker.sEventType == JetDefs.E_CLIP: if index != index1 and not Marker1.iUpdate: if Marker.iStart <= Marker1.iStart and Marker.iEnd <= Marker1.iEnd and Marker.iEnd >= Marker1.iStart: iOverlaps = iOverlaps + 1 Marker.iUpdate = True Marker1.iUpdate = True if not Marker.iUpdate and Marker.iStart >= Marker1.iStart and Marker.iEnd >= Marker1.iEnd and Marker.iStart <= Marker1.iEnd: iOverlaps = iOverlaps + 1 Marker.iUpdate = True Marker1.iUpdate = True if iOverlaps > 1: iTop = 0 for index1, Marker1 in enumerate(self.Markers): if Marker.sEventType == JetDefs.E_CLIP: if Marker1.iUpdate: Marker1.iHeight = gHeight / iOverlaps Marker1.iTop = iTop * Marker1.iHeight iTop = iTop + 1 elif Marker.sEventType == JetDefs.E_APP: iMarkers = iMarkers + 1 for Marker in self.Markers: if Marker.sEventType == JetDefs.E_CLIP: dc.SetPen(wx.Pen(Marker.sColor)) dc.SetBrush(wx.Brush(Marker.sColor)) dc.DrawRectangle(Marker.iStart + self.iEdges, Marker.iTop, Marker.iWidth, Marker.iHeight) width, height = dc.GetTextExtent(Marker.sName) k = ((Marker.iStart + Marker.iEnd) / 2) - (width/2) + self.iEdges if self.showLabels or self.iMidiMode: dc.DrawText(Marker.sName, k, ((Marker.iTop+Marker.iHeight/2) - (height*.5))) if self.iMidiMode: self.iMidiModeStart = Marker.iStart elif Marker.sEventType == JetDefs.E_EOS: dc.SetPen(wx.Pen(EOS_BAR)) dc.SetBrush(wx.Brush(EOS_BAR)) dc.DrawRectangle(Marker.iStart + self.iEdges, Marker.iTop, 1, Marker.iHeight) width, height = dc.GetTextExtent(Marker.sName) k = Marker.iStart - (width/2) + self.iEdges dc.DrawText(Marker.sName, k, ((Marker.iTop+Marker.iHeight/2) - (height*.5))) elif Marker.sEventType == JetDefs.E_APP: dc.SetPen(wx.Pen(APP_BAR)) dc.SetBrush(wx.Brush(APP_BAR)) dc.DrawRectangle(Marker.iStart + self.iEdges, Marker.iTop, 1, Marker.iHeight) width, height = dc.GetTextExtent(Marker.sName) k = Marker.iStart - (width/2) + self.iEdges if self.showLabels or self.iMidiMode: dc.DrawText(Marker.sName, k, ((Marker.iTop+Marker.iHeight/2) - (height*.5))) """ Draw scale """ if gWidth == 0: iDiv = 50 else: iDiv = (gWidth)/18 if iDiv == 0: iDiv = 50 scale = ((self.iLengthInMeasures / iDiv) + 1) if scale == 0: scale = 1 beatStep = step / 4.0 dc.SetFont(self.font) j = 0 lastEnd = 0 num = range(self.iStartMeasure, self.iStartMeasure + self.iLengthInMeasures + 1, 1) dc.SetPen(wx.Pen('#5C5142')) for i in range(0, (self.iLengthInMeasures+1)*step, step): k = i + self.iEdges dc.DrawLine(k, self.iScaleTop, k, self.iScaleTop+8) if i != (self.iLengthInMeasures)*step: for iBeat in range(1,4): k = i+(iBeat * beatStep) + self.iEdges dc.DrawLine(k, self.iScaleTop, k, self.iScaleTop+4) width, height = dc.GetTextExtent(str(num[j])) k = i-(width/2) + self.iEdges if k > lastEnd: if j == 0 or (j % scale) == 0: dc.DrawText(str(num[j]), k, self.iScaleTop+8) lastEnd = k + width j = j + 1 """ Updates the location bar in case screen moved or resized """ if self.iLocationInMs > 0 and self.iLengthInMs > 0: iOffset = 0 if self.iMidiMode: iOffset = self.iMidiModeStart till = gWidth * (self.iLocationInMs / self.iLengthInMs) dc.SetPen(wx.Pen(PROGRESS_BAR)) dc.SetBrush(wx.Brush(PROGRESS_BAR)) dc.DrawRectangle(self.iEdges + iOffset, gHeight-6, till, 3) def UpdateLocation(self, iLocationInMs): """ Updates the location bar """ #disable graph for debugging #return info self.iLocationInMs = iLocationInMs if self.iLocationInMs > 0 and self.iLengthInMs > 0: if OsWindows(): dc = wx.BufferedDC(wx.ClientDC(self), self._Buffer) else: dc = wx.AutoBufferedPaintDC(self) dc.Background = wx.Brush(wx.WHITE) iOffset = 0 if self.iMidiMode: iOffset = self.iMidiModeStart gWidth, gHeight = self.GetSize() gWidth = gWidth - (self.iEdges * 2) till = gWidth * (self.iLocationInMs / self.iLengthInMs) dc.SetPen(wx.Pen(PROGRESS_BAR)) dc.SetBrush(wx.Brush(PROGRESS_BAR)) dc.DrawRectangle(self.iEdges + iOffset, gHeight-6, till, 3) self.isDirty = True else: if self.isDirty: self.DoDrawing() self.isDirty = False
the-stack_106_22504
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2016 Michael Gruener <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: cloudflare_dns author: "Michael Gruener (@mgruener)" requirements: - "python >= 2.6" version_added: "2.1" short_description: manage Cloudflare DNS records description: - "Manages dns records via the Cloudflare API, see the docs: U(https://api.cloudflare.com/)" options: account_api_token: description: - > Account API token. You can obtain your API key from the bottom of the Cloudflare 'My Account' page, found here: U(https://www.cloudflare.com/a/account) required: true account_email: description: - "Account email." required: true port: description: Service port. Required for C(type=SRV) required: false default: null priority: description: Record priority. Required for C(type=MX) and C(type=SRV) required: false default: "1" proto: description: Service protocol. Required for C(type=SRV) required: false choices: [ 'tcp', 'udp' ] default: null proxied: description: Proxy through cloudflare network or just use DNS required: false default: no version_added: "2.3" record: description: - Record to add. Required if C(state=present). Default is C(@) (e.g. the zone name) required: false default: "@" aliases: [ "name" ] service: description: Record service. Required for C(type=SRV) required: false default: null solo: description: - Whether the record should be the only one for that record type and record name. Only use with C(state=present) - This will delete all other records with the same record name and type. required: false default: null state: description: - Whether the record(s) should exist or not required: false choices: [ 'present', 'absent' ] default: present timeout: description: - Timeout for Cloudflare API calls required: false default: 30 ttl: description: - The TTL to give the new record. Must be between 120 and 2,147,483,647 seconds, or 1 for automatic. required: false default: 1 (automatic) type: description: - The type of DNS record to create. Required if C(state=present) required: false choices: [ 'A', 'AAAA', 'CNAME', 'TXT', 'SRV', 'MX', 'NS', 'SPF' ] default: null value: description: - The record value. Required for C(state=present) required: false default: null aliases: [ "content" ] weight: description: Service weight. Required for C(type=SRV) required: false default: "1" zone: description: - The name of the Zone to work with (e.g. "example.com"). The Zone must already exist. required: true aliases: ["domain"] ''' EXAMPLES = ''' # create a test.my.com A record to point to 127.0.0.1 - cloudflare_dns: zone: my.com record: test type: A value: 127.0.0.1 account_email: [email protected] account_api_token: dummyapitoken register: record # create a my.com CNAME record to example.com - cloudflare_dns: zone: my.com type: CNAME value: example.com state: present account_email: [email protected] account_api_token: dummyapitoken # change it's ttl - cloudflare_dns: zone: my.com type: CNAME value: example.com ttl: 600 state: present account_email: [email protected] account_api_token: dummyapitoken # and delete the record - cloudflare_dns: zone: my.com type: CNAME value: example.com state: absent account_email: [email protected] account_api_token: dummyapitoken # create a my.com CNAME record to example.com and proxy through cloudflare's network - cloudflare_dns: zone: my.com type: CNAME value: example.com state: present proxied: yes account_email: [email protected] account_api_token: dummyapitoken # create TXT record "test.my.com" with value "unique value" # delete all other TXT records named "test.my.com" - cloudflare_dns: domain: my.com record: test type: TXT value: unique value state: present solo: true account_email: [email protected] account_api_token: dummyapitoken # create a SRV record _foo._tcp.my.com - cloudflare_dns: domain: my.com service: foo proto: tcp port: 3500 priority: 10 weight: 20 type: SRV value: fooserver.my.com ''' RETURN = ''' record: description: dictionary containing the record data returned: success, except on record deletion type: complex contains: content: description: the record content (details depend on record type) returned: success type: string sample: 192.0.2.91 created_on: description: the record creation date returned: success type: string sample: 2016-03-25T19:09:42.516553Z data: description: additional record data returned: success, if type is SRV type: dictionary sample: { name: "jabber", port: 8080, priority: 10, proto: "_tcp", service: "_xmpp", target: "jabberhost.sample.com", weight: 5, } id: description: the record id returned: success type: string sample: f9efb0549e96abcb750de63b38c9576e locked: description: No documentation available returned: success type: boolean sample: False meta: description: No documentation available returned: success type: dictionary sample: { auto_added: false } modified_on: description: record modification date returned: success type: string sample: 2016-03-25T19:09:42.516553Z name: description: the record name as FQDN (including _service and _proto for SRV) returned: success type: string sample: www.sample.com priority: description: priority of the MX record returned: success, if type is MX type: int sample: 10 proxiable: description: whether this record can be proxied through cloudflare returned: success type: boolean sample: False proxied: description: whether the record is proxied through cloudflare returned: success type: boolean sample: False ttl: description: the time-to-live for the record returned: success type: int sample: 300 type: description: the record type returned: success type: string sample: A zone_id: description: the id of the zone containing the record returned: success type: string sample: abcede0bf9f0066f94029d2e6b73856a zone_name: description: the name of the zone containing the record returned: success type: string sample: sample.com ''' import json from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six.moves.urllib.parse import urlencode from ansible.module_utils._text import to_native, to_text from ansible.module_utils.urls import fetch_url class CloudflareAPI(object): cf_api_endpoint = 'https://api.cloudflare.com/client/v4' changed = False def __init__(self, module): self.module = module self.account_api_token = module.params['account_api_token'] self.account_email = module.params['account_email'] self.port = module.params['port'] self.priority = module.params['priority'] self.proto = module.params['proto'] self.proxied = module.params['proxied'] self.record = module.params['record'] self.service = module.params['service'] self.is_solo = module.params['solo'] self.state = module.params['state'] self.timeout = module.params['timeout'] self.ttl = module.params['ttl'] self.type = module.params['type'] self.value = module.params['value'] self.weight = module.params['weight'] self.zone = module.params['zone'] if self.record == '@': self.record = self.zone if (self.type in ['CNAME', 'NS', 'MX', 'SRV']) and (self.value is not None): self.value = self.value.rstrip('.') if (self.type == 'SRV'): if (self.proto is not None) and (not self.proto.startswith('_')): self.proto = '_' + self.proto if (self.service is not None) and (not self.service.startswith('_')): self.service = '_' + self.service if not self.record.endswith(self.zone): self.record = self.record + '.' + self.zone def _cf_simple_api_call(self, api_call, method='GET', payload=None): headers = {'X-Auth-Email': self.account_email, 'X-Auth-Key': self.account_api_token, 'Content-Type': 'application/json'} data = None if payload: try: data = json.dumps(payload) except Exception as e: self.module.fail_json(msg="Failed to encode payload as JSON: %s " % to_native(e)) resp, info = fetch_url(self.module, self.cf_api_endpoint + api_call, headers=headers, data=data, method=method, timeout=self.timeout) if info['status'] not in [200, 304, 400, 401, 403, 429, 405, 415]: self.module.fail_json(msg="Failed API call {0}; got unexpected HTTP code {1}".format(api_call, info['status'])) error_msg = '' if info['status'] == 401: # Unauthorized error_msg = "API user does not have permission; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) elif info['status'] == 403: # Forbidden error_msg = "API request not authenticated; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) elif info['status'] == 429: # Too many requests error_msg = "API client is rate limited; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) elif info['status'] == 405: # Method not allowed error_msg = "API incorrect HTTP method provided; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) elif info['status'] == 415: # Unsupported Media Type error_msg = "API request is not valid JSON; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) elif info['status'] == 400: # Bad Request error_msg = "API bad request; Status: {0}; Method: {1}: Call: {2}".format(info['status'], method, api_call) result = None try: content = resp.read() except AttributeError: if info['body']: content = info['body'] else: error_msg += "; The API response was empty" if content: try: result = json.loads(to_text(content, errors='surrogate_or_strict')) except (json.JSONDecodeError, UnicodeError) as e: error_msg += "; Failed to parse API response with error {0}: {1}".format(to_native(e), content) # received an error status but no data with details on what failed if (info['status'] not in [200, 304]) and (result is None): self.module.fail_json(msg=error_msg) if not result['success']: error_msg += "; Error details: " for error in result['errors']: error_msg += "code: {0}, error: {1}; ".format(error['code'], error['message']) if 'error_chain' in error: for chain_error in error['error_chain']: error_msg += "code: {0}, error: {1}; ".format(chain_error['code'], chain_error['message']) self.module.fail_json(msg=error_msg) return result, info['status'] def _cf_api_call(self, api_call, method='GET', payload=None): result, status = self._cf_simple_api_call(api_call, method, payload) data = result['result'] if 'result_info' in result: pagination = result['result_info'] if pagination['total_pages'] > 1: next_page = int(pagination['page']) + 1 parameters = ['page={0}'.format(next_page)] # strip "page" parameter from call parameters (if there are any) if '?' in api_call: raw_api_call, query = api_call.split('?', 1) parameters += [param for param in query.split('&') if not param.startswith('page')] else: raw_api_call = api_call while next_page <= pagination['total_pages']: raw_api_call += '?' + '&'.join(parameters) result, status = self._cf_simple_api_call(raw_api_call, method, payload) data += result['result'] next_page += 1 return data, status def _get_zone_id(self, zone=None): if not zone: zone = self.zone zones = self.get_zones(zone) if len(zones) > 1: self.module.fail_json(msg="More than one zone matches {0}".format(zone)) if len(zones) < 1: self.module.fail_json(msg="No zone found with name {0}".format(zone)) return zones[0]['id'] def get_zones(self, name=None): if not name: name = self.zone param = '' if name: param = '?' + urlencode({'name': name}) zones, status = self._cf_api_call('/zones' + param) return zones def get_dns_records(self, zone_name=None, type=None, record=None, value=''): if not zone_name: zone_name = self.zone if not type: type = self.type if not record: record = self.record # necessary because None as value means to override user # set module value if (not value) and (value is not None): value = self.value zone_id = self._get_zone_id() api_call = '/zones/{0}/dns_records'.format(zone_id) query = {} if type: query['type'] = type if record: query['name'] = record if value: query['content'] = value if query: api_call += '?' + urlencode(query) records, status = self._cf_api_call(api_call) return records def delete_dns_records(self, **kwargs): params = {} for param in ['port', 'proto', 'service', 'solo', 'type', 'record', 'value', 'weight', 'zone']: if param in kwargs: params[param] = kwargs[param] else: params[param] = getattr(self, param) records = [] content = params['value'] search_record = params['record'] if params['type'] == 'SRV': if not (params['value'] is None or params['value'] == ''): content = str(params['weight']) + '\t' + str(params['port']) + '\t' + params['value'] search_record = params['service'] + '.' + params['proto'] + '.' + params['record'] if params['solo']: search_value = None else: search_value = content records = self.get_dns_records(params['zone'], params['type'], search_record, search_value) for rr in records: if params['solo']: if not ((rr['type'] == params['type']) and (rr['name'] == search_record) and (rr['content'] == content)): self.changed = True if not self.module.check_mode: result, info = self._cf_api_call('/zones/{0}/dns_records/{1}'.format(rr['zone_id'], rr['id']), 'DELETE') else: self.changed = True if not self.module.check_mode: result, info = self._cf_api_call('/zones/{0}/dns_records/{1}'.format(rr['zone_id'], rr['id']), 'DELETE') return self.changed def ensure_dns_record(self, **kwargs): params = {} for param in ['port', 'priority', 'proto', 'proxied', 'service', 'ttl', 'type', 'record', 'value', 'weight', 'zone']: if param in kwargs: params[param] = kwargs[param] else: params[param] = getattr(self, param) search_value = params['value'] search_record = params['record'] new_record = None if (params['type'] is None) or (params['record'] is None): self.module.fail_json(msg="You must provide a type and a record to create a new record") if (params['type'] in ['A', 'AAAA', 'CNAME', 'TXT', 'MX', 'NS', 'SPF']): if not params['value']: self.module.fail_json(msg="You must provide a non-empty value to create this record type") # there can only be one CNAME per record # ignoring the value when searching for existing # CNAME records allows us to update the value if it # changes if params['type'] == 'CNAME': search_value = None new_record = { "type": params['type'], "name": params['record'], "content": params['value'], "ttl": params['ttl'] } if (params['type'] in ['A', 'AAAA', 'CNAME']): new_record["proxied"] = params["proxied"] if params['type'] == 'MX': for attr in [params['priority'], params['value']]: if (attr is None) or (attr == ''): self.module.fail_json(msg="You must provide priority and a value to create this record type") new_record = { "type": params['type'], "name": params['record'], "content": params['value'], "priority": params['priority'], "ttl": params['ttl'] } if params['type'] == 'SRV': for attr in [params['port'], params['priority'], params['proto'], params['service'], params['weight'], params['value']]: if (attr is None) or (attr == ''): self.module.fail_json(msg="You must provide port, priority, proto, service, weight and a value to create this record type") srv_data = { "target": params['value'], "port": params['port'], "weight": params['weight'], "priority": params['priority'], "name": params['record'][:-len('.' + params['zone'])], "proto": params['proto'], "service": params['service'] } new_record = {"type": params['type'], "ttl": params['ttl'], 'data': srv_data} search_value = str(params['weight']) + '\t' + str(params['port']) + '\t' + params['value'] search_record = params['service'] + '.' + params['proto'] + '.' + params['record'] zone_id = self._get_zone_id(params['zone']) records = self.get_dns_records(params['zone'], params['type'], search_record, search_value) # in theory this should be impossible as cloudflare does not allow # the creation of duplicate records but lets cover it anyways if len(records) > 1: self.module.fail_json(msg="More than one record already exists for the given attributes. That should be impossible, please open an issue!") # record already exists, check if it must be updated if len(records) == 1: cur_record = records[0] do_update = False if (params['ttl'] is not None) and (cur_record['ttl'] != params['ttl']): do_update = True if (params['priority'] is not None) and ('priority' in cur_record) and (cur_record['priority'] != params['priority']): do_update = True if ('data' in new_record) and ('data' in cur_record): if (cur_record['data'] > new_record['data']) - (cur_record['data'] < new_record['data']): do_update = True if (params['type'] == 'CNAME') and (cur_record['content'] != new_record['content']): do_update = True if do_update: if self.module.check_mode: result = new_record else: result, info = self._cf_api_call('/zones/{0}/dns_records/{1}'.format(zone_id, records[0]['id']), 'PUT', new_record) self.changed = True return result, self.changed else: return records, self.changed if self.module.check_mode: result = new_record else: result, info = self._cf_api_call('/zones/{0}/dns_records'.format(zone_id), 'POST', new_record) self.changed = True return result, self.changed def main(): module = AnsibleModule( argument_spec=dict( account_api_token=dict(required=True, no_log=True, type='str'), account_email=dict(required=True, type='str'), port=dict(required=False, default=None, type='int'), priority=dict(required=False, default=1, type='int'), proto=dict(required=False, default=None, choices=['tcp', 'udp'], type='str'), proxied=dict(required=False, default=False, type='bool'), record=dict(required=False, default='@', aliases=['name'], type='str'), service=dict(required=False, default=None, type='str'), solo=dict(required=False, default=None, type='bool'), state=dict(required=False, default='present', choices=['present', 'absent'], type='str'), timeout=dict(required=False, default=30, type='int'), ttl=dict(required=False, default=1, type='int'), type=dict(required=False, default=None, choices=['A', 'AAAA', 'CNAME', 'TXT', 'SRV', 'MX', 'NS', 'SPF'], type='str'), value=dict(required=False, default=None, aliases=['content'], type='str'), weight=dict(required=False, default=1, type='int'), zone=dict(required=True, default=None, aliases=['domain'], type='str'), ), supports_check_mode=True, required_if=([ ('state', 'present', ['record', 'type', 'value']), ('state', 'absent', ['record']), ('type', 'SRV', ['proto', 'service']), ] ), ) if module.params['type'] == 'SRV': if not ((module.params['weight'] is not None and module.params['port'] is not None and not (module.params['value'] is None or module.params['value'] == '')) or (module.params['weight'] is None and module.params['port'] is None and (module.params['value'] is None or module.params['value'] == ''))): module.fail_json(msg="For SRV records the params weight, port and value all need to be defined, or not at all.") changed = False cf_api = CloudflareAPI(module) # sanity checks if cf_api.is_solo and cf_api.state == 'absent': module.fail_json(msg="solo=true can only be used with state=present") # perform add, delete or update (only the TTL can be updated) of one or # more records if cf_api.state == 'present': # delete all records matching record name + type if cf_api.is_solo: changed = cf_api.delete_dns_records(solo=cf_api.is_solo) result, changed = cf_api.ensure_dns_record() if isinstance(result, list): module.exit_json(changed=changed, result={'record': result[0]}) else: module.exit_json(changed=changed, result={'record': result}) else: # force solo to False, just to be sure changed = cf_api.delete_dns_records(solo=False) module.exit_json(changed=changed) if __name__ == '__main__': main()
