filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_18334
from construct import * from .common import * """ Formats: wpm Version: 0 The path map file describes the pathing in a map. """ PathPoint = FlagsEnum(Byte, can_walk = 0x02, can_fly = 0x04, can_build = 0x08, is_blight = 0x20, is_ground = 0x40, # or water is_unknown = 0x80 ) PathMapFile = Struct( "file_id" / Const(b"MP3W"), "version" / Integer, "path_map_width" / Integer, "path_map_height" / Integer, "path_map" / Array(this.path_map_width * this.path_map_height, PathPoint) )
the-stack_106_18336
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Factory the instantiates and return the valid (dynamic) module/class from a machine names. """ from models.ModelFactory import ModelFactory from executor.Execute import Execute class MachineFactory(ModelFactory): """Identify and return the correct machine model""" def __init__(self, name): self.name = name if not name: self.name = self._auto_detect() super(MachineFactory, self).__init__('machines') def _auto_detect(self): """Detect architecture if empty""" result = Execute().run(['uname', '-m']) if result.returncode: msg = "'uname -m' error: [" + result.stderr + "]" raise RuntimeError("Error auto-detecting machine type: " + msg) if not result.stdout: raise RuntimeError("Unable to detect machine type with uname") return result.stdout.strip() def getMachine(self): """Loads machine model and returns""" model = self._load_model(self.name + '_model.py') if not model: raise ImportError("Can't find model for machine " + self.name) return model
the-stack_106_18339
import os import string import random import json def store_cpp_format(parsed_json): file_name = "backend/data/"+''.join(random.choices(string.ascii_letters + string.digits, k=8)) + ".data" f = open(file_name, "w+") #load major grade-model json_file = open("assets/informatik.json") model = json.load(json_file) maxDelCredits = model["maxDelCredits"] #first line: maximum credits deletable f.write(str(maxDelCredits)+"\n") sections = model["sections"] for section in sections: if "id" in section: section_id = str(section["id"]) if(section_id in parsed_json and not parsed_json[section_id] == {}): section_grades = parsed_json[section_id] subject_ids = section_grades.keys() grade_credits = dict((sub["id"], sub["credits"]) for sub in section["subjects"]) f.write(";".join([str(section_grades[sid])+","+str(grade_credits[sid])+","+str(sid) for sid in subject_ids])) f.write("\n") elif(section_id == "appl"): minors = section["categories"] for minor in minors: minor_id = minor["id"] if(minor_id in parsed_json and not parsed_json[minor_id] == {}): minor_grades = parsed_json[minor_id] subject_ids = minor_grades.keys() grade_credits = dict((sub["id"], sub["credits"]) for sub in minor["subjects"]) f.write(";".join([str(minor_grades[sid])+","+str(grade_credits[sid])+","+str(sid) for sid in subject_ids])) break return file_name def solve_cpp(parsed_json): file_name = store_cpp_format(parsed_json) stream = os.popen("./backend/solve " + file_name) console_output = stream.read() if console_output: return {"error": console_output} output = [] with open(file_name) as f: output = f.read().splitlines() os.remove(file_name) return {"grade": float(output[0]), "deletions": output[1:]}
the-stack_106_18346
#!/usr/bin/env python3 """ CPAchecker is a tool for configurable software verification. This file is part of CPAchecker. Copyright (C) 2007-2014 Dirk Beyer All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. CPAchecker web page: http://cpachecker.sosy-lab.org """ # prepare for Python 3 from __future__ import absolute_import, division, print_function, unicode_literals import glob import os import platform import sys sys.dont_write_bytecode = True # prevent creation of .pyc files for egg in glob.glob(os.path.join(os.path.dirname(__file__), os.pardir, 'lib', 'python-benchmark', '*.whl')): sys.path.insert(0, egg) import benchexec.benchexec # Add ./benchmark/tools to __path__ of benchexec.tools package # such that additional tool-wrapper modules can be placed in this directory. import benchexec.tools benchexec.tools.__path__ = [os.path.join(os.path.dirname(__file__), 'benchmark', 'tools')] + benchexec.tools.__path__ class Benchmark(benchexec.benchexec.BenchExec): """ An extension of BenchExec for use with CPAchecker that supports executing the benchmarks in the VerifierCloud. """ DEFAULT_OUTPUT_PATH = "test/results/" def create_argument_parser(self): parser = super(Benchmark, self).create_argument_parser() vcloud_args = parser.add_argument_group('Options for using VerifierCloud') vcloud_args.add_argument("--cloud", dest="cloud", action="store_true", help="Use VerifierCloud to execute benchmarks.") vcloud_args.add_argument("--cloudMaster", dest="cloudMaster", metavar="HOST", help="Sets the master host of the VerifierCloud instance to be used. If this is a HTTP URL, the web interface is used.") vcloud_args.add_argument("--cloudPriority", dest="cloudPriority", metavar="PRIORITY", help="Sets the priority for this benchmark used in the VerifierCloud. Possible values are IDLE, LOW, HIGH, URGENT.") vcloud_args.add_argument("--cloudCPUModel", dest="cpu_model", type=str, default=None, metavar="CPU_MODEL", help="Only execute runs in the VerifierCloud on CPU models that contain the given string.") vcloud_args.add_argument("--cloudUser", dest="cloudUser", metavar="USER:PWD", help="The user and password for the VerifierCloud (if using the web interface).") vcloud_args.add_argument("--revision", dest="revision", metavar="BRANCH:REVISION", help="The svn revision of CPAchecker to use (if using the web interface of the VerifierCloud).") vcloud_args.add_argument("--justReprocessResults", dest="reprocessResults", action="store_true", help="Do not run the benchmarks. Assume that the benchmarks were already executed in the VerifierCloud and the log files are stored (use --startTime to point the script to the results).") vcloud_args.add_argument("--cloudClientHeap", dest="cloudClientHeap", metavar="MB", default=100, type=int, help="The heap-size (in MB) used by the VerifierCloud client. A too small heap-size may terminate the client without any results.") vcloud_args.add_argument("--cloudSubmissionThreads", dest="cloud_threads", default=5, type=int, help="The number of threads used for parallel run submission (if using the web interface of the VerifierCloud).") vcloud_args.add_argument("--cloudPollInterval", dest="cloud_poll_interval", metavar="SECONDS", default=5, type=int, help="The interval in seconds for polling results from the server (if using the web interface of the VerifierCloud).") return parser def load_executor(self): if self.config.cloud: if self.config.cloudMaster and "http" in self.config.cloudMaster: import benchmark.webclient_benchexec as executor else: import benchmark.vcloud as executor else: executor = super(Benchmark, self).load_executor() return executor def check_existing_results(self, benchmark): if not self.config.reprocessResults: super(Benchmark, self).check_existing_results(benchmark) if __name__ == "__main__": # Add directory with binaries to path. bin_dir = "lib/native/x86_64-linux" if platform.machine() == "x86_64" else \ "lib/native/x86-linux" if platform.machine() == "i386" else None if bin_dir: bin_dir = os.path.join(os.path.dirname(__file__), os.pardir, bin_dir) os.environ['PATH'] += os.pathsep + bin_dir benchexec.benchexec.main(Benchmark())
the-stack_106_18348
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from base64 import b64encode from select import select from airflow.configuration import conf from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.ssh.hooks.ssh import SSHHook from airflow.utils.decorators import apply_defaults class SSHOperator(BaseOperator): """ SSHOperator to execute commands on given remote host using the ssh_hook. :param ssh_hook: predefined ssh_hook to use for remote execution. Either `ssh_hook` or `ssh_conn_id` needs to be provided. :type ssh_hook: airflow.providers.ssh.hooks.ssh.SSHHook :param ssh_conn_id: connection id from airflow Connections. `ssh_conn_id` will be ignored if `ssh_hook` is provided. :type ssh_conn_id: str :param remote_host: remote host to connect (templated) Nullable. If provided, it will replace the `remote_host` which was defined in `ssh_hook` or predefined in the connection of `ssh_conn_id`. :type remote_host: str :param command: command to execute on remote host. (templated) :type command: str :param timeout: timeout (in seconds) for executing the command. The default is 10 seconds. :type timeout: int :param environment: a dict of shell environment variables. Note that the server will reject them silently if `AcceptEnv` is not set in SSH config. :type environment: dict :param get_pty: request a pseudo-terminal from the server. Set to ``True`` to have the remote process killed upon task timeout. The default is ``False`` but note that `get_pty` is forced to ``True`` when the `command` starts with ``sudo``. :type get_pty: bool """ template_fields = ('command', 'remote_host') template_ext = ('.sh',) @apply_defaults def __init__(self, ssh_hook=None, ssh_conn_id=None, remote_host=None, command=None, timeout=10, environment=None, get_pty=False, *args, **kwargs): super().__init__(*args, **kwargs) self.ssh_hook = ssh_hook self.ssh_conn_id = ssh_conn_id self.remote_host = remote_host self.command = command self.timeout = timeout self.environment = environment self.get_pty = self.command.startswith('sudo') or get_pty def execute(self, context): try: if self.ssh_conn_id: if self.ssh_hook and isinstance(self.ssh_hook, SSHHook): self.log.info("ssh_conn_id is ignored when ssh_hook is provided.") else: self.log.info("ssh_hook is not provided or invalid. " "Trying ssh_conn_id to create SSHHook.") self.ssh_hook = SSHHook(ssh_conn_id=self.ssh_conn_id, timeout=self.timeout) if not self.ssh_hook: raise AirflowException("Cannot operate without ssh_hook or ssh_conn_id.") if self.remote_host is not None: self.log.info("remote_host is provided explicitly. " "It will replace the remote_host which was defined " "in ssh_hook or predefined in connection of ssh_conn_id.") self.ssh_hook.remote_host = self.remote_host if not self.command: raise AirflowException("SSH command not specified. Aborting.") with self.ssh_hook.get_conn() as ssh_client: self.log.info("Running command: %s", self.command) # set timeout taken as params stdin, stdout, stderr = ssh_client.exec_command(command=self.command, get_pty=self.get_pty, timeout=self.timeout, environment=self.environment ) # get channels channel = stdout.channel # closing stdin stdin.close() channel.shutdown_write() agg_stdout = b'' agg_stderr = b'' # capture any initial output in case channel is closed already stdout_buffer_length = len(stdout.channel.in_buffer) if stdout_buffer_length > 0: agg_stdout += stdout.channel.recv(stdout_buffer_length) # read from both stdout and stderr while not channel.closed or \ channel.recv_ready() or \ channel.recv_stderr_ready(): readq, _, _ = select([channel], [], [], self.timeout) for recv in readq: if recv.recv_ready(): line = stdout.channel.recv(len(recv.in_buffer)) agg_stdout += line self.log.info(line.decode('utf-8').strip('\n')) if recv.recv_stderr_ready(): line = stderr.channel.recv_stderr(len(recv.in_stderr_buffer)) agg_stderr += line self.log.warning(line.decode('utf-8').strip('\n')) if stdout.channel.exit_status_ready()\ and not stderr.channel.recv_stderr_ready()\ and not stdout.channel.recv_ready(): stdout.channel.shutdown_read() stdout.channel.close() break stdout.close() stderr.close() exit_status = stdout.channel.recv_exit_status() if exit_status == 0: enable_pickling = conf.getboolean( 'core', 'enable_xcom_pickling' ) if enable_pickling: return agg_stdout else: return b64encode(agg_stdout).decode('utf-8') else: error_msg = agg_stderr.decode('utf-8') raise AirflowException("error running cmd: {0}, error: {1}" .format(self.command, error_msg)) except Exception as e: raise AirflowException("SSH operator error: {0}".format(str(e))) return True def tunnel(self): """ Get ssh tunnel """ ssh_client = self.ssh_hook.get_conn() ssh_client.get_transport()
