filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_18496
#!/usr/local/sbin/charm-env python3 # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple script to parse benchmark transaction results and reformat them as JSON for sending back to juju """ import sys import json from charmhelpers.core import hookenv import re def parse_benchmark_output(): """ Parse the output from the benchmark and set the action results: """ results = {} # Find all of the interesting things regex = re.compile('\t+(.*)=(.*)') for line in sys.stdin.readlines(): m = regex.match(line) if m: results[m.group(1)] = m.group(2) hookenv.action_set({"meta.raw": json.dumps(results)}) if __name__ == "__main__": parse_benchmark_output()
the-stack_106_18497
import os import pytest def test_list_command(script, data): """ Test default behavior of list command. """ script.pip( 'install', '-f', data.find_links, '--no-index', 'simple==1.0', 'simple2==3.0', ) result = script.pip('list') assert 'simple (1.0)' in result.stdout, str(result) assert 'simple2 (3.0)' in result.stdout, str(result) def test_local_flag(script, data): """ Test the behavior of --local flag in the list command """ script.pip('install', '-f', data.find_links, '--no-index', 'simple==1.0') result = script.pip('list', '--local') assert 'simple (1.0)' in result.stdout def test_user_flag(script, data, virtualenv): """ Test the behavior of --user flag in the list command """ virtualenv.system_site_packages = True script.pip('install', '-f', data.find_links, '--no-index', 'simple==1.0') script.pip('install', '-f', data.find_links, '--no-index', '--user', 'simple2==2.0') result = script.pip('list', '--user') assert 'simple (1.0)' not in result.stdout assert 'simple2 (2.0)' in result.stdout @pytest.mark.network def test_uptodate_flag(script, data): """ Test the behavior of --uptodate flag in the list command """ script.pip( 'install', '-f', data.find_links, '--no-index', 'simple==1.0', 'simple2==3.0', ) script.pip( 'install', '-e', 'git+https://github.com/pypa/pip-test-package.git#egg=pip-test-package' ) result = script.pip( 'list', '-f', data.find_links, '--no-index', '--uptodate', expect_stderr=True, ) assert 'simple (1.0)' not in result.stdout # 3.0 is latest assert 'pip-test-package' not in result.stdout # editables excluded assert 'simple2 (3.0)' in result.stdout, str(result) @pytest.mark.network def test_outdated_flag(script, data): """ Test the behavior of --outdated flag in the list command """ script.pip( 'install', '-f', data.find_links, '--no-index', 'simple==1.0', 'simple2==3.0', 'simplewheel==1.0', ) script.pip( 'install', '-e', 'git+https://github.com/pypa/pip-test-package.git#egg=pip-test-package' ) result = script.pip( 'list', '-f', data.find_links, '--no-index', '--outdated', expect_stderr=True, ) assert 'simple (Current: 1.0 Latest: 3.0 [sdist])' in result.stdout assert 'simplewheel (Current: 1.0 Latest: 2.0 [wheel])' in result.stdout assert 'pip-test-package' not in result.stdout # editables excluded assert 'simple2' not in result.stdout, str(result) # 3.0 is latest @pytest.mark.network def test_editables_flag(script, data): """ Test the behavior of --editables flag in the list command """ script.pip('install', '-f', data.find_links, '--no-index', 'simple==1.0') result = script.pip( 'install', '-e', 'git+https://github.com/pypa/pip-test-package.git#egg=pip-test-package' ) result = script.pip('list', '--editable') assert 'simple (1.0)' not in result.stdout, str(result) assert os.path.join('src', 'pip-test-package') in result.stdout, ( str(result) )
the-stack_106_18498
# Copyright 2016 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from charmhelpers.core.strutils import ( bytes_from_string ) from charmhelpers.core.hookenv import ( is_relation_made, relation_ids, relation_get, related_units, service_name, config, log as juju_log, ERROR ) from charmhelpers.contrib.openstack.context import ( OSContextGenerator, ApacheSSLContext as SSLContext, BindHostContext ) from charmhelpers.contrib.hahelpers.cluster import ( determine_apache_port, determine_api_port, ) from charmhelpers.contrib.openstack.utils import ( os_release, CompareOpenStackReleases, ) class GlanceContext(OSContextGenerator): def __call__(self): ctxt = { 'disk_formats': config('disk-formats') } if config('container-formats'): ctxt['container_formats'] = config('container-formats') if config('filesystem-store-datadir'): ctxt['filesystem_store_datadir'] = ( config('filesystem-store-datadir')) image_size_cap = config('image-size-cap') if image_size_cap: try: ctxt['image_size_cap'] = bytes_from_string( image_size_cap.replace(' ', '').upper()) except (ValueError, KeyError): juju_log('Unable to parse value for image-size-cap ({}), ' 'see config.yaml for information about valid ' 'formatting'.format(config('image-size-cap')), level=ERROR) raise return ctxt class CephGlanceContext(OSContextGenerator): interfaces = ['ceph-glance'] def __call__(self): """Used to generate template context to be added to glance-api.conf in the presence of a ceph relation. """ if not is_relation_made(relation="ceph", keys="key"): return {} service = service_name() return { # pool created based on service name. 'rbd_pool': service, 'rbd_user': service, 'expose_image_locations': config('expose-image-locations') } class ObjectStoreContext(OSContextGenerator): interfaces = ['object-store'] def __call__(self): """Object store config. Used to generate template context to be added to glance-api.conf in the presence of a 'object-store' relation. """ if not relation_ids('object-store'): return {} return { 'swift_store': True, } class CinderStoreContext(OSContextGenerator): interfaces = ['cinder-volume-service', 'storage-backend'] def __call__(self): """Cinder store config. Used to generate template context to be added to glance-api.conf in the presence of a 'cinder-volume-service' relation or in the presence of a flag 'cinder-backend' in the 'storage-backend' relation. """ if relation_ids('cinder-volume-service'): return {'cinder_store': True} for rid in relation_ids('storage-backend'): for unit in related_units(rid): value = relation_get('cinder-backend', rid=rid, unit=unit) # value is a boolean flag return {'cinder_store': value} return {} class MultiStoreContext(OSContextGenerator): def __call__(self): stores = ['glance.store.filesystem.Store', 'glance.store.http.Store'] store_mapping = { 'ceph': 'glance.store.rbd.Store', 'object-store': 'glance.store.swift.Store', } for store_relation, store_type in store_mapping.items(): if relation_ids(store_relation): stores.append(store_type) _release = os_release('glance-common') if ((relation_ids('cinder-volume-service') or relation_ids('storage-backend')) and CompareOpenStackReleases(_release) >= 'mitaka'): # even if storage-backend is present with cinder-backend=False it # means that glance should not store images in cinder by default # but can read images from cinder. stores.append('glance.store.cinder.Store') stores.sort() return { 'known_stores': ','.join(stores) } class HAProxyContext(OSContextGenerator): interfaces = ['cluster'] def __call__(self): '''Extends the main charmhelpers HAProxyContext with a port mapping specific to this charm. Also used to extend glance-api.conf context with correct bind_port ''' haproxy_port = 9292 apache_port = determine_apache_port(9292, singlenode_mode=True) api_port = determine_api_port(9292, singlenode_mode=True) ctxt = { 'service_ports': {'glance_api': [haproxy_port, apache_port]}, 'bind_port': api_port, } return ctxt class ApacheSSLContext(SSLContext): interfaces = ['https'] external_ports = [9292] service_namespace = 'glance' def __call__(self): return super(ApacheSSLContext, self).__call__() class LoggingConfigContext(OSContextGenerator): def __call__(self): return {'debug': config('debug'), 'verbose': config('verbose')} class GlanceIPv6Context(BindHostContext): def __call__(self): ctxt = super(GlanceIPv6Context, self).__call__() if config('prefer-ipv6'): ctxt['registry_host'] = '[::]' else: ctxt['registry_host'] = '0.0.0.0' return ctxt
the-stack_106_18500
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2020 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import yaml from ansible.module_utils.basic import AnsibleModule from ansible_collections.openstack.cloud.plugins.module_utils.openstack import openstack_full_argument_spec from ansible_collections.openstack.cloud.plugins.module_utils.openstack import openstack_module_kwargs from ansible_collections.openstack.cloud.plugins.module_utils.openstack import openstack_cloud_from_module ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: tripleo_network_ports_populate_environment short_description: Create TripleO network port environment version_added: "2.8" description: - "Create TripleO network port environment by extending the beremetal environment" options: environment: description: - Existing heat environment data to add to type: dict default: {} role_net_map: description: - Structure with role network association type: dict default: {} node_port_map: description: - Structure with port data mapped by node and network type: dict default: {} templates: description: - The path to tripleo-heat-templates root directory type: path default: /usr/share/openstack-tripleo-heat-templates author: - Harald Jensås <[email protected]> ''' RETURN = ''' ''' EXAMPLES = ''' - name: Populate environment with network port data tripleo_network_ports_populate_environment: environment: {} role_net_map: Controller: - external - internal_api - storage - tenant Compute: - internal_api - storage - tenant node_port_map: controller-0: internal_api: ip_address: 172.18.0.9 ip_subnet: 172.18.0.9/24 ip_address_uri: 172.18.0.9 tenant: ip_address: 172.19.0.9 ip_subnet: 172.19.0.9/24 ip_address_uri: 172.19.0.9 compute-0: internal_api: ip_address: 172.18.0.15 ip_subnet: 172.18.0.15/24 ip_address_uri: 172.18.0.15 tenant: ip_address: 172.19.0.15 ip_subnet: 172.19.0.15/24 ip_address_uri: 172.19.0.15 register: environment ''' CTLPLANE_NETWORK = 'ctlplane' REGISTRY_KEY_TPL = 'OS::TripleO::{role}::Ports::{net_name}Port' PORT_PATH_TPL = 'network/ports/deployed_{net_name_lower}.yaml' def get_net_name_map(conn, role_net_map): _map = {} networks = set() for role, nets in role_net_map.items(): networks.update(nets) for name_lower in networks: if name_lower == CTLPLANE_NETWORK: _map[name_lower] = name_lower continue net = conn.network.find_network(name_or_id=name_lower) if not net: raise Exception('Network {} not found'.format(name_lower)) name_upper = [x.split('=').pop() for x in net.tags if x.startswith('tripleo_network_name')] if not name_upper: raise Exception( 'Unable to find network name for network with name_lower: {}, ' 'please make sure the network tag tripleo_network_name' '=$NET_NAME is set.'.format(name_lower)) _map[name_lower] = name_upper.pop() return _map def update_environment(environment, node_port_map, role_net_map, net_name_map, templates): resource_registry = environment.setdefault('resource_registry', {}) parameter_defaults = environment.setdefault('parameter_defaults', {}) for role, nets in role_net_map.items(): for net in nets: if net == CTLPLANE_NETWORK: continue registry_key = REGISTRY_KEY_TPL.format(role=role, net_name=net_name_map[net]) template_path = os.path.join( templates, PORT_PATH_TPL.format(net_name_lower=net)) resource_registry.update({registry_key: template_path}) _map = parameter_defaults.setdefault('NodePortMap', {}) _map.update(node_port_map) def run_module(): result = dict( success=False, changed=False, error="", environment={}, ) argument_spec = openstack_full_argument_spec( **yaml.safe_load(DOCUMENTATION)['options'] ) module = AnsibleModule( argument_spec, supports_check_mode=False, **openstack_module_kwargs() ) environment = result['environment'] = module.params['environment'] role_net_map = module.params['role_net_map'] node_port_map = module.params['node_port_map'] templates = module.params['templates'] try: _, conn = openstack_cloud_from_module(module) net_name_map = get_net_name_map(conn, role_net_map) update_environment(environment, node_port_map, role_net_map, net_name_map, templates) result['success'] = True module.exit_json(**result) except Exception as err: result['error'] = str(err) result['msg'] = "Error overcloud network provision failed!" module.fail_json(**result) def main(): run_module() if __name__ == '__main__': main()
the-stack_106_18501
""" Incident Update Web Controller """ # Standard Library import os import markdown2 # Third Party Library from django.views import View from django.http import Http404 from django.shortcuts import render from django.utils.translation import gettext as _ # Local Library from app.modules.core.context import Context from app.modules.core.incident import Incident as IncidentModule from app.modules.core.decorators import login_if_not_authenticated from app.modules.core.component import Component as ComponentModule from app.modules.core.component_group import ComponentGroup as ComponentGroupModule from app.modules.core.incident_update import IncidentUpdate as IncidentUpdateModule from app.modules.core.incident_update_component import IncidentUpdateComponent as IncidentUpdateComponentModule from app.modules.core.incident_update_notification import IncidentUpdateNotification as IncidentUpdateNotificationModule class IncidentUpdateAdd(View): template_name = 'templates/admin/incident/update/add.html' __context = Context() __incident = IncidentModule() __incident_update = IncidentUpdateModule() __component = ComponentModule() __component_group = ComponentGroupModule() __correlation_id = None @login_if_not_authenticated def get(self, request, incident_id): self.__correlation_id = request.META["X-Correlation-ID"] if "X-Correlation-ID" in request.META else "" incident = self.__incident.get_one_by_id(incident_id) if not incident: raise Http404("Incident not found.") self.__context.autoload_options() self.__context.autoload_user(request.user.id if request.user.is_authenticated else None) self.__context.push({ "page_title": _("Add Incident Update · %s") % self.__context.get("app_name", os.getenv("APP_NAME", "Silverback")), "incident": incident }) return render(request, self.template_name, self.__context.get()) class IncidentUpdateView(View): template_name = 'templates/admin/incident/update/view.html' __context = Context() __incident = IncidentModule() __incident_update = IncidentUpdateModule() __incident_update_component = IncidentUpdateComponentModule() __component = ComponentModule() __component_group = ComponentGroupModule() __incident_update_notification = IncidentUpdateNotificationModule() __correlation_id = None @login_if_not_authenticated def get(self, request, incident_id, update_id): self.__correlation_id = request.META["X-Correlation-ID"] if "X-Correlation-ID" in request.META else "" incident = self.__incident.get_one_by_id(incident_id) if not incident: raise Http404("Incident not found.") update = self.__incident_update.get_one_by_id(update_id) if not update: raise Http404("Incident update not found.") update["datetime"] = update["datetime"].strftime("%b %d %Y %H:%M:%S") update["message"] = markdown2.markdown(update["message"]) update["notified_subscribers"] = self.__incident_update_notification.count_by_update_status( update["id"], IncidentUpdateNotificationModule.SUCCESS ) update["failed_subscribers"] = self.__incident_update_notification.count_by_update_status( update["id"], IncidentUpdateNotificationModule.FAILED ) components = self.__format_components(self.__component.get_all()) affected_components = self.__format_affected_components(self.__incident_update_component.get_all(update_id)) self.__context.autoload_options() self.__context.autoload_user(request.user.id if request.user.is_authenticated else None) self.__context.push({ "page_title": _("View Incident Update · %s") % self.__context.get("app_name", os.getenv("APP_NAME", "Silverback")), "update": update, "incident": incident, "components": components, "affected_components": affected_components }) return render(request, self.template_name, self.__context.get()) def __format_components(self, components): components_list = [] for component in components: components_list.append({ "id": component.id, "name": component.name }) return components_list def __format_affected_components(self, affected_components): affected_components_list = [] for affected_component in affected_components: affected_components_list.append({ "id": affected_component.id, "component_id": affected_component.component.id, "component_name": affected_component.component.name, "type": affected_component.type }) return affected_components_list class IncidentUpdateEdit(View): template_name = 'templates/admin/incident/update/edit.html' __context = Context() __incident = IncidentModule() __incident_update = IncidentUpdateModule() __component = ComponentModule() __component_group = ComponentGroupModule() __correlation_id = None @login_if_not_authenticated def get(self, request, incident_id, update_id): self.__correlation_id = request.META["X-Correlation-ID"] if "X-Correlation-ID" in request.META else "" incident = self.__incident.get_one_by_id(incident_id) if not incident: raise Http404("Incident not found.") update = self.__incident_update.get_one_by_id(update_id) if not update: raise Http404("Incident update not found.") self.__context.autoload_options() self.__context.autoload_user(request.user.id if request.user.is_authenticated else None) self.__context.push({ "page_title": _("Edit Incident Update · %s") % self.__context.get("app_name", os.getenv("APP_NAME", "Silverback")), "update": update, "incident": incident }) return render(request, self.template_name, self.__context.get())
the-stack_106_18502
"""Support for Freedompro climate.""" import json import logging from pyfreedompro import put_state from homeassistant.components.climate import ClimateEntity, ClimateEntityFeature from homeassistant.components.climate.const import ( ATTR_HVAC_MODE, HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_OFF, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_TEMPERATURE, CONF_API_KEY, TEMP_CELSIUS from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import aiohttp_client from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import DOMAIN _LOGGER = logging.getLogger(__name__) HVAC_MAP = { 0: HVAC_MODE_OFF, 1: HVAC_MODE_HEAT, 2: HVAC_MODE_COOL, } HVAC_INVERT_MAP = {v: k for k, v in HVAC_MAP.items()} SUPPORTED_HVAC_MODES = [HVAC_MODE_OFF, HVAC_MODE_HEAT, HVAC_MODE_COOL] async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up Freedompro climate.""" api_key = entry.data[CONF_API_KEY] coordinator = hass.data[DOMAIN][entry.entry_id] async_add_entities( Device( aiohttp_client.async_get_clientsession(hass), api_key, device, coordinator ) for device in coordinator.data if device["type"] == "thermostat" ) class Device(CoordinatorEntity, ClimateEntity): """Representation of an Freedompro climate.""" _attr_hvac_modes = SUPPORTED_HVAC_MODES _attr_temperature_unit = TEMP_CELSIUS def __init__(self, session, api_key, device, coordinator): """Initialize the Freedompro climate.""" super().__init__(coordinator) self._session = session self._api_key = api_key self._attr_name = device["name"] self._attr_unique_id = device["uid"] self._characteristics = device["characteristics"] self._attr_device_info = DeviceInfo( identifiers={ (DOMAIN, self.unique_id), }, manufacturer="Freedompro", model=device["type"], name=self.name, ) self._attr_supported_features = ClimateEntityFeature.TARGET_TEMPERATURE self._attr_current_temperature = 0 self._attr_target_temperature = 0 self._attr_hvac_mode = HVAC_MODE_OFF @callback def _handle_coordinator_update(self) -> None: """Handle updated data from the coordinator.""" device = next( ( device for device in self.coordinator.data if device["uid"] == self._attr_unique_id ), None, ) if device is not None and "state" in device: state = device["state"] if "currentTemperature" in state: self._attr_current_temperature = state["currentTemperature"] if "targetTemperature" in state: self._attr_target_temperature = state["targetTemperature"] if "heatingCoolingState" in state: self._attr_hvac_mode = HVAC_MAP[state["heatingCoolingState"]] super()._handle_coordinator_update() async def async_added_to_hass(self) -> None: """When entity is added to hass.""" await super().async_added_to_hass() self._handle_coordinator_update() async def async_set_hvac_mode(self, hvac_mode): """Async function to set mode to climate.""" if hvac_mode not in SUPPORTED_HVAC_MODES: raise ValueError(f"Got unsupported hvac_mode {hvac_mode}") payload = {} payload["heatingCoolingState"] = HVAC_INVERT_MAP[hvac_mode] payload = json.dumps(payload) await put_state( self._session, self._api_key, self.unique_id, payload, ) await self.coordinator.async_request_refresh() async def async_set_temperature(self, **kwargs): """Async function to set temperature to climate.""" payload = {} if ATTR_HVAC_MODE in kwargs: if kwargs[ATTR_HVAC_MODE] not in SUPPORTED_HVAC_MODES: _LOGGER.error( "Got unsupported hvac_mode %s, expected one of %s", kwargs[ATTR_HVAC_MODE], SUPPORTED_HVAC_MODES, ) return payload["heatingCoolingState"] = HVAC_INVERT_MAP[kwargs[ATTR_HVAC_MODE]] if ATTR_TEMPERATURE in kwargs: payload["targetTemperature"] = kwargs[ATTR_TEMPERATURE] payload = json.dumps(payload) await put_state( self._session, self._api_key, self.unique_id, payload, ) await self.coordinator.async_request_refresh()
the-stack_106_18503
# need a dict to set bloody .name field from io import BytesIO import logging import os import stat from unittest import SkipTest import uuid import git from git.cmd import Git from git.compat import ( string_types, defenc, is_win, ) from git.config import ( SectionConstraint, GitConfigParser, cp ) from git.exc import ( InvalidGitRepositoryError, NoSuchPathError, RepositoryDirtyError ) from git.objects.base import IndexObject, Object from git.objects.util import Traversable from git.util import ( Iterable, join_path_native, to_native_path_linux, RemoteProgress, rmtree, unbare_repo ) from git.util import HIDE_WINDOWS_KNOWN_ERRORS import os.path as osp from .util import ( mkhead, sm_name, sm_section, SubmoduleConfigParser, find_first_remote_branch ) __all__ = ["Submodule", "UpdateProgress"] log = logging.getLogger('git.objects.submodule.base') log.addHandler(logging.NullHandler()) class UpdateProgress(RemoteProgress): """Class providing detailed progress information to the caller who should derive from it and implement the ``update(...)`` message""" CLONE, FETCH, UPDWKTREE = [1 << x for x in range(RemoteProgress._num_op_codes, RemoteProgress._num_op_codes + 3)] _num_op_codes = RemoteProgress._num_op_codes + 3 __slots__ = () BEGIN = UpdateProgress.BEGIN END = UpdateProgress.END CLONE = UpdateProgress.CLONE FETCH = UpdateProgress.FETCH UPDWKTREE = UpdateProgress.UPDWKTREE # IndexObject comes via util module, its a 'hacky' fix thanks to pythons import # mechanism which cause plenty of trouble of the only reason for packages and # modules is refactoring - subpackages shouldn't depend on parent packages class Submodule(IndexObject, Iterable, Traversable): """Implements access to a git submodule. They are special in that their sha represents a commit in the submodule's repository which is to be checked out at the path of this instance. The submodule type does not have a string type associated with it, as it exists solely as a marker in the tree and index. All methods work in bare and non-bare repositories.""" _id_attribute_ = "name" k_modules_file = '.gitmodules' k_head_option = 'branch' k_head_default = 'master' k_default_mode = stat.S_IFDIR | stat.S_IFLNK # submodules are directories with link-status # this is a bogus type for base class compatibility type = 'submodule' __slots__ = ('_parent_commit', '_url', '_branch_path', '_name', '__weakref__') _cache_attrs = ('path', '_url', '_branch_path') def __init__(self, repo, binsha, mode=None, path=None, name=None, parent_commit=None, url=None, branch_path=None): """Initialize this instance with its attributes. We only document the ones that differ from ``IndexObject`` :param repo: Our parent repository :param binsha: binary sha referring to a commit in the remote repository, see url parameter :param parent_commit: see set_parent_commit() :param url: The url to the remote repository which is the submodule :param branch_path: full (relative) path to ref to checkout when cloning the remote repository""" super(Submodule, self).__init__(repo, binsha, mode, path) self.size = 0 self._parent_commit = parent_commit if url is not None: self._url = url if branch_path is not None: assert isinstance(branch_path, string_types) self._branch_path = branch_path if name is not None: self._name = name def _set_cache_(self, attr): if attr in ('path', '_url', '_branch_path'): reader = self.config_reader() # default submodule values try: self.path = reader.get('path') except cp.NoSectionError: raise ValueError("This submodule instance does not exist anymore in '%s' file" % osp.join(self.repo.working_tree_dir, '.gitmodules')) # end self._url = reader.get('url') # git-python extension values - optional self._branch_path = reader.get_value(self.k_head_option, git.Head.to_full_path(self.k_head_default)) elif attr == '_name': raise AttributeError("Cannot retrieve the name of a submodule if it was not set initially") else: super(Submodule, self)._set_cache_(attr) # END handle attribute name def _get_intermediate_items(self, item): """:return: all the submodules of our module repository""" try: return type(self).list_items(item.module()) except InvalidGitRepositoryError: return [] # END handle intermediate items @classmethod def _need_gitfile_submodules(cls, git): return git.version_info[:3] >= (1, 7, 5) def __eq__(self, other): """Compare with another submodule""" # we may only compare by name as this should be the ID they are hashed with # Otherwise this type wouldn't be hashable # return self.path == other.path and self.url == other.url and super(Submodule, self).__eq__(other) return self._name == other._name def __ne__(self, other): """Compare with another submodule for inequality""" return not (self == other) def __hash__(self): """Hash this instance using its logical id, not the sha""" return hash(self._name) def __str__(self): return self._name def __repr__(self): return "git.%s(name=%s, path=%s, url=%s, branch_path=%s)"\ % (type(self).__name__, self._name, self.path, self.url, self.branch_path) @classmethod def _config_parser(cls, repo, parent_commit, read_only): """:return: Config Parser constrained to our submodule in read or write mode :raise IOError: If the .gitmodules file cannot be found, either locally or in the repository at the given parent commit. Otherwise the exception would be delayed until the first access of the config parser""" parent_matches_head = True if parent_commit is not None: try: parent_matches_head = repo.head.commit == parent_commit except ValueError: # We are most likely in an empty repository, so the HEAD doesn't point to a valid ref pass # end handle parent_commit if not repo.bare and parent_matches_head: fp_module = osp.join(repo.working_tree_dir, cls.k_modules_file) else: assert parent_commit is not None, "need valid parent_commit in bare repositories" try: fp_module = cls._sio_modules(parent_commit) except KeyError: raise IOError("Could not find %s file in the tree of parent commit %s" % (cls.k_modules_file, parent_commit)) # END handle exceptions # END handle non-bare working tree if not read_only and (repo.bare or not parent_matches_head): raise ValueError("Cannot write blobs of 'historical' submodule configurations") # END handle writes of historical submodules return SubmoduleConfigParser(fp_module, read_only=read_only) def _clear_cache(self): # clear the possibly changed values for name in self._cache_attrs: try: delattr(self, name) except AttributeError: pass # END try attr deletion # END for each name to delete @classmethod def _sio_modules(cls, parent_commit): """:return: Configuration file as BytesIO - we only access it through the respective blob's data""" sio = BytesIO(parent_commit.tree[cls.k_modules_file].data_stream.read()) sio.name = cls.k_modules_file return sio def _config_parser_constrained(self, read_only): """:return: Config Parser constrained to our submodule in read or write mode""" try: pc = self.parent_commit except ValueError: pc = None # end handle empty parent repository parser = self._config_parser(self.repo, pc, read_only) parser.set_submodule(self) return SectionConstraint(parser, sm_section(self.name)) @classmethod def _module_abspath(cls, parent_repo, path, name): if cls._need_gitfile_submodules(parent_repo.git): return osp.join(parent_repo.git_dir, 'modules', name) return osp.join(parent_repo.working_tree_dir, path) # end @classmethod def _clone_repo(cls, repo, url, path, name, **kwargs): """:return: Repo instance of newly cloned repository :param repo: our parent repository :param url: url to clone from :param path: repository-relative path to the submodule checkout location :param name: canonical of the submodule :param kwrags: additinoal arguments given to git.clone""" module_abspath = cls._module_abspath(repo, path, name) module_checkout_path = module_abspath if cls._need_gitfile_submodules(repo.git): kwargs['separate_git_dir'] = module_abspath module_abspath_dir = osp.dirname(module_abspath) if not osp.isdir(module_abspath_dir): os.makedirs(module_abspath_dir) module_checkout_path = osp.join(repo.working_tree_dir, path) # end clone = git.Repo.clone_from(url, module_checkout_path, **kwargs) if cls._need_gitfile_submodules(repo.git): cls._write_git_file_and_module_config(module_checkout_path, module_abspath) # end return clone @classmethod def _to_relative_path(cls, parent_repo, path): """:return: a path guaranteed to be relative to the given parent-repository :raise ValueError: if path is not contained in the parent repository's working tree""" path = to_native_path_linux(path) if path.endswith('/'): path = path[:-1] # END handle trailing slash if osp.isabs(path): working_tree_linux = to_native_path_linux(parent_repo.working_tree_dir) if not path.startswith(working_tree_linux): raise ValueError("Submodule checkout path '%s' needs to be within the parents repository at '%s'" % (working_tree_linux, path)) path = path[len(working_tree_linux.rstrip('/')) + 1:] if not path: raise ValueError("Absolute submodule path '%s' didn't yield a valid relative path" % path) # end verify converted relative path makes sense # end convert to a relative path return path @classmethod def _write_git_file_and_module_config(cls, working_tree_dir, module_abspath): """Writes a .git file containing a (preferably) relative path to the actual git module repository. It is an error if the module_abspath cannot be made into a relative path, relative to the working_tree_dir :note: will overwrite existing files ! :note: as we rewrite both the git file as well as the module configuration, we might fail on the configuration and will not roll back changes done to the git file. This should be a non-issue, but may easily be fixed if it becomes one :param working_tree_dir: directory to write the .git file into :param module_abspath: absolute path to the bare repository """ git_file = osp.join(working_tree_dir, '.git') rela_path = osp.relpath(module_abspath, start=working_tree_dir) if is_win: if osp.isfile(git_file): os.remove(git_file) with open(git_file, 'wb') as fp: fp.write(("gitdir: %s" % rela_path).encode(defenc)) with GitConfigParser(osp.join(module_abspath, 'config'), read_only=False, merge_includes=False) as writer: writer.set_value('core', 'worktree', to_native_path_linux(osp.relpath(working_tree_dir, start=module_abspath))) #{ Edit Interface @classmethod def add(cls, repo, name, path, url=None, branch=None, no_checkout=False): """Add a new submodule to the given repository. This will alter the index as well as the .gitmodules file, but will not create a new commit. If the submodule already exists, no matter if the configuration differs from the one provided, the existing submodule will be returned. :param repo: Repository instance which should receive the submodule :param name: The name/identifier for the submodule :param path: repository-relative or absolute path at which the submodule should be located It will be created as required during the repository initialization. :param url: git-clone compatible URL, see git-clone reference for more information If None, the repository is assumed to exist, and the url of the first remote is taken instead. This is useful if you want to make an existing repository a submodule of anotherone. :param branch: name of branch at which the submodule should (later) be checked out. The given branch must exist in the remote repository, and will be checked out locally as a tracking branch. It will only be written into the configuration if it not None, which is when the checked out branch will be the one the remote HEAD pointed to. The result you get in these situation is somewhat fuzzy, and it is recommended to specify at least 'master' here. Examples are 'master' or 'feature/new' :param no_checkout: if True, and if the repository has to be cloned manually, no checkout will be performed :return: The newly created submodule instance :note: works atomically, such that no change will be done if the repository update fails for instance""" if repo.bare: raise InvalidGitRepositoryError("Cannot add submodules to bare repositories") # END handle bare repos path = cls._to_relative_path(repo, path) # assure we never put backslashes into the url, as some operating systems # like it ... if url is not None: url = to_native_path_linux(url) # END assure url correctness # INSTANTIATE INTERMEDIATE SM sm = cls(repo, cls.NULL_BIN_SHA, cls.k_default_mode, path, name, url='invalid-temporary') if sm.exists(): # reretrieve submodule from tree try: sm = repo.head.commit.tree[path] sm._name = name return sm except KeyError: # could only be in index index = repo.index entry = index.entries[index.entry_key(path, 0)] sm.binsha = entry.binsha return sm # END handle exceptions # END handle existing # fake-repo - we only need the functionality on the branch instance br = git.Head(repo, git.Head.to_full_path(str(branch) or cls.k_head_default)) has_module = sm.module_exists() branch_is_default = branch is None if has_module and url is not None: if url not in [r.url for r in sm.module().remotes]: raise ValueError( "Specified URL '%s' does not match any remote url of the repository at '%s'" % (url, sm.abspath)) # END check url # END verify urls match mrepo = None if url is None: if not has_module: raise ValueError("A URL was not given and existing repository did not exsit at %s" % path) # END check url mrepo = sm.module() urls = [r.url for r in mrepo.remotes] if not urls: raise ValueError("Didn't find any remote url in repository at %s" % sm.abspath) # END verify we have url url = urls[0] else: # clone new repo kwargs = {'n': no_checkout} if not branch_is_default: kwargs['b'] = br.name # END setup checkout-branch # _clone_repo(cls, repo, url, path, name, **kwargs): mrepo = cls._clone_repo(repo, url, path, name, **kwargs) # END verify url ## See #525 for ensuring git urls in config-files valid under Windows. url = Git.polish_url(url) # It's important to add the URL to the parent config, to let `git submodule` know. # otherwise there is a '-' character in front of the submodule listing # a38efa84daef914e4de58d1905a500d8d14aaf45 mymodule (v0.9.0-1-ga38efa8) # -a38efa84daef914e4de58d1905a500d8d14aaf45 submodules/intermediate/one with sm.repo.config_writer() as writer: writer.set_value(sm_section(name), 'url', url) # update configuration and index index = sm.repo.index with sm.config_writer(index=index, write=False) as writer: writer.set_value('url', url) writer.set_value('path', path) sm._url = url if not branch_is_default: # store full path writer.set_value(cls.k_head_option, br.path) sm._branch_path = br.path # we deliberately assume that our head matches our index ! sm.binsha = mrepo.head.commit.binsha index.add([sm], write=True) return sm def update(self, recursive=False, init=True, to_latest_revision=False, progress=None, dry_run=False, force=False, keep_going=False): """Update the repository of this submodule to point to the checkout we point at with the binsha of this instance. :param recursive: if True, we will operate recursively and update child- modules as well. :param init: if True, the module repository will be cloned into place if necessary :param to_latest_revision: if True, the submodule's sha will be ignored during checkout. Instead, the remote will be fetched, and the local tracking branch updated. This only works if we have a local tracking branch, which is the case if the remote repository had a master branch, or of the 'branch' option was specified for this submodule and the branch existed remotely :param progress: UpdateProgress instance or None if no progress should be shown :param dry_run: if True, the operation will only be simulated, but not performed. All performed operations are read-only :param force: If True, we may reset heads even if the repository in question is dirty. Additinoally we will be allowed to set a tracking branch which is ahead of its remote branch back into the past or the location of the remote branch. This will essentially 'forget' commits. If False, local tracking branches that are in the future of their respective remote branches will simply not be moved. :param keep_going: if True, we will ignore but log all errors, and keep going recursively. Unless dry_run is set as well, keep_going could cause subsequent/inherited errors you wouldn't see otherwise. In conjunction with dry_run, it can be useful to anticipate all errors when updating submodules :note: does nothing in bare repositories :note: method is definitely not atomic if recurisve is True :return: self""" if self.repo.bare: return self # END pass in bare mode if progress is None: progress = UpdateProgress() # END handle progress prefix = '' if dry_run: prefix = "DRY-RUN: " # END handle prefix # to keep things plausible in dry-run mode if dry_run: mrepo = None # END init mrepo try: # ASSURE REPO IS PRESENT AND UPTODATE ##################################### try: mrepo = self.module() rmts = mrepo.remotes len_rmts = len(rmts) for i, remote in enumerate(rmts): op = FETCH if i == 0: op |= BEGIN # END handle start progress.update(op, i, len_rmts, prefix + "Fetching remote %s of submodule %r" % (remote, self.name)) #=============================== if not dry_run: remote.fetch(progress=progress) # END handle dry-run #=============================== if i == len_rmts - 1: op |= END # END handle end progress.update(op, i, len_rmts, prefix + "Done fetching remote of submodule %r" % self.name) # END fetch new data except InvalidGitRepositoryError: if not init: return self # END early abort if init is not allowed # there is no git-repository yet - but delete empty paths checkout_module_abspath = self.abspath if not dry_run and osp.isdir(checkout_module_abspath): try: os.rmdir(checkout_module_abspath) except OSError: raise OSError("Module directory at %r does already exist and is non-empty" % checkout_module_abspath) # END handle OSError # END handle directory removal # don't check it out at first - nonetheless it will create a local # branch according to the remote-HEAD if possible progress.update(BEGIN | CLONE, 0, 1, prefix + "Cloning url '%s' to '%s' in submodule %r" % (self.url, checkout_module_abspath, self.name)) if not dry_run: mrepo = self._clone_repo(self.repo, self.url, self.path, self.name, n=True) # END handle dry-run progress.update(END | CLONE, 0, 1, prefix + "Done cloning to %s" % checkout_module_abspath) if not dry_run: # see whether we have a valid branch to checkout try: # find a remote which has our branch - we try to be flexible remote_branch = find_first_remote_branch(mrepo.remotes, self.branch_name) local_branch = mkhead(mrepo, self.branch_path) # have a valid branch, but no checkout - make sure we can figure # that out by marking the commit with a null_sha local_branch.set_object(Object(mrepo, self.NULL_BIN_SHA)) # END initial checkout + branch creation # make sure HEAD is not detached mrepo.head.set_reference(local_branch, logmsg="submodule: attaching head to %s" % local_branch) mrepo.head.ref.set_tracking_branch(remote_branch) except (IndexError, InvalidGitRepositoryError): log.warn("Failed to checkout tracking branch %s", self.branch_path) # END handle tracking branch # NOTE: Have to write the repo config file as well, otherwise # the default implementation will be offended and not update the repository # Maybe this is a good way to assure it doesn't get into our way, but # we want to stay backwards compatible too ... . Its so redundant ! with self.repo.config_writer() as writer: writer.set_value(sm_section(self.name), 'url', self.url) # END handle dry_run # END handle initialization # DETERMINE SHAS TO CHECKOUT ############################ binsha = self.binsha hexsha = self.hexsha if mrepo is not None: # mrepo is only set if we are not in dry-run mode or if the module existed is_detached = mrepo.head.is_detached # END handle dry_run if mrepo is not None and to_latest_revision: msg_base = "Cannot update to latest revision in repository at %r as " % mrepo.working_dir if not is_detached: rref = mrepo.head.ref.tracking_branch() if rref is not None: rcommit = rref.commit binsha = rcommit.binsha hexsha = rcommit.hexsha else: log.error("%s a tracking branch was not set for local branch '%s'", msg_base, mrepo.head.ref) # END handle remote ref else: log.error("%s there was no local tracking branch", msg_base) # END handle detached head # END handle to_latest_revision option # update the working tree # handles dry_run if mrepo is not None and mrepo.head.commit.binsha != binsha: # We must assure that our destination sha (the one to point to) is in the future of our current head. # Otherwise, we will reset changes that might have been done on the submodule, but were not yet pushed # We also handle the case that history has been rewritten, leaving no merge-base. In that case # we behave conservatively, protecting possible changes the user had done may_reset = True if mrepo.head.commit.binsha != self.NULL_BIN_SHA: base_commit = mrepo.merge_base(mrepo.head.commit, hexsha) if len(base_commit) == 0 or base_commit[0].hexsha == hexsha: if force: msg = "Will force checkout or reset on local branch that is possibly in the future of" msg += "the commit it will be checked out to, effectively 'forgetting' new commits" log.debug(msg) else: msg = "Skipping %s on branch '%s' of submodule repo '%s' as it contains un-pushed commits" msg %= (is_detached and "checkout" or "reset", mrepo.head, mrepo) log.info(msg) may_reset = False # end handle force # end handle if we are in the future if may_reset and not force and mrepo.is_dirty(index=True, working_tree=True, untracked_files=True): raise RepositoryDirtyError(mrepo, "Cannot reset a dirty repository") # end handle force and dirty state # end handle empty repo # end verify future/past progress.update(BEGIN | UPDWKTREE, 0, 1, prefix + "Updating working tree at %s for submodule %r to revision %s" % (self.path, self.name, hexsha)) if not dry_run and may_reset: if is_detached: # NOTE: for now we force, the user is no supposed to change detached # submodules anyway. Maybe at some point this becomes an option, to # properly handle user modifications - see below for future options # regarding rebase and merge. mrepo.git.checkout(hexsha, force=force) else: mrepo.head.reset(hexsha, index=True, working_tree=True) # END handle checkout # if we may reset/checkout progress.update(END | UPDWKTREE, 0, 1, prefix + "Done updating working tree for submodule %r" % self.name) # END update to new commit only if needed except Exception as err: if not keep_going: raise log.error(str(err)) # end handle keep_going # HANDLE RECURSION ################## if recursive: # in dry_run mode, the module might not exist if mrepo is not None: for submodule in self.iter_items(self.module()): submodule.update(recursive, init, to_latest_revision, progress=progress, dry_run=dry_run, force=force, keep_going=keep_going) # END handle recursive update # END handle dry run # END for each submodule return self @unbare_repo def move(self, module_path, configuration=True, module=True): """Move the submodule to a another module path. This involves physically moving the repository at our current path, changing the configuration, as well as adjusting our index entry accordingly. :param module_path: the path to which to move our module in the parent repostory's working tree, given as repository-relative or absolute path. Intermediate directories will be created accordingly. If the path already exists, it must be empty. Trailing (back)slashes are removed automatically :param configuration: if True, the configuration will be adjusted to let the submodule point to the given path. :param module: if True, the repository managed by this submodule will be moved as well. If False, we don't move the submodule's checkout, which may leave the parent repository in an inconsistent state. :return: self :raise ValueError: if the module path existed and was not empty, or was a file :note: Currently the method is not atomic, and it could leave the repository in an inconsistent state if a sub-step fails for some reason """ if module + configuration < 1: raise ValueError("You must specify to move at least the module or the configuration of the submodule") # END handle input module_checkout_path = self._to_relative_path(self.repo, module_path) # VERIFY DESTINATION if module_checkout_path == self.path: return self # END handle no change module_checkout_abspath = join_path_native(self.repo.working_tree_dir, module_checkout_path) if osp.isfile(module_checkout_abspath): raise ValueError("Cannot move repository onto a file: %s" % module_checkout_abspath) # END handle target files index = self.repo.index tekey = index.entry_key(module_checkout_path, 0) # if the target item already exists, fail if configuration and tekey in index.entries: raise ValueError("Index entry for target path did already exist") # END handle index key already there # remove existing destination if module: if osp.exists(module_checkout_abspath): if len(os.listdir(module_checkout_abspath)): raise ValueError("Destination module directory was not empty") # END handle non-emptiness if osp.islink(module_checkout_abspath): os.remove(module_checkout_abspath) else: os.rmdir(module_checkout_abspath) # END handle link else: # recreate parent directories # NOTE: renames() does that now pass # END handle existence # END handle module # move the module into place if possible cur_path = self.abspath renamed_module = False if module and osp.exists(cur_path): os.renames(cur_path, module_checkout_abspath) renamed_module = True if osp.isfile(osp.join(module_checkout_abspath, '.git')): module_abspath = self._module_abspath(self.repo, self.path, self.name) self._write_git_file_and_module_config(module_checkout_abspath, module_abspath) # end handle git file rewrite # END move physical module # rename the index entry - have to manipulate the index directly as # git-mv cannot be used on submodules ... yeah previous_sm_path = self.path try: if configuration: try: ekey = index.entry_key(self.path, 0) entry = index.entries[ekey] del(index.entries[ekey]) nentry = git.IndexEntry(entry[:3] + (module_checkout_path,) + entry[4:]) index.entries[tekey] = nentry except KeyError: raise InvalidGitRepositoryError("Submodule's entry at %r did not exist" % (self.path)) # END handle submodule doesn't exist # update configuration with self.config_writer(index=index) as writer: # auto-write writer.set_value('path', module_checkout_path) self.path = module_checkout_path # END handle configuration flag except Exception: if renamed_module: os.renames(module_checkout_abspath, cur_path) # END undo module renaming raise # END handle undo rename # Auto-rename submodule if it's name was 'default', that is, the checkout directory if previous_sm_path == self.name: self.rename(module_checkout_path) # end return self @unbare_repo def remove(self, module=True, force=False, configuration=True, dry_run=False): """Remove this submodule from the repository. This will remove our entry from the .gitmodules file and the entry in the .git/config file. :param module: If True, the module checkout we point to will be deleted as well. If the module is currently on a commit which is not part of any branch in the remote, if the currently checked out branch working tree, or untracked files, is ahead of its tracking branch, if you have modifications in the In case the removal of the repository fails for these reasons, the submodule status will not have been altered. If this submodule has child-modules on its own, these will be deleted prior to touching the own module. :param force: Enforces the deletion of the module even though it contains modifications. This basically enforces a brute-force file system based deletion. :param configuration: if True, the submodule is deleted from the configuration, otherwise it isn't. Although this should be enabled most of the times, this flag enables you to safely delete the repository of your submodule. :param dry_run: if True, we will not actually do anything, but throw the errors we would usually throw :return: self :note: doesn't work in bare repositories :note: doesn't work atomically, as failure to remove any part of the submodule will leave an inconsistent state :raise InvalidGitRepositoryError: thrown if the repository cannot be deleted :raise OSError: if directories or files could not be removed""" if not (module or configuration): raise ValueError("Need to specify to delete at least the module, or the configuration") # END handle parameters # Recursively remove children of this submodule nc = 0 for csm in self.children(): nc += 1 csm.remove(module, force, configuration, dry_run) del(csm) # end if configuration and not dry_run and nc > 0: # Assure we don't leave the parent repository in a dirty state, and commit our changes # It's important for recursive, unforced, deletions to work as expected self.module().index.commit("Removed at least one of child-modules of '%s'" % self.name) # end handle recursion # DELETE REPOSITORY WORKING TREE ################################ if module and self.module_exists(): mod = self.module() git_dir = mod.git_dir if force: # take the fast lane and just delete everything in our module path # TODO: If we run into permission problems, we have a highly inconsistent # state. Delete the .git folders last, start with the submodules first mp = self.abspath method = None if osp.islink(mp): method = os.remove elif osp.isdir(mp): method = rmtree elif osp.exists(mp): raise AssertionError("Cannot forcibly delete repository as it was neither a link, nor a directory") # END handle brutal deletion if not dry_run: assert method method(mp) # END apply deletion method else: # verify we may delete our module if mod.is_dirty(index=True, working_tree=True, untracked_files=True): raise InvalidGitRepositoryError( "Cannot delete module at %s with any modifications, unless force is specified" % mod.working_tree_dir) # END check for dirt # figure out whether we have new commits compared to the remotes # NOTE: If the user pulled all the time, the remote heads might # not have been updated, so commits coming from the remote look # as if they come from us. But we stay strictly read-only and # don't fetch beforehand. for remote in mod.remotes: num_branches_with_new_commits = 0 rrefs = remote.refs for rref in rrefs: num_branches_with_new_commits += len(mod.git.cherry(rref)) != 0 # END for each remote ref # not a single remote branch contained all our commits if len(rrefs) and num_branches_with_new_commits == len(rrefs): raise InvalidGitRepositoryError( "Cannot delete module at %s as there are new commits" % mod.working_tree_dir) # END handle new commits # have to manually delete references as python's scoping is # not existing, they could keep handles open ( on windows this is a problem ) if len(rrefs): del(rref) # skipcq: PYL-W0631 # END handle remotes del(rrefs) del(remote) # END for each remote # finally delete our own submodule if not dry_run: self._clear_cache() wtd = mod.working_tree_dir del(mod) # release file-handles (windows) import gc gc.collect() try: rmtree(wtd) except Exception as ex: if HIDE_WINDOWS_KNOWN_ERRORS: raise SkipTest("FIXME: fails with: PermissionError\n {}".format(ex)) raise # END delete tree if possible # END handle force if not dry_run and osp.isdir(git_dir): self._clear_cache() try: rmtree(git_dir) except Exception as ex: if HIDE_WINDOWS_KNOWN_ERRORS: raise SkipTest("FIXME: fails with: PermissionError\n %s", ex) else: raise # end handle separate bare repository # END handle module deletion # void our data not to delay invalid access if not dry_run: self._clear_cache() # DELETE CONFIGURATION ###################### if configuration and not dry_run: # first the index-entry parent_index = self.repo.index try: del(parent_index.entries[parent_index.entry_key(self.path, 0)]) except KeyError: pass # END delete entry parent_index.write() # now git config - need the config intact, otherwise we can't query # information anymore with self.repo.config_writer() as writer: writer.remove_section(sm_section(self.name)) with self.config_writer() as writer: writer.remove_section() # END delete configuration return self def set_parent_commit(self, commit, check=True): """Set this instance to use the given commit whose tree is supposed to contain the .gitmodules blob. :param commit: Commit'ish reference pointing at the root_tree, or None to always point to the most recent commit :param check: if True, relatively expensive checks will be performed to verify validity of the submodule. :raise ValueError: if the commit's tree didn't contain the .gitmodules blob. :raise ValueError: if the parent commit didn't store this submodule under the current path :return: self""" if commit is None: self._parent_commit = None return self # end handle None pcommit = self.repo.commit(commit) pctree = pcommit.tree if self.k_modules_file not in pctree: raise ValueError("Tree of commit %s did not contain the %s file" % (commit, self.k_modules_file)) # END handle exceptions prev_pc = self._parent_commit self._parent_commit = pcommit if check: parser = self._config_parser(self.repo, self._parent_commit, read_only=True) if not parser.has_section(sm_section(self.name)): self._parent_commit = prev_pc raise ValueError("Submodule at path %r did not exist in parent commit %s" % (self.path, commit)) # END handle submodule did not exist # END handle checking mode # update our sha, it could have changed # If check is False, we might see a parent-commit that doesn't even contain the submodule anymore. # in that case, mark our sha as being NULL try: self.binsha = pctree[self.path].binsha except KeyError: self.binsha = self.NULL_BIN_SHA # end self._clear_cache() return self @unbare_repo def config_writer(self, index=None, write=True): """:return: a config writer instance allowing you to read and write the data belonging to this submodule into the .gitmodules file. :param index: if not None, an IndexFile instance which should be written. defaults to the index of the Submodule's parent repository. :param write: if True, the index will be written each time a configuration value changes. :note: the parameters allow for a more efficient writing of the index, as you can pass in a modified index on your own, prevent automatic writing, and write yourself once the whole operation is complete :raise ValueError: if trying to get a writer on a parent_commit which does not match the current head commit :raise IOError: If the .gitmodules file/blob could not be read""" writer = self._config_parser_constrained(read_only=False) if index is not None: writer.config._index = index writer.config._auto_write = write return writer @unbare_repo def rename(self, new_name): """Rename this submodule :note: This method takes care of renaming the submodule in various places, such as * $parent_git_dir/config * $working_tree_dir/.gitmodules * (git >=v1.8.0: move submodule repository to new name) As .gitmodules will be changed, you would need to make a commit afterwards. The changed .gitmodules file will already be added to the index :return: this submodule instance """ if self.name == new_name: return self # .git/config with self.repo.config_writer() as pw: # As we ourselves didn't write anything about submodules into the parent .git/config, # we will not require it to exist, and just ignore missing entries. if pw.has_section(sm_section(self.name)): pw.rename_section(sm_section(self.name), sm_section(new_name)) # .gitmodules with self.config_writer(write=True).config as cw: cw.rename_section(sm_section(self.name), sm_section(new_name)) self._name = new_name # .git/modules mod = self.module() if mod.has_separate_working_tree(): destination_module_abspath = self._module_abspath(self.repo, self.path, new_name) source_dir = mod.git_dir # Let's be sure the submodule name is not so obviously tied to a directory if destination_module_abspath.startswith(mod.git_dir): tmp_dir = self._module_abspath(self.repo, self.path, str(uuid.uuid4())) os.renames(source_dir, tmp_dir) source_dir = tmp_dir # end handle self-containment os.renames(source_dir, destination_module_abspath) self._write_git_file_and_module_config(mod.working_tree_dir, destination_module_abspath) # end move separate git repository return self #} END edit interface #{ Query Interface @unbare_repo def module(self): """:return: Repo instance initialized from the repository at our submodule path :raise InvalidGitRepositoryError: if a repository was not available. This could also mean that it was not yet initialized""" # late import to workaround circular dependencies module_checkout_abspath = self.abspath try: repo = git.Repo(module_checkout_abspath) if repo != self.repo: return repo # END handle repo uninitialized except (InvalidGitRepositoryError, NoSuchPathError): raise InvalidGitRepositoryError("No valid repository at %s" % module_checkout_abspath) else: raise InvalidGitRepositoryError("Repository at %r was not yet checked out" % module_checkout_abspath) # END handle exceptions def module_exists(self): """:return: True if our module exists and is a valid git repository. See module() method""" try: self.module() return True except Exception: return False # END handle exception def exists(self): """ :return: True if the submodule exists, False otherwise. Please note that a submodule may exist (in the .gitmodules file) even though its module doesn't exist on disk""" # keep attributes for later, and restore them if we have no valid data # this way we do not actually alter the state of the object loc = locals() for attr in self._cache_attrs: try: if hasattr(self, attr): loc[attr] = getattr(self, attr) # END if we have the attribute cache except (cp.NoSectionError, ValueError): # on PY3, this can happen apparently ... don't know why this doesn't happen on PY2 pass # END for each attr self._clear_cache() try: try: self.path return True except Exception: return False # END handle exceptions finally: for attr in self._cache_attrs: if attr in loc: setattr(self, attr, loc[attr]) # END if we have a cache # END reapply each attribute # END handle object state consistency @property def branch(self): """:return: The branch instance that we are to checkout :raise InvalidGitRepositoryError: if our module is not yet checked out""" return mkhead(self.module(), self._branch_path) @property def branch_path(self): """ :return: full (relative) path as string to the branch we would checkout from the remote and track""" return self._branch_path @property def branch_name(self): """:return: the name of the branch, which is the shortest possible branch name""" # use an instance method, for this we create a temporary Head instance # which uses a repository that is available at least ( it makes no difference ) return git.Head(self.repo, self._branch_path).name @property def url(self): """:return: The url to the repository which our module-repository refers to""" return self._url @property def parent_commit(self): """:return: Commit instance with the tree containing the .gitmodules file :note: will always point to the current head's commit if it was not set explicitly""" if self._parent_commit is None: return self.repo.commit() return self._parent_commit @property def name(self): """:return: The name of this submodule. It is used to identify it within the .gitmodules file. :note: by default, the name is the path at which to find the submodule, but in git-python it should be a unique identifier similar to the identifiers used for remotes, which allows to change the path of the submodule easily """ return self._name def config_reader(self): """ :return: ConfigReader instance which allows you to qurey the configuration values of this submodule, as provided by the .gitmodules file :note: The config reader will actually read the data directly from the repository and thus does not need nor care about your working tree. :note: Should be cached by the caller and only kept as long as needed :raise IOError: If the .gitmodules file/blob could not be read""" return self._config_parser_constrained(read_only=True) def children(self): """ :return: IterableList(Submodule, ...) an iterable list of submodules instances which are children of this submodule or 0 if the submodule is not checked out""" return self._get_intermediate_items(self) #} END query interface #{ Iterable Interface @classmethod def iter_items(cls, repo, parent_commit='HEAD'): """:return: iterator yielding Submodule instances available in the given repository""" pc = repo.commit(parent_commit) # parent commit instance try: parser = cls._config_parser(repo, pc, read_only=True) except IOError: return # END handle empty iterator rt = pc.tree # root tree for sms in parser.sections(): n = sm_name(sms) p = parser.get(sms, 'path') u = parser.get(sms, 'url') b = cls.k_head_default if parser.has_option(sms, cls.k_head_option): b = str(parser.get(sms, cls.k_head_option)) # END handle optional information # get the binsha index = repo.index try: sm = rt[p] except KeyError: # try the index, maybe it was just added try: entry = index.entries[index.entry_key(p, 0)] sm = Submodule(repo, entry.binsha, entry.mode, entry.path) except KeyError: # The submodule doesn't exist, probably it wasn't # removed from the .gitmodules file. continue # END handle keyerror # END handle critical error # fill in remaining info - saves time as it doesn't have to be parsed again sm._name = n if pc != repo.commit(): sm._parent_commit = pc # end set only if not most recent ! sm._branch_path = git.Head.to_full_path(b) sm._url = u yield sm # END for each section #} END iterable interface
the-stack_106_18504
#! usr/bin/python3 # -*- coding: utf-8 -*- # # Flicket - copyright Paul Bourne: [email protected] import os import string import random from flask import flash from werkzeug.utils import secure_filename from application import app, db from application.flicket.models.flicket_models import FlicketUploads from application.flicket.models.flicket_user import FlicketUser class UploadFile: def __init__(self, file): """ Takes a file object from form submission. :param file: """ self.file = file self.file_extension = self.get_extension() if self.file_extension: self.file_name = self.random_filename(self.file.filename, characters=8) else: self.file_name = None self.upload_folder = None self.target_file = None self.allowed_extensions = [] def get_extension(self): try: _ext = self.file.filename.rsplit('.', 1)[1] return _ext except IndexError: return False def random_filename(self, file_name, characters=8): """ Returns a random filename using lowercase letters and digits. :return: string """ new_file_name = secure_filename(file_name) while True: chars = string.ascii_lowercase + string.digits output_string = ''.join(random.choice(chars) for _ in range(characters)) new_file_name = output_string + '.' + self.file_extension if not os.path.isfile(new_file_name): break return new_file_name def check_extension(self): """ Checks that it is a valid filename with a valid extension. Returns True if valid :return: Boolean """ return '.' in self.file_name and self.file_extension in self.allowed_extensions def upload_file(self): """ Method to upload the file. Returns True on success, otherwise False. :return: Boolean """ if self.file_name and self.upload_folder: self.target_file = os.path.join(self.upload_folder, self.file_name) else: # print('Problem with file_name {} or upload_folder {}.'.format(self.file_name, self.upload_folder)) return False # Is the file extension in the list of allowed extensions. if self.check_extension(): self.file.save(self.target_file) return self.file else: # print('There was a problem with the files extension.') return False class UploadAvatar(UploadFile): def __init__(self, file, user): super().__init__(file) self.allowed_extensions = ['jpg'] self.user = user self.upload_folder = app.config['avatar_upload_folder'] self.delete_existing_avatar() def delete_existing_avatar(self): """ Clean up old avatar before uploading new one. :return: nowt """ # Find filename in the database. _user = FlicketUser.query.filter_by(id=self.user.id).one() # remove the file if it exists if _user.avatar: os.remove(os.path.join(self.upload_folder, _user.avatar)) # null the database entry. _user.avatar = None db.session.commit() class UploadAttachment(object): """ Class created for the uploading of attachments to tickets and comments. Initialised with a list of file objects from form submission. """ def __init__(self, files): self.files = files self.allowed_extensions = app.config['allowed_extensions'] self.upload_folder = app.config['ticket_upload_folder'] self.new_files = None def are_attachments(self): """ Check self.files to see if any files were added to the upload form. Return True if there were. :return: Boolean """ if len(self.files) == 0: return False if self.files[0].filename == '': return False return True def upload_files(self): """ Upload files to self.upload_upload. :return: list[str(original_filename), str(new_filename)] """ # Were any files added to form? if not self.are_attachments(): return False self.new_files = list() for file in self.files: uploaded_file = UploadFile(file) uploaded_file.upload_folder = self.upload_folder uploaded_file.allowed_extensions = self.allowed_extensions new_file_name = False if uploaded_file.upload_file(): new_file_name = uploaded_file.file_name self.new_files.append((file.filename, new_file_name)) return self.new_files def populate_db(self, flicketobject): topic = None post = None if type(flicketobject).__name__ == 'FlicketTicket': topic = flicketobject if type(flicketobject).__name__ == 'FlicketPost': post = flicketobject if self.new_files: for new_file in self.new_files: if new_file[1] is False: flash('There was a problem uploading one or more of the files.', category='warning') else: # all looks good, so add file to the database. new_image = FlicketUploads( topic=topic, post=post, filename=new_file[1], original_filename=new_file[0] ) db.session.add(new_image)