the-stack_106_22505
"""Email sensor support.""" from collections import deque import datetime import email import imaplib import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( ATTR_DATE, CONF_NAME, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, CONF_VALUE_TEMPLATE, CONTENT_TYPE_TEXT_PLAIN, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) CONF_SERVER = "server" CONF_SENDERS = "senders" CONF_FOLDER = "folder" ATTR_FROM = "from" ATTR_BODY = "body" ATTR_SUBJECT = "subject" DEFAULT_PORT = 993 PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_SERVER): cv.string, vol.Required(CONF_SENDERS): [cv.string], vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_FOLDER, default="INBOX"): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Email sensor platform.""" reader = EmailReader( config.get(CONF_USERNAME), config.get(CONF_PASSWORD), config.get(CONF_SERVER), config.get(CONF_PORT), config.get(CONF_FOLDER), ) value_template = config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = hass sensor = EmailContentSensor( hass, reader, config.get(CONF_NAME) or config.get(CONF_USERNAME), config.get(CONF_SENDERS), value_template, ) if sensor.connected: add_entities([sensor], True) else: return False class EmailReader: """A class to read emails from an IMAP server.""" def __init__(self, user, password, server, port, folder): """Initialize the Email Reader.""" self._user = user self._password = password self._server = server self._port = port self._folder = folder self._last_id = None self._unread_ids = deque([]) self.connection = None def connect(self): """Login and setup the connection.""" try: self.connection = imaplib.IMAP4_SSL(self._server, self._port) self.connection.login(self._user, self._password) return True except imaplib.IMAP4.error: _LOGGER.error("Failed to login to %s", self._server) return False def _fetch_message(self, message_uid): """Get an email message from a message id.""" _, message_data = self.connection.uid("fetch", message_uid, "(RFC822)") if message_data is None: return None if message_data[0] is None: return None raw_email = message_data[0][1] email_message = email.message_from_bytes(raw_email) return email_message def read_next(self): """Read the next email from the email server.""" try: self.connection.select(self._folder, readonly=True) if not self._unread_ids: search = f"SINCE {datetime.date.today():%d-%b-%Y}" if self._last_id is not None: search = f"UID {self._last_id}:*" _, data = self.connection.uid("search", None, search) self._unread_ids = deque(data[0].split()) while self._unread_ids: message_uid = self._unread_ids.popleft() if self._last_id is None or int(message_uid) > self._last_id: self._last_id = int(message_uid) return self._fetch_message(message_uid) return self._fetch_message(str(self._last_id)) except imaplib.IMAP4.error: _LOGGER.info("Connection to %s lost, attempting to reconnect", self._server) try: self.connect() _LOGGER.info( "Reconnect to %s succeeded, trying last message", self._server ) if self._last_id is not None: return self._fetch_message(str(self._last_id)) except imaplib.IMAP4.error: _LOGGER.error("Failed to reconnect") return None class EmailContentSensor(Entity): """Representation of an EMail sensor.""" def __init__(self, hass, email_reader, name, allowed_senders, value_template): """Initialize the sensor.""" self.hass = hass self._email_reader = email_reader self._name = name self._allowed_senders = [sender.upper() for sender in allowed_senders] self._value_template = value_template self._last_id = None self._message = None self._state_attributes = None self.connected = self._email_reader.connect() @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the current email state.""" return self._message @property def device_state_attributes(self): """Return other state attributes for the message.""" return self._state_attributes def render_template(self, email_message): """Render the message template.""" variables = { ATTR_FROM: EmailContentSensor.get_msg_sender(email_message), ATTR_SUBJECT: EmailContentSensor.get_msg_subject(email_message), ATTR_DATE: email_message["Date"], ATTR_BODY: EmailContentSensor.get_msg_text(email_message), } return self._value_template.render(variables, parse_result=False) def sender_allowed(self, email_message): """Check if the sender is in the allowed senders list.""" return EmailContentSensor.get_msg_sender(email_message).upper() in ( sender for sender in self._allowed_senders ) @staticmethod def get_msg_sender(email_message): """Get the parsed message sender from the email.""" return str(email.utils.parseaddr(email_message["From"])[1]) @staticmethod def get_msg_subject(email_message): """Decode the message subject.""" decoded_header = email.header.decode_header(email_message["Subject"]) header = email.header.make_header(decoded_header) return str(header) @staticmethod def get_msg_text(email_message): """ Get the message text from the email. Will look for text/plain or use text/html if not found. """ message_text = None message_html = None message_untyped_text = None for part in email_message.walk(): if part.get_content_type() == CONTENT_TYPE_TEXT_PLAIN: if message_text is None: message_text = part.get_payload() elif part.get_content_type() == "text/html": if message_html is None: message_html = part.get_payload() elif part.get_content_type().startswith("text"): if message_untyped_text is None: message_untyped_text = part.get_payload() if message_text is not None: return message_text if message_html is not None: return message_html if message_untyped_text is not None: return message_untyped_text return email_message.get_payload() def update(self): """Read emails and publish state change.""" email_message = self._email_reader.read_next() if email_message is None: self._message = None self._state_attributes = {} return if self.sender_allowed(email_message): message = EmailContentSensor.get_msg_subject(email_message) if self._value_template is not None: message = self.render_template(email_message) self._message = message self._state_attributes = { ATTR_FROM: EmailContentSensor.get_msg_sender(email_message), ATTR_SUBJECT: EmailContentSensor.get_msg_subject(email_message), ATTR_DATE: email_message["Date"], ATTR_BODY: EmailContentSensor.get_msg_text(email_message), }
the-stack_106_22506
# -*- coding: utf-8 -*- from collections import defaultdict from datetime import datetime, timedelta from io import StringIO import math import operator import re import numpy as np import pytest import pandas._config.config as cf from pandas._libs.tslib import Timestamp from pandas.compat import PY36, lrange, lzip from pandas.compat.numpy import np_datetime64_compat from pandas.core.dtypes.common import is_unsigned_integer_dtype from pandas.core.dtypes.generic import ABCIndex import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Int64Index, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, date_range, isna, period_range) from pandas.core.index import _get_combined_index, ensure_index_from_sequences from pandas.core.indexes.api import Index, MultiIndex from pandas.core.sorting import safe_sort from pandas.tests.indexes.common import Base import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal class TestIndex(Base): _holder = Index def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices() def create_index(self): return Index(list('abcde')) def generate_index_types(self, skip_index_keys=[]): """ Return a generator of the various index types, leaving out the ones with a key in skip_index_keys """ for key, index in self.indices.items(): if key not in skip_index_keys: yield key, index def test_can_hold_identifiers(self): index = self.create_index() key = index[0] assert index._can_hold_identifiers_and_holds_name(key) is True def test_new_axis(self): new_index = self.dateIndex[None, :] assert new_index.ndim == 2 assert isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): new_copy2 = self.intIndex.copy(dtype=int) assert new_copy2.dtype.kind == 'i' @pytest.mark.parametrize("attr", ['strIndex', 'dateIndex']) def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index) def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index) def test_constructor_copy(self): # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') assert isinstance(index, Index) assert index.name == 'name' tm.assert_numpy_array_equal(arr, index.values) arr[0] = "SOMEBIGLONGSTRING" assert index[0] != "SOMEBIGLONGSTRING" # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case msg = (r"Index\(\.\.\.\) must be called with a collection of some" " kind, 0 was passed") with pytest.raises(TypeError, match=msg): Index(0) @pytest.mark.parametrize("index_vals", [ [('A', 1), 'B'], ['B', ('A', 1)]]) def test_construction_list_mixed_tuples(self, index_vals): # see gh-10697: if we are constructing from a mixed list of tuples, # make sure that we are independent of the sorting order. index = Index(index_vals) assert isinstance(index, Index) assert not isinstance(index, MultiIndex) @pytest.mark.parametrize('na_value', [None, np.nan]) @pytest.mark.parametrize('vtype', [list, tuple, iter]) def test_construction_list_tuples_nan(self, na_value, vtype): # GH 18505 : valid tuples containing NaN values = [(1, 'two'), (3., na_value)] result = Index(vtype(values)) expected = MultiIndex.from_tuples(values) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cast_as_obj", [True, False]) @pytest.mark.parametrize("index", [ pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern', name='Green Eggs & Ham'), # DTI with tz pd.date_range('2015-01-01 10:00', freq='D', periods=3), # DTI no tz pd.timedelta_range('1 days', freq='D', periods=3), # td pd.period_range('2015-01-01', freq='D', periods=3) # period ]) def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = pd.Index(index.astype(object)) else: result = pd.Index(index) tm.assert_index_equal(result, index) if isinstance(index, pd.DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = pd.Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index) @pytest.mark.parametrize("index,has_tz", [ (pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern'), True), # datetimetz (pd.timedelta_range('1 days', freq='D', periods=3), False), # td (pd.period_range('2015-01-01', freq='D', periods=3), False) # period ]) def test_constructor_from_series_dtlike(self, index, has_tz): result = pd.Index(pd.Series(index)) tm.assert_index_equal(result, index) if has_tz: assert result.tz == index.tz @pytest.mark.parametrize("klass", [Index, DatetimeIndex]) def test_constructor_from_series(self, klass): expected = DatetimeIndex([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) s = Series([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) result = klass(s) tm.assert_index_equal(result, expected) def test_constructor_from_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] expected = DatetimeIndex(dts, freq='MS') s = Series(pd.to_datetime(dts)) result = DatetimeIndex(s, freq='MS') tm.assert_index_equal(result, expected) def test_constructor_from_frame_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] expected = DatetimeIndex(dts, freq='MS') df = pd.DataFrame(np.random.rand(5, 3)) df['date'] = dts result = DatetimeIndex(df['date'], freq='MS') assert df['date'].dtype == object expected.name = 'date' tm.assert_index_equal(result, expected) expected = pd.Series(dts, name='date') tm.assert_series_equal(df['date'], expected) # GH 6274 # infer freq of same freq = pd.infer_freq(df['date']) assert freq == 'MS' @pytest.mark.parametrize("array", [ np.arange(5), np.array(['a', 'b', 'c']), date_range( '2000-01-01', periods=3).values ]) def test_constructor_ndarray_like(self, array): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike: def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array expected = pd.Index(array) result = pd.Index(ArrayLike(array)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('dtype', [ int, 'int64', 'int32', 'int16', 'int8', 'uint64', 'uint32', 'uint16', 'uint8']) def test_constructor_int_dtype_float(self, dtype): # GH 18400 if is_unsigned_integer_dtype(dtype): index_type = UInt64Index else: index_type = Int64Index expected = index_type([0, 1, 2, 3]) result = Index([0., 1., 2., 3.], dtype=dtype) tm.assert_index_equal(result, expected) def test_constructor_int_dtype_nan(self): # see gh-15187 data = [np.nan] expected = Float64Index(data) result = Index(data, dtype='float') tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ['int64', 'uint64']) def test_constructor_int_dtype_nan_raises(self, dtype): # see gh-15187 data = [np.nan] msg = "cannot convert" with pytest.raises(ValueError, match=msg): Index(data, dtype=dtype) def test_constructor_no_pandas_array(self): ser = pd.Series([1, 2, 3]) result = pd.Index(ser.array) expected = pd.Index([1, 2, 3]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass,dtype,na_val", [ (pd.Float64Index, np.float64, np.nan), (pd.DatetimeIndex, 'datetime64[ns]', pd.NaT) ]) def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val): # GH 13467 na_list = [na_val, na_val] expected = klass(na_list) assert expected.dtype == dtype result = Index(na_list) tm.assert_index_equal(result, expected) result = Index(np.array(na_list)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("pos", [0, 1]) @pytest.mark.parametrize("klass,dtype,ctor", [ (pd.DatetimeIndex, 'datetime64[ns]', np.datetime64('nat')), (pd.TimedeltaIndex, 'timedelta64[ns]', np.timedelta64('nat')) ]) def test_index_ctor_infer_nat_dt_like(self, pos, klass, dtype, ctor, nulls_fixture): expected = klass([pd.NaT, pd.NaT]) assert expected.dtype == dtype data = [ctor] data.insert(pos, nulls_fixture) result = Index(data) tm.assert_index_equal(result, expected) result = Index(np.array(data, dtype=object)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("swap_objs", [True, False]) def test_index_ctor_nat_result(self, swap_objs): # mixed np.datetime64/timedelta64 nat results in object data = [np.datetime64('nat'), np.timedelta64('nat')] if swap_objs: data = data[::-1] expected = pd.Index(data, dtype=object) tm.assert_index_equal(Index(data), expected) tm.assert_index_equal(Index(np.array(data, dtype=object)), expected) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) tm.assert_index_equal(rs, xp) assert isinstance(rs, PeriodIndex) @pytest.mark.parametrize("vals,dtype", [ ([1, 2, 3, 4, 5], 'int'), ([1.1, np.nan, 2.2, 3.0], 'float'), (['A', 'B', 'C', np.nan], 'obj') ]) def test_constructor_simple_new(self, vals, dtype): index = Index(vals, name=dtype) result = index._simple_new(index.values, dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("vals", [ [1, 2, 3], np.array([1, 2, 3]), np.array([1, 2, 3], dtype=int), # below should coerce [1., 2., 3.], np.array([1., 2., 3.], dtype=float) ]) def test_constructor_dtypes_to_int64(self, vals): index = Index(vals, dtype=int) assert isinstance(index, Int64Index) @pytest.mark.parametrize("vals", [ [1, 2, 3], [1., 2., 3.], np.array([1., 2., 3.]), np.array([1, 2, 3], dtype=int), np.array([1., 2., 3.], dtype=float) ]) def test_constructor_dtypes_to_float64(self, vals): index = Index(vals, dtype=float) assert isinstance(index, Float64Index) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ [True, False, True], np.array([True, False, True], dtype=bool) ]) def test_constructor_dtypes_to_object(self, cast_index, vals): if cast_index: index = Index(vals, dtype=bool) else: index = Index(vals) assert isinstance(index, Index) assert index.dtype == object @pytest.mark.parametrize("vals", [ [1, 2, 3], np.array([1, 2, 3], dtype=int), np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')]), [datetime(2011, 1, 1), datetime(2011, 1, 2)] ]) def test_constructor_dtypes_to_categorical(self, vals): index = Index(vals, dtype='category') assert isinstance(index, CategoricalIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ Index(np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')])), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]) ]) def test_constructor_dtypes_to_datetime(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, DatetimeIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ np.array([np.timedelta64(1, 'D'), np.timedelta64(1, 'D')]), [timedelta(1), timedelta(1)] ]) def test_constructor_dtypes_to_timedelta(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, TimedeltaIndex) @pytest.mark.parametrize("attr, utc", [ ['values', False], ['asi8', True]]) @pytest.mark.parametrize("klass", [pd.Index, pd.DatetimeIndex]) def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, utc, klass): # Test constructing with a datetimetz dtype # .values produces numpy datetimes, so these are considered naive # .asi8 produces integers, so these are considered epoch timestamps # ^the above will be true in a later version. Right now we `.view` # the i8 values as NS_DTYPE, effectively treating them as wall times. index = pd.date_range('2011-01-01', periods=5) arg = getattr(index, attr) index = index.tz_localize(tz_naive_fixture) dtype = index.dtype if (tz_naive_fixture and attr == "asi8" and str(tz_naive_fixture) not in ('UTC', 'tzutc()', 'UTC+00:00')): ex_warn = FutureWarning else: ex_warn = None # stacklevel is checked elsewhere. We don't do it here since # Index will have an frame, throwing off the expected. with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(arg, tz=tz_naive_fixture) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(arg, dtype=dtype) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(list(arg), tz=tz_naive_fixture) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(list(arg), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("attr", ['values', 'asi8']) @pytest.mark.parametrize("klass", [pd.Index, pd.TimedeltaIndex]) def test_constructor_dtypes_timedelta(self, attr, klass): index = pd.timedelta_range('1 days', periods=5) dtype = index.dtype values = getattr(index, attr) result = klass(values, dtype=dtype) tm.assert_index_equal(result, index) result = klass(list(values), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("value", [[], iter([]), (x for x in [])]) @pytest.mark.parametrize("klass", [Index, Float64Index, Int64Index, UInt64Index, CategoricalIndex, DatetimeIndex, TimedeltaIndex]) def test_constructor_empty(self, value, klass): empty = klass(value) assert isinstance(empty, klass) assert not len(empty) @pytest.mark.parametrize("empty,klass", [ (PeriodIndex([], freq='B'), PeriodIndex), (PeriodIndex(iter([]), freq='B'), PeriodIndex), (PeriodIndex((x for x in []), freq='B'), PeriodIndex), (RangeIndex(step=1), pd.RangeIndex), (MultiIndex(levels=[[1, 2], ['blue', 'red']], codes=[[], []]), MultiIndex) ]) def test_constructor_empty_special(self, empty, klass): assert isinstance(empty, klass) assert not len(empty) def test_constructor_overflow_int64(self): # see gh-15832 msg = ("The elements provided in the data cannot " "all be casted to the dtype int64") with pytest.raises(OverflowError, match=msg): Index([np.iinfo(np.uint64).max - 1], dtype="int64") @pytest.mark.xfail(reason="see GH#21311: Index " "doesn't enforce dtype argument") def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Index(["a", "b", "c"], dtype=float) def test_view_with_args(self): restricted = ['unicodeIndex', 'strIndex', 'catIndex', 'boolIndex', 'empty'] for i in list(set(self.indices.keys()) - set(restricted)): ind = self.indices[i] ind.view('i8') @pytest.mark.parametrize('index_type', [ 'unicodeIndex', 'strIndex', pytest.param('catIndex', marks=pytest.mark.xfail(reason="gh-25464")), 'boolIndex', 'empty']) def test_view_with_args_object_array_raises(self, index_type): ind = self.indices[index_type] msg = "Cannot change data-type for object array" with pytest.raises(TypeError, match=msg): ind.view('i8') def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') assert casted.name == 'foobar' def test_equals_object(self): # same assert Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c'])) @pytest.mark.parametrize("comp", [ Index(['a', 'b']), Index(['a', 'b', 'd']), ['a', 'b', 'c']]) def test_not_equals_object(self, comp): assert not Index(['a', 'b', 'c']).equals(comp) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) # test 0th element tm.assert_index_equal(Index(['a', 'b', 'c', 'd']), result.insert(0, 'a')) # test Nth element that follows Python list behavior tm.assert_index_equal(Index(['b', 'c', 'e', 'd']), result.insert(-1, 'e')) # test loc +/- neq (0, -1) tm.assert_index_equal(result.insert(1, 'z'), result.insert(-2, 'z')) # test empty null_index = Index([]) tm.assert_index_equal(Index(['a']), null_index.insert(0, 'a')) def test_insert_missing(self, nulls_fixture): # GH 22295 # test there is no mangling of NA values expected = Index(['a', nulls_fixture, 'b', 'c']) result = Index(list('abc')).insert(1, nulls_fixture) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("pos,expected", [ (0, Index(['b', 'c', 'd'], name='index')), (-1, Index(['a', 'b', 'c'], name='index')) ]) def test_delete(self, pos, expected): index = Index(['a', 'b', 'c', 'd'], name='index') result = index.delete(pos) tm.assert_index_equal(result, expected) assert result.name == expected.name def test_delete_raises(self): index = Index(['a', 'b', 'c', 'd'], name='index') msg = "index 5 is out of bounds for axis 0 with size 4" with pytest.raises(IndexError, match=msg): index.