the-stack_106_18350
# pylint: disable=protected-access import hashlib import logging import os import shutil from datetime import datetime, timezone from pathlib import Path from typing import Optional, Union, List, Tuple from uuid import UUID, uuid4 from pydantic import BaseModel from . import protocol from .file_reader import AsyncFile, async_stat from .protocol import Inode, Directory, Backup, BackupSessionConfig _CONFIG_FILE = 'config.json' logger = logging.getLogger(__name__) class Configuration(BaseModel): store_split_count = 1 store_split_size = 2 class LocalDatabase: config: Configuration _CLIENT_DIR = 'client' _STORE_DIR = 'store' def __init__(self, base_path: Path): self._base_path = base_path self.config = Configuration.parse_file(base_path / _CONFIG_FILE) def save_config(self): with (self._base_path / _CONFIG_FILE).open('w') as file: file.write(self.config.json(indent=True)) def open_client_session(self, client_id_or_name: str) -> "LocalDatabaseServerSession": try: try: client_id = UUID(client_id_or_name) client_path = self._base_path / self._CLIENT_DIR / str(client_id) except ValueError: client_path = self._base_path / self._CLIENT_DIR / client_id_or_name if client_path.is_symlink(): client_id = os.readlink(client_path) client_path = self._base_path / self._CLIENT_DIR / client_id return LocalDatabaseServerSession(self, client_path) except FileNotFoundError as exc: logger.error(f"Session not found {client_id_or_name}") raise protocol.SessionClosed(f"No such session {client_id_or_name}") from exc def store_path_for(self, ref_hash: str) -> Path: split_size = self.config.store_split_size split_count = self.config.store_split_count split = [ref_hash[x:x+split_size] for x in range(0, split_count * split_size, split_size)] return self._base_path.joinpath(self._STORE_DIR, *split, ref_hash) def create_client(self, client_config: protocol.ClientConfiguration) -> protocol.ServerSession: (self._base_path / self._CLIENT_DIR).mkdir(exist_ok=True, parents=True) client_name_path = self._base_path / self._CLIENT_DIR / client_config.client_name client_name_path.symlink_to(str(client_config.client_id)) client_path = self._base_path / self._CLIENT_DIR / str(client_config.client_id) client_path.mkdir(exist_ok=False, parents=True) with (client_path / _CONFIG_FILE).open('w') as file: file.write(client_config.json(indent=True)) return LocalDatabaseServerSession(self, client_path) @classmethod def create_database(cls, base_path: Path, configuration: Configuration) -> "LocalDatabase": base_path.mkdir(exist_ok=False, parents=True) with (base_path / _CONFIG_FILE).open('w') as file: file.write(configuration.json(indent=True)) (base_path / cls._STORE_DIR).mkdir(exist_ok=False, parents=True) (base_path / cls._CLIENT_DIR).mkdir(exist_ok=False, parents=True) return cls(base_path) class LocalDatabaseServerSession(protocol.ServerSession): _BACKUPS = 'backup' _SESSIONS = 'sessions' _TIMESTMAP_FORMAT = "%Y-%m-%d_%H:%M:%S.%f" _DIR_SUFFIX = ".d" client_config: protocol.ClientConfiguration = None def __init__(self, database: LocalDatabase, client_path: Path): super().__init__() self._database = database self._client_path = client_path with (client_path / _CONFIG_FILE).open('r') as file: self.client_config = protocol.ClientConfiguration.parse_raw(file.read()) def save_config(self): with (self._client_path / _CONFIG_FILE).open('w') as file: file.write(self.client_config.json(indent=True)) async def start_backup(self, backup_date: datetime, allow_overwrite: bool = False, description: Optional[str] = None) -> protocol.BackupSession: backup_date = protocol.normalize_backup_date(backup_date, self.client_config.backup_granularity, self.client_config.timezone) if not allow_overwrite: # TODO consider raising the same exception if an open session already exists for the same date if self._path_for_backup_date(backup_date).exists(): raise protocol.DuplicateBackup(f"Backup exists {backup_date.isoformat()}") backup_session_id = uuid4() backup_session_path = self._path_for_session_id(backup_session_id) backup_session_path.mkdir(exist_ok=False, parents=True) session_config = protocol.BackupSessionConfig( client_id=self.client_config.client_id, session_id=backup_session_id, allow_overwrite=allow_overwrite, backup_date=backup_date, description=description, ) with (backup_session_path / _CONFIG_FILE).open('w') as file: file.write(session_config.json(indent=True)) return LocalDatabaseBackupSession(self, backup_session_path) async def resume_backup(self, *, session_id: Optional[UUID] = None, backup_date: Optional[datetime] = None) -> protocol.BackupSession: if session_id is not None: backup_path = self._path_for_session_id(session_id) return LocalDatabaseBackupSession(self, backup_path) if backup_date is not None: # This is inefficient if there are a lot of sessions but it get's the job done. backup_date = protocol.normalize_backup_date(backup_date, self.client_config.backup_granularity, self.client_config.timezone) for session_path in (self._client_path / self._SESSIONS).iterdir(): session = LocalDatabaseBackupSession(self, session_path) if session.config.backup_date == backup_date: return session raise protocol.NotFoundException(f"Backup date not found {backup_date}") raise ValueError("Either session_id or backup_date must be specified but neither were") async def list_backup_sessions(self) -> List[protocol.BackupSessionConfig]: results = [] for backup in (self._client_path / self._SESSIONS).iterdir(): with (backup / _CONFIG_FILE).open('r') as file: backup_config = protocol.BackupSessionConfig.parse_raw(file.read()) results.append(backup_config) return results async def list_backups(self) -> List[Tuple[datetime, str]]: results = [] for backup in (self._client_path / self._BACKUPS).iterdir(): with backup.open('r') as file: backup_config = protocol.Backup.parse_raw(file.read()) results.append((backup_config.backup_date, backup_config.description)) return results async def get_backup(self, backup_date: Optional[datetime] = None) -> Optional[Backup]: if backup_date is None: try: backup_path = next(iter(sorted((self._client_path / self._BACKUPS).iterdir(), reverse=True))) except (FileNotFoundError, StopIteration): logger.warning(f"No backup found for {self.client_config.client_name} ({self.client_config.client_id})") return None else: backup_date = protocol.normalize_backup_date(backup_date, self.client_config.backup_granularity, self.client_config.timezone) backup_path = self._path_for_backup_date(backup_date) with backup_path.open('r') as file: return protocol.Backup.parse_raw(file.read()) async def get_directory(self, inode: Inode) -> Directory: if inode.type != protocol.FileType.DIRECTORY: raise ValueError(f"Cannot open file type {inode.type} as a directory") inode_hash = inode.hash + self._DIR_SUFFIX with self._database.store_path_for(inode_hash).open('r') as file: return Directory.parse_raw(file.read()) async def get_file(self, inode: Inode, target_path: Optional[Path] = None, restore_permissions: bool = False, restore_owner: bool = False) -> Optional[protocol.FileReader]: if inode.type not in (protocol.FileType.REGULAR, protocol.FileType.LINK, protocol.FileType.PIPE): raise ValueError(f"Cannot read a file type {inode.type}") result_path = self._database.store_path_for(inode.hash) if target_path is not None: with await AsyncFile.open(result_path, "r") as content: await protocol.restore_file(target_path, inode, content, restore_owner, restore_permissions) return None return await AsyncFile.open(result_path, "r") def complete_backup(self, meta: protocol.Backup, overwrite: bool): backup_path = self._path_for_backup_date(meta.backup_date) backup_path.parent.mkdir(exist_ok=True, parents=True) with backup_path.open('w' if overwrite else 'x') as file: file.write(meta.json(indent=True)) def _path_for_backup_date(self, backup_date: datetime) -> Path: return self._client_path / self._BACKUPS / (backup_date.strftime(self._TIMESTMAP_FORMAT) + '.json') def _path_for_session_id(self, session_id: UUID) -> Path: return self._client_path / self._SESSIONS / str(session_id) class LocalDatabaseBackupSession(protocol.BackupSession): _PARTIAL = 'partial' _NEW_OBJECTS = 'new_objects' _ROOTS = 'roots' def __init__(self, client_session: LocalDatabaseServerSession, session_path: Path): super().__init__() self._server_session = client_session self._session_path = session_path try: with (session_path / _CONFIG_FILE).open('r') as file: self._config = protocol.BackupSessionConfig.parse_raw(file.read()) except FileNotFoundError as exc: raise protocol.SessionClosed(session_path.name) from exc (session_path / self._NEW_OBJECTS).mkdir(exist_ok=True, parents=True) (session_path / self._ROOTS).mkdir(exist_ok=True, parents=True) (session_path / self._PARTIAL).mkdir(exist_ok=True, parents=True) @property def config(self) -> BackupSessionConfig: return self._config async def directory_def(self, definition: protocol.Directory, replaces: Optional[UUID] = None ) -> protocol.DirectoryDefResponse: if not self.is_open: raise protocol.SessionClosed() for name, child in definition.children.items(): if child.hash is None: raise protocol.InvalidArgumentsError(f"Child {name} has no hash value") directory_hash, content = definition.hash() if self._object_exists(directory_hash + self._server_session._DIR_SUFFIX): # An empty response here means "success". return protocol.DirectoryDefResponse() missing = [] for name, inode in definition.children.items(): if not self._object_exists(inode.hash): missing.append(name) if missing: return protocol.DirectoryDefResponse(missing_files=missing) tmp_path = self._temp_path() with tmp_path.open('xb') as file: try: file.write(content) tmp_path.rename(self._store_path_for(directory_hash + self._server_session._DIR_SUFFIX)) except: tmp_path.unlink() raise # Success return protocol.DirectoryDefResponse(ref_hash=directory_hash) async def upload_file_content(self, file_content: Union[protocol.FileReader, bytes], resume_id: UUID, resume_from: int = 0, is_complete: bool = True) -> Optional[str]: if not self.is_open: raise protocol.SessionClosed() hash_object = hashlib.sha256() temp_file = self._temp_path(resume_id) with await AsyncFile.open(temp_file, 'w') as target: # If we are completing the file we must hash it. if is_complete and resume_from > 0: while target.tell() < resume_from: bytes_read = await target.read(min(protocol.READ_SIZE, resume_from - target.tell())) if not bytes_read: bytes_read = bytes(resume_from - target.tell()) target.seek(resume_from, os.SEEK_SET) hash_object.update(bytes_read) # If not complete then we just seek to the requested resume_from position elif resume_from > 0: target.seek(resume_from, os.SEEK_SET) # Write the file content if isinstance(file_content, bytes): hash_object.update(file_content) await target.write(file_content) else: bytes_read = await file_content.read(protocol.READ_SIZE) while bytes_read: if is_complete: hash_object.update(bytes_read) await target.write(bytes_read) bytes_read = await file_content.read(protocol.READ_SIZE) if not is_complete: return None # Move the temporary file to new_objects named as it's hash ref_hash = hash_object.hexdigest() if self._object_exists(ref_hash): logger.warning(f"File already exists after upload {resume_id} as {ref_hash}") temp_file.unlink() else: logger.debug(f"File upload complete {resume_id} as {ref_hash}") temp_file.rename(self._new_object_path_for(ref_hash)) return ref_hash async def add_root_dir(self, root_dir_name: str, inode: protocol.Inode) -> None: if not self.is_open: raise protocol.SessionClosed() location_hash = inode.hash if inode.type is protocol.FileType.DIRECTORY: location_hash += self._server_session._DIR_SUFFIX if not self._object_exists(location_hash): raise ValueError(f"Cannot create {root_dir_name} - does