the-stack_106_18505
from flask import Blueprint, jsonify from limbook_api.v1.auth.utils import requires_auth from limbook_api.v1.comments import Comment from limbook_api.v1.posts import Post stats = Blueprint('stats', __name__) # ==================================== # SECURE ROUTES # ==================================== @stats.route("/stats") @requires_auth('read:stats') def get_stats(): """Get stats""" return jsonify({ "success": True, "stats": { "posts": Post.query.count(), "comments": Comment.query.count() } })
the-stack_106_18511
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir # Check if we can enable mixed-precision via apex.amp try: from apex import amp except ImportError: raise ImportError('Use APEX for mixed precision via apex.amp') def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--ckpt", help="The path to the checkpoint for test, default is the latest checkpoint.", default=None, ) parser.add_argument( "--is_histo_nr", help="whether test on histo normal region dataset", default=False, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if necessary use_mixed_precision = cfg.DTYPE == 'float16' amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE) output_dir = os.path.join(cfg.OUTPUT_DIR, cfg.OUTPUT_FOLDER) checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt _ = checkpointer.load(ckpt, use_latest=args.ckpt is None) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, cfg.OUTPUT_FOLDER, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, phase='test', is_train=False, is_distributed=distributed) if args.is_histo_nr: # the last dataloader is for normal region data_loader_val_nr = data_loaders_val[-1] # remove the last dataloader data_loaders_val = data_loaders_val.pop() print("predict on normal region dataset!!!!!!!!!") else: data_loader_val_nr = None for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, data_loader_nr=data_loader_val_nr, ) synchronize() if __name__ == "__main__": main()
the-stack_106_18512
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import copy import logging import os from datadog_checks.base.stubs.aggregator import AggregatorStub from datadog_checks.base.utils.common import get_docker_hostname from datadog_checks.dev.docker import get_container_ip from datadog_checks.snmp import SnmpCheck log = logging.getLogger(__name__) HOST = get_docker_hostname() PORT = 1161 HERE = os.path.dirname(os.path.abspath(__file__)) COMPOSE_DIR = os.path.join(HERE, 'compose') AUTH_PROTOCOLS = {'MD5': 'usmHMACMD5AuthProtocol', 'SHA': 'usmHMACSHAAuthProtocol'} PRIV_PROTOCOLS = {'DES': 'usmDESPrivProtocol', 'AES': 'usmAesCfb128Protocol'} AUTH_KEY = 'doggiepass' PRIV_KEY = 'doggiePRIVkey' SNMP_CONTAINER_NAME = 'dd-snmp' CHECK_TAGS = ['snmp_device:{}'.format(HOST)] SNMP_CONF = {'name': 'snmp_conf', 'ip_address': HOST, 'port': PORT, 'community_string': 'public'} SNMP_V3_CONF = { 'name': 'snmp_v3_conf', 'ip_address': HOST, 'port': PORT, 'user': None, 'authKey': None, 'privKey': None, 'authProtocol': None, 'privProtocol': None, 'context_name': 'public', } MIBS_FOLDER = {'mibs_folder': os.path.join(HERE, "mibs")} IGNORE_NONINCREASING_OID = {'ignore_nonincreasing_oid': True} SUPPORTED_METRIC_TYPES = [ {'OID': "1.3.6.1.2.1.7.1.0", 'name': "IAmACounter32"}, # Counter32 {'OID': "1.3.6.1.2.1.4.31.1.1.6.1", 'name': "IAmACounter64"}, # Counter64 {'OID': "1.3.6.1.2.1.4.24.6.0", 'name': "IAmAGauge32"}, # Gauge32 {'OID': "1.3.6.1.2.1.88.1.1.1.0", 'name': "IAmAnInteger"}, # Integer ] UNSUPPORTED_METRICS = [{'OID': "1.3.6.1.2.1.25.6.3.1.5.1", 'name': "IAmString"}] # String (not supported) CAST_METRICS = [ {'OID': "1.3.6.1.4.1.2021.10.1.3.1", 'name': "cpuload1"}, # OctetString {'OID': "1.3.6.1.4.1.2021.10.1.6.1", 'name': "cpuload2"}, # Opaque ] CONSTRAINED_OID = [{"MIB": "TCP-MIB", "symbol": "tcpRtoAlgorithm"}] DUMMY_MIB_OID = [ ({"MIB": "DUMMY-MIB", "symbol": "scalar"}, AggregatorStub.GAUGE, 10), # Integer # Additional types we support but that are not part of the original SNMP protocol. ({"MIB": "DUMMY-MIB", "symbol": "dummyCounterGauge"}, AggregatorStub.GAUGE, 90), # CounterBasedGauge64 ({"MIB": "DUMMY-MIB", "symbol": "dummyZeroCounter"}, AggregatorStub.RATE, 120), # ZeroBasedCounter64 ] FORCED_METRICS = [ {'OID': "1.3.6.1.2.1.4.24.6.0", 'name': "IAmAGauge32", 'forced_type': 'counter'}, # Gauge32 {'OID': "1.3.6.1.2.1.4.31.1.1.6.1", 'name': "IAmACounter64", 'forced_type': 'gauge'}, # Counter32 ] INVALID_FORCED_METRICS = [ {'OID': "1.3.6.1.2.1.4.24.6.0", 'name': "IAmAGauge32", 'forced_type': 'counter'}, # Gauge32 {'OID': "1.3.6.1.2.1.4.31.1.1.6.1", 'name': "IAmACounter64", 'forced_type': 'histogram'}, # Counter32 ] SCALAR_OBJECTS = [ {'OID': "1.3.6.1.2.1.7.1.0", 'name': "udpDatagrams"}, {'OID': "1.3.6.1.2.1.6.10.0", 'name': "tcpInSegs"}, {'OID': ".1.3.6.1.6.3.10.2.1.3.0", 'name': "snmpEngineTime"}, # OID with leading dot {'MIB': "TCP-MIB", 'symbol': "tcpCurrEstab"}, ] SCALAR_OBJECTS_WITH_TAGS = [ {'OID': "1.3.6.1.2.1.7.1.0", 'name': "udpDatagrams", 'metric_tags': ['udpdgrams', 'UDP']}, {'OID': "1.3.6.1.2.1.6.10.0", 'name': "tcpInSegs", 'metric_tags': ['tcpinsegs', 'TCP']}, {'MIB': "TCP-MIB", 'symbol': "tcpCurrEstab", 'metric_tags': ['MIB', 'TCP', 'estab']}, ] TABULAR_OBJECTS = [ { 'MIB': "IF-MIB", 'table': "ifTable", 'symbols': ["ifInOctets", "ifOutOctets"], 'metric_tags': [{'tag': "interface", 'column': "ifDescr"}, {'tag': "dumbindex", 'index': 1}], } ] BULK_TABULAR_OBJECTS = [ { 'MIB': "IF-MIB", 'table': "ifTable", 'symbols': [ "ifInOctets", "ifOutOctets", "ifInUcastPkts", "ifInUcastPkts", "ifInNUcastPkts", "ifInDiscards", "ifInErrors", "ifInUnknownProtos", ], 'metric_tags': [{'tag': "interface", 'column': "ifDescr"}, {'tag': "dumbindex", 'index': 1}], }, { 'MIB': "IP-MIB", 'table': "ipSystemStatsTable", 'symbols': [ "ipSystemStatsInReceives", "ipSystemStatsHCInReceives", "ipSystemStatsInOctets", "ipSystemStatsHCInOctets", "ipSystemStatsInHdrErrors", "ipSystemStatsInNoRoutes", "ipSystemStatsInAddrErrors", "ipSystemStatsInUnknownProtos", "ipSystemStatsInTruncatedPkts", "ipSystemStatsInForwDatagrams", "ipSystemStatsHCInForwDatagrams", "ipSystemStatsReasmReqds", "ipSystemStatsReasmOKs", "ipSystemStatsReasmFails", "ipSystemStatsInDiscards", "ipSystemStatsInDelivers", "ipSystemStatsHCInDelivers", "ipSystemStatsOutRequests", "ipSystemStatsHCOutRequests", "ipSystemStatsOutNoRoutes", "ipSystemStatsOutForwDatagrams", "ipSystemStatsHCOutForwDatagrams", "ipSystemStatsOutDiscards", "ipSystemStatsOutFragReqds", "ipSystemStatsOutFragOKs", "ipSystemStatsOutFragFails", "ipSystemStatsOutFragCreates", "ipSystemStatsOutTransmits", "ipSystemStatsHCOutTransmits", "ipSystemStatsOutOctets", "ipSystemStatsHCOutOctets", "ipSystemStatsInMcastPkts", ], 'metric_tags': [{'tag': "dumbindex", 'index': 1}], }, ] INVALID_METRICS = [ { 'MIB': "IF-MIB", 'table': "noIdeaWhatIAmDoingHere", 'symbols': ["ImWrong", "MeToo"], 'metric_tags': [{'tag': "dumbindex", 'index': 1}], } ] PLAY_WITH_GET_NEXT_METRICS = [ {"OID": "1.3.6.1.2.1.4.31.3.1.3.2", "name": "needFallback"}, {"OID": "1.3.6.1.2.1.4.31.3.1.3.2.1", "name": "noFallbackAndSameResult"}, ] RESOLVED_TABULAR_OBJECTS = [ { "MIB": "IF-MIB", "table": "ifTable", "symbols": [ {"name": "ifInOctets", "OID": "1.3.6.1.2.1.2.2.1.10"}, {"name": "ifOutOctets", "OID": "1.3.6.1.2.1.2.2.1.16"}, ], "metric_tags": [ {"tag": "interface", "column": {"name": "ifDescr", "OID": "1.3.6.1.2.1.2.2.1.2"}}, {"tag": "dumbindex", "index": 1, "mapping": {1: "one", 2: "two", 3: "three", 90: "other"}}, ], } ] def generate_instance_config(metrics, template=None): template = template if template else SNMP_CONF instance_config = copy.copy(template) instance_config['metrics'] = metrics instance_config['name'] = HOST return instance_config def generate_container_instance_config(metrics): conf = copy.deepcopy(SNMP_CONF) conf['ip_address'] = get_container_ip(SNMP_CONTAINER_NAME) return generate_instance_config(metrics, template=conf) def generate_v3_instance_config(metrics, name=None, user=None, auth=None, auth_key=None, priv=None, priv_key=None): instance_config = generate_instance_config(metrics, SNMP_V3_CONF) if name: instance_config['name'] = name if user: instance_config['user'] = user if auth: instance_config['authProtocol'] = auth if auth_key: instance_config['authKey'] = auth_key if priv: instance_config['privProtocol'] = priv if priv_key: instance_config['privKey'] = priv_key return instance_config def create_check(instance): return SnmpCheck('snmp', {}, [instance]) def assert_common_metrics(aggregator, tags=None): aggregator.assert_metric('snmp.devices_monitored', metric_type=aggregator.GAUGE, tags=tags)
the-stack_106_18513
from planner.frame.figure import Figure from planner.frame.aperture import Aperture from planner.frame.bulkhead import Bulkhead from svgwrite import shapes class RectFrame(Figure): """ Rectangle frame representation """ DEFAULT_PARAMS = {"stroke": "#000", "stroke-width": "2"} def __init__(self, x=0, y=0, width=1, height=1, wall_width=1, **attribs): self.corner = (x, y) self.size = (width, height) self.inner_corner = (x + wall_width, y + wall_width) self.inner_size = (width - 2 * wall_width, height - 2 * wall_width) self.x = x self.y = y self.width = width self.height = height self.wall_width = wall_width self.attribs = attribs or dict() self.apertures = [] self.bulkheads = [] self.stroke_width = attribs.get('stroke-width') or self.DEFAULT_PARAMS.get('stroke-width') def _draw(self): rect_params = self.DEFAULT_PARAMS.copy() rect_params.update(self.attribs) res = [] # Hatching and filling if hasattr(self, "hatch") and self.hatch: rect_params['style'] = "fill: url(#{})".format(self._hatching_id) res.append(self.hatch) if hasattr(self, "filling"): rect_params['fill'] = self.filling else: if 'fill' not in rect_params: rect_params['fill'] = "#fff" # Create outer and inner rects del rect_params['stroke-width'] del rect_params['stroke'] top_rect = shapes.Rect(self.corner, (self.size[0], self.wall_width), **rect_params) left_rect = shapes.Rect(self.corner, (self.wall_width, self.size[1]), **rect_params) right_rect = shapes.Rect( (self.corner[0] + self.size[0] - self.wall_width, self.corner[1]), (self.wall_width, self.size[1]), **rect_params) bottom_rect = shapes.Rect( (self.corner[0], self.corner[1] + self.size[1] - self.wall_width), (self.size[0], self.wall_width), **rect_params) inner_params = self.DEFAULT_PARAMS.copy() inner_params.update(self.attribs) inner_params['fill-opacity'] = "0" rect = shapes.Rect(self.corner, self.size, **inner_params) inner_rect = shapes.Rect(self.inner_corner, self.inner_size, **inner_params) res.extend((top_rect, left_rect, right_rect, bottom_rect, rect, inner_rect)) # Apertures if self.apertures: for aperture in self.apertures: res.append(aperture._draw()) # Bulkheads borders = [] backgrounds = [] if self.bulkheads: for bulkhead in self.bulkheads: border, *background = bulkhead._draw() borders.append(border) backgrounds.extend(background) res.extend(borders) res.extend(backgrounds) return res def _get_aperture_lines_coordinates(self): outer_lines = [] # left outer_lines.append(((self.x, self.y + self.wall_width), (self.x, self.y + self.height - self.wall_width))) # top outer_lines.append(((self.x + self.wall_width, self.y), (self.x + self.width - self.wall_width, self.y))) # right outer_lines.append(( (self.x + self.width - self.wall_width, self.y + self.wall_width), (self.x + self.width - self.wall_width, self.y + self.height - self.wall_width))) # bottom outer_lines.append(( (self.x + self.wall_width, self.y + self.height - self.wall_width), (self.x + self.width - self.wall_width, self.y + self.height - self.wall_width))) return outer_lines def _is_point_on_lines(self, lines, point): return any([self._is_point_on_line(p[0], p[1], point) for p in lines]) def add_aperture(self, x, y, width, **attribs): """ Add aperture (door, window, etc) to the wall. x, y - coordinates of left-top corner, should be located on wall border """ outer_lines = self._get_aperture_lines_coordinates() coords = (x, y) # Propagate stroke-width if 'stroke-width' not in attribs: attribs['stroke-width'] = self.stroke_width aperture = Aperture.match_wall_and_create(coords, width, outer_lines, self.wall_width, **attribs) if not aperture: raise ValueError("Coordinates {}, {} of aparture left corner not located on the wall border".format(x, y)) self.apertures.append(aperture) return aperture def add_bulkhead(self, x, y, width, **attribs): """ Add bulkhead to current frame, x, y - should be coordinates of left-top corner and lay on left or top inner wall border """ top_left_corner = (self.x + self.wall_width, self.y + self.wall_width) bottom_left_corner = (self.x + self.wall_width, self.y + self.height - 2 * self.wall_width) top_right_corner = (self.x + self.width - 2 * self.wall_width, self.y + self.wall_width) # horizontal if self._is_point_on_line(top_left_corner, bottom_left_corner, (x, y)): end_point = (x + self.width - 2 * self.wall_width, y + width) # vertical elif self._is_point_on_line(top_left_corner, top_right_corner, (x, y)): end_point = (x + width, y + self.height - 2 * self.wall_width) # error else: raise ValueError('Wrong coordinates, left-top corner should lay on left or top inner wall border') # Propagate stroke-width if 'stroke-width' not in attribs: attribs['stroke-width'] = self.stroke_width bulkhead = Bulkhead((x, y), end_point, **attribs) self.bulkheads.append(bulkhead) return bulkhead
the-stack_106_18514
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. """Tutorial code to play around with graph recompilation and executable loading Parameters to play around with are CACHING, NOMULTISESSION, PLACEHOLDER, and SAMEBATCH. Some comments in the document refer to the underlying tutorial in the documentation portal. The code will print out what the expected behaviour should look like. """ import os import numpy as np import tensorflow as tf from tf.python import ipu from tf.python.ipu.scopes import ipu_scope import tensorflow.compat.v1 as tf tf.disable_v2_behavior() # Consideration 0: Environment setup CACHING = True # Cache compiled graph. The folder is tmp_tutorial. # Consideration 1: Sessions NOMULTISESSION = True # Avoid using different sessions. # Consideration 2, 4, 5: Graphs, Weights, Constants # Use a placeholder that is handed over to the graph instead of a hard coded # hyperparameter that might change between executions. PLACEHOLDER = True # Consideration 3: Batch size SAMEBATCH = True # Change the batch size between executions. # Consideration 0: Environment setup if "TF_POPLAR_FLAGS" in os.environ and not CACHING: os.environ["TF_POPLAR_FLAGS"] = "" else: os.environ["TF_POPLAR_FLAGS"] = "--executable_cache_path=tmp_tutorial" if "POPLAR_LOG_LEVEL" not in os.environ or \ os.environ["POPLAR_LOG_LEVEL"] != "INFO": print("Setting POPLAR_LOG_LEVEL to INFO for graph compilation information.") os.environ["POPLAR_LOG_LEVEL"] = "INFO" # Consideration 6 os.environ["XLA_FLAGS"] = "--xla_dump_to=tmp_xla_{} ".format( np.random.randint(2, 101)) os.environ["XLA_FLAGS"] += " --xla_dump_hlo_pass_re=forward-allocation " os.environ["XLA_FLAGS"] += " --xla_hlo_graph_sharding_color " os.environ["XLA_FLAGS"] += " --xla_dump_hlo_as_text " # Configure arguments for targeting the IPU cfg = ipu.utils.create_ipu_config() cfg = ipu.utils.auto_select_ipus(cfg, 1) ipu.utils.configure_ipu_system(cfg) with tf.device("cpu"): pa = tf.placeholder(np.float32, [None, 2], name="a") pb = tf.placeholder(np.float32, [None, 2], name="b") pc = tf.placeholder(np.float32, [None, 2], name="c") if PLACEHOLDER: mult = tf.placeholder(np.float32, [], name="multiplier") else: mult = np.random.uniform(0, 1) def basic_graph(pa, pb, pc): # Do basic addition with tensors o1 = pa + pb o2 = pa + pc simple_graph_output = mult * (o1 + o2) return simple_graph_output with ipu_scope("/device:IPU:0"): comp_graph = basic_graph(pa, pb, pc) print("\nWarm up & Caching Test: ") print("No compilation after first execution expected but executable load. \n") with tf.Session() as sess1, tf.Session() as sess2: # Run the graph through the session feeding it an arbitrary dictionary if PLACEHOLDER: result0 = sess1.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], mult: 10.0 }) else: result0 = sess1.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], }) # Consideration 2, 4, 5: Graphs, Weights, Constants m = np.random.uniform(0, 1) if not PLACEHOLDER: mult = m with ipu_scope("/device:IPU:0"): comp_graph = basic_graph(pa, pb, pc) with tf.Session() as sess1, tf.Session() as sess2: print("\nPlaceholder test. ") print("No recompilation but executable switch should occur.\n") # Run the graph through the session feeding it an arbitrary dictionary if PLACEHOLDER: result1 = sess1.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], mult: m }) else: result1 = sess1.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], }) # Consideration 1: Sessions if NOMULTISESSION: sess2 = sess1 else: print("Switching session.") print("\nSession Test.") print("No recompilation or executable switch should occur.\n") if PLACEHOLDER: result2 = sess2.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], mult: m }) else: result2 = sess2.run(comp_graph, feed_dict={ pa: [[1., 1.]], pb: [[0., 1.]], pc: [[1., 5.]], }) # Consideration 3: Batch size if SAMEBATCH: bs = 1 else: bs = np.random.randint(2, 101) print("\nBatch Size Test with batch size %d." % bs) print("No recompilation or executable switch should occur.") print("Batch size should be the original 1.\n") if PLACEHOLDER: result3 = sess2.run(comp_graph, feed_dict={ pa: [[1., 1.]] * bs, pb: [[0., 1.]] * bs, pc: [[1., 5.]] * bs, mult: m }) else: result3 = sess2.run(comp_graph, feed_dict={ pa: [[1., 1.]] * bs, pb: [[0., 1.]] * bs, pc: [[1., 5.]] * bs, }) print("\nFirst two results should be different (different multiplier).\n") print("Caching/warm up test:\t", result0) print() print("Placeholder test: \t", result1) print() print("Session test: \t", result2) print() if bs > 1: print("Batch size test: \t", result3[:2], "...") else: print("Batch size test: \t", result3)
the-stack_106_18515
#!/usr/bin/env python import os import sys import signal CURDIR = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(CURDIR, 'helpers')) from client import client, prompt, end_of_block log = None # uncomment the line below for debugging #log=sys.stdout with client(name='client1>', log=log) as client1, client(name='client2>', log=log) as client2: client1.expect(prompt) client2.expect(prompt) client1.send('SET allow_experimental_live_view = 1') client1.expect(prompt) client2.send('SET allow_experimental_live_view = 1') client2.expect(prompt) client1.send('DROP TABLE IF EXISTS test.lv') client1.expect(prompt) client1.send('DROP TABLE IF EXISTS test.mt') client1.expect(prompt) client1.send('CREATE TABLE test.mt (a Int32) Engine=MergeTree order by tuple()') client1.expect(prompt) client1.send('CREATE LIVE VIEW test.lv AS SELECT sum(a) FROM test.mt') client1.expect(prompt) client1.send('WATCH test.lv') client1.expect('_version') client1.expect(r'0.*1' + end_of_block) client2.send('INSERT INTO test.mt VALUES (1),(2),(3)') client1.expect(r'6.*2' + end_of_block) client2.expect(prompt) client2.send('INSERT INTO test.mt VALUES (4),(5),(6)') client1.expect(r'21.*3' + end_of_block) client2.expect(prompt) for i in range(1, 129): client2.send('INSERT INTO test.mt VALUES (1)') client1.expect(r'%d.*%d' % (21 + i, 3 + i) + end_of_block) client2.expect(prompt) # send Ctrl-C client1.send('\x03', eol='') match = client1.expect('(%s)|([#\$] )' % prompt) if match.groups()[1]: client1.send(client1.command) client1.expect(prompt) client1.send('DROP TABLE test.lv') client1.expect(prompt) client1.send('DROP TABLE test.mt') client1.expect(prompt)
the-stack_106_18516
from django.contrib.auth import get_user_model from rest_framework import status from rest_framework.decorators import action from rest_framework.parsers import FormParser, JSONParser, MultiPartParser from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from base.apis import viewsets from summers_api.trakt.models import Show, UsersShow from .serializers import ( MarkEpisodeSerializer, ShowCreateSerializer, ShowDetailSerializer, ShowUpdateSeasonSerializer, ) User = get_user_model() class ShowModelViewSet(viewsets.BaseModelViewSet): """ Following Endpoints are created by this modelviewset. Create: POST `/` List: GET `/` Retrieve: GET `/<pk>/` Destroy: DELETE `/<pk>/` my: GET `/my/` wishlist: POST `/<pk>/wishlist/` season: PUT `/<pk>/season/` Mark episode: PUT `/<pk>/mark-episode/` """ parser_classes = (MultiPartParser, FormParser, JSONParser) permission_classes = [AllowAny] serializer_class = ShowDetailSerializer queryset = Show.objects.all() models = Show def get_serializer_class(self): if self.action == "create": return ShowCreateSerializer elif self.action == "mark_episode": return MarkEpisodeSerializer elif self.action == "season": return ShowUpdateSeasonSerializer return super().get_serializer_class() def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) show = serializer.save() data = ShowDetailSerializer(instance=show, context={"request": request}).data return Response(data=data, status=status.HTTP_201_CREATED) def list(self, request, *args, **kwargs): if request.user.is_authenticated: # if current user is authenticated remove already added show and return usersshows = request.user.usersshow.all() queryset = Show.objects.exclude(usersshow__in=usersshows) else: # if current user is not authenticated return all queryset = super().get_queryset() page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) @action( methods=["GET"], detail=False, permission_classes=[IsAuthenticated], ) def my(self, request, *args, **kwargs): # return all show of current user usersshows = request.user.usersshow.all() queryset = Show.objects.filter(usersshow__in=usersshows).order_by( "usersshow", ) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) @action( methods=["POST"], detail=True, permission_classes=[IsAuthenticated], ) def wishlist(self, request, *args, **kwargs): """Add show into wishlist""" user = self.request.user show = self.get_object() if not user.usersshow.filter(show=show).exists(): UsersShow.objects.create(user=user, show=show) serializer = self.get_serializer(show, many=False) return Response(data=serializer.data, status=status.HTTP_200_OK) else: data = {"message": "Show is already added into wishlist"} return Response(data=data, status=status.HTTP_304_NOT_MODIFIED) @action( methods=["PUT"], detail=True, permission_classes=[IsAuthenticated], url_path="season", ) def season(self, request, *args, **kwargs): """Add new season in show.""" serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) show = self.get_object() show = serializer.save(show=show) data = ShowDetailSerializer(instance=show, context={"request": request}).data return Response(data=data, status=status.HTTP_201_CREATED) @action( methods=["PUT"], detail=True, permission_classes=[IsAuthenticated], url_path="mark-episode", ) def mark_episode(self, request, *args, **kwargs): """Mark episode of show""" show = self.get_object() serializer = self.get_serializer( data=request.data, context={"request": request, "show": show}, ) serializer.is_valid(raise_exception=True) usersshow = serializer.save() return Response( data=ShowDetailSerializer( instance=usersshow.show, context={"request": request}, ).data, status=status.HTTP_200_OK, )
the-stack_106_18522
from __future__ import annotations import logging from config import get_config, ConfigurationError, msgbox from split_export import get_files, ExportFile from repo import RepositorySourceItem from convert import setup_session, cleanup as cleanup_convert, convert from deployment import add_deployment def main(): # Get configuration and handle command line arguments config = get_config() # Get object representing repo repo = get_repo(config) # Create the export file(s) run(config, repo) def run(config, repo): # Setup basic auth handler for IRIS, if we need to convert UDL to XML if config.Source.srctype == 'udl': setup_session(config) # Get list of files to create, with their items files = get_files(config, repo) # Convert item data from UDL to XML, if needed if config.Source.srctype == 'udl': convert_udl(config, files) # Append export notes to make export usable as a deployment if config.Local.deployment: export = files[0] # Create the export element export.create_export() # Add elements with deployment information logging.info('Adding deployment items') add_deployment(config, repo.name, export.root) # Export each 1..n files in turn: for export_file in files: export_file.write() # Give some feedback total = sum(len(f.items) for f in files) logmsg= f"\nDone; exported {total} items to {len(files)} files.\n" logging.info(logmsg) cleanup() if not config.no_gui: msgbox(logmsg) def convert_udl(config, exports:list[ExportFile]): """ Converts all items from UDL to XML, where needed """ to_convert = [] for ef in exports: for item in ef.items: if item.kind != 'src': continue assert isinstance(item, RepositorySourceItem) if not item.is_udl: continue to_convert.append(item) convert(config, to_convert, config.Local.threads) def get_repo(config): """Returns the configured repository.""" if config.Source.type == 'github': from github import get_data elif config.Source.type == 'directory': from fsrepo import get_data else: raise ConfigurationError(f"Invalid repository type '{config.Source.type}' in configuration.") return get_data(config) def cleanup(): cleanup_convert() cleanup_logging() def cleanup_logging(): """ Closes all resources taken by the loggers' handlers """ # Get root logger loggers = [logging.getLogger()] # Get all other loggers, if any logger_names = logging.root.manager.loggerDict # pylint: disable=no-member loggers = loggers + [logging.getLogger(name) for name in logger_names] # Call close() on each handler in each logger for logger in loggers: for handler in logger.handlers: handler.close() logger.handlers.clear() if __name__ == '__main__': main()
the-stack_106_18525
"""Tools for working with Q (Forbes) polynomials.""" # not special engine, only concerns scalars here from collections import defaultdict from scipy import special from .jacobi import jacobi, jacobi_sequence from prysm.mathops import np, kronecker, gamma, sign def g_qbfs(n_minus_1): """g(m-1) from oe-18-19-19700 eq. (A.15).""" if n_minus_1 == 0: return - 1 / 2 else: n_minus_2 = n_minus_1 - 1 return - (1 + g_qbfs(n_minus_2) * h_qbfs(n_minus_2)) / f_qbfs(n_minus_1) def h_qbfs(n_minus_2): """h(m-2) from oe-18-19-19700 eq. (A.14).""" n = n_minus_2 + 2 return -n * (n - 1) / (2 * f_qbfs(n_minus_2)) def f_qbfs(n): """f(m) from oe-18-19-19700 eq. (A.16).""" if n == 0: return 2 elif n == 1: return np.sqrt(19) / 2 else: term1 = n * (n + 1) + 3 term2 = g_qbfs(n - 1) ** 2 term3 = h_qbfs(n - 2) ** 2 return np.sqrt(term1 - term2 - term3) def Qbfs(n, x): """Qbfs polynomial of order n at point(s) x. Parameters ---------- n : int polynomial order x : `numpy.array` point(s) at which to evaluate Returns ------- `numpy.ndarray` Qbfs_n(x) """ # to compute the Qbfs polynomials, compute the auxiliary polynomial P_n # recursively. Simultaneously use the recurrence relation for Q_n # to compute the intermediary Q polynomials. # for input x, transform r = x ^ 2 # then compute P(r) and consequently Q(r) # and scale outputs by Qbfs = r*(1-r) * Q # the auxiliary polynomials are the jacobi polynomials with # alpha,beta = (-1/2,+1/2), # also known as the asymmetric chebyshev polynomials rho = x ** 2 # c_Q is the leading term used to convert Qm to Qbfs c_Q = rho * (1 - rho) if n == 0: return np.ones_like(x) * c_Q if n == 1: return 1 / np.sqrt(19) * (13 - 16 * rho) * c_Q # c is the leading term of the recurrence relation for P c = 2 - 4 * rho # P0, P1 are the first two terms of the recurrence relation for auxiliary # polynomial P_n P0 = np.ones_like(x) * 2 P1 = 6 - 8 * rho Pnm2 = P0 Pnm1 = P1 # Q0, Q1 are the first two terms of the recurrence relation for Qm Q0 = np.ones_like(x) Q1 = 1 / np.sqrt(19) * (13 - 16 * rho) Qnm2 = Q0 Qnm1 = Q1 for nn in range(2, n+1): Pn = c * Pnm1 - Pnm2 Pnm2 = Pnm1 Pnm1 = Pn g = g_qbfs(nn - 1) h = h_qbfs(nn - 2) f = f_qbfs(nn) Qn = (Pn - g * Qnm1 - h * Qnm2) * (1/f) # small optimization; mul by 1/f instead of div by f Qnm2 = Qnm1 Qnm1 = Qn # Qn is certainly defined (flake8 can't tell the previous ifs bound the loop # to always happen once) return Qn * c_Q # NOQA def Qbfs_sequence(ns, x): """Qbfs polynomials of orders ns at point(s) x. Parameters ---------- ns : `Iterable` of int polynomial orders x : `numpy.array` point(s) at which to evaluate Returns ------- generator of `numpy.ndarray` yielding one order of ns at a time """ # see the leading comment of Qbfs for some explanation of this code # and prysm:jacobi.py#jacobi_sequence the "_sequence" portion ns = list(ns) min_i = 0 rho = x ** 2 # c_Q is the leading term used to convert Qm to Qbfs c_Q = rho * (1 - rho) if ns[min_i] == 0: yield np.ones_like(x) * c_Q min_i += 1 if ns[min_i] == 1: yield 1 / np.sqrt(19) * (13 - 16 * rho) * c_Q min_i += 1 # c is the leading term of the recurrence relation for P c = 2 - 4 * rho # P0, P1 are the first two terms of the recurrence relation for auxiliary # polynomial P_n P0 = np.ones_like(x) * 2 P1 = 6 - 8 * rho Pnm2 = P0 Pnm1 = P1 # Q0, Q1 are the first two terms of the recurrence relation for Qbfs_n Q0 = np.ones_like(x) Q1 = 1 / np.sqrt(19) * (13 - 16 * rho) Qnm2 = Q0 Qnm1 = Q1 for nn in range(2, ns[-1]+1): Pn = c * Pnm1 - Pnm2 Pnm2 = Pnm1 Pnm1 = Pn g = g_qbfs(nn - 1) h = h_qbfs(nn - 2) f = f_qbfs(nn) Qn = (Pn - g * Qnm1 - h * Qnm2) * (1/f) # small optimization; mul by 1/f instead of div by f Qnm2 = Qnm1 Qnm1 = Qn if ns[min_i] == nn: yield Qn * c_Q min_i += 1 def Qcon(n, x): """Qcon polynomial of order n at point(s) x. Parameters ---------- n : int polynomial order x : `numpy.array` point(s) at which to evaluate Returns ------- `numpy.ndarray` Qcon_n(x) Notes ----- The argument x is notionally uniformly spaced 0..1. The Qcon polynomials are obtained by computing c = x^4. A transformation is then made, x => 2x^2 - 1 and the Qcon polynomials are defined as the jacobi polynomials with alpha=0, beta=4, the same order n, and the transformed x. The result of that is multiplied by c to yield a Qcon polynomial. Sums can more quickly be calculated by deferring the multiplication by c. """ xx = x ** 2 xx = 2 * xx - 1 Pn = jacobi(n, 0, 4, xx) return Pn * x ** 4 def Qcon_sequence(ns, x): """Qcon polynomials of orders ns at point(s) x. Parameters ---------- ns : `Iterable` of int polynomial orders x : `numpy.array` point(s) at which to evaluate Returns ------- generator of `numpy.ndarray` yielding one order of ns at a time """ xx = x ** 2 xx = 2 * xx - 1 x4 = x ** 4 Pns = jacobi_sequence(ns, 0, 4, xx) for Pn in Pns: yield Pn * x4 def abc_q2d(n, m): """A, B, C terms for 2D-Q polynomials. oe-20-3-2483 Eq. (A.3). Parameters ---------- n : `int` radial order m : `int` azimuthal order Returns ------- `float`, `float`, `float` A, B, C """ # D is used everywhere D = (4 * n ** 2 - 1) * (m + n - 2) * (m + 2 * n - 3) # A term1 = (2 * n - 1) * (m + 2 * n - 2) term2 = (4 * n * (m + n - 2) + (m - 3) * (2 * m - 1)) A = (term1 * term2) / D # B num = -2 * (2 * n - 1) * (m + 2 * n - 3) * (m + 2 * n - 2) * (m + 2 * n - 1) B = num / D # C num = n * (2 * n - 3) * (m + 2 * n - 1) * (2 * m + 2 * n - 3) C = num / D return A, B, C def G_q2d(n, m): """G term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.15). Parameters ---------- n : `int` radial order m : `int` azimuthal order Returns ------- `float` G """ if n == 0: num = special.factorial2(2 * m - 1) den = 2 ** (m + 1) * special.factorial(m - 1) return num / den elif n > 0 and m == 1: t1num = (2 * n ** 2 - 1) * (n ** 2 - 1) t1den = 8 * (4 * n ** 2 - 1) term1 = -t1num / t1den term2 = 1 / 24 * kronecker(n, 1) return term1 - term2 else: # nt1 = numerator term 1, d = denominator... nt1 = 2 * n * (m + n - 1) - m nt2 = (n + 1) * (2 * m + 2 * n - 1) num = nt1 * nt2 dt1 = (m + 2 * n - 2) * (m + 2 * n - 1) dt2 = (m + 2 * n) * (2 * n + 1) den = dt1 * dt2 term1 = -num / den return term1 * gamma(n, m) def F_q2d(n, m): """F term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.13). Parameters ---------- n : `int` radial order m : `int` azimuthal order Returns ------- `float` F """ if n == 0: num = m ** 2 * special.factorial2(2 * m - 3) den = 2 ** (m + 1) * special.factorial(m - 1) return num / den elif n > 0 and m == 1: t1num = 4 * (n - 1) ** 2 * n ** 2 + 1 t1den = 8 * (2 * n - 1) ** 2 term1 = t1num / t1den term2 = 11 / 32 * kronecker(n, 1) return term1 + term2 else: Chi = m + n - 2 nt1 = 2 * n * Chi * (3 - 5 * m + 4 * n * Chi) nt2 = m ** 2 * (3 - m + 4 * n * Chi) num = nt1 + nt2 dt1 = (m + 2 * n - 3) * (m + 2 * n - 2) dt2 = (m + 2 * n - 1) * (2 * n - 1) den = dt1 * dt2 term1 = num / den return term1 * gamma(n, m) def g_q2d(n, m): """Lowercase g term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.18a). Parameters ---------- n : `int` radial order less one (n - 1) m : `int` azimuthal order Returns ------- `float` g """ return G_q2d(n, m) / f_q2d(n, m) def f_q2d(n, m): """Lowercase f term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.18b). Parameters ---------- n : `int` radial order m : `int` azimuthal order Returns ------- `float` f """ if n == 0: return np.sqrt(F_q2d(n=0, m=m)) else: return np.sqrt(F_q2d(n, m) - g_q2d(n-1, m) ** 2) def Q2d(n, m, r, t): """2D Q polynomial, aka the Forbes polynomials. Parameters ---------- n : `int` radial polynomial order m : `int` azimuthal polynomial order r : `numpy.ndarray` radial coordinate, slope orthogonal in [0,1] t : `numpy.ndarray` azimuthal coordinate, radians Returns ------- `numpy.ndarray` array containing Q2d_n^m(r,t) the leading coefficient u^m or u^2 (1 - u^2) and sines/cosines are included in the return """ # Q polynomials have auxiliary polynomials "P" # which are scaled jacobi polynomials under the change of variables # x => 2x - 1 with alpha = -3/2, beta = m-3/2 # the scaling prefix may be found in A.4 of oe-20-3-2483 # impl notes: # Pn is computed using a recurrence over order n. The recurrence is for # a single value of m, and the 'seed' depends on both m and n. # # in general, Q_n^m = [P_n^m(x) - g_n-1^m Q_n-1^m] / f_n^m # for the sake of consistency, this function takes args of (r,t) # but the papers define an argument of u (really, u^2...) # which is what I call rho (or r). # for the sake of consistency of impl, I alias r=>u # and compute x = u**2 to match the papers u = r x = u ** 2 if m == 0: return Qbfs(n, r) # m == 0 already was short circuited, so we only # need to consider the m =/= 0 case for azimuthal terms if sign(m) == -1: m = abs(m) prefix = u ** m * np.sin(m*t) else: prefix = u ** m * np.cos(m*t) m = abs(m) P0 = 1/2 if m == 1 and n == 1: P1 = 1 - x/2 else: P1 = (m - .5) + (1 - m) * x f0 = f_q2d(0, m) Q0 = 1 / (2 * f0) if n == 0: return Q0 * prefix g0 = g_q2d(0, m) f1 = f_q2d(1, m) Q1 = (P1 - g0 * Q0) * (1/f1) if n == 1: return Q1 * prefix # everything above here works, or at least everything in the returns works if m == 1: P2 = (3 - x * (12 - 8 * x)) / 6 P3 = (5 - x * (60 - x * (120 - 64 * x))) / 10 g1 = g_q2d(1, m) f2 = f_q2d(2, m) Q2 = (P2 - g1 * Q1) * (1/f2) g2 = g_q2d(2, m) f3 = f_q2d(3, m) Q3 = (P3 - g2 * Q2) * (1/f3) # Q2, Q3 correct if n == 2: return Q2 * prefix elif n == 3: return Q3 * prefix Pnm2, Pnm1 = P2, P3 Qnm1 = Q3 min_n = 4 else: Pnm2, Pnm1 = P0, P1 Qnm1 = Q1 min_n = 2 for nn in range(min_n, n+1): A, B, C = abc_q2d(nn-1, m) Pn = (A + B * x) * Pnm1 - C * Pnm2 gnm1 = g_q2d(nn-1, m) fn = f_q2d(nn, m) Qn = (Pn - gnm1 * Qnm1) * (1/fn) Pnm2, Pnm1 = Pnm1, Pn Qnm1 = Qn # flake8 can't prove that the branches above the loop guarantee that we # enter the loop and Qn is defined return Qn * prefix # NOQA def Q2d_sequence(nms, r, t): """Sequence of 2D-Q polynomials. Parameters ---------- nms : iterable of `tuple` (n,m) for each desired term r : `numpy.ndarray` radial coordinates t : `numpy.ndarray` azimuthal coordinates Returns ------- generator yields one term for each element of nms """ # see Q2d for general sense of this algorithm. # the way this one works is to compute the maximum N for each |m|, and then # compute the recurrence for each of those sequences and storing it. A loop # is then iterated over the input nms, and selected value with appropriate # prefixes / other terms yielded. u = r x = u ** 2 def factory(): return 0 # maps |m| => N m_has_pos = set() m_has_neg = set() max_ns = defaultdict(factory) for n, m in nms: m_ = abs(m) if max_ns[m_] < n: max_ns[m_] = n if m > 0: m_has_pos.add(m_) else: m_has_neg.add(m_) # precompute these reusable pieces of data u_scales = {} sin_scales = {} cos_scales = {} for absm in max_ns.keys(): u_scales[absm] = u ** absm if absm in m_has_neg: sin_scales[absm] = np.sin(absm * t) if absm in m_has_pos: cos_scales[absm] = np.cos(absm * t) sequences = {} for m, N in max_ns.items(): if m == 0: sequences[m] = list(Qbfs_sequence(range(N+1), r)) else: sequences[m] = [] P0 = 1/2 if m == 1 and N == 1: P1 = 1 - x/2 else: P1 = (m - .5) + (1 - m) * x f0 = f_q2d(0, m) Q0 = 1 / (2 * f0) sequences[m].append(Q0) if N == 0: continue g0 = g_q2d(0, m) f1 = f_q2d(1, m) Q1 = (P1 - g0 * Q0) * (1/f1) sequences[m].append(Q1) if N == 1: continue # everything above here works, or at least everything in the returns works if m == 1: P2 = (3 - x * (12 - 8 * x)) / 6 P3 = (5 - x * (60 - x * (120 - 64 * x))) / 10 g1 = g_q2d(1, m) f2 = f_q2d(2, m) Q2 = (P2 - g1 * Q1) * (1/f2) g2 = g_q2d(2, m) f3 = f_q2d(3, m) Q3 = (P3 - g2 * Q2) * (1/f3) sequences[m].append(Q2) sequences[m].append(Q3) # Q2, Q3 correct if N <= 3: continue Pnm2, Pnm1 = P2, P3 Qnm1 = Q3 min_n = 4 else: Pnm2, Pnm1 = P0, P1 Qnm1 = Q1 min_n = 2 for nn in range(min_n, N+1): A, B, C = abc_q2d(nn-1, m) Pn = (A + B * x) * Pnm1 - C * Pnm2 gnm1 = g_q2d(nn-1, m) fn = f_q2d(nn, m) Qn = (Pn - gnm1 * Qnm1) * (1/fn) sequences[m].append(Qn) Pnm2, Pnm1 = Pnm1, Pn Qnm1 = Qn for n, m in nms: if m != 0: if m < 0: # m < 0, double neg = pos prefix = sin_scales[-m] * u_scales[-m] else: prefix = cos_scales[m] * u_scales[m] yield sequences[abs(m)][n] * prefix else: yield sequences[0][n]
the-stack_106_18528
import numpy as np import seaborn as sns from matplotlib.colorbar import cm def color_picker(palette, center='light', n_colors=10, show=False): '''COLOR PICKER Provides access to several color palettes that will serve the purpose of most usecases with astetik plots. PARAMETERS ---------- palette :: name of the palette (see list below) center :: if the center of the palette is 'light' or 'dark' n :: number of colors in the color show :: if the palette will be shown for visual reference PALETTES -------- NOTE: all two color palettes will reflect the first color in the selected range. For example blue_to_red will have two shades of blue. 'blue_to_red' 'blue_to_green' 'red_to_green' 'green_to_red' 'violet_to_blue' 'brown_to_green' 'green_to_marine' ''' if palette == 'default': palette = 'blue_to_red' # handle the case where few colors only are used if n_colors <= 5: n_input = n_colors n_colors = 8 # this decides how dark colors will be else: n_input = n_colors if palette == 'blue_to_red': out = sns.color_palette("RdBu_r", n_colors=n_colors) elif palette == 'blue_to_green': out = sns.color_palette("GnBu_d", n_colors=n_colors) elif palette == 'red_to_green': out = sns.diverging_palette(16, 180, sep=5, center=center, n=n_colors) elif palette == 'green_to_red': out = sns.diverging_palette(180, 16, sep=5, center=center, n=n_colors) elif palette == 'violet_to_blue': out = sns.diverging_palette(1, 255, sep=5, center=center, n=n_colors) elif palette == 'brown_to_green': out = sns.diverging_palette(50, 100, sep=5, center=center, n=n_colors) elif palette == 'green_to_marine': out = sns.diverging_palette(100, 200, sep=5, center=center, n=n_colors) if n_input == 1: out = out[0] elif n_input == 2: out = out[:2] if show == True: sns.palplot(out) if np.ndim(out) == 1: out = [out] return out def color_blind(mode='colorblind'): '''COLOR BLIND COLORS Provides a color palette that is colorblind friendly. ''' if mode == 'colorblind': colors = [[0, 0, 0], [255/255, 255/255, 109/255], [255/255, 109/255, 182/255], [0, 73/255, 73/255], [0, 146/255, 146/255], [255/255, 182/255, 119/255], [73/255, 0, 146/255], [0, 109/255, 219/255], [182/255, 109/255, 255/255], [109/255, 182/255, 255/255], [182/255, 219/255, 255/255], [146/255, 0, 0], [146/255, 73/255, 0], [219/255, 209/255, 0], [36/255, 255/255, 36/255]] elif mode == 'colorblind6': colors = [[0, 0, 0], [230/255, 159/255, 0], [86/255, 180/255, 233/255], [0, 158/255, 115/255], [213/255, 94/255, 0], [0, 114/255, 178/255]] elif mode == 'colorblind1': colors = [[222/255, 188/255, 146/255], [251/255, 175/255, 148/255], [131/255, 215/255, 142/255], [225/255, 191/255, 147/255], [250/255, 109/255, 81/255], [101/255, 170/255, 53/255], [204/255, 146/255, 68/255], [221/255, 51/255, 48/255], [95/255, 130/255, 24/255], [149/255, 115/255, 32/255], [164/255, 23/255, 30/255], [61/255, 105/255, 22/255], [119/255, 81/255, 24/255]] return colors def cmaps(cmap): if cmap == 'paired': cmap = cm.Paired elif cmap == 'jet': cmap = cm.jet elif cmap == 'prism': cmap = cm.prism elif cmap == 'RdYlGn': cmap = cm.RdYlGn elif cmap == 'seismic': cmap = cm.seismic elif cmap == 'coolwarm': cmap = cm.coolwarm elif cmap == 'inferno': cmap = cm.inferno elif cmap == 'plasma': cmap = cm.plasma elif cmap == 'OrRd': cmap = cm.OrRd elif cmap == 'tab20c': cmap = cm.tab20c return cmap def _label_to_hex(label, n_colors): hex = sns.color_palette(label, n_colors) return hex.as_hex()
the-stack_106_18531
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 6 20:36:02 2020 @author: atekawade """ import numpy as np import os import sys from ct_segnet.data_utils import data_io import argparse from argparse import ArgumentTypeError from tqdm import tqdm import ast from shutil import rmtree import time mem_thres = 0.0 def main(args): data_io.show_header() # Understand input data format if args.input_fname.split('.')[-1] in ("hdf5", "h5"): tiff_input = False else: raise ArgumentTypeError("input file type not recognized. must be hdf5 file") input_fname = args.input_fname # set up output file name / path / chunks parameter if args.output_fpath == "": args.output_fpath = os.path.split(args.input_fname)[0] if args.output_fname == "converted_tiff": output_fname = args.input_fname.split('.')[0] else: output_fname = os.path.join(args.output_fpath, args.output_fname) # print("Overwrite OK is %s"%args.overwrite_OK) # print("Stats only is %s"%args.stats_only) # print("Delete is %s"%args.delete) # sys.exit() # Define DataFile instances - quit here if stats_only requested r_dfile = data_io.DataFile(input_fname, tiff = tiff_input, \ data_tag = args.dataset_name, \ VERBOSITY = args.verbosity) print("Input data stats:") r_dfile.show_stats() if args.stats_only: sys.exit() w_shape = r_dfile.d_shape # future implementation must allow resampling dataset w_dtype = r_dfile.d_type # future implementation must allow changing dtype (with renormalization) w_dfile = data_io.DataFile(output_fname, tiff = True, \ VERBOSITY = args.verbosity, \ d_shape = w_shape, d_type = w_dtype) str_prompt = "\ntiff file will be saved to the following location.\n%s"%output_fname if not args.yes: input(str_prompt + "\nPress any key to continue") else: print(str_prompt) w_dfile.create_new(overwrite = args.overwrite_OK) t0 = time.time() slice_start = 0 print("\n") pbar = tqdm(total = r_dfile.d_shape[0]) while slice_start < r_dfile.d_shape[0]: dd, s = r_dfile.read_chunk(axis = 0, slice_start = slice_start, \ max_GB = mem_thres, \ chunk_shape = r_dfile.chunk_shape) w_dfile.write_chunk(dd, axis = 0, s = s) slice_start = s.stop pbar.update(s.stop - s.start) pbar.close() total_time = (time.time() - t0)/60.0 # minutes print("\nTotal time: %.2f minutes"%(total_time)) if args.delete: if not args.yes: input("Delete old file? Press any key") if tiff_input: rmtree(input_fname) else: os.remove(input_fname) if __name__ == "__main__": # Arg parser stuff import argparse parser = argparse.ArgumentParser() parser.add_argument('-f', "--input-fname", required = True, type = str, help = "Path to tiff folder or hdf5 file") parser.add_argument('-i', "--stats_only", required = False, action = "store_true", default = False, help = "show stats only") parser.add_argument('-d', "--delete", required = False, action = "store_true", default = False, help = "delete input file") parser.add_argument('-o', "--output-fpath", required = False, default = "", type = str, help = "Parent folder path for saving output. (optional) If not provided, file will be written to same parent folder as input file.") parser.add_argument('-n', "--output-fname", required = False, default = "converted_tiff", type = str, help = "Name of output tiff file.") parser.add_argument('-x', "--dataset-name", required = False, type = str, default = "", help = "Dataset name for hdf5; required if input is hdf5 file") parser.add_argument('-v', "--verbosity", required = False, type = int, default = 0, help = "read / write verbosity; 0 - silent, 1 - important stuff, 2 - print everything") parser.add_argument('-c', "--chunk-param", required = False, type = ast.literal_eval, default = None, help = "chunk_size (MB) or chunk shape (tuple)") parser.add_argument('--chunked-slice-size', required = False, type = ast.literal_eval, default = None, help = "alternately to --chunk_param, provide maximum size (GB) of a chunk of slice along any axis") parser.add_argument('-w', "--overwrite_OK", required = False, action = "store_true", default = False, help = "if output file exists, overwrite") # parser.add_argument('-r', "--resample-factor", required = False, type = int, help = "resample to reduce dataset size by cube of this factor") parser.add_argument('-y', "--yes", required = False, action = "store_true", default = False, help = "say yes to all prompts") args = parser.parse_args() main(args)
the-stack_106_18533
#!/usr/bin/python # -*- coding: utf-8 -*- ################################################################################ # # RMG - Reaction Mechanism Generator # # Copyright (c) 2002-2010 Prof. William H. Green ([email protected]) and the # RMG Team ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the 'Software'), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ #global imports import copy import os.path import numpy as np import re #local imports from rmgpy.chemkin import getSpeciesIdentifier from rmgpy.scoop_framework.util import broadcast, get, map_ from rmgpy.scoop_framework.util import logger as logging from rmgpy.rmg.main import RMG from model import ReductionReaction from rates import isImportant #global variables reactions = None def simulateOne(reactionModel, atol, rtol, reactionSystem): """ Simulates one reaction system, listener registers results, which are returned at the end. The returned data consists of a array of the species names, and the concentration data. The concentration data consists of a number of elements for each timestep the solver took to reach the end time of the batch reactor simulation. Each element consists of the time and the concentration data of the species at that particular timestep in the order of the species names. """ #register as a listener listener = ConcentrationListener() coreSpecies = reactionModel.core.species regex = r'\([0-9]+\)'#cut of '(one or more digits)' speciesNames = [] for spc in coreSpecies: name = getSpeciesIdentifier(spc) name_cutoff = re.split(regex, name)[0] speciesNames.append(name_cutoff) listener.speciesNames = speciesNames reactionSystem.attach(listener) pdepNetworks = [] for source, networks in reactionModel.networkDict.items(): pdepNetworks.extend(networks) terminated, obj = reactionSystem.simulate( coreSpecies = reactionModel.core.species, coreReactions = reactionModel.core.reactions, edgeSpecies = reactionModel.edge.species, edgeReactions = reactionModel.edge.reactions, toleranceKeepInEdge = 0, toleranceMoveToCore = 1, toleranceInterruptSimulation = 1, pdepNetworks = pdepNetworks, absoluteTolerance = atol, relativeTolerance = rtol, ) assert terminated #unregister as a listener reactionSystem.detach(listener) return listener.speciesNames, listener.data def simulateAll(rmg): """ Simulate the RMG job, for each of the simulated reaction systems. Each element i of the data corresponds to a reaction system. """ reactionModel = rmg.reactionModel data = [] atol, rtol = rmg.absoluteTolerance, rmg.relativeTolerance for reactionSystem in rmg.reactionSystems: data.append(simulateOne(reactionModel, atol, rtol, reactionSystem)) return data def initialize(wd, rxns): global working_dir, reactions working_dir = wd assert os.path.isdir(working_dir) #set global variable here such that functions executed in the root worker have access to it. reactions = [ReductionReaction(rxn) for rxn in rxns] broadcast(reactions, 'reactions') def retrieveReactions(): """ Reactions can be retrieved either through the global variable 'reactions' if parallel computing is not used. With the use of multiple workers, the reactions are retrieved from the previously broadcasted constant. In any case, the references to the original reactions of the reaction model are assumed to be broken. """ global reactions broadcastedReactions = get('reactions') if broadcastedReactions: reactions = broadcastedReactions return reactions def findImportantReactions(rmg, tolerance): """ This function: - loops over all the species involved in a specific reaction - decides whether the specific reaction is important for the species. Whenever it is found that a reaction is important for a species, we break the species loop, and keep the reaction in the model. Returns: a list of rxns that can be removed. """ # run the simulation, creating concentration profiles for each reaction system defined in input. simdata = simulateAll(rmg) reduceReactions = retrieveReactions() def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in xrange(0, len(l), n): yield l[i:i+n] CHUNKSIZE = 40 boolean_array = [] for chunk in chunks(reduceReactions,CHUNKSIZE): N = len(chunk) partial_results = list( map_( assessReaction, chunk, [rmg.reactionSystems] * N, [tolerance] * N, [simdata] * N ) ) boolean_array.extend(partial_results) """ Assuming that the order of the reduced reactions array and the core reactions of the reaction model are identical, iterate over the boolean array and retain those reactions of the reaction model that are deemed 'important'. """ importantRxns = [] for isImport, rxn in zip(boolean_array, rmg.reactionModel.core.reactions): logging.debug('Is rxn {rxn} important? {isImport}'.format(**locals())) if isImport: importantRxns.append(rxn) return importantRxns def assessReaction(rxn, reactionSystems, tolerance, data): """ Returns whether the reaction is important or not in the reactions. It iterates over the reaction systems, and loads the concentration profile of each reaction system. It iterates over a number of samples in profile and evaluates the importance of the reaction at every sample. """ logging.debug('Assessing reaction {}'.format(rxn)) reactions = retrieveReactions() # read in the intermediate state variables for datum, reactionSystem in zip(data, reactionSystems): T, P = reactionSystem.T.value_si, reactionSystem.P.value_si speciesNames, profile = datum # take N evenly spaced indices from the table with simulation results: """ Number of time steps between start and end time of the batch reactor simulation at which the importance of reactions should be evaluated. The more timesteps, the less chance we have to remove an important reactions, but the more simulations need to be carried out. """ timesteps = len(profile) / 2 logging.debug('Evaluating the importance of a reaction at {} time samples.'.format(timesteps)) assert timesteps <= len(profile) indices = map(int, np.linspace(0, len(profile)-1, num = timesteps)) for index in indices: assert profile[index] is not None timepoint, coreSpeciesConcentrations = profile[index] coreSpeciesConcentrations = {key: float(value) for (key, value) in zip(speciesNames, coreSpeciesConcentrations)} for species_i in rxn.reactants: if isImportant(rxn, species_i, reactions, 'reactant', tolerance, T, P, coreSpeciesConcentrations): return True #only continue if the reaction is not important yet. for species_i in rxn.products: if isImportant(rxn, species_i, reactions, 'product', tolerance, T, P, coreSpeciesConcentrations): return True return False def searchTargetIndex(targetLabel, reactionModel): """ Searches for the Species object in the core species of the reaction that has the same label as the parameter string. reactionModel must be of class CoreEdgeReactionModel Has known issues dealing with duplicate labels. See reductionTest.py for a unittest of this issue. """ for i, spc in enumerate(reactionModel.core.species): if spc.label == targetLabel: return i raise Exception('{} could not be found...'.format(targetLabel)) def computeObservables(targets, reactionModel, reactionSystem, atol, rtol): """ Computes the observables of the targets, provided in the function signature. Currently, the species mole fractions at the end time of the batch reactor simulation are the only observables that can be computed. - resetting the reaction system, initialing with empty variables - running the simulation at the conditions stored in the reaction system """ reactionSystem.initializeModel(\ reactionModel.core.species, reactionModel.core.reactions,\ reactionModel.edge.species, reactionModel.edge.reactions, \ [], atol, rtol) #run the simulation: simulateOne(reactionModel, atol, rtol, reactionSystem) observables = computeMoleFractions(targets, reactionModel, reactionSystem) return observables def computeMoleFractions(targets, reactionModel, reactionSystem): """ Computes the mole fractions of the targets, identified by the list of species names in the function signature. Returns a numpy array with the mole fractions at the end time of the reactor simulation. - searching the index of the target species in the core species of the global reduction variable - fetching the computed moles variable y """ moleFractions = np.zeros(len(targets), np.float64) for i, label in enumerate(targets): targetIndex = searchTargetIndex(label, reactionModel) moleFractions[i] = reactionSystem.y[targetIndex] return moleFractions def computeConversion(targetLabel, reactionModel, reactionSystem, atol, rtol): """ Computes the conversion of a target molecule by - searching the index of the target species in the core species of the global reduction variable - resetting the reaction system, initialing with empty variables - fetching the initial moles variable y0 - running the simulation at the conditions stored in the reaction system - fetching the computed moles variable y - computing conversion """ targetIndex = searchTargetIndex(targetLabel, reactionModel) #reset reaction system variables: logging.info('No. of rxns in core reactions: {}'.format(len(reactionModel.core.reactions))) reactionSystem.initializeModel(\ reactionModel.core.species, reactionModel.core.reactions,\ reactionModel.edge.species, reactionModel.edge.reactions, \ [], atol, rtol) #get the initial moles: y0 = reactionSystem.y.copy() #run the simulation: simulateOne(reactionModel, atol, rtol, reactionSystem) #compute conversion: conv = 1 - (reactionSystem.y[targetIndex] / y0[targetIndex]) return conv def reduceModel(tolerance, targets, reactionModel, rmg, reactionSystemIndex): """ Reduces the model for the given tolerance and evaluates the target observables. """ # reduce model with the tolerance specified earlier: importantReactions = findImportantReactions(rmg, tolerance) original_size = len(reactionModel.core.reactions) no_importantReactions = len(importantReactions) logging.info('No. of reactions in tested reduced model: {}'.format(no_importantReactions)) #set the core reactions to the reduced reaction set: originalReactions = reactionModel.core.reactions rmg.reactionModel.core.reactions = importantReactions #re-compute observables: observables = computeObservables(targets, rmg.reactionModel,\ rmg.reactionSystems[reactionSystemIndex],\ rmg.absoluteTolerance, rmg.relativeTolerance) #reset the reaction model to its original state: rmg.reactionModel.core.reactions = originalReactions logging.info('Observables of reduced model ({} rxns):'.format(no_importantReactions)) for target, observable in zip(targets, observables): logging.info('Observable in reduced model: {}: {:.2f}%'.format(target, observable * 100)) return observables, importantReactions class ConcentrationListener(object): """Returns the species concentration profiles at each time step.""" def __init__(self): self.speciesNames = [] self.data = [] def update(self, subject): """ Register the time (t) and the species mole fractions at the given time. The snapshots variable stores time and Volume as the first two elements in the array. """ data = subject.snapshots self.data = process(data) def process(data): """ The data is structured as a list of lists. Each list contains [time, Volume, [species mole fractions]] The volume is cut out of each list, the remaining part is stored as a tuple. """ processed = [] for d in data: processed.append((d[0], d[2:])) return processed
the-stack_106_18535
#!/usr/bin/python # @lint-avoid-python-3-compatibility-imports # # profile Profile CPU usage by sampling stack traces at a timed interval. # For Linux, uses BCC, BPF, perf_events. Embedded C. # # This is an efficient profiler, as stack traces are frequency counted in # kernel context, rather than passing every stack to user space for frequency # counting there. Only the unique stacks and counts are passed to user space # at the end of the profile, greatly reducing the kernel<->user transfer. # # This uses perf_event_open to setup a timer which is instrumented by BPF, # and for efficiency it does not initialize the perf ring buffer, so the # redundant perf samples are not collected. # # Kernel stacks are post-process in user-land to skip the interrupt framework # frames. You can improve efficiency a little by specifying the exact number # of frames to skip with -s, provided you know what that is. If you get -s # wrong, note that the first line is the IP, and then the (skipped) stack. # # Note: if another perf-based sampling session is active, the output may become # polluted with their events. On older kernels, the ouptut may also become # polluted with tracing sessions (when the kprobe is used instead of the # tracepoint). If this becomes a problem, logic can be added to filter events. # # REQUIRES: Linux 4.6+ (BPF_MAP_TYPE_STACK_TRACE support), and the # perf_misc_flags() function symbol to exist. The latter may or may not # exist depending on your kernel build. Linux 4.9 provides a proper solution # to this (this tool will be updated). # # Copyright 2016 Netflix, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # THANKS: Sasha Goldshtein, Andrew Birchall, and Evgeny Vereshchagin, who wrote # much of the code here, borrowed from tracepoint.py and offcputime.py. # # 15-Jul-2016 Brendan Gregg Created this. from __future__ import print_function from bcc import BPF, Perf from sys import stderr from time import sleep import argparse import signal import os import errno import multiprocessing import ctypes as ct # # Process Arguments # # arg validation def positive_int(val): try: ival = int(val) except ValueError: raise argparse.ArgumentTypeError("must be an integer") if ival < 0: raise argparse.ArgumentTypeError("must be positive") return ival def positive_nonzero_int(val): ival = positive_int(val) if ival == 0: raise argparse.ArgumentTypeError("must be nonzero") return ival # arguments examples = """examples: ./profile # profile stack traces at 49 Hertz until Ctrl-C ./profile -F 99 # profile stack traces at 99 Hertz ./profile 5 # profile at 49 Hertz for 5 seconds only ./profile -f 5 # output in folded format for flame graphs ./profile -p 185 # only profile threads for PID 185 ./profile -U # only show user space stacks (no kernel) ./profile -K # only show kernel space stacks (no user) ./profile -S 11 # always skip 11 frames of kernel stack """ parser = argparse.ArgumentParser( description="Profile CPU stack traces at a timed interval", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) thread_group = parser.add_mutually_exclusive_group() thread_group.add_argument("-p", "--pid", type=positive_int, help="profile this PID only") # TODO: add options for user/kernel threads only stack_group = parser.add_mutually_exclusive_group() stack_group.add_argument("-U", "--user-stacks-only", action="store_true", help="show stacks from user space only (no kernel space stacks)") stack_group.add_argument("-K", "--kernel-stacks-only", action="store_true", help="show stacks from kernel space only (no user space stacks)") parser.add_argument("-F", "--frequency", type=positive_int, default=49, help="sample frequency, Hertz (default 49)") parser.add_argument("-d", "--delimited", action="store_true", help="insert delimiter between kernel/user stacks") parser.add_argument("-a", "--annotations", action="store_true", help="add _[k] annotations to kernel frames") parser.add_argument("-f", "--folded", action="store_true", help="output folded format, one line per stack (for flame graphs)") parser.add_argument("--stack-storage-size", default=2048, type=positive_nonzero_int, help="the number of unique stack traces that can be stored and " "displayed (default 2048)") parser.add_argument("-S", "--kernel-skip", type=positive_int, default=0, help="skip this many kernel frames (default 3)") parser.add_argument("duration", nargs="?", default=99999999, type=positive_nonzero_int, help="duration of trace, in seconds") # option logic args = parser.parse_args() skip = args.kernel_skip pid = int(args.pid) if args.pid is not None else -1 duration = int(args.duration) debug = 0 need_delimiter = args.delimited and not (args.kernel_stacks_only or args.user_stacks_only) # TODO: add stack depth, and interval # # Setup BPF # # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <linux/sched.h> struct key_t { u32 pid; u64 kernel_ip; u64 kernel_ret_ip; int user_stack_id; int kernel_stack_id; char name[TASK_COMM_LEN]; }; BPF_HASH(counts, struct key_t); BPF_HASH(start, u32); BPF_STACK_TRACE(stack_traces, STACK_STORAGE_SIZE); // This code gets a bit complex. Probably not suitable for casual hacking. PERF_TRACE_EVENT { u32 pid = bpf_get_current_pid_tgid(); if (!(THREAD_FILTER)) return 0; // create map key u64 zero = 0, *val; struct key_t key = {.pid = pid}; bpf_get_current_comm(&key.name, sizeof(key.name)); // get stacks key.user_stack_id = USER_STACK_GET; key.kernel_stack_id = KERNEL_STACK_GET; if (key.kernel_stack_id >= 0) { // populate extras to fix the kernel stack struct pt_regs regs = {}; bpf_probe_read(&regs, sizeof(regs), (void *)REGS_LOCATION); u64 ip = PT_REGS_IP(&regs); // if ip isn't sane, leave key ips as zero for later checking #ifdef CONFIG_RANDOMIZE_MEMORY if (ip > __PAGE_OFFSET_BASE) { #else if (ip > PAGE_OFFSET) { #endif key.kernel_ip = ip; if (DO_KERNEL_RIP) { /* * User didn't specify a skip value (-s), so we will figure * out how many interrupt framework frames to skip by recording * the kernel rip, then later scanning for it on the stack. * This is likely x86_64 specific; can use -s as a workaround * until this supports your architecture. */ bpf_probe_read(&key.kernel_ret_ip, sizeof(key.kernel_ret_ip), (void *)(regs.bp + 8)); } } } val = counts.lookup_or_init(&key, &zero); (*val)++; return 0; } """ # set thread filter thread_context = "" perf_filter = "-a" if args.pid is not None: thread_context = "PID %s" % args.pid thread_filter = 'pid == %s' % args.pid perf_filter = '-p %s' % args.pid else: thread_context = "all threads" thread_filter = '1' bpf_text = bpf_text.replace('THREAD_FILTER', thread_filter) # set stack storage size bpf_text = bpf_text.replace('STACK_STORAGE_SIZE', str(args.stack_storage_size)) # handle stack args kernel_stack_get = "stack_traces.get_stackid(args, " \ "%d | BPF_F_REUSE_STACKID)" % skip user_stack_get = \ "stack_traces.get_stackid(args, BPF_F_REUSE_STACKID | BPF_F_USER_STACK)" stack_context = "" if args.user_stacks_only: stack_context = "user" kernel_stack_get = "-1" elif args.kernel_stacks_only: stack_context = "kernel" user_stack_get = "-1" else: stack_context = "user + kernel" bpf_text = bpf_text.replace('USER_STACK_GET', user_stack_get) bpf_text = bpf_text.replace('KERNEL_STACK_GET', kernel_stack_get) if skip: # don't record the rip, as we won't use it bpf_text = bpf_text.replace('DO_KERNEL_RIP', '0') else: # rip is used to skip interrupt infrastructure frames bpf_text = bpf_text.replace('DO_KERNEL_RIP', '1') # header if not args.folded: print("Sampling at %d Hertz of %s by %s stack" % (args.frequency, thread_context, stack_context), end="") if duration < 99999999: print(" for %d secs." % duration) else: print("... Hit Ctrl-C to end.") # kprobe perf_misc_flags() bpf_text = bpf_text.replace('PERF_TRACE_EVENT', 'int kprobe__perf_misc_flags(struct pt_regs *args)') bpf_text = bpf_text.replace('REGS_LOCATION', 'PT_REGS_PARM1(args)') if debug: print(bpf_text) # initialize BPF try: b = BPF(text=bpf_text) except: print("BPF initialization failed. perf_misc_flags() may be inlined in " + "your kernel build.\nThis tool will be updated in the future to " + "support Linux 4.9, which has reliable profiling support. Exiting.") exit() # signal handler def signal_ignore(signal, frame): print() # # Setup perf_events # # use perf_events to sample try: Perf.perf_event_open(0, pid=-1, ptype=Perf.PERF_TYPE_SOFTWARE, freq=args.frequency) except: print("ERROR: initializing perf_events for sampling.\n" "To debug this, try running the following command:\n" " perf record -F 49 -e cpu-clock %s -- sleep 1\n" "If that also doesn't work, fix it first." % perf_filter, file=stderr) exit(0) # # Output Report # # collect samples try: sleep(duration) except KeyboardInterrupt: # as cleanup can take some time, trap Ctrl-C: signal.signal(signal.SIGINT, signal_ignore) if not args.folded: print() def aksym(addr): if args.annotations: return b.ksym(addr) + "_[k]" else: return b.ksym(addr) # output stacks missing_stacks = 0 has_enomem = False counts = b.get_table("counts") stack_traces = b.get_table("stack_traces") for k, v in sorted(counts.items(), key=lambda counts: counts[1].value): # handle get_stackid erorrs if (not args.user_stacks_only and k.kernel_stack_id < 0 and k.kernel_stack_id != -errno.EFAULT) or \ (not args.kernel_stacks_only and k.user_stack_id < 0 and k.user_stack_id != -errno.EFAULT): missing_stacks += 1 # check for an ENOMEM error if k.kernel_stack_id == -errno.ENOMEM or \ k.user_stack_id == -errno.ENOMEM: has_enomem = True user_stack = [] if k.user_stack_id < 0 else \ stack_traces.walk(k.user_stack_id) kernel_tmp = [] if k.kernel_stack_id < 0 else \ stack_traces.walk(k.kernel_stack_id) # fix kernel stack kernel_stack = [] if k.kernel_stack_id >= 0: if skip: # fixed skip for addr in kernel_tmp: kernel_stack.append(addr) kernel_stack = kernel_stack[skip:] else: # skip the interrupt framework stack by searching for our RIP skipping = 1 for addr in kernel_tmp: if k.kernel_ret_ip == addr: skipping = 0 if not skipping: kernel_stack.append(addr) if k.kernel_ip: kernel_stack.insert(0, k.kernel_ip) do_delimiter = need_delimiter and kernel_stack if args.folded: # print folded stack output user_stack = list(user_stack) kernel_stack = list(kernel_stack) line = [k.name.decode()] + \ [b.sym(addr, k.pid) for addr in reversed(user_stack)] + \ (do_delimiter and ["-"] or []) + \ [aksym(addr) for addr in reversed(kernel_stack)] print("%s %d" % (";".join(line), v.value)) else: # print default multi-line stack output. for addr in kernel_stack: print(" %s" % aksym(addr)) if do_delimiter: print(" --") for addr in user_stack: print(" %s" % b.sym(addr, k.pid)) print(" %-16s %s (%d)" % ("-", k.name, k.pid)) print(" %d\n" % v.value) # check missing if missing_stacks > 0: enomem_str = "" if not has_enomem else \ " Consider increasing --stack-storage-size." print("WARNING: %d stack traces could not be displayed.%s" % (missing_stacks, enomem_str), file=stderr)