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) assert i1.identical(i2) i1 = i1.rename('foo') assert i1.equals(i2) assert not i1.identical(i2) i2 = i2.rename('foo') assert i1.identical(i2) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) assert not i3.identical(i4) def test_is_(self): ind = Index(range(10)) assert ind.is_(ind) assert ind.is_(ind.view().view().view().view()) assert not ind.is_(Index(range(10))) assert not ind.is_(ind.copy()) assert not ind.is_(ind.copy(deep=False)) assert not ind.is_(ind[:]) assert not ind.is_(np.array(range(10))) # quasi-implementation dependent assert ind.is_(ind.view()) ind2 = ind.view() ind2.name = 'bob' assert ind.is_(ind2) assert ind2.is_(ind) # doesn't matter if Indices are *actually* views of underlying data, assert not ind.is_(Index(ind.values)) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) assert not ind1.is_(ind2) def test_asof(self): d = self.dateIndex[0] assert self.dateIndex.asof(d) == d assert isna(self.dateIndex.asof(d - timedelta(1))) d = self.dateIndex[-1] assert self.dateIndex.asof(d + timedelta(1)) == d d = self.dateIndex[0].to_pydatetime() assert isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): index = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-02-28') result = index.asof('2010-02') assert result == expected assert not isinstance(result, Index) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil # assert first_value == x['2013-01-01 00:00:00.000000050+0000'] expected_ts = np_datetime64_compat('2013-01-01 00:00:00.000000050+' '0000', 'ns') assert first_value == x[Timestamp(expected_ts)] def test_booleanindex(self): boolIndex = np.repeat(True, len(self.strIndex)).astype(bool) boolIndex[5:30:2] = False subIndex = self.strIndex[boolIndex] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i subIndex = self.strIndex[list(boolIndex)] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: assert i == sl[sl.get_loc(i)] @pytest.mark.parametrize("attr", [ 'strIndex', 'intIndex', 'floatIndex']) @pytest.mark.parametrize("dtype", [np.int_, np.bool_]) def test_empty_fancy(self, attr, dtype): empty_arr = np.array([], dtype=dtype) index = getattr(self, attr) empty_index = index.__class__([]) assert index[[]].identical(empty_index) assert index[empty_arr].identical(empty_index) @pytest.mark.parametrize("attr", [ 'strIndex', 'intIndex', 'floatIndex']) def test_empty_fancy_raises(self, attr): # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. empty_farr = np.array([], dtype=np.float_) index = getattr(self, attr) empty_index = index.__class__([]) assert index[[]].identical(empty_index) # np.ndarray only accepts ndarray of int & bool dtypes, so should Index msg = r"arrays used as indices must be of integer \(or boolean\) type" with pytest.raises(IndexError, match=msg): index[empty_farr] @pytest.mark.parametrize("sort", [None, False]) def test_intersection(self, sort): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second, sort=sort) if sort is None: tm.assert_index_equal(intersect, second.sort_values()) assert tm.equalContents(intersect, second) # Corner cases inter = first.intersection(first, sort=sort) assert inter is first @pytest.mark.parametrize("index2,keeps_name", [ (Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name (Index([3, 4, 5, 6, 7], name="other"), False), # drop diff names (Index([3, 4, 5, 6, 7]), False)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_name_preservation(self, index2, keeps_name, sort): index1 = Index([1, 2, 3, 4, 5], name='index') expected = Index([3, 4, 5]) result = index1.intersection(index2, sort) if keeps_name: expected.name = 'index' assert result.name == expected.name tm.assert_index_equal(result, expected) @pytest.mark.parametrize("first_name,second_name,expected_name", [ ('A', 'A', 'A'), ('A', 'B', None), (None, 'B', None)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_name_preservation2(self, first_name, second_name, expected_name, sort): first = self.strIndex[5:20] second = self.strIndex[:10] first.name = first_name second.name = second_name intersect = first.intersection(second, sort=sort) assert intersect.name == expected_name @pytest.mark.parametrize("index2,keeps_name", [ (Index([4, 7, 6, 5, 3], name='index'), True), (Index([4, 7, 6, 5, 3], name='other'), False)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_monotonic(self, index2, keeps_name, sort): index1 = Index([5, 3, 2, 4, 1], name='index') expected = Index([5, 3, 4]) if keeps_name: expected.name = "index" result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index2,expected_arr", [ (Index(['B', 'D']), ['B']), (Index(['B', 'D', 'A']), ['A', 'B', 'A'])]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort): # non-monotonic non-unique index1 = Index(['A', 'B', 'A', 'C']) expected = Index(expected_arr, dtype='object') result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersect_str_dates(self, sort): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) result = i2.intersection(i1, sort=sort) assert len(result) == 0 def test_intersect_nosort(self): result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a']) expected = pd.Index(['b', 'a']) tm.assert_index_equal(result, expected) def test_intersection_equal_sort(self): idx = pd.Index(['c', 'a', 'b']) tm.assert_index_equal(idx.intersection(idx, sort=False), idx) tm.assert_index_equal(idx.intersection(idx, sort=None), idx) @pytest.mark.xfail(reason="Not implemented") def test_intersection_equal_sort_true(self): # TODO decide on True behaviour idx = pd.Index(['c', 'a', 'b']) sorted_ = pd.Index(['a', 'b', 'c']) tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) @pytest.mark.parametrize("sort", [None, False]) def test_chained_union(self, sort): # Chained unions handles names correctly i1 = Index([1, 2], name='i1') i2 = Index([5, 6], name='i2') i3 = Index([3, 4], name='i3') union = i1.union(i2.union(i3, sort=sort), sort=sort) expected = i1.union(i2, sort=sort).union(i3, sort=sort) tm.assert_index_equal(union, expected) j1 = Index([1, 2], name='j1') j2 = Index([], name='j2') j3 = Index([], name='j3') union = j1.union(j2.union(j3, sort=sort), sort=sort) expected = j1.union(j2, sort=sort).union(j3, sort=sort) tm.assert_index_equal(union, expected) @pytest.mark.parametrize("sort", [None, False]) def test_union(self, sort): # TODO: Replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second, sort=sort) if sort is None: tm.assert_index_equal(union, everything.sort_values()) assert tm.equalContents(union, everything) @pytest.mark.parametrize('slice_', [slice(None), slice(0)]) def test_union_sort_other_special(self, slice_): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] tm.assert_index_equal(idx.union(other), idx) tm.assert_index_equal(other.union(idx), idx) # sort=False tm.assert_index_equal(idx.union(other, sort=False), idx) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize('slice_', [slice(None), slice(0)]) def test_union_sort_special_true(self, slice_): # TODO decide on True behaviour # sort=True idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] result = idx.union(other, sort=True) expected = pd.Index([0, 1, 2]) tm.assert_index_equal(result, expected) def test_union_sort_other_incomparable(self): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.Index([1, pd.Timestamp('2000')]) # default (sort=None) with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1]) tm.assert_index_equal(result, idx) # sort=None with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1], sort=None) tm.assert_index_equal(result, idx) # sort=False result = idx.union(idx[:1], sort=False) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="Not implemented") def test_union_sort_other_incomparable_true(self): # TODO decide on True behaviour # sort=True idx = pd.Index([1, pd.Timestamp('2000')]) with pytest.raises(TypeError, match='.*'): idx.union(idx[:1], sort=True) @pytest.mark.parametrize("klass", [ np.array, Series, list]) @pytest.mark.parametrize("sort", [None, False]) def test_union_from_iterables(self, klass, sort): # GH 10149 # TODO: Replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] case = klass(second.values) result = first.union(case, sort=sort) if sort is None: tm.assert_index_equal(result, everything.sort_values()) assert tm.equalContents(result, everything) @pytest.mark.parametrize("sort", [None, False]) def test_union_identity(self, sort): # TODO: replace with fixturesult first = self.strIndex[5:20] union = first.union(first, sort=sort) # i.e. identity is not preserved when sort is True assert (union is first) is (not sort) union = first.union([], sort=sort) assert (union is first) is (not sort) union = Index([]).union(first, sort=sort) assert (union is first) is (not sort) @pytest.mark.parametrize("first_list", [list('ba'), list()]) @pytest.mark.parametrize("second_list", [list('ab'), list()]) @pytest.mark.parametrize("first_name, second_name, expected_name", [ ('A', 'B', None), (None, 'B', None), ('A', None, None)]) @pytest.mark.parametrize("sort", [None, False]) def test_union_name_preservation(self, first_list, second_list, first_name, second_name, expected_name, sort): first = Index(first_list, name=first_name) second = Index(second_list, name=second_name) union = first.union(second, sort=sort) vals = set(first_list).union(second_list) if sort is None and len(first_list) > 0 and len(second_list) > 0: expected = Index(sorted(vals), name=expected_name) tm.assert_index_equal(union, expected) else: expected = Index(vals, name=expected_name) assert tm.equalContents(union, expected) @pytest.mark.parametrize("sort", [None, False]) def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) @pytest.mark.parametrize("method", ['union', 'intersection', 'difference', 'symmetric_difference']) def test_setops_disallow_true(self, method): idx1 = pd.Index(['a', 'b']) idx2 = pd.Index(['b', 'c']) with pytest.raises(ValueError, match="The 'sort' keyword only takes"): getattr(idx1, method)(idx2, sort=True) def test_map_identity_mapping(self): # GH 12766 # TODO: replace with fixture for name, cur_index in self.indices.items(): tm.assert_index_equal(cur_index, cur_index.map(lambda x: x)) def test_map_with_tuples(self): # GH 12766 # Test that returning a single tuple from an Index # returns an Index. index = tm.makeIntIndex(3) result = tm.makeIntIndex(3).map(lambda x: (x,)) expected = Index([(i,) for i in index]) tm.assert_index_equal(result, expected) # Test that returning a tuple from a map of a single index # returns a MultiIndex object. result = index.map(lambda x: (x, x == 1)) expected = MultiIndex.from_tuples([(i, i == 1) for i in index]) tm.assert_index_equal(result, expected) def test_map_with_tuples_mi(self): # Test that returning a single object from a MultiIndex # returns an Index. first_level = ['foo', 'bar', 'baz'] multi_index = MultiIndex.from_tuples(lzip(first_level, [1, 2, 3])) reduced_index = multi_index.map(lambda x: x[0]) tm.assert_index_equal(reduced_index, Index(first_level)) @pytest.mark.parametrize("attr", [ 'makeDateIndex', 'makePeriodIndex', 'makeTimedeltaIndex']) def test_map_tseries_indices_return_index(self, attr): index = getattr(tm, attr)(10) expected = Index([1] * 10) result = index.map(lambda x: 1) tm.assert_index_equal(expected, result) def test_map_tseries_indices_accsr_return_index(self): date_index = tm.makeDateIndex(24, freq='h', name='hourly') expected = Index(range(24), name='hourly') tm.assert_index_equal(expected, date_index.map(lambda x: x.hour)) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: pd.Series(values, index)]) def test_map_dictlike(self, mapper): # GH 12756 expected = Index(['foo', 'bar', 'baz']) index = tm.makeIntIndex(3) result = index.map(mapper(expected.values, index)) tm.assert_index_equal(result, expected) # TODO: replace with fixture for name in self.indices.keys(): if name == 'catIndex': # Tested in test_categorical continue elif name == 'repeats': # Cannot map duplicated index continue index = self.indices[name] expected = Index(np.arange(len(index), 0, -1)) # to match proper result coercion for uints if name == 'empty': expected = Index([]) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("mapper", [ Series(['foo', 2., 'baz'], index=[0, 2, -1]), {0: 'foo', 2: 2.0, -1: 'baz'}]) def test_map_with_non_function_missing_values(self, mapper): # GH 12756 expected = Index([2., np.nan, 'foo']) result = Index([2, 1, 0]).map(mapper) tm.assert_index_equal(expected, result) def test_map_na_exclusion(self): index = Index([1.5, np.nan, 3, np.nan, 5]) result = index.map(lambda x: x * 2, na_action='ignore') expected = index * 2 tm.assert_index_equal(result, expected) def test_map_defaultdict(self): index = Index([1, 2, 3]) default_dict = defaultdict(lambda: 'blank') default_dict[1] = 'stuff' result = index.map(default_dict) expected = Index(['stuff', 'blank', 'blank']) tm.assert_index_equal(result, expected) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) tm.assert_index_equal(result, index) # empty result = index.append([]) tm.assert_index_equal(result, index) @pytest.mark.parametrize("name,expected", [ ('foo', 'foo'), ('bar', None)]) def test_append_empty_preserve_name(self, name, expected): left = Index([], name='foo') right = Index([1, 2, 3], name=name) result = left.append(right) assert result.name == expected @pytest.mark.parametrize("second_name,expected", [ (None, None), ('name', 'name')]) @pytest.mark.parametrize("sort", [None, False]) def test_difference_name_preservation(self, second_name, expected, sort): # TODO: replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' second.name = second_name result = first.difference(second, sort=sort) assert tm.equalContents(result, answer) if expected is None: assert result.name is None else: assert result.name == expected @pytest.mark.parametrize("sort", [None, False]) def test_difference_empty_arg(self, sort): first = self.strIndex[5:20] first.name == 'name' result = first.difference([], sort) assert tm.equalContents(result, first) assert result.name == first.name @pytest.mark.parametrize("sort", [None, False]) def test_difference_identity(self, sort): first = self.strIndex[5:20] first.name == 'name' result = first.difference(first, sort) assert len(result) == 0 assert result.name == first.name @pytest.mark.parametrize("sort", [None, False]) def test_difference_sort(self, sort): first = self.strIndex[5:20] second = self.strIndex[:10] result = first.difference(second, sort) expected = self.strIndex[10:20] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference(self, sort): # smoke index1 = Index([5, 2, 3, 4], name='index1') index2 = Index([2, 3, 4, 1]) result = index1.symmetric_difference(index2, sort=sort) expected = Index([5, 1]) assert tm.equalContents(result, expected) assert result.name is None if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # __xor__ syntax expected = index1 ^ index2 assert tm.equalContents(result, expected) assert result.name is None @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference']) def test_difference_incomparable(self, opname): a = pd.Index([3, pd.Timestamp('2000'), 1]) b = pd.Index([2, pd.Timestamp('1999'), 1]) op = operator.methodcaller(opname, b) # sort=None, the default result = op(a) expected = pd.Index([3, pd.Timestamp('2000'), 2, pd.Timestamp('1999')]) if opname == 'difference': expected = expected[:2] tm.assert_index_equal(result, expected) # sort=False op = operator.methodcaller(opname, b, sort=False) result = op(a) tm.assert_index_equal(result, expected) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference']) def test_difference_incomparable_true(self, opname): # TODO decide on True behaviour # # sort=True, raises a = pd.Index([3, pd.Timestamp('2000'), 1]) b = pd.Index([2, pd.Timestamp('1999'), 1]) op = operator.methodcaller(opname, b, sort=True) with pytest.raises(TypeError, match='Cannot compare'): op(a) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_mi(self, sort): index1 = MultiIndex.from_tuples(self.tuples) index2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = index1.symmetric_difference(index2, sort=sort) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) @pytest.mark.parametrize("index2,expected", [ (Index([0, 1, np.nan]), Index([2.0, 3.0, 0.0])), (Index([0, 1]), Index([np.nan, 2.0, 3.0, 0.0]))]) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_missing(self, index2, expected, sort): # GH 13514 change: {nan} - {nan} == {} # (GH 6444, sorting of nans, is no longer an issue) index1 = Index([1, np.nan, 2, 3]) result = index1.symmetric_difference(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_non_index(self, sort): index1 = Index([1, 2, 3, 4], name='index1') index2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = index1.symmetric_difference(index2, sort=sort) assert tm.equalContents(result, expected) assert result.name == 'index1' result = index1.symmetric_difference(index2, result_name='new_name', sort=sort) assert tm.equalContents(result, expected) assert result.name == 'new_name' @pytest.mark.parametrize("sort", [None, False]) def test_difference_type(self, sort): # GH 20040 # If taking difference of a set and itself, it # needs to preserve the type of the index skip_index_keys = ['repeats'] for key, index in self.generate_index_types(skip_index_keys): result = index.difference(index, sort=sort) expected = index.drop(index) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_difference(self, sort): # GH 20040 # Test that the intersection of an index with an # empty index produces the same index as the difference # of an index with itself. Test for all types skip_index_keys = ['repeats'] for key, index in self.generate_index_types(skip_index_keys): inter = index.intersection(index.drop(index)) diff = index.difference(index, sort=sort) tm.assert_index_equal(inter, diff) @pytest.mark.parametrize("attr,expected", [ ('strIndex', False), ('boolIndex', False), ('catIndex', False), ('intIndex', True), ('dateIndex', False), ('floatIndex', True)]) def test_is_numeric(self, attr, expected): assert getattr(self, attr).is_numeric() == expected @pytest.mark.parametrize("attr,expected", [ ('strIndex', True), ('boolIndex', True), ('catIndex', False), ('intIndex', False), ('dateIndex', False), ('floatIndex', False)]) def test_is_object(self, attr, expected): assert getattr(self, attr).is_object() == expected @pytest.mark.parametrize("attr,expected", [ ('strIndex', False), ('boolIndex', False), ('catIndex', False), ('intIndex', False), ('dateIndex', True), ('floatIndex', False)]) def test_is_all_dates(self, attr, expected): assert getattr(self, attr).is_all_dates == expected def test_summary(self): self._check_method_works(Index._summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind._summary() # shouldn't be formatted accidentally. assert '~:{range}:0' in result assert '{other}%s' in result # GH18217 def test_summary_deprecated(self): ind = Index(['{other}%s', "~:{range}:0"], name='A') with tm.assert_produces_warning(FutureWarning): ind.summary() def test_format(self): self._check_method_works(Index.format) # GH 14626 # windows has different precision on datetime.datetime.now (it doesn't # include us since the default for Timestamp shows these but Index # formatting does not we are skipping) now = datetime.now() if not str(now).endswith("000"): index = Index([now]) formatted = index.format() expected = [str(index[0])] assert formatted == expected self.strIndex[:0].format() @pytest.mark.parametrize("vals", [ [1, 2.0 + 3.0j, 4.], ['a', 'b', 'c']]) def test_format_missing(self, vals, nulls_fixture): # 2845 vals = list(vals) # Copy for each iteration vals.append(nulls_fixture) index = Index(vals) formatted = index.format() expected = [str(index[0]), str(index[1]), str(index[2]), 'NaN'] assert formatted == expected assert index[3] is nulls_fixture def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) assert formatted[0] == 'something' def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] assert len(result) == 2 assert result == expected @pytest.mark.parametrize("op", ['any', 'all']) def test_logical_compat(self, op): index = self.create_index() assert getattr(index, op)() == getattr(index.values, op)() def _check_method_works(self, method): # TODO: make this a dedicated test with parametrized methods method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) method(self.catIndex) def test_get_indexer(self): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) r1 = index1.get_indexer(index2) e1 = np.array([1, 3, -1], dtype=np.intp) assert_almost_equal(r1, e1) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("expected,method", [ (np.array([-1, 0, 0, 1, 1], dtype=np.intp), 'pad'), (np.array([-1, 0, 0, 1, 1], dtype=np.intp), 'ffill'), (np.array([0, 0, 1, 1, 2], dtype=np.intp), 'backfill'), (np.array([0, 0, 1, 1, 2], dtype=np.intp), 'bfill')]) def test_get_indexer_methods(self, reverse, expected, method): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) if reverse: index1 = index1[::-1] expected = expected[::-1] result = index2.get_indexer(index1, method=method) assert_almost_equal(result, expected) def test_get_indexer_invalid(self): # GH10411 index = Index(np.arange(10)) with pytest.raises(ValueError, match='tolerance argument'): index.get_indexer([1, 0], tolerance=1) with pytest.raises(ValueError, match='limit argument'): index.get_indexer([1, 0], limit=1) @pytest.mark.parametrize( 'method, tolerance, indexer, expected', [ ('pad', None, [0, 5, 9], [0, 5, 9]), ('backfill', None, [0, 5, 9], [0, 5, 9]), ('nearest', None, [0, 5, 9], [0, 5, 9]), ('pad', 0, [0, 5, 9], [0, 5, 9]), ('backfill', 0, [0, 5, 9], [0, 5, 9]), ('nearest', 0, [0, 5, 9], [0, 5, 9]), ('pad', None, [0.2, 1.8, 8.5], [0, 1, 8]), ('backfill', None, [0.2, 1.8, 8.5], [1, 2, 9]), ('nearest', None, [0.2, 1.8, 8.5], [0, 2, 9]), ('pad', 1, [0.2, 1.8, 8.5], [0, 1, 8]), ('backfill', 1, [0.2, 1.8, 8.5], [1, 2, 9]), ('nearest', 1, [0.2, 1.8, 8.5], [0, 2, 9]), ('pad', 0.2, [0.2, 1.8, 8.5], [0, -1, -1]), ('backfill', 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]), ('nearest', 0.2, [0.2, 1.8, 8.5], [0, 2, -1])]) def test_get_indexer_nearest(self, method, tolerance, indexer, expected): index = Index(np.arange(10)) actual = index.get_indexer(indexer, method=method, tolerance=tolerance) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize('listtype', [list, tuple, Series, np.array]) @pytest.mark.parametrize( 'tolerance, expected', list(zip([[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]], [[0, 2, -1], [0, -1, -1], [-1, 2, 9]]))) def test_get_indexer_nearest_listlike_tolerance(self, tolerance, expected, listtype): index = Index(np.arange(10)) actual = index.get_indexer([0.2, 1.8, 8.5], method='nearest', tolerance=listtype(tolerance)) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) def test_get_indexer_nearest_error(self): index = Index(np.arange(10)) with pytest.raises(ValueError, match='limit argument'): index.get_indexer([1, 0], method='nearest', limit=1) with pytest.raises(ValueError, match='tolerance size must match'): index.get_indexer([1, 0], method='nearest', tolerance=[1, 2, 3]) @pytest.mark.parametrize("method,expected", [ ('pad', [8, 7, 0]), ('backfill', [9, 8, 1]), ('nearest', [9, 7, 0])]) def test_get_indexer_nearest_decreasing(self, method, expected): index = Index(np.arange(10))[::-1] actual = index.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp)) actual = index.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize("method,expected", [ ('pad', np.array([-1, 0, 1, 1], dtype=np.intp)), ('backfill', np.array([0, 0, 1, -1], dtype=np.intp))]) def test_get_indexer_strings(self, method, expected): index = pd.Index(['b', 'c']) actual = index.get_indexer(['a', 'b', 'c', 'd'], method=method) tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_strings_raises(self): index = pd.Index(['b', 'c']) msg = r"unsupported operand type\(s\) for -: 'str' and 'str'" with pytest.raises(TypeError, match=msg): index.get_indexer(['a', 'b', 'c', 'd'], method='nearest') with pytest.raises(TypeError, match=msg): index.get_indexer(['a', 'b', 'c', 'd'], method='pad', tolerance=2) with pytest.raises(TypeError, match=msg): index.get_indexer(['a', 'b', 'c', 'd'], method='pad', tolerance=[2, 2, 2, 2]) def test_get_indexer_numeric_index_boolean_target(self): # GH 16877 numeric_index = pd.Index(range(4)) result = numeric_index.get_indexer([True, False, True]) expected = np.array([-1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_get_indexer_with_NA_values(self, unique_nulls_fixture, unique_nulls_fixture2): # GH 22332 # check pairwise, that no pair of na values # is mangled if unique_nulls_fixture is unique_nulls_fixture2: return # skip it, values are not unique arr = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=np.object) index = pd.Index(arr, dtype=np.object) result = index.get_indexer([unique_nulls_fixture, unique_nulls_fixture2, 'Unknown']) expected = np.array([0, 1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("method", [None, 'pad', 'backfill', 'nearest']) def test_get_loc(self, method): index = pd.Index([0, 1, 2]) assert index.get_loc(1, method=method) == 1 if method: assert index.get_loc(1, method=method, tolerance=0) == 1 @pytest.mark.parametrize("method", [None, 'pad', 'backfill', 'nearest']) def test_get_loc_raises_bad_label(self, method): index = pd.Index([0, 1, 2]) if method: # Messages vary across versions if PY36: msg = 'not supported between' else: msg = 'unorderable types' else: msg = 'invalid key' with pytest.raises(TypeError, match=msg): index.get_loc([1, 2], method=method) @pytest.mark.parametrize("method,loc", [ ('pad', 1), ('backfill', 2), ('nearest', 1)]) def test_get_loc_tolerance(self, method, loc): index = pd.Index([0, 1, 2]) assert index.get_loc(1.1, method) == loc assert index.get_loc(1.1, method, tolerance=1) == loc @pytest.mark.parametrize("method", ['pad', 'backfill', 'nearest']) def test_get_loc_outside_tolerance_raises(self, method): index = pd.Index([0, 1, 2]) with pytest.raises(KeyError, match='1.1'): index.get_loc(1.1, method, tolerance=0.05) def test_get_loc_bad_tolerance_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='must be numeric'): index.get_loc(1.1, 'nearest', tolerance='invalid') def test_get_loc_tolerance_no_method_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='tolerance .* valid if'): index.get_loc(1.1, tolerance=1) def test_get_loc_raises_missized_tolerance(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='tolerance size must match'): index.get_loc(1.1, 'nearest', tolerance=[1, 1]) def test_get_loc_raises_object_nearest(self): index = pd.Index(['a', 'c']) with pytest.raises(TypeError, match='unsupported operand type'): index.get_loc('a', method='nearest') def test_get_loc_raises_object_tolerance(self): index = pd.Index(['a', 'c']) with pytest.raises(TypeError, match='unsupported operand type'): index.get_loc('a', method='pad', tolerance='invalid') @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(start=2) == (2, n) assert index.slice_locs(start=3) == (3, n) assert index.slice_locs(3, 8) == (3, 6) assert index.slice_locs(5, 10) == (3, n) assert index.slice_locs(end=8) == (0, 6) assert index.slice_locs(end=9) == (0, 7) # reversed index2 = index[::-1] assert index2.slice_locs(8, 2) == (2, 6) assert index2.slice_locs(7, 3) == (2, 5) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_float_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(5.0, 10.0) == (3, n) assert index.slice_locs(4.5, 10.5) == (3, 8) index2 = index[::-1] assert index2.slice_locs(8.5, 1.5) == (2, 6) assert index2.slice_locs(10.5, -1) == (0, n) def test_slice_locs_dup(self): index = Index(['a', 'a', 'b', 'c', 'd', 'd']) assert index.slice_locs('a', 'd') == (0, 6) assert index.slice_locs(end='d') == (0, 6) assert index.slice_locs('a', 'c') == (0, 4) assert index.slice_locs('b', 'd') == (2, 6) index2 = index[::-1] assert index2.slice_locs('d', 'a') == (0, 6) assert index2.slice_locs(end='a') == (0, 6) assert index2.slice_locs('d', 'b') == (0, 4) assert index2.slice_locs('c', 'a') == (2, 6) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs_dup_numeric(self, dtype): index = Index(np.array([10, 12, 12, 14], dtype=dtype)) assert index.slice_locs(12, 12) == (1, 3) assert index.slice_locs(11, 13) == (1, 3) index2 = index[::-1] assert index2.slice_locs(12, 12) == (1, 3) assert index2.slice_locs(13, 11) == (1, 3) def test_slice_locs_na(self): index = Index([np.nan, 1, 2]) assert index.slice_locs(1) == (1, 3) assert index.slice_locs(np.nan) == (0, 3) index = Index([0, np.nan, np.nan, 1, 2]) assert index.slice_locs(np.nan) == (1, 5) def test_slice_locs_na_raises(self): index = Index([np.nan, 1, 2]) with pytest.raises(KeyError, match=''): index.slice_locs(start=1.5) with pytest.raises(KeyError, match=''): index.slice_locs(end=1.5) @pytest.mark.parametrize("in_slice,expected", [ (pd.IndexSlice[::-1], 'yxdcb'), (pd.IndexSlice['b':'y':-1], ''), (pd.IndexSlice['b'::-1], 'b'), (pd.IndexSlice[:'b':-1], 'yxdcb'), (pd.IndexSlice[:'y':-1], 'y'), (pd.IndexSlice['y'::-1], 'yxdcb'), (pd.IndexSlice['y'::-4], 'yb'), # absent labels (pd.IndexSlice[:'a':-1], 'yxdcb'), (pd.IndexSlice[:'a':-2], 'ydb'), (pd.IndexSlice['z'::-1], 'yxdcb'), (pd.IndexSlice['z'::-3], 'yc'), (pd.IndexSlice['m'::-1], 'dcb'), (pd.IndexSlice[:'m':-1], 'yx'), (pd.IndexSlice['a':'a':-1], ''), (pd.IndexSlice['z':'z':-1], ''), (pd.IndexSlice['m':'m':-1], '') ]) def test_slice_locs_negative_step(self, in_slice, expected): index = Index(list('bcdxy')) s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step) result = index[s_start:s_stop:in_slice.step] expected = pd.Index(list(expected)) tm.assert_index_equal(result, expected) def test_drop_by_str_label(self): # TODO: Parametrize these after replacing self.strIndex with fixture n = len(self.strIndex) drop = self.strIndex[lrange(5, 10)] dropped = self.strIndex.drop(drop) expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("keys", [['foo', 'bar'], ['1', 'bar']]) def test_drop_by_str_label_raises_missing_keys(self, keys): with pytest.raises(KeyError, match=''): self.strIndex.drop(keys) def test_drop_by_str_label_errors_ignore(self): # TODO: Parametrize these after replacing self.strIndex with fixture # errors='ignore' n = len(self.strIndex) drop = self.strIndex[lrange(5, 10)] mixed = drop.tolist() + ['foo'] dropped = self.strIndex.drop(mixed, errors='ignore') expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(['foo', 'bar'], errors='ignore') expected = self.strIndex[lrange(n)] tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_loc(self): # TODO: Parametrize numeric and str tests after self.strIndex fixture index = Index([1, 2, 3]) dropped = index.drop(1) expected = Index([2, 3]) tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_raises_missing_keys(self): index = Index([1, 2, 3]) with pytest.raises(KeyError, match=''): index.drop([3, 4]) @pytest.mark.parametrize("key,expected", [ (4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]) def test_drop_by_numeric_label_errors_ignore(self, key, expected): index = Index([1, 2, 3]) dropped = index.drop(key, errors='ignore') tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("values", [['a', 'b', ('c', 'd')], ['a', ('c', 'd'), 'b'], [('c', 'd'), 'a', 'b']]) @pytest.mark.parametrize("to_drop", [[('c', 'd'), 'a'], ['a', ('c', 'd')]]) def test_drop_tuple(self, values, to_drop): # GH 18304 index = pd.Index(values) expected = pd.Index(['b']) result = index.drop(to_drop) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[0]) for drop_me in to_drop[1], [to_drop[1]]: result = removed.drop(drop_me) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[1]) msg = r"\"\[{}\] not found in axis\"".format( re.escape(to_drop[1].__repr__())) for drop_me in to_drop[1], [to_drop[1]]: with pytest.raises(KeyError, match=msg): removed.drop(drop_me) @pytest.mark.parametrize("method,expected,sort", [ ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]), False), ('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]), None), ('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]), None) ]) def test_tuple_union_bug(self, method, expected, sort): index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')])) index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')])) result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("attr", [ 'is_monotonic_increasing', 'is_monotonic_decreasing', '_is_strictly_monotonic_increasing', '_is_strictly_monotonic_decreasing']) def test_is_monotonic_incomparable(self, attr): index = Index([5, datetime.now(), 7]) assert not getattr(index, attr) def test_get_set_value(self): # TODO: Remove function? GH 19728 values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) assert values[67] == 10 @pytest.mark.parametrize("values", [ ['foo', 'bar', 'quux'], {'foo', 'bar', 'quux'}]) @pytest.mark.parametrize("index,expected", [ (Index(['qux', 'baz', 'foo', 'bar']), np.array([False, False, True, True])), (Index([]), np.array([], dtype=bool)) # empty ]) def test_isin(self, values, index, expected): result = index.isin(values) tm.assert_numpy_array_equal(result, expected) def test_isin_nan_common_object(self, nulls_fixture, nulls_fixture2): # Test cartesian product of null fixtures and ensure that we don't # mangle the various types (save a corner case with PyPy) # all nans are the same if (isinstance(nulls_fixture, float) and isinstance(nulls_fixture2, float) and math.isnan(nulls_fixture) and math.isnan(nulls_fixture2)): tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, True])) elif nulls_fixture is nulls_fixture2: # should preserve NA type tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, True])) else: tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, False])) def test_isin_nan_common_float64(self, nulls_fixture): if nulls_fixture is pd.NaT: pytest.skip("pd.NaT not compatible with Float64Index") # Float64Index overrides isin, so must be checked separately tm.assert_numpy_array_equal(Float64Index([1.0, nulls_fixture]).isin( [np.nan]), np.array([False, True])) # we cannot compare NaT with NaN tm.assert_numpy_array_equal(Float64Index([1.0, nulls_fixture]).isin( [pd.NaT]), np.array([False, False])) @pytest.mark.parametrize("level", [0, -1]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg(self, level, index): values = index.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, index.isin(values, level=level)) index.name = 'foobar' tm.assert_numpy_array_equal(expected, index.isin(values, level='foobar')) @pytest.mark.parametrize("level", [1, 10, -2]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg_raises_bad_index(self, level, index): with pytest.raises(IndexError, match='Too many levels'): index.isin([], level=level) @pytest.mark.parametrize("level", [1.0, 'foobar', 'xyzzy', np.nan]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg_raises_key(self, level, index): with pytest.raises(KeyError, match='must be same as name'): index.isin([], level=level) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_isin_empty(self, empty): # see gh-16991 index = Index(["a", "b"]) expected = np.array([False, False]) result = index.isin(empty) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("values", [ [1, 2, 3, 4], [1., 2., 3., 4.], [True, True, True, True], ["foo", "bar", "baz", "qux"], pd.date_range('2018-01-01', freq='D', periods=4)]) def test_boolean_cmp(self, values): index = Index(values) result = (index == values) expected = np.array([True, True, True, True], dtype=bool) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("name,level", [ (None, 0), ('a', 'a')]) def test_get_level_values(self, name, level): expected = self.strIndex.copy() if name: expected.name = name result = expected.get_level_values(level) tm.assert_index_equal(result, expected) def test_slice_keep_name(self): index = Index(['a', 'b'], name='asdf') assert index.name == index[1:].name # instance attributes of the form self.<name>Index @pytest.mark.parametrize('index_kind', ['unicode', 'str', 'date', 'int', 'float']) def test_join_self(self, join_type, index_kind): res = getattr(self, '{0}Index'.format(index_kind)) joined = res.join(res, how=join_type) assert res is joined @pytest.mark.parametrize("method", ['strip', 'rstrip', 'lstrip']) def test_str_attribute(self, method): # GH9068 index = Index([' jack', 'jill ', ' jesse ', 'frank']) expected = Index([getattr(str, method)(x) for x in index.values]) result = getattr(index.str, method)() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", [ Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([('foo', '1'), ('bar', '3')]), period_range(start='2000', end='2010', freq='A')]) def test_str_attribute_raises(self, index): with pytest.raises(AttributeError, match='only use .str accessor'): index.str.repeat(2) @pytest.mark.parametrize("expand,expected", [ (None, Index([['a', 'b', 'c'], ['d', 'e'], ['f']])), (False, Index([['a', 'b', 'c'], ['d', 'e'], ['f']])), (True, MultiIndex.from_tuples([('a', 'b', 'c'), ('d', 'e', np.nan), ('f', np.nan, np.nan)]))]) def test_str_split(self, expand, expected): index = Index(['a b c', 'd e', 'f']) if expand is not None: result = index.str.split(expand=expand) else: result = index.str.split() tm.assert_index_equal(result, expected) def test_str_bool_return(self): # test boolean case, should return np.array instead of boolean Index index = Index(['a1', 'a2', 'b1', 'b2']) result = index.str.startswith('a') expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(result, expected) assert isinstance(result, np.ndarray) def test_str_bool_series_indexing(self): index = Index(['a1', 'a2', 'b1', 'b2']) s = Series(range(4), index=index) result = s[s.index.str.startswith('a')] expected = Series(range(2), index=['a1', 'a2']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index,expected", [ (Index(list('abcd')), True), (Index(range(4)), False)]) def test_tab_completion(self, index, expected): # GH 9910 result = 'str' in dir(index) assert result == expected def test_indexing_doesnt_change_class(self): index = Index([1, 2, 3, 'a', 'b', 'c']) assert index[1:3].identical(pd.Index([2, 3], dtype=np.object_)) assert index[[0, 1]].identical(pd.Index([1, 2], dtype=np.object_)) def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how='outer') # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union( left_index.astype(object)) tm.assert_index_equal(result, expected) def test_nan_first_take_datetime(self): index = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) result = index.take([-1, 0, 1]) expected = Index([index[-1], index[0], index[1]]) tm.assert_index_equal(result, expected) def test_take_fill_value(self): # GH 12631 index = pd.Index(list('ABC'), name='xxx') result = index.take(np.array([1, 0, -1])) expected = pd.Index(list('BAC'), name='xxx') tm.assert_index_equal(result, expected) # fill_value result = index.take(np.array([1, 0, -1]), fill_value=True) expected = pd.Index(['B', 'A', np.nan], name='xxx') tm.assert_index_equal(result, expected) # allow_fill=False result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.Index(['B', 'A', 'C'], name='xxx') tm.assert_index_equal(result, expected) def test_take_fill_value_none_raises(self): index = pd.Index(list('ABC'), name='xxx') msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -5]), fill_value=True) def