not exist: {inode.hash}") file_path = self._session_path / self._ROOTS / root_dir_name with file_path.open('x') as file: file.write(inode.json()) async def check_file_upload_size(self, resume_id: UUID) -> int: if not self.is_open: raise protocol.SessionClosed() return (await async_stat(self._temp_path(resume_id))).st_size async def complete(self) -> protocol.Backup: if not self.is_open: raise protocol.SessionClosed() logger.info(f"Committing {self._session_path.name} for {self._server_session.client_config.client_name} " f"({self._server_session.client_config.client_id}) - {self._config.backup_date}") for file_path in (self._session_path / self._NEW_OBJECTS).iterdir(): try: target_path = self._server_session._database.store_path_for(file_path.name) target_path.parent.mkdir(parents=True, exist_ok=True) logger.debug(f"Moving {file_path.name} to store") file_path.rename(target_path) except FileExistsError: # This should be rare. To happen two concurrent backup sessions must try to add the same new file. logger.warning(f"Another session has already uploaded {file_path.name}... skipping file.") roots = {} for file_path in (self._session_path / self._ROOTS).iterdir(): with file_path.open('r') as file: roots[file_path.name] = protocol.Inode.parse_raw(file.read()) backup_meta = protocol.Backup( client_id=self._server_session.client_config.client_id, client_name=self._server_session.client_config.client_name, backup_date=self._config.backup_date, started=self._config.started, completed=datetime.now(timezone.utc), description=self._config.description, roots=roots, ) self._server_session.complete_backup(backup_meta, self._config.allow_overwrite) await self.discard() return backup_meta async def discard(self) -> None: if not self.is_open: raise protocol.SessionClosed() shutil.rmtree(self._session_path) def _object_exists(self, ref_hash: str) -> bool: return (self._server_session._database.store_path_for(ref_hash).exists() or self._store_path_for(ref_hash).exists()) def _store_path_for(self, ref_hash: str) -> Path: return self._session_path / self._NEW_OBJECTS / ref_hash def _temp_path(self, resume_id: Optional[UUID] = None) -> Path: if resume_id is None: resume_id = uuid4() return self._session_path / self._PARTIAL / str(resume_id) def _new_object_path_for(self, ref_hash: str) -> Path: return self._session_path / self._NEW_OBJECTS / ref_hash @property def server_session(self) -> protocol.ServerSession: return self._server_session @property def is_open(self) -> bool: return self._session_path.exists()
the-stack_106_18351
import json import logging import random import string import requests import hmac from jwkest.jwk import rsa_load, RSAKey from jwkest.jws import JWS from satosa.internal import InternalData from ..micro_services.base import ResponseMicroService from ..response import Redirect import time logger = logging.getLogger(__name__) class Webauthn(ResponseMicroService): def __init__(self, config, *args, **kwargs): super().__init__(*args, **kwargs) self.redirect_url = config["redirect_url"] self.api_url = config["api_url"] self.exclude = config["exclude"] self.user_id = config["user_identificator"] self.conflict_compatibility = config["conflict_compatibility"] self.included_requesters = config["included_requesters"] or [] self.excluded_requesters = config["excluded_requesters"] or [] self.signing_key = RSAKey(key=rsa_load(config["private_key"]), use="sig", alg="RS256") self.endpoint = "/process" self.id_to_attr = config.get("id_to_attr", None) logger.info("Webauthn is active") def _handle_webauthn_response(self, context): saved_state = context.state[self.name] internal_response = InternalData.from_dict(saved_state) message = {"user_id": internal_response["attributes"][self.user_id][0], "nonce": internal_response['nonce'], "time": str(int(time.time()))} message_json = json.dumps(message) jws = JWS(message_json, alg=self.signing_key.alg).sign_compact([self.signing_key]) request = self.api_url + "/" + jws response = requests.get(request) response_dict = json.loads(response.text) if response_dict["result"] != "okay" or not hmac.compare_digest(response_dict["nonce"], internal_response["nonce"]): raise Exception("Authentication was unsuccessful.") if "authn_context_class_ref" in context.state: internal_response["auth_info"]["auth_class_ref"] = context.state["authn_context_class_ref"] return super().process(context, internal_response) def process(self, context, internal_response): client_mfa_requested = False client_sfa_requested = False if "authn_context_class_ref" in context.state and "mfa" in context.state["authn_context_class_ref"]: client_mfa_requested = True if "authn_context_class_ref" in context.state and ( "sfa" in context.state["authn_context_class_ref"] or "PasswordProtectedTransport" in context.state["authn_context_class_ref"]): client_sfa_requested = True config_mfa_requested = True internal_dict = internal_response.to_dict() if self.exclude and internal_dict.get("requester") in self.excluded_requesters: config_mfa_requested = False if not self.exclude and not (internal_dict.get("requester") in self.included_requesters): config_mfa_requested = False if not client_mfa_requested and not config_mfa_requested: return super().process(context, internal_response) if client_sfa_requested and config_mfa_requested: context.state["conflict"] = True else: context.state["conflict"] = False if not self.conflict_compatibility and context.state["conflict"]: raise Exception("CONFLICT - SP and the Request are in a conflict - authentication could not take place.") user_id = internal_response["attributes"][self.user_id][0] letters = string.ascii_lowercase actual_time = str(int(time.time())) rand = random.SystemRandom() random_string = actual_time + ''.join(rand.choice(letters) for i in range(54)) internal_response['nonce'] = random_string context.state[self.name] = internal_response.to_dict() message = {"user_id": user_id, "nonce": random_string, "time": actual_time} message_json = json.dumps(message) jws = JWS(message_json, alg=self.signing_key.alg).sign_compact([self.signing_key]) return Redirect("%s/%s" % (self.redirect_url + "/" + jws, "")) def register_endpoints(self): return [("^webauthn%s$" % self.endpoint, self._handle_webauthn_response)]
the-stack_106_18353
from __future__ import print_function from builtins import input from builtins import str from builtins import range from builtins import object from future.utils import string_types from influxdb import InfluxDBClient from influxdb.exceptions import InfluxDBServerError, InfluxDBClientError from ast import literal_eval import getpass import logging import requests.exceptions import sys class StatsProcessorState(object): def __init__(self): self.influxdb_points = None self.points_written = None self.reset() def reset(self): self.influxdb_points = [] self.points_written = 0 # influxdb_plugin state g_state = StatsProcessorState() # InfluxDBClient interface g_client = None LOG = logging.getLogger(__name__) # Number of points to queue up before writing it to the database. MAX_POINTS_PER_WRITE = 100 # separator used to concatenate stat keys with sub-keys derived from stats # whose value is a dict or list. SUB_KEY_SEPARATOR = "." def start(argv): """ Instantiate an InfluxDBClient. The expected inputs are the host/address and port of the InfluxDB and the name of the database to use. If the database does not exist then it will be created. If the fourth arg is "auth" then it will prompt the user for the InfluxDB's username and password. """ influxdb_host = argv[0] influxdb_port = int(argv[1]) influxdb_name = argv[2] influxdb_ssl = False influxdb_verifyssl = False influxdb_username = "root" influxdb_password = "root" if len(argv) > 3: if argv[3] == "auth": influxdb_username = input("InfluxDB username: ") influxdb_password = getpass.getpass("Password: ") else: influxdb_username = argv[3] influxdb_password = argv[4] influxdb_ssl = literal_eval(argv[5]) influxdb_verifyssl = literal_eval(argv[6]) LOG.info( "Connecting to: %s@%s:%d database:%s ssl=%s verify_ssl=%s.", influxdb_username, influxdb_host, influxdb_port, influxdb_name, influxdb_ssl, influxdb_verifyssl, ) global g_client g_client = InfluxDBClient( host=influxdb_host, port=influxdb_port, database=influxdb_name, username=influxdb_username, password=influxdb_password, ssl=influxdb_ssl, verify_ssl=influxdb_verifyssl ) create_database = True try: databases = g_client.get_list_database() except (requests.exceptions.ConnectionError, InfluxDBClientError) as exc: print( "Failed to connect to InfluxDB server at %s:%s " "database: %s.\nERROR: %s" % (influxdb_host, str(influxdb_port), influxdb_name, str(exc)), file=sys.stderr, ) sys.exit(1) for database in databases: if database["name"] == influxdb_name: create_database = False break if create_database is True: LOG.info("Creating database: %s.", influxdb_name) g_client.create_database(influxdb_name) def begin_process(cluster): LOG.debug("Begin processing %s stats.", cluster) def process_stat(cluster, stat): """ Convert Isilon stat query result to InfluxDB point and send to the InfluxDB service. Organize the measurements by cluster and node via tags. """ # Process stat(s) and then write points if list is large enough. tags = {"cluster": cluster} if stat.devid != 0: tags["node"] = stat.devid influxdb_points = _influxdb_points_from_stat(stat.time, tags, stat.key, stat.value) if influxdb_points == []: return for influxdb_point in influxdb_points: if len(influxdb_point["fields"]) > 0: g_state.influxdb_points.append(influxdb_point) num_points = len(g_state.influxdb_points) if num_points > MAX_POINTS_PER_WRITE: g_state.points_written += _write_points( g_state.influxdb_points, num_points ) g_state.influxdb_points = [] def end_process(cluster): # send left over points to influxdb num_points = len(g_state.influxdb_points) if num_points > 0: g_state.points_written += _write_points(g_state.influxdb_points, num_points) LOG.debug( "Done processing %s stats, wrote %d points.", cluster, g_state.points_written ) g_state.reset() def _add_field(fields, field_name, field_value, field_value_type): if field_value_type == int: # convert integers to float because InfluxDB only supports 64 bit # signed integers, so doing this prevents an "out of range" error when # inserting values that are unsigned 64 bit integers. # Note that it is not clear if the PAPI is smart enough to always # encode 64 bit unsigned integers as type 'long' even when the actual # value is fits into a 64 bit signed integer and because InfluxDB # wants a measurement to always be of the same type, the safest thing # to do is convert integers to float. field_value = float(field_value) fields.append((field_name, field_value)) def _process_stat_dict(stat_value, fields, tags, prefix=""): """ Add (field_name, field_value) tuples to the fields list for any non-string or non-"id" items in the stat_value dict so that they can be used for the "fields" parameter of the InfluxDB point. Any string or keys with "id" on the end of their name get turned into tags. """ for key, value in stat_value.items(): value_type = type(value) field_name = prefix + key if isinstance(value, string_types) or (key[-2:] == "id" and value_type == int): tags[field_name] = value elif value_type == list: list_prefix = field_name + SUB_KEY_SEPARATOR _process_stat_list(value, fields, tags, list_prefix) elif value_type == dict: dict_prefix = field_name + SUB_KEY_SEPARATOR _process_stat_dict(value, fields, tags, dict_prefix) else: _add_field(fields, field_name, value, value_type) def _process_stat_list(stat_value, fields, tags, prefix=""): """ Add (field_name, field_value) tuples to the fields list for any non-string or non-"id" items in the stat_value dict so that they can be used for the "fields" parameter of the InfluxDB point. """ field_name = prefix + "value" for index in range(0, len(stat_value)): list_value = stat_value[index] value_type = type(list_value) if value_type == dict: _process_stat_dict(list_value, fields, tags, prefix) else: item_name = field_name + SUB_KEY_SEPARATOR + str(index) if value_type == list: # AFAIK there are no instances of a list that contains a list # but just in case one is added in the future, deal with it. item_name += SUB_KEY_SEPARATOR _process_stat_list(list_value, fields, tags, item_name) else: _add_field(fields, item_name, list_value, value_type) def _influxdb_points_from_stat(stat_time, tags, stat_key, stat_value): """ Create InfluxDB points/measurements from the stat query result. """ points = [] fields = [] stat_value_type = type(stat_value) if stat_value_type == list: for stat in stat_value: (fields, point_tags) = _influxdb_point_from_stat( stat_time, tags, stat_key, stat ) points.append( _build_influxdb_point(stat_time, point_tags, stat_key, fields) ) elif stat_value_type == dict: point_tags = tags.copy() _process_stat_dict(stat_value, fields, point_tags) points.append(_build_influxdb_point(stat_time, point_tags, stat_key, fields)) else: if stat_value == "": return None # InfluxDB does not like empty string stats _add_field(fields, "value", stat_value, stat_value_type) points.append(_build_influxdb_point(stat_time, tags.copy(), stat_key, fields)) return points def _influxdb_point_from_stat(stat_time, tags, stat_key, stat_value): """ Create InfluxDB points/measurements from the stat query result. """ point_tags = tags.copy() fields = [] stat_value_type = type(stat_value) if stat_value_type == dict: _process_stat_dict(stat_value, fields, point_tags) elif stat_value_type == list: _process_stat_list(stat_value, fields, point_tags) else: if stat_value == "": return None # InfluxDB does not like empty string stats _add_field(fields, "value", stat_value, stat_value_type) return (fields, point_tags) def _build_influxdb_point(unix_ts_secs, tags, measurement, fields): """ Build the json for an InfluxDB data point. """ timestamp_ns = unix_ts_secs * 1000000000 # convert to nanoseconds point_json = { "measurement": measurement, "tags": tags, "time": timestamp_ns, "fields": {}, } for field_name, field_value in fields: point_json["fields"][field_name] = field_value return point_json def _get_point_names(points): names = "" for point in points: names += point["measurement"] names += " " return names def _write_points(points, num_points): """ Write the points to the InfluxDB in groups that are MAX_POINTS_PER_WRITE in size. """ LOG.debug("Writing points %d", num_points) write_index = 0 points_written = 0 while write_index < num_points: max_write_index = write_index + MAX_POINTS_PER_WRITE write_points = points[write_index:max_write_index] try: g_client.write_points(write_points) points_written += len(write_points) except InfluxDBServerError as svr_exc: LOG.error( "InfluxDBServerError: %s\nFailed to write points: %s", str(svr_exc), _get_point_names(write_points), ) except InfluxDBClientError as client_exc: LOG.error( "InfluxDBClientError writing points: %s\n" "Error: %s", _get_point_names(write_points), str(client_exc), ) except requests.exceptions.ConnectionError as req_exc: LOG.error( "ConnectionError exception caught writing points: %s\n" "Error: %s", _get_point_names(write_points), str(req_exc), ) write_index += MAX_POINTS_PER_WRITE return points_written
the-stack_106_18355
import tkinter as tk import tk_tools def add_row(): row = [1, 2, 3] label_grid.add_row(row) def remove_row(): label_grid.remove_row(0) if __name__ == '__main__': root = tk.Tk() label_grid = tk_tools.LabelGrid(root, 3, ['Column0', 'Column1', 'Column2']) label_grid.grid(row=0, column=0) add_row_btn = tk.Button(text='Add Row', command=add_row) add_row_btn.grid(row=1, column=0, sticky='EW') remove_row_btn = tk.Button(text='Remove Row', command=remove_row) remove_row_btn.grid(row=2, column=0, sticky='EW') root.mainloop()
the-stack_106_18357
from __future__ import absolute_import from __future__ import print_function import sys import requests import myoperator import Parameters, DictServer, XMLParser from PannzerFunctions import Cleaner class Runner: def __init__(self, glob, operator_name=None, CHUNK=100, liveData=None, MAXRES=64000, PACKETSIZE=100000): """ glob = object handle containing spreadsheets,dictionaries,parameters CHUNK = number of entries (query sequences, blocks) in buffer. Buffer is used for lazy dictionary lookup liveData = name of status file (number of processed queries). None implies no output """ self.pythonversion=int(sys.version_info[0]) print("# Python version: ",self.pythonversion, file=sys.stderr) self.glob=glob self.MAXRES=MAXRES # maximum size of SANSparallel query string self.liveData=liveData self.sentquery=0 self.CHUNK=CHUNK self.PACKETSIZE=PACKETSIZE # guard against long FASTA sequences self.colnames=None self.block_column_index=0 # initialize operator self.operator_name=operator_name if not self.operator_name: self.operator_name=self.glob.param['input_OPERATOR'] [self.myoperator]=self.glob.use_operators([operator_name]) self.do_lazy=(len(self.glob.dictlist)>1 or (len(self.glob.dictlist)==1 and self.glob.dictlist[0]!='GOIDELIC')) # glob.dictlist defined in operators' __init__ self.linewise=False if isinstance(self.myoperator, myoperator.RowOperator): self.blockwise=False elif isinstance(self.myoperator, myoperator.BlockOperator): self.blockwise=True elif isinstance(self.myoperator, myoperator.TextOperator): self.linewise=True else: sys.stderr.write("# Invalid operator %s. Exiting!\n" %operator_name) sys.exit() # parameter nicknames self.REMOTE=self.glob.param['CONN_REMOTE'] self.PORTNO=self.glob.param['CONN_PORTNO'] self.H=self.glob.param['SANS_H'] self.HX=self.glob.param['SANS_HX'] self.R=self.glob.param['SANS_R'] self.VOTELIST_SIZE=self.glob.param['SANS_VOTELIST_SIZE'] self.SANSPROTOCOL=self.glob.param['SANS_PROTOCOL'] self.SSEQ=self.glob.param['SANS_SSEQ'] self.RANGES=self.glob.param['SANS_RANGES'] self.SANSHOST=self.glob.param['CONN_SANSHOST'] self.SANSPORT=self.glob.param['CONN_SANSPORT'] self.DICTHOST=self.glob.param['CONN_HOSTNAME'] self.DICTPORT=self.glob.param['CONN_PORTNO'] def lazyRunner(self, infile, output_files=['--'], input_format="FASTA", colnames=None, queryspecies="auto", block_column_index=0, block_column_name=None): """ Main function to process data streams with SANSPANZ operators. infile = input file name; None implies STDIN output_files = output file names for each spreadsheet [data, DE predictions, GO predictions, annotations]; None implies no output input_format = format of input file: "FASTA" = sequences in FASTA format, "tab" = tab-separated values colnames = column names of input data stream. None implies column header is first non-comment line of input; automatic if input_format is FASTA queryspecies = "auto" implies parsing from Uniprot entry's OS= tag, None implies input data has isquery/species columns, must be supplied if input_format is "FASTA" """ self.have_colnames=False if colnames: self.colnames=colnames.split() self.colmap=self.glob.sheets[0].use_columns(self.colnames) self.have_colnames=True print("# Received colnames:",self.colnames,self.colmap, file=sys.stderr) self.blocking_initialized=(block_column_name is None) # block_column_index is overwritten in first process_chunk if block_column_name is defined self.block_column_name=block_column_name # load small dictionaries: GOIDELIC, including rootcount if "GOIDELIC" in self.glob.dictlist: if self.REMOTE: tmp=DictServer.DICTquery("GOIDELIC",self.pythonversion,REMOTE=self.REMOTE,HOSTNAME=self.DICTHOST,PORTNO=self.DICTPORT).split("\n") self.glob.load_goidelic_data(tmp) else: fn=self.glob.param['DATA_DIR']+'/'+self.glob.param['DATA_GOIDELIC'] self.glob.load_goidelic(fn) print('# loaded GOIDELIC remote=',self.REMOTE,len(self.glob.GOcounts),len(self.glob.GOparents),len(self.glob.ontology),len(self.glob.godesc),len(self.glob.EC),len(self.glob. KEGG), file=sys.stderr) # chunk header is known if FASTA or colnames argument is defined; otherwise it must be captured from input data stream if input_format=="FASTA" and not self.linewise: # get colnames from XMLparser with empty message self.xml=XMLParser.XMLParser(queryspecies) self.colnames=self.xml.stream("",True,False,self.SSEQ,self.RANGES)[0].rstrip().split("\t") self.colmap=self.glob.sheets[0].use_columns(self.colnames) self.have_colnames=True # open IO channels data_in=self.open_IO_channels(infile,output_files) for sheet in self.glob.sheets: sheet.output(header=True) # fill buffer self.olduid='?' self.iquery=0 packet='' while True: line=data_in.readline() if not line: break if line[0]=='#': continue # ignore comment lines # shortcut: process line by line if self.linewise: self.myoperator.process(line) continue # CHUNK counter if self.test_newentry(input_format,line): if (self.iquery % self.CHUNK == 0) or (input_format=="FASTA" and not self.linewise and len(packet)>self.PACKETSIZE): #if self.iquery % self.CHUNK == 0: self.process_chunk(input_format,packet) packet='' self.iquery+=1 # append line to packet packet+=line # last buffer self.process_chunk(input_format,packet) # linewise has empty packet, returns immediately self.myoperator.finalise() # close IO channels self.close_IO_channels() def process_chunk(self,input_format,packet): if len(packet)<1: return # split to lines (removes \n) if input_format=="FASTA": lines=self.SANSquery(packet)[0].split("\n") elif input_format=="tab": lines=packet.split("\n") else: sys.stderr.write("ERROR: unknown input_format %s\n" %input_format) return # add input colnames if not defined in operator if not self.have_colnames: self.colnames=lines[0].split("\t") # comments were removed on data input self.colmap=self.glob.sheets[0].use_columns(self.colnames) startrow=1 # data starts after header row self.have_colnames=True else: startrow=0 # no header row if (not self.blocking_initialized) and self.block_column_name: # overwrite self.block_column_index print("find %s in " %self.block_column_name,self.colnames, file=sys.stderr) self.block_column_index=self.colnames.index(self.block_column_name) self.blocking_initialized=True sys.stderr.write("# block_column_index = %i name = %s\n" %(self.block_column_index,self.block_column_name)) # capture dictionary keys from input data if self.do_lazy: self.load_private_online_dictionaries(lines[startrow:]) # send one block or chunk-of-rows to operator for sheet in self.glob.sheets: sheet.empty_block() olduid='?' for line in lines[startrow:]: if not line: continue row=line.split("\t") if self.blockwise: if row[self.block_column_index] != olduid: olduid=row[self.block_column_index] self.myoperator.process(self.glob.sheets[0].block) # output result for sheet in self.glob.sheets: sheet.output(result=True) sheet.empty_block() datarow=[] self.glob.sheets[0].append_row(datarow) # empty, n.d. datarow=self.glob.sheets[0].block[-1] try: for i in range(0,len(self.colmap)): ix=self.colmap[i] datarow[ix]=row[i] except: sys.stderr.write("# Input error: %s\n" %line) self.glob.sheets[0].block.pop() # remove last entry continue # last block if self.blockwise: self.myoperator.process(self.glob.sheets[0].block) else: for row in self.glob.sheets[0].block: self.myoperator.process(row) # output result for sheet in self.glob.sheets: sheet.output(result=True) # update liveData if self.liveData: fh=open(self.liveData,"w") fh.write("%i\n" %self.iquery) fh.close() def load_private_online_dictionaries(self,lines): uacc=[] uspecies=[] udesc=[] uword=[] if "GODICT" in self.glob.dictlist: try: spid_col=self.colnames.index('spid') except: spid_col=self.colnames.index('qpid') uspid=self.catch_unique(spid_col,lines) # grab accession: spid is db|accession|pid x={} for spid in uspid: try: acc=spid.split("|")[1] x[acc]=1 except: sys.stderr.write("# Warning: no accession number from %s\n" %spid) uacc=x.keys() if "LINEAGE" in self.glob.dictlist or "TAXID" in self.glob.dictlist: species_col=self.colnames.index('species') # use spreadsheet's colnames uspecies=self.catch_unique(species_col,lines) if "DESCCOUNT" in