the-stack_106_18537
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.teleport.InteriorDoorTeleportActorOV from pirates.piratesbase import PiratesGlobals from pirates.teleport.DoorTeleportActorOV import DoorTeleportActorOV class InteriorDoorTeleportActorOV(DoorTeleportActorOV): __module__ = __name__ @report(types=['args'], dConfigParam=['dteleport']) def __init__(self, cr, name='InteriorDoorTeleportActorOV'): DoorTeleportActorOV.__init__(self, cr, name) self.doorRequest = None return def disable(self): if self.doorRequest: base.cr.relatedObjectMgr.abortRequest(self.doorRequest) self.doorRequest = None DoorTeleportActorOV.disable(self) return @report(types=['args'], dConfigParam=['dteleport']) def enterOpenGame(self, areaDoId, doorId): self.areaDoId = areaDoId self.doorId = doorId world = self.cr.getDo(self.worldDoId) world.goOnStage() area = self.cr.getDo(areaDoId) area.goOnStage() def doorArrived(door): doorLocator = door.getDoorLocator() localAvatar.reparentTo(doorLocator) localAvatar.setPosHpr(0, 10, 0, 0, 0, 0) localAvatar.wrtReparentTo(area) localAvatar.setP(0) localAvatar.setR(0) localAvatar.setScale(1) area.parentObjectToArea(localAvatar) area.handleEnterGameArea(None) localAvatar.enableGridInterest() area.manageChild(localAvatar) self._requestWhenInterestComplete('GameOpen') return def doorNotArrived(doIdList): self.notify.error('InteriorDoorTeleportActorOV.enterOpenGame: door %s never arrived in area %s' % (self.doorId, area.uniqueId)) self.doorRequest = base.cr.relatedObjectMgr.requestObjects([self.doorId], eachCallback=doorArrived, timeout=60, timeoutCallback=doorNotArrived) @report(types=['args'], dConfigParam=['dteleport']) def enterStartShow(self, *args): DoorTeleportActorOV.enterStartShow(self, *args) door = self.cr.getDo(self.doorId) messenger.send('fadeInInteriorDoor', [door.getBuildingUid()]) base.cr.loadingScreen.hide()
the-stack_106_18538
#!/usr/bin/env python # Test whether a valid CONNECT results in the correct CONNACK packet using an SSL connection. import socket import ssl import sys if sys.version < '2.7': print("WARNING: SSL not supported on Python 2.6") exit(0) import inspect, os # From http://stackoverflow.com/questions/279237/python-import-a-module-from-a-folder cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join(os.path.split(inspect.getfile( inspect.currentframe() ))[0],".."))) if cmd_subfolder not in sys.path: sys.path.insert(0, cmd_subfolder) import mosq_test def write_config(filename, port1, port2): with open(filename, 'w') as f: f.write("port %d\n" % (port2)) f.write("listener %d\n" % (port1)) f.write("cafile ../ssl/all-ca.crt\n") f.write("certfile ../ssl/server.crt\n") f.write("keyfile ../ssl/server.key\n") f.write("require_certificate true\n") (port1, port2) = mosq_test.get_port(2) conf_file = os.path.basename(__file__).replace('.py', '.conf') write_config(conf_file, port1, port2) rc = 1 keepalive = 10 connect_packet = mosq_test.gen_connect("connect-success-test", keepalive=keepalive) connack_packet = mosq_test.gen_connack(rc=0) broker = mosq_test.start_broker(filename=os.path.basename(__file__), port=port2, use_conf=True) try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ssock = ssl.wrap_socket(sock, ca_certs="../ssl/test-root-ca.crt", certfile="../ssl/client.crt", keyfile="../ssl/client.key", cert_reqs=ssl.CERT_REQUIRED) ssock.settimeout(20) ssock.connect(("localhost", port1)) mosq_test.do_send_receive(ssock, connect_packet, connack_packet, "connack") rc = 0 ssock.close() finally: os.remove(conf_file) broker.terminate() broker.wait() (stdo, stde) = broker.communicate() if rc: print(stde) exit(rc)
the-stack_106_18539
import os import numpy as np from pynif3d.common.verification import check_path_exists, check_pos_int def load_pose_from_file(filename): check_path_exists(filename) pose = np.loadtxt(filename) pose = pose.reshape([4, 4]).astype(np.float32) return pose def load_poses_from_dir(poses_dir): check_path_exists(poses_dir) files = sorted(os.listdir(poses_dir)) check_pos_int(len(files), "files") poses = [ load_pose_from_file(os.path.join(poses_dir, f)) for f in files if f.endswith("txt") ] poses = np.stack(poses, 0).astype(np.float32) transformation_matrix = np.array( [ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1.0], ], dtype=np.float32, ) poses = poses @ transformation_matrix poses = poses[:, :3, :4].astype(np.float32) return poses
the-stack_106_18540
""" This module extends the folium Map class. It is designed to be used in Google Colab, as Google Colab currently does not support ipyleaflet. """ import os import ee import folium from folium import plugins from .common import * from .conversion import * from .legends import builtin_legends # More WMS basemaps can be found at https://viewer.nationalmap.gov/services/ ee_basemaps = { "ROADMAP": folium.TileLayer( tiles="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}", attr="Google", name="Google Maps", overlay=True, control=True, ), "SATELLITE": folium.TileLayer( tiles="https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}", attr="Google", name="Google Satellite", overlay=True, control=True, ), "TERRAIN": folium.TileLayer( tiles="https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}", attr="Google", name="Google Terrain", overlay=True, control=True, ), "HYBRID": folium.TileLayer( tiles="https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}", attr="Google", name="Google Satellite", overlay=True, control=True, ), "ESRI": folium.TileLayer( tiles="https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Satellite", overlay=True, control=True, ), "Esri Ocean": folium.TileLayer( tiles="https://services.arcgisonline.com/ArcGIS/rest/services/Ocean/World_Ocean_Base/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Ocean", overlay=True, control=True, ), "Esri Satellite": folium.TileLayer( tiles="https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Satellite", overlay=True, control=True, ), "Esri Standard": folium.TileLayer( tiles="https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Standard", overlay=True, control=True, ), "Esri Terrain": folium.TileLayer( tiles="https://server.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Terrain", overlay=True, control=True, ), "Esri Transportation": folium.TileLayer( tiles="https://server.arcgisonline.com/ArcGIS/rest/services/Reference/World_Transportation/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Transportation", overlay=True, control=True, ), "Esri Topo World": folium.TileLayer( tiles="https://services.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Topo World", overlay=True, control=True, ), "Esri National Geographic": folium.TileLayer( tiles="http://services.arcgisonline.com/ArcGIS/rest/services/NatGeo_World_Map/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri National Geographic", overlay=True, control=True, ), "Esri Shaded Relief": folium.TileLayer( tiles="https://services.arcgisonline.com/arcgis/rest/services/World_Shaded_Relief/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Shaded Relief", overlay=True, control=True, ), "Esri Physical Map": folium.TileLayer( tiles="https://services.arcgisonline.com/arcgis/rest/services/World_Physical_Map/MapServer/tile/{z}/{y}/{x}", attr="Esri", name="Esri Physical Map", overlay=True, control=True, ), "Bing VirtualEarth": folium.TileLayer( tiles="http://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=1", attr="Microsoft", name="Bing VirtualEarth", overlay=True, control=True, ), "3DEP Elevation": folium.WmsTileLayer( url="https://elevation.nationalmap.gov/arcgis/services/3DEPElevation/ImageServer/WMSServer?", layers="3DEPElevation:None", attr="USGS", name="3DEP Elevation", overlay=True, control=True, ), "NAIP Imagery": folium.WmsTileLayer( url="https://services.nationalmap.gov/arcgis/services/USGSNAIPImagery/ImageServer/WMSServer?", layers="0", attr="USGS", name="NAIP Imagery", overlay=True, control=True, ), } class Map(folium.Map): """The Map class inherits from folium.Map. By default, the Map will add Google Maps as the basemap. Set add_google_map = False to use OpenStreetMap as the basemap. Returns: object: folium map object. """ def __init__(self, **kwargs): import logging logging.getLogger("googleapiclient.discovery_cache").setLevel(logging.ERROR) if "ee_initialize" not in kwargs.keys(): kwargs["ee_initialize"] = True if kwargs["ee_initialize"]: ee_initialize() # Default map center location and zoom level latlon = [40, -100] zoom = 4 # Interchangeable parameters between ipyleaflet and folium if "center" in kwargs.keys(): kwargs["location"] = kwargs["center"] kwargs.pop("center") if "location" in kwargs.keys(): latlon = kwargs["location"] else: kwargs["location"] = latlon if "zoom" in kwargs.keys(): kwargs["zoom_start"] = kwargs["zoom"] kwargs.pop("zoom") if "zoom_start" in kwargs.keys(): zoom = kwargs["zoom_start"] else: kwargs["zoom_start"] = zoom if "add_google_map" not in kwargs.keys() and "basemap" not in kwargs.keys(): kwargs["add_google_map"] = True if "plugin_LatLngPopup" not in kwargs.keys(): kwargs["plugin_LatLngPopup"] = True if "plugin_Fullscreen" not in kwargs.keys(): kwargs["plugin_Fullscreen"] = True if "plugin_Draw" not in kwargs.keys(): kwargs["plugin_Draw"] = False if "Draw_export" not in kwargs.keys(): kwargs["Draw_export"] = True if "plugin_MiniMap" not in kwargs.keys(): kwargs["plugin_MiniMap"] = False if "plugin_LayerControl" not in kwargs.keys(): kwargs["plugin_LayerControl"] = False super().__init__(**kwargs) self.baseclass = "folium" if kwargs.get("add_google_map"): ee_basemaps["ROADMAP"].add_to(self) if kwargs.get("basemap"): ee_basemaps[kwargs.get("basemap")].add_to(self) if kwargs.get("plugin_LatLngPopup"): folium.LatLngPopup().add_to(self) if kwargs.get("plugin_Fullscreen"): plugins.Fullscreen().add_to(self) if kwargs.get("plugin_Draw"): plugins.Draw(export=kwargs.get("Draw_export")).add_to(self) if kwargs.get("plugin_MiniMap"): plugins.MiniMap().add_to(self) if kwargs.get("plugin_LayerControl"): folium.LayerControl().add_to(self) self.fit_bounds([latlon, latlon], max_zoom=zoom) def setOptions(self, mapTypeId="HYBRID", styles={}, types=[]): """Adds Google basemap to the map. Args: mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'. styles ([type], optional): A dictionary of custom MapTypeStyle objects keyed with a name that will appear in the map's Map Type Controls. Defaults to None. types ([type], optional): A list of mapTypeIds to make available. If omitted, but opt_styles is specified, appends all of the style keys to the standard Google Maps API map types.. Defaults to None. """ try: ee_basemaps[mapTypeId].add_to(self) except Exception: raise Exception( "Basemap can only be one of the following: {}".format( ", ".join(ee_basemaps.keys()) ) ) set_options = setOptions def add_basemap(self, basemap="HYBRID"): """Adds a basemap to the map. Args: basemap (str, optional): Can be one of string from ee_basemaps. Defaults to 'HYBRID'. """ try: ee_basemaps[basemap].add_to(self) except Exception: raise Exception( "Basemap can only be one of the following: {}".format( ", ".join(ee_basemaps.keys()) ) ) def add_layer( self, ee_object, vis_params={}, name="Layer untitled", shown=True, opacity=1.0, **kwargs, ): """Adds a given EE object to the map as a layer. Args: ee_object (Collection|Feature|Image|MapId): The object to add to the map. vis_params (dict, optional): The visualization parameters. Defaults to {}. name (str, optional): The name of the layer. Defaults to 'Layer untitled'. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1. """ from box import Box image = None if ( not isinstance(ee_object, ee.Image) and not isinstance(ee_object, ee.ImageCollection) and not isinstance(ee_object, ee.FeatureCollection) and not isinstance(ee_object, ee.Feature) and not isinstance(ee_object, ee.Geometry) ): err_str = "\n\nThe image argument in 'addLayer' function must be an instace of one of ee.Image, ee.Geometry, ee.Feature or ee.FeatureCollection." raise AttributeError(err_str) if ( isinstance(ee_object, ee.geometry.Geometry) or isinstance(ee_object, ee.feature.Feature) or isinstance(ee_object, ee.featurecollection.FeatureCollection) ): features = ee.FeatureCollection(ee_object) width = 2 if "width" in vis_params: width = vis_params["width"] color = "000000" if "color" in vis_params: color = vis_params["color"] image_fill = features.style(**{"fillColor": color}).updateMask( ee.Image.constant(0.5) ) image_outline = features.style( **{"color": color, "fillColor": "00000000", "width": width} ) image = image_fill.blend(image_outline) elif isinstance(ee_object, ee.image.Image): image = ee_object elif isinstance(ee_object, ee.imagecollection.ImageCollection): image = ee_object.mosaic() if "palette" in vis_params and isinstance(vis_params["palette"], Box): try: vis_params["palette"] = vis_params["palette"]["default"] except Exception as e: print("The provided palette is invalid.") raise Exception(e) map_id_dict = ee.Image(image).getMapId(vis_params) # if a layer starts with a number, add "Layer" to name. if name[0].isdigit(): name = "Layer " + name folium.raster_layers.TileLayer( tiles=map_id_dict["tile_fetcher"].url_format, attr="Google Earth Engine", name=name, overlay=True, control=True, show=shown, opacity=opacity, **kwargs, ).add_to(self) addLayer = add_layer def _repr_mimebundle_(self, include, exclude, **kwargs): """Adds Layer control to the map. Referece: https://ipython.readthedocs.io/en/stable/config/integrating.html#MyObject._repr_mimebundle_ Args: include ([type]): [description] exclude ([type]): [description] """ self.add_layer_control() def set_center(self, lon, lat, zoom=10): """Centers the map view at a given coordinates with the given zoom level. Args: lon (float): The longitude of the center, in degrees. lat (float): The latitude of the center, in degrees. zoom (int, optional): The zoom level, from 1 to 24. Defaults to 10. """ self.fit_bounds([[lat, lon], [lat, lon]], max_zoom=zoom) setCenter = set_center def center_object(self, ee_object, zoom=10): """Centers the map view on a given object. Args: ee_object (Element|Geometry): An Earth Engine object to center on - a geometry, image or feature. zoom (int, optional): The zoom level, from 1 to 24. Defaults to 10. """ lat = 0 lon = 0 bounds = [[lat, lon], [lat, lon]] if isinstance(ee_object, ee.geometry.Geometry): centroid = ee_object.centroid() lon, lat = centroid.getInfo()["coordinates"] bounds = [[lat, lon], [lat, lon]] elif isinstance(ee_object, ee.featurecollection.FeatureCollection): centroid = ee_object.geometry().centroid() lon, lat = centroid.getInfo()["coordinates"] bounds = [[lat, lon], [lat, lon]] elif isinstance(ee_object, ee.image.Image): geometry = ee_object.geometry() coordinates = geometry.getInfo()["coordinates"][0] bounds = [coordinates[0][::-1], coordinates[2][::-1]] elif isinstance(ee_object, ee.imagecollection.ImageCollection): geometry = ee_object.geometry() coordinates = geometry.getInfo()["coordinates"][0] bounds = [coordinates[0][::-1], coordinates[2][::-1]] else: bounds = [[0, 0], [0, 0]] self.fit_bounds(bounds, max_zoom=zoom) centerObject = center_object def set_control_visibility( self, layerControl=True, fullscreenControl=True, latLngPopup=True ): """Sets the visibility of the controls on the map. Args: layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True. fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True. latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True. """ if layerControl: folium.LayerControl().add_to(self) if fullscreenControl: plugins.Fullscreen().add_to(self) if latLngPopup: folium.LatLngPopup().add_to(self) setControlVisibility = set_control_visibility def add_layer_control(self): """Adds layer control to the map.""" layer_ctrl = False for item in self.to_dict()["children"]: if item.startswith("layer_control"): layer_ctrl = True break if not layer_ctrl: folium.LayerControl().add_to(self) addLayerControl = add_layer_control def add_wms_layer( self, url, layers, name=None, attribution="", overlay=True, control=True, shown=True, format="image/png", transparent=False, version="1.1.1", styles="", **kwargs, ): """Add a WMS layer to the map. Args: url (str): The URL of the WMS web service. layers (str): Comma-separated list of WMS layers to show. name (str, optional): The layer name to use on the layer control. Defaults to None. attribution (str, optional): The attribution of the data layer. Defaults to ''. overlay (str, optional): Allows overlay. Defaults to True. control (str, optional): Adds the layer to the layer control. Defaults to True. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. format (str, optional): WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'. transparent (bool, optional): Whether the layer shall allow transparency. Defaults to False. version (str, optional): Version of the WMS service to use. Defaults to "1.1.1". styles (str, optional): Comma-separated list of WMS styles. Defaults to "". """ try: folium.raster_layers.WmsTileLayer( url=url, layers=layers, name=name, attr=attribution, overlay=overlay, control=control, show=shown, styles=styles, fmt=format, transparent=transparent, version=version, **kwargs, ).add_to(self) except Exception: raise Exception("Failed to add the specified WMS TileLayer.") def add_tile_layer( self, tiles="OpenStreetMap", name="Untitled", attribution=".", overlay=True, control=True, shown=True, opacity=1.0, API_key=None, **kwargs, ): """Add a XYZ tile layer to the map. Args: tiles (str): The URL of the XYZ tile service. name (str, optional): The layer name to use on the layer control. Defaults to 'Untitled'. attribution (str, optional): The attribution of the data layer. Defaults to '.'. overlay (str, optional): Allows overlay. Defaults to True. control (str, optional): Adds the layer to the layer control. Defaults to True. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. opacity (float, optional): Sets the opacity for the layer. API_key (str, optional): – API key for Cloudmade or Mapbox tiles. Defaults to True. """ try: folium.raster_layers.TileLayer( tiles=tiles, name=name, attr=attribution, overlay=overlay, control=control, show=shown, opacity=opacity, API_key=API_key, **kwargs, ).add_to(self) except Exception: raise Exception("Failed to add the specified TileLayer.") def add_COG_layer( self, url, name="Untitled", attribution=".", opacity=1.0, shown=True, titiler_endpoint="https://api.cogeo.xyz/", **kwargs, ): """Adds a COG TileLayer to the map. Args: url (str): The URL of the COG tile layer. name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'. attribution (str, optional): The attribution to use. Defaults to '.'. opacity (float, optional): The opacity of the layer. Defaults to 1. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://api.cogeo.xyz/". """ tile_url = get_COG_tile(url, titiler_endpoint, **kwargs) center = get_COG_center(url, titiler_endpoint) # (lon, lat) self.add_tile_layer( tiles=tile_url, name=name, attribution=attribution, opacity=opacity, shown=shown, ) self.set_center(lon=center[0], lat=center[1], zoom=10) def add_COG_mosaic( self, links, name="Untitled", attribution=".", opacity=1.0, shown=True, titiler_endpoint="https://api.cogeo.xyz/", username="anonymous", overwrite=False, show_footprints=False, verbose=True, **kwargs, ): """Add a virtual mosaic of COGs to the map. Args: links (list): A list of links pointing to COGs. name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'. attribution (str, optional): The attribution to use. Defaults to '.'. opacity (float, optional): The opacity of the layer. Defaults to 1. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://api.cogeo.xyz/". username (str, optional): The username to create mosaic using the titiler endpoint. Defaults to 'anonymous'. overwrite (bool, optional): Whether or not to replace existing layer with the same layer name. Defaults to False. show_footprints (bool, optional): Whether or not to show footprints of COGs. Defaults to False. verbose (bool, optional): Whether or not to print descriptions. Defaults to True. """ layername = name.replace(" ", "_") tile = get_COG_mosaic( links, titiler_endpoint=titiler_endpoint, username=username, layername=layername, overwrite=overwrite, verbose=verbose, ) self.add_tile_layer(tile, name, attribution, opacity, shown) if show_footprints: if verbose: print( f"Generating footprints of {len(links)} COGs. This might take a while ..." ) coords = [] for link in links: coord = get_COG_bounds(link) if coord is not None: coords.append(coord) fc = coords_to_geojson(coords) # style_function = lambda x: {'opacity': 1, 'dashArray': '1', 'fillOpacity': 0, 'weight': 1} folium.GeoJson( data=fc, # style_function=style_function, name="Footprints", ).add_to(self) center = get_center(fc) if verbose: print("The footprint layer has been added.") else: center = get_COG_center(links[0], titiler_endpoint) self.set_center(center[0], center[1], zoom=6) def add_STAC_layer( self, url, bands=None, name="Untitled", attribution=".", opacity=1.0, shown=True, titiler_endpoint="https://api.cogeo.xyz/", **kwargs, ): """Adds a STAC TileLayer to the map. Args: url (str): The URL of the COG tile layer. name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'. attribution (str, optional): The attribution to use. Defaults to '.'. opacity (float, optional): The opacity of the layer. Defaults to 1. shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True. titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://api.cogeo.xyz/". """ tile_url = get_STAC_tile(url, bands, titiler_endpoint, **kwargs) center = get_STAC_center(url, titiler_endpoint) self.add_tile_layer( tiles=tile_url, name=name, attribution=attribution, opacity=opacity, shown=shown, ) self.set_center(lon=center[0], lat=center[1], zoom=10) def add_legend( self, title="Legend", colors=None, labels=None, legend_dict=None, builtin_legend=None, opacity=1.0, ): """Adds a customized basemap to the map. Reference: https://bit.ly/3oV6vnH Args: title (str, optional): Title of the legend. Defaults to 'Legend'. Defaults to "Legend". colors ([type], optional): A list of legend colors. Defaults to None. labels ([type], optional): A list of legend labels. Defaults to None. legend_dict ([type], optional): A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None. builtin_legend ([type], optional): Name of the builtin legend to add to the map. Defaults to None. opacity (float, optional): The opacity of the legend. Defaults to 1.0. """ import pkg_resources from branca.element import Template, MacroElement pkg_dir = os.path.dirname( pkg_resources.resource_filename("geemap", "geemap.py") ) legend_template = os.path.join(pkg_dir, "data/template/legend.txt") if not os.path.exists(legend_template): raise FileNotFoundError("The legend template does not exist.") if labels is not None: if not isinstance(labels, list): raise ValueError("The legend labels must be a list.") else: labels = ["One", "Two", "Three", "Four", "ect"] if colors is not None: if not isinstance(colors, list): raise ValueError("The legend colors must be a list.") elif all(isinstance(item, tuple) for item in colors): try: colors = ["#" + rgb_to_hex(x) for x in colors] except Exception as e: raise Exception(e) elif all((item.startswith("#") and len(item) == 7) for item in colors): pass elif all((len(item) == 6) for item in colors): pass else: raise ValueError("The legend colors must be a list of tuples.") else: colors = ["#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3"] if len(labels) != len(colors): raise ValueError("The legend keys and values must be the same length.") allowed_builtin_legends = builtin_legends.keys() if builtin_legend is not None: if builtin_legend not in allowed_builtin_legends: raise ValueError( "The builtin legend must be one of the following: {}".format( ", ".join(allowed_builtin_legends) ) ) else: legend_dict = builtin_legends[builtin_legend] labels = list(legend_dict.keys()) colors = list(legend_dict.values()) if all(isinstance(item, tuple) for item in colors): try: colors = [rgb_to_hex(x) for x in colors] except Exception as e: raise Exception(e) elif all(isinstance(item, str) for item in colors): colors = ["#" + color for color in colors] if legend_dict is not None: if not isinstance(legend_dict, dict): raise ValueError("The legend dict must be a dictionary.") else: labels = list(legend_dict.keys()) colors = list(legend_dict.values()) if all(isinstance(item, tuple) for item in colors): try: colors = [rgb_to_hex(x) for x in colors] except Exception as e: raise Exception(e) elif all(isinstance(item, str) for item in colors): colors = ["#" + color for color in colors] content = [] with open(legend_template) as f: lines = f.readlines() for index, line in enumerate(lines): if index < 36: content.append(line) elif index == 36: line = lines[index].replace("Legend", title) content.append(line) elif index < 39: content.append(line) elif index == 39: for i, color in enumerate(colors): item = f" <li><span style='background:{check_color(color)};opacity:{opacity};'></span>{labels[i]}</li>\n" content.append(item) elif index > 41: content.append(line) template = "".join(content) macro = MacroElement() macro._template = Template(template) self.get_root().add_child(macro) def add_colorbar( self, colors, vmin=0, vmax=1.0, index=None, caption="", categorical=False, step=None, **kwargs, ): """Add a colorbar to the map. Args: colors (list): The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”) vmin (int, optional): The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0. vmax (float, optional): The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0. index (list, optional):The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None. caption (str, optional): The caption for the colormap. Defaults to "". categorical (bool, optional): Whether or not to create a categorical colormap. Defaults to False. step (int, optional): The step to split the LinearColormap into a StepColormap. Defaults to None. """ from box import Box from branca.colormap import LinearColormap if isinstance(colors, Box): try: colors = list(colors["default"]) except Exception as e: print("The provided color list is invalid.") raise Exception(e) if all(len(color) == 6 for color in colors): colors = ["#" + color for color in colors] colormap = LinearColormap( colors=colors, index=index, vmin=vmin, vmax=vmax, caption=caption ) if categorical: if step is not None: colormap = colormap.to_step(step) elif index is not None: colormap = colormap.to_step(len(index) - 1) else: colormap = colormap.to_step(3) self.add_child(colormap) def add_styled_vector( self, ee_object, column, palette, layer_name="Untitled", **kwargs ): """Adds a styled vector to the map. Args: ee_object (object): An ee.FeatureCollection. column (str): The column name to use for styling. palette (list): The palette (e.g., list of colors) to use for styling. layer_name (str, optional): The name to be used for the new layer. Defaults to "Untitled". """ styled_vector = vector_styling(ee_object, column, palette, **kwargs) self.addLayer(styled_vector.style(**{"styleProperty": "style"}), {}, layer_name) def add_shapefile(self, in_shp, name="Untitled", **kwargs): """Adds a shapefile to the map. See https://python-visualization.github.io/folium/modules.html#folium.features.GeoJson for more info about setting style. Args: in_shp (str): The input file path to the shapefile. name (str, optional): The layer name to be used. Defaults to "Untitled". Raises: FileNotFoundError: The provided shapefile could not be found. """ if not os.path.exists(in_shp): raise FileNotFoundError("The provided shapefile could not be found.") data = shp_to_geojson(in_shp) geo_json = folium.GeoJson(data=data, name=name, **kwargs) geo_json.add_to(self) def add_geojson(self, in_geojson, name="Untitled", **kwargs): """Adds a GeoJSON file to the map. Args: in_geojson (str): The input file path to the GeoJSON. name (str, optional): The layer name to be used. Defaults to "Untitled". Raises: FileNotFoundError: The provided GeoJSON file could not be found. """ import json if not os.path.exists(in_geojson): raise FileNotFoundError("The provided GeoJSON file could not be found.") with open(in_geojson) as f: data = json.load(f) geo_json = folium.GeoJson(data=data, name=name, **kwargs) geo_json.add_to(self) def add_kml(self, in_kml, name="Untitled", **kwargs): """Adds a KML file to the map. Args: in_kml (str): The input file path to the KML. name (str, optional): The layer name to be used. Defaults to "Untitled". Raises: FileNotFoundError: The provided KML file could not be found. """ import json if not os.path.exists(in_kml): raise FileNotFoundError("The provided KML file could not be found.") out_json = os.path.join(os.getcwd(), "tmp.geojson") kml_to_geojson(in_kml, out_json) with open(out_json) as f: data = json.load(f) geo_json = folium.GeoJson(data=data, name=name, **kwargs) geo_json.add_to(self) os.remove(out_json) def publish( self, name=None, headline="Untitled", visibility="PUBLIC", overwrite=True, open=True, ): """Publish the map to datapane.com Args: name (str, optional): The URL of the map. Defaults to None. headline (str, optional): Title of the map. Defaults to 'Untitled'. visibility (str, optional): Visibility of the map. It can be one of the following: PUBLIC, PRIVATE, ORG. Defaults to 'PUBLIC'. overwrite (bool, optional): Whether to overwrite the existing map with the same name. Defaults to True. open (bool, optional): Whether to open the map. Defaults to True. """ import webbrowser try: import datapane as dp except Exception: webbrowser.open_new_tab( "https://docs.datapane.com/tutorials/tut-getting-started" ) raise ImportError( "The datapane Python package is not installed. You need to install and authenticate datapane first." ) # import datapane as dp # import logging # logging.getLogger('googleapiclient.discovery_cache').setLevel(logging.ERROR) if name is None: name = "folium_" + random_string(6) visibility = visibility.upper() if visibility not in ["PUBLIC", "PRIVATE", "ORG"]: visibility = "PRIVATE" if overwrite: delete_dp_report(name) report = dp.Report(dp.Plot(self)) report.publish(name=name, headline=headline, visibility=visibility, open=open) def delete_dp_report(name): """Deletes a datapane report. Args: name (str): Name of the report to delete. """ try: import datapane as dp reports = dp.Report.list() items = list(reports) names = list(map(lambda item: item["name"], items)) if name in names: report = dp.Report.get(name) url = report.blocks[0]["url"] # print('Deleting {}...'.format(url)) dp.Report.delete(dp.Report.by_id(url)) except Exception as e: print(e) return def delete_dp_reports(): """Deletes all datapane reports.""" try: import datapane as dp reports = dp.Report.list() for item in reports: print(item["name"]) report = dp.Report.get(item["name"]) url = report.blocks[0]["url"] print("Deleting {}...".format(url)) dp.Report.delete(dp.Report.by_id(url)) except Exception as e: print(e) return
the-stack_106_18542
from __future__ import absolute_import, division, print_function import os os.environ["CDF_LIB"] = "/usr/local/cdf" from spacepy import pycdf import numpy as np import h5py as h5 import re from glob import glob from tqdm import tqdm dataset = 'Human36' subjects = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'] cameras = ['54138969', '55011271', '58860488', '60457274'] actions = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Photo', 'Waiting', 'Walking', 'WalkDog', 'WalkTogether'] def read_pose(x): return np.reshape(np.transpose(np.array(x), [2, 0, 1]), [32, 3, -1]) if __name__ == "__main__": prog = re.compile('(S\d+)/MyPoseFeatures/D3_Positions/([^ ]+)[ ]*(\d)*.cdf') # First renaming files that need a 0 found_files = sorted([file for file in glob('extracted/S*/MyPoseFeatures/D3_Positions/*.cdf')]) for f, found_file in enumerate(tqdm(found_files)): confpars = prog.findall(found_file)[0] if confpars[2] == '': os.rename(found_file, found_file[:-4] + ' 0.cdf') # Then renaming files to 1, 2 found_files = sorted([file for file in glob('extracted/S*/MyPoseFeatures/D3_Positions/*.cdf')]) prev_subject = '' prev_action = '' for f, found_file in enumerate(tqdm(found_files)): confpars = prog.findall(found_file)[0] if confpars[0] == prev_subject and confpars[1] == prev_action: subaction = 2 else: subaction = 1 os.rename(found_file, found_file[:-5] + str(subaction) + '.cdf.tmp') prev_subject = confpars[0] prev_action = confpars[1] found_files = sorted([file for file in glob('extracted/S*/MyPoseFeatures/D3_Positions/*.cdf.tmp')]) for f, found_file in enumerate(tqdm(found_files)): os.rename(found_file, found_file[:-4]) found_files = sorted([file for file in glob('extracted/S*/MyPoseFeatures/D3_Positions/*.cdf')]) print('Processing {} files...'.format(len(found_files))) h5file = h5.File(dataset + "v1.h5", "w") max_len = 0 for f, found_file in enumerate(tqdm(found_files)): confpars = prog.findall(found_file)[0] subject = [i for i, x in enumerate(subjects) if x == confpars[0]][-1] action = [i for i, x in enumerate(actions) if x in confpars[1]][-1] subaction = int(confpars[2]) # print(found_file) # print(subject, action) subarray = np.array(subject + 1) actarray = np.array(action + 1) sactarray = np.array(subaction) pose3dcdf = pycdf.CDF(found_file) posearray = read_pose(pose3dcdf['Pose']) pose3dcdf.close() # S5 will be the Validate split the rest of the subjects are the training set datasplit = 'Validate' if subjects[subject] == 'S5' else 'Train' datapath = '{}/{}/SEQ{}/'.format(dataset, datasplit, f) h5file.create_dataset( datapath + 'Subject', np.shape(subarray), dtype='int32', data=subarray ) h5file.create_dataset( datapath + 'Action', np.shape(actarray), dtype='int32', data=actarray ) h5file.create_dataset( datapath + 'Subaction', np.shape(sactarray), dtype='int32', data=sactarray ) h5file.create_dataset( datapath + 'Pose', np.shape(posearray), dtype='float32', data=posearray ) max_len = max(max_len, posearray.shape[2]) print('Dataset sample: ') print(h5file.get(dataset + '/Validate/')) print('max length', max_len) h5file.flush() h5file.close()
the-stack_106_18548
tests = [ ("python", "UnitTestFingerprints.py", {}), ("python", "UnitTestSimScreener.py", {}), ("python", "DbFpSupplier.py", {}), ] longTests = [] if __name__ == '__main__': import sys from rdkit import TestRunner failed, tests = TestRunner.RunScript('test_list.py', 0, 1) sys.exit(len(failed))
the-stack_106_18549
#!/usr/bin/env python3 # Copyright (c) 2018 The Libra Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Verify that starting libra with -h works as expected.""" from test_framework.test_framework import LibraTestFramework from test_framework.util import assert_equal class HelpTest(LibraTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self): self.add_nodes(self.num_nodes) # Don't start the node def get_node_output(self, *, ret_code_expected): ret_code = self.nodes[0].process.wait(timeout=5) assert_equal(ret_code, ret_code_expected) self.nodes[0].stdout.seek(0) self.nodes[0].stderr.seek(0) out = self.nodes[0].stdout.read() err = self.nodes[0].stderr.read() self.nodes[0].stdout.close() self.nodes[0].stderr.close() # Clean up TestNode state self.nodes[0].running = False self.nodes[0].process = None self.nodes[0].rpc_connected = False self.nodes[0].rpc = None return out, err def run_test(self): self.log.info("Start libra with -h for help text") self.nodes[0].start(extra_args=['-h']) # Node should exit immediately and output help to stdout. output, _ = self.get_node_output(ret_code_expected=0) assert b'Options' in output self.log.info("Help text received: {} (...)".format(output[0:60])) self.log.info("Start libra with -version for version information") self.nodes[0].start(extra_args=['-version']) # Node should exit immediately and output version to stdout. output, _ = self.get_node_output(ret_code_expected=0) assert b'version' in output self.log.info("Version text received: {} (...)".format(output[0:60])) # Test that arguments not in the help results in an error self.log.info("Start librad with -fakearg to make sure it does not start") self.nodes[0].start(extra_args=['-fakearg']) # Node should exit immediately and output an error to stderr _, output = self.get_node_output(ret_code_expected=1) assert b'Error parsing command line arguments' in output self.log.info("Error message received: {} (...)".format(output[0:60])) if __name__ == '__main__': HelpTest().main()
the-stack_106_18550
""" BSD 3-Clause License Copyright (c) 2019, Steven F. Hoover All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ """ This mini web server provides a REST API to reset an ec2_time_bomb. (NOTE: There is similar support built into server.py, which is used by examples. THIS SCRIPT IS NOT IN USE AND IS PROBABLY BROKEN.) Usage: nohup python3 ec2_time_bomb_server.py <time_bomb-file> <port> & (Nohup ensures that the service continues running after its shell is closed.) API: GET request to :<port>/reset_ec2_time_bomb resets the time bomb. """ import tornado.httpserver import tornado.ioloop import tornado.web import os.path import subprocess import sys import json """ Time Bomb Reset Handler """ class TimeBombHandler(tornado.web.RequestHandler): # Set the headers to avoid access-control-allow-origin errors when sending get requests from the client def set_default_headers(self): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "x-requested-with") self.set_header('Access-Control-Allow-Methods', 'POST, GET, OPTIONS') self.set_header("Connection", "keep-alive") self.set_header("Content-Type", "text/plain") # Reset GET request. def get(self): status = 0 args = [TimeBombApplication.mydir + "/ec2_time_bomb", "reset", TimeBombApplication.time_bomb_file] try: out = subprocess.check_output(args, universal_newlines=True) except: out = "Error: " + ' '.join(args) status = 1 print("Time bomb reset returned: %s" % (out)) self.write(str(status)) class TimeBombApplication(tornado.web.Application): def __init__(self, time_bomb_file, port): TimeBombApplication.time_bomb_file = time_bomb_file TimeBombApplication.mydir = os.path.dirname(__file__) if TimeBombApplication.mydir == "": TimeBombApplication.mydir = "." print(TimeBombApplication.mydir) routes = [ (r"/reset_ec2_time_bomb", TimeBombHandler) ] super(TimeBombApplication, self).__init__(routes) server = tornado.httpserver.HTTPServer(self) server.listen(port) # Report external URL for the web server. # Get Real IP Address using 3rd-party service. # Local IP: myIP = socket.gethostbyname(socket.gethostname()) port_str = "" if port == 80 else ":" + str(port) try: external_ip = subprocess.check_output(["wget", "-qO-", "ifconfig.me"], universal_newlines=True) print('*** Time Bomb Server Started, (http://%s%s) ***' % (external_ip, port_str)) except: print("Python: TimeBombApplication failed to acquire external IP address.") external_ip = None print('*** Time Bomb Server Started (http://localhost%s) ***' % port_str) # Starting web server tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": # Command-line options if len(sys.argv) < 2: print("Usage: python3 ec2_time_bomb_server <time-bomb-file> <port>") sys.exit(1) port = 65261 # (0xFEED in decimal) if len(sys.argv) > 2: port = int(sys.argv[2]) application = TimeBombApplication(sys.argv[1], port)
the-stack_106_18551
""" UBXReader class. Reads and parses individual UBX or NMEA messages from any stream which supports a read(n) -> bytes method. Returns both the raw binary data (as bytes) and the parsed data (as a UBXMessage or NMEAMessage object). 'protfilter' governs which protocols (NMEA and/or UBX) are processed 'quitonerror' governs how errors are handled Created on 2 Oct 2020 :author: semuadmin :copyright: SEMU Consulting © 2020 :license: BSD 3-Clause """ from pynmeagps import NMEAReader import pynmeagps.exceptions as nme from pyubx2 import UBXMessage from pyubx2.ubxhelpers import calc_checksum, val2bytes, bytes2val import pyubx2.ubxtypes_core as ubt import pyubx2.exceptions as ube class UBXReader: """ UBXReader class. """ def __init__(self, datastream, **kwargs): """Constructor. :param datastream stream: input data stream :param int quitonerror: (kwarg) 0 = ignore errors, 1 = log errors and continue, 2 = (re)raise errors (1) :param int protfilter: (kwarg) protocol filter 1 = NMEA, 2 = UBX, 3 = BOTH (3) :param int validate: (kwarg) 0 = ignore invalid checksum, 1 = validate checksum (1) :param int msgmode: (kwarg) 0=GET, 1=SET, 2=POLL (0) :param bool parsebitfield: (kwarg) 1 = parse bitfields, 0 = leave as bytes (1) :raises: UBXStreamError (if mode is invalid) """ self._stream = datastream self._protfilter = int( kwargs.get("protfilter", ubt.NMEA_PROTOCOL | ubt.UBX_PROTOCOL) ) self._quitonerror = int(kwargs.get("quitonerror", ubt.ERR_LOG)) # self._ubxonly = kwargs.get("ubxonly", False) # flag superceded by protfilter self._validate = int(kwargs.get("validate", ubt.VALCKSUM)) self._parsebf = int(kwargs.get("parsebitfield", True)) self._msgmode = int(kwargs.get("msgmode", 0)) if self._msgmode not in (0, 1, 2): raise ube.UBXStreamError( f"Invalid stream mode {self._msgmode} - must be 0, 1 or 2" ) def __iter__(self): """Iterator.""" return self def __next__(self) -> tuple: """ Return next item in iteration. :return: tuple of (raw_data as bytes, parsed_data as UBXMessage) :rtype: tuple :raises: StopIteration """ (raw_data, parsed_data) = self.read() if raw_data is not None: return (raw_data, parsed_data) raise StopIteration def read(self) -> tuple: """ Read a single NMEA or UBX message from the stream buffer and return both raw and parsed data. 'protfilter' determines which protocols are parsed. 'quitonerror' determines whether to raise, log or ignore parsing errors. :return: tuple of (raw_data as bytes, parsed_data as UBXMessage or NMEAMessage) :rtype: tuple :raises: UBXStreamError (if unrecognised protocol in data stream) """ parsing = True try: while parsing: # loop until end of valid message or EOF raw_data = None parsed_data = None byte1 = self._stream.read(1) # read the first byte if len(byte1) < 1: raise EOFError() # if not UBX or NMEA, discard and continue if byte1 not in (b"\xb5", b"\x24"): continue byte2 = self._stream.read(1) if len(byte2) < 1: raise EOFError() bytehdr = byte1 + byte2 # if it's a UBX message (b'\xb5\x62') if bytehdr == ubt.UBX_HDR: (raw_data, parsed_data) = self._parse_ubx(bytehdr) # if protocol filter passes UBX, return message, # otherwise discard and continue if self._protfilter & ubt.UBX_PROTOCOL: parsing = False else: continue # if it's an NMEA message ('$G' or '$P') elif bytehdr in ubt.NMEA_HDR: (raw_data, parsed_data) = self._parse_nmea(bytehdr) # if protocol filter passes NMEA, return message, # otherwise discard and continue if self._protfilter & ubt.NMEA_PROTOCOL: parsing = False else: continue # unrecognised protocol header else: if self._quitonerror == ubt.ERR_RAISE: raise ube.UBXStreamError(f"Unknown protocol {bytehdr}.") elif self._quitonerror == ubt.ERR_LOG: return (bytehdr, f"<UNKNOWN PROTOCOL(header={bytehdr})>") else: # ignore unknown protocol and continue continue except EOFError: return (None, None) return (raw_data, parsed_data) def _parse_ubx(self, hdr: bytes) -> tuple: """ Parse remainder of UBX message. :param bytes hdr: UBX header (b'\xb5\x62') :return: tuple of (raw_data as bytes, parsed_data as UBXMessage or None) :rtype: tuple """ # read the rest of the UBX message from the buffer byten = self._stream.read(4) if len(byten) < 4: # EOF raise EOFError() clsid = byten[0:1] msgid = byten[1:2] lenb = byten[2:4] leni = int.from_bytes(lenb, "little", signed=False) byten = self._stream.read(leni + 2) if len(byten) < leni + 2: # EOF raise EOFError() plb = byten[0:leni] cksum = byten[leni : leni + 2] raw_data = hdr + clsid + msgid + lenb + plb + cksum # only parse if we need to (filter passes UBX) if self._protfilter & ubt.UBX_PROTOCOL: parsed_data = self.parse( raw_data, validate=self._validate, msgmode=self._msgmode, parsebitfield=self._parsebf, ) else: parsed_data = None return (raw_data, parsed_data) def _parse_nmea(self, hdr: bytes) -> tuple: """ Parse remainder of NMEA message (using pynmeagps library). :param bytes hdr: NMEA header ($G or $P) :return: tuple of (raw_data as bytes, parsed_data as NMEAMessage or None) :rtype: tuple """ # read the rest of the NMEA message from the buffer byten = self._stream.readline() # NMEA protocol is CRLF-terminated if byten[-2:] != b"\x0d\x0a": raise EOFError() raw_data = hdr + byten # only parse if we need to (filter passes NMEA) if self._protfilter & ubt.NMEA_PROTOCOL: # invoke pynmeagps parser parsed_data = NMEAReader.parse( raw_data, validate=self._validate, msgmode=self._msgmode, ) else: parsed_data = None return (raw_data, parsed_data) def iterate(self, **kwargs) -> tuple: """ Invoke the iterator within an exception handling framework. :param int quitonerror: (kwarg) 0 = ignore errors, 1 = log errors and continue, 2 = (re)raise errors (0) :param object errorhandler: (kwarg) Optional error handler (None) :return: tuple of (raw_data as bytes, parsed_data as UBXMessage or NMEAMessage) :rtype: tuple :raises: UBX/NMEA...Error (if quitonerror is set and stream is invalid) """ quitonerror = kwargs.get("quitonerror", ubt.ERR_IGNORE) errorhandler = kwargs.get("errorhandler", None) while True: try: yield next(self) # invoke the iterator except StopIteration: break except ( ube.UBXMessageError, ube.UBXTypeError, ube.UBXParseError, ube.UBXStreamError, nme.NMEAMessageError, nme.NMEATypeError, nme.NMEAParseError, nme.NMEAStreamError, ) as err: # raise, log or ignore any error depending # on the quitonerror setting if quitonerror == ubt.ERR_RAISE: raise err elif quitonerror == ubt.ERR_LOG: # pass to error handler if there is one if errorhandler is None: print(err) else: errorhandler(err) # continue @property def datastream(self) -> object: """ Getter for stream. :return: data stream :rtype: object """ return self._stream @staticmethod def parse(message: bytes, **kwargs) -> object: """ Parse UBX byte stream to UBXMessage object. Includes option to validate incoming payload length and checksum (the UBXMessage constructor can calculate and assign its own values anyway). :param bytes message: binary message to parse :param int validate: (kwarg) validate cksum (VALCKSUM (1)=True (default), VALNONE (0)=False) :param int msgmode: (kwarg) message mode (0=GET (default), 1=SET, 2=POLL) :param bool parsebitfield: (kwarg) parse bitfields True (default)/False :return: UBXMessage object :rtype: UBXMessage :raises: UBXParseError (if data stream contains invalid data or unknown message type) """ msgmode = kwargs.get("msgmode", ubt.GET) validate = kwargs.get("validate", ubt.VALCKSUM) parsebf = kwargs.get("parsebitfield", True) if msgmode not in (0, 1, 2): raise ube.UBXParseError( f"Invalid message mode {msgmode} - must be 0, 1 or 2" ) lenm = len(message) hdr = message[0:2] clsid = message[2:3] msgid = message[3:4] lenb = message[4:6] if lenb == b"\x00\x00": payload = None leni = 0 else: payload = message[6 : lenm - 2] leni = len(payload) ckm = message[lenm - 2 : lenm] if payload is not None: ckv = calc_checksum(clsid + msgid + lenb + payload) else: ckv = calc_checksum(clsid + msgid + lenb) if validate & ubt.VALCKSUM: if hdr != ubt.UBX_HDR: raise ube.UBXParseError( (f"Invalid message header {hdr}" f" - should be {ubt.UBX_HDR}") ) if leni != bytes2val(lenb, ubt.U2): raise ube.UBXParseError( ( f"Invalid payload length {lenb}" f" - should be {val2bytes(leni, ubt.U2)}" ) ) if ckm != ckv: raise ube.UBXParseError( (f"Message checksum {ckm}" f" invalid - should be {ckv}") ) try: if payload is None: return UBXMessage(clsid, msgid, msgmode) return UBXMessage( clsid, msgid, msgmode, payload=payload, parsebitfield=parsebf, ) except KeyError as err: modestr = ["GET", "SET", "POLL"][msgmode] raise ube.UBXParseError( (f"Unknown message type clsid {clsid}, msgid {msgid}, mode {modestr}") ) from err
the-stack_106_18554
import numpy as np import pytest import subprocess import sys from ...test.test_integrate import bwf_file def test_dump_axml(tmpdir): filename = str(tmpdir / 'test_axml.wav') axml = b"AXML" from ...fileio import openBw64 with openBw64(filename, 'w', axml=axml) as outfile: outfile.write(np.zeros((1000, 1))) assert subprocess.check_output(["ear-utils", "dump_axml", filename]) == axml def test_dump_chna(tmpdir): filename = str(tmpdir / 'test_chna.wav') from ...fileio import openBw64 from ...fileio.bw64.chunks import ChnaChunk, AudioID chna = ChnaChunk() audioID = AudioID(1, u'ATU_00000001', u'AT_00010001_01', u'AP_00010003') chna.appendAudioID(audioID) with openBw64(filename, 'w', chna=chna) as outfile: outfile.write(np.zeros((1000, 1))) expected = str(audioID) + "\n" output = subprocess.check_output(["ear-utils", "dump_chna", filename]).decode("utf8") assert output == expected expected = chna.asByteArray()[8:] # strip marker and size output = subprocess.check_output(["ear-utils", "dump_chna", "--binary", filename]) assert output == expected def test_replace_axml_basic(tmpdir): filename_in = str(tmpdir / 'test_replace_axml_in.wav') filename_axml = str(tmpdir / 'test_replace_axml_new_axml.xml') filename_out = str(tmpdir / 'test_replace_axml_out.wav') from ...fileio import openBw64 axml_in = b'axml' axml_out = b'axml2' with open(filename_axml, 'wb') as f: f.write(axml_out) with openBw64(filename_in, 'w', axml=axml_in) as outfile: outfile.write(np.zeros((1000, 1))) assert subprocess.check_call(["ear-utils", "replace_axml", "-a", filename_axml, filename_in, filename_out]) == 0 with openBw64(filename_out, 'r') as infile: assert infile.axml == axml_out def test_replace_axml_regenerate(tmpdir): filename_axml = str(tmpdir / 'test_replace_axml_new_axml.xml') filename_out = str(tmpdir / 'test_replace_axml_out.wav') from ...fileio import openBw64 with openBw64(bwf_file, 'r') as f: axml_a = f.axml assert f.chna.audioIDs[-1].trackIndex == 4 axml_out = axml_a.replace(b"ATU_00000005", b"ATU_00000006") with open(filename_axml, 'wb') as f: f.write(axml_out) assert subprocess.check_call(["ear-utils", "replace_axml", "-a", filename_axml, "--gen-chna", bwf_file, filename_out]) == 0 with openBw64(filename_out, 'r') as f: assert f.axml == axml_out assert f.chna.audioIDs[-1].trackIndex == 6 @pytest.mark.xfail( sys.version_info < (3, 6), reason="output may vary on platforms where dictionaries are not ordered", ) def test_regenerate(tmpdir): bwf_out = str(tmpdir / "test_regenerate_out.wav") args = [ "ear-utils", "regenerate", "--enable-block-duration-fix", bwf_file, bwf_out, ] assert subprocess.check_call(args) == 0 assert open(bwf_out, "rb").read() == open(bwf_file, "rb").read()
the-stack_106_18555
# coding: utf-8 """ This module contains task manager. """ from __future__ import absolute_import # Standard imports from multiprocessing.pool import ThreadPool import sys from traceback import format_exc class TaskManager(object): """ Task manager that manages a thread pool. It is used to run hotkey \ functions in the thread pool. """ def __init__(self): """ Constructor. :return: None. """ # Create thread pool self._thread_pool = ThreadPool(3) def add_task(self, func): """ Add task function to be run in the task manager's thread pool. :param func: Task function. :return: None. """ # Create wrapper function def func_wrapper(): try: # Call given function func() # If have error except BaseException: # Get traceback message tb_msg = format_exc() # Get error message msg = ( '# Error calling function in task thread:\n' '---\n{0}---\n' ).format(tb_msg) # Print error message sys.stderr.write(msg) # Run the wrapper function in the thread pool self._thread_pool.apply_async(func_wrapper) # Create task manager _TASK_MANAGER = TaskManager() def add_task(func): """ Add task function to be run in the task manager's thread pool. :param func: Task function. :return: None. """ # Add task function to be run in the task manager's thread pool _TASK_MANAGER.add_task(func)
the-stack_106_18556
#! /usr/bin/env python ############################################################################### # gmaps_directions.py # # Simple script to get directions using the Google Maps API # # Requires # * Python client library for Google Maps API Web Services to be installed # - https://github.com/googlemaps/google-maps-services-python # - can be installed via: conda install -c conda-forge googlemaps # * API keys with Google. How to obtained these is explained in the link above # * gmplot for plotting the route # - https://github.com/vgm64/gmplot # - can be installed by conda install -c mlgill gmplot # # NOTE: Any plotting is set up for output, not viewing on screen. # So, it will likely be ugly on screen. The saved PDFs should look # better. # # Created: 04/03/18 # - Joshua Vaughan # - [email protected] # - http://www.ucs.louisiana.edu/~jev9637 # # Modified: # * # # TODO: # * ############################################################################### import numpy as np import matplotlib.pyplot as plt from datetime import datetime import googlemaps import gmplot gmaps = googlemaps.Client(key='AIzaSyDin8BFtWW9NxpQap17YFDp-MfL7pVJfEo') # Request directions via public transit now = datetime.now() directions_result = gmaps.directions("Rougeou Hall, Lafayette, LA", "Martin Hall, Lafayette, LA", mode="walking", departure_time=now) # The results are returned as a json object, so we need to parse them to get # the GPS coordinates of the start and end and waypoint locations start_latLon = directions_result[0]['legs'][0]['start_location'] end_latLon = directions_result[0]['legs'][0]['end_location'] # create an array to hold the waypoints of the path wayPoint_array = np.zeros((len(directions_result[0]['legs'][0]['steps'])+1, 2)) # Create an array to hold the distance to the next waypoint wayPoint_distance = np.zeros((len(directions_result[0]['legs'][0]['steps']), 1)) # Fill the first value of the waypoint array with the start location wayPoint_array[0,:] = [start_latLon['lat'], start_latLon['lng']] # Now, loop through the steps of the directions to extract the necessary # coordinates to form the array of waypoints. for index, step in enumerate(directions_result[0]['legs'][0]['steps']): # We only need to grab the end_location for each step because the start # location of the next step is the same. next_waypoint_latLon = step['end_location'] wayPoint_array[index + 1] = [next_waypoint_latLon['lat'], next_waypoint_latLon['lng']] # Get the distance to the next waypoint and add it to the array distance_to_next_waypoint = step['distance']['value'] wayPoint_distance[index] = distance_to_next_waypoint # Now, let's plot those waypoints on a map # We first create the map object, passing its center lat, lon and a zoom level # We'll just using the "middle" waypoint as the center gmap = gmplot.GoogleMapPlotter(wayPoint_array[len(wayPoint_array)//2, :][0], wayPoint_array[len(wayPoint_array)//2, :][1], 17) wayPoint_array = np.array([[-92.022457, 30.209695], [-92.022628, 30.209846], [-92.022777, 30.209977], [-92.023212, 30.210361], [-92.022834, 30.210739], [-92.021956, 30.211616], [-92.021177, 30.212395], [-92.020224, 30.213348], [-92.01976, 30.212989], [-92.019425, 30.213326], [-92.018719, 30.214036], [-92.018216, 30.21454], [-92.017822, 30.214933], [-92.017768, 30.214987], [-92.017309, 30.215453], [-92.016977, 30.215789], [-92.017599, 30.21625], [-92.017892, 30.216466], [-92.018016, 30.216307], [-92.017999, 30.216217], [-92.017954, 30.216078], [-92.018007, 30.215941], [-92.01819, 30.215814], [-92.018474, 30.215793], [-92.018616, 30.21564], [-92.018742, 30.215503], [-92.018913, 30.215633]]) # Now, plot the path gmap.plot(wayPoint_array[:,1], wayPoint_array[:,0], 'cornflowerblue', edge_width=10) # And draw the map gmap.draw("my_map.html")
the-stack_106_18559
"""Classes for VeSync Switch Devices.""" import logging import json from abc import ABCMeta, abstractmethod from typing import Dict, Union from pyvesync.helpers import Helpers as helpers from pyvesync.vesyncbasedevice import VeSyncBaseDevice logger = logging.getLogger(__name__) feature_dict: Dict[str, Dict[str, Union[list, str]]] = { 'ESWL01': { 'module': 'VeSyncWallSwitch', 'features': [] }, 'ESWD16': { 'module': 'VeSyncDimmerSwitch', 'features': ['dimmable'] }, 'ESWL03': { 'module': 'VeSyncWallSwitch', 'features': [] } } switch_modules: dict = {k: v['module'] for k, v in feature_dict.items()} __all__: list = list(switch_modules.values()) + ['switch_modules'] class VeSyncSwitch(VeSyncBaseDevice): """Etekcity Switch Base Class.""" __metaclasss__ = ABCMeta def __init__(self, details, manager): """Initialize Switch Base Class.""" super().__init__(details, manager) self.features = feature_dict.get(self.device_type, {}).get('features') if self.features is None: logger.error('% device configuration not set', self.device_name) raise Exception self.details = {} def is_dimmable(self) -> bool: """Return True if switch is dimmable.""" return bool('dimmable' in self.features) @abstractmethod def get_details(self) -> None: """Get Device Details.""" @abstractmethod def turn_on(self) -> bool: """Turn Switch On.""" @abstractmethod def turn_off(self) -> bool: """Turn switch off.""" @abstractmethod def get_config(self) -> None: """Get configuration and firmware deatils.""" @property def active_time(self) -> int: """Get active time of switch.""" return self.details.get('active_time', 0) def update(self) -> None: """Update device details.""" self.get_details() class VeSyncWallSwitch(VeSyncSwitch): """Etekcity standard wall switch class.""" def __init__(self, details, manager): """Initialize standard etekcity wall switch class.""" super().__init__(details, manager) def get_details(self) -> None: """Get switch device details.""" body = helpers.req_body(self.manager, 'devicedetail') body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/inwallswitch/v1/device/devicedetail', 'post', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = r.get('deviceStatus', self.device_status) self.details['active_time'] = r.get('activeTime', 0) self.connection_status = r.get( 'connectionStatus', self.connection_status) else: logger.debug('Error getting %s details', self.device_name) def get_config(self) -> None: """Get switch device configuration info.""" body = helpers.req_body(self.manager, 'devicedetail') body['method'] = 'configurations' body['uuid'] = self.uuid r, _ = helpers.call_api( '/inwallswitch/v1/device/configurations', 'post', headers=helpers.req_headers(self.manager), json=body, ) if helpers.code_check(r): self.config = helpers.build_config_dict(r) else: logger.warning('Unable to get %s config info', self.device_name) def turn_off(self) -> bool: """Turn off switch device.""" body = helpers.req_body(self.manager, 'devicestatus') body['status'] = 'off' body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/inwallswitch/v1/device/devicestatus', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = 'off' return True logger.warning('Error turning %s off', self.device_name) return False def turn_on(self) -> bool: """Turn on switch device.""" body = helpers.req_body(self.manager, 'devicestatus') body['status'] = 'on' body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/inwallswitch/v1/device/devicestatus', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = 'on' return True logger.warning('Error turning %s on', self.device_name) return False class VeSyncDimmerSwitch(VeSyncSwitch): """Vesync Dimmer Switch Class with RGB Faceplate.""" def __init__(self, details, manager): """Initilize dimmer switch class.""" super().__init__(details, manager) self._brightness = 0 self._rgb_value = {'red': 0, 'blue': 0, 'green': 0} self._rgb_status = 'unknown' self._indicator_light = 'unknown' def get_details(self) -> None: """Get dimmer switch details.""" body = helpers.req_body(self.manager, 'devicedetail') body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/dimmer/v1/device/devicedetail', 'post', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = r.get('deviceStatus', self.device_status) self.details['active_time'] = r.get('activeTime', 0) self.connection_status = r.get( 'connectionStatus', self.connection_status) self._brightness = r.get('brightness') self._rgb_status = r.get('rgbStatus') self._rgb_value = r.get('rgbValue') self._indicator_light = r.get('indicatorlightStatus') else: logger.debug('Error getting %s details', self.device_name) @property def brightness(self) -> float: """Return brightness in percent.""" return self._brightness @property def indicator_light_status(self) -> str: """Faceplate brightness light status.""" return self._indicator_light @property def rgb_light_status(self) -> str: """RGB Faceplate light status.""" return self._rgb_status @property def rgb_light_value(self) -> dict: """RGB Light Values.""" return self._rgb_value def switch_toggle(self, status: str) -> bool: """Toggle switch status.""" if status not in ['on', 'off']: logger.debug('Invalid status passed to wall switch') return False body = helpers.req_body(self.manager, 'devicestatus') body['status'] = status body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/dimmer/v1/device/devicestatus', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = status return True logger.warning('Error turning %s %s', self.device_name, status) return False def turn_on(self) -> bool: """Turn switch on.""" return self.switch_toggle('on') def turn_off(self) -> bool: """Turn switch off.""" return self.switch_toggle('off') def indicator_light_toggle(self, status: str) -> bool: """Toggle indicator light.""" if status not in ['on', 'off']: logger.debug('Invalid status for wall switch') return False body = helpers.req_body(self.manager, 'devicestatus') body['status'] = status body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/dimmer/v1/device/indicatorlightstatus', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self.device_status = status return True logger.warning('Error turning %s indicator light %s', self.device_name, status) return False def indicator_light_on(self) -> bool: """Turn Indicator light on.""" return self.indicator_light_toggle('on') def indicator_light_off(self) -> bool: """Turn indicator light off.""" return self.indicator_light_toggle('off') def rgb_color_status( self, status: str, red: int = None, blue: int = None, green: int = None ) -> bool: """Set faceplate RGB color.""" body = helpers.req_body(self.manager, 'devicestatus') body['status'] = status body['uuid'] = self.uuid head = helpers.req_headers(self.manager) if red is not None and blue is not None and green is not None: body['rgbValue'] = {'red': red, 'blue': blue, 'green': green} r, _ = helpers.call_api( '/dimmer/v1/device/devicergbstatus', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self._rgb_status = status if body.get('rgbValue') is not None: self._rgb_value = {'red': red, 'blue': blue, 'green': green} return True logger.warning('Error turning %s off', self.device_name) return False def rgb_color_off(self) -> bool: """Turn RGB Color Off.""" return self.rgb_color_status('off') def rgb_color_on(self) -> bool: """Turn RGB Color Off.""" return self.rgb_color_status('on') def rgb_color_set(self, red: int, green: int, blue: int) -> bool: """Set RGB color of faceplate.""" if isinstance(red, int) and isinstance( green, int) and isinstance(blue, int): for color in [red, green, blue]: if color < 0 or color > 255: logger.warning('Invalid RGB value') return False return bool(self.rgb_color_status('on', red, green, blue)) return False def set_brightness(self, brightness: int) -> bool: """Set brightness of dimmer - 1 - 100.""" if isinstance(brightness, int) and ( brightness > 0 or brightness <= 100): body = helpers.req_body(self.manager, 'devicestatus') body['brightness'] = brightness body['uuid'] = self.uuid head = helpers.req_headers(self.manager) r, _ = helpers.call_api( '/dimmer/v1/device/updatebrightness', 'put', headers=head, json=body ) if r is not None and helpers.code_check(r): self._brightness = brightness return True logger.warning('Error setting %s brightness', self.device_name) else: logger.warning('Invalid brightness') return False def displayJSON(self) -> str: """JSON API for dimmer switch.""" sup_val = json.loads(super().displayJSON()) if self.is_dimmable: # pylint: disable=using-constant-test sup_val.update( { 'Indicator Light': str(self.active_time), 'Brightness': str(self._brightness), 'RGB Light': str(self._rgb_status), } ) return sup_val def get_config(self) -> None: """Get dimmable switch device configuration info.""" body = helpers.req_body(self.manager, 'devicedetail') body['method'] = 'configurations' body['uuid'] = self.uuid r, _ = helpers.call_api( '/dimmer/v1/device/configurations', 'post', headers=helpers.req_headers(self.manager), json=body, ) if helpers.code_check(r): self.config = helpers.build_config_dict(r) else: logger.warning('Unable to get %s config info', self.device_name)