test_take_bad_bounds_raises(self): index = pd.Index(list('ABC'), name='xxx') with pytest.raises(IndexError, match='out of bounds'): index.take(np.array([1, -5])) @pytest.mark.parametrize("name", [None, 'foobar']) @pytest.mark.parametrize("labels", [ [], np.array([]), ['A', 'B', 'C'], ['C', 'B', 'A'], np.array(['A', 'B', 'C']), np.array(['C', 'B', 'A']), # Must preserve name even if dtype changes pd.date_range('20130101', periods=3).values, pd.date_range('20130101', periods=3).tolist()]) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels): # GH6552 index = pd.Index([0, 1, 2]) index.name = name assert index.reindex(labels)[0].name == name @pytest.mark.parametrize("labels", [ [], np.array([]), np.array([], dtype=np.int64)]) def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels): # GH7774 index = pd.Index(list('abc')) assert index.reindex(labels)[0].dtype.type == np.object_ @pytest.mark.parametrize("labels,dtype", [ (pd.Int64Index([]), np.int64), (pd.Float64Index([]), np.float64), (pd.DatetimeIndex([]), np.datetime64)]) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype): # GH7774 index = pd.Index(list('abc')) assert index.reindex(labels)[0].dtype.type == dtype def test_reindex_no_type_preserve_target_empty_mi(self): index = pd.Index(list('abc')) result = index.reindex(pd.MultiIndex( [pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] assert result.levels[0].dtype.type == np.int64 assert result.levels[1].dtype.type == np.float64 def test_groupby(self): index = Index(range(5)) result = index.groupby(np.array([1, 1, 2, 2, 2])) expected = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])} tm.assert_dict_equal(result, expected) @pytest.mark.parametrize("mi,expected", [ (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])), (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False]))]) def test_equals_op_multiindex(self, mi, expected): # GH9785 # test comparisons of multiindex df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) result = df.index == mi tm.assert_numpy_array_equal(result, expected) def test_equals_op_multiindex_identify(self): df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) result = df.index == df.index expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", [ MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]), Index(['foo', 'bar', 'baz'])]) def test_equals_op_mismatched_multiindex_raises(self, index): df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) with pytest.raises(ValueError, match="Lengths must match"): df.index == index def test_equals_op_index_vs_mi_same_length(self): mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) index = Index(['foo', 'bar', 'baz']) result = mi == index expected = np.array([False, False, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dt_conv", [ pd.to_datetime, pd.to_timedelta]) def test_dt_conversion_preserves_name(self, dt_conv): # GH 10875 index = pd.Index(['01:02:03', '01:02:04'], name='label') assert index.name == dt_conv(index).name @pytest.mark.parametrize("index,expected", [ # ASCII # short (pd.Index(['a', 'bb', 'ccc']), """Index(['a', 'bb', 'ccc'], dtype='object')"""), # multiple lines (pd.Index(['a', 'bb', 'ccc'] * 10), """\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object')"""), # truncated (pd.Index(['a', 'bb', 'ccc'] * 100), """\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', ... 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object', length=300)"""), # Non-ASCII # short (pd.Index(['あ', 'いい', 'ううう']), """Index(['あ', 'いい', 'ううう'], dtype='object')"""), # multiple lines (pd.Index(['あ', 'いい', 'ううう'] * 10), ("Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう'],\n" " dtype='object')")), # truncated (pd.Index(['あ', 'いい', 'ううう'] * 100), ("Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ',\n" " ...\n" " 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう'],\n" " dtype='object', length=300)"))]) def test_string_index_repr(self, index, expected): result = repr(index) assert result == expected @pytest.mark.parametrize("index,expected", [ # short (pd.Index(['あ', 'いい', 'ううう']), ("Index(['あ', 'いい', 'ううう'], " "dtype='object')")), # multiple lines (pd.Index(['あ', 'いい', 'ううう'] * 10), ("Index(['あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう'],\n" " dtype='object')""")), # truncated (pd.Index(['あ', 'いい', 'ううう'] * 100), ("Index(['あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ',\n" " ...\n" " 'ううう', 'あ', 'いい', 'ううう', 'あ', " "'いい', 'ううう', 'あ', 'いい',\n" " 'ううう'],\n" " dtype='object', length=300)"))]) def test_string_index_repr_with_unicode_option(self, index, expected): # Enable Unicode option ----------------------------------------- with cf.option_context('display.unicode.east_asian_width', True): result = repr(index) assert result == expected def test_cached_properties_not_settable(self): index = pd.Index([1, 2, 3]) with pytest.raises(AttributeError, match="Can't set attribute"): index.is_unique = False def test_get_duplicates_deprecated(self): index = pd.Index([1, 2, 3]) with tm.assert_produces_warning(FutureWarning): index.get_duplicates() def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip('IPython', minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; idx = pd.Index([1, 2])" ip.run_code(code) with tm.assert_produces_warning(None): with provisionalcompleter('ignore'): list(ip.Completer.completions('idx.', 4)) class TestMixedIntIndex(Base): # Mostly the tests from common.py for which the results differ # in py2 and py3 because ints and strings are uncomparable in py3 # (GH 13514) _holder = Index def setup_method(self, method): self.indices = dict(mixedIndex=Index([0, 'a', 1, 'b', 2, 'c'])) self.setup_indices() def create_index(self): return self.mixedIndex def test_argsort(self): index = self.create_index() if PY36: with pytest.raises(TypeError, match="'>|<' not supported"): index.argsort() else: with pytest.raises(TypeError, match="unorderable types"): index.argsort() def test_numpy_argsort(self): index = self.create_index() if PY36: with pytest.raises(TypeError, match="'>|<' not supported"): np.argsort(index) else: with pytest.raises(TypeError, match="unorderable types"): np.argsort(index) def test_copy_name(self): # Check that "name" argument passed at initialization is honoured # GH12309 index = self.create_index() first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) s3 = s1 * s2 assert s3.index.name == 'mario' def test_copy_name2(self): # Check that adding a "name" parameter to the copy is honored # GH14302 index = pd.Index([1, 2], name='MyName') index1 = index.copy() tm.assert_index_equal(index, index1) index2 = index.copy(name='NewName') tm.assert_index_equal(index, index2, check_names=False) assert index.name == 'MyName' assert index2.name == 'NewName' index3 = index.copy(names=['NewName']) tm.assert_index_equal(index, index3, check_names=False) assert index.name == 'MyName' assert index.names == ['MyName'] assert index3.name == 'NewName' assert index3.names == ['NewName'] def test_union_base(self): index = self.create_index() first = index[3:] second = index[:5] result = first.union(second) expected = Index([0, 1, 2, 'a', 'b', 'c']) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [ np.array, Series, list]) def test_union_different_type_base(self, klass): # GH 10149 index = self.create_index() first = index[3:] second = index[:5] result = first.union(klass(second.values)) assert tm.equalContents(result, index) def test_unique_na(self): idx = pd.Index([2, np.nan, 2, 1], name='my_index') expected = pd.Index([2, np.nan, 1], name='my_index') result = idx.unique() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:5] second = index[:3] expected = Index([0, 1, 'a']) if sort is None else Index([0, 'a', 1]) result = first.intersection(second, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [ np.array, Series, list]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_different_type_base(self, klass, sort): # GH 10149 index = self.create_index() first = index[:5] second = index[:3] result = first.intersection(klass(second.values), sort=sort) assert tm.equalContents(result, second) @pytest.mark.parametrize("sort", [None, False]) def test_difference_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:4] second = index[3:] result = first.difference(second, sort) expected = Index([0, 'a', 1]) if sort is None: expected = Index(safe_sort(expected)) tm.assert_index_equal(result, expected) def test_symmetric_difference(self): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:4] second = index[3:] result = first.symmetric_difference(second) expected = Index([0, 1, 2, 'a', 'c']) tm.assert_index_equal(result, expected) def test_logical_compat(self): index = self.create_index() assert index.all() == index.values.all() assert index.any() == index.values.any() @pytest.mark.parametrize("how", ['any', 'all']) @pytest.mark.parametrize("dtype", [ None, object, 'category']) @pytest.mark.parametrize("vals,expected", [ ([1, 2, 3], [1, 2, 3]), ([1., 2., 3.], [1., 2., 3.]), ([1., 2., np.nan, 3.], [1., 2., 3.]), (['A', 'B', 'C'], ['A', 'B', 'C']), (['A', np.nan, 'B', 'C'], ['A', 'B', 'C'])]) def test_dropna(self, how, dtype, vals, expected): # GH 6194 index = pd.Index(vals, dtype=dtype) result = index.dropna(how=how) expected = pd.Index(expected, dtype=dtype) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("how", ['any', 'all']) @pytest.mark.parametrize("index,expected", [ (pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03']), pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'])), (pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', pd.NaT]), pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'])), (pd.TimedeltaIndex(['1 days', '2 days', '3 days']), pd.TimedeltaIndex(['1 days', '2 days', '3 days'])), (pd.TimedeltaIndex([pd.NaT, '1 days', '2 days', '3 days', pd.NaT]), pd.TimedeltaIndex(['1 days', '2 days', '3 days'])), (pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M'), pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M')), (pd.PeriodIndex(['2012-02', '2012-04', 'NaT', '2012-05'], freq='M'), pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M'))]) def test_dropna_dt_like(self, how, index, expected): result = index.dropna(how=how) tm.assert_index_equal(result, expected) def test_dropna_invalid_how_raises(self): msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): pd.Index([1, 2, 3]).dropna(how='xxx') def test_get_combined_index(self): result = _get_combined_index([]) expected = Index([]) tm.assert_index_equal(result, expected) def test_repeat(self): repeats = 2 index = pd.Index([1, 2, 3]) expected = pd.Index([1, 1, 2, 2, 3, 3]) result = index.repeat(repeats) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", [ pd.Index([np.nan]), pd.Index([np.nan, 1]), pd.Index([1, 2, np.nan]), pd.Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT'])]) def test_is_monotonic_na(self, index): assert index.is_monotonic_increasing is False assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_increasing is False assert index._is_strictly_monotonic_decreasing is False def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): result = repr(pd.Index(np.arange(1000))) assert len(result) < 200 assert "..." in result @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_int_name_format(self, klass): index = Index(['a', 'b', 'c'], name=0) result = klass(lrange(3), index=index) assert '0' in repr(result) def test_print_unicode_columns(self): df = pd.DataFrame({"\u05d0": [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError @pytest.mark.parametrize("func", [str, bytes]) def test_with_unicode(self, func): index = Index(lrange(1000)) func(index) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] index1 = Index(dt_dates, dtype=object) index2 = Index(['aa'], dtype=object) result = index2.intersection(index1) expected = Index([], dtype=object) tm.assert_index_equal(result, expected) class TestIndexUtils: @pytest.mark.parametrize('data, names, expected', [ ([[1, 2, 3]], None, Index([1, 2, 3])), ([[1, 2, 3]], ['name'], Index([1, 2, 3], name='name')), ([['a', 'a'], ['c', 'd']], None, MultiIndex([['a'], ['c', 'd']], [[0, 0], [0, 1]])), ([['a', 'a'], ['c', 'd']], ['L1', 'L2'], MultiIndex([['a'], ['c', 'd']], [[0, 0], [0, 1]], names=['L1', 'L2'])), ]) def test_ensure_index_from_sequences(self, data, names, expected): result = ensure_index_from_sequences(data, names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('opname', ['eq', 'ne', 'le', 'lt', 'ge', 'gt', 'add', 'radd', 'sub', 'rsub', 'mul', 'rmul', 'truediv', 'rtruediv', 'floordiv', 'rfloordiv', 'pow', 'rpow', 'mod', 'divmod']) def test_generated_op_names(opname, indices): index = indices if isinstance(index, ABCIndex) and opname == 'rsub': # pd.Index.__rsub__ does not exist; though the method does exist # for subclasses. see GH#19723 return opname = '__{name}__'.format(name=opname) method = getattr(index, opname) assert method.__name__ == opname @pytest.mark.parametrize('index_maker', tm.index_subclass_makers_generator()) def test_index_subclass_constructor_wrong_kwargs(index_maker): # GH #19348 with pytest.raises(TypeError, match='unexpected keyword argument'): index_maker(foo='bar') def test_deprecated_fastpath(): with tm.assert_produces_warning(FutureWarning): idx = pd.Index( np.array(['a', 'b'], dtype=object), name='test', fastpath=True) expected = pd.Index(['a', 'b'], name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.Int64Index( np.array([1, 2, 3], dtype='int64'), name='test', fastpath=True) expected = pd.Index([1, 2, 3], name='test', dtype='int64') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.RangeIndex(0, 5, 2, name='test', fastpath=True) expected = pd.RangeIndex(0, 5, 2, name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.CategoricalIndex(['a', 'b', 'c'], name='test', fastpath=True) expected = pd.CategoricalIndex(['a', 'b', 'c'], name='test') tm.assert_index_equal(idx, expected)
the-stack_106_22507
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- '''Run list encoding utilities. .. versionadded:: 1.1 ''' from builtins import str from builtins import zip from builtins import next from builtins import object __docformat__ = 'restructuredtext' __version__ = '$Id: $' class _Run(object): def __init__(self, value, count): self.value = value self.count = count def __repr__(self): return 'Run(%r, %d)' % (self.value, self.count) class RunList(object): '''List of contiguous runs of values. A `RunList` is an efficient encoding of a sequence of values. For example, the sequence ``aaaabbccccc`` is encoded as ``(4, a), (2, b), (5, c)``. The class provides methods for modifying and querying the run list without needing to deal with the tricky cases of splitting and merging the run list entries. Run lists are used to represent formatted character data in pyglet. A separate run list is maintained for each style attribute, for example, bold, italic, font size, and so on. Unless you are overriding the document interfaces, the only interaction with run lists is via `RunIterator`. The length and ranges of a run list always refer to the character positions in the decoded list. For example, in the above sequence, ``set_run(2, 5, 'x')`` would change the sequence to ``aaxxxbccccc``. ''' def __init__(self, size, initial): '''Create a run list of the given size and a default value. :Parameters: `size` : int Number of characters to represent initially. `initial` : object The value of all characters in the run list. ''' self.runs = [_Run(initial, size)] def insert(self, pos, length): '''Insert characters into the run list. The inserted characters will take on the value immediately preceding the insertion point (or the value of the first character, if `pos` is 0). :Parameters: `pos` : int Insertion index `length` : int Number of characters to insert. ''' i = 0 for run in self.runs: if i <= pos <= i + run.count: run.count += length i += run.count def delete(self, start, end): '''Remove characters from the run list. :Parameters: `start` : int Starting index to remove from. `end` : int End index, exclusive. ''' i = 0 for run in self.runs: if end - start == 0: break if i <= start <= i + run.count: trim = min(end - start, i + run.count - start) run.count -= trim end -= trim i += run.count self.runs = [r for r in self.runs if r.count > 0] # Don't leave an empty list if not self.runs: self.runs = [_Run(run.value, 0)] def set_run(self, start, end, value): '''Set the value of a range of characters. :Parameters: `start` : int Start index of range. `end` : int End of range, exclusive. `value` : object Value to set over the range. ''' if end - start <= 0: return # Find runs that need to be split i = 0 start_i = None start_trim = 0 end_i = None end_trim = 0 for run_i, run in enumerate(self.runs): count = run.count if i < start < i + count: start_i = run_i start_trim = start - i if i < end < i + count: end_i = run_i end_trim = end - i i += count # Split runs if start_i is not None: run = self.runs[start_i] self.runs.insert(start_i, _Run(run.value, start_trim)) run.count -= start_trim if end_i is not None: if end_i == start_i: end_trim -= start_trim end_i += 1 if end_i is not None: run = self.runs[end_i] self.runs.insert(end_i, _Run(run.value, end_trim)) run.count -= end_trim # Set new value on runs i = 0 for run in self.runs: if start <= i and i + run.count <= end: run.value = value i += run.count # Merge adjacent runs last_run = self.runs[0] for run in self.runs[1:]: if run.value == last_run.value: run.count += last_run.count last_run.count = 0 last_run = run # Delete collapsed runs self.runs = [r for r in self.runs if r.count > 0] def __iter__(self): i = 0 for run in self.runs: yield i, i + run.count, run.value i += run.count def get_run_iterator(self): '''Get an extended iterator over the run list. :rtype: `RunIterator` ''' return RunIterator(self) def __getitem__(self, index): '''Get the value at a character position. :Parameters: `index` : int Index of character. Must be within range and non-negative. :rtype: object ''' i = 0 for run in self.runs: if i <= index < i + run.count: return run.value i += run.count # Append insertion point if index == i: return self.runs[-1].value assert False, 'Index not in range' def __repr__(self): return str(list(self)) class AbstractRunIterator(object): '''Range iteration over `RunList`. `AbstractRunIterator` objects allow any monotonically non-decreasing access of the iteration, including repeated iteration over the same index. Use the ``[index]`` operator to get the value at a particular index within the document. For example:: run_iter = iter(run_list) value = run_iter[0] value = run_iter[0] # non-decreasing access is OK value = run_iter[15] value = run_iter[17] value = run_iter[16] # this is illegal, the index decreased. Using `AbstractRunIterator` to access increasing indices of the value runs is more efficient than calling `RunList.__getitem__` repeatedly. You can also iterate over monotonically non-decreasing ranges over the iteration. For example:: run_iter = iter(run_list) for start, end, value in run_iter.ranges(0, 20): pass for start, end, value in run_iter.ranges(25, 30): pass for start, end, value in run_iter.ranges(30, 40): pass Both start and end indices of the slice are required and must be positive. ''' def __getitem__(self, index): '''Get the value at a given index. See the class documentation for examples of valid usage. :Parameters: `index` : int Document position to query. :rtype: object ''' def ranges(self, start, end): '''Iterate over a subrange of the run list. See the class documentation for examples of valid usage. :Parameters: `start` : int Start index to iterate from. `end` : int End index, exclusive. :rtype: iterator :return: Iterator over (start, end, value) tuples. ''' class RunIterator(AbstractRunIterator): def __init__(self, run_list): self._run_list_iter = iter(run_list) self.start, self.end, self.value = next(self) def __next__(self): return next(self._run_list_iter) def __getitem__(self, index): while index >= self.end and index > self.start: # condition has special case for 0-length run (fixes issue 471) self.start, self.end, self.value = next(self) return self.value def ranges(self, start, end): while start >= self.end: self.start, self.end, self.value = next(self) yield start, min(self.end, end), self.value while end > self.end: self.start, self.end, self.value = next(self) yield self.start, min(self.end, end), self.value class OverriddenRunIterator(AbstractRunIterator): '''Iterator over a `RunIterator`, with a value temporarily replacing a given range. ''' def __init__(self, base_iterator, start, end, value): '''Create a derived iterator. :Parameters: `start` : int Start of range to override `end` : int End of range to override, exclusive `value` : object Value to replace over the range ''' self.iter = base_iterator self.override_start = start self.override_end = end self.override_value = value def ranges(self, start, end): if end <= self.override_start or start >= self.override_end: # No overlap for r in self.iter.ranges(start, end): yield r else: # Overlap: before, override, after if start < self.override_start < end: for r in self.iter.ranges(start, self.override_start): yield r yield (max(self.override_start, start), min(self.override_end, end), self.override_value) if start < self.override_end < end: for r in self.iter.ranges(self.override_end, end): yield r def __getitem__(self, index): if self.override_start <= index < self.override_end: return self.override_value else: return self.iter[index] class FilteredRunIterator(AbstractRunIterator): '''Iterate over an `AbstractRunIterator` with filtered values replaced by a default value. ''' def __init__(self, base_iterator, filter, default): '''Create a filtered run iterator. :Parameters: `base_iterator` : `AbstractRunIterator` Source of runs. `filter` : ``lambda object: bool`` Function taking a value as parameter, and returning ``True`` if the value is acceptable, and ``False`` if the default value should be substituted. `default` : object Default value to replace filtered values. ''' self.iter = base_iterator self.filter = filter self.default = default def ranges(self, start, end): for start, end, value in self.iter.ranges(start, end): if self.filter(value): yield start, end, value else: yield start, end, self.default def __getitem__(self, index): value = self.iter[index] if self.filter(value): return value return self.default class ZipRunIterator(AbstractRunIterator): '''Iterate over multiple run iterators concurrently.''' def __init__(self, range_iterators): self.range_iterators = range_iterators def ranges(self, start, end): iterators = [i.ranges(start, end) for i in self.range_iterators] starts, ends, values = zip(*[next(i) for i in iterators]) starts = list(starts) ends = list(ends) values = list(values) while start < end: min_end = min(ends) yield start, min_end, values start = min_end for i, iterator in enumerate(iterators): if ends[i] == min_end: starts[i], ends[i], values[i] = next(iterator) def __getitem__(self, index): return [i[index] for i in self.range_iterators] class ConstRunIterator(AbstractRunIterator): '''Iterate over a constant value without creating a RunList.''' def __init__(self, length, value): self.length = length self.value = value def __next__(self): yield 0, self.length, self.value def ranges(self, start, end): yield start, end, self.value def __getitem__(self, index): return self.value