self.glob.dictlist or "WORDCOUNT" in self.glob.dictlist: desc_col=self.colnames.index('desc') x={} tmp=self.catch_unique(desc_col,lines) # call Cleaner function for desc in tmp: x[Cleaner(desc.upper())]=1 ## operators.Cleaner !!! udesc=x.keys() if "WORDCOUNT" in self.glob.dictlist: x={} for desc in udesc: for word in desc.split(): x[word.upper()]=1 uword=x.keys() # compose DictServer message msg="" for key in uspecies: msg+="LINEAGE"+"\t"+key.upper()+"\n" for key in uspecies: msg+="TAXID"+"\t"+key.upper()+"\n" for key in uacc: msg+="GODICT"+"\t"+key.upper()+"\n" for key in uword: msg+="WORDCOUNT"+"\t"+key.upper()+"\n" for key in udesc: msg+="DESCCOUNT"+"\t"+key.upper()+"\n" if "WORDCOUNT" in self.glob.dictlist: msg+="NWORDTOTAL\n" if "DESCCOUNT" in self.glob.dictlist: msg+="NPROT\n" if "ECWEIGHT" in self.glob.dictlist: # evidence code weights for Blast2GO for key in uacc: msg+="ECWEIGHT"+"\t"+key.upper()+"\n" # send request to DictServer tmp=DictServer.DICTquery(msg,self.pythonversion,REMOTE=self.REMOTE,HOSTNAME=self.DICTHOST,PORTNO=self.PORTNO).split("\n") # initialize dictionaries self.glob.GOdict={} self.glob.GOdict_weights={} self.glob.desccounts={} self.glob.lineage={} self.glob.taxid={} self.glob.wordcounts={} # load values to dictionaries (keys occur in chunk) for row in tmp: if not row: continue (table,key,value)=row.split("\t") if table == "GODICT": self.glob.GOdict[key]=value elif table == "DESCCOUNT": self.glob.desccounts[key]=int(value) elif table == "LINEAGE": self.glob.lineage[key]=value elif table == "WORDCOUNT": self.glob.wordcounts[key]=int(value) elif table == "TAXID": self.glob.taxid[key]=value elif table == "NPROT": self.glob.nprot=int(value) elif table == "NWORDTOTAL": self.glob.nwordtotal=int(value) elif table == "ECWEIGHT": self.glob.GOdict_weights[key]=value else: sys.stderr.write("# unknown table: %s\n" %str(row)) sys.stderr.write("# Dictionary sizes: GOdict %i, lineage %i, taxid %i, desccounts %i, wordcounts %i\n" %(len(self.glob.GOdict), len(self.glob.lineage), len(self.glob.taxid), len(self.glob.desccounts), len(self.glob.wordcounts))) def catch_unique(self,target_col,lines): "Returns list of unique keys in target_col of lines. Lines has rows of tab-separated data. Keys are uppercase." tmp={} for line in lines: if not line: continue # skip empty line try: key=line.split("\t")[target_col].upper() tmp[key]=1 except: sys.stderr.write("# Warning: column %i not found on line %s\n" %(target_col,line)) return(tmp.keys()) def SANSquery(self,message,SANSURL="http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi"): # send chunk of query sequences to SANSparallel server sys.stderr.write("# Calling SANSparallel, message size is %i bytes\n" %len(message)) if self.REMOTE: values={'query': message, 'mode': 'raw', 'db': 'uniprot', 'H': '100', 'protocol': '0'} # try 3 times itried=0 while itried<2: try : r=requests.post(SANSURL,data=values) break except requests.exceptions.RequestException as rerr : print("Error,", str(rerr), file=sys.stderr) itried+=1 #sys.exit(1) print("# Result size is %i bytes" % len(r.text), file=sys.stderr) if r.text == "" : print("Error: calling SANSparallel remotely gave empty result", file=sys.stderr) sys.exit(1) #tmp=r.text if self.pythonversion == 2: tmp=r.text.encode('ascii','ignore') else: tmp=r.text #print("# SANS result type is ",type(tmp),file=sys.stderr) else: # local server # extract hdr,seq from FASTA qbuffer='' hdr='' seq='' for line in message.split("\n"): if not line: continue line=line.replace("\"","") if line[0]=='>': self.sentquery+=1 qbuffer+="%i %i %i 20 2 11 1.0 %i %i %i \"%s\" \"%s\" </QUERY>\n" %(self.sentquery, self.H, self.HX, self.R, self.VOTELIST_SIZE, self.SANSPROTOCOL,seq[0:self.MAXRES],hdr[0:self.MAXRES]) hdr=line.strip() seq='' else: seq+=line.strip().upper().replace(" ","") # last entry qbuffer+="%i %i %i 20 2 11 1.0 %i %i %i \"%s\" \"%s\" </QUERY>\n" %(self.sentquery, self.H, self.HX, self.R, self.VOTELIST_SIZE, self.SANSPROTOCOL,seq[0:self.MAXRES],hdr[0:self.MAXRES]) #sys.stderr.write("# qbuffer %s" %qbuffer) # send request to SANSparallel server in proper format tmp=DictServer.Generic_client(qbuffer,self.pythonversion,HOSTNAME=self.SANSHOST,PORTNO=self.SANSPORT) #print("SANS result type is ",type(tmp), file=sys.stderr) #sys.stderr.write(tmp) sys.stderr.write("# SANSparallel returned %i bytes\n" %len(tmp)) # format conversion to tabular bytestream data=self.xml.stream(tmp.split("\n"),header=False,bracket=False,output_sseq=self.SSEQ,output_ranges=self.RANGES) return(data[0],data[1]) # SANS tabular, metadata def test_newentry(self,input_format,line): if input_format=="FASTA": try: if line[0]==">": return(True) else: return(False) except: return(False) if input_format=="tab": row=line.split("\t") try: uid=row[self.block_column_index] if uid != self.olduid: self.olduid=uid return(True) else: return(False) except: return(False) return(False) def open_IO_channels(self,infile,OUT_ARRAY): """ In SANSPANZ, the following sheets are used: FileOut = name of data spreadsheet's output file (default = no output) OUT_DE = name of cluster_data spreadsheet's output file (default = no output) OUT_GO = name of goclass_data spreadsheet's output file (default = no output) OUT_ANNO = name of anno_data spreadsheet's output file (default = no output) """ data_in=sys.stdin if not infile == "--": data_in=open(infile,"r") # Redirect output to files; default = sys.stdout for i in range(0,self.glob.nsheet): self.glob.sheets[i].connection=None try: x=OUT_ARRAY[i] except: x=self.operator_name+'.out_'+str(i) sys.stderr.write('# set output file %i to %s\n' %(i,x)) if x == "--": self.glob.sheets[i].fh=sys.stdout elif x: self.glob.sheets[i].fh=open(x,"w") else: self.glob.sheets[i].fh=None return(data_in) def close_IO_channels(self): # close output files for i in range(0,self.glob.nsheet): if self.glob.sheets[i].fh: self.glob.sheets[i].fh.close() if __name__=="__main__": # glob is object handle containing spreadsheets,dictionaries,parameters glob=Parameters.WorkSpace(configFile=None) # liveData is update every CHUNK queries z=Runner.Runner(glob, method=glob.param['input_OPERATOR'], CHUNK=glob.param['input_CHUNK'], liveData=glob.param['input_LIVEDATA']) # input_format='FASTA'|'tab' # if colnames as argument then data has no header rows # queryspecies "auto" implies queries are Uniprot entries, None implies queryspecies is defined in input data and input_format is "tab", otherwise given by --queryspecies option on command line z.lazyRunner(glob.param['input_FILE'], ['--','DE.out','GO.out','anno.out'], input_format="FASTA", colnames=None, queryspecies=glob.param['input_QUERYSPECIES'])
the-stack_106_18360
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Contains the base Layer class, from which all layers inherit.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import inspect # Necessary supplement to tf_inspect to deal with variadic args. import itertools import json import threading import numpy as np from six.moves import zip # pylint: disable=redefined-builtin from tensorflow.core.framework import node_def_pb2 from tensorflow.python.autograph.core import ag_ctx from tensorflow.python.autograph.impl import api as autograph from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.distribute import values as distribute_values from tensorflow.python.eager import context from tensorflow.python.eager import execute from tensorflow.python.eager import function from tensorflow.python.framework import auto_control_deps from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend from tensorflow.python.keras import constraints from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.engine import input_spec from tensorflow.python.keras.engine import node as node_module from tensorflow.python.keras.mixed_precision.experimental import autocast_variable from tensorflow.python.keras.mixed_precision.experimental import policy from tensorflow.python.keras.saving.saved_model import save as saved_model from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import tf_utils # A module that only depends on `keras.layers` import these from here. from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.keras.utils.generic_utils import to_snake_case # pylint: disable=unused-import from tensorflow.python.keras.utils.tf_utils import is_tensor_or_tensor_list # pylint: disable=unused-import from tensorflow.python.module import module from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables as tf_variables from tensorflow.python.training.tracking import base as trackable from tensorflow.python.training.tracking import data_structures from tensorflow.python.training.tracking import layer_utils as trackable_layer_utils from tensorflow.python.training.tracking import object_identity from tensorflow.python.training.tracking import tracking from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util import serialization from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect from tensorflow.python.util.tf_export import keras_export from tensorflow.tools.docs import doc_controls # Prefix that is added to the TF op layer names. _TF_OP_LAYER_NAME_PREFIX = 'tf_op_layer_' @keras_export('keras.layers.Layer') class Layer(module.Module): """Base layer class. This is the class from which all layers inherit. A layer is a class implementing common neural networks operations, such as convolution, batch norm, etc. These operations require managing weights, losses, updates, and inter-layer connectivity. Users will just instantiate a layer and then treat it as a callable. We recommend that descendants of `Layer` implement the following methods: * `__init__()`: Save configuration in member variables * `build()`: Called once from `__call__`, when we know the shapes of inputs and `dtype`. Should have the calls to `add_weight()`, and then call the super's `build()` (which sets `self.built = True`, which is nice in case the user wants to call `build()` manually before the first `__call__`). * `call()`: Called in `__call__` after making sure `build()` has been called once. Should actually perform the logic of applying the layer to the input tensors (which should be passed in as the first argument). Arguments: trainable: Boolean, whether the layer's variables should be trainable. name: String name of the layer. dtype: Default dtype of the layer's weights (default of `None` means use the type of the first input). dynamic: Set this to `True` if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If `False`, we assume that the layer can safely be used to generate a static computation graph. Read-only properties: name: The name of the layer (string). dtype: Default dtype of the layer's weights (default of `None` means use the type of the first input). updates: List of update ops of this layer. losses: List of losses added by this layer. trainable_weights: List of variables to be included in backprop. non_trainable_weights: List of variables that should not be included in backprop. weights: The concatenation of the lists trainable_weights and non_trainable_weights (in this order). Mutable properties: trainable: Whether the layer should be trained (boolean). input_spec: Optional (list of) `InputSpec` object(s) specifying the constraints on inputs that can be accepted by the layer. """ # See tf.Module for the usage of this property. # The key for _obj_reference_counts_dict is a Trackable, which could be a # variable or layer etc. tf.Module._flatten will fail to flatten the key # since it is trying to convert Trackable to a string. This attribute can be # ignored even after the fix of nest lib, since the trackable object should # already been available as individual attributes. _obj_reference_counts_dict # just contains a copy of them. _TF_MODULE_IGNORED_PROPERTIES = frozenset(itertools.chain( ('_obj_reference_counts_dict',), module.Module._TF_MODULE_IGNORED_PROPERTIES )) @trackable.no_automatic_dependency_tracking def __init__(self, trainable=True, name=None, dtype=None, dynamic=False, **kwargs): # These properties should be set by the user via keyword arguments. # note that 'dtype', 'input_shape' and 'batch_input_shape' # are only applicable to input layers: do not pass these keywords # to non-input layers. allowed_kwargs = { 'input_shape', 'batch_input_shape', 'batch_size', 'weights', 'activity_regularizer', } # Validate optional keyword arguments. generic_utils.validate_kwargs(kwargs, allowed_kwargs) # Mutable properties # Indicates whether the layer's weights are updated during training # and whether the layer's updates are run during training. self._trainable = trainable # A stateful layer is a layer whose updates are run during inference too, # for instance stateful RNNs. self.stateful = False # Indicates whether `build` needs to be called upon layer call, to create # the layer's weights. self.built = False # Provides information about which inputs are compatible with the layer. self.input_spec = None self.supports_masking = False self._init_set_name(name) self._activity_regularizer = kwargs.pop('activity_regularizer', None) self._maybe_create_attribute('_trainable_weights', []) self._maybe_create_attribute('_non_trainable_weights', []) self._updates = [] # Object to store all thread local layer properties. self._thread_local = threading.local() # A list of zero-argument lambdas which return Tensors, used for variable # regularizers. self._callable_losses = [] # A list of symbolic Tensors containing activity regularizers and losses # manually added through `add_loss` in graph-building mode. self._losses = [] # A list of metric instances corresponding to the symbolic metric tensors # added using the `add_metric` API. self._metrics = [] self._set_dtype_and_policy(dtype) self._call_convention = (base_layer_utils .CallConvention.EXPLICIT_INPUTS_ARGUMENT) # Dependencies tracked via attribute assignment. self._maybe_create_attribute('_layers', []) # These lists will be filled via successive calls # to self._add_inbound_node(). self._inbound_nodes = [] self._outbound_nodes = [] call_fn_args = self._call_fn_args self._expects_training_arg = ('training' in call_fn_args or self._call_accepts_kwargs) self._expects_mask_arg = ('mask' in call_fn_args or self._call_accepts_kwargs) # Whether the `call` method can be used to build a TF graph without issues. self._dynamic = dynamic # Manage input shape information if passed. if 'input_shape' in kwargs or 'batch_input_shape' in kwargs: # In this case we will later create an input layer # to insert before the current layer if 'batch_input_shape' in kwargs: batch_input_shape = tuple(kwargs['batch_input_shape']) elif 'input_shape' in kwargs: if 'batch_size' in kwargs: batch_size = kwargs['batch_size'] else: batch_size = None batch_input_shape = (batch_size,) + tuple(kwargs['input_shape']) self._batch_input_shape = batch_input_shape # Manage initial weight values if passed. if 'weights' in kwargs: self._initial_weights = kwargs['weights'] else: self._initial_weights = None def build(self, input_shape): """Creates the variables of the layer (optional, for subclass implementers). This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. This is typically used to create the weights of `Layer` subclasses. Arguments: input_shape: Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input). """ self.built = True @doc_controls.for_subclass_implementers def call(self, inputs, **kwargs): # pylint: disable=unused-argument """This is where the layer's logic lives. Arguments: inputs: Input tensor, or list/tuple of input tensors. **kwargs: Additional keyword arguments. Returns: A tensor or list/tuple of tensors. """ return inputs @doc_controls.for_subclass_implementers def add_weight(self, name=None, shape=None, dtype=None, initializer=None, regularizer=None, trainable=None, constraint=None, partitioner=None, use_resource=None, synchronization=tf_variables.VariableSynchronization.AUTO, aggregation=tf_variables.VariableAggregation.NONE, **kwargs): """Adds a new variable to the layer. Arguments: name: Variable name. shape: Variable shape. Defaults to scalar if unspecified. dtype: The type of the variable. Defaults to `self.dtype` or `float32`. initializer: Initializer instance (callable). regularizer: Regularizer instance (callable). trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Note that `trainable` cannot be `True` if `synchronization` is set to `ON_READ`. constraint: Constraint instance (callable). partitioner: Partitioner to be passed to the `Trackable` API. use_resource: Whether to use `ResourceVariable`. synchronization: Indicates when a distributed a variable will be aggregated. Accepted values are constants defined in the class `tf.VariableSynchronization`. By default the synchronization is set to `AUTO` and the current `DistributionStrategy` chooses when to synchronize. If `synchronization` is set to `ON_READ`, `trainable` must not be set to `True`. aggregation: Indicates how a distributed variable will be aggregated. Accepted values are constants defined in the class `tf.VariableAggregation`. **kwargs: Additional keyword arguments. Accepted values are `getter` and `collections`. Returns: The created variable. Usually either a `Variable` or `ResourceVariable` instance. If `partitioner` is not `None`, a `PartitionedVariable` instance is returned. Raises: RuntimeError: If called with partitioned variable regularization and eager execution is enabled. ValueError: When giving unsupported dtype and no initializer or when trainable has been set to True with synchronization set as `ON_READ`. """ if shape is None: shape = () # Validate optional keyword arguments. for kwarg in kwargs: if kwarg not in ['getter', 'collections', 'experimental_autocast']: raise TypeError('Unknown keyword argument:', kwarg) getter = kwargs.pop('getter', base_layer_utils.make_variable) collections_arg = kwargs.pop('collections', None) # 'experimental_autocast' can be set to False by the caller to indicate an # AutoCastVariable should never be created. autocast = kwargs.pop('experimental_autocast', True) if dtype is None: dtype = self.dtype or backend.floatx() dtype = dtypes.as_dtype(dtype) if self._dtype is None: self._dtype = dtype.base_dtype.name initializer = initializers.get(initializer) regularizer = regularizers.get(regularizer) constraint = constraints.get(constraint) if synchronization == tf_variables.VariableSynchronization.ON_READ: if trainable: raise ValueError( 'Synchronization value can be set to ' 'VariableSynchronization.ON_READ only for non-trainable variables. ' 'You have specified trainable=True and ' 'synchronization=VariableSynchronization.ON_READ.') else: # Set trainable to be false when variable is to be synced on read. trainable = False elif trainable is None: trainable = True # Initialize variable when no initializer provided if initializer is None: # If dtype is DT_FLOAT, provide a uniform unit scaling initializer if dtype.is_floating: initializer = initializers.glorot_uniform() # If dtype is DT_INT/DT_UINT, provide a default value `zero` # If dtype is DT_BOOL, provide a default value `FALSE` elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: initializer = initializers.zeros() # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX here? else: raise ValueError('An initializer for variable %s of type %s is required' ' for layer %s' % (name, dtype.base_dtype, self.name)) if autocast and self._mixed_precision_policy.should_cast_variables: # Wrap 'getter' with a version that returns an AutoCastVariable. old_getter = getter def getter(*args, **kwargs): # pylint: disable=function-redefined variable = old_getter(*args, **kwargs) if isinstance(variable, distribute_values.DistributedVariable): return autocast_variable.AutoCastDistributedVariable(variable) else: return autocast_variable.AutoCastVariable(variable) variable = self._add_variable_with_custom_getter( name=name, shape=shape, # TODO(allenl): a `make_variable` equivalent should be added as a # `Trackable` method. getter=getter, # Manage errors in Layer rather than Trackable. overwrite=True, initializer=initializer, dtype=dtype, constraint=constraint, trainable=trainable, partitioner=partitioner, use_resource=use_resource, collections=collections_arg, synchronization=synchronization, aggregation=aggregation) backend.track_variable(variable) if regularizer is not None: # TODO(fchollet): in the future, this should be handled at the # level of variable creation, and weight regularization losses # should be variable attributes. name_in_scope = variable.name[:variable.name.find(':')] self._handle_weight_regularization(name_in_scope, variable, regularizer) if trainable: self._trainable_weights.append(variable) else: self._non_trainable_weights.append(variable) return variable @base_layer_utils.default def get_config(self): """Returns the config of the layer. A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above). Returns: Python dictionary. """ all_args = tf_inspect.getfullargspec(self.__init__).args config = {'name': self.name, 'trainable': self.trainable} if hasattr(self, '_batch_input_shape'): config['batch_input_shape'] = self._batch_input_shape if hasattr(self, 'dtype'): config['dtype'] = self.dtype if hasattr(self, 'dynamic'): # Only include `dynamic` in the `config` if it is `True` if self.dynamic: config['dynamic'] = self.dynamic elif 'dynamic' in all_args: all_args.remove('dynamic') expected_args = config.keys() # Finds all arguments in the `__init__` that are not in the config: extra_args = [arg for arg in all_args if arg not in expected_args] # Check that either the only argument in the `__init__` is `self`, # or that `get_config` has been overridden: if len(extra_args) > 1 and hasattr(self.get_config, '_is_default'): raise NotImplementedError('Layers with arguments in `__init__` must ' 'override `get_config`.') # TODO(reedwm): Handle serializing self._mixed_precision_policy. return config @classmethod def from_config(cls, config): """Creates a layer from its config. This method is the reverse of `get_config`, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by `set_weights`). Arguments: config: A Python dictionary, typically the output of get_config. Returns: A layer instance. """ return cls(**config) def compute_output_shape(self, input_shape): """Computes the output shape of the layer. If the layer has not been built, this method will call `build` on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here. Arguments: input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. Returns: An input shape tuple. """ if context.executing_eagerly(): # In this case we build the model first in order to do shape inference. # This is acceptable because the framework only calls # `compute_output_shape` on shape values that the layer would later be # built for. It would however cause issues in case a user attempts to # use `compute_output_shape` manually with shapes that are incompatible # with the shape the Layer will be called on (these users will have to # implement `compute_output_shape` themselves). self._maybe_build(input_shape) with context.graph_mode(): graph = func_graph.FuncGraph('graph') with graph.as_default(): input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False) inputs = nest.map_structure( base_layer_utils.generate_placeholders_from_shape, input_shape) try: if self._expects_training_arg: outputs = self(inputs, training=False) else: outputs = self(inputs) except TypeError: raise NotImplementedError('We could not automatically infer ' 'the static shape of the layer\'s output.' ' Please implement the ' '`compute_output_shape` method on your ' 'layer (%s).' % self.__class__.