the-stack_106_18560
import glob import os from datetime import datetime import logging from libs import BNB_DATE_FORMAT logger = logging.getLogger("utils") def list_statement_files(dir, file_extension): statement_files = [] if not os.path.exists(dir): raise Exception(f"Statement directory[{dir}] doesn't exists.") expresion = os.path.join(dir, "**", f"*.{file_extension}") for file in glob.glob(expresion, recursive=True): if not os.path.isfile(file): continue statement_files.append(file) return statement_files def humanize_date(list_object): result = [] for elements in list_object: item = {} for key, value in elements.items(): if isinstance(value, datetime): item[key] = value.strftime(BNB_DATE_FORMAT) continue item[key] = value result.append(item) return result def get_parsers(supported_parsers, parsers, input_dir=None): if not parsers: parsers = ["revolut"] if len(parsers) == 1: if parsers[0] not in supported_parsers: return [], [parsers[0]] if input_dir is None: logger.error(f"No input direcory provided. Please, use -i argument.") raise SystemExit(1) return [(parsers[0], supported_parsers[parsers[0]].Parser(input_dir))], [] supported_parsers = [] unsupported_parsers = [] for parser in parsers: parser_name, input_dir = parsers.split(":") if parser not in supported_parsers: unsupported_parsers.append(parser_name) continue supported_parsers.append((parser_name, supported_parsers[parser].Parser(input_dir))) return supported_parsers, unsupported_parsers def get_unsupported_activity_types(supported_parsers, parser_statements): unsupported_activity_types = {} for parser_name, statements in parser_statements.items(): parser_unsupported_activity_types = supported_parsers[parser_name].get_unsupported_activity_types(statements) if parser_unsupported_activity_types: unsupported_activity_types[parser_name] = parser_unsupported_activity_types return unsupported_activity_types def merge_dict_of_dicts(parser_statements): merged_dict = {} for _, statements in parser_statements.items(): for dict_key, dict_list in statements.items(): if dict_key in merged_dict: merged_dict[dict_key].extend(dict_list) continue merged_dict[dict_key] = dict_list return merged_dict def merge_dict_of_lists(parser_statements): merged_list = [] for _, statements in parser_statements.items(): merged_list.extend(statements) return merged_list
the-stack_106_18561
# -*- coding: utf-8 -*- """ Created on Wed Jun 10 19:00:23 2020 @author: ahmad """ # Cyclic rotation # param A, array # param K, intereger number of rotation def solution(A, K): try: for n in range(K,0,-1): temp = A[len(A)-1] for j in range(len(A)-1,0,-1): A[j] = A[j-1] A[0] = temp return A except Exception as e: print(str(e)) return -1 def main(): array_1 = [] result = solution(array_1,1) print(result) if __name__ == '__main__': main() def main(): A = [3, 8, 9, 7, 6] K = 3 solution(A,K)
the-stack_106_18562
#! /usr/bin/python3 import nltk import pdb import pickle import pandas as pd import numpy as np import json stemmer = nltk.stem.porter.PorterStemmer() stop_words = set(nltk.corpus.stopwords.words('english')) def is_alphanumeric(character): to_ord = ord(character) is_alpha = (to_ord >= ord('A') and to_ord <= ord('Z')) or (to_ord >= ord('a') and to_ord <= ord('z')) is_numeric = to_ord >= ord('0') and to_ord <= ord('9') return is_alpha or is_numeric def stem_tokens(tokens, stemmer): stemmed = [] for item in tokens: stemmed.append(stemmer.stem(item)) return stemmed def reduce_stem(stem): # Remove unwanted characters such as punctuations reduced = [] for character in stem: if not is_alphanumeric(character): continue reduced.append(character) return ''.join(reduced) def tokenize(text): text = text.decode('utf-8').lower() # Replace periods with spaces. This fixes cases # where there's no space after a period. Punctuation # will be dropped later in processing, anyway. text.replace('.', ' ') tokens = nltk.word_tokenize(text) stems = stem_tokens(tokens, stemmer) # Remove punctuations and stop words stems_reduced = [] for ix, stem in enumerate(stems): if stem in stop_words: continue reduced_stem = reduce_stem(stem) if len(reduced_stem) > 0: stems_reduced.append(reduced_stem) return stems_reduced articles = [] article_id = 0 def cache_for_analysis(url, title, stems, feed_id): global article_id article_id = article_id + 1 articles.append((article_id, url, title, stems, feed_id)) def dump_articles(): pickle.dump(articles, open("articles.pickle", "wb")) def article_to_json(row, all_terms): stems = row[3] vec = [("1" if term in stems else "0") for term in all_terms] vec_string = "".join(vec) return { "article_id": row[0], "url": row[1], "title": row[2], "feed_id": row[4], "vec": vec_string } def analyze_articles(): seen_stems = set() # do some kind of clustering with tf/idf! # build up a data frame with schema: # terms (string) | a1_terms (bool) | a2_terms for row in articles: stems = row[3] for stem in stems: seen_stems.add(stem) all_terms = list(seen_stems) for row in articles: json_article = article_to_json(row, all_terms) print(json.dumps(json_article)) if __name__ == "__main__": articles = pickle.load(open("articles.pickle", "rb")) analyze_articles()
the-stack_106_18564
import os import sys import autograd.scipy.stats import autograd.scipy as sp import autograd.numpy as np from autograd import grad, jacobian, elementwise_grad base_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../..") sys.path.append(base_dir) EPS = 1e-8 from src.contextualmodelings.base import ContextualModelling from utils.prepare import get_feature_map_by_name class CounterfactualLossPredictor(ContextualModelling): """ Counterfactual Loss Predictor contextual modelling Inherits from the parent class ContextualModelling """ def __init__(self, *args): """Initializes the class Attributes: hyperparams (dict): dictionnary parameters name (str): name of the distribution K (int): number of action anchor points feature_map (FeatureMap): see src.kernels.feature_map """ super(CounterfactualLossPredictor, self).__init__(*args) self.name = 'clp' self.K = self.hyperparams['nb_quantile'] self.feature_map = get_feature_map_by_name(self.hyperparams) def get_starting_parameter(self, dataset): """ Creates starting parameter Args: dataset (dataset) """ m, v = self._prepare_starting_parameter(dataset) ctxt_size = self.feature_map.contextual_feature_map_size(self.d) action_size = self.feature_map.action_feature_map_size(dataset) return np.concatenate([self.rng.normal(m, v, size=1), self.rng.normal(scale=self.scale, size=((action_size + 2) * ctxt_size + 1))]) def get_parameters(self, parameter, features, actions, reinitialize): """ Updates the parameters of the distribution Args: parameter (np.array): parameter of the distribution features (np.array): observation features actions (np.array): observation actions reinitialize (bool): for bucketizer to be applied on new features """ m, v = parameter[:-1], parameter[-1] if not self.feature_map.anchor_points_initialized: self.feature_map.initialize_anchor_points(features, actions) self.action_anchors = self.feature_map.action_anchor_points self._set_feature_map_all_actions(features) if reinitialize: self._set_feature_map_all_actions(features) predicted_m = self.prediction(m, features) return predicted_m, v def _set_feature_map_all_actions(self, features): """ Builds feature map for all actions in action set, uses method self.feature_map Args: features (np.array): observation features """ self._feature_map_all_actions = np.real(self.feature_map.joint_feature_map_for_all_action_anchor_points(features)) def soft_argmax(self, parameter, feature_map): """ Compute soft argmax for action prediction Args: parameter (np.array): parameter to be minimized feature_map (np.array): feature_map on which to make prediction """ intercept = parameter[0] exp = np.exp(self.hyperparams['gamma'] * (np.dot(feature_map, parameter[1:])+intercept)) return np.sum(np.einsum('ij,j->ij', exp / (np.sum(exp, axis=1, keepdims=True)+EPS), self.action_anchors), axis=1) def discrete_prediction(self, parameter, feature_map): """ Makes discrete prediction Args: parameter (np.array): parameter to be minimized feature_map (np.array): feature_map on which to make prediction """ intercept = parameter[0] preds = np.dot(feature_map, parameter[1:])+intercept return self.action_anchors[np.argmax(preds, axis=1)] def prediction(self, parameter, features): """ Makes prediction Args: parameter (np.array): parameter to be minimized features (np.array): observation features """ return self.soft_argmax(parameter, self._feature_map_all_actions)
the-stack_106_18565
import pyaudio filename = "/home/pi/mytest.wav" FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 8000 CHUNK = 1024 RECORD_SECONDS=10 audio = pyaudio.PyAudio() # start Recording stream = audio.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) frames = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) # stop Recording stream.stop_stream() stream.close() audio.terminate() waveFile = wave.open(filename, 'wb') waveFile.setnchannels(CHANNELS) waveFile.setsampwidth(audio.get_sample_size(FORMAT)) waveFile.setframerate(RATE) waveFile.writeframes(b''.join(frames)) waveFile.close()
the-stack_106_18566
#!/usr/bin/env python # # display live code coverage of DACMAN Colecovision game running in MAME # drawn as Hilbert curve # # $ mame -v coleco -video soft -cart /path/to/DACMAN.ROM -window -nomax -resolution 560x432 -debugger gdbstub -debug # $ ./dacman_live_hilbert /path/to/DACMAN.ROM # import os import sys import math import time import struct import platform from collections import defaultdict import binaryninja from binaryninja.binaryview import BinaryViewType from PIL import Image, ImageDraw # globals n = None draw = None #------------------------------------------------------------------------------ # Hilbert curve mapping algorithms from: # https://en.wikipedia.org/wiki/Hilbert_curve #------------------------------------------------------------------------------ def rot(n, x, y, rx, ry): if ry == 0: if rx == 1: x = n-1 - x; y = n-1 - y; (y,x) = (x,y) return (x,y) def d2xy(n, d): (x,y,t) = (0,0,d) level = 1 while level<n: rx = 1 & (t//2) ry = 1 & (t ^ rx) (x, y) = rot(level, x, y, rx, ry) x += level * rx y += level * ry t //= 4 level *= 2 return (x,y) def xy2d(n, x, y): (rx,ry,s,d)=(0,0,0,0) s = n//2 while s > 0: rx = int((x & s) > 0) ry = int((y & s) > 0) d += s * s * ((3 * rx) ^ ry) (x, y) = rot(n, x, y, rx, ry) s //= 2 return d #------------------------------------------------------------------------------ # Hilbert curve drawing helpers #------------------------------------------------------------------------------ # trace a Hilbert region by "wall following" def wall_follower(d0, d1): global n def ok(x, y): if x<0 or y<0: return False d = xy2d(n**2, x, y) #print('is %d within %d,%d' % (d, d0, d1)) return d>=0 and d>=d0 and d<d1 # move left until stop (x,y) = d2xy(n**2, d0) while 1: if x == 0: break if not ok(x-1,y): break x = x-1 start = (x,y) trace = [start] direction = 'down' tendencies = ['right', 'down', 'left', 'up'] while 1: #print('at (%d,%d) heading %s' % (x,y,direction)) tendency = tendencies[(tendencies.index(direction)+1) % 4] xmod = {'right':1, 'down':0, 'left':-1, 'up':0} ymod = {'right':0, 'down':-1, 'left':0, 'up':1} moved = False # case A: we can turn right x_try = x+xmod[tendency] y_try = y+ymod[tendency] if ok(x_try, y_try): direction = tendency (x,y) = (x_try, y_try) moved = True else: # case B: we can continue in current direction x_try = x+xmod[direction] y_try = y+ymod[direction] if ok(x_try, y_try): (x,y) = (x_try, y_try) moved = True else: # case C: we can't continue! ah! direction = tendencies[(tendencies.index(direction)-1)%4] if moved: trace.append((x,y)) if (x,y) == start: break return trace # [start, stop) def draw_hilbert(start, stop, color='#ffffff'): global n global draw pts = [d2xy(n, x) for x in range(start, stop)] lines = zip(pts[:-1], pts[1:]) for line in lines: ((x1,y1),(x2,y2)) = line #print('drawing line (%d,%d) -> (%d,%d)' % (x1,y1,x2,y2)) draw.line((x1,y1,x2,y2), width=1, fill=color) def draw_region(start, stop, color1='#00ff00', color2=None): global draw trace = wall_follower(start, stop) draw.polygon(trace, outline=color1, fill=color2) #------------------------------------------------------------------------------ # main() #------------------------------------------------------------------------------ if __name__ == '__main__': # analyze functions fpath = sys.argv[1] bv = BinaryViewType.get_view_of_file(fpath) bv.update_analysis_and_wait() lowest = None highest = None addr2func = {} for f in bv.functions: addr_start = f.start addr_end = f.start + f.total_bytes if lowest==None or addr_start < lowest: lowest = addr_start if highest==None or addr_end >= highest: highest = addr_end addr2func[addr_start] = f print('lowest address: 0x%04X' % lowest) print('highest address: 0x%04X' % highest) # launch debugger, set breakpoints from debugger import DebugAdapter, gdblike adapter = gdblike.connect_sense('localhost', 23946) for addr in addr2func: print('setting breakpoint at %04X: %s' % (addr, addr2func[addr].symbol.full_name)) adapter.breakpoint_set(addr) # calculate image size pixels = 1 while pixels < (highest-lowest): pixels *= 4 n = int(math.sqrt(pixels)) print('n:', n) img = Image.new('RGB', (n,n)) draw = ImageDraw.Draw(img) # intialize pygame import pygame from pygame.locals import * pygame.init() surface = pygame.display.set_mode((4*n, 4*n), RESIZABLE) pygame.display.set_caption('DACMAN code coverage') # palette is "tab20" from matplotlib palette_i = 0 palette = [ '#1F77B4', '#AEC7E8', '#FF7F0E', '#FFBB78', '#2CA02C', '#98DF8A', '#D62728', '#FF9896', '#9467BD', '#C5B0D5', '#8C564B', '#C49C94', '#E377C2', '#F7B6D2', '#7F7F7F', '#C7C7C7', '#BCBD22', '#DBDB8D', '#17BECF', '#9EDAE5' ] print('reading to rock, press any key!') input() while 1: # process pygame events for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() # wait for breakpoint, clear it (reason, data) = adapter.go() assert reason in [DebugAdapter.STOP_REASON.BREAKPOINT, DebugAdapter.STOP_REASON.SINGLE_STEP] pc = adapter.reg_read('pc') f = addr2func[pc] print('%s()' % f.symbol.full_name) adapter.breakpoint_clear(pc) # draw function addr_start = f.start addr_end = f.start + f.total_bytes if addr_end - addr_start < 4: continue print('drawing %s [0x%04X, 0x%04X)' % (f.symbol.full_name, addr_start, addr_end)) draw_region(addr_start - lowest, addr_end - lowest, None, palette[palette_i]) palette_i = (palette_i+1) % len(palette) # drawing to pygame raw_str = img.tobytes('raw', 'RGB') img_surface = pygame.image.fromstring(raw_str, (n, n), 'RGB') img_surface = pygame.transform.scale(img_surface, (4*n, 4*n)) surface.blit(img_surface, (0,0)) pygame.display.update() #time.sleep(.1)
the-stack_106_18567
from __future__ import (division, absolute_import, print_function, unicode_literals) import os import numpy as np import gzip import os.path import nltk import logging from nltk import FreqDist from .WordEmbeddings import wordNormalize from .CoNLL import readCoNLL import sys if (sys.version_info > (3, 0)): import pickle as pkl else: #Python 2.7 imports import cPickle as pkl from io import open def perpareDataset(embeddingsPath, datasets, frequencyThresholdUnknownTokens=50, reducePretrainedEmbeddings=False, valTransformations=None, padOneTokenSentence=True): """ Reads in the pre-trained embeddings (in text format) from embeddingsPath and prepares those to be used with the LSTM network. Unknown words in the trainDataPath-file are added, if they appear at least frequencyThresholdUnknownTokens times # Arguments: embeddingsPath: Full path to the pre-trained embeddings file. File must be in text format. datasetFiles: Full path to the [train,dev,test]-file frequencyThresholdUnknownTokens: Unknown words are added, if they occure more than frequencyThresholdUnknownTokens times in the train set reducePretrainedEmbeddings: Set to true, then only the embeddings needed for training will be loaded valTransformations: Column specific value transformations padOneTokenSentence: True to pad one sentence tokens (needed for CRF classifier) """ embeddingsName = os.path.splitext(embeddingsPath)[0] pklName = "_".join(sorted(datasets.keys()) + [embeddingsName]) outputPath = 'pkl/' + pklName + '.pkl' if os.path.isfile(outputPath): logging.info("Using existent pickle file: %s" % outputPath) return outputPath casing2Idx = getCasingVocab() embeddings, word2Idx = readEmbeddings(embeddingsPath, datasets, frequencyThresholdUnknownTokens, reducePretrainedEmbeddings) mappings = {'tokens': word2Idx, 'casing': casing2Idx} pklObjects = {'embeddings': embeddings, 'mappings': mappings, 'datasets': datasets, 'data': {}} for datasetName, dataset in datasets.items(): datasetColumns = dataset['columns'] commentSymbol = dataset['commentSymbol'] trainData = 'data/%s/train.txt' % datasetName devData = 'data/%s/dev.txt' % datasetName testData = 'data/%s/test.txt' % datasetName paths = [trainData, devData, testData] logging.info(":: Transform "+datasetName+" dataset ::") pklObjects['data'][datasetName] = createPklFiles(paths, mappings, datasetColumns, commentSymbol, valTransformations, padOneTokenSentence) f = open(outputPath, 'wb') pkl.dump(pklObjects, f, -1) f.close() logging.info("DONE - Embeddings file saved: %s" % outputPath) return outputPath def loadDatasetPickle(embeddingsPickle): """ Loads the cPickle file, that contains the word embeddings and the datasets """ f = open(embeddingsPickle, 'rb') pklObjects = pkl.load(f) f.close() return pklObjects['embeddings'], pklObjects['mappings'], pklObjects['data'] def readEmbeddings(embeddingsPath, datasetFiles, frequencyThresholdUnknownTokens, reducePretrainedEmbeddings): """ Reads the embeddingsPath. :param embeddingsPath: File path to pretrained embeddings :param datasetName: :param datasetFiles: :param frequencyThresholdUnknownTokens: :param reducePretrainedEmbeddings: :return: """ # Check that the embeddings file exists if not os.path.isfile(embeddingsPath): if embeddingsPath in ['komninos_english_embeddings.gz', 'levy_english_dependency_embeddings.gz', 'reimers_german_embeddings.gz']: getEmbeddings(embeddingsPath) else: print("The embeddings file %s was not found" % embeddingsPath) exit() logging.info("Generate new embeddings files for a dataset") neededVocab = {} if reducePretrainedEmbeddings: logging.info("Compute which tokens are required for the experiment") def createDict(filename, tokenPos, vocab): for line in open(filename): if line.startswith('#'): continue splits = line.strip().split() if len(splits) > 1: word = splits[tokenPos] wordLower = word.lower() wordNormalized = wordNormalize(wordLower) vocab[word] = True vocab[wordLower] = True vocab[wordNormalized] = True for dataset_name, dataset in datasetFiles.items(): dataColumnsIdx = {y: x for x, y in dataset['columns'].items()} tokenIdx = dataColumnsIdx['tokens'] datasetPath = 'data/%s/' % dataset_name for dataset_file_name in ['train.txt', 'dev.txt', 'test.txt']: createDict(datasetPath + dataset_file_name, tokenIdx, neededVocab) # :: Read in word embeddings :: logging.info("Read file: %s" % embeddingsPath) word2Idx = {} embeddings = [] embeddingsIn = gzip.open(embeddingsPath, "rt") if embeddingsPath.endswith('.gz') else open(embeddingsPath, encoding="utf8") embeddingsDimension = None for line in embeddingsIn: split = line.rstrip().split(" ") word = split[0] if embeddingsDimension == None: embeddingsDimension = len(split) - 1 if (len( split) - 1) != embeddingsDimension: # Assure that all lines in the embeddings file are of the same length print("ERROR: A line in the embeddings file had more or less dimensions than expected. Skip token.") continue if len(word2Idx) == 0: # Add padding+unknown word2Idx["PADDING_TOKEN"] = len(word2Idx) vector = np.zeros(embeddingsDimension) embeddings.append(vector) word2Idx["UNKNOWN_TOKEN"] = len(word2Idx) vector = np.random.uniform(-0.25, 0.25, embeddingsDimension) # Alternativ -sqrt(3/dim) ... sqrt(3/dim) embeddings.append(vector) vector = np.array([float(num) for num in split[1:]]) if len(neededVocab) == 0 or word in neededVocab: if word not in word2Idx: embeddings.append(vector) word2Idx[word] = len(word2Idx) # Extend embeddings file with new tokens def createFD(filename, tokenIndex, fd, word2Idx): for line in open(filename): if line.startswith('#'): continue splits = line.strip().split() if len(splits) > 1: word = splits[tokenIndex] wordLower = word.lower() wordNormalized = wordNormalize(wordLower) if word not in word2Idx and wordLower not in word2Idx and wordNormalized not in word2Idx: fd[wordNormalized] += 1 if frequencyThresholdUnknownTokens != None and frequencyThresholdUnknownTokens >= 0: fd = nltk.FreqDist() for datasetName, datasetFile in datasetFiles.items(): dataColumnsIdx = {y: x for x, y in datasetFile['columns'].items()} tokenIdx = dataColumnsIdx['tokens'] datasetPath = 'data/%s/' % datasetName createFD(datasetPath + 'train.txt', tokenIdx, fd, word2Idx) addedWords = 0 for word, freq in fd.most_common(10000): if freq < frequencyThresholdUnknownTokens: break addedWords += 1 word2Idx[word] = len(word2Idx) vector = np.random.uniform(-0.25, 0.25, len(split) - 1) # Alternativ -sqrt(3/dim) ... sqrt(3/dim) embeddings.append(vector) assert (len(word2Idx) == len(embeddings)) logging.info("Added words: %d" % addedWords) embeddings = np.array(embeddings) return embeddings, word2Idx def addCharInformation(sentences): """Breaks every token into the characters""" for sentenceIdx in range(len(sentences)): sentences[sentenceIdx]['characters'] = [] for tokenIdx in range(len(sentences[sentenceIdx]['tokens'])): token = sentences[sentenceIdx]['tokens'][tokenIdx] chars = [c for c in token] sentences[sentenceIdx]['characters'].append(chars) def addCasingInformation(sentences): """Adds information of the casing of words""" for sentenceIdx in range(len(sentences)): sentences[sentenceIdx]['casing'] = [] for tokenIdx in range(len(sentences[sentenceIdx]['tokens'])): token = sentences[sentenceIdx]['tokens'][tokenIdx] sentences[sentenceIdx]['casing'].append(getCasing(token)) def getCasing(word): """Returns the casing for a word""" casing = 'other' numDigits = 0 for char in word: if char.isdigit(): numDigits += 1 digitFraction = numDigits / float(len(word)) if word.isdigit(): #Is a digit casing = 'numeric' elif digitFraction > 0.5: casing = 'mainly_numeric' elif word.islower(): #All lower case casing = 'allLower' elif word.isupper(): #All upper case casing = 'allUpper' elif word[0].isupper(): #is a title, initial char upper, then all lower casing = 'initialUpper' elif numDigits > 0: casing = 'contains_digit' return casing def getCasingVocab(): entries = ['PADDING', 'other', 'numeric', 'mainly_numeric', 'allLower', 'allUpper', 'initialUpper', 'contains_digit'] return {entries[idx]:idx for idx in range(len(entries))} def createMatrices(sentences, mappings, padOneTokenSentence): data = [] numTokens = 0 numUnknownTokens = 0 missingTokens = FreqDist() paddedSentences = 0 for sentence in sentences: row = {name: [] for name in list(mappings.keys())+['raw_tokens']} for mapping, str2Idx in mappings.items(): if mapping not in sentence: continue for entry in sentence[mapping]: if mapping.lower() == 'tokens': numTokens += 1 idx = str2Idx['UNKNOWN_TOKEN'] if entry in str2Idx: idx = str2Idx[entry] elif entry.lower() in str2Idx: idx = str2Idx[entry.lower()] elif wordNormalize(entry) in str2Idx: idx = str2Idx[wordNormalize(entry)] else: numUnknownTokens += 1 missingTokens[wordNormalize(entry)] += 1 row['raw_tokens'].append(entry) elif mapping.lower() == 'characters': idx = [] for c in entry: if c in str2Idx: idx.append(str2Idx[c]) else: idx.append(str2Idx['UNKNOWN']) else: idx = str2Idx[entry] row[mapping].append(idx) if len(row['tokens']) == 1 and padOneTokenSentence: paddedSentences += 1 for mapping, str2Idx in mappings.items(): if mapping.lower() == 'tokens': row['tokens'].append(mappings['tokens']['PADDING_TOKEN']) row['raw_tokens'].append('PADDING_TOKEN') elif mapping.lower() == 'characters': row['characters'].append([0]) else: row[mapping].append(0) data.append(row) if numTokens > 0: logging.info("Unknown-Tokens: %.2f%%" % (numUnknownTokens/float(numTokens)*100)) return data def createPklFiles(datasetFiles, mappings, cols, commentSymbol, valTransformation, padOneTokenSentence): trainSentences = readCoNLL(datasetFiles[0], cols, commentSymbol, valTransformation) devSentences = readCoNLL(datasetFiles[1], cols, commentSymbol, valTransformation) testSentences = readCoNLL(datasetFiles[2], cols, commentSymbol, valTransformation) extendMappings(mappings, trainSentences+devSentences+testSentences) charset = {"PADDING":0, "UNKNOWN":1} for c in " 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.,-_()[]{}!?:;#'\"/\\%$`&=*+@^~|": charset[c] = len(charset) mappings['characters'] = charset addCharInformation(trainSentences) addCasingInformation(trainSentences) addCharInformation(devSentences) addCasingInformation(devSentences) addCharInformation(testSentences) addCasingInformation(testSentences) logging.info(":: Create Train Matrix ::") trainMatrix = createMatrices(trainSentences, mappings, padOneTokenSentence) logging.info(":: Create Dev Matrix ::") devMatrix = createMatrices(devSentences, mappings, padOneTokenSentence) logging.info(":: Create Test Matrix ::") testMatrix = createMatrices(testSentences, mappings, padOneTokenSentence) data = { 'trainMatrix': trainMatrix, 'devMatrix': devMatrix, 'testMatrix': testMatrix } return data def extendMappings(mappings, sentences): sentenceKeys = list(sentences[0].keys()) sentenceKeys.remove('tokens') #No need to map tokens for sentence in sentences: for name in sentenceKeys: if name not in mappings: mappings[name] = {'O':0} #'O' is also used for padding for item in sentence[name]: if item not in mappings[name]: mappings[name][item] = len(mappings[name]) def getEmbeddings(name): if not os.path.isfile(name): download("https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/"+name) def getLevyDependencyEmbeddings(): """ Downloads from https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/ the dependency based word embeddings and unzips them """ if not os.path.isfile("levy_deps.words.bz2"): print("Start downloading word embeddings from Levy et al. ...") os.system("wget -O levy_deps.words.bz2 http://u.cs.biu.ac.il/~yogo/data/syntemb/deps.words.bz2") print("Start unzip word embeddings ...") os.system("bzip2 -d levy_deps.words.bz2") def getReimersEmbeddings(): """ Downloads from https://www.ukp.tu-darmstadt.de/research/ukp-in-challenges/germeval-2014/ embeddings for German """ if not os.path.isfile("2014_tudarmstadt_german_50mincount.vocab.gz"): print("Start downloading word embeddings from Reimers et al. ...") os.system("wget https://public.ukp.informatik.tu-darmstadt.de/reimers/2014_german_embeddings/2014_tudarmstadt_german_50mincount.vocab.gz") if sys.version_info >= (3,): import urllib.request as urllib2 import urllib.parse as urlparse from urllib.request import urlretrieve else: import urllib2 import urlparse from urllib import urlretrieve def download(url, destination=os.curdir, silent=False): filename = os.path.basename(urlparse.urlparse(url).path) or 'downloaded.file' def get_size(): meta = urllib2.urlopen(url).info() meta_func = meta.getheaders if hasattr( meta, 'getheaders') else meta.get_all meta_length = meta_func('Content-Length') try: return int(meta_length[0]) except: return 0 def kb_to_mb(kb): return kb / 1024.0 / 1024.0 def callback(blocks, block_size, total_size): current = blocks * block_size percent = 100.0 * current / total_size line = '[{0}{1}]'.format( '=' * int(percent / 2), ' ' * (50 - int(percent / 2))) status = '\r{0:3.0f}%{1} {2:3.1f}/{3:3.1f} MB' sys.stdout.write( status.format( percent, line, kb_to_mb(current), kb_to_mb(total_size))) path = os.path.join(destination, filename) logging.info( 'Downloading: {0} ({1:3.1f} MB)'.format(url, kb_to_mb(get_size()))) try: (path, headers) = urlretrieve(url, path, None if silent else callback) except: os.remove(path) raise Exception("Can't download {0}".format(path)) else: print() logging.info('Downloaded to: {0}'.format(path)) return path
the-stack_106_18568
#!/usr/bin/env python ############################################################################## # Copyright (c) 2015 Huawei Technologies Co.,Ltd and other. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## # Unittest for yardstick.benchmark.scenarios.compute.cyclictest.Cyclictest from __future__ import absolute_import import unittest import mock from oslo_serialization import jsonutils from yardstick.benchmark.scenarios.compute import cyclictest @mock.patch('yardstick.benchmark.scenarios.compute.cyclictest.ssh') class CyclictestTestCase(unittest.TestCase): def setUp(self): self.scenario_cfg = { "host": "kvm.LF", "setup_options": { "rpm_dir": "/opt/rpm", "host_setup_seqs": [ "host-setup0.sh", "host-setup1.sh", "host-run-qemu.sh" ], "script_dir": "/opt/scripts", "image_dir": "/opt/image", "guest_setup_seqs": [ "guest-setup0.sh", "guest-setup1.sh" ] }, "sla": { "action": "monitor", "max_min_latency": 50, "max_avg_latency": 100, "max_max_latency": 1000 }, "options": { "priority": 99, "threads": 1, "loops": 1000, "affinity": 1, "interval": 1000, "histogram": 90 } } self.context_cfg = { "host": { "ip": "10.229.43.154", "key_filename": "/yardstick/resources/files/yardstick_key", "role": "BareMetal", "name": "kvm.LF", "user": "root" } } def test_cyclictest_successful_setup(self, mock_ssh): c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() self.assertIsNotNone(c.guest) self.assertIsNotNone(c.host) self.assertEqual(c.setup_done, True) def test_cyclictest_successful_no_sla(self, mock_ssh): result = {} self.scenario_cfg.pop("sla", None) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() sample_output = '{"min": 100, "avg": 500, "max": 1000}' mock_ssh.SSH().execute.return_value = (0, sample_output, '') c.run(result) expected_result = jsonutils.loads(sample_output) self.assertEqual(result, expected_result) def test_cyclictest_successful_sla(self, mock_ssh): result = {} self.scenario_cfg.update({"sla": { "action": "monitor", "max_min_latency": 100, "max_avg_latency": 500, "max_max_latency": 1000 } }) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() sample_output = '{"min": 100, "avg": 500, "max": 1000}' mock_ssh.SSH().execute.return_value = (0, sample_output, '') c.run(result) expected_result = jsonutils.loads(sample_output) self.assertEqual(result, expected_result) def test_cyclictest_unsuccessful_sla_min_latency(self, mock_ssh): result = {} self.scenario_cfg.update({"sla": {"max_min_latency": 10}}) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() sample_output = '{"min": 100, "avg": 500, "max": 1000}' mock_ssh.SSH().execute.return_value = (0, sample_output, '') self.assertRaises(AssertionError, c.run, result) def test_cyclictest_unsuccessful_sla_avg_latency(self, mock_ssh): result = {} self.scenario_cfg.update({"sla": {"max_avg_latency": 10}}) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() sample_output = '{"min": 100, "avg": 500, "max": 1000}' mock_ssh.SSH().execute.return_value = (0, sample_output, '') self.assertRaises(AssertionError, c.run, result) def test_cyclictest_unsuccessful_sla_max_latency(self, mock_ssh): result = {} self.scenario_cfg.update({"sla": {"max_max_latency": 10}}) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() sample_output = '{"min": 100, "avg": 500, "max": 1000}' mock_ssh.SSH().execute.return_value = (0, sample_output, '') self.assertRaises(AssertionError, c.run, result) def test_cyclictest_unsuccessful_script_error(self, mock_ssh): result = {} self.scenario_cfg.update({"sla": {"max_max_latency": 10}}) c = cyclictest.Cyclictest(self.scenario_cfg, self.context_cfg) mock_ssh.SSH().execute.return_value = (0, '', '') c.setup() c.guest = mock_ssh.SSH() mock_ssh.SSH().execute.return_value = (1, '', 'FOOBAR') self.assertRaises(RuntimeError, c.run, result) def main(): unittest.main() if __name__ == '__main__': main()
the-stack_106_18570
# Import my solver Code from solver import * #Creating a list to hold the levels and answers of Sudoku board list_lvl = ['easy','normal','hard','answer'] for level in list_lvl: print("Im starting with " + level + " boards") #Open file stream of the respective level sudoku filename = level.capitalize() + "Sudoku.txt" sudokuFile = open(filename, "a") #Generate 5 Sudokus for the current level and store the board and solution #in its file for i in range(0,5): result = init_board(lvl = level, generating = True) game = result[0].copy() sol = result[1].copy() sudokuFile.write(toString_sudoku(game)) sudokuFile.write(toString_sudoku(sol)) sudokuFile.write("\n") sudokuFile.close() print("Im done with " + level + " boards\n")
the-stack_106_18571
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from metadata.config.common import ConfigModel from metadata.ingestion.api.common import Record, WorkflowContext from metadata.ingestion.api.sink import Sink, SinkStatus from metadata.ingestion.models.user import MetadataUser from metadata.ingestion.ometa.ometa_api import OpenMetadata from metadata.ingestion.ometa.openmetadata_rest import MetadataServerConfig logger = logging.getLogger(__name__) class LDAPSourceConfig(ConfigModel): api_end_point: str class LdapRestUsersSink(Sink): config: LDAPSourceConfig status: SinkStatus def __init__( self, ctx: WorkflowContext, config: LDAPSourceConfig, metadata_config: MetadataServerConfig, ): super().__init__(ctx) self.config = config self.metadata_config = metadata_config self.status = SinkStatus() self.api_users = "/users" self.rest = OpenMetadata(metadata_config).client @classmethod def create( cls, config_dict: dict, metadata_config_dict: dict, ctx: WorkflowContext ): config = LDAPSourceConfig.parse_obj(config_dict) metadata_config = MetadataServerConfig.parse_obj(metadata_config_dict) return cls(ctx, config, metadata_config) def write_record(self, record: Record) -> None: self._create_user(record) def _create_user(self, record: MetadataUser) -> None: metadata_user = MetadataUser( name=record.github_username[0], display_name=record.name[0], email=record.email[0], ) self.rest.post(self.api_users, data=metadata_user.to_json()) self.status.records_written(record.name[0]) def get_status(self): return self.status def close(self): pass
the-stack_106_18572
#!/usr/bin/python # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_network_load_balancer_network_security_groups_update short_description: Manage a NetworkSecurityGroupsUpdate resource in Oracle Cloud Infrastructure description: - This module allows the user to update a NetworkSecurityGroupsUpdate resource in Oracle Cloud Infrastructure version_added: "2.9.0" author: Oracle (@oracle) options: network_load_balancer_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the network load balancer to update. type: str aliases: ["id"] required: true network_security_group_ids: description: - An array of network security group L(OCIDs,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) associated with the network load balancer. - During the creation of the network load balancer, the service adds the new network load balancer to the specified network security groups. - "The benefits of associating the network load balancer with network security groups include:" - "* Network security groups define network security rules to govern ingress and egress traffic for the network load balancer." - "* The network security rules of other resources can reference the network security groups associated with the network load balancer to ensure access." - This parameter is updatable. type: list elements: str state: description: - The state of the NetworkSecurityGroupsUpdate. - Use I(state=present) to update an existing a NetworkSecurityGroupsUpdate. type: str required: false default: 'present' choices: ["present"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Update network_security_groups_update oci_network_load_balancer_network_security_groups_update: # required network_load_balancer_id: "ocid1.networkloadbalancer.oc1..xxxxxxEXAMPLExxxxxx" # optional network_security_group_ids: [ "network_security_group_ids_example" ] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.network_load_balancer import NetworkLoadBalancerClient from oci.network_load_balancer.models import UpdateNetworkSecurityGroupsDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperGen(OCIResourceHelperBase): """Supported operations: update""" def get_possible_entity_types(self): return super( NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperGen, self ).get_possible_entity_types() + [ "networksecuritygroupsupdate", "networksecuritygroupsupdates", "networkLoadBalancernetworksecuritygroupsupdate", "networkLoadBalancernetworksecuritygroupsupdates", "networksecuritygroupsupdateresource", "networksecuritygroupsupdatesresource", "networksecuritygroup", "networksecuritygroups", "networkLoadBalancernetworksecuritygroup", "networkLoadBalancernetworksecuritygroups", "networksecuritygroupresource", "networksecuritygroupsresource", "networkloadbalancer", ] def get_module_resource_id_param(self): return "network_load_balancer_id" def get_module_resource_id(self): return self.module.params.get("network_load_balancer_id") def get_update_model_class(self): return UpdateNetworkSecurityGroupsDetails def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_network_security_groups, call_fn_args=(), call_fn_kwargs=dict( network_load_balancer_id=self.module.params.get( "network_load_balancer_id" ), update_network_security_groups_details=update_details, ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperCustom = get_custom_class( "NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperCustom" ) class ResourceHelper( NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperCustom, NetworkLoadBalancerNetworkSecurityGroupsUpdateHelperGen, ): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=False, supports_wait=True ) module_args.update( dict( network_load_balancer_id=dict(aliases=["id"], type="str", required=True), network_security_group_ids=dict(type="list", elements="str"), state=dict(type="str", default="present", choices=["present"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="network_security_groups_update", service_client_class=NetworkLoadBalancerClient, namespace="network_load_balancer", ) result = dict(changed=False) if resource_helper.is_update(): result = resource_helper.update() module.exit_json(**result) if __name__ == "__main__": main()
the-stack_106_18573
""" This module has functions to help processing the data from PacketIn and PacketOut. """ from pyof.foundation.basic_types import BinaryData from libs.tcpiplib.packet import Ethernet, VLAN, IP, TCP, LLDP, ARP, OessFvd def dissect_data(data, start=0): """ This function aims to dissect PacketIn and PacketOut data It assumes it is Ethernet [qinq] [vlan] (BDDP|LLDP|ARP|IP) [TCP|UDP] Args: data: BinaryData start: offset Returns: payload: array with all classes """ if len(data.value) == 0: # No Data return 0 packet = data.value payload = [] # Ethernet eth = Ethernet() eth.parse(packet[start:start + 14], 1) payload.append(eth) # VLAN or not - ETYPE 0x8100 or 33024 etype = '0x0000' start += 14 if eth.protocol in [34984]: # 0x88a8 # Frame has QinQ vlan = VLAN() vlan.parse(packet[start:start + 4]) payload.append(vlan) etype = vlan.protocol start += 4 else: etype = eth.protocol # if there is no content, return if len(packet[start:]) == 0: return payload if not start: # In case there was a QinQ header. start += 14 if etype in [33024] or eth.protocol in [33024]: # Frame has VLAN vlan = VLAN() vlan.parse(packet[start:start + 4]) payload.append(vlan) etype = vlan.protocol start += 4 else: if not etype: etype = eth.protocol # if there is no content, return if len(packet[start:]) == 0: return payload # OESS FVD if etype in [34998]: fvd = OessFvd() try: fvd.parse(packet[start:]) except Exception as error: print(error) payload.append(fvd) return payload # LLDP - ETYPE 0x88CC or 35020 or # BBDP - ETYPE 0x8942 or 35138 if etype in [35020, 35138]: lldp = LLDP() try: lldp.parse(packet[start:]) except: pass if not isinstance(lldp, LLDP): lldp.c_id = 0 else: payload.append(lldp) return payload # IP - ETYPE 0x800 or 2048 if etype in [2048]: ip_addr = IP() ip_addr.parse(packet, start) payload.append(ip_addr) if ip_addr.protocol is 6: tcp = TCP() tcp.parse(packet, start + ip_addr.length) payload.append(tcp) return payload # ARP - ETYPE 0x806 or 2054 if etype in [2054]: arp = ARP() arp.parse(packet[start:]) payload.append(arp) return payload return payload def is_protocol(data, lldp=False, oess=False, arp=False): """ Check if Data is protocol provided Args: data: PacketOut/PacketIn/OESS data lldp: check for lldp oess: check for oess arp: check for arp Returns: protocol class if True False if it is not """ protocol = [] return_protocol = False if lldp: protocol.append(35020) # LLDP protocol.append(35138) # BDDP elif oess: protocol.append(34998) # Private elif arp: protocol.append(2054) # ARP 0x806 else: return_protocol = True if isinstance(data, BinaryData): data = dissect_data(data) try: eth = data.pop(0) next_protocol = eth.protocol if next_protocol in [33024, 34984]: vlan = data.pop(0) if return_protocol: return vlan.protocol next_protocol = vlan.protocol if next_protocol in protocol: return True return False except Exception as error: print(error) return False def get_protocol(data, lldp=False, oess=False, arp=False): """ Get protocol from data Args: data: PacketOut/PacketIn/OESS data lldp: check for lldp oess: check for oess arp: check for arp Returns: protocol class if True False if it is not """ protocol = [] if lldp: protocol.append(35020) # LLDP protocol.append(35138) # BDDP elif oess: protocol.append(34998) # Private elif arp: protocol.append(2054) # ARP 0x806 else: return False if isinstance(data, BinaryData): data = dissect_data(data) if isinstance(data, int): return False try: eth = data.pop(0) next_protocol = eth.protocol if next_protocol in [33024]: vlan = data.pop(0) next_protocol = vlan.protocol if next_protocol in protocol: return data.pop(0) return False except Exception as error: print(error) return False
the-stack_106_18574
""" Don't see the standings during the contest!!! you will lose motivation. """ # ---------------------------------------------------Import Libraries--------------------------------------------------- import sys import time import os from math import sqrt, log, log2, ceil, log10, gcd, floor, pow, sin, cos, tan, pi, inf, factorial from copy import copy, deepcopy from sys import exit, stdin, stdout from collections import Counter, defaultdict, deque from itertools import permutations import heapq from bisect import bisect_left as bl # If the element is already present in the list, # the left most position where element has to be inserted is returned. from bisect import bisect_right as br from bisect import bisect # If the element is already present in the list, # the right most position where element has to be inserted is r # ---------------------------------------------------Global Variables--------------------------------------------------- # sys.setrecursionlimit(100000000) mod = 1000000007 # ---------------------------------------------------Helper Functions--------------------------------------------------- iinp = lambda: int(sys.stdin.readline()) inp = lambda: sys.stdin.readline().strip() strl = lambda: list(inp().strip().split(" ")) intl = lambda: list(map(int, inp().split(" "))) mint = lambda: map(int, inp().split()) flol = lambda: list(map(float, inp().split(" "))) flush = lambda: stdout.flush() def permute(nums): def fun(arr, nums, cur, v): if len(cur) == len(nums): arr.append(cur.copy()) i = 0 while i < len(nums): if v[i]: i += 1 continue else: cur.append(nums[i]) v[i] = 1 fun(arr, nums, cur, v) cur.pop() v[i] = 0 i += 1 # while i<len(nums) and nums[i]==nums[i-1]:i+=1 # Uncomment for unique permutations return arr res = [] nums.sort() v = [0] * len(nums) return fun(res, nums, [], v) def subsets(res, index, arr, cur): res.append(cur.copy()) for i in range(index, len(arr)): cur.append(arr[i]) subsets(res, i + 1, arr, cur) cur.pop() return res def sieve(N): root = int(sqrt(N)) primes = [1] * (N + 1) primes[0], primes[1] = 0, 0 for i in range(2, root + 1): if primes[i]: for j in range(i * i, N + 1, i): primes[j] = 0 return primes def bs(arr, l, r, x): if x < arr[0] or x > arr[len(arr) - 1]: return -1 while l <= r: mid = l + (r - l) // 2 if arr[mid] == x: return mid elif arr[mid] < x: l = mid + 1 else: r = mid - 1 return -1 def isPrime(n): if n <= 1: return False if n <= 3: return True if n % 2 == 0 or n % 3 == 0: return False p = int(sqrt(n)) for i in range(5, p + 1, 6): if n % i == 0 or n % (i + 2) == 0: return False return True # -------------------------------------------------------Functions------------------------------------------------------ arr=[2] while arr[-1]<=10**9: arr.append(arr[-1]*2) arr=set(arr) def solve(): n=iinp() if n%2==0 and sqrt(n//2)==int(sqrt(n//2)): print("YES") elif n%4==0 and sqrt(n//4)==int(sqrt(n//4)): print("YES") else: print("NO") # -------------------------------------------------------Main Code------------------------------------------------------ start_time = time.time() for _ in range(iinp()): solve() # print("--- %s seconds ---" % (time.time() - start_time)) s
the-stack_106_18575
# coding=utf-8 # MIT License # Copyright (c) 2020 Carnegie Mellon University, Auton Lab # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module is a wrapper around torch implementations and provides a convenient API to train Deep Survival Machines. """ from dsm.dsm_torch import DeepSurvivalMachinesTorch from dsm.dsm_torch import DeepRecurrentSurvivalMachinesTorch from dsm.dsm_torch import DeepConvolutionalSurvivalMachinesTorch from dsm.dsm_torch import DeepCNNRNNSurvivalMachinesTorch import dsm.losses as losses from dsm.utilities import train_dsm from dsm.utilities import _get_padded_features, _get_padded_targets from dsm.utilities import _reshape_tensor_with_nans import torch import numpy as np __pdoc__ = {} __pdoc__["DeepSurvivalMachines.fit"] = True __pdoc__["DeepSurvivalMachines._eval_nll"] = True __pdoc__["DeepConvolutionalSurvivalMachines._eval_nll"] = True __pdoc__["DSMBase"] = False class DSMBase: """Base Class for all DSM models""" def __init__( self, k=3, layers=None, distribution="Weibull", temp=1.0, discount=1.0, device="cpu", ): self.k = k self.layers = layers self.dist = distribution self.temp = temp self.discount = discount self.fitted = False self.device = device def _gen_torch_model(self, inputdim, optimizer, risks): """Helper function to return a torch model.""" return DeepSurvivalMachinesTorch( inputdim, k=self.k, layers=self.layers, dist=self.dist, temp=self.temp, discount=self.discount, optimizer=optimizer, risks=risks, ).to(self.device) def fit( self, x, t, e, vsize=0.15, val_data=None, iters=1, learning_rate=1e-3, weight_decay=1e-5, batch_size=128, elbo=True, optimizer="Adam", random_state=100, ): r"""This method is used to train an instance of the DSM model. Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). t: np.ndarray A numpy array of the event/censoring times, \( t \). e: np.ndarray A numpy array of the event/censoring indicators, \( \delta \). \( \delta = 1 \) means the event took place. vsize: float Amount of data to set aside as the validation set. val_data: tuple A tuple of the validation dataset. If passed vsize is ignored. iters: int The maximum number of training iterations on the training dataset. learning_rate: float The learning rate for the `Adam` optimizer. batch_size: int learning is performed on mini-batches of input data. this parameter specifies the size of each mini-batch. elbo: bool Whether to use the Evidence Lower Bound for optimization. Default is True. optimizer: str The choice of the gradient based optimization method. One of 'Adam', 'RMSProp' or 'SGD'. random_state: float random seed that determines how the validation set is chosen. """ processed_data = self._preprocess_training_data( x, t, e, vsize, val_data, random_state ) x_train, t_train, e_train, x_val, t_val, e_val = processed_data self.lr = learning_rate self.weight_decay = weight_decay self.batch_size = batch_size # Todo: Change this somehow. The base design shouldn't depend on child if type(self).__name__ in [ "DeepConvolutionalSurvivalMachines", "DeepCNNRNNSurvivalMachines", ]: inputdim = tuple(x_train.shape)[-2:] else: inputdim = x_train.shape[-1] maxrisk = int(np.nanmax(e_train.cpu().numpy())) model = self._gen_torch_model(inputdim, optimizer, risks=maxrisk) model, self.min_loss = train_dsm( model, x_train, t_train, e_train, x_val, t_val, e_val, n_iter=iters, lr=self.lr, weight_decay=self.weight_decay, elbo=elbo, bs=self.batch_size, device=self.device, ) self.torch_model = model.eval() self.fitted = True return self def compute_nll(self, x, t, e): r"""This function computes the negative log likelihood of the given data. In case of competing risks, the negative log likelihoods are summed over the different events' type. Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). t: np.ndarray A numpy array of the event/censoring times, \( t \). e: np.ndarray A numpy array of the event/censoring indicators, \( \delta \). \( \delta = r \) means the event r took place. Returns: float: Negative log likelihood. """ if not self.fitted: raise Exception( "The model has not been fitted yet. Please fit the " + "model using the `fit` method on some training data " + "before calling `_eval_nll`." ) processed_data = self._preprocess_training_data(x, t, e, 0, None, 0) _, _, _, x_val, t_val, e_val = processed_data x_val, t_val, e_val = ( x_val, _reshape_tensor_with_nans(t_val), _reshape_tensor_with_nans(e_val), ) loss = 0 for r in range(self.torch_model.risks): loss += float( losses.conditional_loss( self.torch_model, x_val, t_val, e_val, elbo=False, risk=str(r + 1) ) .detach() .cpu() .numpy() ) return loss def _preprocess_test_data(self, x): return torch.from_numpy(x).float().to(self.device) def _preprocess_training_data(self, x, t, e, vsize, val_data, random_state): idx = list(range(x.shape[0])) np.random.seed(random_state) np.random.shuffle(idx) x_train, t_train, e_train = x[idx], t[idx], e[idx] x_train = torch.from_numpy(x_train).float().to(self.device) t_train = torch.from_numpy(t_train).float().to(self.device) e_train = torch.from_numpy(e_train).float().to(self.device) if val_data is None: vsize = int(vsize * x_train.shape[0]) x_val, t_val, e_val = x_train[-vsize:], t_train[-vsize:], e_train[-vsize:] x_train = x_train[:-vsize] t_train = t_train[:-vsize] e_train = e_train[:-vsize] else: x_val, t_val, e_val = val_data x_val = torch.from_numpy(x_val).float().to(self.device) t_val = torch.from_numpy(t_val).float().to(self.device) e_val = torch.from_numpy(e_val).float().to(self.device) return (x_train, t_train, e_train, x_val, t_val, e_val) def predict_mean(self, x, risk=1): r"""Returns the mean Time-to-Event \( t \) Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). Returns: np.array: numpy array of the mean time to event. """ if self.fitted: x = self._preprocess_test_data(x) scores = losses.predict_mean(self.torch_model, x, risk=str(risk)) return scores else: raise Exception( "The model has not been fitted yet. Please fit the " + "model using the `fit` method on some training data " + "before calling `predict_mean`." ) def predict_risk(self, x, t, risk=1): r"""Returns the estimated risk of an event occuring before time \( t \) \( \widehat{\mathbb{P}}(T\leq t|X) \) for some input data \( x \). Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). t: list or float a list or float of the times at which survival probability is to be computed Returns: np.array: numpy array of the risks at each time in t. """ if self.fitted: return 1 - self.predict_survival(x, t, risk=str(risk))[0] else: raise Exception( "The model has not been fitted yet. Please fit the " + "model using the `fit` method on some training data " + "before calling `predict_risk`." ) def predict_survival(self, x, t, risk=1): r"""Returns the estimated survival probability at time \( t \), \( \widehat{\mathbb{P}}(T > t|X) \) for some input data \( x \). Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). t: list or float a list or float of the times at which survival probability is to be computed Returns: np.array: numpy array of the survival probabilites at each time in t. """ x = self._preprocess_test_data(x) if not isinstance(t, list): t = [t] if self.fitted: scores, std = losses.predict_cdf( self.torch_model, x, t, risk=str(risk), device=self.device ) return np.array(scores).T, np.array(std).T else: raise Exception( "The model has not been fitted yet. Please fit the " + "model using the `fit` method on some training data " + "before calling `predict_survival`." ) def predict_pdf(self, x, t, risk=1): r"""Returns the estimated pdf at time \( t \), \( \widehat{\mathbb{P}}(T = t|X) \) for some input data \( x \). Parameters ---------- x: np.ndarray A numpy array of the input features, \( x \). t: list or float a list or float of the times at which pdf is to be computed Returns: np.array: numpy array of the estimated pdf at each time in t. """ x = self._preprocess_test_data(x) if not isinstance(t, list): t = [t] if self.fitted: scores = losses.predict_pdf(self.torch_model, x, t, risk=str(risk)) return np.exp(np.array(scores)).T else: raise Exception( "The model has not been fitted yet. Please fit the " + "model using the `fit` method on some training data " + "before calling `predict_survival`." ) class DeepSurvivalMachines(DSMBase): """A Deep Survival Machines model. This is the main interface to a Deep Survival Machines model. A model is instantiated with approporiate set of hyperparameters and fit on numpy arrays consisting of the features, event/censoring times and the event/censoring indicators. For full details on Deep Survival Machines, refer to our paper [1]. References ---------- [1] <a href="https://arxiv.org/abs/2003.01176">Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks." arXiv preprint arXiv:2003.01176 (2020)</a> Parameters ---------- k: int The number of underlying parametric distributions. layers: list A list of integers consisting of the number of neurons in each hidden layer. distribution: str Choice of the underlying survival distributions. One of 'Weibull', 'LogNormal'. Default is 'Weibull'. temp: float The logits for the gate are rescaled with this value. Default is 1000. discount: float a float in [0,1] that determines how to discount the tail bias from the uncensored instances. Default is 1. Example ------- >>> from dsm import DeepSurvivalMachines >>> model = DeepSurvivalMachines() >>> model.fit(x, t, e) """ def __call__(self): if self.fitted: print("A fitted instance of the Deep Survival Machines model") else: print("An unfitted instance of the Deep Survival Machines model") print("Number of underlying distributions (k):", self.k) print("Hidden Layers:", self.layers) print("Distribution Choice:", self.dist) class DeepRecurrentSurvivalMachines(DSMBase): """The Deep Recurrent Survival Machines model to handle data with time-dependent covariates. For full details on Deep Recurrent Survival Machines, refer to our paper [1]. References ---------- [1] <a href="http://proceedings.mlr.press/v146/nagpal21a.html"> Deep Parametric Time-to-Event Regression with Time-Varying Covariates AAAI Spring Symposium on Survival Prediction</a> """ def __init__( self, k=3, layers=None, hidden=None, distribution="Weibull", temp=1.0, discount=1.0, typ="LSTM", device="cpu", ): super(DeepRecurrentSurvivalMachines, self).__init__( k=k, layers=layers, distribution=distribution, temp=temp, discount=discount, device=device, ) self.hidden = hidden self.typ = typ self.device = device def _gen_torch_model(self, inputdim, optimizer, risks): """Helper function to return a torch model.""" return DeepRecurrentSurvivalMachinesTorch( inputdim, k=self.k, layers=self.layers, hidden=self.hidden, dist=self.dist, temp=self.temp, discount=self.discount, optimizer=optimizer, typ=self.typ, risks=risks, ).to(self.device) def _preprocess_test_data(self, x): return torch.from_numpy(_get_padded_features(x)).float().to(self.device) def _preprocess_training_data(self, x, t, e, vsize, val_data, random_state): """RNNs require different preprocessing for variable length sequences""" idx = list(range(x.shape[0])) np.random.seed(random_state) np.random.shuffle(idx) x = _get_padded_features(x) t = _get_padded_targets(t) e = _get_padded_targets(e) x_train, t_train, e_train = x[idx], t[idx], e[idx] x_train = torch.from_numpy(x_train).float().to(self.device) t_train = torch.from_numpy(t_train).float().to(self.device) e_train = torch.from_numpy(e_train).float().to(self.device) if val_data is None: vsize = int(vsize * x_train.shape[0]) x_val, t_val, e_val = x_train[-vsize:], t_train[-vsize:], e_train[-vsize:] x_train = x_train[:-vsize] t_train = t_train[:-vsize] e_train = e_train[:-vsize] else: x_val, t_val, e_val = val_data x_val = _get_padded_features(x_val) t_val = _get_padded_features(t_val) e_val = _get_padded_features(e_val) x_val = torch.from_numpy(x_val).float().to(self.device) t_val = torch.from_numpy(t_val).float().to(self.device) e_val = torch.from_numpy(e_val).float().to(self.device) return (x_train, t_train, e_train, x_val, t_val, e_val) class DeepConvolutionalSurvivalMachines(DSMBase): """The Deep Convolutional Survival Machines model to handle data with image-based covariates. """ def __init__( self, k=3, layers=None, hidden=None, distribution="Weibull", temp=1.0, discount=1.0, typ="ConvNet", ): super(DeepConvolutionalSurvivalMachines, self).__init__( k=k, distribution=distribution, temp=temp, discount=discount ) self.hidden = hidden self.typ = typ def _gen_torch_model(self, inputdim, optimizer, risks): """Helper function to return a torch model.""" return DeepConvolutionalSurvivalMachinesTorch( inputdim, k=self.k, hidden=self.hidden, dist=self.dist, temp=self.temp, discount=self.discount, optimizer=optimizer, typ=self.typ, risks=risks, ) class DeepCNNRNNSurvivalMachines(DeepRecurrentSurvivalMachines): """The Deep CNN-RNN Survival Machines model to handle data with moving image streams. """ def __init__( self, k=3, layers=None, hidden=None, distribution="Weibull", temp=1.0, discount=1.0, typ="LSTM", ): super(DeepCNNRNNSurvivalMachines, self).__init__( k=k, layers=layers, distribution=distribution, temp=temp, discount=discount ) self.hidden = hidden self.typ = typ def _gen_torch_model(self, inputdim, optimizer, risks): """Helper function to return a torch model.""" return DeepCNNRNNSurvivalMachinesTorch( inputdim, k=self.k, layers=self.layers, hidden=self.hidden, dist=self.dist, temp=self.temp, discount=self.discount, optimizer=optimizer, typ=self.typ, risks=risks, )
the-stack_106_18577
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-variable,invalid-name, not-context-manager """ Decorator and utilities for the integration with TOPI and Relay 99.9% copy-paste of implementation by @MerryMercy """ import threading import logging import warnings import tvm from tvm.autotvm.task.dispatcher import DispatchContext, FallbackContext from tvm.target import Target from .task import create from .topi_integration import TaskExtractEnv logger = logging.getLogger("autotvm") # TODO(moreau89) find a more elegant way to lower for VTAs def _lower(mod, target, params, opt_level=3): """Helper to lower VTA properly.""" # pylint: disable=import-outside-toplevel from tvm import relay from tvm.relay.backend import graph_executor_codegen if hasattr(target, "device_name") and target.device_name == "vta": import vta with vta.build_config(opt_level=opt_level, disabled_pass={"AlterOpLayout"}): mod, _ = relay.optimize(mod, target, params) grc = graph_executor_codegen.GraphExecutorCodegen(None, target) grc.codegen(mod, mod["main"]) return # Alter op layout code has been written expecting that tuning is applied # without it, so we disable AlterOpLayout to maintain that behavior. with tvm.transform.PassContext(opt_level=opt_level, disabled_pass={"AlterOpLayout"}): compiler = relay.vm.VMCompiler() if params: compiler.set_params(params) compiler.lower(mod, target=target) def extract_from_program(mod, params, target, target_host=None, ops=None): """Extract tuning tasks from a relay program. This function is the single program version of extract_from_multiple_program. Parameters ---------- mod: tvm.IRModule or relay.function.Function The module or function to tune params: dict of str to numpy array The associated parameters of the program target: tvm.target.Target The compilation target target_host: tvm.target.Target The host compilation target ops: List[tvm.ir.Op] or None List of relay ops to be tuned. If not specified, all tunable ops will be extracted. Returns ------- task: Array of autotvm.task.Task collected tasks """ if target_host is not None: warnings.warn( "target_host parameter is going to be deprecated. " "Please pass in tvm.target.Target(target, host=target_host) instead." ) target, target_host = Target.check_and_update_host_consist(target, target_host) return extract_from_multiple_program([mod], [params], target, ops=ops) def extract_from_multiple_program(mods, params, target, target_host=None, ops=None): """Extract tuning tasks from multiple relay programs. This function collects tuning tasks by building a list of programs with a "tracing" target and tracing all the calls to topi. Parameters ---------- mods: List[tvm.IRModule] or List[relay.function.Function] The list of modules or functions to tune params: List of dict of str to numpy array The associated parameters of the programs target: tvm.target.Target The compilation target target_host: tvm.target.Target The host compilation target ops: List[tvm.ir.Op] or None List of relay ops to be tuned. If not specified, all tunable ops will be extracted. Returns ------- task: Array of autotvm.task.Task collected tasks """ # pylint: disable=import-outside-toplevel from tvm import relay from tvm import topi env = TaskExtractEnv.get() # merge target and target host target, target_host = Target.check_and_update_host_consist(target, target_host) # run compiler to collect all TOPI calls during compilation env.reset(ops) with env: # disable logger temporarily old_state = logger.disabled logger.disabled = True for mod, param in zip(mods, params): if isinstance(mod, relay.function.Function): mod = tvm.IRModule.from_expr(mod) assert isinstance( mod, tvm.IRModule ), "only support relay Module or Function to be tuned" relay.backend.te_compiler.get().clear() # wrap build call in thread to avoid multiprocessing problems build_thread = threading.Thread(target=_lower, args=(mod, target, param)) build_thread.start() build_thread.join() relay.backend.te_compiler.get().clear() # Clear the warning message cache in FallbackContext if isinstance(DispatchContext.current, FallbackContext): DispatchContext.current.memory = {} DispatchContext.warning_messages = set() logger.disabled = old_state # create tasks for target tasks = [] for task_name, args in env.get_tasks(): try: tsk = create(task_name, args, target=target) tasks.append(tsk) except topi.InvalidShapeError: logger.warning("Invalid shape during AutoTVM task creation") return tasks
the-stack_106_18578