the-stack_106_22508
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2018 Dan Tès <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.api.core import * class InputBotInlineResultPhoto(Object): """Attributes: ID: ``0xa8d864a7`` Args: id: ``str`` type: ``str`` photo: Either :obj:`InputPhotoEmpty <pyrogram.api.types.InputPhotoEmpty>` or :obj:`InputPhoto <pyrogram.api.types.InputPhoto>` send_message: Either :obj:`InputBotInlineMessageMediaAuto <pyrogram.api.types.InputBotInlineMessageMediaAuto>`, :obj:`InputBotInlineMessageText <pyrogram.api.types.InputBotInlineMessageText>`, :obj:`InputBotInlineMessageMediaGeo <pyrogram.api.types.InputBotInlineMessageMediaGeo>`, :obj:`InputBotInlineMessageMediaVenue <pyrogram.api.types.InputBotInlineMessageMediaVenue>`, :obj:`InputBotInlineMessageMediaContact <pyrogram.api.types.InputBotInlineMessageMediaContact>` or :obj:`InputBotInlineMessageGame <pyrogram.api.types.InputBotInlineMessageGame>` """ ID = 0xa8d864a7 def __init__(self, id: str, type: str, photo, send_message): self.id = id # string self.type = type # string self.photo = photo # InputPhoto self.send_message = send_message # InputBotInlineMessage @staticmethod def read(b: BytesIO, *args) -> "InputBotInlineResultPhoto": # No flags id = String.read(b) type = String.read(b) photo = Object.read(b) send_message = Object.read(b) return InputBotInlineResultPhoto(id, type, photo, send_message) def write(self) -> bytes: b = BytesIO() b.write(Int(self.ID, False)) # No flags b.write(String(self.id)) b.write(String(self.type)) b.write(self.photo.write()) b.write(self.send_message.write()) return b.getvalue()
the-stack_106_22509
import math import torch from torch import nn class PositionalEncoding(nn.Module): """ Implementation of the positional encoding from Vaswani et al. 2017 """ def __init__(self, d_model, dropout=0., max_len=5000, affinity=False, batch_first=True): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) if affinity: self.affinity = nn.Linear(d_model, d_model) else: self.affinity = None pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) self.batch_first = batch_first def forward(self, x): if self.affinity is not None: x = self.affinity(x) pe = self.pe[:x.size(1), :] if self.batch_first else self.pe[:x.size(0), :] x = x + pe return self.dropout(x)
the-stack_106_22510
#!/usr/bin/env python3 #coding=utf-8 import numpy as np import time from math import cos, sin, sqrt, pi, atan, asin, atan, atan2 from scipy.optimize import least_squares from scipy.spatial.transform import Rotation from std_msgs.msg import String from angles import normalize_angle import rospy from origarm_ros.srv import ik from origarm_ros.msg import * import traceback class softArm(object): def __init__(self, c1 =6 * 400 * 0.09 / 2.3e-3 / 2, lengthD=0.403,length=0.403 ,length0=0.403,alphaD=.0,betaD=.0,alpha=.0,beta=.0,actuator_type='small'): # meter radian self.initialBellowConfigurationAngle = [.0, pi/3, 2*pi/3, pi, -2*pi/3 ,-pi/3] self.bellowConfigurationAngleCos = np.array([.0]*6) self.bellowConfigurationAngleSin = np.array([.0]*6) self.pressureD = [.0]*6 self.pressure = [.0]*6 self.pressureLimit_Upper = 210 #Kpa self.pressureLimit_Lower = -100 if actuator_type == 'big': self.c1 = c1 self.radR = 0.09 elif actuator_type == 'small': self.c1 = c1 self.radR = 0.0615 self.angleULimit = pi self.angleDLimit = 0 self.lengthULimit = 10 self.lengthDLimit = 0 self.posVector = np.array([.0, .0, .0]) self.posVector_D = np.array([.0, .0, .0]) self.speedVector = np.array([.0, .0, .0]) self.angleVelocity = np.array([.0, .0, .0]) self.lengthD = lengthD self.length = length self.length0 = length0 self.alphaD = alphaD self.betaD = betaD self.alpha = alpha self.beta = beta self.flag = 0 for i in range(6): self.bellowConfigurationAngleCos[i] = cos(self.initialBellowConfigurationAngle[i]) self.bellowConfigurationAngleSin[i] = sin(self.initialBellowConfigurationAngle[i]) self.ABLD2PD() def constriant(self, *args): if self.angleDLimit <= args[0] <= self.angleULimit\ and self.lengthDLimit <= args[1] <= self.lengthULimit: return 1 else: return 0 def ABLD2PD(self): b1 = 2 * self.c1 * (self.lengthD - self.length0) / self.radR / 6 btemp = self.c1 * self.alphaD / 6 b2 = btemp * cos(self.betaD) b3 = 1.7320508 * btemp * sin(self.betaD) self.pressureD[0] = b1 + b2 * 2 self.pressureD[1] = b1 + b2 + b3 self.pressureD[2] = b1 - b2 + b3 self.pressureD[3] = b1 - b2 * 2 self.pressureD[4] = b1 - b2 - b3 self.pressureD[5] = b1 + b2 - b3 return self.pressureD def PD2ABLD(self): phycD = np.dot(self.pressureD,self.bellowConfigurationAngleCos) physD = np.dot(self.pressureD,self.bellowConfigurationAngleSin) self.alphaD = sqrt(phycD**2+physD**2)/self.c1 self.betaD = atan2(physD,phycD) self.lengthD = (self.pressureD[0]+self.pressureD[1]+self.pressureD[2]+self.pressureD[3]+ self.pressureD[4]+self.pressureD[5])/self.c1/2*self.radR+self.length0 return self.alphaD, self.betaD, self.lengthD def ABL2P(self): b1 = 2 * self.c1 * (self.length - self.length0) / self.radR / 6 btemp = self.c1 * self.alpha / 6 b2 = btemp * cos(self.beta) b3 = 1.7320508 * btemp * sin(self.beta) self.pressure[0] = b1 + b2 * 2 self.pressure[1] = b1 + b2 + b3 self.pressure[2] = b1 - b2 + b3 self.pressure[3] = b1 - b2 * 2 self.pressure[4] = b1 - b2 - b3 self.pressure[5] = b1 + b2 - b3 return self.pressure def P2ABL(self): phyc = np.dot(self.pressure,self.bellowConfigurationAngleCos) phys = np.dot(self.pressure,self.bellowConfigurationAngleSin) self.alpha = sqrt(phyc**2+phys**2)/self.c1 self.beta = atan2(phys,phyc) self.length = (self.pressure[0]+self.pressure[1]+self.pressure[2]+self.pressure[3]+ self.pressure[4]+self.pressure[5])/self.c1/2*self.radR+self.length0 return self.alpha, self.beta, self.length def Acturate(self): self.alpha += self.angleVelocity[0] self.beta += self.angleVelocity[1] self.length += self.angleVelocity[2] if self.alpha >= pi/2: self.alpha = pi/2 if self.alpha <= 0: self.alpha = 0 def SetW(self, alphaW=None, betaW=None, length=None): #设定alpha beta角速度 if alphaW != None: self.angleVelocity[0] = alphaW if betaW != None: self.angleVelocity[1] = betaW if length != None: self.angleVelocity[2] = length def SetPos(self, X=None, Y=None, Z=None): if X != None: self.posVector[0] = X if Y != None: self.posVector[1] = Y if Z != None: self.posVector[2] = Z def SetPara(self, A=None, B=None, L=None): if A != None: self.alpha = A if B != None: self.beta = B if L != None: self.length = L def GetPara(self, mode=0): #供animated3Dplot 获取ABL self.Acturate() self.ABL2P() return self.alpha, self.beta, self.length def GetPressureD(self): #返回理想ABL 对应的pressure self.ABLD2PD() return self.pressureD def UpdateD(self, alpha, beta, length): #更新理想值数据 if self.constriant(alpha, length): self.alpha = alpha self.beta = beta self.length = length self.ABL2P() return 1 else: return 0 def UpdateP(self, pre): for i in range(6): self.pressure[i] = pre[i] self.P2ABL() class SoftObject(object): def __init__(self, *Arms): self.num = len(Arms) self.seg = dict() self.pts = dict() self.dst_pos = [0,0,0] self.dst_dir = [0,0,0] self.desired = 0 for i in range(self.num): self.seg[i] = Arms[i] def inverse_kinematic(self, pts, quat, x0, single = 0): def test_square(dst, x0, a, n, R, single = 0): # a1 a2 a3 b1 b2 b3 r1 r2 r3 def Pos2ABLD(): x = dst[0] y = dst[1] z = dst[2] mod = x**2 + y**2 alphaD, betaD, lengthD = 0,0,0 if x==.0 and y==.0: alphaD = 0 betaD = 0 lengthD = z else: if mod <= z**2: alphaD = asin(2*sqrt(mod)*z/(z**2+mod)) #print(self.alphaD) if x == .0: #根据x的正负性质 确定beta atan输出值域(-90,90) if y > .0: betaD = -pi/2 else: betaD = pi/2 elif x > 0: betaD = atan(y/x) elif x < 0: betaD = atan(y/x) + pi lengthD = (z**2+mod)/(2*sqrt(mod))*alphaD elif mod >z**2: betaD = atan(y / x) return [alphaD, betaD, lengthD] def single(x): a = float(x[0]) b = float(x[1]) l = float(x[2]) if a != 0: return [ l/a*(1-cos(a))*cos(b), l/a*(1-cos(a))*sin(b), l/a*sin(a) ] else: return [ 0, 0, l ] def string_type(x): a1 = float(x[0]) a2 = float(x[1]) a3 = float(x[2]) b1 = float(x[3]) b2 = float(x[4]) b3 = float(x[5]) lm1 = float(x[6]) lm2 = float(x[7]) lm3 = float(x[8]) if a1 == 0: l1 = lm1 else: l1 = 2*lm1*a1/sin(a1/2) if a2 == 0: l2 = lm2 else: l2 = 2*lm2*a2/sin(a2/2) if a3 == 0: l3 = lm3 else: l3 = 2*lm3*a3/sin(a3/2) result = np.array( [lm1 * sin(a1 / 2) * cos(b1) - (1 - cos(a1)) * ( lm2 * sin(a2 / 2) * sin(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * cos(b2) * cos( b3) + lm3 * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(a3 / 2) * sin(b3) + lm3 * sin(a2) * sin( b2) * cos( a3 / 2)) * sin(b1) * cos(b1) + (-(1 - cos(a1)) * cos(b1) ** 2 + 1) * ( lm2 * sin(a2 / 2) * cos(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * sin(b3) * cos( b2) + lm3 * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin(a3 / 2) * cos(b3) + lm3 * sin(a2) * cos( a3 / 2) * cos(b2)) + ( lm2 * cos(a2 / 2) - lm3 * sin(a2) * sin(a3 / 2) * sin(b2) * sin(b3) - lm3 * sin(a2) * sin( a3 / 2) * cos(b2) * cos(b3) + lm3 * cos(a2) * cos(a3 / 2)) * sin(a1) * cos(b1)-dst[0], lm1 * sin(a1 / 2) * sin(b1) - (1 - cos(a1)) * ( lm2 * sin(a2 / 2) * cos(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * sin(b3) * cos( b2) + lm3 * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin(a3 / 2) * cos(b3) + lm3 * sin(a2) * cos( a3 / 2) * cos(b2)) * sin(b1) * cos(b1) + (-(1 - cos(a1)) * sin(b1) ** 2 + 1) * ( lm2 * sin(a2 / 2) * sin(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * cos(b2) * cos( b3) + lm3 * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(a3 / 2) * sin(b3) + lm3 * sin(a2) * sin( b2) * cos(a3 / 2)) + ( lm2 * cos(a2 / 2) - lm3 * sin(a2) * sin(a3 / 2) * sin(b2) * sin(b3) - lm3 * sin(a2) * sin( a3 / 2) * cos(b2) * cos(b3) + lm3 * cos(a2) * cos(a3 / 2)) * sin(a1) * sin(b1)-dst[1], lm1 * cos(a1 / 2) + ( lm2 * cos(a2 / 2) - lm3 * sin(a2) * sin(a3 / 2) * sin(b2) * sin(b3) - lm3 * sin( a2) * sin( a3 / 2) * cos(b2) * cos(b3) + lm3 * cos(a2) * cos(a3 / 2)) * cos(a1) - ( lm2 * sin(a2 / 2) * sin(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * cos(b2) * cos( b3) + lm3 * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(a3 / 2) * sin(b3) + lm3 * sin(a2) * sin( b2) * cos(a3 / 2)) * sin(a1) * sin(b1) - ( lm2 * sin(a2 / 2) * cos(b2) - lm3 * (1 - cos(a2)) * sin(a3 / 2) * sin(b2) * sin(b3) * cos( b2) + lm3 * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin(a3 / 2) * cos(b3) + lm3 * sin(a2) * cos( a3 / 2) * cos(b2)) * sin(a1) * cos(b1)-dst[2], (-(1 - cos(a1)) * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(b1) * cos(b1) - (1 - cos(a2)) * ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * sin(b2) * cos(b2) - sin(a1) * sin(a2) * sin(b2) * cos( b1)) * sin(a3) * sin(b3) + (-(1 - cos(a1)) * sin(a2) * sin(b1) * sin(b2) * cos(b1) + ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * sin(a2) * cos(b2) + sin(a1) * cos(a2) * cos( b1)) * cos( a3) + ( (1 - cos(a1)) * (1 - cos(a2)) * sin(b1) * sin(b2) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) - sin(a1) * sin( a2) * cos(b1) * cos(b2)) * sin(a3) * cos(b3) - a[0], (-(1 - cos(a1)) * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin(b1) * cos(b1) - (1 - cos(a2)) * ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * sin(b2) * cos(b2) - sin(a1) * sin(a2) * sin(b1) * cos( b2)) * sin(a3) * cos(b3) + (-(1 - cos(a1)) * sin(a2) * sin(b1) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * sin(a2) * sin(b2) + sin(a1) * sin(b1) * cos( a2)) * cos( a3) + ((1 - cos(a1)) * (1 - cos(a2)) * sin(b1) * sin(b2) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) - sin(a1) * sin( a2) * sin(b1) * sin(b2)) * sin(a3) * sin(b3) - a[1], (-sin(a1) * sin(a2) * sin(b1) * sin(b2) - sin(a1) * sin(a2) * cos(b1) * cos(b2) + cos(a1) * cos( a2)) * cos( a3) + ( (1 - cos(a2)) * sin(a1) * sin(b1) * sin(b2) * cos(b2) - ( -(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin( a1) * cos(b1) - sin(a2) * cos(a1) * cos(b2)) * sin(a3) * cos(b3) + ( (1 - cos(a2)) * sin(a1) * sin(b2) * cos(b1) * cos(b2) - ( -(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin( a1) * sin(b1) - sin(a2) * sin(b2) * cos(a1)) * sin(a3) * sin(b3) - a[2], -(1 - cos(a3)) * (-(1 - cos(a1)) * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(b1) * cos(b1) - ( 1 - cos(a2)) * ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * sin(b2) * cos(b2) - sin(a1) * sin( a2) * sin(b2) * cos( b1)) * sin(b3) * cos(b3) + (-(1 - cos(a3)) * cos(b3) ** 2 + 1) * ( (1 - cos(a1)) * (1 - cos(a2)) * sin(b1) * sin(b2) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) - sin(a1) * sin( a2) * cos(b1) * cos(b2)) - (-(1 - cos(a1)) * sin(a2) * sin(b1) * sin(b2) * cos(b1) + ( -(1 - cos(a1)) * cos(b1) ** 2 + 1) * sin(a2) * cos(b2) + sin(a1) * cos(a2) * cos( b1)) * sin( a3) * cos(b3) - n[0], -(1 - cos(a3)) * ((1 - cos(a1)) * (1 - cos(a2)) * sin(b1) * sin(b2) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * (-(1 - cos(a2)) * sin(b2) ** 2 + 1) - sin(a1) * sin( a2) * sin(b1) * sin(b2)) * sin(b3) * cos(b3) + (-(1 - cos(a3)) * cos(b3) ** 2 + 1) * ( -(1 - cos(a1)) * (-(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin(b1) * cos(b1) - ( 1 - cos(a2)) * ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * sin(b2) * cos(b2) - sin(a1) * sin(a2) * sin( b1) * cos( b2)) - (-(1 - cos(a1)) * sin(a2) * sin(b1) * cos(b1) * cos(b2) + ( -(1 - cos(a1)) * sin(b1) ** 2 + 1) * sin(a2) * sin(b2) + sin(a1) * sin(b1) * cos( a2)) * sin( a3) * cos(b3) - n[1], -(1 - cos(a3)) * ((1 - cos(a2)) * sin(a1) * sin(b2) * cos(b1) * cos(b2) - ( -(1 - cos(a2)) * sin(b2) ** 2 + 1) * sin(a1) * sin(b1) - sin(a2) * sin(b2) * cos( a1)) * sin( b3) * cos(b3) + (-(1 - cos(a3)) * cos(b3) ** 2 + 1) * ( (1 - cos(a2)) * sin(a1) * sin(b1) * sin(b2) * cos(b2) - ( -(1 - cos(a2)) * cos(b2) ** 2 + 1) * sin( a1) * cos(b1) - sin(a2) * cos(a1) * cos(b2)) - ( -sin(a1) * sin(a2) * sin(b1) * sin(b2) - sin(a1) * sin(a2) * cos(b1) * cos(b2) + cos( a1) * cos( a2)) * sin(a3) * cos(b3) - n[2], 1 / 3 * (((2 * a1 - pi * 2 / 4) / (pi * 2 / 4)) ** 2 + ( (2 * a2 - pi * 2 / 4) / (pi * 2 / 4)) ** 2 + ( (2 * a3 - pi * 2 / 4) / (pi * 2 / 4)) ** 2) / 200, 1/3*((b1-b2)**2+(b1-b3)**2+(b3-b2)**2)/200, (l1-l2), (l2-l3) ] ) return result.astype('float64') result = [0]*9 result[0] = new[0] result[1] = new[1] result[2] = new[6] result[3] = new[2] result[4] = new[3] result[5] = new[6] result[6] = new[4] result[7] = new[5] result[8] = new[6] return result def tranformation_string(res): result = [0]*len(res) for i in range(int(len(res)/3)): if 0 > res[3*i]: result[3*i] = -res[3*i] result[3*i+1] = res[3*i+1] + pi elif 0 < res[3*i]: result[3*i] = res[3*i] # a1 result[3*i+1] = res[3*i+1] # b1 # lm1 result[3*i] = normalize_angle(result[3*i]) result[3*i+1] = normalize_angle(result[3*i+1]) result[3*i+2] = res[3*i+2] * res[3*i] / sin(res[3*i] / 2) / 2 return result now = time.time() x0_rosenbrock = np.array(x0).astype('float64') # string type if single: res = Pos2ABLD() print(res) print(single(res)) result = [ res[0], res[1], res[2] ] else: res = least_squares(string_type, x0_rosenbrock, bounds=([-pi, -pi, -pi, -2*pi, -2*pi, -2*pi, 0.05, 0.05, 0.05], [pi, pi, pi, 2*pi, 2*pi, 2*pi, 1, 1, 1])) new = np.array([res.x[0], res.x[3], res.x[6], res.x[1], res.x[4], res.x[7], res.x[2], res.x[5], res.x[8] ]).astype('float64') # a1 b1 l1 a2 b2 l2 a3 b3 l3 result = tranformation_string(new) print('time cost:', time.time() - now) # end return result # a1 a2 a3 b1 b2 b3 l1 l2 l3 pts = [pts.x, pts.y, pts.z] quat = [quat.x, quat.y, quat.z, quat.w] R = self.quat_transform(quat) n = [R[0][0],R[1][0],R[2][0]] a = [R[0][2],R[1][2],R[2][2]] # print(R) # normal type '''pos_now = [self.seg[0].alpha*3, self.seg[0].beta, self.seg[3].alpha*3, self.seg[3].beta, self.seg[6].alpha*3, self.seg[6].beta, self.seg[6].length*3 ]''' # string type # x0 = [ self.seg[0].alpha * 3, self.seg[0].beta, # self.seg[3].alpha * 3, self.seg[3].beta, # self.seg[6].alpha * 3, self.seg[6].beta, # self.seg[0].length * 2 / self.seg[0].alpha * sin(self.seg[0].alpha / 6), # self.seg[3].length * 2 / self.seg[3].alpha * sin(self.seg[3].alpha / 6), # self.seg[6].length * 2 / self.seg[6].alpha * sin(self.seg[6].alpha / 6) # ] x0 =1 self.desired = test_square(pts, x0, a, n, R, single) return self.desired def quat_transform(self, qua): # alpha beta gamma R1 = Rotation.from_quat(qua).as_matrix() return R1 def outputPressure(self): 1 class ik_solver: def __init__(self): x = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2] soft1 = softArm(alpha=x[0], beta=x[3], length=x[6], actuator_type='big') soft2 = softArm(alpha=x[1], beta=x[3], length=x[7], actuator_type='big') soft3 = softArm(alpha=x[2], beta=x[3], length=x[8], actuator_type='big') soft4 = softArm(alpha=x[0], beta=x[4], length=x[6]) soft5 = softArm(alpha=x[1], beta=x[4], length=x[7]) soft6 = softArm(alpha=x[2], beta=x[4], length=x[8]) soft7 = softArm(alpha=x[0], beta=x[5], length=x[6]) soft8 = softArm(alpha=x[1], beta=x[5], length=x[7]) soft9 = softArm(alpha=x[2], beta=x[5], length=x[8]) self.softArms = SoftObject(soft1, soft2, soft3, soft4, soft5, soft6, soft7, soft8, soft9) self.ik_srv_setup() def handle_ik_srv(self, req): result = self.softArms.inverse_kinematic( req.input.pose.position, req.input.pose.orientation, req.input.ABL.segment, 1 ) re = Command_ABL() re.segment[0].A = result[0] re.segment[0].B = result[1] re.segment[0].L = result[2] # print(np.degrees(result[0])) # print(np.degrees(result[1])) # print(np.degrees(result[3])) # print(np.degrees(result[4])) # print(np.degrees(result[6])) # print(np.degrees(result[7])) # print(result[8]) return re def ik_srv_setup(self): rospy.init_node('ik_srv') s = rospy.Service('ik', ik, self.handle_ik_srv) print('ready for ik service') rospy.spin() if __name__ == '__main__': try: IK = ik_solver() print('IK is finished') except rospy.ServiceException as exc: print("IK call failed:"+str(exc))
the-stack_106_22512
import cv2 def check_area(area, image_area): return area / image_area < 0.95 def crop_image(image_path): img = cv2.imread(image_path) height, width, channels = img.shape image_area = height * width gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) retval, thresh_gray = cv2.threshold(gray, thresh=100, maxval=255, type=cv2.THRESH_BINARY_INV) contours, hierarchy = cv2.findContours(thresh_gray, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) mx = (0, 0, 0, 0) mx_area = 0 for cont in contours: x, y, w, h = cv2.boundingRect(cont) area = w * h if area > mx_area and check_area(area, image_area): mx = x, y, w, h mx_area = area x, y, w, h = mx roi = img[y:y + h, x:x + w] if roi.any(): cv2.imwrite(image_path, roi)
the-stack_106_22513
import random import math import unittest from unittest.mock import patch from parameterized import parameterized import pyEpiabm as pe from pyEpiabm.routine import ToyPopulationFactory numReps = 1 class TestPopConfig(unittest.TestCase): """Test the 'ToyPopConfig' class. """ @parameterized.expand([(random.randint(1000, 10000), random.randint(1, 10), random.randint(1, 10)) for _ in range(numReps)]) def test_make_pop(self, pop_size, cell_number, microcell_number): """Tests for when the population is implemented by default with no households. Parameters are assigned at random. """ # Population is initialised with no households pop_params = {"population_size": pop_size, "cell_number": cell_number, "microcell_number": microcell_number} test_pop = ToyPopulationFactory.make_pop(pop_params) total_people = 0 count_non_empty_cells = 0 for cell in test_pop.cells: for microcell in cell.microcells: total_people += len(microcell.persons) if len(cell.persons) > 0: count_non_empty_cells += 1 # Test there are at least one non-empty cell self.assertTrue(count_non_empty_cells >= 1) # Test that everyone in the population has been assigned a microcell self.assertEqual(total_people, pop_size) # Test a population class object is returned self.assertIsInstance(test_pop, pe.Population) @patch("numpy.random.multinomial") @patch('logging.exception') def test_make_pop_exception(self, patch_log, patch_random): """Tests for when the population is implemented with errors """ patch_random.side_effect = ValueError # Population is initialised with no households pop_params = {"population_size": 10, "cell_number": 1, "microcell_number": 1} ToyPopulationFactory.make_pop(pop_params) patch_log.assert_called_once_with("ValueError in ToyPopulation" + "Factory.make_pop()") def summarise_pop(self, pop): # Returns lists of cell and microcell wise populations # Not a testing function, but used in test below pop_cells = [] # List of populations in each cell of population pop_microcells = [] # List of populations in each microcell for cell in pop.cells: pop_cells.append(len(cell.persons)) for microcell in cell.microcells: pop_microcells.append(len(microcell.persons)) return pop_cells, pop_microcells @parameterized.expand([(random.randint(1000, 10000), random.randint(5, 10), random.randint(2, 10), random.randint(1, 100)) for _ in range(numReps)]) def test_pop_seed(self, pop_size, cell_number, microcell_number, seed): """Tests for when the population is implemented by default with no households. Parameters are assigned at random. """ # Define parameters for population generation pop_params = {"population_size": pop_size, "cell_number": cell_number, "microcell_number": microcell_number, "population_seed": seed} # Create two identical populations with the same seed seed_pop = ToyPopulationFactory.make_pop(pop_params) comp_pop = ToyPopulationFactory.make_pop(pop_params) self.assertEqual(str(seed_pop), str(comp_pop)) seed_cells, seed_microcells = self.summarise_pop(seed_pop) comp_cells, comp_microcells = self.summarise_pop(comp_pop) self.assertEqual(seed_cells, comp_cells) self.assertEqual(seed_microcells, comp_microcells) # Also compare to a population with a different seed pop_params["population_seed"] = seed + 1 # Change seed of population diff_pop = ToyPopulationFactory().make_pop(pop_params) diff_cells, diff_microcells = self.summarise_pop(diff_pop) self.assertNotEqual(seed_cells, diff_cells) self.assertNotEqual(seed_microcells, diff_microcells) @parameterized.expand([(random.randint(1000, 10000) * numReps, random.randint(1, 10) * numReps, random.randint(1, 10) * numReps, random.randint(1, 10) * numReps) for _ in range(numReps)]) def test_if_households(self, pop_size, cell_number, microcell_number, household_number): """Tests when households are implemented. """ # Initialises population with households pop_params = {"population_size": pop_size, "cell_number": cell_number, "microcell_number": microcell_number, "household_number": household_number} toy_pop = ToyPopulationFactory.make_pop(pop_params) total_people = 0 households = [] num_empty_households = 0 for cell in toy_pop.cells: for microcell in cell.microcells: for person in microcell.persons: if person.household not in households: households.append(person.household) if len(person.household.persons) == 0: num_empty_households += 1 total_people += len(person.household.persons) # Some households may be empty so won't be included total_households = cell_number * microcell_number \ * household_number self.assertTrue(len(households) <= total_households) self.assertTrue(num_empty_households < total_households) @parameterized.expand([(random.randint(1000, 10000) * numReps, random.randint(1, 10) * numReps, random.randint(1, 10) * numReps, random.randint(1, 10) * numReps) for _ in range(numReps)]) def test_if_places(self, pop_size, cell_number, microcell_number, place_number): """Tests when places are implemented. """ # Initialises population with places pop_params = {"population_size": pop_size, "cell_number": cell_number, "microcell_number": microcell_number, "place_number": place_number} toy_pop = ToyPopulationFactory.make_pop(pop_params) places = [] for cell in toy_pop.cells: for microcell in cell.microcells: places += microcell.places # Test the correct number of place shave been added to each microcell self.assertEqual(place_number, len(toy_pop.cells[0].microcells[0].places)) @patch('logging.exception') def test_assign_cell_locations_rand(self, mock_log): pop_params = {"population_size": 10, "cell_number": 2, "microcell_number": 2} test_pop = ToyPopulationFactory.make_pop(pop_params) for cell in test_pop.cells: self.assertEqual(cell.location[0], 0) self.assertEqual(cell.location[1], 0) ToyPopulationFactory.assign_cell_locations(test_pop) for cell in test_pop.cells: self.assertTrue((0 < cell.location[0]) & (1 > cell.location[0])) self.assertTrue((0 < cell.location[1]) & (1 > cell.location[1])) mock_log.assert_not_called() ToyPopulationFactory.assign_cell_locations(test_pop, method='other') mock_log.assert_called_once_with("ValueError in ToyPopulationFactory" + ".assign_cell_locations()") @parameterized.expand([(random.randint(2, 20) * numReps, random.randint(2, 20) * numReps) for _ in range(numReps)]) def test_assign_cell_locations_unix(self, cell_num, mcell_num): pop_params = {"population_size": 100, "cell_number": cell_num, "microcell_number": mcell_num} test_pop = ToyPopulationFactory.make_pop(pop_params) ToyPopulationFactory.assign_cell_locations(test_pop, "uniform_x") for i, cell in enumerate(test_pop.cells): self.assertAlmostEqual(cell.location[0], i / (cell_num - 1)) self.assertAlmostEqual(cell.location[1], 0) for j, mcell in enumerate(cell.microcells): self.assertAlmostEqual(mcell.location[0], cell.location[0]) self.assertAlmostEqual(mcell.location[1], j / (mcell_num - 1)) @parameterized.expand([(random.randint(2, 20) * numReps, random.randint(2, 20) * numReps) for _ in range(numReps)]) def test_assign_cell_locations_grid(self, cell_num, mcell_num): pop_params = {"population_size": 100, "cell_number": cell_num, "microcell_number": mcell_num} test_pop = ToyPopulationFactory.make_pop(pop_params) ToyPopulationFactory.assign_cell_locations(test_pop, "grid") grid_len = math.ceil(math.sqrt(cell_num)) for i, cell in enumerate(test_pop.cells): self.assertAlmostEqual(cell.location[0], (i % grid_len) / (grid_len - 1)) self.assertAlmostEqual(cell.location[1], (i // grid_len) / (grid_len - 1)) mcell_len = math.ceil(math.sqrt(len(cell.microcells))) for j, mcell in enumerate(cell.microcells): test_x = (cell.location[0] + (j % mcell_len - .5 * (mcell_len - 1)) / (grid_len * (mcell_len - 1))) test_y = (cell.location[1] + (j // mcell_len - .5 * (mcell_len - 1)) / (grid_len * (mcell_len - 1))) self.assertAlmostEqual(mcell.location[0], test_x) self.assertAlmostEqual(mcell.location[1], test_y) def test_assign_cell_locations_known_grid(self): pop_params = {"population_size": 100, "cell_number": 4, "microcell_number": 4} test_pop = ToyPopulationFactory.make_pop(pop_params) ToyPopulationFactory.assign_cell_locations(test_pop, "grid") x_pos = [0, 1, 0, 1] y_pos = [0, 0, 1, 1] mx_pos0 = [-.25, .25, -.25, .25] my_pos0 = [-.25, -.25, .25, .25] mx_pos1 = [.75, 1.25, .75, 1.25] my_pos1 = [.75, .75, 1.25, 1.25] for i, cell in enumerate(test_pop.cells): self.assertAlmostEqual(cell.location[0], x_pos[i]) self.assertAlmostEqual(cell.location[1], y_pos[i]) for j, mcell in enumerate(test_pop.cells[0].microcells): self.assertAlmostEqual(mcell.location[0], mx_pos0[j]) self.assertAlmostEqual(mcell.location[1], my_pos0[j]) for j, mcell in enumerate(test_pop.cells[3].microcells): self.assertAlmostEqual(mcell.location[0], mx_pos1[j]) self.assertAlmostEqual(mcell.location[1], my_pos1[j]) if __name__ == '__main__': unittest.main()
the-stack_106_22515
# -------------------------------------------- # Main part of the plugin # # JL Diaz (c) 2019 # MIT License # -------------------------------------------- from collections import defaultdict from pathlib import Path import os import yaml import jinja2 from jinja2.ext import Extension from mkdocs.structure.files import File from mkdocs.structure.nav import Section from mkdocs.plugins import BasePlugin from mkdocs.config.config_options import Type try: from pymdownx.slugs import uslugify_cased_encoded as slugify except ImportError: from markdown.extensions.toc import slugify def slugify_this(text): return slugify(text, '-') class SlugifyExtension(Extension): def __init__(self, environment): super(SlugifyExtension, self).__init__(environment) environment.filters['slugify'] = slugify_this class TagsPlugin(BasePlugin): """ Creates "tags.md" file containing a list of the pages grouped by tags It uses the info in the YAML metadata of each page, for the pages which provide a "tags" keyword (whose value is a list of strings) """ config_scheme = ( ('tags_filename', Type(str, default='tags.md')), ('tags_folder', Type(str, default='aux')), ('tags_template', Type(str)), ) def __init__(self): self.metadata = [] self.tags_filename = "tags.md" self.tags_folder = "aux" self.tags_template = None def on_nav(self, nav, config, files): # nav.items.insert(1, nav.items.pop(-1)) pass def on_config(self, config): # Re assign the options self.tags_filename = Path(self.config.get( "tags_filename") or self.tags_filename) self.tags_folder = Path(self.config.get( "tags_folder") or self.tags_folder) # Make sure that the tags folder is absolute, and exists if not self.tags_folder.is_absolute(): self.tags_folder = Path( config["docs_dir"]) / ".." / self.tags_folder if not self.tags_folder.exists(): self.tags_folder.mkdir(parents=True) if self.config.get("tags_template"): self.tags_template = Path(self.config.get("tags_template")) def on_files(self, files, config): # Scan the list of files to extract tags from meta for f in files: if not f.src_path.endswith(".md"): continue self.metadata.append(get_metadata(f.src_path, config["docs_dir"])) # Create new file with tags self.generate_tags_file() # New file to add to the build newfile = File( path=str(self.tags_filename), src_dir=str(self.tags_folder), dest_dir=config["site_dir"], use_directory_urls=False ) files.append(newfile) def generate_tags_page(self, data): if self.tags_template is None: templ_path = Path(__file__).parent / Path("templates") environment = jinja2.Environment( loader=jinja2.FileSystemLoader(str(templ_path)), extensions=[SlugifyExtension] ) templ = environment.get_template("tags.md.template") else: environment = jinja2.Environment( loader=jinja2.FileSystemLoader( searchpath=str(self.tags_template.parent)), extensions=[SlugifyExtension] ) templ = environment.get_template(str(self.tags_template.name)) stags = sorted(data.items(), key=lambda t: t[0].lower()) dtags = {} for stag in stags: try: tagletter = stag[0][0].upper() if tagletter not in dtags: dtags[tagletter] = [stag] else: dtags[tagletter].append(stag) except: pass ldtags = sorted(dtags.items()) output_text = templ.render( tags=ldtags, ) return output_text def generate_tags_file(self): if self.metadata: sorted_meta = sorted( self.metadata, key=lambda e: e.get("year", 5000) if e else 0) else: sorted_meta = {} tag_dict = defaultdict(list) for e in sorted_meta: if not e: continue if "title" not in e: e["title"] = "Untitled" tags = e.get("topic-tags", e.get("topic-auto", e.get("tags", []))) if tags is not None: for tag in tags: tag_dict[tag].append(e) t = self.generate_tags_page(tag_dict) with open(str(self.tags_folder / self.tags_filename), "w") as f: f.write(t) # Helper functions def get_metadata(name, path): # Extract metadata from the yaml at the beginning of the file def extract_yaml(f): result = [] c = 0 for line in f: if line.strip() == "---": c += 1 continue if c == 2: break if c == 1: result.append(line) return "".join(result) filename = Path(path) / Path(name) with filename.open() as f: meta = [] metadata = extract_yaml(f) if metadata: try: meta = yaml.load(metadata, Loader=yaml.FullLoader) meta.update(filename=name) except: pass return meta
the-stack_106_22516
class ClockWidget(): def __init__(self): self.name = "Clock" self.template = "widget_clock.html" class PingWidget(): def __init__(self, addrs: list): self.name = "Ping" self.template = "widget_ping.html" self.addrs = addrs self.targets = self.addrs
the-stack_106_22517
import PyPluMA import sys def quote(s): return '\"' + s + '\"' def unquote(s): return s[1:len(s)-1] class CSV2PLSDAPlugin: def input(self, filename): # Parameter file self.parameters = dict() paramfile = open(filename, 'r') for line in paramfile: contents = line.split('\t') self.parameters[contents[0]] = contents[1].strip() normabund = open(PyPluMA.prefix()+"/"+self.parameters["normabund"], "r") metadata = open(PyPluMA.prefix()+"/"+self.parameters["metadata"], "r") metadata.readline() self.categories = dict() # Assuming two-column self.diffcat = set() for line in metadata: line = line.strip() contents = line.split(',') self.categories[contents[0]] = contents[1] self.diffcat.add(contents[1]) microbes = normabund.readline().strip() self.contents = microbes.split(',') self.contents = self.contents[1:] self.lines = [] for line in normabund: self.lines.append(line.strip()) def run(self): pass def output(self, filename): obs_names = open(filename+"/"+self.parameters["categories"], 'w') # Categories, tabbed var_ID = open(filename+"/"+self.parameters["observables"], 'w') # Microbes, one column testsets = open(filename+"/"+self.parameters["targets"], 'w') # Different categories normabundmod = open(filename+"/"+self.parameters["samples"], 'w') present = {} for microbe in self.contents: if (microbe not in present): present[microbe] = 1 else: present[microbe] += 1 microbe = quote(unquote(microbe) + "_" + str(present[microbe])) var_ID.write(microbe+"\n") for entry in self.diffcat: testsets.write(entry+"\n") print(self.categories) for j in range(0, len(self.lines)): contents = self.lines[j].split(',') sample = contents[0] contents = contents[1:] obs_names.write(self.categories[sample]) if (j != len(self.lines)-1): obs_names.write('\t') # Transpose my_mat = [] for i in range(0, len(self.lines)): my_mat.append(self.lines[i].strip().split(',')) for j in range(1, len(my_mat[0])): for i in range(0, len(my_mat)): normabundmod.write(my_mat[i][j]) if (i != len(my_mat)-1): normabundmod.write(',') else: normabundmod.write('\n') #abundmat = [] #meta = []
the-stack_106_22519
import parser_with_time import queue import uuid import json inter_communication_time = 0.1 node_cnt = 10 node_ip = ['', '', '', '', '', '', '', '', '', ''] def init_graph(workflow, group_set): in_degree_vec = dict() q = queue.Queue() q.put(workflow.start) group_set.append({workflow.start.name}) while q.empty() is False: node = q.get() for next_node in node.next: if next_node.name not in in_degree_vec: in_degree_vec[next_node.name] = 1 q.put(next_node) group_set.append({next_node.name}) else: in_degree_vec[next_node.name] += 1 return in_degree_vec def find_set(node, group_set): for node_set in group_set: if node in node_set: return node_set return None def topo_search(workflow, in_degree_vec, group_set, no_net_latency): dist_vec = dict() # { name: [dist, max_length] } prev_vec = dict() # { name: [prev_name, length] } q = queue.Queue() q.put(workflow.start) dist_vec[workflow.start.name] = [workflow.start.runtime, 0] prev_vec[workflow.start.name] = [] while q.empty() is False: node = q.get() pre_dist = dist_vec[node.name] prev_name = node.name for index in range(len(node.next)): next_node = node.next[index] w = node.nextDis[index] next_node_name = next_node.name if no_net_latency is True: w = 0 elif next_node_name in find_set(prev_name, group_set): w = inter_communication_time if next_node.name not in dist_vec: dist_vec[next_node_name] = [pre_dist[0] + w + next_node.runtime, max(pre_dist[1], w)] prev_vec[next_node_name] = [prev_name, w] elif dist_vec[next_node_name][0] < pre_dist[0] + w + next_node.runtime: dist_vec[next_node_name] = [pre_dist[0] + w + next_node.runtime, max(pre_dist[1], w)] prev_vec[next_node_name] = [prev_name, w] elif dist_vec[next_node_name][0] == pre_dist[0] + w + next_node.runtime and max(pre_dist[1], w) > \ dist_vec[next_node_name][1]: dist_vec[next_node_name][1] = max(pre_dist[1], w) prev_vec[next_node_name] = [prev_name, w] in_degree_vec[next_node_name] -= 1 if in_degree_vec[next_node_name] == 0: q.put(next_node) return dist_vec, prev_vec def mergeable(node1, node2, group_set, group_size): node_set1 = find_set(node1, group_set) if node2 in node_set1: return False node_set2 = find_set(node2, group_set) if len(node_set1) + len(node_set2) > group_size: return False group_set.remove(node_set1) group_set.remove(node_set2) group_set.append(node_set1 | node_set2) return True penalty_rate = 1.5 def merge_node(crit_vec, group_set, group_size): merge_flag = False for edge in crit_vec: merge_flag = merge_flag | mergeable(edge[0], edge[1][0], group_set, group_size) if merge_flag: break return merge_flag def get_prerequisite(workflow): result = [] for node in workflow.nodes: prerequisite = [] for pre_node in node.prev: prerequisite.append(pre_node.name) result.append({'name': node.name, 'prerequisite': prerequisite}) return result def grouping(req_id, workflow): topo_search_cnt = 0 group_set = list() in_degree_vec = init_graph(workflow, group_set) group_size = 2 total_node_cnt = len(workflow.nodes) no_latency_dist_vec, _ = topo_search(workflow, in_degree_vec.copy(), group_set, True) no_latency_crit_length = no_latency_dist_vec[workflow.end.name][0] while True: dist_vec, prev_vec = topo_search(workflow, in_degree_vec.copy(), group_set, False) topo_search_cnt = topo_search_cnt + 1 crit_length = dist_vec[workflow.end.name][0] if crit_length < no_latency_crit_length * penalty_rate: break elif group_size == total_node_cnt: break crit_vec = dict() tmp_node_name = workflow.end.name while tmp_node_name != workflow.start.name: crit_vec[tmp_node_name] = prev_vec[tmp_node_name] tmp_node_name = prev_vec[tmp_node_name][0] crit_vec = sorted(crit_vec.items(), key=lambda c: c[1][1], reverse=True) if not merge_node(crit_vec, group_set, group_size): group_size = group_size + 1 merge_node(crit_vec, group_set, group_size) group_detail = [] for node_set in group_set: group_id = str(uuid.uuid4()) for node in node_set: group_detail.append({'name': node, 'group_id': group_id, 'node_id': hash(group_id) % node_cnt}) prerequisite = get_prerequisite(workflow) group_size = 1 if topo_search_cnt == 1 else group_size ratio = crit_length / no_latency_crit_length return json.dumps(group_detail), json.dumps(prerequisite) detail, requisite = grouping('0', parser_with_time.mainObject) print(detail) print(requisite)
the-stack_106_22520