"""A time estimator by running TensorFlow operators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import logging import tensorflow as tf import numpy as np from six.moves import range from paleo.profilers.base import BaseProfiler, TimeMeasure #from pynvml import * #Ermao import os, os.path, subprocess, signal #Ermao class TensorFlowProfiler(BaseProfiler): def __init__(self, options, device='/gpu:0'): super(TensorFlowProfiler, self).__init__('TensorFlowProfiler', options) self._device = device self._logger.info('TensorFlow version: %s' % tf.__version__) def profile(self, layer): graph = tf.Graph() ops, bwd_ops = None, None #print(layer.inputs) #Ermao #print(type(layer)) if layer.name != 'data': print("\n%s Input: %s" % (layer, layer.inputs), end=' ') #Ermao if layer.layertype == 'conv2d': ops, bwd_ops = self._ops_conv2d(layer, graph) elif layer.layertype == 'innerproduct': ops, bwd_ops = self._ops_innerproduct(layer, graph) elif layer.layertype == 'pool2d': ops, bwd_ops = self._ops_pool2d(layer, graph) elif layer.layertype == 'dropout': ops, bwd_ops = self._ops_dropout(layer, graph) elif layer.layertype == 'concat': ops, bwd_ops = self._ops_concat(layer, graph) elif layer.layertype == 'reshape': ops, bwd_ops = self._ops_reshape(layer, graph) # added by Ermao elif layer.layertype == 'generic_LRN': ops, bwd_ops = self._ops_lrn(layer, graph) elif layer.layertype == 'generic_BatchNorm': ops, bwd_ops = self._ops_batchnorm(layer, graph) elif layer.layertype == 'elementwise': ops, bwd_ops = self._ops_elementwise(layer, graph) else: self._logger.warning('Unimplemented \'%s\'' % layer.layertype) return self._execute(ops, bwd_ops, graph) def profile_full_pass(self, layers): graph, end_points, variables = self._compose_full_graph(layers) # Forward pass. if layers[-1].layertype in ['softmax', 'sigmoid']: last_op = end_points[layers[-2].name] loss_op = end_points[layers[-1].name] else: last_op = end_points[layers[-1].name] loss_op = None print("FullForward", end=' ') # Ermao print(end_points) forward_time = self._execute(last_op, None, graph) # Backward pass. softmax_time = TimeMeasure() backward_time = TimeMeasure() loss_op = None #Ermao if loss_op is not None: softmax_time = self._execute(loss_op, None, graph) with graph.as_default(): grad_op = tf.gradients(loss_op, variables) backward_time = self._execute(grad_op, None, graph) backward_time = backward_time - softmax_time softmax_time = softmax_time - forward_time return forward_time, softmax_time, backward_time def _compose_full_graph(self, layers): graph = tf.Graph() end_points = dict() # collects out tensors for each layer variables = [None] # collects trainable variables for layer in layers: if layer.layertype == 'conv2d': ops, _ = self._ops_conv2d(layer, graph, end_points, variables) elif layer.layertype == 'deconv2d': ops, _ = self._ops_deconv2d(layer, graph, end_points, variables) elif layer.layertype == 'innerproduct': ops, _ = self._ops_innerproduct(layer, graph, end_points, variables) elif layer.layertype == 'pool2d': ops, _ = self._ops_pool2d(layer, graph, end_points) elif layer.layertype == 'upsampling2d': ops, _ = self._ops_upsampling2d(layer, graph, end_points) elif layer.layertype == 'dropout': ops, _ = self._ops_dropout(layer, graph, end_points) elif layer.layertype == 'concat': ops, _ = self._ops_concat(layer, graph, end_points) elif layer.layertype == 'reshape': ops, _ = self._ops_reshape(layer, graph, end_points) elif layer.layertype == 'softmax': ops, _ = self._ops_softmax(layer, graph, end_points) elif layer.layertype == 'sigmoid': ops, _ = self._ops_sigmoid(layer, graph, end_points) # added by Ermao elif layer.layertype == 'generic_LRN': ops, bwd_ops = self._ops_lrn(layer, graph, end_points) elif layer.layertype == 'generic_BatchNorm': ops, bwd_ops = self._ops_batchnorm(layer, graph, end_points) elif layer.layertype == 'elementwise': ops, bwd_ops = self._ops_elementwise(layer, graph) elif layer.layertype == 'input': # skip data/input layer. continue else: raise NotImplementedError('Cannot create ops for layer %s [%s]' % (layer.name, layer.layertype)) end_points[layer.name] = ops return graph, end_points, variables[1:] def _get_inputs(self, layer, end_points=None): if end_points is None or layer.parents[0] == 'data': # Isolation mode: inputs for the layer are random constants. inputs = tf.constant( 2 * np.random.random_sample(layer.inputs) - 1, dtype=tf.float32, name="fake_inputs") return inputs else: # Chain mode: get inputs from parent layer outputs. inputs = [end_points[p] for p in layer.parents] if len(inputs) == 1: return inputs[0] return inputs def _get_variable(self, shape, name='constant'): return tf.Variable( tf.truncated_normal( shape, dtype=tf.float32, stddev=1e-1), name='rand_{}'.format(name)) def _get_fake_targets(self, batch_size, num_classes): labels = np.random.randint(0, num_classes, batch_size) return tf.constant(labels, dtype=tf.int32, name='fake_targets') def _ops_conv2d(self, layer, graph, end_points=None, variables=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) filters = self._get_variable(layer.filters, name='filters') if variables: variables.append(filters) conv = None if self.options.direction == 'forward': conv = tf.nn.conv2d( inputs, filters, layer.strides, padding=layer.padding) bwd_inputs_op, bwd_filter_op = None, None if self.options.direction == 'backward': if self.options.gradient_wrt == 'data' and layer.backprop: bwd_inputs_op = tf.nn.conv2d_backprop_input( layer.inputs, filters, self._get_variable( layer.outputs, name='outputs'), layer.strides, layer.padding) elif self.options.gradient_wrt == 'filter': bwd_filter_op = tf.nn.conv2d_backprop_filter( inputs, layer.filters, self._get_variable(layer.outputs, 'outputs'), layer.strides, layer.padding) return conv, [bwd_inputs_op, bwd_filter_op] def _ops_deconv2d(self, layer, graph, end_points=None, variables=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) filters = self._get_variable(layer.filters, name='filters') if variables: variables.append(filters) deconv = tf.nn.conv2d_transpose( inputs, filters, output_shape=layer.outputs, strides=layer.strides) return deconv, None def _ops_innerproduct_backup(self, layer, graph, end_points=None, variables=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) weights = self._get_variable(layer.weights, name='weights') if variables: variables.append(weights) if len(inputs.get_shape().as_list()) > 2: inputs = tf.reshape(inputs, [-1, -1]) innerprod = tf.matmul(inputs, weights) return innerprod, None def _ops_innerproduct(self, layer, graph, end_points=None, variables=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) weights = self._get_variable(layer.weights, name='weights') if variables: variables.append(weights) innerprod = tf.matmul(inputs, weights) return innerprod, None def _ops_pool2d(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) if layer.pool_type == 'max': pool_op = tf.nn.max_pool elif layer.pool_type == 'avg': pool_op = tf.nn.avg_pool else: raise NotImplementedError('Invalid pool type: %s' % layer.pool_type) pool = pool_op( inputs, layer.kernel, layer.strides, padding=layer.padding) return pool, None def _ops_upsampling2d(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) upsampling = tf.image.resize_nearest_neighbor( inputs, layer.outputs[1:3]) return upsampling, None def _ops_dropout(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) dropout = tf.nn.dropout(inputs, layer.keep_prob) return dropout, None def _ops_concat(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): if end_points: inputs = self._get_inputs(layer, end_points) else: inputs = [tf.Variable(tf.random_normal(inp)) for inp in layer.inputs] concat = tf.concat(axis=layer.dim, values=inputs) return concat, None def _ops_reshape(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) reshape = tf.reshape(inputs, layer.outputs) return reshape, None # Ermao def _ops_lrn(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) reshape = tf.nn.lrn(inputs) return reshape, None # Ermao def _ops_batchnorm(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) reshape = tf.nn.lrn(inputs) return reshape, None # Ermao def _ops_elementwise(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): # inputs = self._get_inputs(layer, end_points) if end_points: inputs = self._get_inputs(layer, end_points) else: inputs = [tf.Variable(tf.random_normal(inp)) for inp in layer.inputs] eltwise = tf.add(inputs[0], inputs[1], name='eltwise') return eltwise, None def _ops_softmax(self, layer, graph, end_points=None): # For simplicity, here combine softmax and loss with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) print(type(inputs)) loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.squeeze(inputs), labels=self._get_fake_targets( layer.outputs[0], layer.outputs[1]))) return loss, None def _ops_sigmoid(self, layer, graph, end_points=None): with graph.as_default(): with tf.device(self._device): inputs = self._get_inputs(layer, end_points) loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=inputs, labels=tf.zeros( layer.outputs))) return loss, None def _execute(self, layer_ops, bwd_ops, graph): with graph.as_default(): with tf.device(self._device): config = tf.ConfigProto( allow_soft_placement=False, log_device_placement=( self._logger.getEffectiveLevel() == logging.DEBUG), graph_options=tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L0))) ops_to_run = None if self.options.direction == 'forward': if layer_ops is None: return TimeMeasure() if isinstance(layer_ops, list): target_fwd_op = [tf.group(op) for op in layer_ops] else: # shape = tf.shape(layer_ops) #Ermao #print(layer_ops.shape) target_fwd_op = tf.group(layer_ops) #Ermao ops_to_run = target_fwd_op elif self.options.direction == 'backward': if bwd_ops is None: return TimeMeasure() else: if self.options.gradient_wrt == 'data': target = bwd_ops[0] elif self.options.gradient_wrt == 'filter': target = bwd_ops[1] else: self._logger.warning( 'TensorFlowProfiler cannot run two' 'backward ops for now.') return TimeMeasure() if target is None: return TimeMeasure() target_bwd_op = tf.group(target) #Ermao # target_bwd_op = tf.group(tf.shape(target)) #Ermao ops_to_run = target_bwd_op init = tf.global_variables_initializer() # Create a session and initialize variables. with tf.Session(config=config) as sess: # writer = tf.train.SummaryWriter('logs/', sess.graph) sess.run(init) # Ermao initiate nvml # nvmlInit() # handle = nvmlDeviceGetHandleByIndex(1) # Run the ops. durations = [] # durations_nvml = [] durations_smi = [] # power_vals_nvml = [] power_all = [] for i in range(self.options.num_warmup + self.options.num_iter): start_time = time.time() sess.run(ops_to_run) duration = time.time() - start_time if i >= self.options.num_warmup: # Mesure time in milliseconds. durations.append(duration * (10**3)) # pow_val = 100.0 # proc = subprocess.Popen("nvidia-smi -i 1", stdout=subprocess.PIPE, shell=True) #print(time.localtime()) #measure Power Ermao proc = subprocess.Popen(["nvidia-smi", "--query-gpu=power.draw", "--format=csv", "-lms", "1", "-i", "1"], stdout=subprocess.PIPE) for i in range(self.options.num_iter): start_time = time.time() sess.run(ops_to_run) duration = time.time() - start_time durations_smi.append(duration * (10 ** 3)) os.kill(proc.pid, signal.SIGTERM) for line in proc.stdout: if "power" not in line: power_all.append(float(line.split()[-2])) mean_time = np.mean(durations) max_power = np.max(power_all) mean_power_smi = np.mean(power_all) # print('Runtime: %.3f Power: %.3f' % (mean_time,mean_power_smi)) print('Runtime: %.3f Power: %.3f %.3f' % (mean_time, max_power, mean_power_smi)) # print('%.3f %.3f %.3f' % (mean_time, mean_time_nvml, mean_time_smi)) # print('%.3f %.3f %d' % (mean_power_nvml, mean_power_smi, len(power_all))) #print(power_vals_nvml) #print(power_all) #print('The average power is: %.2f' % mean_power) tf.reset_default_graph() return TimeMeasure(total_time=mean_time)
the-stack_106_18579
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class JobConstraints(Model): """ Specifies the execution constraints for jobs created on a schedule. :param max_wall_clock_time: The maximum elapsed time that the job may run, measured from the time the job starts. If the job does not complete within the time limit, the Batch service terminates it and any tasks that are still running. :type max_wall_clock_time: timedelta :param max_task_retry_count: The maximum number of times each task may be retried. The Batch service retries a task if its exit code is nonzero. :type max_task_retry_count: int """ _attribute_map = { 'max_wall_clock_time': {'key': 'maxWallClockTime', 'type': 'duration'}, 'max_task_retry_count': {'key': 'maxTaskRetryCount', 'type': 'int'}, } def __init__(self, max_wall_clock_time=None, max_task_retry_count=None): self.max_wall_clock_time = max_wall_clock_time self.max_task_retry_count = max_task_retry_count
the-stack_106_18580
from setuptools import setup with open('requirements.txt') as fp: requirements = fp.read().splitlines() setup( name='mrkd', description='Write man pages using Markdown, and convert them to Roff or HTML', version='0.1.3', author='Ryan Gonzalez', author_email='[email protected]', license='BSD', url='https://github.com/kirbyfan64/mrkd', py_modules=['mrkd'], entry_points={ 'console_scripts': [ 'mrkd=mrkd:main', ], }, package_data={ '': ['template.html'], }, install_requires=requirements, classifiers=[ 'Programming Language :: Python :: 3 :: Only', 'License :: OSI Approved :: BSD License', ], )
the-stack_106_18581
import lvgl as lv def set_value(bar, v): bar.set_value(v, lv.ANIM.OFF) def event_cb(e): dsc = lv.obj_draw_part_dsc_t.__cast__(e.get_param()) if dsc.part != lv.PART.INDICATOR: return obj= e.get_target() label_dsc = lv.draw_label_dsc_t() label_dsc.init() # label_dsc.font = LV_FONT_DEFAULT; value_txt = str(obj.get_value()) txt_size = lv.point_t() lv.txt_get_size(txt_size, value_txt, label_dsc.font, label_dsc.letter_space, label_dsc.line_space, lv.COORD.MAX, label_dsc.flag) txt_area = lv.area_t() # If the indicator is long enough put the text inside on the right if dsc.draw_area.get_width() > txt_size.x + 20: txt_area.x2 = dsc.draw_area.x2 - 5 txt_area.x1 = txt_area.x2 - txt_size.x + 1 label_dsc.color = lv.color_white() # If the indicator is still short put the text out of it on the right*/ else: txt_area.x1 = dsc.draw_area.x2 + 5 txt_area.x2 = txt_area.x1 + txt_size.x - 1 label_dsc.color = lv.color_black() txt_area.y1 = dsc.draw_area.y1 + (dsc.draw_area.get_height() - txt_size.y) // 2 txt_area.y2 = txt_area.y1 + txt_size.y - 1 lv.draw_label(txt_area, dsc.clip_area, label_dsc, value_txt, None) # # Custom drawer on the bar to display the current value # bar = lv.bar(lv.scr_act()) bar.add_event_cb(event_cb, lv.EVENT.DRAW_PART_END, None) bar.set_size(200, 20) bar.center() a = lv.anim_t() a.init() a.set_var(bar) a.set_values(0, 100) a.set_custom_exec_cb(lambda a,val: set_value(bar,val)) a.set_time(2000) a.set_playback_time(2000) a.set_repeat_count(lv.ANIM_REPEAT.INFINITE) lv.anim_t.start(a)
the-stack_106_18583
from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Typed, Integer, NoneSet, Set, Float, Bool, DateTime, String, Alias, Bool, Sequence, ) from openpyxl.descriptors.excel import ExtensionList, Relation from openpyxl.descriptors.nested import NestedInteger from openpyxl.descriptors.sequence import NestedSequence from openpyxl.xml.constants import SHEET_MAIN_NS from openpyxl.xml.functions import tostring from openpyxl.packaging.relationship import ( RelationshipList, Relationship, get_rels_path ) from openpyxl.worksheet.filters import ( AutoFilter, CellRange, ColorFilter, CustomFilter, CustomFilters, DateGroupItem, DynamicFilter, FilterColumn, Filters, IconFilter, SortCondition, SortState, Top10, ) class HierarchyUsage(Serialisable): tagname = "hierarchyUsage" hierarchyUsage = Integer() def __init__(self, hierarchyUsage=None, ): self.hierarchyUsage = hierarchyUsage class ColHierarchiesUsage(Serialisable): tagname = "colHierarchiesUsage" colHierarchyUsage = Sequence(expected_type=HierarchyUsage, ) __elements__ = ('colHierarchyUsage',) __attrs__ = ('count', ) def __init__(self, count=None, colHierarchyUsage=(), ): self.colHierarchyUsage = colHierarchyUsage @property def count(self): return len(self.colHierarchyUsage) class RowHierarchiesUsage(Serialisable): tagname = "rowHierarchiesUsage" rowHierarchyUsage = Sequence(expected_type=HierarchyUsage, ) __elements__ = ('rowHierarchyUsage',) __attrs__ = ('count', ) def __init__(self, count=None, rowHierarchyUsage=(), ): self.rowHierarchyUsage = rowHierarchyUsage @property def count(self): return len(self.rowHierarchyUsage) class PivotFilter(Serialisable): fld = Integer() mpFld = Integer(allow_none=True) type = Set(values=(['unknown', 'count', 'percent', 'sum', 'captionEqual', 'captionNotEqual', 'captionBeginsWith', 'captionNotBeginsWith', 'captionEndsWith', 'captionNotEndsWith', 'captionContains', 'captionNotContains', 'captionGreaterThan', 'captionGreaterThanOrEqual', 'captionLessThan', 'captionLessThanOrEqual', 'captionBetween', 'captionNotBetween', 'valueEqual', 'valueNotEqual', 'valueGreaterThan', 'valueGreaterThanOrEqual', 'valueLessThan', 'valueLessThanOrEqual', 'valueBetween', 'valueNotBetween', 'dateEqual', 'dateNotEqual', 'dateOlderThan', 'dateOlderThanOrEqual', 'dateNewerThan', 'dateNewerThanOrEqual', 'dateBetween', 'dateNotBetween', 'tomorrow', 'today', 'yesterday', 'nextWeek', 'thisWeek', 'lastWeek', 'nextMonth', 'thisMonth', 'lastMonth', 'nextQuarter', 'thisQuarter', 'lastQuarter', 'nextYear', 'thisYear', 'lastYear', 'yearToDate', 'Q1', 'Q2', 'Q3', 'Q4', 'M1', 'M2', 'M3', 'M4', 'M5', 'M6', 'M7', 'M8', 'M9', 'M10', 'M11', 'M12'])) evalOrder = Integer(allow_none=True) id = Integer() iMeasureHier = Integer(allow_none=True) iMeasureFld = Integer(allow_none=True) name = String(allow_none=True) description = String() stringValue1 = String() stringValue2 = String() autoFilter = Typed(expected_type=AutoFilter, ) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('autoFilter',) def __init__(self, fld=None, mpFld=None, type=None, evalOrder=None, id=None, iMeasureHier=None, iMeasureFld=None, name=None, description=None, stringValue1=None, stringValue2=None, autoFilter=None, extLst=None, ): self.fld = fld self.mpFld = mpFld self.type = type self.evalOrder = evalOrder self.id = id self.iMeasureHier = iMeasureHier self.iMeasureFld = iMeasureFld self.name = name self.description = description self.stringValue1 = stringValue1 self.stringValue2 = stringValue2 self.autoFilter = autoFilter self.extLst = extLst class PivotFilters(Serialisable): count = Integer() filter = Typed(expected_type=PivotFilter, allow_none=True) __elements__ = ('filter',) def __init__(self, count=None, filter=None, ): self.filter = filter class PivotTableStyle(Serialisable): tagname = "pivotTableStyleInfo" name = String(allow_none=True) showRowHeaders = Bool() showColHeaders = Bool() showRowStripes = Bool() showColStripes = Bool() showLastColumn = Bool() def __init__(self, name=None, showRowHeaders=None, showColHeaders=None, showRowStripes=None, showColStripes=None, showLastColumn=None, ): self.name = name self.showRowHeaders = showRowHeaders self.showColHeaders = showColHeaders self.showRowStripes = showRowStripes self.showColStripes = showColStripes self.showLastColumn = showLastColumn class MemberList(Serialisable): tagname = "members" level = Integer(allow_none=True) member = NestedSequence(expected_type=String, attribute="name") __elements__ = ('member',) def __init__(self, count=None, level=None, member=(), ): self.level = level self.member = member @property def count(self): return len(self.member) class MemberProperty(Serialisable): tagname = "mps" name = String(allow_none=True) showCell = Bool(allow_none=True) showTip = Bool(allow_none=True) showAsCaption = Bool(allow_none=True) nameLen = Integer(allow_none=True) pPos = Integer(allow_none=True) pLen = Integer(allow_none=True) level = Integer(allow_none=True) field = Integer() def __init__(self, name=None, showCell=None, showTip=None, showAsCaption=None, nameLen=None, pPos=None, pLen=None, level=None, field=None, ): self.name = name self.showCell = showCell self.showTip = showTip self.showAsCaption = showAsCaption self.nameLen = nameLen self.pPos = pPos self.pLen = pLen self.level = level self.field = field class PivotHierarchy(Serialisable): tagname = "pivotHierarchy" outline = Bool() multipleItemSelectionAllowed = Bool() subtotalTop = Bool() showInFieldList = Bool() dragToRow = Bool() dragToCol = Bool() dragToPage = Bool() dragToData = Bool() dragOff = Bool() includeNewItemsInFilter = Bool() caption = String(allow_none=True) mps = NestedSequence(expected_type=MemberProperty, count=True) members = Typed(expected_type=MemberList, allow_none=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('mps', 'members',) def __init__(self, outline=None, multipleItemSelectionAllowed=None, subtotalTop=None, showInFieldList=None, dragToRow=None, dragToCol=None, dragToPage=None, dragToData=None, dragOff=None, includeNewItemsInFilter=None, caption=None, mps=(), members=None, extLst=None, ): self.outline = outline self.multipleItemSelectionAllowed = multipleItemSelectionAllowed self.subtotalTop = subtotalTop self.showInFieldList = showInFieldList self.dragToRow = dragToRow self.dragToCol = dragToCol self.dragToPage = dragToPage self.dragToData = dragToData self.dragOff = dragOff self.includeNewItemsInFilter = includeNewItemsInFilter self.caption = caption self.mps = mps self.members = members self.extLst = extLst class Reference(Serialisable): tagname = "reference" field = Integer(allow_none=True) selected = Bool(allow_none=True) byPosition = Bool(allow_none=True) relative = Bool(allow_none=True) defaultSubtotal = Bool(allow_none=True) sumSubtotal = Bool(allow_none=True) countASubtotal = Bool(allow_none=True) avgSubtotal = Bool(allow_none=True) maxSubtotal = Bool(allow_none=True) minSubtotal = Bool(allow_none=True) productSubtotal = Bool(allow_none=True) countSubtotal = Bool(allow_none=True) stdDevSubtotal = Bool(allow_none=True) stdDevPSubtotal = Bool(allow_none=True) varSubtotal = Bool(allow_none=True) varPSubtotal = Bool(allow_none=True) x = NestedInteger(allow_none=True, attribute="v") extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('x',) def __init__(self, field=None, count=None, selected=None, byPosition=None, relative=None, defaultSubtotal=None, sumSubtotal=None, countASubtotal=None, avgSubtotal=None, maxSubtotal=None, minSubtotal=None, productSubtotal=None, countSubtotal=None, stdDevSubtotal=None, stdDevPSubtotal=None, varSubtotal=None, varPSubtotal=None, x=None, extLst=None, ): self.field = field self.selected = selected self.byPosition = byPosition self.relative = relative self.defaultSubtotal = defaultSubtotal self.sumSubtotal = sumSubtotal self.countASubtotal = countASubtotal self.avgSubtotal = avgSubtotal self.maxSubtotal = maxSubtotal self.minSubtotal = minSubtotal self.productSubtotal = productSubtotal self.countSubtotal = countSubtotal self.stdDevSubtotal = stdDevSubtotal self.stdDevPSubtotal = stdDevPSubtotal self.varSubtotal = varSubtotal self.varPSubtotal = varPSubtotal self.x = x @property def count(self): return len(self.field) class PivotArea(Serialisable): tagname = "pivotArea" references = NestedSequence(expected_type=Reference, count=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) field = Integer(allow_none=True) type = NoneSet(values=(['normal', 'data', 'all', 'origin', 'button', 'topEnd', 'topRight'])) dataOnly = Bool(allow_none=True) labelOnly = Bool(allow_none=True) grandRow = Bool(allow_none=True) grandCol = Bool(allow_none=True) cacheIndex = Bool(allow_none=True) outline = Bool(allow_none=True) offset = String(allow_none=True) collapsedLevelsAreSubtotals = Bool(allow_none=True) axis = NoneSet(values=(['axisRow', 'axisCol', 'axisPage', 'axisValues'])) fieldPosition = Integer(allow_none=True) __elements__ = ('references',) def __init__(self, references=(), extLst=None, field=None, type="normal", dataOnly=True, labelOnly=None, grandRow=None, grandCol=None, cacheIndex=None, outline=True, offset=None, collapsedLevelsAreSubtotals=None, axis=None, fieldPosition=None, ): self.references = references self.extLst = extLst self.field = field self.type = type self.dataOnly = dataOnly self.labelOnly = labelOnly self.grandRow = grandRow self.grandCol = grandCol self.cacheIndex = cacheIndex self.outline = outline self.offset = offset self.collapsedLevelsAreSubtotals = collapsedLevelsAreSubtotals self.axis = axis self.fieldPosition = fieldPosition class ChartFormat(Serialisable): tagname = "chartFormat" chart = Integer() format = Integer() series = Bool() pivotArea = Typed(expected_type=PivotArea, ) __elements__ = ('pivotArea',) def __init__(self, chart=None, format=None, series=None, pivotArea=None, ): self.chart = chart self.format = format self.series = series self.pivotArea = pivotArea class ConditionalFormat(Serialisable): tagname = "conditionalFormat" scope = Set(values=(['selection', 'data', 'field'])) type = NoneSet(values=(['all', 'row', 'column'])) priority = Integer() pivotAreas = NestedSequence(expected_type=PivotArea) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('pivotAreas',) def __init__(self, scope=None, type=None, priority=None, pivotAreas=(), extLst=None, ): self.scope = scope self.type = type self.priority = priority self.pivotAreas = pivotAreas self.extLst = extLst class Format(Serialisable): tagname = "format" action = NoneSet(values=(['blank', 'formatting', 'drill', 'formula'])) dxfId = Integer() pivotArea = Typed(expected_type=PivotArea, ) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('pivotArea',) def __init__(self, action=None, dxfId=None, pivotArea=None, extLst=None, ): self.action = action self.dxfId = dxfId self.pivotArea = pivotArea self.extLst = extLst class DataField(Serialisable): tagname = "dataField" name = String(allow_none=True) fld = Integer() subtotal = Set(values=(['average', 'count', 'countNums', 'max', 'min', 'product', 'stdDev', 'stdDevp', 'sum', 'var', 'varp'])) showDataAs = Set(values=(['normal', 'difference', 'percent', 'percentDiff', 'runTotal', 'percentOfRow', 'percentOfCol', 'percentOfTotal', 'index'])) baseField = Integer() baseItem = Integer() numFmtId = Integer(allow_none=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = () def __init__(self, name=None, fld=None, subtotal="sum", showDataAs="normal", baseField=-1, baseItem=1048832, numFmtId=None, extLst=None, ): self.name = name self.fld = fld self.subtotal = subtotal self.showDataAs = showDataAs self.baseField = baseField self.baseItem = baseItem self.numFmtId = numFmtId self.extLst = extLst class PageField(Serialisable): tagname = "pageField" fld = Integer() item = Integer(allow_none=True) hier = Integer() name = String(allow_none=True) cap = String(allow_none=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = () def __init__(self, fld=None, item=None, hier=None, name=None, cap=None, extLst=None, ): self.fld = fld self.item = item self.hier = hier self.name = name self.cap = cap self.extLst = extLst class RowColItem(Serialisable): tagname = "i" t = Set(values=(['data', 'default', 'sum', 'countA', 'avg', 'max', 'min', 'product', 'count', 'stdDev', 'stdDevP', 'var', 'varP', 'grand', 'blank'])) r = Integer() i = Integer() x = NestedInteger(allow_none=True, attribute="v") __elements__ = ('x',) def __init__(self, t="data", r=0, i=0, x=None, ): self.t = t self.r = r self.i = i self.x = x class RowColField(Serialisable): tagname = "field" x = Integer() def __init__(self, x=None, ): self.x = x class AutoSortScope(Serialisable): pivotArea = Typed(expected_type=PivotArea, ) __elements__ = ('pivotArea',) def __init__(self, pivotArea=None, ): self.pivotArea = pivotArea class FieldItem(Serialisable): tagname = "item" n = String(allow_none=True) t = Set(values=(['data', 'default', 'sum', 'countA', 'avg', 'max', 'min', 'product', 'count', 'stdDev', 'stdDevP', 'var', 'varP', 'grand', 'blank'])) h = Bool(allow_none=True) s = Bool(allow_none=True) sd = Bool(allow_none=True) f = Bool(allow_none=True) m = Bool(allow_none=True) c = Bool(allow_none=True) x = Integer(allow_none=True) d = Bool(allow_none=True) e = Bool(allow_none=True) def __init__(self, n=None, t="data", h=None, s=None, sd=True, f=None, m=None, c=None, x=None, d=None, e=None, ): self.n = n self.t = t self.h = h self.s = s self.sd = sd self.f = f self.m = m self.c = c self.x = x self.d = d self.e = e class PivotField(Serialisable): tagname = "pivotField" items = NestedSequence(expected_type=FieldItem, count=True) autoSortScope = Typed(expected_type=AutoSortScope, allow_none=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) name = String(allow_none=True) axis = NoneSet(values=(['axisRow', 'axisCol', 'axisPage', 'axisValues'])) dataField = Bool(allow_none=True) subtotalCaption = String(allow_none=True) showDropDowns = Bool(allow_none=True) hiddenLevel = Bool(allow_none=True) uniqueMemberProperty = String(allow_none=True) compact = Bool(allow_none=True) allDrilled = Bool(allow_none=True) numFmtId = Integer(allow_none=True) outline = Bool(allow_none=True) subtotalTop = Bool(allow_none=True) dragToRow = Bool(allow_none=True) dragToCol = Bool(allow_none=True) multipleItemSelectionAllowed = Bool(allow_none=True) dragToPage = Bool(allow_none=True) dragToData = Bool(allow_none=True) dragOff = Bool(allow_none=True) showAll = Bool(allow_none=True) insertBlankRow = Bool(allow_none=True) serverField = Bool(allow_none=True) insertPageBreak = Bool(allow_none=True) autoShow = Bool(allow_none=True) topAutoShow = Bool(allow_none=True) hideNewItems = Bool(allow_none=True) measureFilter = Bool(allow_none=True) includeNewItemsInFilter = Bool(allow_none=True) itemPageCount = Integer(allow_none=True) sortType = Set(values=(['manual', 'ascending', 'descending'])) dataSourceSort = Bool(allow_none=True) nonAutoSortDefault = Bool(allow_none=True) rankBy = Integer(allow_none=True) defaultSubtotal = Bool(allow_none=True) sumSubtotal = Bool(allow_none=True) countASubtotal = Bool(allow_none=True) avgSubtotal = Bool(allow_none=True) maxSubtotal = Bool(allow_none=True) minSubtotal = Bool(allow_none=True) productSubtotal = Bool(allow_none=True) countSubtotal = Bool(allow_none=True) stdDevSubtotal = Bool(allow_none=True) stdDevPSubtotal = Bool(allow_none=True) varSubtotal = Bool(allow_none=True) varPSubtotal = Bool(allow_none=True) showPropCell = Bool(allow_none=True) showPropTip = Bool(allow_none=True) showPropAsCaption = Bool(allow_none=True) defaultAttributeDrillState = Bool(allow_none=True) __elements__ = ('items', 'autoSortScope',) def __init__(self, items=(), autoSortScope=None, name=None, axis=None, dataField=None, subtotalCaption=None, showDropDowns=True, hiddenLevel=None, uniqueMemberProperty=None, compact=True, allDrilled=None, numFmtId=None, outline=True, subtotalTop=True, dragToRow=True, dragToCol=True, multipleItemSelectionAllowed=None, dragToPage=True, dragToData=True, dragOff=True, showAll=True, insertBlankRow=None, serverField=None, insertPageBreak=None, autoShow=None, topAutoShow=True, hideNewItems=None, measureFilter=None, includeNewItemsInFilter=None, itemPageCount=10, sortType="manual", dataSourceSort=None, nonAutoSortDefault=None, rankBy=None, defaultSubtotal=True, sumSubtotal=None, countASubtotal=None, avgSubtotal=None, maxSubtotal=None, minSubtotal=None, productSubtotal=None, countSubtotal=None, stdDevSubtotal=None, stdDevPSubtotal=None, varSubtotal=None, varPSubtotal=None, showPropCell=None, showPropTip=None, showPropAsCaption=None, defaultAttributeDrillState=None, extLst=None, ): self.items = items self.autoSortScope = autoSortScope self.name = name self.axis = axis self.dataField = dataField self.subtotalCaption = subtotalCaption self.showDropDowns = showDropDowns self.hiddenLevel = hiddenLevel self.uniqueMemberProperty = uniqueMemberProperty self.compact = compact self.allDrilled = allDrilled self.numFmtId = numFmtId self.outline = outline self.subtotalTop = subtotalTop self.dragToRow = dragToRow self.dragToCol = dragToCol self.multipleItemSelectionAllowed = multipleItemSelectionAllowed self.dragToPage = dragToPage self.dragToData = dragToData self.dragOff = dragOff self.showAll = showAll self.insertBlankRow = insertBlankRow self.serverField = serverField self.insertPageBreak = insertPageBreak self.autoShow = autoShow self.topAutoShow = topAutoShow self.hideNewItems = hideNewItems self.measureFilter = measureFilter self.includeNewItemsInFilter = includeNewItemsInFilter self.itemPageCount = itemPageCount self.sortType = sortType self.dataSourceSort = dataSourceSort self.nonAutoSortDefault = nonAutoSortDefault self.rankBy = rankBy self.defaultSubtotal = defaultSubtotal self.sumSubtotal = sumSubtotal self.countASubtotal = countASubtotal self.avgSubtotal = avgSubtotal self.maxSubtotal = maxSubtotal self.minSubtotal = minSubtotal self.productSubtotal = productSubtotal self.countSubtotal = countSubtotal self.stdDevSubtotal = stdDevSubtotal self.stdDevPSubtotal = stdDevPSubtotal self.varSubtotal = varSubtotal self.varPSubtotal = varPSubtotal self.showPropCell = showPropCell self.showPropTip = showPropTip self.showPropAsCaption = showPropAsCaption self.defaultAttributeDrillState = defaultAttributeDrillState class Location(Serialisable): tagname = "location" ref = String() firstHeaderRow = Integer() firstDataRow = Integer() firstDataCol = Integer() rowPageCount = Integer(allow_none=True) colPageCount = Integer(allow_none=True) def __init__(self, ref=None, firstHeaderRow=None, firstDataRow=None, firstDataCol=None, rowPageCount=None, colPageCount=None, ): self.ref = ref self.firstHeaderRow = firstHeaderRow self.firstDataRow = firstDataRow self.firstDataCol = firstDataCol self.rowPageCount = rowPageCount self.colPageCount = colPageCount class TableDefinition(Serialisable): mime_type = "application/vnd.openxmlformats-officedocument.spreadsheetml.pivotTable+xml" rel_type = "http://schemas.openxmlformats.org/officeDocument/2006/relationships/pivotTable" _id = 1 _path = "/xl/pivotTables/pivotTable{0}.xml" tagname = "pivotTableDefinition" cache = None name = String() cacheId = Integer() dataOnRows = Bool() dataPosition = Integer(allow_none=True) dataCaption = String() grandTotalCaption = String(allow_none=True) errorCaption = String(allow_none=True) showError = Bool() missingCaption = String(allow_none=True) showMissing = Bool() pageStyle = String(allow_none=True) pivotTableStyle = String(allow_none=True) vacatedStyle = String(allow_none=True) tag = String(allow_none=True) updatedVersion = Integer() minRefreshableVersion = Integer() asteriskTotals = Bool() showItems = Bool() editData = Bool() disableFieldList = Bool() showCalcMbrs = Bool() visualTotals = Bool() showMultipleLabel = Bool() showDataDropDown = Bool() showDrill = Bool() printDrill = Bool() showMemberPropertyTips = Bool() showDataTips = Bool() enableWizard = Bool() enableDrill = Bool() enableFieldProperties = Bool() preserveFormatting = Bool() useAutoFormatting = Bool() pageWrap = Integer() pageOverThenDown = Bool() subtotalHiddenItems = Bool() rowGrandTotals = Bool() colGrandTotals = Bool() fieldPrintTitles = Bool() itemPrintTitles = Bool() mergeItem = Bool() showDropZones = Bool() createdVersion = Integer() indent = Integer() showEmptyRow = Bool() showEmptyCol = Bool() showHeaders = Bool() compact = Bool() outline = Bool() outlineData = Bool() compactData = Bool() published = Bool() gridDropZones = Bool() immersive = Bool() multipleFieldFilters = Bool() chartFormat = Integer() rowHeaderCaption = String(allow_none=True) colHeaderCaption = String(allow_none=True) fieldListSortAscending = Bool() mdxSubqueries = Bool() customListSort = Bool(allow_none=True) autoFormatId = Integer(allow_none=True) applyNumberFormats = Bool() applyBorderFormats = Bool() applyFontFormats = Bool() applyPatternFormats = Bool() applyAlignmentFormats = Bool() applyWidthHeightFormats = Bool() location = Typed(expected_type=Location, ) pivotFields = NestedSequence(expected_type=PivotField, count=True) rowFields = NestedSequence(expected_type=RowColField, count=True) rowItems = NestedSequence(expected_type=RowColItem, count=True) colFields = NestedSequence(expected_type=RowColField, count=True) colItems = NestedSequence(expected_type=RowColItem, count=True) pageFields = NestedSequence(expected_type=PageField, count=True) dataFields = NestedSequence(expected_type=DataField, count=True) formats = NestedSequence(expected_type=Format, count=True) conditionalFormats = NestedSequence(expected_type=ConditionalFormat, count=True) chartFormats = NestedSequence(expected_type=ChartFormat, count=True) pivotHierarchies = NestedSequence(expected_type=PivotHierarchy, count=True) pivotTableStyleInfo = Typed(expected_type=PivotTableStyle, allow_none=True) filters = NestedSequence(expected_type=PivotFilter, count=True) rowHierarchiesUsage = Typed(expected_type=RowHierarchiesUsage, allow_none=True) colHierarchiesUsage = Typed(expected_type=ColHierarchiesUsage, allow_none=True) extLst = Typed(expected_type=ExtensionList, allow_none=True) id = Relation() __elements__ = ('location', 'pivotFields', 'rowFields', 'rowItems', 'colFields', 'colItems', 'pageFields', 'dataFields', 'formats', 'conditionalFormats', 'chartFormats', 'pivotHierarchies', 'pivotTableStyleInfo', 'filters', 'rowHierarchiesUsage', 'colHierarchiesUsage',) def __init__(self, name=None, cacheId=None, dataOnRows=False, dataPosition=None, dataCaption=None, grandTotalCaption=None, errorCaption=None, showError=False, missingCaption=None, showMissing=True, pageStyle=None, pivotTableStyle=None, vacatedStyle=None, tag=None, updatedVersion=0, minRefreshableVersion=0, asteriskTotals=False, showItems=True, editData=False, disableFieldList=False, showCalcMbrs=True, visualTotals=True, showMultipleLabel=True, showDataDropDown=True, showDrill=True, printDrill=False, showMemberPropertyTips=True, showDataTips=True, enableWizard=True, enableDrill=True, enableFieldProperties=True, preserveFormatting=True, useAutoFormatting=False, pageWrap=0, pageOverThenDown=False, subtotalHiddenItems=False, rowGrandTotals=True, colGrandTotals=True, fieldPrintTitles=False, itemPrintTitles=False, mergeItem=False, showDropZones=True, createdVersion=0, indent=1, showEmptyRow=False, showEmptyCol=False, showHeaders=True, compact=True, outline=False, outlineData=False, compactData=True, published=False, gridDropZones=False, immersive=True, multipleFieldFilters=None, chartFormat=0, rowHeaderCaption=None, colHeaderCaption=None, fieldListSortAscending=None, mdxSubqueries=None, customListSort=None, autoFormatId=None, applyNumberFormats=False, applyBorderFormats=False, applyFontFormats=False, applyPatternFormats=False, applyAlignmentFormats=False, applyWidthHeightFormats=False, location=None, pivotFields=(), rowFields=(), rowItems=(), colFields=(), colItems=(), pageFields=(), dataFields=(), formats=(), conditionalFormats=(), chartFormats=(), pivotHierarchies=(), pivotTableStyleInfo=None, filters=(), rowHierarchiesUsage=None, colHierarchiesUsage=None, extLst=None, id=None, ): self.name = name self.cacheId = cacheId self.dataOnRows = dataOnRows self.dataPosition = dataPosition self.dataCaption = dataCaption self.grandTotalCaption = grandTotalCaption self.errorCaption = errorCaption self.showError = showError self.missingCaption = missingCaption self.showMissing = showMissing self.pageStyle = pageStyle self.pivotTableStyle = pivotTableStyle self.vacatedStyle = vacatedStyle self.tag = tag self.updatedVersion = updatedVersion self.minRefreshableVersion = minRefreshableVersion self.asteriskTotals = asteriskTotals self.showItems = showItems self.editData = editData self.disableFieldList = disableFieldList self.showCalcMbrs = showCalcMbrs self.visualTotals = visualTotals self.showMultipleLabel = showMultipleLabel self.showDataDropDown = showDataDropDown self.showDrill = showDrill self.printDrill = printDrill self.showMemberPropertyTips = showMemberPropertyTips self.showDataTips = showDataTips self.enableWizard = enableWizard self.enableDrill = enableDrill self.enableFieldProperties = enableFieldProperties self.preserveFormatting = preserveFormatting self.useAutoFormatting = useAutoFormatting self.pageWrap = pageWrap self.pageOverThenDown = pageOverThenDown self.subtotalHiddenItems = subtotalHiddenItems self.rowGrandTotals = rowGrandTotals self.colGrandTotals = colGrandTotals self.fieldPrintTitles = fieldPrintTitles self.itemPrintTitles = itemPrintTitles self.mergeItem = mergeItem self.showDropZones = showDropZones self.createdVersion = createdVersion self.indent = indent self.showEmptyRow = showEmptyRow self.showEmptyCol = showEmptyCol self.showHeaders = showHeaders self.compact = compact self.outline = outline self.outlineData = outlineData self.compactData = compactData self.published = published self.gridDropZones = gridDropZones self.immersive = immersive self.multipleFieldFilters = multipleFieldFilters self.chartFormat = chartFormat self.rowHeaderCaption = rowHeaderCaption self.colHeaderCaption = colHeaderCaption self.fieldListSortAscending = fieldListSortAscending self.mdxSubqueries = mdxSubqueries self.customListSort = customListSort self.autoFormatId = autoFormatId self.applyNumberFormats = applyNumberFormats self.applyBorderFormats = applyBorderFormats self.applyFontFormats = applyFontFormats self.applyPatternFormats = applyPatternFormats self.applyAlignmentFormats = applyAlignmentFormats self.applyWidthHeightFormats = applyWidthHeightFormats self.location = location self.pivotFields = pivotFields self.rowFields = rowFields self.rowItems = rowItems self.colFields = colFields self.colItems = colItems self.pageFields = pageFields self.dataFields = dataFields self.formats = formats self.conditionalFormats = conditionalFormats self.chartFormats = chartFormats self.pivotHierarchies = pivotHierarchies self.pivotTableStyleInfo = pivotTableStyleInfo self.filters = filters self.rowHierarchiesUsage = rowHierarchiesUsage self.colHierarchiesUsage = colHierarchiesUsage self.extLst = extLst self.id = id def to_tree(self): tree = super(TableDefinition, self).to_tree() tree.set("xmlns", SHEET_MAIN_NS) return tree @property def path(self): return self._path.format(self._id) def _write(self, archive, manifest): """ Add to zipfile and update manifest """ self._write_rels(archive, manifest) xml = tostring(self.to_tree()) archive.writestr(self.path[1:], xml) manifest.append(self) def _write_rels(self, archive, manifest): """ Write the relevant child objects and add links """ if self.cache is None: return rels = RelationshipList() r = Relationship(Type=self.cache.rel_type, Target=self.cache.path) rels.append(r) self.id = r.id if self.cache.path[1:] not in archive.namelist(): self.cache._write(archive, manifest) path = get_rels_path(self.path) xml = tostring(rels.to_tree()) archive.writestr(path[1:], xml)
the-stack_106_18584
from django.core.management.base import BaseCommand, CommandError from pybb import compat from pybb.models import Forum class Command(BaseCommand): help = "Set and remove moderator to all forums" args = "{add|del} username" def handle(self, *args, **kwargs): if len(args) != 2: raise CommandError("Enter action {add|del} and username") action, username = args if action not in ("add", "del"): raise AssertionError user = compat.get_user_model().objects.get( **{compat.get_username_field(): username} ) forums = Forum.objects.all() for forum in forums: forum.moderators.remove(user) if action == "add": forum.moderators.add(user)
the-stack_106_18585
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """An abstraction around the source and classfiles for a Java application.""" from builtins import object import os import os.path import google _SDKROOT = os.path.dirname(os.path.dirname(google.__file__)) class JavaApplication(object): """An abstraction around the compiled class files for a Java application.""" def __init__(self, module_configuration): """Initializer for Module. Args: module_configuration: An application_configuration.ModuleConfiguration instance storing the configuration data for a module. """ self._module_configuration = module_configuration def get_environment(self): """Return the environment that should be used to run the Java executable.""" environ = {'SDKROOT': _SDKROOT, 'PWD': self._module_configuration.application_root, 'TZ': 'UTC', 'APPLICATION_ID': self._module_configuration.application} for var in ('PATH', 'SYSTEMROOT', 'USER'): if var in os.environ: environ[var] = os.environ[var] return environ
the-stack_106_18587
import os import dash import dash_core_components as dcc import dash_html_components as html import pytest import pandas as pd import numpy as np from dash.dependencies import Input, Output from dash.testing.wait import until @pytest.mark.parametrize( "fmt", ("csv", "json", "html", "feather", "parquet", "stata", "pickle") ) def test_dldf001_download_dataframe(fmt, dash_dcc): df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 1, 5, 6], "c": ["x", "x", "y", "y"]}) reader = getattr(pd, "read_{}".format(fmt)) # e.g. read_csv writer = getattr(df, "to_{}".format(fmt)) # e.g. to_csv filename = "df.{}".format(fmt) # Create app. app = dash.Dash(__name__, prevent_initial_callbacks=True) app.layout = html.Div( [html.Button("Click me", id="btn"), dcc.Download(id="download")] ) @app.callback(Output("download", "data"), Input("btn", "n_clicks")) def download(_): # For csv and html, the index must be removed to preserve the structure. if fmt in ["csv", "html", "excel"]: return dcc.send_data_frame(writer, filename, index=False) # For csv and html, the index must be removed to preserve the structure. if fmt in ["stata"]: a = dcc.send_data_frame(writer, filename, write_index=False) return a # For other formats, no modifications are needed. return dcc.send_data_frame(writer, filename) dash_dcc.start_server(app) # Check that there is nothing before clicking fp = os.path.join(dash_dcc.download_path, filename) assert not os.path.isfile(fp) dash_dcc.find_element("#btn").click() # Check that a file has been download, and that it's content matches the original data frame. until(lambda: os.path.exists(fp), 10) df_download = reader(fp) if isinstance(df_download, list): df_download = df_download[0] # For stata data, pandas equals fails. Hence, a custom equals is used instead. assert df.columns.equals(df_download.columns) assert df.index.equals(df_download.index) np.testing.assert_array_equal(df.values, df_download.values) assert dash_dcc.get_logs() == []
the-stack_106_18589
from django.contrib.auth.decorators import login_required from django.http import HttpResponse from django.shortcuts import render from bootcamp.activities.models import Notification from bootcamp.decorators import ajax_required @login_required def notifications(request): user = request.user notifications = Notification.objects.filter(to_user=user) unread = Notification.objects.filter(to_user=user, is_read=False) for notification in unread: notification.is_read = True notification.save() return render(request, 'activities/notifications.html', {'notifications': notifications}) @login_required @ajax_required def last_notifications(request): user = request.user notifications = Notification.objects.filter(to_user=user, is_read=False)[:5] for notification in notifications: notification.is_read = True notification.save() return render(request, 'activities/last_notifications.html', {'notifications': notifications}) @login_required @ajax_required def check_notifications(request): user = request.user notifications = Notification.objects.filter(to_user=user, is_read=False)[:5] return HttpResponse(len(notifications))
the-stack_106_18590
import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib as mpl import matplotlib.pylab as plt from mypy.grid_toolkit import shiftgrid from PySHTOOLS import SHExpandDH, MakeGrid2D from __init__ import * def test1(): mpl.rcParams['contour.negative_linestyle'] = 'solid' data = np.loadtxt(join(test_dir, "dyntopoC2E5_l1-22.txt")) cilm = SHExpandDH(data[:-1,:-1], 8) grid = MakeGrid2D(cilm, 181, 361) a, b = grid.shape latitudes = np.linspace(90, -90, a) centeredLons = np.linspace(-180, 180, b) LONS, LATS = np.meshgrid(centeredLons, latitudes) grid = shiftgrid(grid, b/2) Figure = plt.figure(figsize=(22,10)) Map = Basemap(projection='robin', lon_0=0, resolution='l') x, y = Map(LONS, LATS) fcp = Map.contourf(x, y, grid, 30, interpolation="bicubic", alpha=1.0, cmap=mpl.cm.Spectral) levels = fcp.get_array() cp = Map.contour(x, y, grid, 30, interpolation="bicubic", linewidth=0.5, colors='k', alpha=0.5) cb = Map.colorbar(fcp, "bottom", size="5%", pad='5%', extendrect=False) cb.ax.tick_params(labelsize=18) cb.solids.set_edgecolor("face") cb.set_label("Km",fontsize=18) cb.ax.set_aspect(0.047) Map.drawcoastlines(linewidth=1) Map.drawmapboundary(linewidth=1) Map.drawmeridians([-150,-100,-50,0,50,100, 150],labels=[1,1,1,0],fontsize=18) Map.drawparallels([-60,-30,0,30,60],labels=[1,1,1,1],fontsize=18) def test2(): data = periodic2D(50, 100, 3, 4) cilm = SHExpandDH(data, 5) grid = MakeGrid2D(cilm, 51, 101) a, b = grid.shape plt.figure() plt.imshow(grid) # plt.show() if __name__ =="__main__": print("Test 1") test1() print("Test 2") test2() plt.show()
the-stack_106_18591
#!/bin/env python # -*- coding: utf-8 -*- ## # test_problem.py: Checks correctness of azure.quantum.optimization module. ## # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. ## import unittest from unittest.mock import Mock, patch from typing import TYPE_CHECKING from azure.quantum.optimization import Problem, ProblemType, Term, GroupedTerm import azure.quantum.optimization.problem from common import expected_terms import numpy import os class TestProblemClass(unittest.TestCase): def setUp(self): self.mock_ws = Mock() self.mock_ws.get_container_uri = Mock(return_value = "mock_container_uri/foo/bar") ## QUBO problem self.problem = Problem(name="test") self.problem.terms = [ Term(c=3, indices=[1, 0]), Term(c=5, indices=[2, 0]), ] self.problem.uploaded_blob_uri = "mock_blob_uri" # Create equivalent NPZ file for translation self.problem.row = numpy.array([1, 2]) self.problem.col = numpy.array([0, 0]) self.problem.data = numpy.array([3, 5]) # If arguments are passed to savez with no keywords # then default names are used (e.g. "arr_0", "arr_1", etc) # otherwise it uses those supplied by user (e.g. "row", "col", etc) self.default_qubo_filename = "default_qubo.npz" numpy.savez(self.default_qubo_filename, self.problem.row, self.problem.col, self.problem.data ) self.with_keywords_qubo_filename = "with_keywords_qubo.npz" numpy.savez(self.with_keywords_qubo_filename, row=self.problem.row, col=self.problem.col, data=self.problem.data ) ## PUBO problem self.pubo_problem = Problem(name="test") self.pubo_problem.terms = [ Term(c=3, indices=[1, 0, 1]), Term(c=5, indices=[2, 0, 0]), Term(c=-1, indices=[1, 0, 0]), Term(c=4, indices=[0, 2, 1]) ] # Create equivalent NPZ file for translation self.pubo_problem.i = numpy.array([1, 2, 1, 0]) self.pubo_problem.j = numpy.array([0, 0, 0, 2]) self.pubo_problem.k = numpy.array([1, 0, 0, 1]) self.pubo_problem.c = numpy.array([3, 5, -1, 4]) self.default_pubo_filename = "default_pubo.npz" numpy.savez(self.default_pubo_filename, self.pubo_problem.i, self.pubo_problem.j, self.pubo_problem.k, self.pubo_problem.c ) self.with_keywords_pubo_filename = "with_keywords_pubo.npz" numpy.savez(self.with_keywords_pubo_filename, i=self.pubo_problem.i, j=self.pubo_problem.j, k=self.pubo_problem.k, c=self.pubo_problem.c ) def test_upload(self): with patch("azure.quantum.optimization.problem.BlobClient") as mock_blob_client, \ patch("azure.quantum.optimization.problem.ContainerClient") as mock_container_client, \ patch("azure.quantum.job.base_job.upload_blob") as mock_upload: mock_blob_client.from_blob_url.return_value = Mock() mock_container_client.from_container_url.return_value = Mock() assert(self.pubo_problem.uploaded_blob_uri == None) actual_result = self.pubo_problem.upload(self.mock_ws) mock_upload.get_blob_uri_with_sas_token = Mock() azure.quantum.job.base_job.upload_blob.assert_called_once() def test_download(self): with patch("azure.quantum.optimization.problem.download_blob") as mock_download_blob,\ patch("azure.quantum.optimization.problem.BlobClient") as mock_blob_client,\ patch("azure.quantum.optimization.problem.ContainerClient") as mock_container_client: mock_download_blob.return_value=expected_terms() mock_blob_client.from_blob_url.return_value = Mock() mock_container_client.from_container_url.return_value = Mock() actual_result = self.problem.download(self.mock_ws) assert actual_result.name == "test" azure.quantum.optimization.problem.download_blob.assert_called_once() def test_get_term(self): terms = self.problem.get_terms(0) assert len(terms) == 2 def test_get_term_raise_exception(self): test_prob = Problem(name="random") with self.assertRaises(Exception): test_prob.get_terms(id=0) def test_grouped_type(self): problem = Problem(name="test_pubo_grouped", problem_type=ProblemType.pubo) problem.terms = [ Term(c=3, indices=[1, 0, 1]), Term(c=5, indices=[2, 0, 0]), Term(c=-1, indices=[1, 0, 0]), Term(c=4, indices=[0, 2, 1]) ] assert problem.problem_type is ProblemType.pubo problem.add_slc_term([(3,0), (2,1), (-1,None)]) assert problem.problem_type is ProblemType.pubo_grouped def test_create_npz_file_default(self): # When no keywords are supplied, columns have default names # e.g. "arr_0", "arr_1" etc # QUBO npz_file = numpy.load(self.default_qubo_filename) num_columns = 3 self.assertEqual(len(npz_file.files), num_columns) for i in range(num_columns): self.assertEqual(npz_file.files[i], "arr_%s" % i) # PUBO npz_file = numpy.load(self.default_pubo_filename) num_columns = 4 self.assertEqual(len(npz_file.files), num_columns) for i in range(num_columns): self.assertEqual(npz_file.files[i], "arr_%s" % i) def test_create_npz_file_with_keywords(self): # When keywords are supplied, columns use these names # QUBO npz_file = numpy.load(self.with_keywords_qubo_filename) keywords = ["row", "col", "data"] self.assertEqual(len(npz_file.files), len(keywords)) for i in range(len(keywords)): self.assertEqual(npz_file.files[i], keywords[i]) # PUBO npz_file = numpy.load(self.with_keywords_pubo_filename) keywords = ["i", "j", "k", "c"] self.assertEqual(len(npz_file.files), len(keywords)) for i in range(len(keywords)): self.assertEqual(npz_file.files[i], keywords[i]) def test_valid_npz(self): default_qubo = numpy.load(self.default_qubo_filename) with_keywords_qubo = numpy.load(self.with_keywords_qubo_filename) default_pubo = numpy.load(self.default_pubo_filename) with_keywords_pubo = numpy.load(self.with_keywords_pubo_filename) ## Valid files self.assertTrue(self.problem.is_valid_npz(default_qubo.files)) self.assertTrue(self.problem.is_valid_npz( default_qubo.files, ["arr_0", "arr_1"], "arr_2") ) self.assertTrue(self.problem.is_valid_npz( with_keywords_qubo.files, ["col", "row"], "data") ) self.assertTrue(self.pubo_problem.is_valid_npz( default_pubo.files, ["arr_0", "arr_1", "arr_2"], "arr_3") ) self.assertTrue(self.pubo_problem.is_valid_npz( with_keywords_pubo.files, ["i", "j", "k"], "c") ) ## Invalid files # Too many columns self.assertFalse(self.problem.is_valid_npz( default_qubo.files, ["arr_0", "arr_1", "arr_2"], "arr_3") ) self.assertFalse(self.pubo_problem.is_valid_npz( default_pubo.files, ["arr_0", "arr_1", "arr_2", "arr_3"], "arr_4") ) # Wrong column names self.assertFalse(self.problem.is_valid_npz( with_keywords_qubo.files, ["i", "j"], "k") ) self.assertFalse(self.pubo_problem.is_valid_npz( with_keywords_pubo.files, ["x", "y", "z"], "c") ) # No indices column names self.assertFalse(self.problem.is_valid_npz( with_keywords_qubo.files, [], "data") ) # Wrong coefficient column name self.assertFalse(self.problem.is_valid_npz( with_keywords_qubo.files, ["row", "col"], "") ) def test_terms_from_npz_qubo(self): # Exceptions are raised for invalid file paths or files with incorrect naming self.assertRaises(Exception, self.problem.terms_from_npz, "invalid_file_path.npz") self.assertRaises( Exception, self.problem.terms_from_npz, self.default_qubo_filename, ["arr_0", "arr_1", "arr_2"], "arr_3" ) # Terms are produced for valid files self.assertEqual( self.problem.terms_from_npz(self.default_qubo_filename), self.problem.terms ) self.assertEqual( self.problem.terms_from_npz( self.with_keywords_qubo_filename, ["row", "col"], "data" ), self.problem.terms ) def test_terms_from_npz_pubo(self): # Exceptions are raised for invalid file paths or files with incorrect naming self.assertRaises(Exception, self.pubo_problem.terms_from_npz, "invalid_file_path.npz") self.assertRaises( Exception, self.pubo_problem.terms_from_npz, self.default_pubo_filename, ["arr_0", "arr_1", "arr_2", "arr_3"], "arr_4" ) # Terms are produced for valid files self.assertEqual( self.pubo_problem.terms_from_npz( self.default_pubo_filename, ["arr_0", "arr_1", "arr_2"], "arr_3" ), self.pubo_problem.terms ) self.assertEqual( self.pubo_problem.terms_from_npz( self.with_keywords_pubo_filename, ["i", "j", "k"], "c" ), self.pubo_problem.terms ) def tearDown(self): test_files = [ self.default_qubo_filename, self.with_keywords_qubo_filename, self.default_pubo_filename, self.with_keywords_pubo_filename ] for test_file in test_files: if os.path.isfile(test_file): os.remove(test_file)
the-stack_106_18592
import torch.nn as nn import torch import torch.nn.functional as F class CpyAndW(nn.Module): def __init__(self, num_heads, seq_length, sample_length): super(CpyAndW, self).__init__() self.num_heads = num_heads self.seq_length = seq_length self.downsample = nn.Linear(seq_length,sample_length) self.ac = nn.LeakyReLU(inplace=True) for i in range(self.num_heads): setattr(self, 'weight_%d' % i, self.model(self.seq_length)) def model(self, sample_length): model = nn.Sequential( nn.Linear(sample_length, sample_length), nn.LeakyReLU(inplace=True), ) return model def forward(self, x): down_activate=self.ac(self.downsample(x)) output = [] for i in range(self.num_heads): output.append(getattr(self, 'weight_%d' % i)(down_activate).unsqueeze(1)) # (batch,head,seq) output_value = torch.cat(output, dim=1) return output_value class DownSample(nn.Module): def __init__(self,seq_length,channel): ''' ''' super(DownSample,self).__init__() self.channel=channel self.down_layer=nn.Conv1d(channel,channel,9,4,3) self.norm_layer=nn.BatchNorm1d(1) self.ac=nn.LeakyReLU(inplace=True) def forward(self,x): x=x.view(x.size(0),self.channel,x.size(1)).contiguous() downsample_out=self.ac(self.norm_layer(self.down_layer(x))) final_out=downsample_out.view(final_out.size(0),final_out.size(1)).contiguous() return final_out class Attention(nn.Module): ''' self attention ''' def __init__(self, seq_length,dropout=True): ''' sample_length ''' super(Attention,self).__init__() self.seq_length=seq_length # self.sample_length=sample_length self.dropout=nn.Dropout(0.3) self.query=nn.Linear(seq_length,seq_length) self.key=nn.Linear(seq_length,seq_length) self.value=nn.Linear(seq_length,seq_length) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self,x): # b,seq_length b,seq=x.size() q=self.query(x).view(b,-1,seq) # b,c,seq_length k=self.key(x).view(b,-1,seq) # b,c,seq_length v=self.value(x).view(b,-1,seq) # b,c,seq_length attention=torch.bmm(q.permute(0,2,1).contiguous(),k) #b,seq,seq attention=self.softmax(attention) attention=self.dropout(attention) self_attention=torch.bmm(v,attention) #b,c,seq self_attention=self_attention.view(b,seq) out=self_attention + x return out class MultiHeadAttention(nn.Module): '''multi-head attention''' def __init__(self, num_heads, seq_length, sample_length, dropout=True): super(MultiHeadAttention, self).__init__() self.seq_length = seq_length self.copy_and_weight = CpyAndW(num_heads, seq_length, sample_length) self.dropout = nn.Dropout(0.2) self.query = nn.Linear(sample_length, sample_length) self.key = nn.Linear(sample_length, sample_length) self.value = nn.Linear(sample_length, sample_length) self.final_layer = nn.Linear(num_heads, 1) def transpose_the_sequence(self, x): '''shape the sequence''' # (batch,head,seq) -> (batch,head,seq,1) new_x = x.unsqueeze(-1) return new_x def forward(self, x): input_x = self.copy_and_weight(x) q = self.query(input_x) k = self.key(input_x) v = self.value(input_x) q = self.transpose_the_sequence(q) k = self.transpose_the_sequence(k) v = self.transpose_the_sequence(v) attention_scores = torch.matmul(q, k.transpose(-1, -2)) attention_scores /= self.seq_length ** 0.5 attention_prob = F.softmax(attention_scores, dim=-1) # attention_prob = self.dropout(attention_prob) contex_layer = torch.matmul(attention_prob, v) contex_layer = self.dropout(contex_layer) # (batch,head,seq,1) -> (batch,seq,head) contex_layer = contex_layer.view(contex_layer.size( 0), contex_layer.size(1), contex_layer.size(2)).contiguous() # out=self.final_layer(contex_layer) return F.leaky_relu(contex_layer)
the-stack_106_18593
from numpy import log, outer, sqrt, zeros from numpy.random import shuffle from cogent3.format.table import formatted_cells, rich_html, simple_format from cogent3.maths.stats import chisqprob from cogent3.maths.stats.test import G_fit, G_ind from cogent3.util.dict_array import DictArray, DictArrayTemplate __author__ = "Gavin Huttley" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["Gavin Huttley"] __license__ = "BSD-3" __version__ = "2020.2.7a" __maintainer__ = "Gavin Huttley" __email__ = "[email protected]" __status__ = "Alpha" def _get_bin(bins, value): """returns bin index corresponding to value""" pass # todo this should probably go into different module def shuffled_matrix(matrix): """returns a randomly sampled matrix with same marginals""" # SLOW algorithm expanded_row = [] for i, row_total in enumerate(matrix.sum(axis=1)): expanded_row.extend([i] * row_total) expanded_col = [] for i, col_total in enumerate(matrix.sum(axis=0)): expanded_col.extend([i] * col_total) shuffled = zeros(matrix.shape, dtype=int) shuffle(expanded_col) for i, j in zip(expanded_row, expanded_col): shuffled[i, j] += 1 return shuffled # todo following functions should be moved into stats.test and replace # or merge with the older implementations def calc_expected(observed, pseudo_count=0): """returns the expected array from product of marginal frequencies""" if pseudo_count and (observed == 0).any(): observed = observed.copy() observed += pseudo_count num_dim = len(observed.shape) if num_dim == 2: rsum = observed.sum(axis=1) rfreq = rsum / rsum.sum() csum = observed.sum(axis=0) cfreq = csum / csum.sum() expecteds = outer(rfreq, cfreq) * rsum.sum() elif num_dim == 1: expecteds = [observed.mean()] * observed.shape[0] else: raise NotImplementedError("too many dimensions") return expecteds def calc_chisq(observed, expected): """returns the chisq statistic for the two numpy arrays""" stat = (observed - expected) ** 2 stat = (stat / expected).sum() return stat def calc_G(observed, expected, pseudo_count=0, williams=True): """returns the G statistic for the two numpy arrays""" num_dim = len(observed.shape) df = observed.shape[0] - 1 if num_dim == 2: df *= observed.shape[1] - 1 non_zero = observed != 0 if not non_zero.all(): G = ( 2 * ( observed[non_zero] * (log(observed[non_zero]) - log(expected[non_zero])) ).sum() ) else: G = 2 * (observed * (log(observed) - log(expected))).sum() if williams and num_dim > 1: total = observed.sum() denom = 6 * total * df q = ( 1 + ((total / observed.sum(axis=0)).sum() - 1) * ((total / observed.sum(axis=1)).sum() - 1) / denom ) G /= q return G def estimate_pval(observed, stat_func, num_reps=1000): """returns p-value from resampling of observed valid for 2D categorical data only""" expected = calc_expected(observed) obs_stat = stat_func(observed, expected) num_gt = 0 for i in range(num_reps): resamp_obs = shuffled_matrix(observed) resamp_exp = calc_expected(resamp_obs) resamp_stat = stat_func(resamp_obs, resamp_exp) if resamp_stat >= obs_stat: num_gt += 1 return num_gt / num_reps class _format_row_cell: """class for handling html formatting of rows""" def __init__(self, row_labels): self.row_labels = row_labels def __call__(self, val, row, col): if val in self.row_labels: result = f"<td><b>{val}<b></td>" else: result = f'<td style="text-align:right">{val}</td>' return result class CategoryCounts: """CategoryCounts for performing contingency tests Has attributes for observed, expected and residuals. The latter is calculated using the G-test, for goodness-of-fit if expecteds are provided, G-test of independence if not provided. """ def __init__(self, observed, expected=None): """Parameters ------------- observed a DictArray instance, or something that can be converted to one expected provide in the case where you know the prior proportions, otherwise calculated from marginal frequencies """ if not isinstance(observed, DictArray): observed = DictArray(observed) if expected: expected = observed.template.wrap(expected) if observed.array.min() < 0 or expected and expected.array.min() < 0: raise ValueError("negative values encountered") self._observed = observed self._expected = expected self._residuals = None self._df = None self.shape = observed.shape def _get_repr_(self, html=False): obs = self.observed.array.tolist() exp = self.expected.array.tolist() res = self.residuals.array.tolist() ndim = len(self.observed.shape) if ndim == 1: row_labels = "Observed", "Expected", "Residuals" row_cell_func = _format_row_cell(row_labels) col_labels = [str(c) for c in self.observed.template.names[0]] rows = [] # format floats for expecteds and resid for row_label, row in zip(row_labels, [obs, exp, res]): if row_label == "Observed": row = [row_label] + [f"{v:,}" for v in row] else: row = [row_label] + [f"{v:,.2f}" for v in row] rows.append(row) if html: rows = rich_html( rows, header=[""] + col_labels, row_cell_func=row_cell_func, merge_identical=False, ) else: header, rows = formatted_cells(rows, header=[""] + col_labels) rows = simple_format(header, rows) else: row_labels = self.observed.template.names[0] col_labels = self.observed.template.names[1] row_cell_func = _format_row_cell(row_labels) result = [] for caption, table in zip( ("Observed", "Expected", "Residuals"), (obs, exp, res) ): rows = [] for i, r in enumerate(table): if caption == "Observed": r = [f"{v:,}" for v in r] else: r = [f"{v:,.2f}" for v in r] rows.append([row_labels[i]] + r) if html: result.append( rich_html( rows, header=[""] + col_labels, caption=f"<b>{caption}</b>", row_cell_func=row_cell_func, merge_identical=False, ) ) else: header, rows = formatted_cells(rows, header=[""] + col_labels) result.append(simple_format(header, rows, title=caption)) joiner = "<br>" if html else "\n" rows = joiner.join(result) return rows def _repr_html_(self): result = self._get_repr_(html=True) return result def __repr__(self): result = self._get_repr_(html=False) return result def __str__(self): return self._get_repr_(html=False) @property def observed(self): return self._observed @property def expected(self): if not self._expected: expecteds = calc_expected(self.observed.array) expecteds = self.observed.template.wrap(expecteds) self._expected = expecteds return self._expected @property def residuals(self): if not self._residuals: r = self.observed.array - self.expected.array r /= sqrt(self.expected.array) self._residuals = self.observed.template.wrap(r) return self._residuals @property def df(self): if not self._df: self._df = self.shape[0] - 1 if len(self.shape) == 2: self._df *= self.shape[1] - 1 return self._df def chisq_test(self, shuffled=0): """performs the chisq test Parameters ---------- shuffled pvalue is estimated via resampling from the observed data, preserving the marginals """ stat = calc_chisq(self.observed.array, self.expected.array) if not shuffled: pval = chisqprob(stat, self.df) else: pval = estimate_pval(self.observed.array, calc_chisq, num_reps=shuffled) title = "Chisq-test for independence" result = TestResult( self.observed, self.expected, self.residuals, "chisq", stat, self.df, pval, test_name=title, ) return result def G_independence(self, pseudo_count=0, williams=True, shuffled=0): """performs the independence G test Parameters ---------- pseudo_count : int added to observed to avoid zero division shuffled : int pvalue is estimated via resampling shuffled times from the observed data, preserving the marginals """ assert type(pseudo_count) == int, f"{pseudo_count} not an integer" assert type(shuffled) == int, f"{shuffled} not an integer" G = calc_G( self.observed.array, self.expected.array, pseudo_count=pseudo_count, williams=williams, ) if not shuffled: pval = chisqprob(G, self.df) else: pval = estimate_pval(self.observed.array, calc_G, num_reps=shuffled) title = "G-test for independence" if williams: title = f"{title} (with Williams correction)" result = TestResult( self.observed, self.expected, self.residuals, "G", G, self.df, pval, test_name=title, ) return result def G_fit(self, pseudo_count=0, williams=True): """performs the goodness-of-fit G test""" assert type(pseudo_count) == int, f"{pseudo_count} not an integer" obs = self.observed.array if pseudo_count: obs += pseudo_count G, pval = G_fit(obs.flatten(), self.expected.array.flatten(), williams=williams) title = "G-test goodness-of-fit" if williams: title = f"{title} (with Williams correction)" result = TestResult( self.observed, self.expected, self.residuals, "G", G, self.df, pval, test_name=title, ) return result def to_dict(self): result = dict( observed=self.observed.to_dict(), expected=self.expected.to_dict(), residuals=self.residuals.to_dict(), ) return result class TestResult: """result of a contingency test""" def __init__( self, observed, expected, residuals, stat_name, stat, df, pvalue, test_name="" ): """ Parameters ---------- observed observed counts as a DictArray expected expected counts as a DictArray residuals Pearson residuals between observed and expected as a DictArray stat_name Name of the statistic, e.g. G, chisq. stat : float value of the statistic df : int degrees of freedom for the hypothesis test pvalue pvalue from the hypothesis test test_name name of the statistical test """ self.pvalue = pvalue self.df = df self.stat = stat self.test_name = test_name self.stat_name = stat_name self.residuals = residuals self.expected = expected self.observed = observed setattr(self, stat_name, stat) def _get_repr_(self): header = [str(self.stat_name), "df", "pvalue"] if self.pvalue > 1e-3: pval = f"{self.pvalue:.4f}" else: pval = f"{self.pvalue:.4e}" rows = [[f"{self.stat:.3f}", f"{self.df}", pval]] return header, rows def __repr__(self): h, r = self._get_repr_() h, r = formatted_cells(r, header=h) result = simple_format(h, r, title=self.test_name) components = CategoryCounts( self.observed.to_dict(), expected=self.expected.to_dict() ) result = [result, str(components)] return "\n".join(result) def __str__(self): return repr(self) def _repr_html_(self): from cogent3.util.table import Table h, r = self._get_repr_() table = Table(h, r, title=self.test_name) components = CategoryCounts( self.observed.to_dict(), expected=self.expected.to_dict() ) html = [table._repr_html_(include_shape=False), components._repr_html_()] return "\n".join(html)