""" Pyramid views (controllers in the classical meaning) for traversal resources. Each class of :class:`spree.rest.traversal.APIResource` and :class:`spree.rest.traversal.APIAction` defines it's own view. """ from marshmallow import ValidationError, MarshalResult from . import events from .endpoints import ( APICollection, APIEntity, APIAction ) from pyramid import httpexceptions def validation_error_view(error, request): """ Return Marshmallow :class:`ValidationError` as a JSON response with a proper response code. :param error: Marshmallow error instance :type error: ValidationError :param request: Pyramid request :type request: pyramid.request.Request :return: Error messages :rtype: dict[str,list] """ request.response.status_int = 400 return error.messages def get_serialized_data(serialized): if isinstance(serialized, MarshalResult): return serialized.data return serialized def process_get_request(context, request): """ Process GET requests on either :class:`APICollectionEndpoint` or :class:`APIEntityEndpoint` :param context: API endpoint context :type context: APIEntity|APICollection :param request: Pyramid request :type request: pyramid.request.Request :return: Serialization result, most likely a :class:`dict` :rtype: dict """ retrieved = context.retrieve(request) if retrieved is None: raise httpexceptions.HTTPNotFound() serialized = context.serialize(retrieved) return get_serialized_data(serialized) class TraversalResourceView(object): def __init__(self, context, request): """ Create a Traversal REST view. :param context: API endpoint context :type context: APIEntity|APICollection :param request: Pyramid request :type request: pyramid.request.Request """ self.request = request self.context = context def collection_get(self): """ Process GET requests on :class:`APICollectionEndpoint` :rtype: dict """ return process_get_request(self.context, self.request) def collection_post(self): """ Process POST requests on :class:`APICollectionEndpoint` :returns: POST action result :rtype: dict """ deserialized = self.context.deserialize(self.request, self.context.create_schema) # ========== BEFORE EVENTS ========= self.context.before_create( request=self.request, deserialized=deserialized ) # noinspection PyCallByClass,PyTypeChecker self.request.registry.notify(events.BeforeCreate( view=self, deserialized=deserialized )) # ========== CREATE CALL ========== created = self.context.create(self.request, deserialized) # ========== AFTER EVENTS ========== self.context.after_create( request=self.request, created=created, deserialized=deserialized ) # noinspection PyCallByClass,PyTypeChecker self.request.registry.notify(events.AfterCreate( view=self, created=created, deserialized=deserialized )) # ========== SERIALIZE ========== serialized = self.context.serialize(created) return get_serialized_data(serialized) def entity_get(self): """ Process GET requests on :class:`APIEntityEndpoint` :rtype: dict """ return process_get_request(self.context, self.request) def entity_put(self): """ Process PUT requests on :class:`APIEntityEndpoint` :rtype: dict """ deserialized = self.context.deserialize(self.request, self.context.update_schema) # ========== BEFORE EVENTS ========= self.context.before_update( request=self.request, deserialized=deserialized ) # noinspection PyCallByClass,PyTypeChecker self.request.registry.notify(events.BeforeUpdate( view=self, deserialized=deserialized )) # ========== UPDATE CALL ========== updated = self.context.update(self.request, deserialized) # ========== AFTER EVENTS ========== self.context.after_update( request=self.request, updated=updated, deserialized=deserialized ) # noinspection PyCallByClass,PyTypeChecker self.request.registry.notify(events.AfterUpdate( view=self, updated=updated, deserialized=deserialized )) # ========== SERIALIZE ========== serialized = self.context.serialize(updated) return get_serialized_data(serialized) def entity_delete(self): """ Process DELETE requests on :class:`APIEntityEndpoint` :rtype: dict """ raise NotImplementedError class TraversalActionView(object): def __init__(self, context, request): """ :type context: APIAction :type request: pyramid.request.Request """ self.context = context self.request = request def _method(self, method): deserialized = self.context.deserialize(self.request) result = getattr(self.context, method)(self.request, deserialized) return get_serialized_data(result) def get(self): result = self.context.get(self.request) return get_serialized_data(result) def post(self): return self._method('post') def put(self): return self._method('put') def delete(self): return self._method('delete') def includeme(config): """ Include traversal view configuration :param config: """ # # # # # # # # # # # # # APIResource # # # # # # # # # # # # # config.add_view( TraversalResourceView, attr='collection_get', request_method='GET', context=APICollection, renderer='json', permission='view' ) config.add_view( TraversalResourceView, attr='collection_post', request_method='POST', context=APICollection, renderer='json', permission='create' ) config.add_view( TraversalResourceView, attr='entity_get', request_method='GET', context=APIEntity, renderer='json', permission='view' ) config.add_view( TraversalResourceView, attr='entity_put', request_method='PUT', context=APIEntity, renderer='json', permission='update' ) # # # # # # # # # # # # # APIAction # # # # # # # # # # # # # config.add_view( TraversalActionView, attr='get', request_method='GET', context=APIAction, renderer='json', permission='view' ) config.add_view( TraversalActionView, attr='post', request_method='POST', context=APIAction, renderer='json', permission='create' ) config.add_view( TraversalActionView, attr='put', request_method='PUT', context=APIAction, renderer='json', permission='update' ) config.add_view( TraversalActionView, attr='delete', request_method='DELETE', context=APIAction, renderer='json', permission='delete' ) # # # # # # # # # # # # # ValidationError # # # # # # # # # # # # # config.add_view( validation_error_view, context=ValidationError, renderer='json' )
the-stack_106_22521
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import os import pickle as pk from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Embedding from tensorflow.keras.optimizers import Nadam from tensorflow.keras.backend import categorical_crossentropy from tensorflow.keras.preprocessing import sequence from nltk.translate.bleu_score import sentence_bleu # In[2]: # Conversational Model Metric def perplexity(y_true, y_pred): return pow(2, categorical_crossentropy(y_pred, y_true)) def bleu(y_true, y_pred): y_true = np.array(y_true).tolist() y_pred = np.array(y_pred).tolist() return sentence_bleu(y_true, y_pred) # In[3]: def createModelDirs(output_dir, model_dir, c=0): '''Return model directories for outputing logs and checkpoints''' final_dir = os.path.join(output_dir,model_dir+'_v{}'.format(c)) chpts_dir = os.path.join(final_dir,'chpts') logs_dir = os.path.join(final_dir,'logs') if model_dir+'_v{}'.format(c) in os.listdir(output_dir): c += 1 final_dir, chpts_dir, logs_dir = createModelDirs(output_dir, model_dir, c) else: os.mkdir(final_dir) os.mkdir(chpts_dir) os.mkdir(logs_dir) return final_dir, chpts_dir, logs_dir # In[4]: # load variables word_freqs_inp = pk.load(open('output/data_cleaning_nlp/word_freqs_input.pk', 'rb')) word_freqs_out = pk.load(open('output/data_cleaning_nlp/word_freqs_output.pk', 'rb')) x = pk.load(open('output/data_cleaning_nlp/input_data.pk', 'rb')) y = pk.load(open('output/data_cleaning_nlp/target_data.pk', 'rb')) # In[5]: ## Hyper-parameters # data features MAX_FEATURES_input = 1000 input_len = 125 MAX_FEATURES_output = 1000 target_len = 125 # training parameters num_epochs = 5 batch_size = 32 # model estructure embed_size = 512 hidden_size = 264 n_encoder_layers = 3 encoder_hidden_sizes = [256, 128, 64] n_decoder_layers = 3 lstm_hidden_sizes = [256, 128, 64] # In[6]: # Define output dir outDir = 'output/' actualDir = 'trained_model' print() if not(actualDir in os.listdir(outDir)): os.mkdir(os.path.join(outDir, actualDir)) print('output dir created') else: print('output dir already created') print() # In[7]: # Define directories for outputs actual_outDir = os.path.join(outDir, actualDir) modelDir = 'model_epochs-{}_batch-{}_hidden-{}_embed-{}'.format(num_epochs, batch_size, hidden_size, embed_size) finalDir, chptsDir, logsDir = createModelDirs(actual_outDir,modelDir) # In[8]: ### Build vocabulary of unique words ## Inputs vocab_size_input = min(MAX_FEATURES_input, len(word_freqs_inp)) + 2 word2index_inp = {x[0]: i+2 for i, x in enumerate(word_freqs_inp.most_common(MAX_FEATURES_input))} word2index_inp["PAD"] = 0 word2index_inp["UNK"] = 1 index2word_inp = {v:k for k, v in word2index_inp.items()} ## Outputs vocab_size_output = min(MAX_FEATURES_output, len(word_freqs_out)) + 4 word2index_out = {x[0]: i+4 for i, x in enumerate(word_freqs_out.most_common(MAX_FEATURES_output))} word2index_out["PAD"] = 0 word2index_out["UNK"] = 1 word2index_out["GO"] = 2 word2index_out["EOS"] = 3 index2word_out = {v:k for k, v in word2index_out.items()} # Save dictionaries in model directory pk.dump(word2index_inp, open(os.path.join(finalDir,'word2index_inp.pk'),'wb')) pk.dump(index2word_inp, open(os.path.join(finalDir,'index2word_inp.pk'),'wb')) pk.dump(word2index_out, open(os.path.join(finalDir,'word2index_out.pk'),'wb')) pk.dump(index2word_out, open(os.path.join(finalDir,'index2word_out.pk'),'wb')) # In[9]: # Filter records by lenght x_new = [] y_new = [] for input_, target_ in zip(x,y): if all([len(input_) <= input_len, len(input_) > 0, len(target_) <= target_len, len(target_) > 0]): x_new.append(input_) y_new.append(target_) print('number of records after filtering by lenght:', len(x_new)) # Create a copy of conversations with the words replaced by their IDs X_input = np.empty((len(x_new),), dtype=list) y_input = np.empty((len(y_new),), dtype=list) y_target_ids = np.empty((len(y_new),), dtype=list) for i in range(len(x_new)): seqs_x = [] seqs_y_input = [] seqs_y_target = [] # Replace input sequences IDs for word in x_new[i]: if word in word2index_inp: seqs_x.append(word2index_inp[word]) else: seqs_x.append(word2index_inp["UNK"]) # Replace words with low frequency with <UNK> # Target sequences IDs seqs_y_input = [word2index_out["GO"]] # Start of Sentence ID for word in y_new[i]: if word in word2index_out: seqs_y_input.append(word2index_out[word]) seqs_y_target.append(word2index_out[word]) else: # Replace words with low frequency with <UNK> seqs_y_input.append(word2index_out["UNK"]) seqs_y_target.append(word2index_out["UNK"]) seqs_y_target.append(word2index_out["EOS"]) # End of Sentece ID X_input[i] = seqs_x y_input[i] = seqs_y_input y_target_ids[i] = seqs_y_target X_input = sequence.pad_sequences(X_input, input_len, padding='post') y_input = sequence.pad_sequences(y_input, target_len, padding='post') y_target_ids = sequence.pad_sequences(y_target_ids, target_len, padding='post') # Create one-hot target variable y_target = np.empty((len(y_target_ids), target_len, vocab_size_output)) for i in range(len(y_target_ids)): for j in range(target_len): y_target[i, j, y_target_ids[i,j]] = 1 print("y_target size = %f gigabytes" % ((y_target.size * y_target.itemsize)/1e9)) # Save X and y input pk.dump(X_input, open(os.path.join(finalDir,'x_inp.pk'),'wb')) pk.dump(y_input, open(os.path.join(finalDir,'y_inp.pk'),'wb')) # In[11]: ## Tensorflow Keras Conversational Model # Define an input sequence and process it. encoder_inputs = Input(shape=(None,)) # Set up encoder, output lstm states encoder_embed_layer = Embedding(vocab_size_input, embed_size, mask_zero=True) encoder_embed = encoder_embed_layer(encoder_inputs) encoder_layers = [LSTM(encoder_hidden_sizes[i], return_sequences=True, go_backwards=True) for i in range(n_encoder_layers)] encoder_lstms_outputs = [] for i in range(n_decoder_layers): if i == 0: encoder_lstms_outputs.append(encoder_layers[i](encoder_embed)) else: encoder_lstms_outputs.append(encoder_layers[i](encoder_lstms_outputs[i-1])) encoder_lstm, state_h, state_c = LSTM(hidden_size, return_state=True, go_backwards=True)(encoder_lstms_outputs[-1]) encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None,)) decoder_embed_layer = Embedding(vocab_size_output, embed_size, mask_zero=True) decoder_embed = decoder_embed_layer(decoder_inputs) decoder_lstm = LSTM(hidden_size, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_embed, initial_state=encoder_states) decoder_layers = [LSTM(lstm_hidden_sizes[i], return_sequences=True) for i in range(n_decoder_layers)] decoder_lstms_outputs = [] for i in range(n_decoder_layers): if i == 0: decoder_lstms_outputs.append(decoder_layers[i](decoder_outputs)) else: decoder_lstms_outputs.append(decoder_layers[i](decoder_lstms_outputs[i-1])) # Create dense vector with next word probability decoder_dense = Dense(vocab_size_output, activation='softmax') decoder_outputs = decoder_dense(decoder_lstms_outputs[-1]) # Define the model that will turn 'X_input' and 'y_input' into 'y_target' model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # Compile model model.compile(optimizer=Nadam(), loss='categorical_crossentropy', metrics=[perplexity]) # Model Estructure Summary model.summary() # In[12]: ## Inference Model # Encoder encoder_model = Model(encoder_inputs, encoder_states) # Decoder inference inputs decoder_state_input_h = Input(shape=(hidden_size,)) decoder_state_input_c = Input(shape=(hidden_size,)) decoder_states_input = [decoder_state_input_h, decoder_state_input_c] # Decoder inference decoder_embed = decoder_embed_layer(decoder_inputs) decoder_outputs, state_h, state_c = decoder_lstm(decoder_embed, initial_state=decoder_states_input) decoder_states = [state_h, state_c] decoder_layers = [LSTM(lstm_hidden_sizes[i], return_sequences=True) for i in range(n_decoder_layers)] decoder_lstms_outputs = [] for i in range(n_decoder_layers): if i == 0: decoder_lstms_outputs.append(decoder_layers[i](decoder_outputs)) else: decoder_lstms_outputs.append(decoder_layers[i](decoder_lstms_outputs[i-1])) decoder_outputs = decoder_dense(decoder_lstms_outputs[-1]) decoder_model = Model( [decoder_inputs] + decoder_states_input, [decoder_outputs] + decoder_states) # Save models encoder_model.save(os.path.join(finalDir,'encoder_model_{}_{}_{}_{}.h5'.format(hidden_size,batch_size,num_epochs,embed_size))) decoder_model.save(os.path.join(finalDir,'decoder_model_{}_{}_{}_{}.h5'.format(hidden_size,batch_size,num_epochs,embed_size))) # In[13]: # Define callbacks model_checkpoint = ModelCheckpoint(os.path.join(chptsDir,'{epoch:02d}_{val_loss:.2f}.chpt'), monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1) early_stopping = EarlyStopping(monitor='val_loss', patience=50) tensorboard = TensorBoard(log_dir=logsDir, histogram_freq=20, batch_size=32, write_graph=True, write_grads=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None) # In[14]: # Fit model model_history = model.fit([X_input, y_input], y_target, batch_size=batch_size, epochs=num_epochs, validation_split=0.05, callbacks=[early_stopping, model_checkpoint, tensorboard]) # In[ ]: # Save model history with open(os.path.join(finalDir,'history_{}_{}_{}_{}.pk'.format(hidden_size,batch_size,num_epochs,embed_size)),'wb') as f: pk.dump(model_history.history, f) # lemmatizacion: # spacy # clips: pattern.es # # # diccionarios: # lista de palabras # # # word vectors: # vert
the-stack_106_22523
#!/usr/bin/env python import contextlib import glob import io import os import pathlib import re header_restrictions = { "barrier": "!defined(_LIBCPP_HAS_NO_THREADS)", "future": "!defined(_LIBCPP_HAS_NO_THREADS)", "latch": "!defined(_LIBCPP_HAS_NO_THREADS)", "mutex": "!defined(_LIBCPP_HAS_NO_THREADS)", "semaphore": "!defined(_LIBCPP_HAS_NO_THREADS)", "shared_mutex": "!defined(_LIBCPP_HAS_NO_THREADS)", "stdatomic.h": "__cplusplus > 202002L && !defined(_LIBCPP_HAS_NO_THREADS)", "thread": "!defined(_LIBCPP_HAS_NO_THREADS)", "filesystem": "!defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY)", "clocale": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "codecvt": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "fstream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "iomanip": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "ios": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "iostream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "istream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "locale.h": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "locale": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "ostream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "regex": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "sstream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "streambuf": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "strstream": "!defined(_LIBCPP_HAS_NO_LOCALIZATION)", "wctype.h": "!defined(_LIBCPP_HAS_NO_WIDE_CHARACTERS)", "cwctype": "!defined(_LIBCPP_HAS_NO_WIDE_CHARACTERS)", "cwchar": "!defined(_LIBCPP_HAS_NO_WIDE_CHARACTERS)", "wchar.h": "!defined(_LIBCPP_HAS_NO_WIDE_CHARACTERS)", "experimental/coroutine": "!defined(_LIBCPP_HAS_NO_EXPERIMENTAL_COROUTINES)", "experimental/regex": "!defined(_LIBCPP_HAS_NO_LOCALIZATION) && __cplusplus >= 201103L", "experimental/deque": "__cplusplus >= 201103L", "experimental/map": "__cplusplus >= 201103L", "experimental/memory_resource": "__cplusplus >= 201103L", "experimental/forward_list": "__cplusplus >= 201103L", "experimental/list": "__cplusplus >= 201103L", "experimental/set": "__cplusplus >= 201103L", "experimental/string": "__cplusplus >= 201103L", "experimental/unordered_map": "__cplusplus >= 201103L", "experimental/unordered_set": "__cplusplus >= 201103L", "experimental/vector": "__cplusplus >= 201103L", } private_headers_still_public_in_modules = [ '__assert', '__bsd_locale_defaults.h', '__bsd_locale_fallbacks.h', '__config', '__config_site.in', '__debug', '__hash_table', '__threading_support', '__tree', '__undef_macros' ] def find_script(file): """Finds the script used to generate a file inside the file itself. The script is delimited by BEGIN-SCRIPT and END-SCRIPT markers. """ with open(file, 'r') as f: content = f.read() match = re.search(r'^BEGIN-SCRIPT$(.+)^END-SCRIPT$', content, flags=re.MULTILINE | re.DOTALL) if not match: raise RuntimeError("Was unable to find a script delimited with BEGIN-SCRIPT/END-SCRIPT markers in {}".format(test_file)) return match.group(1) def execute_script(script, variables): """Executes the provided Mako template with the given variables available during the evaluation of the script, and returns the result. """ code = compile(script, 'fake-filename', 'exec') output = io.StringIO() with contextlib.redirect_stdout(output): exec(code, variables) output = output.getvalue() return output def generate_new_file(file, new_content): """Generates the new content of the file by inserting the new content in-between two '// GENERATED-MARKER' markers located in the file. """ with open(file, 'r') as f: old_content = f.read() try: before, begin_marker, _, end_marker, after = re.split(r'(// GENERATED-MARKER\n)', old_content, flags=re.MULTILINE | re.DOTALL) except ValueError: raise RuntimeError("Failed to split {} based on markers, please make sure the file has exactly two '// GENERATED-MARKER' occurrences".format(file)) return before + begin_marker + new_content + end_marker + after def produce(test_file, variables): script = find_script(test_file) result = execute_script(script, variables) new_content = generate_new_file(test_file, result) with open(test_file, 'w', newline='\n') as f: f.write(new_content) def is_header(file): """Returns whether the given file is a header (i.e. not a directory or the modulemap file).""" return not file.is_dir() and not file.name == 'module.modulemap' def main(): monorepo_root = pathlib.Path(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) include = pathlib.Path(os.path.join(monorepo_root, 'libcxx', 'include')) test = pathlib.Path(os.path.join(monorepo_root, 'libcxx', 'test')) assert(monorepo_root.exists()) toplevel_headers = sorted(str(p.relative_to(include)) for p in include.glob('[a-z]*') if is_header(p)) experimental_headers = sorted(str(p.relative_to(include)) for p in include.glob('experimental/[a-z]*') if is_header(p)) extended_headers = sorted(str(p.relative_to(include)) for p in include.glob('ext/[a-z]*') if is_header(p)) public_headers = toplevel_headers + experimental_headers + extended_headers private_headers = sorted(str(p.relative_to(include)) for p in include.rglob('*') if is_header(p) and str(p.relative_to(include)).startswith('__')) variables = { 'toplevel_headers': toplevel_headers, 'experimental_headers': experimental_headers, 'extended_headers': extended_headers, 'public_headers': public_headers, 'private_headers': private_headers, 'header_restrictions': header_restrictions, 'private_headers_still_public_in_modules': private_headers_still_public_in_modules } produce(test.joinpath('libcxx/assertions/headers_declare_assertion_handler.sh.cpp'), variables) produce(test.joinpath('libcxx/clang_tidy.sh.cpp'), variables) produce(test.joinpath('libcxx/double_include.sh.cpp'), variables) produce(test.joinpath('libcxx/min_max_macros.compile.pass.cpp'), variables) produce(test.joinpath('libcxx/nasty_macros.compile.pass.cpp'), variables) produce(test.joinpath('libcxx/no_assert_include.compile.pass.cpp'), variables) produce(test.joinpath('libcxx/private_headers.verify.cpp'), variables) if __name__ == '__main__': main()
the-stack_106_22526
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class GatewayRouteListResult(Model): """List of virtual network gateway routes. :param value: List of gateway routes :type value: list[~azure.mgmt.network.v2017_06_01.models.GatewayRoute] """ _attribute_map = { 'value': {'key': 'value', 'type': '[GatewayRoute]'}, } def __init__(self, **kwargs): super(GatewayRouteListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None)