the-stack_106_18594
import logging import logging.handlers def setup_logger(logger_name, log_file, level=logging.DEBUG): logger = logging.getLogger(logger_name) formatter = logging.Formatter("[%(levelname)s : %(filename)s - %(lineno)s : %(asctime)s ]: %(message)s") fileHandler = logging.handlers.RotatingFileHandler(log_file, maxBytes=1*1024*1024*1024, backupCount=5) fileHandler.setFormatter(formatter) streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) logger.setLevel(level) logger.addHandler(fileHandler) logger.addHandler(streamHandler) return logger __logger = None def get_logger(logFileName=None): global __logger logFile = logFileName if not __logger: if not logFile: logFile = "applog.log" __logger = setup_logger('debug', "/opt/logs/alert_app/" + logFile) return __logger
the-stack_106_18597
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ Tensor quantizer for tf 2 keras """ import abc import tensorflow as tf from aimet_common.defs import MAP_QUANT_SCHEME_TO_PYMO, MAP_ROUND_MODE_TO_PYMO, QuantScheme from aimet_common.quantsim import calculate_delta_offset from aimet_common.utils import AimetLogger from aimet_tensorflow.keras.quant_sim.quantsim_straight_through_grad import qc_straight_through_estimator_grad, \ quantsim_custom_grad_learned_grid import libpymo # pylint: disable=import-error _logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.Quant) def _load_ops(): """ Function which loads the quantization op library. In order to load a graph with custom quantization ops this must be called first as this provides tensorflow with the required op definitions. :return: Loaded library """ return tf.load_op_library('libaimet_tf_ops.so') # Load the aimet ops qcops = _load_ops() class TensorQuantizer(tf.keras.layers.Layer, abc.ABC): """ Tensor quantizer class containing cpp tensor quantizer and associated attributes """ # pylint: disable=too-many-arguments # pylint: disable=unused-argument def __init__(self, name: str, op_mode: libpymo.TensorQuantizerOpMode, quant_scheme: libpymo.QuantizationMode, round_mode: libpymo.RoundingMode, bitwidth: int, is_symmetric: bool, use_strict_symmetric: bool, use_unsigned_symmetric: bool, **kwargs): super(TensorQuantizer, self).__init__(name=name) self._quant_scheme = quant_scheme self._tensor_quantizer = libpymo.TensorQuantizer(MAP_QUANT_SCHEME_TO_PYMO[quant_scheme], MAP_ROUND_MODE_TO_PYMO[round_mode]) self._tensor_quantizer.setStrictSymmetric(use_strict_symmetric) self._tensor_quantizer.setUnsignedSymmetric(use_unsigned_symmetric) self._bitwidth = self.add_weight(name + '.bitwidth', dtype=tf.int8, initializer=tf.constant_initializer(bitwidth), trainable=False) self._is_symmetric = self.add_weight(name + '.is_symmetric', dtype=tf.bool, initializer=tf.constant_initializer(is_symmetric), trainable=False) self._encoding_min = self.add_weight(name + '.encoding_min', dtype=tf.float64, trainable=True, initializer=tf.constant_initializer(0.)) self._encoding_max = self.add_weight(name + '.encoding_max', dtype=tf.float64, trainable=True, initializer=tf.constant_initializer(0.)) self._quantizer_mode = self.add_weight(name + '.op_mode', dtype=tf.int32, trainable=False, initializer=tf.constant_initializer(int(op_mode))) # Use this flag to determine if encoding min and max values are fit to be used. Ex. Can be set to True after # compute encodings has been called, or after encodings have been set by passing in a libpymo TfEncoding object. # Can set to False upon changing things like quant scheme, bitwidth, is symmetric, etc. self._is_encoding_valid = False @property def quant_scheme(self): """ Quant scheme getter """ return self._quant_scheme @quant_scheme.setter def quant_scheme(self, quant_scheme: QuantScheme): """ Quant scheme setter """ self._tensor_quantizer.setQuantScheme(MAP_QUANT_SCHEME_TO_PYMO[quant_scheme]) self._quant_scheme = quant_scheme self.reset_quant_mode() @property def round_mode(self): """ Quant scheme getter """ return self._tensor_quantizer.roundingMode @round_mode.setter def round_mode(self, round_mode: str): """ Round mode setter """ self._tensor_quantizer.roundingMode = MAP_ROUND_MODE_TO_PYMO[round_mode] self.reset_quant_mode() @property def bitwidth(self): """ Bitwidth getter """ return tf.keras.backend.get_value(self._bitwidth) @bitwidth.setter def bitwidth(self, bitwidth: int): """ Bitwidth setter """ self._bitwidth.assign(bitwidth) self.reset_quant_mode() @property def is_symmetric(self): """ Is symmetric getter """ return tf.keras.backend.get_value(self._is_symmetric) @is_symmetric.setter def is_symmetric(self, is_symmetric: bool): """ Is symmetric setter """ self._is_symmetric.assign(is_symmetric) self.reset_quant_mode() @property def use_strict_symmetric(self): """ Use strict symmetric getter """ return self._tensor_quantizer.getStrictSymmetric() @use_strict_symmetric.setter def use_strict_symmetric(self, use_strict_symmetric: bool): """ Use strict symmetric setter """ self._tensor_quantizer.setStrictSymmetric(use_strict_symmetric) self.reset_quant_mode() @property def use_unsigned_symmetric(self): """ Use unsigned symmetric getter """ return self._tensor_quantizer.getUnsignedSymmetric() @use_unsigned_symmetric.setter def use_unsigned_symmetric(self, use_unsigned_symmetric: bool): """ Use unsigned symmetric setter """ self._tensor_quantizer.setUnsignedSymmetric(use_unsigned_symmetric) self.reset_quant_mode() @property def encoding(self) -> libpymo.TfEncoding: """ Get encodings in libpymo form """ if self._is_encoding_valid: encodings = libpymo.TfEncoding() # pylint: disable = protected-access encodings.min = tf.keras.backend.get_value(self._encoding_min) encodings.max = tf.keras.backend.get_value(self._encoding_max) encodings.delta, encodings.offset = calculate_delta_offset(encodings.min, encodings.max, self.bitwidth) encodings.bw = self.bitwidth return encodings return None @encoding.setter def encoding(self, encodings: libpymo.TfEncoding): """ Sets encoding parameter using values obtained from encodings :param encodings: encodings value """ assert encodings is not None, "Encodings cannot be None if Quantizer is enabled" assert isinstance(encodings, libpymo.TfEncoding), "Encodings should be a libpymo.TfEncoding() object" self.bitwidth = encodings.bw self._encoding_min.assign(encodings.min) self._encoding_max.assign(encodings.max) self._is_encoding_valid = True @property def quant_mode(self): """ Get quant mode """ return tf.keras.backend.get_value(self._quantizer_mode) @abc.abstractmethod def enable(self): """ Enable the tensor quantizer """ def disable(self): """ Disable the tensor quantizer """ self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.passThrough)) def is_enabled(self) -> bool: """ Return True if the tensor quantizer is enabled, False otherwise """ return self.quant_mode != int(libpymo.TensorQuantizerOpMode.passThrough) def compute_encoding(self): """ Compute encoding for the tensor quantizer """ if self.quant_mode != int(libpymo.TensorQuantizerOpMode.passThrough): # TODO: remove last two parameters after fixing PyModelOptimizations encoding = self._tensor_quantizer.computeEncoding(self.bitwidth, self.is_symmetric, False, False) if self._tensor_quantizer.isEncodingValid: self._encoding_min.assign(encoding.min) self._encoding_max.assign(encoding.max) if self.quant_mode == int(libpymo.TensorQuantizerOpMode.updateStats): self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.quantizeDequantize)) self._is_encoding_valid = True else: _logger.info('Tensor quantizer %s did not have a valid encoding calculated, and has been set to ' 'passThrough mode.', self.name) self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.passThrough)) def reset_quant_mode(self): """ Reset quantizer mode if applicable """ if self.quant_mode == int(libpymo.TensorQuantizerOpMode.quantizeDequantize): self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.updateStats)) self._is_encoding_valid = False # pylint: disable=arguments-differ def call(self, tensor): """ Forward pass for the quantizer """ if self.quant_scheme in [QuantScheme.training_range_learning_with_tf_init, QuantScheme.training_range_learning_with_tf_enhanced_init]: return self.call_quantsim_custom_grad_learned_grid(tensor) return self.call_quantize_straight_through_estimator_grad(tensor) @tf.custom_gradient def call_quantize_straight_through_estimator_grad(self, tensor): """ Quantizes tensor with straight through estimator grad :param tensor: Tensor to quantize """ def grad(upstream, variables): """ Straight through estimator grad function :param upstream: Gradient from child layers :param variables: Variables used in forward pass to return gradients for """ assert len(variables) == 2, 'len variables is ' + str(len(variables)) assert 'encoding_min' in variables[0].name return qc_straight_through_estimator_grad(tensor, self._encoding_min, self._encoding_max, self._quantizer_mode, upstream) return qcops.qc_quantize(name='qc_quantize_op', in_tensor=tensor, op_mode=self._quantizer_mode, tensor_quantizer_reference=libpymo.PtrToInt64(self._tensor_quantizer), encoding_min=self._encoding_min, encoding_max=self._encoding_max, bit_width=self._bitwidth, use_symmetric_encoding=self._is_symmetric), grad @tf.custom_gradient def call_quantsim_custom_grad_learned_grid(self, tensor): """ Quantizes tensor with range learning grad :param tensor: Tensor to quantize """ def grad(upstream, variables): """ Range learning grad function :param upstream: Gradient from child layers :param variables: Variables used in forward pass to return gradients for """ assert len(variables) == 2, 'len variables is ' + str(len(variables)) assert 'encoding_min' in variables[0].name return quantsim_custom_grad_learned_grid(tensor, self._encoding_min, self._encoding_max, self._quantizer_mode, self._bitwidth, self._is_symmetric, upstream) return qcops.qc_quantize(name='qc_quantize_op', in_tensor=tensor, op_mode=self._quantizer_mode, tensor_quantizer_reference=libpymo.PtrToInt64(self._tensor_quantizer), encoding_min=self._encoding_min, encoding_max=self._encoding_max, bit_width=self._bitwidth, use_symmetric_encoding=self._is_symmetric), grad # pylint: disable=too-many-ancestors class ActivationTensorQuantizer(TensorQuantizer): """ Activation tensor quantizer definition """ # pylint: disable=too-many-arguments def __init__(self, name: str, quant_scheme: libpymo.QuantizationMode, round_mode: libpymo.RoundingMode, bitwidth: int, is_symmetric: bool, use_strict_symmetric: bool, use_unsigned_symmetric: bool, enabled: bool): if enabled: op_mode = libpymo.TensorQuantizerOpMode.updateStats else: op_mode = libpymo.TensorQuantizerOpMode.passThrough super(ActivationTensorQuantizer, self).__init__(name, op_mode, quant_scheme, round_mode, bitwidth, is_symmetric, use_strict_symmetric, use_unsigned_symmetric) def enable(self): """ Enable the activation tensor quantizer """ if self._is_encoding_valid: self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.quantizeDequantize)) else: self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.updateStats)) # pylint: disable=too-many-ancestors class ParamTensorQuantizer(TensorQuantizer): """ Parameter tensor quantizer definition """ # pylint: disable=too-many-arguments def __init__(self, name: str, quant_scheme: libpymo.QuantizationMode, round_mode: libpymo.RoundingMode, bitwidth: int, is_symmetric: bool, use_strict_symmetric: bool, use_unsigned_symmetric: bool, enabled: bool): if enabled: op_mode = libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize else: op_mode = libpymo.TensorQuantizerOpMode.passThrough super(ParamTensorQuantizer, self).__init__(name, op_mode, quant_scheme, round_mode, bitwidth, is_symmetric, use_strict_symmetric, use_unsigned_symmetric) def enable(self): """ Enable the parameter tensor quantizer """ self._quantizer_mode.assign(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize))
the-stack_106_18598
# -*- coding: utf-8 -*- """Reuters topic classification dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..utils.data_utils import get_file from ..preprocessing.sequence import _remove_long_seq import numpy as np import json import warnings def load_data(path='reuters.npz', num_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2, index_from=3, **kwargs): """Loads the Reuters newswire classification dataset. # Arguments path: where to cache the data (relative to `~/.keras/dataset`). num_words: max number of words to include. Words are ranked by how often they occur (in the training set) and only the most frequent words are kept skip_top: skip the top N most frequently occurring words (which may not be informative). maxlen: truncate sequences after this length. test_split: Fraction of the dataset to be used as test data. seed: random seed for sample shuffling. start_char: The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char: words that were cut out because of the `num_words` or `skip_top` limit will be replaced with this character. index_from: index actual words with this index and higher. # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. Note that the 'out of vocabulary' character is only used for words that were present in the training set but are not included because they're not making the `num_words` cut here. Words that were not seen in the training set but are in the test set have simply been skipped. """ # Legacy support if 'nb_words' in kwargs: warnings.warn('The `nb_words` argument in `load_data` ' 'has been renamed `num_words`.') num_words = kwargs.pop('nb_words') if kwargs: raise TypeError('Unrecognized keyword arguments: ' + str(kwargs)) path = get_file(path, origin='https://s3.amazonaws.com/text-datasets/reuters.npz', file_hash='87aedbeb0cb229e378797a632c1997b6') with np.load(path) as f: xs, labels = f['x'], f['y'] rng = np.random.RandomState(seed) indices = np.arange(len(xs)) rng.shuffle(indices) xs = xs[indices] labels = labels[indices] if start_char is not None: xs = [[start_char] + [w + index_from for w in x] for x in xs] elif index_from: xs = [[w + index_from for w in x] for x in xs] if maxlen: xs, labels = _remove_long_seq(maxlen, xs, labels) if not num_words: num_words = max([max(x) for x in xs]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: # 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: xs = [[w if skip_top <= w < num_words else oov_char for w in x] for x in xs] else: xs = [[w for w in x if skip_top <= w < num_words] for x in xs] idx = int(len(xs) * (1 - test_split)) x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx]) x_test, y_test = np.array(xs[idx:]), np.array(labels[idx:]) return (x_train, y_train), (x_test, y_test) def get_word_index(path='reuters_word_index.json'): """Retrieves the dictionary mapping words to word indices. # Arguments path: where to cache the data (relative to `~/.keras/dataset`). # Returns The word index dictionary. """ path = get_file( path, origin='https://s3.amazonaws.com/text-datasets/reuters_word_index.json', file_hash='4d44cc38712099c9e383dc6e5f11a921') with open(path) as f: return json.load(f)
the-stack_106_18599
# # 27. Remove Element # # Given an array nums and a value val, remove all instances of that value in- # place and return the new length. # # Do not allocale extra space for another array, you must do this by modifying # the input array in-place with O(1) extra memory. # # The order of elements can be changed. It doesn't matter what you leave beyond # the new length. # # Example 1: # Given nums = [3, 2, 2, 3], val = 3, # Your function should return length = 2, with the first two elements of # nums being 2. # It doesn't matter what you leave beyond the returned length. # # Example 2: # Given nums = [0,1,2,2,3,0,4,2], val = 2, # Your function should return length = 5, with the first five elements of # nums containing 0, 1, 3, 0, and 4. # Note that the order of those five elements can be arbitrary. # It doesn't matter what you leave beyond the returned length. # # Clarification: # # Confused why the returned value is an integer but your answer is an array? # # Note that the input array is passed in by reference, which means modification # to the input array will be known to the caller as well. # # Internallly you can thank of this: # // nums is passed in by reference. (i.e., without making a copy) # int len = removeElement(nums, val); # # // any modification to nums in your function would be known by the caller # // using the length returned by your function, it prints the first len elements # for (int i = 0; i < len; i++) { # print(nums[i]); # } class Solution(object): # 双指针 def removeElement(self, nums, val): """ :type nums: List[int] :type val: int :rtype: int """ slow, fast = 0, 0 while fast < len(nums): if nums[fast] != val: nums[slow] = nums[fast] slow += 1 fast += 1 return fast def removeElement(self, nums, val): i = 0 length = len(nums) while i < length: if nums[i] == val: nums[i] = nums[length - 1] length -= 1 else: i += 1 return length
the-stack_106_18601
from __future__ import unicode_literals """ Copyright OpenSearch Contributors SPDX-License-Identifier: Apache-2.0 """ import click import re import pyfiglet import os import json from prompt_toolkit.completion import WordCompleter from prompt_toolkit.enums import DEFAULT_BUFFER from prompt_toolkit.shortcuts import PromptSession from prompt_toolkit.filters import HasFocus, IsDone from prompt_toolkit.lexers import PygmentsLexer from prompt_toolkit.layout.processors import ConditionalProcessor, HighlightMatchingBracketProcessor from prompt_toolkit.auto_suggest import AutoSuggestFromHistory from pygments.lexers.sql import SqlLexer from .config import get_config from .opensearch_connection import OpenSearchConnection from .opensearch_buffer import opensearch_is_multiline from .opensearch_style import style_factory, style_factory_output from .formatter import Formatter from .utils import OutputSettings from . import __version__ # Ref: https://stackoverflow.com/questions/30425105/filter-special-chars-such-as-color-codes-from-shell-output COLOR_CODE_REGEX = re.compile(r"\x1b(\[.*?[@-~]|\].*?(\x07|\x1b\\))") click.disable_unicode_literals_warning = True class OpenSearchSqlCli: """OpenSearchSqlCli instance is used to build and run the OpenSearch SQL CLI.""" def __init__(self, clirc_file=None, always_use_pager=False, use_aws_authentication=False, query_language="sql"): # Load conf file config = self.config = get_config(clirc_file) literal = self.literal = self._get_literals() self.prompt_app = None self.opensearch_executor = None self.query_language = query_language self.always_use_pager = always_use_pager self.use_aws_authentication = use_aws_authentication self.keywords_list = literal["keywords"] self.functions_list = literal["functions"] self.syntax_style = config["main"]["syntax_style"] self.cli_style = config["colors"] self.table_format = config["main"]["table_format"] self.multiline_continuation_char = config["main"]["multiline_continuation_char"] self.multi_line = config["main"].as_bool("multi_line") self.multiline_mode = config["main"].get("multi_line_mode", "src") self.null_string = config["main"].get("null_string", "null") self.style_output = style_factory_output(self.syntax_style, self.cli_style) def build_cli(self): # TODO: Optimize index suggestion to serve indices options only at the needed position, such as 'from' indices_list = self.opensearch_executor.indices_list sql_completer = WordCompleter(self.keywords_list + self.functions_list + indices_list, ignore_case=True) # https://stackoverflow.com/a/13726418 denote multiple unused arguments of callback in Python def get_continuation(width, *_): continuation = self.multiline_continuation_char * (width - 1) + " " return [("class:continuation", continuation)] prompt_app = PromptSession( lexer=PygmentsLexer(SqlLexer), completer=sql_completer, complete_while_typing=True, # TODO: add history, refer to pgcli approach # history=history, style=style_factory(self.syntax_style, self.cli_style), prompt_continuation=get_continuation, multiline=opensearch_is_multiline(self), auto_suggest=AutoSuggestFromHistory(), input_processors=[ ConditionalProcessor( processor=HighlightMatchingBracketProcessor(chars="[](){}"), filter=HasFocus(DEFAULT_BUFFER) & ~IsDone(), ) ], tempfile_suffix=".sql", ) return prompt_app def run_cli(self): """ Print welcome page, goodbye message. Run the CLI and keep listening to user's input. """ self.prompt_app = self.build_cli() settings = OutputSettings( max_width=self.prompt_app.output.get_size().columns, style_output=self.style_output, table_format=self.table_format, missingval=self.null_string, ) # print Banner banner = pyfiglet.figlet_format("OpenSearch", font="slant") print(banner) # print info on the welcome page print("Server: OpenSearch %s" % self.opensearch_executor.opensearch_version) print("CLI Version: %s" % __version__) print("Endpoint: %s" % self.opensearch_executor.endpoint) print("Query Language: %s" % self.query_language) while True: try: text = self.prompt_app.prompt(message="opensearchsql> ") except KeyboardInterrupt: continue # Control-C pressed. Try again. except EOFError: break # Control-D pressed. try: output = self.opensearch_executor.execute_query(text) if output: formatter = Formatter(settings) formatted_output = formatter.format_output(output) self.echo_via_pager("\n".join(formatted_output)) except Exception as e: print(repr(e)) print("See you next search!") def is_too_wide(self, line): """Will this line be too wide to fit into terminal?""" if not self.prompt_app: return False return len(COLOR_CODE_REGEX.sub("", line)) > self.prompt_app.output.get_size().columns def is_too_tall(self, lines): """Are there too many lines to fit into terminal?""" if not self.prompt_app: return False return len(lines) >= (self.prompt_app.output.get_size().rows - 4) def echo_via_pager(self, text, color=None): lines = text.split("\n") if self.always_use_pager: click.echo_via_pager(text, color=color) elif self.is_too_tall(lines) or any(self.is_too_wide(l) for l in lines): click.echo_via_pager(text, color=color) else: click.echo(text, color=color) def connect(self, endpoint, http_auth=None): self.opensearch_executor = OpenSearchConnection(endpoint, http_auth, self.use_aws_authentication, self.query_language) self.opensearch_executor.set_connection() def _get_literals(self): """Parse "opensearch_literals.json" with literal type of SQL "keywords" and "functions", which are SQL keywords and functions supported by OpenSearch SQL Plugin. :return: a dict that is parsed from opensearch_literals.json """ from .opensearch_literals import __file__ as package_root package_root = os.path.dirname(package_root) literal_file = os.path.join(package_root, "opensearch_literals.json") with open(literal_file) as f: literals = json.load(f) return literals
the-stack_106_18603
#!/usr/bin/env python import rospy import cv2 as cv import numpy as np from cv_bridge import CvBridge, CvBridgeError from sensor_msgs.msg import Image import tf from tf.broadcaster import TransformBroadcaster import tf_conversions from mycobot_communication.srv import ( GetCoords, SetCoords, GetAngles, SetAngles, GripperStatus, ) class ImageConverter: def __init__(self): self.br = TransformBroadcaster() self.bridge = CvBridge() self.aruco_dict = cv.aruco.Dictionary_get(cv.aruco.DICT_6X6_250) self.aruo_params = cv.aruco.DetectorParameters_create() calibrationParams = cv.FileStorage( "calibrationFileName.xml", cv.FILE_STORAGE_READ ) self.dist_coeffs = calibrationParams.getNode("distCoeffs").mat() self.camera_matrix = None # subscriber, listen wether has img come in. self.image_sub = rospy.Subscriber("/camera/image", Image, self.callback) def callback(self, data): """Callback function. Process image with OpenCV, detect Mark to get the pose. Then acccording the pose to transforming. """ try: # trans `rgb` to `gbr` for opencv. cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) size = cv_image.shape focal_length = size[1] center = [size[1] / 2, size[0] / 2] if self.camera_matrix is None: # calc the camera matrix, if don't have. self.camera_matrix = np.array( [ [focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1], ], dtype=np.float32, ) gray = cv.cvtColor(cv_image, cv.COLOR_BGR2GRAY) # detect aruco marker. ret = cv.aruco.detectMarkers(gray, self.aruco_dict, parameters=self.aruo_params) corners, ids = ret[0], ret[1] # process marker data. if len(corners) > 0: if ids is not None: # print('corners:', corners, 'ids:', ids) # detect marker pose. # argument: # marker corners # marker size (meter) ret = cv.aruco.estimatePoseSingleMarkers( corners, 0.05, self.camera_matrix, self.dist_coeffs ) (rvec, tvec) = (ret[0], ret[1]) (rvec - tvec).any() print("rvec:", rvec, "tvec:", tvec) # just select first one detected marker. for i in range(rvec.shape[0]): cv.aruco.drawDetectedMarkers(cv_image, corners) cv.aruco.drawAxis( cv_image, self.camera_matrix, self.dist_coeffs, rvec[i, :, :], tvec[i, :, :], 0.03, ) xyz = tvec[0, 0, :] xyz = [xyz[0] - 0.045, xyz[1], xyz[2] - 0.03] # get quaternion for ros. euler = rvec[0, 0, :] tf_change = tf.transformations.quaternion_from_euler( euler[0], euler[1], euler[2] ) print("tf_change:", tf_change) # trans pose according [joint1] self.br.sendTransform( xyz, tf_change, rospy.Time.now(), "basic_shapes", "joint6_flange" ) # [x, y, z, -172, 3, -46.8] cv.imshow("Image", cv_image) cv.waitKey(3) try: pass except CvBridgeError as e: print(e) if __name__ == "__main__": try: rospy.init_node("detect_marker") rospy.loginfo("Starting cv_bridge_test node") ImageConverter() rospy.spin() except KeyboardInterrupt: print("Shutting down cv_bridge_test node.") cv.destroyAllWindows()
the-stack_106_18604
""" Default statement functions. """ from muddery.statements.statement_func_set import BaseStatementFuncSet import muddery.statements.action as action import muddery.statements.condition as condition import muddery.statements.attribute as attribute import muddery.statements.rand as rand import muddery.statements.skill as skill class ActionFuncSet(BaseStatementFuncSet): """ Statement functions used in actions. """ def at_creation(self): """ Load statement functions here. """ self.add(attribute.FuncSetAttr) self.add(attribute.FuncRemoveAttr) self.add(action.FuncLearnSkill) self.add(action.FuncGiveObject) self.add(action.FuncRemoveObjects) self.add(action.FuncTeleportTo) self.add(action.FuncFightMob) self.add(action.FuncFightTarget) class ConditionFuncSet(BaseStatementFuncSet): """ Statement functions used in conditions. """ def at_creation(self): """ Load statement functions here. """ self.add(condition.FuncIsQuestInProgress) self.add(condition.FuncCanProvideQuest) self.add(condition.FuncIsQuestCompleted) self.add(condition.FuncHasObject) self.add(attribute.FuncGetAttr) self.add(attribute.FuncHasAttr) self.add(attribute.FuncCheckAttr) self.add(rand.FuncOdd) self.add(rand.FuncRand) self.add(rand.FuncRandInt) class SkillFuncSet(BaseStatementFuncSet): """ Statement functions used in actions. """ def at_creation(self): """ Load statement functions here. """ self.add(skill.FuncEscape) self.add(skill.FuncHeal) self.add(skill.FuncHit) self.add(skill.FuncIncreaseMaxHP)
the-stack_106_18606
from argparse import ArgumentParser import os report_name = "report.html" survivor_graph = "log.png" net_extension = ".svg" def write_header(output_file): html_code = f""" <html> <head> <style> table, th, td {{ border: 1px solid black; border-collapse: collapse; }} </style> </head> <body> <h1>Biosim report</h1> <img src="{survivor_graph}" /> """ output_file.write(html_code) def write_footer(output_file): output_file.write('</body></html>') def write_video(output_file,video_filename): html_code = f""" <video class="tab" controls height="400" width="400"> <source src="{video_filename}"/> </video> """ output_file.write(html_code) def write_net_cell(output_file,net_filename): html_code = f""" <td> <img src="{net_filename}" height="400" width="400" /> </td> """.replace('video_filename',net_filename) output_file.write(html_code) def process_net_files(output_file,input_dir,generation_prefix): for filename in os.listdir(input_dir): if filename.endswith(net_extension) and filename.startswith(generation_prefix): write_net_cell(output_file,filename) def process_generation(output_file,input_dir,video_filename,video_extension): generation_prefix = video_filename.replace(video_extension,'') generation = generation_prefix.replace('gen-','') #output_file.write("<tr><td>") #output_file.write("</td></tr>") output_file.write("<tr><td>") output_file.write(f"<h2>Generation: {generation}</h2>") write_video(output_file,video_filename) output_file.write("</td>") process_net_files(output_file,input_dir,generation_prefix) output_file.write("</tr>") def process_generations(output_file,input_dir,video_extension): output_file.write("<table>") files = [] for filename in os.listdir(input_dir): if filename.endswith(video_extension): files.append(filename) for filename in sorted(files): process_generation(output_file,input_dir,filename,video_extension) output_file.write("</table>") def make_report(input_dir,video_extension): full_filename = input_dir + os.path.sep + report_name output_file = open(full_filename, "w") write_header(output_file) process_generations(output_file,dirname,video_extension) write_footer(output_file) output_file.close() if __name__ == "__main__": parser = ArgumentParser(description="Convert a net txt file to a graph\n") requiredNamed = parser.add_argument_group('required arguments') requiredNamed.add_argument("--dir", "-d", help="Directory with net txt files", type=str,required=True,default=None) parser.add_argument("--videoextension", "-e", help="Extension of the video files", type=str,default=".ogv") args = parser.parse_args() video_extension =args.videoextension dirname =args.dir make_report(dirname,video_extension)
the-stack_106_18608
# coding: utf-8 # # Applying Neutrophil and Monocyte Signatures using Top Features # # **Gregory Way, 2018** # # Instead of focusing only on two compressed features, like we did in [notebook 3](https://github.com/greenelab/BioBombe/blob/master/8.gtex-interpret/3.apply-signatures.ipynb), we apply all of the signatures in the following plots to their external validation data. # # We previously demonstrated that the enrichment of specific genesets (like Neutrophils and Monocytes) were different across algorithms and k dimensions. # This implies that certain biological features are best captured by different dimensions and algorithms. # Here, we test if our network projection scores were associated with strength of signature separation across different groups of samples. # # ## Part 1: # # ### Enrichment of Neutrophil Signatures # # Publicly available dataset capturing neutrophil differentiation in two leukemia cell lines. # # ![cell_type_Neutrophils_HPCA_2.png](https://github.com/greenelab/BioBombe/raw/master/6.biobombe-projection/figures/GTEX/signal/GpXCELL/gene_set_Neutrophils_HPCA_2.png) # # ## Part 2: # # ### Enrichment of Monocyte Signatures # # Publicly available dataset that captures various cell-types, including monocytes, undergoing hematopoiesis. # # ![cell_type_Monocytes_FANTOM_2.png](https://github.com/greenelab/BioBombe/raw/master/6.biobombe-projection/figures/GTEX/signal/GpXCELL/gene_set_Monocytes_FANTOM_2.png) # # ## Output # # We output scores for all compression feature scores for both validation data sets. # There are a total of 5 * 28 = 140 scores per dataset # In[1]: import os import sys import numpy as np import pandas as pd from scipy.stats import ttest_ind, ttest_rel import matplotlib.pyplot as plt import seaborn as sns from scripts.utils import ( load_weight_matrix, apply_signature, load_enrichment_results, extract_feature, ) sys.path.append('../scripts') from latent import parse_gmt # In[2]: genesets = ['Neutrophils_HPCA_2', 'Monocytes_FANTOM_2'] # In[3]: # Get top scores across algorithms and z dimensions score_dir = os.path.join("..", "6.biobombe-projection", "results", "gtex", "gpxcell", "signal") full_list = [] for score_file in os.listdir(score_dir): score_file = os.path.join(score_dir, score_file) top_df = pd.read_table(score_file) top_df = ( top_df .query("variable in @genesets") .assign(abs_z_score=top_df.z_score.abs()) .sort_values(by='abs_z_score', ascending=False) .groupby(['z', 'algorithm', 'variable']) .first() .reset_index() ) full_list.append(top_df) # In[4]: # Confirm extraction worked (note different colors) full_top_df = pd.concat(full_list) sns.relplot(x="z", y="abs_z_score", hue="algorithm", data=full_top_df, col='variable', kind='line') # In[5]: # Compile feature matrix for each geneset neutrophil_list = [] monocyte_list = [] for idx, feature in full_top_df.iterrows(): z_dim = feature.z seed = feature.seed algorithm = feature.algorithm feature_num = feature.feature geneset = feature.variable weight_df = load_weight_matrix(dataset='GTEX', z_dim=z_dim, seed=seed) feature_df = extract_feature(weight_df=weight_df, algorithm=algorithm, feature=feature_num) rename_feature = '{}_zdim_{}_seed_{}'.format(feature_df.name, z_dim, seed) feature_df = feature_df.rename(rename_feature) if geneset == "Neutrophils_HPCA_2": neutrophil_list.append(feature_df) else: monocyte_list.append(feature_df) # In[6]: neutrophil_df = pd.concat(neutrophil_list, axis='columns') monocyte_df = pd.concat(monocyte_list, axis='columns') # ## 1.0. Load External Neutrophil Dataset # In[7]: file = os.path.join('data', 'GSE103706_processed_matrix.tsv.gz') geo_scaled_zeroone_df = pd.read_table(file, index_col=0) print(geo_scaled_zeroone_df.shape) geo_scaled_zeroone_df.head(2) # ## 1.1. Apply Signature from All Top Features # In[8]: neutrophil_result_df, missing_genes = ( apply_signature(weight_df=neutrophil_df, other_df=geo_scaled_zeroone_df, align=True) ) top_compressed_features = neutrophil_result_df.columns.tolist() len(missing_genes) # ## 1.2. Combine Data and Add Phenotype Information # In[9]: # Process phenotype data cell_line = [x[0] for x in neutrophil_result_df.index.str.split(',')] treatment = [x[1] for x in neutrophil_result_df.index.str.split(',')] day = [x[2].strip(' ') if 'replicate' not in x[2] else 'day 0' for x in neutrophil_result_df.index.str.split(',')] # In[10]: neutrophil_result_df = ( neutrophil_result_df .assign(cell_line=cell_line, treatment=treatment, day=day) .reset_index() .rename(columns={'index': 'full_id'}) ) recode_labels = {' not differentiated': 'control', ' DMSO': 'treated', ' DMSO+Nutridoma': 'treated'} neutrophil_result_df.treatment = neutrophil_result_df.treatment.replace(recode_labels) neutrophil_result_df.head(2) # ## 1.3. Perform t-test on Treatment vs. Control # In[11]: ttest_results = [] for compressed_feature in top_compressed_features: signature_df = neutrophil_result_df.loc[:, [compressed_feature, 'treatment']] treatment_values = signature_df.query("treatment == 'treated'").iloc[:, 0].values control_values = signature_df.query("treatment == 'control'").iloc[:, 0].values t_stat, t_p = ttest_ind(treatment_values, control_values) ttest_results.append(pd.Series([compressed_feature, t_stat, t_p])) # In[12]: t_results_df = pd.concat(ttest_results, axis='columns').transpose() t_results_df.columns = ['feature', 't_stat', 't_p'] t_results_df = t_results_df.assign(neg_log_p = -np.log10(t_results_df.t_p.astype(np.float64))) t_results_df.head() # In[13]: neutrophils_top_df = full_top_df.query("variable == 'Neutrophils_HPCA_2'") neutrophils_top_df.head(2) # ## 1.4. Compile and Output Plotting Data # In[14]: final_neutrophil_results_df = ( pd.DataFrame(t_results_df .feature .str .split('_') .values .tolist(), columns=['algorithm', 'feature_num', "drop_z", "z_dim", "drop_seed", "seed"]) .merge(t_results_df, left_index=True, right_index=True) .drop(['drop_z', 'drop_seed', 'feature'], axis='columns') ) final_neutrophil_results_df.loc[:, 'z_dim'] = final_neutrophil_results_df.z_dim.astype(np.int64) final_neutrophil_results_df.loc[:, 'feature_num'] = final_neutrophil_results_df.feature_num.astype(np.int64) final_neutrophil_results_df.loc[:, 'seed'] = final_neutrophil_results_df.seed.astype(np.int64) final_neutrophil_results_df = ( final_neutrophil_results_df .merge(neutrophils_top_df, left_on=['algorithm', 'feature_num', 'z_dim', 'seed'], right_on=['algorithm', 'feature', 'z', 'seed']) ) final_neutrophil_results_df.head() # In[15]: sns.scatterplot(x="z_score", y="t_stat", data=final_neutrophil_results_df) # In[16]: file = os.path.join("results", "all_neutrophil_top_scores_and_separation.tsv") final_neutrophil_results_df.to_csv(file, sep='\t', index=False) # ## 2.0. Load External Monocyte Dataset # # We perform a similar procedure, but apply top monocyte signatures to an alternative publicly available dataset. # In[17]: file = os.path.join('data', 'GSE24759_processed_matrix.tsv.gz') heme_zeroone_df = pd.read_table(file, index_col=0) print(heme_zeroone_df.shape) heme_zeroone_df.head(2) # ## 2.1. Apply Signature from All Top Features and Process Data # In[18]: result_df, missing_genes = apply_signature(weight_df=monocyte_df, other_df=heme_zeroone_df, align=True) full_heme_result_df = result_df.reset_index().rename(columns={'index': 'cell'}) heme_cell_type_recode_df = ( pd.DataFrame(full_heme_result_df.cell.str.split('_').values.tolist(), columns = ['cell_type', 'replicate', 'additional']) ) heme_cell_type_recode_df.loc[~heme_cell_type_recode_df.additional.isna(), 'cell_type'] = "PRE_BCELL2" full_heme_result_df = ( pd.concat([heme_cell_type_recode_df.drop(['additional'], axis='columns'), full_heme_result_df], axis='columns') ) top_compressed_features = result_df.columns.tolist() len(missing_genes) # ## 2.2. Add Phenotype Information # In[19]: # Recode cell-type into larger classification file = os.path.join('results', 'cell-type-classification.tsv') cell_class_df = pd.read_table(file) cell_updater = dict(zip(cell_class_df.label, cell_class_df.classification)) monocyte_updater = dict(zip(cell_class_df.label, cell_class_df.monocyte)) cell_class_df.head() # In[20]: full_heme_result_df = ( full_heme_result_df .assign(cell_class = full_heme_result_df.cell_type.replace(cell_updater), monocyte_status = full_heme_result_df.cell_type.replace(monocyte_updater)) ) full_heme_result_df.head(2) # ## 2.3. Perform t-test on Monocyte vs. Non-Monocyte # In[21]: ttest_results = [] for compressed_feature in top_compressed_features: signature_df = full_heme_result_df.loc[:, [compressed_feature, 'monocyte_status']] treatment_values = signature_df.query("monocyte_status == 'Monocyte'").iloc[:, 0].values control_values = signature_df.query("monocyte_status == 'Non Monocyte'").iloc[:, 0].values t_stat, t_p = ttest_ind(treatment_values, control_values) ttest_results.append(pd.Series([compressed_feature, t_stat, t_p])) # In[22]: monocyte_top_df = full_top_df.query("variable == 'Monocytes_FANTOM_2'") monocyte_top_df.head(2) # In[23]: t_results_df = pd.concat(ttest_results, axis='columns').transpose() t_results_df.columns = ['feature', 't_stat', 't_p'] t_results_df = t_results_df.assign(neg_log_p = -np.log10(t_results_df.t_p.astype(np.float64))) t_results_df.head() # ## 2.4. Compile and Output Plotting Data # In[24]: full_heme_result_df = ( pd.DataFrame(t_results_df .feature .str .split('_') .values .tolist(), columns=['algorithm', 'feature_num', "drop_z", "z_dim", "drop_seed", "seed"]) .merge(t_results_df, left_index=True, right_index=True) .drop(['drop_z', 'drop_seed', 'feature'], axis='columns') ) full_heme_result_df.loc[:, 'z_dim'] = full_heme_result_df.z_dim.astype(np.int64) full_heme_result_df.loc[:, 'feature_num'] = full_heme_result_df.feature_num.astype(np.int64) full_heme_result_df.loc[:, 'seed'] = full_heme_result_df.seed.astype(np.int64) full_heme_result_df = ( full_heme_result_df .merge(monocyte_top_df, left_on=['algorithm', 'feature_num', 'z_dim', 'seed'], right_on=['algorithm', 'feature', 'z', 'seed']) ) full_heme_result_df.head() # In[25]: file = os.path.join("results", "all_monocyte_top_scores_and_separation.tsv") full_heme_result_df.to_csv(file, sep='\t', index=False)
the-stack_106_18609
import random import re import socket from collections import OrderedDict from django.conf import settings from django.core.cache.backends.base import DEFAULT_TIMEOUT, get_key_func from django.core.exceptions import ImproperlyConfigured from django.utils.encoding import smart_text from django.utils.module_loading import import_string from redis.exceptions import ConnectionError, ResponseError, TimeoutError from .. import pool from ..exceptions import CompressorError, ConnectionInterrupted from ..util import CacheKey _main_exceptions = (TimeoutError, ResponseError, ConnectionError, socket.timeout) special_re = re.compile('([*?[])') def glob_escape(s): return special_re.sub(r'[\1]', s) class DefaultClient: def __init__(self, server, params, backend): self._backend = backend self._server = server self._params = params self.reverse_key = get_key_func( params.get("REVERSE_KEY_FUNCTION") or "django_redis.util.default_reverse_key" ) if not self._server: raise ImproperlyConfigured("Missing connections string") if not isinstance(self._server, (list, tuple, set)): self._server = self._server.split(",") self._clients = [None] * len(self._server) self._options = params.get("OPTIONS", {}) self._slave_read_only = self._options.get('SLAVE_READ_ONLY', True) serializer_path = self._options.get("SERIALIZER", "django_redis.serializers.pickle.PickleSerializer") serializer_cls = import_string(serializer_path) compressor_path = self._options.get("COMPRESSOR", "django_redis.compressors.identity.IdentityCompressor") compressor_cls = import_string(compressor_path) self._serializer = serializer_cls(options=self._options) self._compressor = compressor_cls(options=self._options) self.connection_factory = pool.get_connection_factory(options=self._options) def __contains__(self, key): return self.has_key(key) def get_next_client_index(self, write=True, tried=()): """ Return a next index for read client. This function implements a default behavior for get a next read client for master-slave setup. Overwrite this function if you want a specific behavior. """ if tried and len(tried) < len(self._server): not_tried = [i for i in range(0, len(self._server)) if i not in tried] return random.choice(not_tried) if write or len(self._server) == 1: return 0 return random.randint(1, len(self._server) - 1) def get_client(self, write=True, tried=(), show_index=False): """ Method used for obtain a raw redis client. This function is used by almost all cache backend operations for obtain a native redis client/connection instance. """ index = self.get_next_client_index(write=write, tried=tried or []) if self._clients[index] is None: self._clients[index] = self.connect(index) if show_index: return self._clients[index], index else: return self._clients[index] def connect(self, index=0): """ Given a connection index, returns a new raw redis client/connection instance. Index is used for master/slave setups and indicates that connection string should be used. In normal setups, index is 0. """ return self.connection_factory.connect(self._server[index]) def set(self, key, value, timeout=DEFAULT_TIMEOUT, version=None, client=None, nx=False, xx=False): """ Persist a value to the cache, and set an optional expiration time. Also supports optional nx parameter. If set to True - will use redis setnx instead of set. """ nkey = self.make_key(key, version=version) nvalue = self.encode(value) if timeout == DEFAULT_TIMEOUT: timeout = self._backend.default_timeout original_client = client tried = [] while True: try: if not client: client, index = self.get_client(write=True, tried=tried, show_index=True) if timeout is not None: # Convert to milliseconds timeout = int(timeout * 1000) if timeout <= 0: if nx: # Using negative timeouts when nx is True should # not expire (in our case delete) the value if it exists. # Obviously expire not existent value is noop. return not self.has_key(key, version=version, client=client) else: # redis doesn't support negative timeouts in ex flags # so it seems that it's better to just delete the key # than to set it and than expire in a pipeline return self.delete(key, client=client, version=version) return client.set(nkey, nvalue, nx=nx, px=timeout, xx=xx) except _main_exceptions as e: if not original_client and not self._slave_read_only and len(tried) < len(self._server): tried.append(index) client = None continue raise ConnectionInterrupted(connection=client, parent=e) def incr_version(self, key, delta=1, version=None, client=None): """ Adds delta to the cache version for the supplied key. Returns the new version. """ if client is None: client = self.get_client(write=True) if version is None: version = self._backend.version old_key = self.make_key(key, version) value = self.get(old_key, version=version, client=client) try: ttl = client.ttl(old_key) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) if value is None: raise ValueError("Key '%s' not found" % key) if isinstance(key, CacheKey): new_key = self.make_key(key.original_key(), version=version + delta) else: new_key = self.make_key(key, version=version + delta) self.set(new_key, value, timeout=ttl, client=client) self.delete(old_key, client=client) return version + delta def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None, client=None): """ Add a value to the cache, failing if the key already exists. Returns ``True`` if the object was added, ``False`` if not. """ return self.set(key, value, timeout, version=version, client=client, nx=True) def get(self, key, default=None, version=None, client=None): """ Retrieve a value from the cache. Returns decoded value if key is found, the default if not. """ if client is None: client = self.get_client(write=False) key = self.make_key(key, version=version) try: value = client.get(key) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) if value is None: return default return self.decode(value) def persist(self, key, version=None, client=None): if client is None: client = self.get_client(write=True) key = self.make_key(key, version=version) if client.exists(key): client.persist(key) def expire(self, key, timeout, version=None, client=None): if client is None: client = self.get_client(write=True) key = self.make_key(key, version=version) if client.exists(key): client.expire(key, timeout) def lock(self, key, version=None, timeout=None, sleep=0.1, blocking_timeout=None, client=None): if client is None: client = self.get_client(write=True) key = self.make_key(key, version=version) return client.lock(key, timeout=timeout, sleep=sleep, blocking_timeout=blocking_timeout) def delete(self, key, version=None, prefix=None, client=None): """ Remove a key from the cache. """ if client is None: client = self.get_client(write=True) try: return client.delete(self.make_key(key, version=version, prefix=prefix)) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def delete_pattern(self, pattern, version=None, prefix=None, client=None, itersize=None): """ Remove all keys matching pattern. """ if client is None: client = self.get_client(write=True) pattern = self.make_pattern(pattern, version=version, prefix=prefix) kwargs = {'match': pattern, } if itersize: kwargs['count'] = itersize try: count = 0 for key in client.scan_iter(**kwargs): client.delete(key) count += 1 return count except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def delete_many(self, keys, version=None, client=None): """ Remove multiple keys at once. """ if client is None: client = self.get_client(write=True) keys = [self.make_key(k, version=version) for k in keys] if not keys: return try: return client.delete(*keys) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def clear(self, client=None): """ Flush all cache keys. """ if client is None: client = self.get_client(write=True) try: client.flushdb() except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def decode(self, value): """ Decode the given value. """ try: value = int(value) except (ValueError, TypeError): try: value = self._compressor.decompress(value) except CompressorError: # Handle little values, chosen to be not compressed pass value = self._serializer.loads(value) return value def encode(self, value): """ Encode the given value. """ if isinstance(value, bool) or not isinstance(value, int): value = self._serializer.dumps(value) value = self._compressor.compress(value) return value return value def get_many(self, keys, version=None, client=None): """ Retrieve many keys. """ if client is None: client = self.get_client(write=False) if not keys: return {} recovered_data = OrderedDict() map_keys = OrderedDict( (self.make_key(k, version=version), k) for k in keys ) try: results = client.mget(*map_keys) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) for key, value in zip(map_keys, results): if value is None: continue recovered_data[map_keys[key]] = self.decode(value) return recovered_data def set_many(self, data, timeout=DEFAULT_TIMEOUT, version=None, client=None): """ Set a bunch of values in the cache at once from a dict of key/value pairs. This is much more efficient than calling set() multiple times. If timeout is given, that timeout will be used for the key; otherwise the default cache timeout will be used. """ if client is None: client = self.get_client(write=True) try: pipeline = client.pipeline() for key, value in data.items(): self.set(key, value, timeout, version=version, client=pipeline) pipeline.execute() except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def _incr(self, key, delta=1, version=None, client=None, ignore_key_check=False): if client is None: client = self.get_client(write=True) key = self.make_key(key, version=version) try: try: # if key expired after exists check, then we get # key with wrong value and ttl -1. # use lua script for atomicity if not ignore_key_check: lua = """ local exists = redis.call('EXISTS', KEYS[1]) if (exists == 1) then return redis.call('INCRBY', KEYS[1], ARGV[1]) else return false end """ else: lua = """ return redis.call('INCRBY', KEYS[1], ARGV[1]) """ value = client.eval(lua, 1, key, delta) if value is None: raise ValueError("Key '%s' not found" % key) except ResponseError: # if cached value or total value is greater than 64 bit signed # integer. # elif int is encoded. so redis sees the data as string. # In this situations redis will throw ResponseError # try to keep TTL of key timeout = client.ttl(key) # returns -2 if the key does not exist # means, that key have expired if timeout == -2: raise ValueError("Key '%s' not found" % key) value = self.get(key, version=version, client=client) + delta self.set(key, value, version=version, timeout=timeout, client=client) except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) return value def incr(self, key, delta=1, version=None, client=None, ignore_key_check=False): """ Add delta to value in the cache. If the key does not exist, raise a ValueError exception. if ignore_key_check=True then the key will be created and set to the delta value by default. """ return self._incr(key=key, delta=delta, version=version, client=client, ignore_key_check=ignore_key_check) def decr(self, key, delta=1, version=None, client=None): """ Decreace delta to value in the cache. If the key does not exist, raise a ValueError exception. """ return self._incr(key=key, delta=-delta, version=version, client=client) def ttl(self, key, version=None, client=None): """ Executes TTL redis command and return the "time-to-live" of specified key. If key is a non volatile key, it returns None. """ if client is None: client = self.get_client(write=False) key = self.make_key(key, version=version) if not client.exists(key): return 0 t = client.ttl(key) if t >= 0: return t elif t == -1: return None elif t == -2: return 0 else: # Should never reach here return None def has_key(self, key, version=None, client=None): """ Test if key exists. """ if client is None: client = self.get_client(write=False) key = self.make_key(key, version=version) try: return client.exists(key) == 1 except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def iter_keys(self, search, itersize=None, client=None, version=None): """ Same as keys, but uses redis >= 2.8 cursors for make memory efficient keys iteration. """ if client is None: client = self.get_client(write=False) pattern = self.make_pattern(search, version=version) for item in client.scan_iter(match=pattern, count=itersize): item = smart_text(item) yield self.reverse_key(item) def keys(self, search, version=None, client=None): """ Execute KEYS command and return matched results. Warning: this can return huge number of results, in this case, it strongly recommended use iter_keys for it. """ if client is None: client = self.get_client(write=False) pattern = self.make_pattern(search, version=version) try: encoding_map = [smart_text(k) for k in client.keys(pattern)] return [self.reverse_key(k) for k in encoding_map] except _main_exceptions as e: raise ConnectionInterrupted(connection=client, parent=e) def make_key(self, key, version=None, prefix=None): if isinstance(key, CacheKey): return key if prefix is None: prefix = self._backend.key_prefix if version is None: version = self._backend.version return CacheKey(self._backend.key_func(key, prefix, version)) def make_pattern(self, pattern, version=None, prefix=None): if isinstance(pattern, CacheKey): return pattern if prefix is None: prefix = self._backend.key_prefix prefix = glob_escape(prefix) if version is None: version = self._backend.version version = glob_escape(str(version)) return CacheKey(self._backend.key_func(pattern, prefix, version)) def close(self, **kwargs): if getattr(settings, "DJANGO_REDIS_CLOSE_CONNECTION", False): for i in range(len(self._clients)): for c in self._clients[i].connection_pool._available_connections: c.disconnect() self._clients[i] = None def touch(self, key, timeout=DEFAULT_TIMEOUT, version=None, client=None): """ Sets a new expiration for a key. """ if client is None: client = self.get_client(write=True) key = self.make_key(key, version=version) return client.expire(key, timeout)
the-stack_106_18610
from setuptools import setup, find_packages install_requires = [ 'arrow<1.0', # Guard against losing py3.5 compat announced for v1.0. 'Babel', 'csvw>=1.0', 'clldutils>=3.5', 'pycldf>=1.5.1', 'setuptools>=25', 'pyramid>=1.10', 'pyramid_mako>=1.0', 'pyramid_tm', 'SQLAlchemy>=1.0.6', 'purl>=0.5', 'pytz', 'zope.sqlalchemy', 'alembic>=0.7.1', 'webassets>=0.12.1', # no longer supports py2, no longer requires six! 'markupsafe', 'requests>=2.4.3', # we use the support for connect timeouts introduced in 2.4.0 'rdflib>=4.1.1', # rdflib 4.1.0 requires html5lib==0.95 'colander', 'python-dateutil', 'paginate', 'webhelpers2>=2.0', 'nameparser', 'waitress>=1.4.2', ] setup( name='clld', version='7.4.2.dev0', description=( 'Python library supporting the development of cross-linguistic databases'), long_description=open('README.md').read(), long_description_content_type='text/markdown', classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI", ], keywords='web pyramid LRL Linguistics', author="Robert Forkel, MPI SHH", author_email="[email protected]", url="https://clld.org", license="Apache Software License", packages=find_packages(where="src"), package_dir={"": "src"}, include_package_data=True, zip_safe=False, python_requires='>=3.5', install_requires=install_requires, extras_require={ 'dev': [ 'cookiecutter', 'cldfcatalog', 'waitress', 'pyramid_debugtoolbar', 'tox', 'flake8', 'wheel', 'twine', ], 'test': [ 'cookiecutter', 'xlrd', 'mock', 'pytest>=6', 'pytest-clld>=1.0.2', 'pytest-mock', 'pytest-cov', 'coverage>=4.2', 'zope.component>=3.11.0', ], 'docs': [ 'Sphinx', 'docutils', 'repoze.sphinx.autointerface', ], }, message_extractors={'src/clld': [ ('**.py', 'python', None), ('**.mako', 'mako', {'encoding': 'utf8'}), ('web/static/**', 'ignore', None)]}, entry_points="""\ [console_scripts] clld = clld.__main__:main """ )
the-stack_106_18611
import os import re import platform from conans.client import conan_api from cpt.packager import ConanMultiPackager from cpt.tools import split_colon_env from cpt.remotes import RemotesManager # from cpt.ci_manager import * from cpt.printer import Printer from bincrafters.build_paths import BINCRAFTERS_REPO_URL, BINCRAFTERS_LOGIN_USERNAME, BINCRAFTERS_USERNAME, BINCRAFTERS_REPO_NAME printer = Printer() # ci_manager = CIManager(printer=printer) def get_recipe_path(cwd=None): cwd = os.getenv("BPT_CWD", cwd) conanfile = os.getenv("CONAN_CONANFILE", "conanfile.py") if cwd is None: return os.path.abspath(conanfile) else: return os.path.abspath(os.path.join(cwd, conanfile)) def get_bool_from_env(var_name, default="1"): val = os.getenv(var_name, default) return str(val).lower() in ("1", "true", "yes", "y") def get_value_from_recipe(search_string, recipe=None): if recipe is None: recipe = get_recipe_path() with open(recipe, "r") as conanfile: contents = conanfile.read() result = re.search(search_string, contents) return result def inspect_value_from_recipe(attribute, recipe_path): cwd = os.getcwd() result = None try: dir_name = os.path.dirname(recipe_path) conanfile_name = os.path.basename(recipe_path) if dir_name == "": dir_name = "./" os.chdir(dir_name) conan_instance, _, _ = conan_api.Conan.factory() inspect_result = conan_instance.inspect(path=conanfile_name, attributes=[attribute]) result = inspect_result.get(attribute) except: pass os.chdir(cwd) return result def get_name_from_recipe(recipe=None): name = inspect_value_from_recipe(attribute="name", recipe_path=recipe) return name or get_value_from_recipe(r'''name\s*=\s*["'](\S*)["']''', recipe=recipe).groups()[0] def get_version_from_recipe(recipe=None): version = inspect_value_from_recipe(attribute="version", recipe_path=recipe) return version or get_value_from_recipe(r'''version\s*=\s*["'](\S*)["']''', recipe=recipe).groups()[0] def is_shared(recipe=None): options = inspect_value_from_recipe(attribute="options", recipe_path=recipe) if options: return "shared" in options match = get_value_from_recipe(r'''options.*=([\s\S]*?)(?=}|$)''', recipe=recipe) if match is None: return False return "shared" in match.groups()[0] def get_repo_name_from_ci(): reponame_a = os.getenv("APPVEYOR_REPO_NAME", "") reponame_azp = os.getenv("BUILD_REPOSITORY_NAME", "") reponame_g = os.getenv("GITHUB_REPOSITORY", "") return reponame_a or reponame_azp or reponame_g def get_repo_branch_from_ci(): # TODO: Try one day again to migrate this to CPTs CI Manager # Since CPTs CI Managers varies in logic this break to much of the existing behaviour # in a first attempt (Croydon) # ~~Remove GHA special handling after CPT 0.32.0 is released~~ repobranch_a = os.getenv("APPVEYOR_REPO_BRANCH", "") repobranch_azp = os.getenv("BUILD_SOURCEBRANCH", "") if repobranch_azp.startswith("refs/pull/"): repobranch_azp = os.getenv("SYSTEM_PULLREQUEST_TARGETBRANCH", "") def _clean_branch(branch): return branch[11:] if branch.startswith("refs/heads/") else branch repobranch_azp = _clean_branch(repobranch_azp) repobranch_g = _clean_branch(os.getenv("GITHUB_REF", "")) if os.getenv("GITHUB_EVENT_NAME", "") == "pull_request": repobranch_g = os.getenv("GITHUB_BASE_REF", "") return repobranch_a or repobranch_azp or repobranch_g def get_ci_vars(): reponame = get_repo_name_from_ci() reponame_split = reponame.split("/") repobranch = get_repo_branch_from_ci() repobranch_split = repobranch.split("/") username, _ = reponame_split if len(reponame_split) == 2 else ["", ""] channel, version = repobranch_split if len(repobranch_split) == 2 else ["", ""] return username, channel, version def get_username_from_ci(): username, _, _ = get_ci_vars() return username def get_channel_from_ci(): _, channel, _ = get_ci_vars() return channel def get_version_from_ci(): _, _, version = get_ci_vars() return version def get_version(recipe=None): env_ver = os.getenv("CONAN_VERSION", None) ci_ver = get_version_from_ci() if env_ver: return env_ver elif ci_ver: return ci_ver else: return get_version_from_recipe(recipe=recipe) def get_conan_vars(recipe=None, kwargs={}): # these fallbacks have to handle empty environment variables too! # this is the case for e.g. external pull request (i.e. no secrets available) # This combined with versioned branches, lead to the error # that the channel is defined but not the username and CPT fails if "CONAN_USERNAME" in os.environ and os.getenv("CONAN_USERNAME") != "": username_fallback = os.getenv("CONAN_USERNAME") else: username_fallback = get_username_from_ci() or BINCRAFTERS_USERNAME if "CONAN_LOGIN_USERNAME" in os.environ and os.getenv("CONAN_LOGIN_USERNAME") != "": login_username_fallback = os.getenv("CONAN_LOGIN_USERNAME") else: login_username_fallback = BINCRAFTERS_LOGIN_USERNAME username = kwargs.get("username", username_fallback) kwargs["channel"] = kwargs.get("channel", os.getenv("CONAN_CHANNEL", get_channel_from_ci())) version = get_version(recipe=recipe) kwargs["login_username"] = kwargs.get("login_username", login_username_fallback) kwargs["username"] = username return username, version, kwargs def get_user_repository(username, repository_name): return "https://{0}.jfrog.io/artifactory/api/conan/{1}".format(username.lower(), repository_name) def get_conan_upload(username): if os.getenv("BPT_NO_UPLOAD", "").lower() in ["true", "yes", "on", "1"]: return False upload = os.getenv("CONAN_UPLOAD") if upload: return upload.split('@') if '@' in upload else upload repository_name = os.getenv("BINTRAY_REPOSITORY", BINCRAFTERS_REPO_NAME) return get_user_repository(username, repository_name) def get_conan_upload_param(username, kwargs): if not get_conan_upload(username): try: del kwargs["upload"] except: pass return kwargs if "upload" not in kwargs and get_conan_upload(username): kwargs["upload"] = get_conan_upload(username) return kwargs def get_conan_remotes(username, kwargs): remotes = None if "remotes" not in kwargs: remotes = os.getenv("CONAN_REMOTES") if remotes: remotes = remotes.split(',') for remote in reversed(remotes): if '@' in remote: remote = RemotesManager._get_remote_from_str(remote, var_name=remote) else: # While redundant, this moves upload remote to position 0. remotes = [get_conan_upload(username)] if get_conan_upload(username) else [] # Add bincrafters repository for other users, e.g. if the package would # require other packages from the bincrafters repo. bincrafters_user = BINCRAFTERS_USERNAME if username != bincrafters_user: if get_conan_upload(bincrafters_user): remotes.append(get_conan_upload(bincrafters_user)) # Force Bincrafters repo on remotes if BINCRAFTERS_REPO_URL not in remotes: remotes.append(BINCRAFTERS_REPO_URL) kwargs["remotes"] = remotes return kwargs def get_upload_when_stable(kwargs): upload_when_stable = kwargs.get('upload_only_when_stable') if upload_when_stable is None: kwargs['upload_only_when_stable'] = get_bool_from_env("CONAN_UPLOAD_ONLY_WHEN_STABLE") return kwargs def get_os(): return platform.system().replace("Darwin", "Macos") def get_archs(kwargs): if "archs" not in kwargs: archs = os.getenv("CONAN_ARCHS", None) if archs is None: # Per default only build 64-bit artifacts kwargs["archs"] = ["x86_64"] else: kwargs["archs"] = split_colon_env("CONAN_ARCHS") if archs else None return kwargs def get_stable_branch_pattern(kwargs): if "stable_branch_pattern" not in kwargs: kwargs["stable_branch_pattern"] = os.getenv("CONAN_STABLE_BRANCH_PATTERN", "stable/*") return kwargs def get_reference(name, version, kwargs): if "reference" not in kwargs: kwargs["reference"] = "{0}/{1}".format(name, version) return kwargs def get_builder(build_policy=None, cwd=None, **kwargs): recipe = get_recipe_path(cwd) cwd = os.path.dirname(recipe) name = get_name_from_recipe(recipe=recipe) username, version, kwargs = get_conan_vars(recipe=recipe, kwargs=kwargs) kwargs = get_reference(name, version, kwargs) kwargs = get_conan_upload_param(username, kwargs) kwargs = get_conan_remotes(username, kwargs) kwargs = get_upload_when_stable(kwargs) kwargs = get_stable_branch_pattern(kwargs) kwargs = get_archs(kwargs) build_policy = os.getenv("CONAN_BUILD_POLICY", build_policy) builder = ConanMultiPackager( build_policy=build_policy, cwd=cwd, **kwargs) return builder
the-stack_106_18612
#!/usr/bin/env python # encoding: utf-8 from __future__ import print_function import numpy as np from collections import defaultdict import fire, pickle, random, time, math, os, lzma from dynet import * from .utils import buildVocab, strong_normalize, shuffled_balanced_stream from .modules import UPOSTagger, XPOSTagger, MSTParser, AHDPParser, AEDPParser import pyximport; pyximport.install() from .calgorithm import projectivize, is_projective from .asbeamconf import ASBeamConf from .evaluation import POSCorrect from .io import read_conll, write_conll from .layers import MultiLayerPerceptron, Dense, identity, Biaffine class ComputationCarrier(object): def __copy__(self): result = object.__new__(ComputationCarrier) result.__dict__.update(self.__dict__) return result class CDParser: def __init__(self): pass def create_parser(self, **kwargs): self._verbose = kwargs.get("verbose", True) if self._verbose: print("Parameters (others default):") for k in sorted(kwargs): print(k, kwargs[k]) self._args = kwargs self._learning_rate = kwargs.get("learning_rate", 0.001) self._beta1 = kwargs.get("beta2", 0.9) self._beta2 = kwargs.get("beta2", 0.999) self._epsilon = kwargs.get("epsilon", 1e-8) self._edecay = kwargs.get("edecay", 0.) self._clip = kwargs.get("clip", 5.) self._sparse_updates = kwargs.get("sparse_updates", False) self._optimizer = kwargs.get("optimizer", "adam") self._batch_size = kwargs.get("batch_size", 50) self._anneal_base = kwargs.get("anneal_base", 1.0) self._anneal_steps = kwargs.get("anneal_steps", 1000) self._word_smooth = kwargs.get("word_smooth", 0.25) self._char_smooth = kwargs.get("char_smooth", 0.25) self._wdims = kwargs.get("wdims", 128) self._bilstm_dims = kwargs.get("bilstm_dims", 128) self._bilstm_layers = kwargs.get("bilstm_layers", 2) self._bilstm_dropout = kwargs.get("bilstm_dropout", 0.0) self._pdims = kwargs.get("pdims", 0) self._fdims = kwargs.get("fdims", 0) self._feature_dropout = kwargs.get("feature_dropout", 0.0) self._block_dropout = kwargs.get("block_dropout", 0.) self._char_dropout = kwargs.get("char_dropout", 0.) self._cdims = kwargs.get("cdims", 32) self._char_lstm_dims = kwargs.get("char_lstm_dims", 128) self._char_lstm_layers = kwargs.get("char_lstm_layers", 2) self._char_lstm_dropout = kwargs.get("char_lstm_dropout", 0.0) self._char_repr_method = kwargs.get("char_repr_method", "pred") self._activations = {'tanh': tanh, 'sigmoid': logistic, 'relu': rectify, 'tanh3': (lambda x: tanh(cwise_multiply(cwise_multiply(x, x), x)))} self._utagger_num = kwargs.get("utagger_num", 1) self._utagger_weight = kwargs.get("utagger_weight", 1.0) self._utaggers = [UPOSTagger(self, id="UPOS-{}".format(i+1), **self._args) for i in range(self._utagger_num)] self._xtagger_num = kwargs.get("xtagger_num", 1) self._xtagger_weight = kwargs.get("xtagger_weight", 1.0) self._xtaggers = [XPOSTagger(self, id="XPOS-{}".format(i+1), **self._args) for i in range(self._xtagger_num)] self._ahdp_num = kwargs.get("ahdp_num", 1) self._ahdp_weight = kwargs.get("ahdp_weight", 1.0) self._ahdp_parsers = [AHDPParser(self, id="AHDP-{}".format(i+1), **self._args) for i in range(self._ahdp_num)] self._aedp_num = kwargs.get("aedp_num", 1) self._aedp_weight = kwargs.get("aedp_weight", 1.0) self._aedp_parsers = [AEDPParser(self, id="AEDP-{}".format(i+1), **self._args) for i in range(self._aedp_num)] self._as_mlp_activation = self._activations[kwargs.get('as_mlp_activation', 'relu')] self._as_mlp_dims = kwargs.get("as_mlp_dims", 128) self._as_mlp_layers = kwargs.get("as_mlp_layers", 2) self._as_mlp_dropout = kwargs.get("as_mlp_dropout", 0.0) self._as_stack_features = kwargs.get("as_stack_features", 2) self._as_buffer_features = kwargs.get("as_buffer_features", 1) self._as_weight = kwargs.get("as_weight", 1.0) self._mst_num = kwargs.get("mst_num", 1) self._mst_weight = kwargs.get("mst_weight", 1.0) self._mst_parsers = [MSTParser(self, id="MST-{}".format(i+1), **self._args) for i in range(self._mst_num)] self._label_mlp_activation = self._activations[kwargs.get('label_mlp_activation', 'relu')] self._label_mlp_dims = kwargs.get("label_mlp_dims", 128) self._label_mlp_layers = kwargs.get("label_mlp_layers", 1) self._label_mlp_dropout = kwargs.get("label_mlp_dropout", 0.0) self._label_concat_dims = kwargs.get("label_concat_dims", 128) self._label_concat_layers = kwargs.get("label_concat_layers", 1) self._label_weight = kwargs.get("label_weight", 1.0) self._label_discrim = kwargs.get("label_discrim", False) self._label_biaffine = kwargs.get("label_biaffine", False) return self def _load_vocab(self, vocab): self._fullvocab = vocab self._upos = {p: i for i, p in enumerate(vocab["upos"])} self._iupos = vocab["upos"] self._xpos = {p: i for i, p in enumerate(vocab["xpos"])} self._ixpos = vocab["xpos"] self._vocab = {w: i + 3 for i, w in enumerate(vocab["vocab"])} self._wordfreq = vocab["wordfreq"] self._charset = {c: i + 3 for i, c in enumerate(vocab["charset"])} self._charfreq = vocab["charfreq"] self._rels = {r: i for i, r in enumerate(vocab["rels"])} self._irels = vocab["rels"] self._feats = {f: i + 1 for i, f in enumerate(vocab["feats"])} def load_vocab(self, filename): with open(filename, "rb") as f: vocab = pickle.load(f) self._load_vocab(vocab) return self def save_vocab(self, filename): with open(filename, "wb") as f: pickle.dump(self._fullvocab, f) return self def build_vocab(self, filename, savefile=None, cutoff=1): if isinstance(filename, str): graphs = read_conll(filename) elif isinstance(filename, list): graphs = [] for f in filename: graphs.extend(read_conll(f)) self._fullvocab= buildVocab(graphs, cutoff) if savefile: self.save_vocab(savefile) self._load_vocab(self._fullvocab) return self def save_model(self, filename): self.save_vocab(filename + ".vocab") with open(filename + ".params", "wb") as f: pickle.dump(self._args, f) self._model.save(filename + ".model") return self def load_model(self, filename, **kwargs): self.load_vocab(filename + ".vocab") with open(filename + ".params", "rb") as f: args = pickle.load(f) args.update(kwargs) self.create_parser(**args) self.init_model() self._model.load(filename + ".model") return self def init_model(self): self._model = Model() if self._optimizer == "adam": self._trainer = AdamTrainer(self._model, alpha=self._learning_rate, beta_1 = self._beta1, beta_2=self._beta2, edecay=self._edecay, eps=self._epsilon) elif self._optimizer == "sgd": self._trainer = SimpleSGDTrainer(self._model, self._learning_rate) self._trainer.set_sparse_updates(self._sparse_updates) self._trainer.set_clip_threshold(self._clip) input_dims = 0 if self._cdims > 0 and self._char_lstm_dims > 0: if self._char_lstm_dims > 0: self._char_lookup = self._model.add_lookup_parameters((len(self._charset) + 3, self._cdims)) self._char_lstm = BiRNNBuilder(self._char_lstm_layers, self._cdims, self._char_lstm_dims, self._model, LSTMBuilder) if self._char_repr_method == "concat": input_dims += self._char_lstm_dims if self._char_repr_method == "pred": self._char_to_word = Dense(self._char_lstm_dims, self._wdims, tanh, self._model) if self._wdims > 0: self._word_lookup = self._model.add_lookup_parameters((len(self._vocab) + 3, self._wdims)) input_dims += self._wdims if self._pdims > 0: self._upos_lookup = self._model.add_lookup_parameters((len(self._upos) + 1, self._pdims)) input_dims += self._pdims if self._fdims > 0: self._feats_lookup = self._model.add_lookup_parameters((len(self._feats) + 1, self._fdims)) input_dims += self._fdims if input_dims <= 0: print("Input to LSTM is empty! You need to use at least one of word embeddings or character embeddings.") return self._bilstm = BiRNNBuilder(self._bilstm_layers, input_dims, self._bilstm_dims, self._model, LSTMBuilder) self._root_repr = self._model.add_parameters(input_dims) self._bos_repr = self._model.add_parameters(input_dims) self._eos_repr = self._model.add_parameters(input_dims) for utagger in self._utaggers: utagger.init_params() for xtagger in self._xtaggers: xtagger.init_params() for mstparser in self._mst_parsers: mstparser.init_params() for ahdpparser in self._ahdp_parsers: ahdpparser.init_params() for aedpparser in self._aedp_parsers: aedpparser.init_params() self._as_pad_repr = [self._model.add_parameters(self._bilstm_dims) for i in range(self._as_stack_features + self._as_buffer_features)] self._as_mlp = MultiLayerPerceptron([(self._bilstm_dims) * (self._as_stack_features + self._as_buffer_features)] + [self._as_mlp_dims] * self._as_mlp_layers, self._as_mlp_activation, self._model) self._as_final = Dense(self._as_mlp_dims, 3, identity, self._model) if self._label_biaffine: self._label_head_mlp = MultiLayerPerceptron([self._bilstm_dims] + [self._label_mlp_dims] * self._label_mlp_layers, self._label_mlp_activation, self._model) self._label_mod_mlp = MultiLayerPerceptron([self._bilstm_dims] + [self._label_mlp_dims] * self._label_mlp_layers, self._label_mlp_activation, self._model) self._label_scorer = Biaffine(self._label_mlp_dims, len(self._rels), self._model) else: self._label_mlp = MultiLayerPerceptron([(self._bilstm_dims) * 2] + [self._label_mlp_dims] * self._label_mlp_layers, self._label_mlp_activation, self._model) self._label_final = Dense(self._label_mlp_dims, len(self._rels), identity, self._model) return self def load_embeddings(self, filename, xz=False): if not os.path.isfile(filename): print(filename, "does not exist") return self if xz: f = lzma.open(filename, "rt", encoding="utf-8", errors="ignore") else: f = open(filename, "r") found_set = set() for line in f: l = line.split() word = strong_normalize(l[0]) vec = [float(x) for x in l[1:]] if word in self._vocab: found_set.add(word) self._word_lookup.init_row(self._vocab[word], vec) f.close() print("Loaded embeddings from", filename) print(len(found_set), "hits with vocab size of", len(self._vocab)) return self def _next_epoch(self): self._trainer.update_epoch() self._epoch += 1 return self def _get_lstm_features(self, sentence, train=False): carriers = [ComputationCarrier() for i in range(len(sentence))] carriers[0].vec = parameter(self._root_repr) for entry, cc in zip(sentence[1:], carriers[1:]): vecs = [] word_flag = False if self._wdims > 0: c = float(self._wordfreq.get(entry.norm, 0)) word_flag = c > 0 and (not train or (random.random() < (c / (self._word_smooth + c)))) wvec = lookup(self._word_lookup, int(self._vocab.get(entry.norm, 0)) if word_flag else 0) if self._char_repr_method == "concat" or word_flag: vecs.append(wvec) if self._cdims > 0 and self._char_lstm_dims > 0: if not (self._char_repr_method == "pred" and word_flag): char_vecs = [] char_vecs.append(lookup(self._char_lookup, 1)) for ch in entry.word: c = float(self._charfreq.get(ch, 0)) keep_flag = not train or (random.random() < (c / (self._char_smooth + c))) charvec = lookup(self._char_lookup, int(self._charset.get(ch, 0)) if keep_flag else 0) if self._char_dropout > 0.: char_vecs.append(block_dropout(charvec, self._char_dropout)) else: char_vecs.append(charvec) char_vecs.append(lookup(self._char_lookup, 2)) char_vecs = self._char_lstm.add_inputs(char_vecs) cvec = concatenate([char_vecs[0][-1].output(), char_vecs[-1][0].output()]) if self._char_repr_method == "concat": vecs.append(cvec) elif not word_flag: vecs.append(self._char_to_word(cvec)) if self._pdims > 0: keep_flag = not train or (random.random() > 0.01) vecs.append(lookup(self._upos_lookup, int(self._upos.get(entry.upos, len(self._upos))) if keep_flag else len(self._upos))) if self._fdims > 0: feats = [] for f in entry.feats_set: if f in self._feats and ((not train) or random.random() > self._feature_dropout): feats.append(lookup(self._feats_lookup, int(self._feats[f]))) if len(feats) == 0: feats.append(lookup(self._feats_lookup, 0)) vecs.append(emax(feats)) cc.vec = concatenate(vecs) if train and self._block_dropout > 0.: cc.vec = block_dropout(cc.vec, self._block_dropout) ret = self._bilstm.transduce([parameter(self._bos_repr)] + [x.vec for x in carriers[:]] + [parameter(self._eos_repr)]) for vec, cc in zip(ret[1:-1], carriers[:]): cc.vec = vec return carriers def _minibatch_update(self, loss, num_tokens): if len(loss) == 0: return 0. loss = esum(loss) * (1. / self._batch_size) ret = loss.scalar_value() loss.backward() self._trainer.update(self._base_lr * math.pow(self._anneal_base, self._steps / self._anneal_steps)) self._steps += 1 self._init_cg(train=True) return ret * self._batch_size def _as_conf_eval(self, features, carriers): vecs = [carriers[f].vec if f >= 0 else parameter(self._as_pad_repr[i]) for i, f in enumerate(features)] exprs = self._as_final(self._as_mlp(concatenate(vecs))) return exprs.value(), exprs def _as_sent_eval(self, graph, carriers): gold_heads = graph.proj_heads loss = [] beamconf = ASBeamConf(len(graph.nodes), 1, np.array(gold_heads), self._as_stack_features, self._as_buffer_features) beamconf.init_conf(0, True) total = 0 wrong = 0 while not beamconf.is_complete(0): valid = beamconf.valid_transitions(0) if np.count_nonzero(valid) < 1: break scores, exprs = self._as_conf_eval(beamconf.extract_features(0), carriers) best = beamconf.static_oracle(0) rest = tuple((i, s) for i, s in enumerate(scores) if i != best) total += 1 if len(rest) > 0: second, secondScore = max(rest, key=lambda x: x[1]) if scores[best] < scores[second] + 1.0: loss.append(exprs[second] - exprs[best] + 1.) wrong += 1 beamconf.make_transition(0, best) return (total - wrong) / total * (len(graph.nodes) - 1), loss def ast(self, graph, carriers): beamconf = ASBeamConf(len(graph.nodes), 1, np.array(graph.heads), self._as_stack_features, self._as_buffer_features) beamconf.init_conf(0, True) while not beamconf.is_complete(0): valid = beamconf.valid_transitions(0) scores, exprs = self._as_conf_eval(beamconf.extract_features(0), carriers) action, _ = max(((i, s) for i, s in enumerate(scores) if valid[i]), key=lambda x: x[1]) beamconf.make_transition(0, action) graph.heads = list(beamconf.get_heads(0)) return self def _label_arc_eval(self, carriers, head, mod): if self._label_biaffine: expr = self._label_scorer(self._label_head_mlp(carriers[head].vec), self._label_mod_mlp(carriers[mod].vec)) else: expr = self._label_final(self._label_mlp(concatenate([carriers[head].vec, carriers[mod].vec]))) return expr.value(), expr def _label_sent_eval(self, graph, carriers): correct = 0 loss = [] for mod, head in enumerate(graph.heads): if mod > 0 and head >= 0: scores, exprs= self._label_arc_eval(carriers, head, mod) if not graph.rels[mod] in self._rels: continue answer = self._rels[graph.rels[mod]] if np.argmax(scores) == answer: correct += 1 if self._label_discrim: wrong_pred = max(((i, score) for i, score in enumerate(scores) if i != answer), key=lambda x: x[1])[0] if scores[answer] < scores[wrong_pred] + 1.: loss.append((exprs[wrong_pred] - exprs[answer] + 1.)) else: loss.append(pickneglogsoftmax(exprs, answer)) return correct, loss def label(self, graph, carriers): for mod, head in enumerate(graph.heads): if mod > 0 and head >= 0: scores, exprs= self._label_arc_eval(carriers, head, mod) graph.rels[mod] = self._irels[np.argmax(scores)] return self def predict(self, graphs, **kwargs): ahdp = kwargs.get("ahdp", False) aedp = kwargs.get("aedp", False) ast = kwargs.get("ast", False) mst = kwargs.get("mst", False) label = kwargs.get("label", False) for graph in graphs: self._init_cg(train=False) carriers = self._get_lstm_features(graph.nodes, train=False) if mst: for mstparser in self._mst_parsers: mstparser.predict(graph, carriers) if ahdp: for ahdpparser in self._ahdp_parsers: ahdpparser.predict(graph, carriers) if aedp: for aedpparser in self._aedp_parsers: aedpparser.predict(graph, carriers) if ast: self.ast(graph, carriers) if label: self.label(graph, carriers) return graphs def test(self, graphs=None, filename=None, **kwargs): utag = kwargs.get("utag", False) xtag = kwargs.get("xtag", False) ahdp = kwargs.get("ahdp", False) aedp = kwargs.get("aedp", False) ast = kwargs.get("ast", False) mst = kwargs.get("mst", False) label = kwargs.get("label", False) save_prefix = kwargs.get("save_prefix", None) if graphs is None: graphs = read_conll(filename) total = 0 correct_counts = defaultdict(int) as_uas_correct = 0 as_las_correct = 0 label_correct = 0 ret = 0. for gold_graph in graphs: self._init_cg(train=False) graph = gold_graph.cleaned(node_level=False) total += len(graph.nodes) - 1 carriers = self._get_lstm_features(graph.nodes, train=False) if utag: gold_upos = [x.upos for x in graph.nodes] for utagger in self._utaggers: utagger.predict(graph, carriers) predicted = [x.upos for x in graph.nodes] correct_counts["{} Accuracy".format(utagger.id)] += POSCorrect(predicted, gold_upos) if xtag: gold_xpos = [x.xpos for x in graph.nodes] for xtagger in self._xtaggers: xtagger.predict(graph, carriers) predicted = [x.xpos for x in graph.nodes] correct_counts["{} Accuracy".format(xtagger.id)] += POSCorrect(predicted, gold_xpos) if mst: for mstparser in self._mst_parsers: mstparser.predict(graph, carriers) if label: self.label(graph, carriers) for i in range(1, len(graph.nodes)): if gold_graph.heads[i] == graph.heads[i]: correct_counts["{}-UAS".format(mstparser.id)] += 1 if gold_graph.rels[i].split(":")[0] == graph.rels[i].split(":")[0]: correct_counts["{}-LAS".format(mstparser.id)] += 1 if save_prefix: write_conll("{}_{}_{}.conllu".format(save_prefix, self._epoch, mstparser.id), [graph], append=True) if ahdp: for ahdpparser in self._ahdp_parsers: ahdpparser.predict(graph, carriers) if label: self.label(graph, carriers) for i in range(1, len(graph.nodes)): if gold_graph.heads[i] == graph.heads[i]: correct_counts["{}-UAS".format(ahdpparser.id)] += 1 if gold_graph.rels[i].split(":")[0] == graph.rels[i].split(":")[0]: correct_counts["{}-LAS".format(ahdpparser.id)] += 1 if save_prefix: write_conll("{}_{}_{}.conllu".format(save_prefix, self._epoch, ahdpparser.id), [graph], append=True) if aedp: for aedpparser in self._aedp_parsers: aedpparser.predict(graph, carriers) if label: self.label(graph, carriers) for i in range(1, len(graph.nodes)): if gold_graph.heads[i] == graph.heads[i]: correct_counts["{}-UAS".format(aedpparser.id)] += 1 if gold_graph.rels[i].split(":")[0] == graph.rels[i].split(":")[0]: correct_counts["{}-LAS".format(aedpparser.id)] += 1 if save_prefix: write_conll("{}_{}_{}.conllu".format(save_prefix, self._epoch, aedpparser.id), [graph], append=True) if ast: self.ast(graph, carriers) if label: self.label(graph, carriers) for i in range(1, len(graph.nodes)): if gold_graph.heads[i] == graph.heads[i]: as_uas_correct += 1 if gold_graph.rels[i].split(":")[0] == graph.rels[i].split(":")[0]: as_las_correct += 1 if save_prefix: write_conll("{}_{}_as.conllu".format(save_prefix, self._epoch), [graph], append=True) if not ahdp and not aedp and not mst and not ast and label: graph.heads = np.copy(gold_graph.heads) self.label(graph, carriers) for i in range(1, len(graph.nodes)): if gold_graph.rels[i].split(":")[0] == graph.rels[i].split(":")[0]: label_correct += 1 for id in sorted(correct_counts): print(id, correct_counts[id] / total) if label and "-LAS" in id: ret = max(ret, correct_counts[id]) if not label and "-UAS" in id: ret = max(ret, correct_counts[id]) if ast: if label: print("AS-UAS", as_uas_correct / total) print("AS-LAS", as_las_correct / total) ret = max(ret, as_las_correct) else: print("AS-UAS", as_uas_correct / total) ret = max(ret, as_uas_correct) if not ahdp and not aedp and not mst and not ast and label: print("LA", label_correct / total) ret = max(ret, label_correct) return ret / total def fine_tune(self, filename, ratio=0.95, max_steps=1000, eval_steps=100, decay_evals=5, decay_times=0, dev=None, **kwargs): graphs = read_conll(filename) graphs_list = [list(random.sample(graphs, int(len(graphs) * ratio)))] return self.train("", max_steps, eval_steps, decay_evals, decay_times, dev, graphs_list, **kwargs) def train_small(self, filename, split_ratio=0.9, **kwargs): save_prefix = kwargs.get("save_prefix", None) graphs = read_conll(filename) random.shuffle(graphs) train_len = int(len(graphs) * split_ratio) train_graphs = [graphs[:train_len]] dev_graphs = graphs[train_len:] if save_prefix is not None: write_conll("{}_train.conllu".format(save_prefix), train_graphs[0]) write_conll("{}_dev.conllu".format(save_prefix), dev_graphs) return self.train("", graphs_list=train_graphs, dev_graphs=dev_graphs, **kwargs) def train(self, filename, max_steps=1000, eval_steps=100, decay_evals=5, decay_times=0, dev=None, graphs_list=None, dev_portion=0.8, dev_graphs=None, **kwargs): if graphs_list is None: if isinstance(filename, str): graphs_list = [read_conll(filename)] elif isinstance(filename, list): graphs_list = [read_conll(f) for f in filename] total = 0 proj_count = 0 total_trees = 0 for graphs in graphs_list: total_trees += len(graphs) for g in graphs: total += len(g.nodes) - 1 if is_projective(g.heads): g.proj_heads = g.heads proj_count += 1 else: g.proj_heads = projectivize(g.heads) print("Training set projective ratio", proj_count / total_trees) train_set_steps = total / self._batch_size eval_steps = max(int(train_set_steps * 0.25), eval_steps) save_prefix = kwargs.get("save_prefix", None) if dev is not None and dev_graphs is None: dev_graphs = read_conll(dev) dev_samples = int(len(dev_graphs) * dev_portion) dev_samples = min(dev_samples, 1000) dev_graphs = list(random.sample(dev_graphs, dev_samples)) if save_prefix is not None: write_conll("{}_dev.conllu".format(save_prefix), dev_graphs) utag = kwargs.get("utag", False) xtag = kwargs.get("xtag", False) ahdp = kwargs.get("ahdp", False) aedp = kwargs.get("aedp", False) ast = kwargs.get("ast", False) mst = kwargs.get("mst", False) label = kwargs.get("label", False) self._steps = 0 self._epoch = 0 self._base_lr = 1. max_dev = 0. max_dev_ep = 0 i = 0 t0 = time.time() self._init_cg(train=True) loss = [] loss_sum = 0.0 total_tokens = 0 num_tokens = 0 correct_counts = defaultdict(float) as_correct = 0 label_correct = 0 if dev_graphs is not None: performance = self.test(graphs=dev_graphs, **kwargs) for graph in shuffled_balanced_stream(graphs_list): i += 1 if i % 100 == 0: print(i, "{0:.2f}s".format(time.time() - t0), end=" ") sys.stdout.flush() t0 = time.time() carriers = self._get_lstm_features(graph.nodes, train=True) num_tokens += len(graph.nodes) - 1 total_tokens += len(graph.nodes) - 1 if utag: for utagger in self._utaggers: c, l = utagger.sent_loss(graph, carriers) correct_counts[utagger.id] += c if len(l) > 0: loss.append(esum(l) * (self._utagger_weight / self._utagger_num)) if xtag: for xtagger in self._xtaggers: c, l = xtagger.sent_loss(graph, carriers) correct_counts[xtagger.id] += c if len(l) > 0: loss.append(esum(l) * (self._xtagger_weight / self._xtagger_num)) if ast: c, l = self._as_sent_eval(graph, carriers) as_correct += c if len(l) > 0: loss.append(esum(l) * self._as_weight) if mst and len(graph.nodes) < 100: for mstparser in self._mst_parsers: c, l = mstparser.sent_loss(graph, carriers) correct_counts[mstparser.id] += c if len(l) > 0: loss.append(esum(l) * (self._mst_weight / self._mst_num)) if ahdp and len(graph.nodes) < 100: for ahdpparser in self._ahdp_parsers: c, l = ahdpparser.sent_loss(graph, carriers) correct_counts[ahdpparser.id] += c if len(l) > 0: loss.append(esum(l) * (self._ahdp_weight / self._ahdp_num)) if aedp and len(graph.nodes) < 100: for aedpparser in self._aedp_parsers: c, l = aedpparser.sent_loss(graph, carriers) correct_counts[aedpparser.id] += c if len(l) > 0: loss.append(esum(l) * (self._aedp_weight / self._aedp_num)) if label: c, l = self._label_sent_eval(graph, carriers) label_correct += c if len(l) > 0: loss.append(esum(l) * self._label_weight) if num_tokens >= self._batch_size: loss_sum += self._minibatch_update(loss, num_tokens) loss = [] num_tokens = 0 if self._steps % eval_steps == 0: self._next_epoch() print() self._trainer.status() print() print("Total Loss", loss_sum, "Avg", loss_sum / total_tokens) for id in sorted(correct_counts): print("Train {} Acc".format(id), correct_counts[id] / total_tokens) if ast: print("Train AS Acc", as_correct / total_tokens) if label: print("Train Label Acc", label_correct / total_tokens) loss_sum = 0.0 total_tokens = 0 num_tokens = 0 correct_counts = defaultdict(float) as_correct = 0 label_correct = 0 if self._steps >= max_steps: break if dev_graphs is not None: performance = self.test(graphs=dev_graphs, **kwargs) if performance >= max_dev: max_dev = performance max_dev_ep = 0 else: max_dev_ep += 1 if save_prefix: self.save_model("{}_{}_model".format(save_prefix, max_dev_ep)) if max_dev_ep >= decay_evals: if decay_times > 0: decay_times -= 1 max_dev_ep = 0 self._base_lr /= 3. print("Learning rate decayed!") print("Current decay ratio", self._base_lr * math.pow(self._anneal_base, self._steps / self._anneal_steps)) else: break return self def _init_cg(self, train=False): renew_cg() if train: self._bilstm.set_dropout(self._bilstm_dropout) if self._cdims > 0 and self._char_lstm_dims > 0: self._char_lstm.set_dropout(self._char_lstm_dropout) self._as_mlp.set_dropout(self._as_mlp_dropout) if self._label_biaffine: self._label_head_mlp.set_dropout(self._label_mlp_dropout) self._label_mod_mlp.set_dropout(self._label_mlp_dropout) else: self._label_mlp.set_dropout(self._label_mlp_dropout) else: self._bilstm.set_dropout(0.) if self._cdims > 0 and self._char_lstm_dims > 0: self._char_lstm.set_dropout(0.) self._as_mlp.set_dropout(0.) if self._label_biaffine: self._label_head_mlp.set_dropout(0.) self._label_mod_mlp.set_dropout(0.) else: self._label_mlp.set_dropout(0.) for utagger in self._utaggers: utagger.init_cg(train) for xtagger in self._xtaggers: xtagger.init_cg(train) for mstparser in self._mst_parsers: mstparser.init_cg(train) for ahdpparser in self._ahdp_parsers: ahdpparser.init_cg(train) for aedpparser in self._aedp_parsers: aedpparser.init_cg(train) def finish(self, **kwargs): print() if __name__ == '__main__': fire.Fire(CDParser)
the-stack_106_18615
import kivy from kivy.app import App from kivy.uix.widget import Widget import kivent_core from kivy.properties import NumericProperty, StringProperty from math import pi, cos, sin def get_triangle_data(side_length): return { 'vertices': {0: {'pos': (-side_length/2., -side_length/2.), 'v_color': (255, 0, 0, 255)}, 1: {'pos': (side_length/2., -side_length/2.), 'v_color': (0, 255, 0, 255)}, 2: {'pos': (0., side_length/2.), 'v_color': (0, 0, 255, 255)}, }, 'indices': [0, 1, 2], 'vertex_count': 3, 'index_count': 3, } def get_rectangle_data(height, width): return { 'vertices': {0: {'pos': (-width/2., -height/2.), 'v_color': (255, 0, 0, 255)}, 1: {'pos': (-width/2., height/2.), 'v_color': (0, 255, 0, 255)}, 2: {'pos': (width/2., height/2.), 'v_color': (0, 0, 255, 255)}, 3: {'pos': (width/2., -height/2.), 'v_color': (255, 0, 255, 255)} }, 'indices': [0, 1, 2, 2, 3, 0], 'vertex_count': 4, 'index_count': 6, } def get_regular_polygon(sides, r, middle_color, edge_color, pos=(0., 0.)): x, y = pos angle = 2 * pi / sides all_verts = {} all_verts[0] = {'pos': pos, 'v_color': middle_color} i = 0 indices = [] vert_count = 1 ind_count = 0 ind_ext = indices.extend c = 1 for s in range(sides): new_pos = [x + (r * sin(s * angle)), y + (r * cos(s * angle))] all_verts[vert_count] = {'pos': new_pos, 'v_color': edge_color} vert_count += 1 if c < sides: ind_ext((c, 0, c+1)) else: ind_ext((c, 0, 1)) ind_count += 3 c += 1 return {'indices': indices, 'vertices': all_verts, 'vertex_count': vert_count, 'index_count': ind_count} def get_layered_regular_polygon(levels, sides, middle_color, radius_color_dict, pos=(0., 0.)): ''' radius_color_dict = {level#: (r, (r,g,b,a))} ''' x, y = pos angle = 2 * pi / sides all_verts = {} all_verts[0] = {'pos': pos, 'v_color': middle_color} r_total = 0 i = 0 indices = [] vert_count = 1 ind_count = 0 ind_ext = indices.extend for count in range(levels): level = i + 1 r, color = radius_color_dict[level] for s in range(sides): new_pos = list((x + (r + r_total) * sin(s * angle), y + (r + r_total) * cos(s * angle))) all_verts[vert_count] = {'pos': new_pos, 'v_color': color} vert_count += 1 r_total += r c = 1 #side number we are on in loop if level == 1: for each in range(sides): if c < sides: ind_ext((c, 0, c+1)) else: ind_ext((c, 0, 1)) ind_count += 3 c += 1 else: for each in range(sides): offset = sides*(i-1) if c < sides: ind_ext((c+sides+offset, c+sides+1+offset, c+offset)) ind_ext((c+offset, c+1+offset, c+sides+1+offset)) else: ind_ext((c+sides+offset, sides+1+offset, sides+offset)) ind_ext((sides+offset, 1+offset, sides+1+offset)) ind_count += 6 c += 1 i += 1 return {'indices': indices, 'vertices': all_verts, 'vertex_count': vert_count, 'index_count': ind_count} class TestGame(Widget): entity_id = NumericProperty(None) shape_to_draw = StringProperty(None, allownone=True) def __init__(self, **kwargs): super(TestGame, self).__init__(**kwargs) self.shapes = {} self.gameworld.init_gameworld( ['position', 'poly_renderer'], callback=self.init_game) def init_game(self): self.setup_states() self.set_state() self.load_shapes() def create_shape(self, pos, shape_name): create_dict = { 'position': pos, 'poly_renderer': {'model_key': self.shapes[shape_name]}, } return self.gameworld.init_entity(create_dict, ['position', 'poly_renderer']) def on_touch_down(self, touch): super(TestGame, self).on_touch_down(touch) if not self.ids.button_tray.collide_point(touch.x, touch.y): if self.shape_to_draw is not None: self.create_shape(touch.pos, self.shape_to_draw) def draw_shape_callback(self, shape_type): self.shape_to_draw = shape_type def stop_drawing(self): self.shape_to_draw = None def clear(self): self.gameworld.clear_entities() def load_shapes(self): model_manager = self.gameworld.model_manager init_entity = self.gameworld.init_entity triangle_data = get_triangle_data(150.) triangle_model = model_manager.load_model( 'vertex_format_2f4ub', triangle_data['vertex_count'], triangle_data['index_count'], 'triangle', indices=triangle_data['indices'], vertices=triangle_data['vertices'] ) self.shapes['triangle_model'] = triangle_model rectangle_data = get_rectangle_data(100., 150.) rectangle_model = model_manager.load_model( 'vertex_format_2f4ub', rectangle_data['vertex_count'], rectangle_data['index_count'], 'rectangle', indices=rectangle_data['indices'], vertices=rectangle_data['vertices'] ) self.shapes['rectangle_model'] = rectangle_model circle_data = get_regular_polygon(32, 150., (255, 255, 0, 255), (45, 0, 125, 255)) circle_model = model_manager.load_model( 'vertex_format_2f4ub', circle_data['vertex_count'], circle_data['index_count'], 'circle', indices=circle_data['indices'], vertices=circle_data['vertices'], ) self.shapes['circle_model'] = circle_model layered_circle_data = get_layered_regular_polygon( 2, 32, (255, 0, 255, 255), {1: (75., (255, 0, 0, 255)), 2: (5., (255, 255, 255, 0))} ) layered_circle_model = model_manager.load_model( 'vertex_format_2f4ub', layered_circle_data['vertex_count'], layered_circle_data['index_count'], 'layered_circle', vertices=layered_circle_data['vertices'], indices=layered_circle_data['indices'] ) self.shapes['layered_circle_model'] = layered_circle_model def setup_states(self): self.gameworld.add_state(state_name='main', systems_added=[], systems_removed=[], systems_paused=[], systems_unpaused=[], screenmanager_screen='main') def set_state(self): self.gameworld.state = 'main' class YourAppNameApp(App): def build(self): pass if __name__ == '__main__': YourAppNameApp().run()
the-stack_106_18618
import click import datetime from random import randint from math import floor from flask.cli import with_appcontext from .models import Proposal, db from grant.milestone.models import Milestone from grant.comment.models import Comment from grant.utils.enums import ProposalStatus, Category, ProposalStage from grant.user.models import User @click.command() @click.argument('stage') @click.argument('user_id') @click.argument('proposal_id') @click.argument('title') @click.argument('content') @with_appcontext def create_proposal(stage, user_id, proposal_id, title, content): proposal = Proposal.create(stage=stage, user_id=user_id, proposal_id=proposal_id, title=title, content=content) db.session.add(proposal) db.session.commit() @click.command() @click.argument('count', type=int) @with_appcontext def create_proposals(count): user = User.query.filter_by().first() for i in range(count): if i < 5: stage = ProposalStage.WIP else: stage = ProposalStage.COMPLETED p = Proposal.create( stage=stage, status=ProposalStatus.LIVE, title=f'Fake Proposal #{i}', content=f'My fake proposal content, numero {i}', brief=f'This is proposal {i} generated by "flask create-proposals"', category=Category.ACCESSIBILITY, target="123.456", payout_address="fake123", deadline_duration=100 ) p.date_published = datetime.datetime.now() p.team.append(user) p.date_approved = datetime.datetime.now() p.accepted_with_funding = True p.version = '2' p.fully_fund_contibution_bounty() db.session.add(p) db.session.flush() num_ms = randint(1, 9) for j in range(num_ms): m = Milestone( title=f'Fake MS {j}', content=f'Fake milestone #{j} on fake proposal #{i}!', days_estimated='10', payout_percent=str(floor(1 / num_ms * 100)), immediate_payout=j == 0, proposal_id=p.id, index=j ) db.session.add(m) for j in range(100): c = Comment( proposal_id=p.id, user_id=user.id, parent_comment_id=None, content=f'Fake comment #{j} on fake proposal #{i}!' ) db.session.add(c) Milestone.set_v2_date_estimates(p) db.session.add(p) db.session.commit() print(f'Added {count} LIVE fake proposals') @click.command() @click.argument('dry', required=False) @with_appcontext def retire_v1_proposals(dry): now = datetime.datetime.now() proposals_funding_required = Proposal.query.filter_by(stage="FUNDING_REQUIRED").all() proposals_draft = Proposal.query.filter_by(status=ProposalStatus.DRAFT).all() proposals_pending = Proposal.query.filter_by(status=ProposalStatus.PENDING).all() proposals_staking = Proposal.query.filter_by(status=ProposalStatus.STAKING).all() modified_funding_required_count = 0 modified_draft_count = 0 modified_pending_count = 0 modified_staking_count = 0 deleted_draft_count = 0 if not proposals_funding_required and not proposals_draft and not proposals_pending and not proposals_staking: print("No proposals found. Exiting...") return print(f"Found {len(proposals_funding_required)} 'FUNDING_REQUIRED' proposals to modify") print(f"Found {len(proposals_draft)} 'DRAFT' proposals to modify") print(f"Found {len(proposals_pending)} 'PENDING' proposals to modify") print(f"Found {len(proposals_staking)} 'STAKING' proposals to modify") if dry: print(f"This is a dry run. Changes will not be committed to the database") confirm = input("Continue? (y/n) ") if confirm != "y": print("Exiting...") return # move 'FUNDING_REQUIRED' proposals to a failed state for p in proposals_funding_required: if not dry: new_deadline = (now - p.date_published).total_seconds() p.stage = ProposalStage.FAILED p.deadline_duration = int(new_deadline) db.session.add(p) modified_funding_required_count += 1 print(f"Modified 'FUNDING_REQUIRED' proposal {p.id} - {p.title}") # reset proposal to draft state def convert_proposal_to_v2_draft(proposal): milestones = Milestone.query.filter_by(proposal_id=proposal.id).all() if not dry: # reset target because v2 estimates are in USD proposal.target = '0' proposal.version = '2' proposal.stage = ProposalStage.PREVIEW proposal.status = ProposalStatus.DRAFT db.session.add(proposal) for m in milestones: # clear date estimated because v2 proposals use days_estimated (date_estimated is dynamically set) m.date_estimated = None db.session.add(m) print(f"Modified {len(milestones)} milestones on proposal {p.id}") # delete drafts that have no content def delete_stale_draft(proposal): if proposal.title or proposal.brief or proposal.content or proposal.category or proposal.target != "0": return False if proposal.payout_address or proposal.milestones: return False if not dry: db.session.delete(proposal) return True for p in proposals_draft: is_stale = delete_stale_draft(p) if is_stale: deleted_draft_count += 1 print(f"Deleted stale 'DRAFT' proposal {p.id} - {p.title}") continue convert_proposal_to_v2_draft(p) modified_draft_count += 1 print(f"Modified 'DRAFT' proposal {p.id} - {p.title}") for p in proposals_pending: convert_proposal_to_v2_draft(p) modified_pending_count += 1 print(f"Modified 'PENDING' proposal {p.id} - {p.title}") for p in proposals_staking: convert_proposal_to_v2_draft(p) modified_staking_count += 1 print(f"Modified 'STAKING' proposal {p.id} - {p.title}") if not dry: print(f"Committing changes to database") db.session.commit() print("") print(f"Modified {modified_funding_required_count} 'FUNDING_REQUIRED' proposals") print(f"Modified {modified_draft_count} 'DRAFT' proposals") print(f"Modified {modified_pending_count} 'PENDING' proposals") print(f"Modified {modified_staking_count} 'STAKING' proposals") print(f"Deleted {deleted_draft_count} stale 'DRAFT' proposals")
the-stack_106_18620
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.autograd import Function import torch.nn.functional as F import dynamicconv_cuda from fairseq_mod import utils from fairseq_mod.modules.unfold import unfold1d from fairseq_mod.incremental_decoding_utils import with_incremental_state from fairseq_mod.modules.fairseq_dropout import FairseqDropout class dynamicconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = dynamicconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = dynamicconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class DynamicconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0., bias=False, renorm_padding=False, conv_bias=False, query_size=None, ): super(DynamicconvLayer, self).__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout(weight_dropout, module_name=self.__class__.__name__) self.renorm_padding = renorm_padding self.bias = bias self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_linear.weight) if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.) nn.init.constant_(self.weight_linaer.bias, 0.) def forward(self, x, incremental_state=None, query=None, unfold=None): T, B, C = x.size() K, H = self.kernel_size, self.num_heads # R = C // H # during inference time, incremental BMM is faster if incremental_state is not None: unfold = x.size(0) > 512 if unfold is None else unfold # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output # during training time, use CUDA kernel else: weight = self.weight_linear(x).view(T, B, H, K) if self.weight_softmax: weight = F.softmax(weight, dim=-1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) weight = weight.permute(1, 2, 3, 0).contiguous() self.filters = weight x = x.permute(1, 2, 0).contiguous() output = dynamicconvFunction.apply(x, weight, self.padding_l).permute(2, 0, 1) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, 'input_buffer') def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state(self, incremental_state, 'input_buffer', new_buffer) def _forward_unfolded(self, x, incremental_state, query): '''The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.''' T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T*B*H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer(incremental_state, x_unfold[:, :, :, -self.kernel_size+1:]) x_unfold = x_unfold.view(T*B*H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K-1: weight = weight.narrow(1, K-T, T) K, padding_l = T, T-1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T*B*H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2):] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): '''Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. ''' T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T*B*H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B*H, K).transpose(0, 1) x = x.view(T, B*H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B*H, T, T+K-1).fill_(float('-inf')) weight_expanded.as_strided((B*H, T, K), (T*(T+K-1), T+K, 1)).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficieny, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K-1: weight = weight.narrow(2, K-T, T) K, P = T, T-1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B*H, T, T+K-1, requires_grad=False) weight_expanded.as_strided((B*H, T, K), (T*(T+K-1), T+K, 1)).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output
the-stack_106_18621
def createWordList(filename): text_file= open(filename,"r") temp = text_file.read().split("\n") text_file.close() temp.pop() #remove the last new line return temp def canWeMakeIt(myWord, myLetters): listLetters=[] for letter in myLetters: listLetters.append (letter) for x in myWord: if x not in listLetters: return False else: return True def specificLength(s,l): result = [] if l == 1: for c in s: result.append(c) return result for c in s: words = specificLength(s.replace(c,'',1), l-1) for w in words: result.append(w+c) return result def makeCandidates(s): wordSet=set() for a in range(1,len(s)): word= specificLength(s,a) for x in word: wordSet.add(x) return wordSet def wordList(s): list1=makeCandidates(s) list2=createWordList("wordlist.txt") list3=[] for a in list1: if a in list2: list3.append(a) return list3 def getWordPoints(myWord): letterPoints = {'a':1, 'b':3, 'c':3, 'd':2, 'e':1, 'f':4,\ 'g':2, 'h':4, 'i':1, 'j':8, 'k':5, 'l':1,\ 'm':3, 'n':1, 'o':1, 'p':3, 'q':10, 'r':1,\ 's':1, 't':1, 'u':1, 'v':4, 'w':4, 'x':8,\ 'y':4, 'z':10} result=0 for letter in myWord: result=result+letterPoints[letter] return result def scrabbleWords(myLetters): list1=wordList(myLetters) lst=list() for word in list1: point=getWordPoints(word) lst.append((point,word)) lst.sort(reverse=True) result=[] for point,word in lst: result.append([point,word]) return result
the-stack_106_18622
from collections import deque, defaultdict class Solution: def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int: '''Time: O(m^2*n) Space: O(m^2*n)''' if endWord not in wordList: return 0 if beginWord not in wordList: wordList.append(beginWord) graph = defaultdict(list) for word in wordList: # m times for i in range(len(word)): # n times graph[word[:i] + '*' + word[i + 1:]].append(word) # This takes O(m)!! queue = deque() queue.append((beginWord, 1)) visited = set([beginWord]) while queue: word, dist = queue.popleft() if word == endWord: return dist for i in range(len(word)): for neighbor in graph[word[:i] + '*' + word[i + 1:]]: if neighbor not in visited: queue.append((neighbor, dist + 1)) visited.add(neighbor) return 0
the-stack_106_18623
import collections.abc import re from typing import ( Any, Callable, Dict, List, Mapping, MutableMapping, Optional, Sequence, Type, Union, IO, ) import warnings from io import BytesIO from datetime import datetime from base64 import b64encode, b64decode from numbers import Integral from types import SimpleNamespace from functools import singledispatch from fontTools.misc import etree from fontTools.misc.textTools import tostr # By default, we # - deserialize <data> elements as bytes and # - serialize bytes as <data> elements. # Before, on Python 2, we # - deserialized <data> elements as plistlib.Data objects, in order to # distinguish them from the built-in str type (which is bytes on python2) # - serialized bytes as <string> elements (they must have only contained # ASCII characters in this case) # You can pass use_builtin_types=[True|False] to the load/dump etc. functions # to enforce a specific treatment. # NOTE that unicode type always maps to <string> element, and plistlib.Data # always maps to <data> element, regardless of use_builtin_types. USE_BUILTIN_TYPES = True XML_DECLARATION = b"""<?xml version='1.0' encoding='UTF-8'?>""" PLIST_DOCTYPE = ( b'<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ' b'"http://www.apple.com/DTDs/PropertyList-1.0.dtd">' ) # Date should conform to a subset of ISO 8601: # YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z' _date_parser = re.compile( r"(?P<year>\d\d\d\d)" r"(?:-(?P<month>\d\d)" r"(?:-(?P<day>\d\d)" r"(?:T(?P<hour>\d\d)" r"(?::(?P<minute>\d\d)" r"(?::(?P<second>\d\d))" r"?)?)?)?)?Z", re.ASCII, ) def _date_from_string(s: str) -> datetime: order = ("year", "month", "day", "hour", "minute", "second") m = _date_parser.match(s) if m is None: raise ValueError(f"Expected ISO 8601 date string, but got '{s:r}'.") gd = m.groupdict() lst = [] for key in order: val = gd[key] if val is None: break lst.append(int(val)) # NOTE: mypy doesn't know that lst is 6 elements long. return datetime(*lst) # type:ignore def _date_to_string(d: datetime) -> str: return "%04d-%02d-%02dT%02d:%02d:%02dZ" % ( d.year, d.month, d.day, d.hour, d.minute, d.second, ) class Data: """Represents binary data when ``use_builtin_types=False.`` This class wraps binary data loaded from a plist file when the ``use_builtin_types`` argument to the loading function (:py:func:`fromtree`, :py:func:`load`, :py:func:`loads`) is false. The actual binary data is retrieved using the ``data`` attribute. """ def __init__(self, data: bytes) -> None: if not isinstance(data, bytes): raise TypeError("Expected bytes, found %s" % type(data).__name__) self.data = data @classmethod def fromBase64(cls, data: Union[bytes, str]) -> "Data": return cls(b64decode(data)) def asBase64(self, maxlinelength: int = 76, indent_level: int = 1) -> bytes: return _encode_base64( self.data, maxlinelength=maxlinelength, indent_level=indent_level ) def __eq__(self, other: Any) -> bool: if isinstance(other, self.__class__): return self.data == other.data elif isinstance(other, bytes): return self.data == other else: return NotImplemented def __repr__(self) -> str: return "%s(%s)" % (self.__class__.__name__, repr(self.data)) def _encode_base64( data: bytes, maxlinelength: Optional[int] = 76, indent_level: int = 1 ) -> bytes: data = b64encode(data) if data and maxlinelength: # split into multiple lines right-justified to 'maxlinelength' chars indent = b"\n" + b" " * indent_level max_length = max(16, maxlinelength - len(indent)) chunks = [] for i in range(0, len(data), max_length): chunks.append(indent) chunks.append(data[i : i + max_length]) chunks.append(indent) data = b"".join(chunks) return data # Mypy does not support recursive type aliases as of 0.782, Pylance does. # https://github.com/python/mypy/issues/731 # https://devblogs.microsoft.com/python/pylance-introduces-five-new-features-that-enable-type-magic-for-python-developers/#1-support-for-recursive-type-aliases PlistEncodable = Union[ bool, bytes, Data, datetime, float, int, Mapping[str, Any], Sequence[Any], str, ] class PlistTarget: """Event handler using the ElementTree Target API that can be passed to a XMLParser to produce property list objects from XML. It is based on the CPython plistlib module's _PlistParser class, but does not use the expat parser. >>> from fontTools.misc import etree >>> parser = etree.XMLParser(target=PlistTarget()) >>> result = etree.XML( ... "<dict>" ... " <key>something</key>" ... " <string>blah</string>" ... "</dict>", ... parser=parser) >>> result == {"something": "blah"} True Links: https://github.com/python/cpython/blob/master/Lib/plistlib.py http://lxml.de/parsing.html#the-target-parser-interface """ def __init__( self, use_builtin_types: Optional[bool] = None, dict_type: Type[MutableMapping[str, Any]] = dict, ) -> None: self.stack: List[PlistEncodable] = [] self.current_key: Optional[str] = None self.root: Optional[PlistEncodable] = None if use_builtin_types is None: self._use_builtin_types = USE_BUILTIN_TYPES else: if use_builtin_types is False: warnings.warn( "Setting use_builtin_types to False is deprecated and will be " "removed soon.", DeprecationWarning, ) self._use_builtin_types = use_builtin_types self._dict_type = dict_type def start(self, tag: str, attrib: Mapping[str, str]) -> None: self._data: List[str] = [] handler = _TARGET_START_HANDLERS.get(tag) if handler is not None: handler(self) def end(self, tag: str) -> None: handler = _TARGET_END_HANDLERS.get(tag) if handler is not None: handler(self) def data(self, data: str) -> None: self._data.append(data) def close(self) -> PlistEncodable: if self.root is None: raise ValueError("No root set.") return self.root # helpers def add_object(self, value: PlistEncodable) -> None: if self.current_key is not None: stack_top = self.stack[-1] if not isinstance(stack_top, collections.abc.MutableMapping): raise ValueError("unexpected element: %r" % stack_top) stack_top[self.current_key] = value self.current_key = None elif not self.stack: # this is the root object self.root = value else: stack_top = self.stack[-1] if not isinstance(stack_top, list): raise ValueError("unexpected element: %r" % stack_top) stack_top.append(value) def get_data(self) -> str: data = "".join(self._data) self._data = [] return data # event handlers def start_dict(self: PlistTarget) -> None: d = self._dict_type() self.add_object(d) self.stack.append(d) def end_dict(self: PlistTarget) -> None: if self.current_key: raise ValueError("missing value for key '%s'" % self.current_key) self.stack.pop() def end_key(self: PlistTarget) -> None: if self.current_key or not isinstance(self.stack[-1], collections.abc.Mapping): raise ValueError("unexpected key") self.current_key = self.get_data() def start_array(self: PlistTarget) -> None: a: List[PlistEncodable] = [] self.add_object(a) self.stack.append(a) def end_array(self: PlistTarget) -> None: self.stack.pop() def end_true(self: PlistTarget) -> None: self.add_object(True) def end_false(self: PlistTarget) -> None: self.add_object(False) def end_integer(self: PlistTarget) -> None: self.add_object(int(self.get_data())) def end_real(self: PlistTarget) -> None: self.add_object(float(self.get_data())) def end_string(self: PlistTarget) -> None: self.add_object(self.get_data()) def end_data(self: PlistTarget) -> None: if self._use_builtin_types: self.add_object(b64decode(self.get_data())) else: self.add_object(Data.fromBase64(self.get_data())) def end_date(self: PlistTarget) -> None: self.add_object(_date_from_string(self.get_data())) _TARGET_START_HANDLERS: Dict[str, Callable[[PlistTarget], None]] = { "dict": start_dict, "array": start_array, } _TARGET_END_HANDLERS: Dict[str, Callable[[PlistTarget], None]] = { "dict": end_dict, "array": end_array, "key": end_key, "true": end_true, "false": end_false, "integer": end_integer, "real": end_real, "string": end_string, "data": end_data, "date": end_date, } # functions to build element tree from plist data def _string_element(value: str, ctx: SimpleNamespace) -> etree.Element: el = etree.Element("string") el.text = value return el def _bool_element(value: bool, ctx: SimpleNamespace) -> etree.Element: if value: return etree.Element("true") return etree.Element("false") def _integer_element(value: int, ctx: SimpleNamespace) -> etree.Element: if -1 << 63 <= value < 1 << 64: el = etree.Element("integer") el.text = "%d" % value return el raise OverflowError(value) def _real_element(value: float, ctx: SimpleNamespace) -> etree.Element: el = etree.Element("real") el.text = repr(value) return el def _dict_element(d: Mapping[str, PlistEncodable], ctx: SimpleNamespace) -> etree.Element: el = etree.Element("dict") items = d.items() if ctx.sort_keys: items = sorted(items) # type: ignore ctx.indent_level += 1 for key, value in items: if not isinstance(key, str): if ctx.skipkeys: continue raise TypeError("keys must be strings") k = etree.SubElement(el, "key") k.text = tostr(key, "utf-8") el.append(_make_element(value, ctx)) ctx.indent_level -= 1 return el def _array_element(array: Sequence[PlistEncodable], ctx: SimpleNamespace) -> etree.Element: el = etree.Element("array") if len(array) == 0: return el ctx.indent_level += 1 for value in array: el.append(_make_element(value, ctx)) ctx.indent_level -= 1 return el def _date_element(date: datetime, ctx: SimpleNamespace) -> etree.Element: el = etree.Element("date") el.text = _date_to_string(date) return el def _data_element(data: bytes, ctx: SimpleNamespace) -> etree.Element: el = etree.Element("data") # NOTE: mypy is confused about whether el.text should be str or bytes. el.text = _encode_base64( # type: ignore data, maxlinelength=(76 if ctx.pretty_print else None), indent_level=ctx.indent_level, ) return el def _string_or_data_element(raw_bytes: bytes, ctx: SimpleNamespace) -> etree.Element: if ctx.use_builtin_types: return _data_element(raw_bytes, ctx) else: try: string = raw_bytes.decode(encoding="ascii", errors="strict") except UnicodeDecodeError: raise ValueError( "invalid non-ASCII bytes; use unicode string instead: %r" % raw_bytes ) return _string_element(string, ctx) # The following is probably not entirely correct. The signature should take `Any` # and return `NoReturn`. At the time of this writing, neither mypy nor Pyright # can deal with singledispatch properly and will apply the signature of the base # function to all others. Being slightly dishonest makes it type-check and return # usable typing information for the optimistic case. @singledispatch def _make_element(value: PlistEncodable, ctx: SimpleNamespace) -> etree.Element: raise TypeError("unsupported type: %s" % type(value)) _make_element.register(str)(_string_element) _make_element.register(bool)(_bool_element) _make_element.register(Integral)(_integer_element) _make_element.register(float)(_real_element) _make_element.register(collections.abc.Mapping)(_dict_element) _make_element.register(list)(_array_element) _make_element.register(tuple)(_array_element) _make_element.register(datetime)(_date_element) _make_element.register(bytes)(_string_or_data_element) _make_element.register(bytearray)(_data_element) _make_element.register(Data)(lambda v, ctx: _data_element(v.data, ctx)) # Public functions to create element tree from plist-compatible python # data structures and viceversa, for use when (de)serializing GLIF xml. def totree( value: PlistEncodable, sort_keys: bool = True, skipkeys: bool = False, use_builtin_types: Optional[bool] = None, pretty_print: bool = True, indent_level: int = 1, ) -> etree.Element: """Convert a value derived from a plist into an XML tree. Args: value: Any kind of value to be serialized to XML. sort_keys: Whether keys of dictionaries should be sorted. skipkeys (bool): Whether to silently skip non-string dictionary keys. use_builtin_types (bool): If true, byte strings will be encoded in Base-64 and wrapped in a ``data`` tag; if false, they will be either stored as ASCII strings or an exception raised if they cannot be decoded as such. Defaults to ``True`` if not present. Deprecated. pretty_print (bool): Whether to indent the output. indent_level (int): Level of indentation when serializing. Returns: an ``etree`` ``Element`` object. Raises: ``TypeError`` if non-string dictionary keys are serialized and ``skipkeys`` is false. ``ValueError`` if non-ASCII binary data is present and `use_builtin_types` is false. """ if use_builtin_types is None: use_builtin_types = USE_BUILTIN_TYPES else: use_builtin_types = use_builtin_types context = SimpleNamespace( sort_keys=sort_keys, skipkeys=skipkeys, use_builtin_types=use_builtin_types, pretty_print=pretty_print, indent_level=indent_level, ) return _make_element(value, context) def fromtree( tree: etree.Element, use_builtin_types: Optional[bool] = None, dict_type: Type[MutableMapping[str, Any]] = dict, ) -> Any: """Convert an XML tree to a plist structure. Args: tree: An ``etree`` ``Element``. use_builtin_types: If True, binary data is deserialized to bytes strings. If False, it is wrapped in :py:class:`Data` objects. Defaults to True if not provided. Deprecated. dict_type: What type to use for dictionaries. Returns: An object (usually a dictionary). """ target = PlistTarget(use_builtin_types=use_builtin_types, dict_type=dict_type) for action, element in etree.iterwalk(tree, events=("start", "end")): if action == "start": target.start(element.tag, element.attrib) elif action == "end": # if there are no children, parse the leaf's data if not len(element): # always pass str, not None target.data(element.text or "") target.end(element.tag) return target.close() # python3 plistlib API def load( fp: IO[bytes], use_builtin_types: Optional[bool] = None, dict_type: Type[MutableMapping[str, Any]] = dict, ) -> Any: """Load a plist file into an object. Args: fp: An opened file. use_builtin_types: If True, binary data is deserialized to bytes strings. If False, it is wrapped in :py:class:`Data` objects. Defaults to True if not provided. Deprecated. dict_type: What type to use for dictionaries. Returns: An object (usually a dictionary) representing the top level of the plist file. """ if not hasattr(fp, "read"): raise AttributeError("'%s' object has no attribute 'read'" % type(fp).__name__) target = PlistTarget(use_builtin_types=use_builtin_types, dict_type=dict_type) parser = etree.XMLParser(target=target) result = etree.parse(fp, parser=parser) # lxml returns the target object directly, while ElementTree wraps # it as the root of an ElementTree object try: return result.getroot() except AttributeError: return result def loads( value: bytes, use_builtin_types: Optional[bool] = None, dict_type: Type[MutableMapping[str, Any]] = dict, ) -> Any: """Load a plist file from a string into an object. Args: value: A bytes string containing a plist. use_builtin_types: If True, binary data is deserialized to bytes strings. If False, it is wrapped in :py:class:`Data` objects. Defaults to True if not provided. Deprecated. dict_type: What type to use for dictionaries. Returns: An object (usually a dictionary) representing the top level of the plist file. """ fp = BytesIO(value) return load(fp, use_builtin_types=use_builtin_types, dict_type=dict_type) def dump( value: PlistEncodable, fp: IO[bytes], sort_keys: bool = True, skipkeys: bool = False, use_builtin_types: Optional[bool] = None, pretty_print: bool = True, ) -> None: """Write a Python object to a plist file. Args: value: An object to write. fp: A file opened for writing. sort_keys (bool): Whether keys of dictionaries should be sorted. skipkeys (bool): Whether to silently skip non-string dictionary keys. use_builtin_types (bool): If true, byte strings will be encoded in Base-64 and wrapped in a ``data`` tag; if false, they will be either stored as ASCII strings or an exception raised if they cannot be represented. Defaults pretty_print (bool): Whether to indent the output. indent_level (int): Level of indentation when serializing. Raises: ``TypeError`` if non-string dictionary keys are serialized and ``skipkeys`` is false. ``ValueError`` if non-representable binary data is present and `use_builtin_types` is false. """ if not hasattr(fp, "write"): raise AttributeError("'%s' object has no attribute 'write'" % type(fp).__name__) root = etree.Element("plist", version="1.0") el = totree( value, sort_keys=sort_keys, skipkeys=skipkeys, use_builtin_types=use_builtin_types, pretty_print=pretty_print, ) root.append(el) tree = etree.ElementTree(root) # we write the doctype ourselves instead of using the 'doctype' argument # of 'write' method, becuse lxml will force adding a '\n' even when # pretty_print is False. if pretty_print: header = b"\n".join((XML_DECLARATION, PLIST_DOCTYPE, b"")) else: header = XML_DECLARATION + PLIST_DOCTYPE fp.write(header) tree.write( # type: ignore fp, encoding="utf-8", pretty_print=pretty_print, xml_declaration=False, ) def dumps( value: PlistEncodable, sort_keys: bool = True, skipkeys: bool = False, use_builtin_types: Optional[bool] = None, pretty_print: bool = True, ) -> bytes: """Write a Python object to a string in plist format. Args: value: An object to write. sort_keys (bool): Whether keys of dictionaries should be sorted. skipkeys (bool): Whether to silently skip non-string dictionary keys. use_builtin_types (bool): If true, byte strings will be encoded in Base-64 and wrapped in a ``data`` tag; if false, they will be either stored as strings or an exception raised if they cannot be represented. Defaults pretty_print (bool): Whether to indent the output. indent_level (int): Level of indentation when serializing. Returns: string: A plist representation of the Python object. Raises: ``TypeError`` if non-string dictionary keys are serialized and ``skipkeys`` is false. ``ValueError`` if non-representable binary data is present and `use_builtin_types` is false. """ fp = BytesIO() dump( value, fp, sort_keys=sort_keys, skipkeys=skipkeys, use_builtin_types=use_builtin_types, pretty_print=pretty_print, ) return fp.getvalue()
the-stack_106_18624
b = 8.0/3 r = 40.0 sigma = 10.0 dt = 0.01 x = y = 0.01 z = t = 0.0 xOld = zOld = 0.0 first = True def setup(): size(640, 480) background(100, 100, 100) colorMode(HSB, 100) def draw(): global x, y, z, t, xOld, zOld global first strokeWeight(1) stroke(t, 100 - t, 100) dx = -sigma*(x - y)*dt dy = (x*(r - z) - y)*dt dz = (x*y - b*z)*dt x += dx y += dy z += dz # auf Fenstergröße skalieren xx = (x*8) + 320 zz = 470 - (z*5.5) if first: point(xx, zz) else: line(xOld, zOld, xx, zz) xOld = xx zOld = zz first = False t = t + dt if ( t >= 75.0): print("I did it, Babe!") noLoop()
the-stack_106_18625
#!/usr/bin/env python3 # Danny Rorabaugh, 2018 Dec import argparse import numpy as np import pandas as pd import skgstat as skg from os import path, listdir from time import time t0 = time() def mean(df): return df.mean() def std(df): return df.std() def mx(df): return df.max() def mn(df): return df.min() def rng(df): return df.max() - df.min() def qnt25(df): return df.quantile(.25) def qnt75(df): return df.quantile(.75) def count(df): return df.dropna().shape[0] def corr(df): if df.columns[0]==df.columns[1]: return 1 else: return df[df.columns[0]].corr(df[df.columns[1]]) def variogram_range(df): if df.columns[0]==df.columns[1]: return 0 df = df.dropna() if (len(set(df.columns[0]))<2): return np.nan coordinates = df[df.columns[:-1]] values = df[df.columns[-1]] try: V = skg.Variogram(coordinates=coordinates, values=values) except: return np.nan return V.describe()["effective_range"] def variogram_sill(df): if df.columns[0]==df.columns[1]: return np.nan df = df.dropna() if (len(set(df.columns[0]))<2): return np.nan coordinates = df[df.columns[:-1]] values = df[df.columns[-1]] try: V = skg.Variogram(coordinates=coordinates, values=values) except: return np.nan return V.describe()["sill"] def variogram_nugget(df): if df.columns[0]==df.columns[1]: return np.nan df = df.dropna() if (len(set(df.columns[0]))<2): return np.nan coordinates = df[df.columns[:-1]] values = df[df.columns[-1]] try: V = skg.Variogram(coordinates=coordinates, values=values) except: return np.nan return V.describe()["nugget"] def compute_stats(in_file, out_file, stat_dicts): df = pd.read_csv(in_file) cols = df.shape[1] print(f"Input file {in_file} has {cols} data columns.") with open(out_file+"stats", "w") as stat_out: with open(out_file+"stats.keys", "w") as keys_out: for stat in stat_dicts[0]: keys_out.write(f"{stat}()\n") stat_out.write(str(list(stat_dicts[0][stat](df))).strip("[]")+"\n") for stat in stat_dicts[1]: keys_out.write(f"{stat}()\n") stat_out.write(",".join([str(stat_dicts[1][stat](df[df.columns[i]])) for i in range(cols)])+"\n") for stat in stat_dicts[2]: for i in range(cols): keys_out.write(f"{stat}({df.columns[i]})\n") stat_out.write(",".join([str(stat_dicts[2][stat](df[[df.columns[i],df.columns[j]]])) for j in range(cols)])+"\n") for stat in stat_dicts[3]: keys_out.write(f"{stat}(x,y)\n") stat_out.write("nan,nan," + ",".join([str(stat_dicts[3][stat](df[[df.columns[0], df.columns[1], df.columns[i]]])) for i in range(2,cols)])+"\n") if __name__ == "__main__": # Parse command-line arguments parser = argparse.ArgumentParser() parser.add_argument("input_path", help="The input file or directory of input files.") parser.add_argument("-e", "--extension", help="Expected file extension", default="csv") args = parser.parse_args() # Check that arguments are sane if not path.exists(args.input_path): print(f"Warning! The file/folder {args.input_path} does not exist.") if path.isfile(args.input_path): files = [args.input_path] elif path.isdir(args.input_path): files = [file for file in listdir(args.input_path) if file.endswith(args.extension)] stat_func_dicts = [{},{},{},{}] # Functions that act on the entire dataframe, each column independently stat_func_dicts[0] = {"mean":mean, "std":std, "min":mn, "max":mx, "range":rng, "quantile25":qnt25, "quantile75":qnt75} # Functions performed on a 1-column dataframe stat_func_dicts[1] = {"count":count} # Functions performed on a 2-column dataframe, with the first column the dependent variable when applicable stat_func_dicts[2] = {"count":count, "corr":corr}#, "variogram_range":variogram_range, "variogram_sill":variogram_sill}#, "variogram_nugget":variogram_nugget} # Functions performed on a 3-column dataframe, with the first two cols x (longitude) and y (latitude) #stat_func_dicts[3] = {"variogram_range":variogram_range, "variogram_sill":variogram_sill, "variogram_nugget":variogram_nugget} for file in files: out_path = file[:-len(args.extension)] compute_stats(file, out_path, stat_func_dicts) t1 = time() print(f"Computed statistics for {len(files)} file(s) in {t1-t0} seconds.")
the-stack_106_18627
""" This module houses the GeoIP object, a ctypes wrapper for the MaxMind GeoIP(R) C API (http://www.maxmind.com/app/c). This is an alternative to the GPL licensed Python GeoIP interface provided by MaxMind. GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts. For IP-based geolocation, this module requires the GeoLite Country and City datasets, in binary format (CSV will not work!). The datasets may be downloaded from MaxMind at http://www.maxmind.com/download/geoip/database/. Grab GeoIP.dat.gz and GeoLiteCity.dat.gz, and unzip them in the directory corresponding to settings.GEOIP_PATH. """ __all__ = ['HAS_GEOIP'] try: from .base import GeoIP, GeoIPException HAS_GEOIP = True __all__ += ['GeoIP', 'GeoIPException'] except RuntimeError: # libgeoip.py raises a RuntimeError if no GeoIP library is found HAS_GEOIP = False
the-stack_106_18630
#!/usr/bin/python3 """ @Author: Liu Shaoweihua @Site: https://github.com/liushaoweihua """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import json import numpy as np import tensorflow as tf from pyclue.tf1.models.engine.hooks import LoggingMetricsHook from pyclue.tf1.models.engine.metrics import precision, recall, f1 from pyclue.tf1.models.engine.optimizations import create_optimizer from pyclue.tf1.contrib.multi_class.inputs import FileProcessor, FileInputFn from pyclue.tf1.contrib.multi_class.models import TextCnnModel, TextCnnConfig from pyclue.tf1.tokenizers.word2vec_tokenizer import Word2VecTokenizer # Add more tokenizers class Trainer(object): def __init__(self, output_dir, random_seed=0): self.base_output_dir = os.path.abspath(output_dir) self.random_seed = random_seed tf.set_random_seed(self.random_seed) def build_model(self, vocab_file, config_file, init_checkpoint_file, max_seq_len=512): # model self.model = TextCnnModel( config_file=config_file) self.vocab_file = vocab_file self.init_checkpoint_file = init_checkpoint_file self.model_config = self.model.config # max_seq_len and embedding_dim self.max_seq_len = max_seq_len self.embedding_dim = self.model_config.hidden_size # tokenizer self.tokenizer = Word2VecTokenizer(self.vocab_file) # output_dir self.output_dir = os.path.join(self.base_output_dir, 'textcnn') if not tf.gfile.Exists(self.output_dir): tf.gfile.MakeDirs(self.output_dir) def load_data(self, data_dir, batch_size, recreate_tfrecord=True): self.data_dir = os.path.abspath(data_dir) self.batch_size = batch_size self.recreate_tfrecord = recreate_tfrecord self._load_processor() self._load_input_fn() def _load_processor(self): self.processor = FileProcessor( max_seq_len=self.max_seq_len, tokenizer=self.tokenizer, data_dir=self.data_dir, save_tfrecord_dir=self.data_dir, recreate_tfrecord=self.recreate_tfrecord) self.labels = self.processor.labels self.label_map = self.processor.label_map self.label_map_reverse = self.processor.label_map_reverse self.num_labels = self.processor.num_labels self.train_examples = self.processor.train_examples self.num_train_examples = self.processor.num_train_examples self.dev_examples = self.processor.dev_examples self.num_dev_examples = self.processor.num_dev_examples self.test_examples = self.processor.test_examples self.num_test_examples = self.processor.num_test_examples def _load_input_fn(self): self.input_fn_builder = FileInputFn( self.max_seq_len, self.data_dir, self.batch_size) self.train_input_fn = self.input_fn_builder.train_input_fn self.dev_input_fn = self.input_fn_builder.dev_input_fn self.test_input_fn = self.input_fn_builder.test_input_fn def _load_estimator(self): self.build_time = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time())) self.checkpoint_dir = os.path.join( self.output_dir, self.build_time, 'checkpoints') self.serving_model_dir = os.path.join( self.output_dir, self.build_time, 'serving_model') self.result_output_dir = os.path.join( self.output_dir, self.build_time, 'outputs') self.run_config = tf.estimator.RunConfig( model_dir=self.checkpoint_dir, tf_random_seed=self.random_seed, save_checkpoints_steps=self.save_checkpoints_steps, keep_checkpoint_max=10) self.estimator = tf.estimator.Estimator( self._load_model_fn(), config=self.run_config) def _load_model_fn(self): """Returns `model_fn` for estimator.""" def model_fn(features, labels, mode, params): """The `model_fn` for estimator.""" input_ids = features['input_ids'] input_mask = features['input_mask'] segment_ids = features['segment_ids'] label_ids = features['label_ids'] if 'is_real_example' in features: is_real_example = tf.cast(features['is_real_example'], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) batch_loss, per_example_loss, probabilities, logits, predictions = self.model( is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, labels=label_ids, num_labels=self.num_labels) from_word_embeddings_name = tf.train.list_variables(self.init_checkpoint_file)[0][0] to_word_embeddings_name = 'embeddings/word_embeddings' assignment_map = { from_word_embeddings_name: to_word_embeddings_name} tf.train.init_from_checkpoint(self.init_checkpoint_file, assignment_map) # metrics: returns tuple (value_op, update_op) value_accuracy_op, update_accuracy_op = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) value_loss_op, update_loss_op = tf.metrics.mean( values=per_example_loss, weights=is_real_example) value_precision_op, update_precision_op = precision( labels=label_ids, predictions=predictions, num_classes=self.num_labels, weights=is_real_example, average=None) value_recall_op, update_recall_op = recall( labels=label_ids, predictions=predictions, num_classes=self.num_labels, weights=is_real_example, average=None) value_f1_op, update_f1_op = f1( labels=label_ids, predictions=predictions, num_classes=self.num_labels, weights=is_real_example, average=None) if mode == tf.estimator.ModeKeys.TRAIN: train_metric_ops = { 'accuracy': value_accuracy_op, 'accuracy_update': update_accuracy_op, 'loss': value_loss_op, 'loss_update': update_loss_op, 'loss_batch': batch_loss, 'precision': value_precision_op, 'precision_update': update_precision_op, 'recall': value_recall_op, 'recall_update': update_recall_op, 'f1': value_f1_op, 'f1_update': update_f1_op} train_op = create_optimizer( batch_loss, self.optimizer_name, self.learning_rate, self.num_train_steps, self.num_warmup_steps) train_metrics_hook = LoggingMetricsHook( metric_ops=train_metric_ops, label_map_reverse=self.label_map_reverse, save_steps=self.log_steps, output_dir=self.result_output_dir) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=batch_loss, train_op=train_op, training_hooks=[train_metrics_hook]) elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'accuracy': (value_accuracy_op, update_accuracy_op), 'precision': (value_precision_op, update_precision_op), 'recall': (value_recall_op, update_recall_op), 'f1': (value_f1_op, update_f1_op)} output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=batch_loss, eval_metric_ops=eval_metric_ops) else: predictions = { 'predictions': predictions, 'probabilities': probabilities} output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions=predictions) return output_spec return model_fn def train(self, num_train_epochs, warmup_proportion, learning_rate, optimizer_name, log_steps=50): self.num_train_epochs = num_train_epochs self.warmup_proportion = warmup_proportion self.num_train_steps = int(self.num_train_examples / self.batch_size * self.num_train_epochs) self.num_warmup_steps = int(self.num_train_steps * self.warmup_proportion) self.learning_rate = learning_rate self.optimizer_name = optimizer_name self.log_steps = log_steps self._load_estimator() self._asynchronous_train() self.pb_model_file = self.save_model(checkpoint_path=self.ckpt_model_file) model_file_dict = { 'ckpt_model_file': self.ckpt_model_file, 'pb_model_file': self.pb_model_file } return model_file_dict def train_and_evaluate(self, num_train_epochs, warmup_proportion, learning_rate, optimizer_name, log_steps=50, metric_name='accuracy', save_checkpoints_steps=200, max_steps_without_increase=None, min_steps=None, mode=0, apply_best_checkpoint=True): self.num_train_epochs = num_train_epochs self.warmup_proportion = warmup_proportion self.num_train_steps = int(self.num_train_examples / self.batch_size * self.num_train_epochs) self.num_warmup_steps = int(self.num_train_steps * self.warmup_proportion) self.learning_rate = learning_rate self.optimizer_name = optimizer_name self.log_steps = log_steps self.save_checkpoints_steps = save_checkpoints_steps self._load_estimator() if mode == 0: model_file_dict = self._asynchronous_train_and_eval( metric_name, apply_best_checkpoint) elif mode == 1: model_file_dict = self._synchronous_train_and_eval( metric_name, max_steps_without_increase, min_steps) else: raise ValueError('`mode` argument can only be 0 (asynchronous) or 1 (synchronous)' ' during train_and_evaluate') return model_file_dict def _asynchronous_train(self): # train print('***** train phase *****') print(' Num train examples = %d' % self.num_train_examples) print(' Batch size = %d' % self.batch_size) print(' Num train steps = %d' % self.num_train_steps) self.estimator.train(input_fn=self.train_input_fn, max_steps=self.num_train_steps) self.steps_and_files = [] files = tf.gfile.ListDirectory(self.checkpoint_dir) for file in files: if file.endswith('.index'): file_name = os.path.join(self.checkpoint_dir, file.strip('.index')) global_step = int(file_name.split('-')[-1]) self.steps_and_files.append([global_step, file_name]) self.steps_and_files = sorted(self.steps_and_files, key=lambda i: i[0]) self.last_checkpoint_file = self.steps_and_files[-1][-1] self.ckpt_model_file = self.last_checkpoint_file def _asynchronous_eval(self, metric_name, apply_best_checkpoint=True): # dev print('***** evaluate phase *****') print(' Num evaluate examples = %d' % self.num_dev_examples) files_and_results = [] output_eval_file = os.path.join(self.result_output_dir, 'dev_results.txt') with tf.gfile.GFile(output_eval_file, 'w') as writer: for global_step, file_name in self.steps_and_files[1:]: result = self.estimator.evaluate( input_fn=self.dev_input_fn, checkpoint_path=file_name) files_and_results.append([file_name, result[metric_name]]) writer.write('***** dev results %s *****\n' % file_name) for key in sorted(result.keys()): writer.write('%s = %s\n' % (key, str(result[key]))) files_and_results = sorted(files_and_results, key=lambda i: i[1], reverse=True) self.best_checkpoint_file = files_and_results[0][0] if apply_best_checkpoint: self.ckpt_model_file = self.best_checkpoint_file else: self.ckpt_model_file = self.last_checkpoint_file def _test(self): print('***** test phase *****') print(' Num test examples = %d' % self.num_test_examples) if self.num_test_examples != 0: output_eval_file = os.path.join(self.result_output_dir, 'test_results.txt') with tf.gfile.GFile(output_eval_file, 'w') as writer: result = self.estimator.evaluate( input_fn=self.test_input_fn, checkpoint_path=self.ckpt_model_file) writer.write('***** test results %s *****\n' % self.ckpt_model_file) for key in sorted(result.keys()): writer.write('%s = %s\n' % (key, str(result[key]))) def _asynchronous_train_and_eval(self, metric_name, apply_best_checkpoint=True): # train self._asynchronous_train() # eval self._asynchronous_eval( metric_name=metric_name, apply_best_checkpoint=apply_best_checkpoint) self.pb_model_file = self.save_model(checkpoint_path=self.ckpt_model_file) # test self._test() model_file_dict = { 'ckpt_model_file': self.ckpt_model_file, 'pb_model_file': self.pb_model_file } return model_file_dict def _synchronous_train_and_eval(self, metric_name, max_steps_without_increase, min_steps): # train and dev print('***** train and evaluate phase *****') print(' Num train examples = %d' % self.num_train_examples) print(' Num evaluate examples = %d' % self.num_dev_examples) print(' Batch size = %d' % self.batch_size) print(' Num train steps = %d' % self.num_train_steps) if not max_steps_without_increase: max_steps_without_increase = int(self.num_train_steps // 10) if not min_steps: min_steps = self.num_warmup_steps early_stop_hook = tf.estimator.experimental.stop_if_no_increase_hook( self.estimator, metric_name=metric_name, max_steps_without_increase=max_steps_without_increase, min_steps=min_steps) exporter = tf.estimator.BestExporter( serving_input_receiver_fn=self._serving_input_receiver_fn(), exports_to_keep=1) train_spec = tf.estimator.TrainSpec( input_fn=self.train_input_fn, max_steps=self.num_train_steps, hooks=[early_stop_hook]) eval_spec = tf.estimator.EvalSpec( input_fn=self.dev_input_fn, exporters=exporter, steps=None, start_delay_secs=120, throttle_secs=1) result, _ = tf.estimator.train_and_evaluate(self.estimator, train_spec, eval_spec) for file in tf.gfile.ListDirectory(self.checkpoint_dir): if file.endswith('.index'): self.ckpt_model_file = os.path.join(self.checkpoint_dir, file.strip('.index')) self.pb_model_file = self.save_model(checkpoint_path=self.ckpt_model_file) output_eval_file = os.path.join(self.result_output_dir, 'dev_results.txt') with tf.gfile.GFile(output_eval_file, 'w') as writer: writer.write('***** dev results %s *****\n' % self.ckpt_model_file) for key in sorted(result.keys()): writer.write('%s = %s\n' % (key, str(result[key]))) # test self._test() model_file_dict = { 'ckpt_model_file': self.ckpt_model_file, 'pb_model_file': self.pb_model_file } return model_file_dict def _serving_input_receiver_fn(self): feature_map = { 'input_ids': tf.placeholder(tf.int32, shape=[None, self.max_seq_len], name='input_ids'), 'input_mask': tf.placeholder(tf.int32, shape=[None, self.max_seq_len], name='input_mask'), 'segment_ids': tf.placeholder(tf.int32, shape=[None, self.max_seq_len], name='segment_ids'), 'label_ids': tf.placeholder(tf.int32, shape=[None], name='label_ids')} serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_map) return serving_input_receiver_fn def save_model(self, checkpoint_path): if not tf.gfile.Exists(self.serving_model_dir): tf.gfile.MakeDirs(self.serving_model_dir) serving_input_receiver_fn = self._serving_input_receiver_fn() saved_path = self.estimator.export_saved_model( export_dir_base=self.serving_model_dir, serving_input_receiver_fn=serving_input_receiver_fn, checkpoint_path=checkpoint_path, experimental_mode=tf.estimator.ModeKeys.PREDICT) saved_path = saved_path.decode('utf-8') # save label_map_reverse for prediction label_map_reverse_file = os.path.join( saved_path, 'label_map_reverse.json') with tf.gfile.GFile(label_map_reverse_file, 'w') as f: json.dump(self.label_map_reverse, f, ensure_ascii=False, indent=4) # save model_config for prediction model_configs = { 'vocab_file': self.vocab_file, 'max_seq_len': self.max_seq_len } model_configs_file = os.path.join( saved_path, 'model_config.json') with tf.gfile.GFile(model_configs_file, 'w') as f: json.dump(model_configs, f, ensure_ascii=False, indent=4) return saved_path def predict(self, texts): if self.task_type == 'single': if isinstance(texts, str): new_texts = [self.labels[0], texts] elif isinstance(texts, list): new_texts = [] for item in texts: if len(item) == 1 or len(item) == 2: new_texts.append([self.labels[0], item[-1]]) else: raise ValueError('texts item should contain 1 or 2 elements') else: raise ValueError('texts format should be `str` or `list`') assert all([len(item) == 2 for item in new_texts]), \ 'texts item should contain 2 elements' else: assert isinstance(texts, list), 'texts format should be `list`' new_texts = [] for item in texts: if isinstance(item, str): new_texts.append([self.labels[0], item, '']) else: if len(item) == 2 or len(item) == 3: new_texts.append([self.labels[0], item[-2], item[-1]]) else: raise ValueError('text item should contain 2 or 3 elements') assert all([len(item) == 3 for item in new_texts]), \ 'texts item should contain 3 elements' features = self.processor.get_features_for_inputs(new_texts) result = self.estimator.predict( input_fn=self.input_fn_builder.predict_input_fn(features=features), checkpoint_path=self.ckpt_model_file) result = list(result) predictions = [item['predictions'] for item in result] probabilities = [item['probabilities'].tolist() for item in result] return [{ 'text': ''.join(text[1:]), 'prediction': self.label_map_reverse[prediction], 'probability': probability } for text, prediction, probability in zip(new_texts, predictions, probabilities)] def predict_from_file(self, input_file): texts = self.processor.read_file(input_file) texts = np.squeeze(texts).tolist() return self.predict(texts) def quality_inspection(self, input_file, save_path=None): texts = self.processor.read_file(input_file) features = self.processor.get_features_for_inputs(texts) result = self.estimator.predict( input_fn=self.input_fn_builder.predict_input_fn(features=features), checkpoint_path=self.ckpt_model_file) result = list(result) predictions = [item['predictions'] for item in result] probabilities = [item['probabilities'].tolist() for item in result] if not save_path: save_path = os.path.join(self.result_output_dir, 'quality_inspection') if not tf.gfile.Exists(save_path): tf.gfile.MakeDirs(save_path) with tf.gfile.GFile(os.path.join(save_path, input_file.split('/')[-1]), 'w') as writer: for text, prediction, probability in zip(texts, predictions, probabilities): prediction = self.label_map_reverse[prediction] if text[0] != prediction: writer.write( 'text = %s, true = %s, pred = %s, probability = %s\n' % (text[1], text[0], prediction, probability))
the-stack_106_18631
from sentry.auth.exceptions import IdentityNotValid from sentry.auth.providers.oauth2 import ( OAuth2Callback, OAuth2Provider, OAuth2Login ) from .client import GenericApiError, GenericClient from .constants import ( AUTHORIZE_URL, ACCESS_TOKEN_URL, CLIENT_ID, CLIENT_SECRET, SCOPE, UNIQUE_USERID_FIELD ) from .views import ( ConfirmEmail, FetchUser, GenericConfigureView ) class GenericOAuth2Provider(OAuth2Provider): access_token_url = ACCESS_TOKEN_URL authorize_url = AUTHORIZE_URL name = 'OAuth2' client_id = CLIENT_ID client_secret = CLIENT_SECRET def __init__(self, org=None, **config): super(GenericOAuth2Provider, self).__init__(**config) self.org = org def get_configure_view(self): return GenericConfigureView.as_view() def get_auth_pipeline(self): return [ OAuth2Login( authorize_url=self.authorize_url, client_id=self.client_id, scope=SCOPE, ), OAuth2Callback( access_token_url=self.access_token_url, client_id=self.client_id, client_secret=self.client_secret, ), FetchUser( client_id=self.client_id, client_secret=self.client_secret, org=self.org, ), ConfirmEmail(), ] def get_setup_pipeline(self): pipeline = self.get_auth_pipeline() return pipeline def get_refresh_token_url(self): return ACCESS_TOKEN_URL def build_config(self, state): return { } def build_identity(self, state): data = state['data'] user_data = state['user'] return { 'id': user_data[UNIQUE_USERID_FIELD], 'email': user_data['email'], 'name': user_data['name'], 'data': self.get_oauth_data(data), } def refresh_identity(self, auth_identity): client = GenericClient(self.client_id, self.client_secret) access_token = auth_identity.data['access_token'] try: if not client.get_user(access_token): raise IdentityNotValid except GenericApiError as e: raise IdentityNotValid(e)
the-stack_106_18636
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import os import asyncio import concurrent.futures import uuid import time import threading import functools import json import base64 import hmac import hashlib import sys import random from azure.iot.device.aio import IoTHubDeviceClient from azure.iot.device.aio import ProvisioningDeviceClient from azure.iot.device import Message from azure.iot.device import MethodResponse from blinkt import set_pixel, set_brightness, show, clear def derive_device_key(device_id, group_symmetric_key): """ The unique device ID and the group master key should be encoded into "utf-8" After this the encoded group master key must be used to compute an HMAC-SHA256 of the encoded registration ID. Finally the result must be converted into Base64 format. The device key is the "utf-8" decoding of the above result. """ message = device_id.encode("utf-8") signing_key = base64.b64decode(group_symmetric_key.encode("utf-8")) signed_hmac = hmac.HMAC(signing_key, message, hashlib.sha256) device_key_encoded = base64.b64encode(signed_hmac.digest()) return device_key_encoded.decode("utf-8") #====================================== # To switch from PC to RPi, switch commented/un-commented sections below #====================================== from blinkt import set_pixel, set_brightness, show, clear provisioning_host = os.getenv("PROVISIONING_HOST") id_scope = os.getenv("PROVISIONING_IDSCOPE") registration_id = os.getenv("PROVISIONING_DEVICE_ID") group_symmetric_key = os.getenv("PROVISIONING_MASTER_SYMMETRIC_KEY") symmetric_key = derive_device_key( device_id=registration_id, group_symmetric_key=group_symmetric_key, ) #====================================== # provisioning_host = 'global.azure-devices-provisioning.net' # id_scope = '<IDScope>' # registration_id = '<DeviceId>' # group_symmetric_key = '<Provisioning-master-key>' # symmetric_key = derive_device_key( # device_id=registration_id, # group_symmetric_key=group_symmetric_key, # ) # def set_pixel(i, r, g, b): # time.sleep(0.1) # def set_brightness(b): # time.sleep(0.1) # def show(): # time.sleep(0.1) # def clear(): # time.sleep(0.1) #====================================== class Led: status=False blink=False r=255 g=255 b=255 def __init__(self, r=255, g=255, b=255): self.status = False self.blink = False self.r = r self.g = g self.b = b def set_color(self, r,g,b): self.r = r self.g = g self.b = b def set_status(self, status): self.status = status def set_blink(self, yesno): self.blink = yesno # list of leds class Led_Manager: leds = [] scroll_leds = False def __init__(self): for i in range(8): self.leds.append(Led()) set_brightness(0.1) def set_all_leds_color(self, r, g, b): for i in range(8): self.leds[i].set_color(r, g, b) def set_led(self, i, status, r, g, b, blk=False): self.leds[i].set_color(r, g, b) self.leds[i].set_status(status) self.leds[i].blink=blk def set_all_leds_off(self): self.scroll_leds = False for i in range(8): self.leds[i].set_status(False) def start_scrolling(self): self.scroll_leds = True def stop_scrolling(self): self.scroll_leds = False async def scroll_leds_task(self): while True: if (self.scroll_leds): print("Scrolling leds") for i in range(8): clear() set_pixel(i, self.leds[i].r, self.leds[i].g, self.leds[i].b) show() await asyncio.sleep(0.05) clear() show() else: await asyncio.sleep(.5) async def update_leds_task(self): new_status = locals() for i in range(8): new_status[i] = self.leds[i].status while True: if (not self.scroll_leds): clear() for i in range(8): if (self.leds[i].blink and self.leds[i].status): new_status[i] = not new_status[i] else: new_status[i]=self.leds[i].status if (new_status[i]): set_pixel(i, self.leds[i].r, self.leds[i].g, self.leds[i].b) show() await asyncio.sleep(.5) def printjson(obj): parsed = json.dumps(obj) loaded = json.loads(parsed) print(json.dumps(loaded, indent=2, sort_keys=True)) led_manager = Led_Manager() async def main(): # Function for sending message async def send_test_message(): print("Sending telemetry message from device " + device_id) body_dict = {} body_dict['Temperature'] = random.randrange(76, 80, 1) body_dict['Humidity'] = random.randrange(40, 60, 1) body_dict['Location']='28.424911, -81.468962' body_json = json.dumps(body_dict) print(body_json) msg = Message(body_json) msg.message_id = uuid.uuid4() msg.correlation_id = "correlation-1234" msg.contentEncoding="utf-8", msg.contentType="application/json", await device_client.send_message(msg) print("Done sending message") # update the reported properties async def update_device_twin(device_client, led_manager): reported_properties = {} for i in range (8): key='led'+ str(i+1) +'_status' reported_properties[key] = led_manager.leds[i].status key='led'+ str(i+1) +'_blink' reported_properties[key] = led_manager.leds[i].blink key='led'+ str(i+1) +'_r' reported_properties[key] = led_manager.leds[i].r key='led'+ str(i+1) +'_g' reported_properties[key] = led_manager.leds[i].g key='led'+ str(i+1) +'_b' reported_properties[key] = led_manager.leds[i].b await device_client.patch_twin_reported_properties(reported_properties) print("Updated Device Twin's reported properties:") printjson(reported_properties) # define behavior for receiving a twin patch async def twin_patch_listener(device_client, led_manager): while True: patch = await device_client.receive_twin_desired_properties_patch() # blocking call print("Received new device twin's desired properties:") printjson(patch) for i in range (8): led_status = led_manager.leds[i].status led_blink = led_manager.leds[i].blink led_r = led_manager.leds[i].r led_g = led_manager.leds[i].g led_b = led_manager.leds[i].b key='led'+ str(i+1) +'_status' if key in patch: led_status = patch[key] key='led'+ str(i+1) +'_blink' if key in patch: led_blink = patch[key] key='led'+ str(i+1) +'_r' if key in patch: led_r = patch[key] key='led'+ str(i+1) +'_g' if key in patch: led_g = patch[key] key='led'+ str(i+1) +'_b' if key in patch: led_b = patch[key] led_manager.set_led(i, led_status, led_r, led_g, led_b, led_blink) await update_device_twin(device_client, led_manager) async def direct_methods_listener(device_client, led_manager): while True: method_request = ( await device_client.receive_method_request() ) # Wait for unknown method calls # Check which method was involked if (method_request.name == "TurnLedsOff"): # Turn all leds off led_manager.set_all_leds_off() response_payload = {"result": True, "data": "Leds are all off"} # set response payload response_status = 200 # set return status code print("Executed method " + method_request.name) elif (method_request.name == "ScrollLeds"): # Set leds colors and start scrolling led_manager.set_all_leds_off() led_manager.set_all_leds_color(255, 255, 255) led_manager.start_scrolling() response_payload = {"result": True, "data": "Leds are now scrolling"} # set response payload response_status = 200 # set return status code print("Executed method " + method_request.name) else: # Respond response_payload = {"result": True, "data": "unknown method"} # set response payload response_status = 200 # set return status code print("Executed unknown method: " + method_request.name) method_response = MethodResponse.create_from_method_request( method_request, response_status, response_payload ) await device_client.send_method_response(method_response) # send response # Schedule tasks for Methods and twins updates led_listeners = asyncio.gather( led_manager.scroll_leds_task(), led_manager.update_leds_task() ) # Thread pool Executor to execute async functions in sync task # pool = concurrent.futures.ThreadPoolExecutor() device_id = registration_id print("Connecting device " + device_id) # Connect the client. print("Provisioning device to Azure IoT...") led_manager.set_all_leds_color(0, 255, 0) led_manager.start_scrolling() # registration using DPS provisioning_device_client = ProvisioningDeviceClient.create_from_symmetric_key( provisioning_host=provisioning_host, registration_id=registration_id, id_scope=id_scope, symmetric_key=symmetric_key ) registration_result = await provisioning_device_client.register() led_manager.set_all_leds_off() if registration_result.status == "assigned": print("Device successfully registered. Creating device client") # Create device client from the above result device_client = IoTHubDeviceClient.create_from_symmetric_key( symmetric_key=symmetric_key, hostname=registration_result.registration_state.assigned_hub, device_id=registration_result.registration_state.device_id, ) else: led_manager.set_led(0, true, 255, 0, 0, true) print("Provisioning of the device failed.") sys.exit() # Connect the client. print("Connecting to Azure IoT...") led_manager.set_all_leds_color(0, 0, 255) led_manager.start_scrolling() await device_client.connect() print("Device is connected to Azure IoT") led_manager.set_all_leds_off() # Update Device Twin reported properties await update_device_twin(device_client, led_manager) # Schedule tasks for Methods and twins updates iothub_listeners = asyncio.gather( direct_methods_listener(device_client, led_manager), twin_patch_listener(device_client, led_manager) ) # define behavior for halting the application def stdin_listener(): pool = concurrent.futures.ThreadPoolExecutor() while True: print("To control the leds from Azure IoT, you can send the following commands through Direct Methods: TurnLedsOff, ScrollLeds") selection = input("Commands: \n Q: quit\n S: Send a telemetry message\n") if selection == "Q" or selection == "q": print("Quitting...") break elif selection == "S" or selection =="s": # send 8 messages one after the other with a sleep result = pool.submit(asyncio.run, send_test_message()).result() loop = asyncio.get_running_loop() user_finished = loop.run_in_executor(None, stdin_listener) # Wait for user to indicate they are done listening for messages await user_finished # Cancel listening led_listeners.cancel() iothub_listeners.cancel() # finally, disconnect await device_client.disconnect() if __name__ == "__main__": asyncio.run(main()) # If using Python 3.6 or below, use the following code instead of asyncio.run(main()): # loop = asyncio.get_event_loop() # loop.run_until_complete(main()) # loop.close()
the-stack_106_18637
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import tempfile import unittest from pyspark import SparkConf, SparkContext, BasicProfiler from pyspark.testing.utils import PySparkTestCase if sys.version >= "3": from io import StringIO else: from StringIO import StringIO class ProfilerTests(PySparkTestCase): def setUp(self): self._old_sys_path = list(sys.path) class_name = self.__class__.__name__ conf = SparkConf().set("spark.python.profile", "true") self.sc = SparkContext('local[4]', class_name, conf=conf) def test_profiler(self): self.do_computation() profilers = self.sc.profiler_collector.profilers self.assertEqual(1, len(profilers)) id, profiler, _ = profilers[0] stats = profiler.stats() self.assertTrue(stats is not None) width, stat_list = stats.get_print_list([]) func_names = [func_name for fname, n, func_name in stat_list] self.assertTrue("heavy_foo" in func_names) old_stdout = sys.stdout sys.stdout = io = StringIO() self.sc.show_profiles() self.assertTrue("heavy_foo" in io.getvalue()) sys.stdout = old_stdout d = tempfile.gettempdir() self.sc.dump_profiles(d) self.assertTrue("rdd_%d.pstats" % id in os.listdir(d)) def test_custom_profiler(self): class TestCustomProfiler(BasicProfiler): def show(self, id): self.result = "Custom formatting" self.sc.profiler_collector.profiler_cls = TestCustomProfiler self.do_computation() profilers = self.sc.profiler_collector.profilers self.assertEqual(1, len(profilers)) _, profiler, _ = profilers[0] self.assertTrue(isinstance(profiler, TestCustomProfiler)) self.sc.show_profiles() self.assertEqual("Custom formatting", profiler.result) def do_computation(self): def heavy_foo(x): for i in range(1 << 18): x = 1 rdd = self.sc.parallelize(range(100)) rdd.foreach(heavy_foo) class ProfilerTests2(unittest.TestCase): def test_profiler_disabled(self): sc = SparkContext(conf=SparkConf().set("spark.python.profile", "false")) try: self.assertRaisesRegexp( RuntimeError, "'spark.python.profile' configuration must be set", lambda: sc.show_profiles()) self.assertRaisesRegexp( RuntimeError, "'spark.python.profile' configuration must be set", lambda: sc.dump_profiles("/tmp/abc")) finally: sc.stop() if __name__ == "__main__": from pyspark.tests.test_profiler import * try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
the-stack_106_18639
# Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """test_kill_bolt.py""" import logging import test_template NON_TMASTER_SHARD = 1 HERON_BOLT = 'identity-bolt_3' class TestKillBolt(test_template.TestTemplate): def execute_test_case(self): logging.info("Executing kill bolt") bolt_pid = self.get_pid( 'container_%d_%s' % (NON_TMASTER_SHARD, HERON_BOLT), self.params['workingDirectory']) self.kill_process(bolt_pid)
the-stack_106_18641
import datetime import itertools import logging import time from decimal import Decimal from typing import Iterable, List, Literal, Optional, Tuple from tilapia.lib.basic.functional.require import require from tilapia.lib.basic.functional.timing import timing_logger from tilapia.lib.basic.functional.wraps import error_interrupter, timeout_lock from tilapia.lib.basic.orm.database import db from tilapia.lib.coin import data as coin_data from tilapia.lib.coin import manager as coin_manager from tilapia.lib.provider import data as provider_data from tilapia.lib.provider import manager as provider_manager from tilapia.lib.transaction import daos from tilapia.lib.transaction.data import TX_TO_ACTION_STATUS_DIRECT_MAPPING, TxActionStatus from tilapia.lib.transaction.models import TxAction from tilapia.lib.utxo import manager as utxo_manager logger = logging.getLogger("app.transaction") def create_action( txid: str, status: TxActionStatus, chain_code: str, coin_code: str, value: Decimal, from_address: str, to_address: str, fee_limit: Decimal, raw_tx: str, **kwargs, ) -> TxAction: return daos.new_action( txid=txid, status=status, chain_code=chain_code, coin_code=coin_code, value=value, from_address=from_address, to_address=to_address, fee_limit=fee_limit, raw_tx=raw_tx, **kwargs, ).save() def get_action_by_id(action_id: int) -> TxAction: return daos.get_action_by_id(action_id) def update_action_status( chain_code: str, txid: str, status: TxActionStatus, ): daos.update_actions_status(chain_code, txid, status) def has_actions_by_txid(chain_code: str, txid: str) -> bool: return daos.has_actions_by_txid(chain_code, txid) def query_actions_by_txid(chain_code: str, txid: str) -> List[TxAction]: return daos.query_actions_by_txid(chain_code, txid) def update_pending_actions( chain_code: Optional[str] = None, address: Optional[str] = None, txid: Optional[str] = None, ): pending_actions = daos.query_actions_by_status( TxActionStatus.PENDING, chain_code=chain_code, address=address, txid=txid, ) if not pending_actions: return txids_of_chain = {(i.chain_code, i.txid) for i in pending_actions} confirmed_txids = set() for chain_code, tx in _query_transactions_of_chain(txids_of_chain): try: action_status = TX_TO_ACTION_STATUS_DIRECT_MAPPING.get(tx.status) if tx.fee is None or tx.block_header is None or action_status is None: continue _on_transaction_confirmed( chain_code=chain_code, txid=tx.txid, status=action_status, fee_used=Decimal(tx.fee.used), block_hash=tx.block_header.block_hash, block_number=tx.block_header.block_number, block_time=tx.block_header.block_time, ) confirmed_txids.add(tx.txid) logger.info( f"TxAction confirmed. chain_code: {chain_code}, txid: {tx.txid}, action_status: {action_status}" ) except Exception as e: logger.exception(f"Error in updating actions. chain_code: {chain_code}, txid: {tx.txid}, error: {repr(e)}") unconfirmed_actions = [i for i in pending_actions if i.txid not in confirmed_txids] if not unconfirmed_actions: return now = datetime.datetime.now() too_old = datetime.timedelta(days=3) too_old_txids = {(i.chain_code, i.txid) for i in unconfirmed_actions if now - i.created_time >= too_old} with db.atomic(): for chain_code, txid in too_old_txids: daos.update_actions_status(chain_code, txid, status=TxActionStatus.UNKNOWN) def _query_transactions_of_chain( txids_of_chain: Iterable[Tuple[str, str]] ) -> Iterable[Tuple[str, provider_data.Transaction]]: txids_of_chain = sorted(txids_of_chain, key=lambda i: i[0]) # in order to use itertools.groupby for chain_code, group in itertools.groupby(txids_of_chain, key=lambda i: i[0]): for (_, txid) in group: try: yield chain_code, provider_manager.get_transaction_by_txid(chain_code, txid) except Exception as e: logger.exception( f"Error in getting transaction by txid. chain_code: {chain_code}, txid: {txid}, error: {repr(e)}" ) def _search_txs_by_address( chain_code: str, address: str, last_confirmed_action: TxAction = None ) -> Iterable[provider_data.Transaction]: try: if last_confirmed_action is not None: paginate = provider_data.TxPaginate(start_block_number=last_confirmed_action.block_number) else: paginate = None transactions = provider_manager.search_txs_by_address(chain_code, address, paginate=paginate) return transactions except Exception as e: logger.exception( f"Error in searching txs by address. chain_code: {chain_code}, " f"address: {address}, last_confirmed_action: {last_confirmed_action}, error: {repr(e)}" ) return [] def _tx_action_factory__account_model( chain_code: str, transactions: Iterable[provider_data.Transaction] ) -> Iterable[TxAction]: transactions = [i for i in transactions if i.status in TX_TO_ACTION_STATUS_DIRECT_MAPPING] token_addresses = set() for tx in transactions: for tx_input in tx.inputs: token_addresses.add(tx_input.token_address) main_coin = coin_manager.get_coin_info(chain_code) tokens = coin_manager.query_coins_by_token_addresses(chain_code, list(token_addresses)) tokens = {i.token_address: i for i in tokens if i.token_address} txids = set() for tx in transactions: if ( tx.txid in txids ): # May get two txs with the same txid here, if the receiver and the sender are at the same address continue txids.add(tx.txid) status = TX_TO_ACTION_STATUS_DIRECT_MAPPING.get(tx.status) for index, (tx_input, tx_output) in enumerate(zip(tx.inputs, tx.outputs)): token_address = tx_output.token_address if not tx_input.address or not tx_output.address or (token_address and token_address not in tokens): continue coin = main_coin if not token_address else tokens[token_address] info = dict( txid=tx.txid, status=status, chain_code=chain_code, coin_code=coin.code, value=Decimal(tx_output.value), from_address=tx_input.address, to_address=tx_output.address, fee_limit=Decimal(tx.fee.limit), fee_price_per_unit=Decimal(tx.fee.price_per_unit), raw_tx=tx.raw_tx, index=index, ) if tx.block_header: info.update( dict( fee_used=Decimal(tx.fee.used), block_number=tx.block_header.block_number, block_hash=tx.block_header.block_hash, block_time=tx.block_header.block_time, created_time=datetime.datetime.fromtimestamp( tx.block_header.block_time ), # Unify the ordering of local records and on-chain transactions ) ) if tx.nonce is not None and tx.nonce >= 0: info["nonce"] = tx.nonce yield daos.new_action(**info) _TX_ACTION_FACTORY_REGISTRY = { coin_data.ChainModel.ACCOUNT: _tx_action_factory__account_model, } def _search_actions_from_provider_by_address( chain_code: str, address: str, paginate: provider_data.TxPaginate = None ) -> List[TxAction]: chain_info = coin_manager.get_chain_info(chain_code) action_factory = _TX_ACTION_FACTORY_REGISTRY.get(chain_info.chain_model) if not action_factory: return [] try: transactions = provider_manager.search_txs_by_address(chain_code, address, paginate=paginate) except Exception as e: transactions = [] logger.exception( f"Error in searching txs by address form provider. " f"chain_code: {chain_code}, address: {address}, paginate: {paginate}, error: {repr(e)}" ) transactions = (i for i in transactions if i.status in TX_TO_ACTION_STATUS_DIRECT_MAPPING) actions = action_factory(chain_code, transactions) actions = [i for i in actions if i.from_address == address or i.to_address == address] return actions _LAST_ARCHIVED_ID_CACHE = {} @timing_logger("transaction_manager.query_actions_by_address") def query_actions_by_address( chain_code: str, coin_code: str, address: str, page_number: int = 1, items_per_page: int = 20, searching_address_as: Literal["sender", "receiver", "both"] = "both", ) -> List[TxAction]: with timeout_lock("transaction_manager.query_actions_by_address") as acquired: if not acquired: return [] address = provider_manager.verify_address(chain_code, address).normalized_address page_number = max(page_number, 1) is_first_page = page_number == 1 archived_id_cache_key = f"{chain_code}:{address}" archived_id = _LAST_ARCHIVED_ID_CACHE.get(archived_id_cache_key) if is_first_page or not archived_id: archived_id = int(time.time() * 1e3) _LAST_ARCHIVED_ID_CACHE[archived_id_cache_key] = archived_id local_actions = [] max_times = 3 for times in range(max_times + 1): local_actions = daos.query_actions_by_address( chain_code, address, coin_code=coin_code, items_per_page=items_per_page, page_number=page_number, archived_ids=[archived_id, None], searching_address_as=searching_address_as, ) if ( len(local_actions) >= items_per_page or times == max_times # No need to invoke synchronization the last time or _sync_actions_by_address(chain_code, address, archived_id, require_sync_number=200 * 1 << times) == 0 ): break return local_actions @error_interrupter(logger, interrupt=True, default=0) def _sync_actions_by_address(chain_code: str, address: str, archived_id: int, require_sync_number: int = 200) -> int: first_confirmed_action = daos.get_first_confirmed_action_at_the_same_archived_id(chain_code, address, archived_id) last_confirmed_action_before_this_archived = daos.get_last_confirmed_action_before_archived_id( chain_code, address, archived_id ) paginate = provider_data.TxPaginate( start_block_number=( max( 0, last_confirmed_action_before_this_archived.block_number - 1 ) # Ensure that the requested block overlaps the recorded block if last_confirmed_action_before_this_archived else None ), end_block_number=first_confirmed_action.block_number if first_confirmed_action else None, items_per_page=require_sync_number, ) syncing_actions = _search_actions_from_provider_by_address(chain_code, address, paginate) syncing_txids = list({i.txid for i in syncing_actions}) pending_txids = daos.filter_existing_txids(chain_code, syncing_txids, status=TxActionStatus.PENDING) to_be_confirmed_actions = { i.txid: i for i in syncing_actions if i.txid in pending_txids and i.block_number is not None } old_archived_ids = daos.query_existing_archived_ids(chain_code, syncing_txids) if archived_id in old_archived_ids: old_archived_ids.remove(archived_id) existing_txids = daos.filter_existing_txids(chain_code, syncing_txids) to_be_created_actions = [i for i in syncing_actions if i.txid not in existing_txids] expand_count = 0 with db.atomic(): if to_be_confirmed_actions: for txid, action in to_be_confirmed_actions.items(): _on_transaction_confirmed( chain_code=chain_code, txid=txid, status=action.status, fee_used=action.fee_used, block_hash=action.block_hash, block_number=action.block_number, block_time=action.block_time, archived_id=archived_id, ) expand_count += len(to_be_confirmed_actions) if old_archived_ids: expand_count += daos.update_archived_id(list(old_archived_ids), archived_id) if to_be_created_actions: for i in to_be_created_actions: i.archived_id = archived_id daos.bulk_create(to_be_created_actions) expand_count += len(to_be_created_actions) return expand_count def _on_transaction_confirmed( chain_code: str, txid: str, status: TxActionStatus, fee_used: Decimal, block_number: int, block_hash: str, block_time: int, archived_id: int = None, ): require(status in (TxActionStatus.CONFIRM_SUCCESS, TxActionStatus.CONFIRM_REVERTED)) logger.info( f"Transaction confirmed. chain_code: {chain_code}, txid: {txid}, status: {status}, block_number: {block_number}" ) daos.on_transaction_confirmed( chain_code=chain_code, txid=txid, status=status, fee_used=fee_used, block_hash=block_hash, block_number=block_number, block_time=block_time, archived_id=archived_id, ) chain_info = coin_manager.get_chain_info(chain_code) if chain_info.chain_model == coin_data.ChainModel.UTXO: utxo_manager.mark_utxos_spent_by_txid(chain_code, txid) if chain_info.nonce_supported is not True: return actions = daos.query_actions_by_txid(chain_code, txid, index=0) main_action = actions[0] if actions and actions[0].nonce >= 0 else None if not main_action: return same_nonce_actions = daos.query_actions_by_nonce(chain_code, main_action.from_address, main_action.nonce) replaced_action_txids = { i.txid for i in same_nonce_actions if i.txid != txid and i.status == TxActionStatus.PENDING } for txid in replaced_action_txids: daos.update_actions_status(chain_code, txid, TxActionStatus.REPLACED) def delete_actions_by_addresses(chain_code: str, addresses: List[str]) -> int: return daos.delete_actions_by_addresses(chain_code, addresses) @timing_logger("transaction_manager.on_ticker_signal") def on_ticker_signal(): update_pending_actions()
the-stack_106_18642
#!/usr/bin/env python # -*- coding: utf-8 -*- from numpy.core.fromnumeric import ravel from numpy.lib.type_check import real import rospy import tf import math from nav_msgs.srv import GetMap from sensor_msgs.msg import LaserScan from nav_msgs.msg import Odometry from visualization_msgs.msg import MarkerArray,Marker from nav_msgs.msg import OccupancyGrid import numpy as np import cv2 from icp import ICP from ekf import EKF,STATE_SIZE from extraction import Extraction from sift_match import sift_match import matplotlib.pyplot as plt MAX_LASER_RANGE = 30 def r2d(r): return r*180/math.pi class SLAM_EKF(): def __init__(self): # ros param self.robot_x = rospy.get_param('/slam/robot_x',0) self.robot_y = rospy.get_param('/slam/robot_y',0) self.robot_theta = rospy.get_param('/slam/robot_theta',0) self.icp = ICP() self.ekf = EKF() self.extraction = Extraction() # odom robot init states self.sensor_sta = [self.robot_x,self.robot_y,self.robot_theta] self.isFirstScan = True self.src_pc = [] self.tar_pc = [] self.map = None # State Vector [x y yaw] self.xOdom = np.zeros((3, 1)) self.xEst = np.zeros((3, 1)) self.PEst = np.zeros((3, 3)) # ros topic self.laser_sub = rospy.Subscriber('/scan',LaserScan,self.laserCallback) self.map_sub = rospy.Subscriber('/map',OccupancyGrid,self.mapCallback) self.location_pub = rospy.Publisher('ekf_location',Odometry,queue_size=3) self.odom_pub = rospy.Publisher('icp_odom',Odometry,queue_size=3) self.odom_broadcaster = tf.TransformBroadcaster() self.landMark_pub = rospy.Publisher('/landMarks',MarkerArray,queue_size=1) self.tf = tf.TransformListener() self.resolution = 0 self.count = 0 def get_real_loc(self): self.tf = tf.TransformListener() self.tf.waitForTransform("/base_footprint", "/map", rospy.Time(), rospy.Duration(4.0)) l2m, rot = self.tf.lookupTransform('/base_footprint', '/map', rospy.Time(0)) euler = tf.transformations.euler_from_quaternion(rot) roll, pitch, yaw_l2m = euler[0], euler[1], euler[2] self.tf.waitForTransform("/map", "/world_base", rospy.Time(), rospy.Duration(4.0)) m2w, rot = self.tf.lookupTransform('/map', '/world_base', rospy.Time(0)) euler = tf.transformations.euler_from_quaternion(rot) roll, pitch, yaw_m2w = euler[0], euler[1], euler[2] dx = -l2m[0] * math.cos(yaw_l2m) - l2m[1] * math.sin(yaw_l2m) - m2w[0] dy = l2m[0] * math.sin(yaw_l2m) - l2m[1] * math.cos(yaw_l2m) - m2w[1] dthela = -yaw_l2m z_world = np.array([ [dx * math.cos(yaw_m2w) + dy * math.sin(yaw_m2w)], [- dx * math.sin(yaw_m2w) + dy * math.cos(yaw_m2w)], [dthela - yaw_m2w] ]) return z_world def match(self, np_msg): self.count += 1 print ("Match with static map!") real_loc = self.get_real_loc() if(self.count <= 10): x, y, yaw = real_loc[0, 0], real_loc[1, 0], real_loc[2, 0] else: x, y, yaw = self.xEst[0, 0], self.xEst[1, 0], self.xEst[2, 0] # print ("Current position:", x, y ,yaw) x_min = np.min(np_msg[0, :]) y_min = np.min(np_msg[1, :]) x_max = np.max(np_msg[0, :]) y_max = np.max(np_msg[1, :]) # laser_frame = np.zeros((int((y_max-y_min)/self.resolution) + 5, int((x_max - x_min)/self.resolution) + 5),dtype=np.uint8) # laser_frame[:,:] = 255 # print ("laser frame size:", laser_frame.shape) # for i in range(np_msg.shape[1]): # y = int((np_msg[1, i] - y_min) / self.resolution) + 1 # x = int((np_msg[0, i] - x_min) / self.resolution) + 1 # laser_frame[y, x] = 0 # cv2.imshow('test', laser_frame) # cv2.waitKey(0) # cv2.destroyWindow('test') # sift_match(cv2.cvtColor(self.map, cv2.COLOR_GRAY2RGB), cv2.cvtColor(laser_frame, cv2.COLOR_GRAY2RGB)) # Useless method # T = self.icp.process(np_msg, self.map) # print (T) # print (self.T2u(T)) # return self.T2u(T) # Another method src_pc = np_msg.copy() dx = src_pc[0, :] dy = src_pc[1, :] src_pc[0, :] = dx * math.cos(yaw) - dy * math.sin(yaw) + x src_pc[1, :] = dx * math.sin(yaw) + dy * math.cos(yaw) + y x_min = np.min(src_pc[0, :]) y_min = np.min(src_pc[1, :]) x_max = np.max(src_pc[0, :]) y_max = np.max(src_pc[1, :]) tmp_map = self.map[:, (self.map[0, :] > x_min) & (self.map[1, :] > y_min) & (self.map[0, :] < x_max) & (self.map[1, :] < y_max) ] # Show piece of the map # self.count += 1 # if(self.count % 200 == 0): # plt.axis("equal") # plt.plot(tmp_map[0, :], tmp_map[1, :], marker='*', linestyle='') # plt.show() # plt.axis("equal") # plt.plot(src_pc[0, :], src_pc[1, :], marker='*', linestyle='') # plt.show() # return np.array([[0],[0],[0]]), 0 try: T, matches = self.icp.process(src_pc, tmp_map) except: return np.array([[0],[0],[0]]), 0 u = self.T2u(T) z = np.array([[x-u[0, 0]],[y-u[1, 0]],[yaw-u[2, 0]]]) if(self.count <= 10): return real_loc, 1000000 else: return z, matches # return real_loc, 1000000 def laserCallback(self, msg): real_loc = self.get_real_loc() print ("Real position:", real_loc[0, 0], real_loc[1, 0], real_loc[2, 0]) np_msg = self.laserToNumpy(msg) # lm = self.extraction.process(np_msg) u = self.calc_odometry(np_msg) z, matches = self.match(np_msg) self.xEst, self.PEst = self.ekf.estimate(self.xEst, self.PEst, z, u, matches) # self.xEst, self.PEst = z, np.zeros((3,3)) self.publishResult() pass def mapCallback(self, msg): print("Map received!!!") print ("reso:", msg.info.resolution) print ("Origin:", (msg.info.origin.position.x, msg.info.origin.position.y)) self.tf = tf.TransformListener() self.tf.waitForTransform("/map", "/world_base", rospy.Time(), rospy.Duration(4.0)) trans, rot = self.tf.lookupTransform('/map', '/world_base', rospy.Time(0)) euler = tf.transformations.euler_from_quaternion(rot) roll, pitch, yaw = euler[0], euler[1], euler[2] print ("Trans:", trans) print ("Yaw:", yaw) print ("Map height:", msg.info.height, "Map width:", msg.info.width) self.map = np.array(msg.data).reshape(msg.info.height, msg.info.width).astype(np.uint8) lines = cv2.Canny(self.map, 50, 150, apertureSize = 3) rows, cols = lines.shape # M = cv2.getRotationMatrix2D(((cols-1)/2.0,(rows-1)/2.0), r2d(yaw), 1) # lines = cv2.warpAffine(lines,M,(cols,rows)) # lines = 255 - lines # self.resolution = msg.info.resolution # self.map = lines # cv2.imshow('Canny', lines) # cv2.waitKey(0) # cv2.destroyAllWindows() # oy, ox = np.nonzero(lines > 0) # get critical points ox, oy = np.nonzero(lines > 0) ox = ox*msg.info.resolution + msg.info.origin.position.y oy = oy*msg.info.resolution + msg.info.origin.position.x # Show map base # plt.axis("equal") # plt.plot(oy, ox, marker='*', linestyle='') # plt.show() ox = ox - trans[1] oy = oy - trans[0] world_base_x = oy * math.cos(yaw) + ox * math.sin(yaw) world_base_y = - oy * math.sin(yaw) + ox * math.cos(yaw) print ("Total points from static map:", ox.shape[0]) self.map = np.zeros((3, ox.shape[0])) self.map[0, :] = world_base_x self.map[1, :] = world_base_y self.map[2, :] = 1 # Show world base # plt.axis("equal") # plt.plot(ox, oy, marker='*', linestyle='') # plt.show() def observation(self, lm): landmarks = lm z = np.zeros((0, 3)) for i in range(len(landmarks.id)): dx = landmarks.position_x[i] dy = landmarks.position_y[i] d = math.hypot(dx, dy) angle = self.ekf.pi_2_pi(math.atan2(dy, dx)) zi = np.array([d, angle, i]) z = np.vstack((z, zi)) return z def calc_odometry(self, np_msg): if self.isFirstScan: self.tar_pc = np_msg self.isFirstScan = False return np.array([[0.0,0.0,0.0]]).T self.src_pc = np_msg transform_acc, matches = self.icp.process(self.tar_pc, self.src_pc) self.tar_pc = np_msg return self.T2u(transform_acc) def laserToNumpy(self,msg): total_num = len(msg.ranges) pc = np.ones([3,total_num]) range_l = np.array(msg.ranges) range_l[range_l == np.inf] = MAX_LASER_RANGE angle_l = np.linspace(msg.angle_min,msg.angle_max,total_num) pc[0:2,:] = np.vstack((np.multiply(np.cos(angle_l),range_l),np.multiply(np.sin(angle_l),range_l))) pc = pc[:, ~np.any(np.isnan(pc), axis=0)] return pc def T2u(self, t): dw = math.atan2(t[1,0],t[0,0]) u = np.array([[t[0,2],t[1,2],dw]]) return u.T def u2T(self, u): w = u[2] dx = u[0] dy = u[1] return np.array([ [ math.cos(w), -math.sin(w), dx], [ math.sin(w), math.cos(w), dy], [0,0,1] ]) def lm2pc(self, lm): total_num = len(lm.id) dy = lm.position_y dx = lm.position_x range_l = np.hypot(dy,dx) angle_l = np.arctan2(dy,dx) pc = np.ones((3,total_num)) pc[0:2,:] = np.vstack((np.multiply(np.cos(angle_l),range_l),np.multiply(np.sin(angle_l),range_l))) pc = pc[:, ~np.any(np.isnan(pc), axis=0)] return pc def publishResult(self): # tf s = self.xEst.reshape(-1) q = tf.transformations.quaternion_from_euler(0,0,s[2]) self.odom_broadcaster.sendTransform((s[0],s[1],0.001),(q[0],q[1],q[2],q[3]), rospy.Time.now(),"ekf_location","world_base") # odom odom = Odometry() odom.header.stamp = rospy.Time.now() odom.header.frame_id = "world_base" odom.pose.pose.position.x = s[0] odom.pose.pose.position.y = s[1] odom.pose.pose.position.z = 0.001 odom.pose.pose.orientation.x = q[0] odom.pose.pose.orientation.y = q[1] odom.pose.pose.orientation.z = q[2] odom.pose.pose.orientation.w = q[3] self.location_pub.publish(odom) s = self.xOdom q = tf.transformations.quaternion_from_euler(0,0,s[2]) # odom odom = Odometry() odom.header.stamp = rospy.Time.now() odom.header.frame_id = "world_base" odom.pose.pose.position.x = s[0] odom.pose.pose.position.y = s[1] odom.pose.pose.position.z = 0.001 odom.pose.pose.orientation.x = q[0] odom.pose.pose.orientation.y = q[1] odom.pose.pose.orientation.z = q[2] odom.pose.pose.orientation.w = q[3] self.odom_pub.publish(odom) pass def main(): rospy.init_node('slam_node') s = SLAM_EKF() rospy.spin() if __name__ == '__main__': main()
the-stack_106_18647
import sys from samples.classification.ram.architecture.ram_modules import ( Actor, CoreRNN, GlimpseSensor, Locator, SignalBaseline, ) from samples.classification.ram.ram_params import get_ram_config from draugr import pil_img_to_np_array sys.path.append("..") import torch if __name__ == "__main__": config = get_ram_config() # load images imgs = [] paths = [config["data_dir"] / "lenna.jpg", config["data_dir"] / "cat.jpg"] for i in range(len(paths)): img = pil_img_to_np_array(paths[i], desired_size=[512, 512], expand=True) imgs.append(torch.from_numpy(img)) imgs = torch.cat(imgs).permute((0, 3, 1, 2)) B, C, H, W = imgs.shape loc = torch.FloatTensor([[-1.0, 1.0], [-1.0, 1.0]]) sensor = GlimpseSensor(h_g=128, h_l=128, g=64, k=3, s=2, c=3) g_t = sensor(imgs, loc) assert g_t.shape == (B, 256) rnn = CoreRNN(input_size=256, hidden_size=256) h_t = torch.zeros(g_t.shape[0], 256) h_t = rnn(g_t, h_t) assert h_t.shape == (B, 256) classifier = Actor(256, 10) a_t = classifier(h_t) assert a_t.shape == (B, 10) loc_net = Locator(256, 2, 0.11) mu, l_t = loc_net(h_t) assert l_t.shape == (B, 2) base = SignalBaseline(256, 1) b_t = base(h_t) assert b_t.shape == (B, 1)
the-stack_106_18648
#!/usr/bin/env python3 import json import time import pprint from sys import argv, exit from os import environ from collections import OrderedDict from prometheus_http_client import Prometheus from prometheus_client import CollectorRegistry, Gauge, push_to_gateway def get_series(p, series): m = p.series([series]) j = json.loads(m) return j.get("data",[]) # -- def get_results(p, query, past_days=7): # Returns results of a range query, so we pick up older runs' latencies now = time.time() start_ts = now - (60 * 60 * 24 * past_days) m = p.query_rang(metric=query,start=start_ts, end=now, step=3600) j = json.loads(m) return j.get("data",{}).get("result") # -- def get_completed_runs(p, mesh): s = get_series(p, 'wrk2_benchmark_progress{exported_job="%s",status="done"}'%(mesh,)) r = sorted([ i.get("run") for i in s ]) return r # -- def run_time_info(p, run, past_days=7): info = {} for kind in ["start", "end", "duration"]: res = get_results(p, 'wrk2_benchmark_run_runtime{kind="%s",run="%s"}' % (kind,run), past_days) try: info[kind] = int(res[0]["values"][0][1]) except IndexError: print(" !!! Run %s lacks '%s' metric." % (run,kind)) return None return info # -- def get_latency_histogram(run,detailed=False,past_days=7): # return RPS, histogram of a single run as dict # <RPS>, {<percentile>: <latency in ms>, ...} # e.g.: 500, {0.5: 399, 0.75: 478, 0.9: 589, ...} ret=OrderedDict() if detailed: detailed="detailed_" else: detailed="" out=[] rps=0 for res in get_results( p, 'wrk2_benchmark_latency_%sms{run="%s"}' %(detailed,run,), past_days): perc = float(res["metric"]["p"]) rps = float(res["metric"].get("rps",0)) lat = float(res["values"][0][1]) ret[perc] = lat out.append("%s: %s" % (perc,lat)) if detailed == "": print(" Run %s @%sRPS (%s): %s" % (run, rps, "coarse" if detailed == "" else "detailed", "\t".join(out))) return rps, ret # -- def get_latency_histograms(p, mesh, detailed=False, past_days=7): # get all runs for a given service mesh. # Returns dict of latency percentiles: # { <percentile>: [ <lat>, <lat>, <lat>, ...], <percentile>:...}, # <percentile>: [...]} # and info (doct) for each run (rps, start end, duration) if False == detailed: print("Mesh %s" %(mesh,)) histograms={} info = {} for run in get_completed_runs(p, mesh): rps, h = get_latency_histogram(run, detailed, past_days) i = run_time_info(p, run, past_days) if not i: continue info[run] = i info[run]["rps"] = rps for perc,lat in h.items(): if histograms.get(perc, False): histograms[perc][run]=lat else: histograms[perc] = OrderedDict({run:lat}) # sort runs' latencies for each percentile for perc in histograms.keys(): histograms[perc] = {k: v for k, v in sorted(histograms[perc].items(), key=lambda item: item[1])} return histograms, info # -- def create_summary_gauge(p, mesh, r, detailed=False, past_days=7): histograms, info = get_latency_histograms(p, mesh, detailed, past_days) if detailed: detailed="detailed_" else: detailed="" g = Gauge('wrk2_benchmark_summary_latency_%sms' % (detailed,), '%s latency summary' % (detailed,), labelnames=[ "p","source_run", "requested_rps", "start", "end", "duration"], registry=r) percs_count=0 # create latency entries for all runs, per percentile for perc, latencies in histograms.items(): percs_count = percs_count + 1 for run, lat in latencies.items(): g.labels(p=perc, source_run=run, requested_rps=info[run]["rps"], start=info[run]["start"]*1000, # dashboard link fix: set end to 1min after actual end end = (info[run]["end"] + 60) *1000, duration=info[run]["duration"]).set(lat) return g, percs_count, len(info) # -- # # -- main -- # if 3 > len(argv): print( 'Command line error: Prometheus URL and push gateway are required.') print('Usage:') print(' %s <Prometheus URL> <push gateway host:port> [<past-days>]' % (argv[0],)) exit(1) prometheus_url = argv[1] pgw_url = argv[2] past_days=7 if 4 == len(argv): past_days=int(argv[3]) environ['PROMETHEUS_URL'] = prometheus_url p = Prometheus() for mesh in ["bare-metal", "svcmesh-linkerd", "svcmesh-istio", "svcmesh-consul"]: r = CollectorRegistry() workaround = mesh g, percs, runs = create_summary_gauge(p, mesh, r, past_days=past_days) dg, dpercs, druns = create_summary_gauge(p, mesh, r, detailed=True, past_days=past_days) print("%s: %d runs with %d percentiles (coarse)" % (mesh, runs, percs)) print("%s: %d runs with %d percentiles (detailed)" % (mesh, druns, dpercs)) push_to_gateway( pgw_url, job=mesh, grouping_key={"instance":"emojivoto"}, registry=r)
the-stack_106_18649
# %% from itertools import permutations import matplotlib.pyplot as plt import numpy as np from PIL import Image from ml_for_programmers.config import Config # %% config = Config() # %% colors = Image.open(config.data_dir_path / "raw/colors.png") # %% colors # %% plt.imshow(colors) # %% color_array = np.array(colors) # %% type(color_array) # %% color_array.shape # %% color_array # %% color_array[:1] # %% plt.imshow(color_array[:1]) # %% plt.imshow(color_array[:, :1]) # %% plt.imshow(color_array[0]) # %% color_array[0].shape # %% plt.imshow(color_array[0].reshape(1, 4, 3)) # %% plt.imshow(np.expand_dims(color_array[0], axis=0)) # %% layers = np.split(color_array, 3, axis=2) len(layers) # %% layers[0].shape # %% plt.imshow(layers[0], cmap="binary") # %% list(permutations([1, 2, 3])) # %% fig, axes = plt.subplots(2, 3) lin_axes = axes.reshape(-1) for i, p in enumerate(permutations(layers)): lin_axes[i].imshow(np.concatenate(p, axis=2)) # %%
the-stack_106_18650
__all__ = [ 'Namespace', 'SubcommandHelpFormatter', 'UsageHelpFormatter', 'create_parser_dry_run', 'create_parser_filter_dates', 'create_parser_local', 'create_parser_logging', 'create_parser_meta', 'create_parser_yes', 'custom_path', 'merge_defaults', 'parse_args' ] import argparse import os from pathlib import Path from .datetime import datetime_string_to_time_period from .path import UNIX_PATH_RE, convert_unix_path from .structures import AttrMapping ######### # Utils # ######### # I use Windows Python install from Cygwin. # This converts Unix-style paths to Windows-style paths. def custom_path(value): if os.name == 'nt' and UNIX_PATH_RE.match(str(value)): value = Path(convert_unix_path(str(value))) value = Path(value) return value ########### # Parsers # ########### def create_parser_meta(title, version): meta = argparse.ArgumentParser( add_help=False ) meta_options = meta.add_argument_group("Options") meta_options.add_argument( '-h', '--help', action='help', help="Display help." ) meta_options.add_argument( '-V', '--version', action='version', version=f"{title} {version}", help="Output version." ) return meta def create_parser_dry_run(): dry_run = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, add_help=False ) dry_run_options = dry_run.add_argument_group("Action") dry_run_options.add_argument( '-n', '--dry-run', action='store_true', help="Output results without taking action." ) return dry_run def create_parser_yes(): yes = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, add_help=False ) yes_options = yes.add_argument_group("Action") yes_options.add_argument( '-y', '--yes', action='store_true', help="Don't ask for confirmation." ) return yes def create_parser_logging(): logging_ = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, add_help=False ) logging_options = logging_.add_argument_group("Logging") logging_options.add_argument( '-v', '--verbose', action='count', help="Increase verbosity of output." ) logging_options.add_argument( '-q', '--quiet', action='count', help="Decrease verbosity of output." ) logging_options.add_argument( '--debug', action='store_true', help="Output log messages from dependencies." ) logging_options.add_argument( '--log-to-stdout', action='store_true', help="Log to stdout." ) logging_options.add_argument( '--no-log-to-stdout', action='store_true', help="Don't log to stdout." ) logging_options.add_argument( '--log-to-file', action='store_true', help="Log to file." ) logging_options.add_argument( '--no-log-to-file', action='store_true', help="Don't log to file." ) return logging_ def create_parser_local(): local = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, add_help=False ) local_options = local.add_argument_group("Local") local_options.add_argument( '--no-recursion', action='store_true', help=( "Disable recursion when scanning for local files.\n" "Recursion is enabled by default." ) ) local_options.add_argument( '--max-depth', metavar='DEPTH', type=int, help=( "Set maximum depth of recursion when scanning for local files.\n" "Default is infinite recursion." ) ) local_options.add_argument( '-xp', '--exclude-path', metavar='PATH', action='append', dest='exclude_paths', help=( "Exclude filepaths.\n" "Can be specified multiple times." ) ) local_options.add_argument( '-xr', '--exclude-regex', metavar='RX', action='append', dest='exclude_regexes', help=( "Exclude filepaths using regular expressions.\n" "Can be specified multiple times." ) ) local_options.add_argument( '-xg', '--exclude-glob', metavar='GP', action='append', dest='exclude_globs', help=( "Exclude filepaths using glob patterns.\n" "Can be specified multiple times.\n" "Absolute glob patterns not supported." ) ) return local def create_parser_filter_dates(): filter_dates = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, add_help=False ) dates_options = filter_dates.add_argument_group("Filter") dates_options.add_argument( '--created-in', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, in_=True), help="Include items created in year or year/month." ) dates_options.add_argument( '--created-on', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, on=True), help="Include items created on date." ) dates_options.add_argument( '--created-before', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, before=True), help="Include items created before datetime." ) dates_options.add_argument( '--created-after', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, after=True), help="Include items created after datetime." ) dates_options.add_argument( '--modified-in', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, in_=True), help="Include items created in year or year/month." ) dates_options.add_argument( '--modified-on', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, on=True), help="Include items created on date." ) dates_options.add_argument( '--modified-before', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, before=True), help="Include items modified before datetime." ) dates_options.add_argument( '--modified-after', metavar='DATE', type=lambda d: datetime_string_to_time_period(d, after=True), help="Include items modified after datetime." ) return filter_dates ############ # argparse # ############ class Namespace(AttrMapping): pass class UsageHelpFormatter(argparse.RawTextHelpFormatter): # pragma: nocover def add_usage(self, usage, actions, groups, prefix="Usage: "): super().add_usage(usage, actions, groups, prefix) # Removes the command list while leaving the usage metavar intact. class SubcommandHelpFormatter(UsageHelpFormatter): # pragma: nocover def _format_action(self, action): parts = super()._format_action(action) if action.nargs == argparse.PARSER: parts = "\n".join(parts.split("\n")[1:]) return parts def merge_defaults(defaults, parsed): args = Namespace() args.update(defaults) args.update(parsed) return args def parse_args(parser, args=None): return parser.parse_args(args, namespace=Namespace())
the-stack_106_18651
# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # input0 = Input("input0", "TENSOR_BOOL8", "{1, 1, 4, 1, 1}") output0 = Output("output0", "TENSOR_BOOL8", "{1, 1, 4, 1, 1}") model = Model().Operation("LOGICAL_NOT", input0).To(output0) Example({ input0: [True, False, False, True], output0: [False, True, True, False], })
the-stack_106_18655
#!/usr/bin/python # # Copyright 2019 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import sys from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand def read_readme(): with open('README.md') as f: return f.read() class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) setup(name='polyaxon-dockerizer', version='0.5.6', description='Python dockerizer to generate and build docker images.', maintainer='Polyaxon, Inc.', maintainer_email='[email protected]', author='Polyaxon, Inc.', author_email='[email protected]', url='https://github.com/polyaxon/polyaxon', license='Apache 2.0', long_description_content_type="text/markdown", long_description=read_readme(), platforms='any', packages=find_packages(), keywords=[ 'polyaxon', 'kubernetes', 'containers', 'docker' 'instrumentation' ], install_requires=[ 'docker==4.0.2', 'Unipath==1.1', ], classifiers=[ 'Programming Language :: Python', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Programming Language :: Python :: 3', 'Topic :: Internet :: WWW/HTTP', ], tests_require=[ "pytest", ], cmdclass={'test': PyTest})
the-stack_106_18656
# -*- coding:utf-8 -*- from meiduo_mall.libs.yuntongxun.CCPRestSDK import REST # 说明:主账号,登陆云通讯网站后,可在"控制台-应用"中看到开发者主账号ACCOUNT SID _accountSid = '8aaf0708669b101e0166a61092640aa1' # 说明:主账号Token,登陆云通讯网站后,可在控制台-应用中看到开发者主账号AUTH TOKEN _accountToken = 'a4d7ae4833554c0cbab6012abaa1dac9' # 请使用管理控制台首页的APPID或自己创建应用的APPID _appId = '8aaf0708669b101e0166a61092cb0aa8' # 说明:请求地址,生产环境配置成app.cloopen.com _serverIP = 'sandboxapp.cloopen.com' # 说明:请求端口 ,生产环境为8883 _serverPort = "8883" # 说明:REST API版本号保持不变 _softVersion = '2013-12-26' # 云通讯官方提供的发送短信代码实例 # # 发送模板短信 # # @param to 手机号码 # # @param datas 内容数据 格式为数组 例如:{'12','34'},如不需替换请填 '' # # @param $tempId 模板Id # # def sendTemplateSMS(to, datas, tempId): # # 初始化REST SDK # rest = REST(serverIP, serverPort, softVersion) # rest.setAccount(accountSid, accountToken) # rest.setAppId(appId) # # result = rest.sendTemplateSMS(to, datas, tempId) # for k, v in result.iteritems(): # # if k == 'templateSMS': # for k, s in v.iteritems(): # print '%s:%s' % (k, s) # else: # print '%s:%s' % (k, v) class CCP(object): """发送短信的辅助类""" def __new__(cls, *args, **kwargs): # 判断是否存在类属性_instance,_instance是类CCP的唯一对象,即单例 if not hasattr(CCP, "_instance"): cls._instance = super(CCP, cls).__new__(cls, *args, **kwargs) cls._instance.rest = REST(_serverIP, _serverPort, _softVersion) cls._instance.rest.setAccount(_accountSid, _accountToken) cls._instance.rest.setAppId(_appId) return cls._instance def send_template_sms(self, to, datas, temp_id): """发送模板短信""" # @param to 手机号码 # @param datas 内容数据 格式为数组 例如:{'12','34'},如不需替换请填 '' # @param temp_id 模板Id result = self.rest.sendTemplateSMS(to, datas, temp_id) # 如果云通讯发送短信成功,返回的字典数据result中statuCode字段的值为"000000" if result.get("statusCode") == "000000": # 返回0 表示发送短信成功 return 0 else: # 返回-1 表示发送失败 return -1 if __name__ == '__main__': # 注意: 测试的短信模板编号为1 result = CCP().send_template_sms('18784381659', ['1234', 5], 1) print(result) # 0表示成功
the-stack_106_18657
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup from looker_deployer import version as pkg NAME = "looker_deployer" VERSION = pkg.__version__ REQUIRES = ["looker-sdk>=21.18.0", "oyaml", "python-json-logger"] setup( author="Looker Open Source", author_email="[email protected]", description="A Looker Deployment Tool", install_requires=REQUIRES, long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords=["Looker Deployer"], license="Apache License 2.0", name=NAME, packages=["looker_deployer", "looker_deployer/commands", "looker_deployer/utils"], entry_points={"console_scripts": ["ldeploy=looker_deployer.cli:main"]}, python_requires=">=3.6.0, <3.9", version=VERSION )
the-stack_106_18663
from typing import Any, Iterable, List, Optional import pytest from di.api.dependencies import DependantBase from di.api.executor import AsyncTask, State, SyncTask, Task from di.dependant import Dependant from di.executors import AsyncExecutor, SyncExecutor class TestAsyncTask(AsyncTask): def __init__( self, dependant: DependantBase[Any], ): ... async def compute(self, state: State) -> Iterable[Optional[Task]]: raise NotImplementedError class TestSyncTask(SyncTask): def __init__( self, dependant: DependantBase[Any], ): ... def compute(self, state: State) -> Iterable[Optional[Task]]: raise NotImplementedError def test_executing_async_dependencies_in_sync_executor(): state = State(object()) exc = SyncExecutor() match = "Cannot execute async dependencies in execute_sync" with pytest.raises(TypeError, match=match): exc.execute_sync([TestAsyncTask(Dependant())], state) def test_simple_sync_executor(): executed: List[int] = [] class Task1(TestSyncTask): def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(1) return [Task2(Dependant())] class Task2(TestSyncTask): def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(2) return [Task3(Dependant())] class Task3(TestSyncTask): def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(3) return [None] exc = SyncExecutor() exc.execute_sync([Task1(Dependant())], State(object())) assert executed == [1, 2, 3] @pytest.mark.anyio async def test_simple_async_executor(): executed: List[int] = [] class Task1(TestAsyncTask): async def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(1) return [Task2(Dependant())] class Task2(TestAsyncTask): async def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(2) return [Task3(Dependant())] class Task3(TestAsyncTask): async def compute(self, state: State) -> Iterable[Optional[Task]]: executed.append(3) return [None] exc = AsyncExecutor() await exc.execute_async([Task1(Dependant())], State(object())) assert executed == [1, 2, 3]