__name__) return nest.map_structure(lambda t: t.shape, outputs) raise NotImplementedError @doc_controls.for_subclass_implementers def compute_output_signature(self, input_signature): """Compute the output tensor signature of the layer based on the inputs. Unlike a TensorShape object, a TensorSpec object contains both shape and dtype information for a tensor. This method allows layers to provide output dtype information if it is different from the input dtype. For any layer that doesn't implement this function, the framework will fall back to use `compute_output_shape`, and will assume that the output dtype matches the input dtype. Args: input_signature: Single TensorSpec or nested structure of TensorSpec objects, describing a candidate input for the layer. Returns: Single TensorSpec or nested structure of TensorSpec objects, describing how the layer would transform the provided input. Raises: TypeError: If input_signature contains a non-TensorSpec object. """ def check_type_return_shape(s): if not isinstance(s, tensor_spec.TensorSpec): raise TypeError( 'Only TensorSpec signature types are supported, ' 'but saw signature signature entry: {}.'.format(s)) return s.shape input_shape = nest.map_structure(check_type_return_shape, input_signature) output_shape = self.compute_output_shape(input_shape) if self._mixed_precision_policy.should_cast_variables: # If using mixed precision, and weights are cast to input dtype, we should # not infer the dtype from self.dtype dtype = None else: dtype = self.dtype if dtype is None: input_dtypes = [s.dtype for s in nest.flatten(input_signature)] # Default behavior when self.dtype is None, is to use the first input's # dtype. dtype = input_dtypes[0] return nest.map_structure( lambda s: tensor_spec.TensorSpec(dtype=dtype, shape=s), output_shape) @base_layer_utils.default def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument """Computes an output mask tensor. Arguments: inputs: Tensor or list of tensors. mask: Tensor or list of tensors. Returns: None or a tensor (or list of tensors, one per output tensor of the layer). """ if not self.supports_masking: if any(m is not None for m in nest.flatten(mask)): raise TypeError('Layer ' + self.name + ' does not support masking, ' 'but was passed an input_mask: ' + str(mask)) # masking not explicitly supported: return None as mask. return None # if masking is explicitly supported, by default # carry over the input mask return mask def __call__(self, inputs, *args, **kwargs): """Wraps `call`, applying pre- and post-processing steps. Arguments: inputs: input tensor(s). *args: additional positional arguments to be passed to `self.call`. **kwargs: additional keyword arguments to be passed to `self.call`. Returns: Output tensor(s). Note: - The following optional keyword arguments are reserved for specific uses: * `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference. * `mask`: Boolean input mask. - If the layer's `call` method takes a `mask` argument (as some Keras layers do), its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support. Raises: ValueError: if the layer's `call` method returns None (an invalid value). """ call_context = base_layer_utils.call_context() input_list = nest.flatten(inputs) # We will attempt to build a TF graph if & only if all inputs are symbolic. # This is always the case in graph mode. It can also be the case in eager # mode when all inputs can be traced back to `keras.Input()` (when building # models using the functional API). build_graph = tf_utils.are_all_symbolic_tensors(input_list) # Accept NumPy and scalar inputs by converting to Tensors. if any(isinstance(x, (np.ndarray, float, int)) for x in input_list): def _convert_non_tensor(x): # Don't call `ops.convert_to_tensor` on all `inputs` because # `SparseTensors` can't be converted to `Tensor`. if isinstance(x, (np.ndarray, float, int)): return ops.convert_to_tensor(x) return x inputs = nest.map_structure(_convert_non_tensor, inputs) input_list = nest.flatten(inputs) # Handle `mask` propagation from previous layer to current layer. Masks can # be propagated explicitly via the `mask` argument, or implicitly via # setting the `_keras_mask` attribute on the inputs to a Layer. Masks passed # explicitly take priority. input_masks = self._collect_input_masks(inputs, args, kwargs) if (self._expects_mask_arg and input_masks is not None and not self._call_arg_was_passed('mask', args, kwargs)): kwargs['mask'] = input_masks # If `training` argument was not explicitly passed, propagate `training` # value from this layer's calling layer. training_arg_passed_by_framework = False # Priority 1: `training` was explicitly passed. if self._call_arg_was_passed('training', args, kwargs): training_value = self._get_call_arg_value('training', args, kwargs) if not self._expects_training_arg: kwargs.pop('training') else: training_value = None # Priority 2: `training` was passed to a parent layer. if call_context.training is not None: training_value = call_context.training # Priority 3a: `learning_phase()` has been set. elif backend.global_learning_phase_is_set(): training_value = backend.learning_phase() # Priority 3b: Pass the `learning_phase()` if in the Keras FuncGraph. elif build_graph: with backend.get_graph().as_default(): if base_layer_utils.is_in_keras_graph(): training_value = backend.learning_phase() if self._expects_training_arg and training_value is not None: kwargs['training'] = training_value training_arg_passed_by_framework = True # Only create Keras history if at least one tensor originates from a # `keras.Input`. Otherwise this Layer may be being used outside the Keras # framework. if build_graph and base_layer_utils.needs_keras_history(inputs): base_layer_utils.create_keras_history(inputs) # Clear eager losses on top level model call. # We are clearing the losses only on the top level model call and not on # every layer/model call because layer/model may be reused. if (base_layer_utils.is_in_eager_or_tf_function() and not call_context.in_call): self._clear_losses() with call_context.enter(self, inputs, build_graph, training_value): # Check input assumptions set after layer building, e.g. input shape. if build_graph: # Symbolic execution on symbolic tensors. We will attempt to build # the corresponding TF subgraph inside `backend.get_graph()` input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) graph = backend.get_graph() with graph.as_default(), backend.name_scope(self._name_scope()): # Build layer if applicable (if the `build` method has been # overridden). self._maybe_build(inputs) # Wrapping `call` function in autograph to allow for dynamic control # dependencies in call. We are limiting this to subclassed layers as # autograph is strictly needed only for subclassed layers and models. # tf_convert will respect the value of autograph setting in the # enclosing tf.function, if any. if base_layer_utils.is_subclassed(self): call_fn = autograph.tf_convert( self.call, ag_ctx.control_status_ctx()) else: call_fn = self.call if not self.dynamic: try: with base_layer_utils.autocast_context_manager( input_list, self._mixed_precision_policy.should_cast_variables): # Add auto_control_deps in V2 when they are not already added by # a `tf.function`. if (ops.executing_eagerly_outside_functions() and not base_layer_utils.is_in_eager_or_tf_function()): with auto_control_deps.AutomaticControlDependencies() as acd: outputs = call_fn(inputs, *args, **kwargs) # Wrap Tensors in `outputs` in `tf.identity` to avoid # circular dependencies. outputs = base_layer_utils.mark_as_return(outputs, acd) else: outputs = call_fn(inputs, *args, **kwargs) except TypeError as e: exception_str = str(e) exception_msg = 'Tensor objects are only iterable when eager' if exception_msg in exception_str: raise TypeError('You are attempting to use Python control ' 'flow in a layer that was not declared to be ' 'dynamic. Pass `dynamic=True` to the class ' 'constructor.\nEncountered error:\n"""\n' + exception_str + '\n"""') raise else: # We will use static shape inference to return symbolic tensors # matching the specifications of the layer outputs. # Since `self.dynamic` is True, we will never attempt to # run the underlying TF graph (which is disconnected). # TODO(fchollet): consider py_func as an alternative, which # would enable us to run the underlying graph if needed. outputs = self._symbolic_call(inputs) if outputs is None: raise ValueError('A layer\'s `call` method should return a ' 'Tensor or a list of Tensors, not None ' '(layer: ' + self.name + ').') if base_layer_utils.have_all_keras_metadata(inputs): if training_arg_passed_by_framework: kwargs.pop('training') inputs, outputs = self._set_connectivity_metadata_( inputs, outputs, args, kwargs) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) if hasattr(self, '_set_inputs') and not self.inputs: # Subclassed network: explicitly set metadata normally set by # a call to self._set_inputs(). # TODO(b/120997007): This should be done in Eager as well, but # causes garbage collection issues because of the placeholders # created on the default Keras graph. self._set_inputs(inputs, outputs) else: # Eager execution on data tensors. with backend.name_scope(self._name_scope()): self._maybe_build(inputs) with base_layer_utils.autocast_context_manager( input_list, self._mixed_precision_policy.should_cast_variables): outputs = self.call(inputs, *args, **kwargs) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) return outputs @property def dtype(self): return self._dtype @property def name(self): return self._name @property def dynamic(self): return self._dynamic @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): self._trainable = value for layer in getattr(self, '_layers', []): layer.trainable = value @property def activity_regularizer(self): """Optional regularizer function for the output of this layer.""" return self._activity_regularizer @activity_regularizer.setter def activity_regularizer(self, regularizer): """Optional regularizer function for the output of this layer.""" self._activity_regularizer = regularizer @property def input_spec(self): return self._input_spec @input_spec.setter # Must be decorated to prevent tracking, since the input_spec can be nested # InputSpec objects. @trackable.no_automatic_dependency_tracking def input_spec(self, value): for v in nest.flatten(value): if v is not None and not isinstance(v, InputSpec): raise TypeError('Layer input_spec must be an instance of InputSpec. ' 'Got: {}'.format(v)) self._input_spec = value @property def trainable_weights(self): if self.trainable: nested = self._gather_children_attribute('trainable_weights') return self._trainable_weights + nested else: return [] @property def non_trainable_weights(self): if self.trainable: nested = self._gather_children_attribute('non_trainable_weights') return self._non_trainable_weights + nested else: nested = self._gather_children_attribute('weights') return self._trainable_weights + self._non_trainable_weights + nested @property def weights(self): """Returns the list of all layer variables/weights. Returns: A list of variables. """ return self.trainable_weights + self.non_trainable_weights @property def updates(self): if not self.trainable and not self.stateful: return [] with backend.get_graph().as_default(): updates = [] for u in self._updates: if callable(u): try: u = u() except ValueError as e: if 'Trying to capture a tensor from an inner function' in str(e): base_layer_utils.check_graph_consistency( method='add_update', force_raise=True) raise base_layer_utils.check_graph_consistency(u, method='add_update') updates.append(u) return updates + self._gather_children_attribute('updates') @property def losses(self): """Losses which are associated with this `Layer`. Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing `losses` under a `tf.GradientTape` will propagate gradients back to the corresponding variables. Returns: A list of tensors. """ collected_losses = [] # If any eager losses are present, we assume the model to be part of an # eager training loop (either a custom one or the one used when # `run_eagerly=True`), and so we always return just the eager losses in that # case. if self._eager_losses: collected_losses.extend(self._eager_losses) else: collected_losses.extend(self._losses) for regularizer in self._callable_losses: loss_tensor = regularizer() if loss_tensor is not None: collected_losses.append(loss_tensor) return collected_losses + self._gather_children_attribute('losses') @doc_controls.for_subclass_implementers def add_loss(self, losses, inputs=None): """Add loss tensor(s), potentially dependent on layer inputs. Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.losses` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. This method can be used inside a subclassed layer or model's `call` function, in which case `losses` should be a Tensor or list of Tensors. Example: ```python class MyLayer(tf.keras.layers.Layer): def call(inputs, self): self.add_loss(tf.abs(tf.reduce_mean(inputs)), inputs=True) return inputs ``` This method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's `Input`s. These losses become part of the model's topology and are tracked in `get_config`. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Actvity regularization. model.add_loss(tf.abs(tf.reduce_mean(x))) ``` If this is not the case for your loss (if, for example, your loss references a `Variable` of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Weight regularization. model.add_loss(lambda: tf.reduce_mean(x.kernel)) ``` The `get_losses_for` method allows to retrieve the losses relevant to a specific set of inputs. Arguments: losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor. inputs: Ignored when executing eagerly. If anything other than None is passed, it signals the losses are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for activity regularization losses, for instance. If `None` is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses). """ def _tag_unconditional(loss): if callable(loss): loss = loss() if loss is None: return None # Will be filtered out when computing the .losses property if not tensor_util.is_tensor(loss): loss = ops.convert_to_tensor(loss, dtype=backend.floatx()) loss._unconditional_loss = (inputs is None) # pylint: disable=protected-access return loss losses = nest.flatten(losses) callable_losses = [] eager_losses = [] symbolic_losses = [] for loss in losses: if callable(loss): callable_losses.append(functools.partial(_tag_unconditional, loss)) continue if loss is None: continue if not tensor_util.is_tensor(loss): loss = ops.convert_to_tensor(loss, dtype=backend.floatx()) # TF Functions should take the eager path. if (tf_utils.is_symbolic_tensor(loss) and not base_layer_utils.is_in_tf_function()): symbolic_losses.append(_tag_unconditional(loss)) base_layer_utils.check_graph_consistency(loss, method='add_loss') elif tensor_util.is_tensor(loss): eager_losses.append(_tag_unconditional(loss)) self._callable_losses += callable_losses in_call_context = base_layer_utils.call_context().in_call if eager_losses and not in_call_context: raise ValueError( 'Expected a symbolic Tensors or a callable for the loss value. ' 'Please wrap your loss computation in a zero argument `lambda`.') self._eager_losses += eager_losses if in_call_context: for symbolic_loss in symbolic_losses: self._losses.append(symbolic_loss) else: for symbolic_loss in symbolic_losses: if getattr(self, '_is_graph_network', False): new_layers = base_layer_utils.create_keras_history(symbolic_loss) # Losses must be keyed on inputs no matter what in order to # be supported in DistributionStrategy. add_loss_layer = AddLoss(unconditional=False) add_loss_layer(symbolic_loss) new_layers.append(add_loss_layer) self._insert_layers(new_layers) else: # Possible a loss was added in a Layer's `build`. self._losses.append(symbolic_loss) @trackable.no_automatic_dependency_tracking def _clear_losses(self): """Used every step in eager to reset losses.""" self._eager_losses = [] if hasattr(self, '_layers'): for layer in trackable_layer_utils.filter_empty_layer_containers( self._layers): layer._clear_losses() @property def metrics(self): return self._metrics + self._gather_children_attribute('metrics') @doc_controls.for_subclass_implementers def add_metric(self, value, aggregation=None, name=None): """Adds metric tensor to the layer. Args: value: Metric tensor. aggregation: Sample-wise metric reduction function. If `aggregation=None`, it indicates that the metric tensor provided has been aggregated already. eg, `bin_acc = BinaryAccuracy(name='acc')` followed by `model.add_metric(bin_acc(y_true, y_pred))`. If aggregation='mean', the given metric tensor will be sample-wise reduced using `mean` function. eg, `model.add_metric(tf.reduce_sum(outputs), name='output_mean', aggregation='mean')`. name: String metric name. Raises: ValueError: If `aggregation` is anything other than None or `mean`. """ if aggregation is not None and aggregation != 'mean': raise ValueError( 'We currently support only `mean` sample-wise metric aggregation. ' 'You provided aggregation=`%s`' % aggregation) from_metric_obj = hasattr(value, '_metric_obj') is_symbolic = tf_utils.is_symbolic_tensor(value) in_call_context = base_layer_utils.call_context().in_call if name is None and not from_metric_obj: # Eg. `self.add_metric(math_ops.reduce_sum(x), aggregation='mean')` # In eager mode, we use metric name to lookup a metric. Without a name, # a new Mean metric wrapper will be created on every model/layer call. # So, we raise an error when no name is provided. # We will do the same for symbolic mode for consistency although a name # will be generated if no name is provided. # We will not raise this error in the foll use case for the sake of # consistency as name in provided in the metric constructor. # mean = metrics.Mean(name='my_metric') # model.add_metric(mean(outputs)) raise ValueError('Please provide a name for your metric like ' '`self.add_metric(tf.reduce_sum(inputs), ' 'name=\'mean_activation\', aggregation=\'mean\')`') elif from_metric_obj: name = value._metric_obj.name if in_call_context: # TF Function path should take the eager path. if is_symbolic and not base_layer_utils.is_in_tf_function(): self._symbolic_add_metric(value, aggregation, name) else: self._eager_add_metric(value, aggregation, name) else: if not is_symbolic: raise ValueError('Expected a symbolic Tensor for the metric value, ' 'received: ' + str(value)) # Possible a metric was added in a Layer's `build`. if not getattr(self, '_is_graph_network', False): with backend.get_graph().as_default(): self._symbolic_add_metric(value, aggregation, name) return if from_metric_obj: raise ValueError('Using the result of calling a `Metric` object ' 'when calling `add_metric` on a Functional ' 'Model is not supported. Please pass the ' 'Tensor to monitor directly.') # Insert layers into the Keras Graph Network. new_layers = base_layer_utils.create_keras_history(value) add_metric_layer = AddMetric(aggregation, name) add_metric_layer(value) new_layers.append(add_metric_layer) self._insert_layers(new_layers) @deprecation.deprecated_args(None, '`inputs` is now automatically inferred', 'inputs') @doc_controls.for_subclass_implementers def add_update(self, updates, inputs=None): """Add update op(s), potentially dependent on layer inputs. Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.updates` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. The `get_updates_for` method allows to retrieve the updates relevant to a specific set of inputs. This call is ignored when eager execution is enabled (in that case, variable updates are run on the fly and thus do not need to be tracked for later execution). Arguments: updates: Update op, or list/tuple of update ops, or zero-arg callable that returns an update op. A zero-arg callable should be passed in order to disable running the updates by setting `trainable=False` on this Layer, when executing in Eager mode. inputs: Deprecated, will be automatically inferred. """ if ds_context.has_strategy() and ds_context.in_cross_replica_context(): # Updates don't need to be run in a cross-replica context. if (ops.executing_eagerly_outside_functions() and not base_layer_utils.is_in_keras_graph()): raise RuntimeError( # pylint: disable=g-doc-exception '`add_update` was called in a cross-replica context. This is not ' 'expected. If you require this feature, please file an issue.') return updates = generic_utils.to_list(updates) call_context = base_layer_utils.call_context() # All updates can be run immediately in Eager or in a tf.function. if base_layer_utils.is_in_eager_or_tf_function(): if not call_context.frozen: for update in updates: if callable(update): update() return if call_context.in_call: relevant_inputs = call_context.inputs else: inbound_nodes = getattr(self, '_inbound_nodes', []) relevant_inputs = [node.input_tensors for node in inbound_nodes] def process_update(x): """Standardize update ops. Arguments: x: Tensor, op, or callable. Returns: An update op. """ if callable(x): update = lambda: process_update(x()) if not ops.executing_eagerly_outside_functions(): # In V1 mode, call the callable right away and process. This is needed # for TPU strategy. return update() elif isinstance(x, ops.Operation): update = x elif hasattr(x, 'op'): update = x.op else: update = ops.convert_to_tensor(x) reachable = tf_utils.get_reachable_from_inputs(relevant_inputs, [update]) update._unconditional_update = update not in reachable return update updates = [process_update(x) for x in updates] # Non-callable Updates are run automatically inside `call` in V2, so # they do not need to be tracked later. if ops.executing_eagerly_outside_functions() and call_context.in_call: updates = [u for u in updates if callable(u)] self._updates += updates def set_weights(self, weights): """Sets the weights of the layer, from Numpy arrays. Arguments: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ params = self.weights if len(params) != len(weights): raise ValueError('You called `set_weights(weights)` on layer "' + self.name + '" with a weight list of length ' + str(len(weights)) + ', but the layer was expecting ' + str(len(params)) + ' weights. Provided weights: ' + str(weights)[:50] + '...') if not params: return weight_value_tuples = [] for p, w in zip(params, weights): ref_shape = p.shape if not ref_shape.is_compatible_with(w.shape): raise ValueError('Layer weight shape ' + str(ref_shape) + ' not compatible with ' 'provided weight shape ' + str(w.shape)) weight_value_tuples.append((p, w)) backend.batch_set_value(weight_value_tuples) def get_weights(self): """Returns the current weights of the layer. Returns: Weights values as a list of numpy arrays. """ params = self.weights return backend.batch_get_value(params) def get_updates_for(self, inputs): """Retrieves updates relevant to a specific set of inputs. Arguments: inputs: Input tensor or list/tuple of input tensors. Returns: List of update ops of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional updates. return [u for u in self.updates if u._unconditional_update] # Requesting input-conditional updates. updates = [u for u in self.updates if not u._unconditional_update] inputs = nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, updates) return [u for u in updates if u in reachable] def get_losses_for(self, inputs): """Retrieves losses relevant to a specific set of inputs. Arguments: inputs: Input tensor or list/tuple of input tensors. Returns: List of loss tensors of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional losses. return [l for l in self.losses if l._unconditional_loss] # Requesting input-conditional losses. losses = [l for l in self.losses if not l._unconditional_loss] inputs = nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, losses) return [l for l in losses if l in reachable] def get_input_mask_at(self, node_index): """Retrieves the input mask tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple inputs). """ inputs = self.get_input_at(node_index) if isinstance(inputs, list): return [getattr(x, '_keras_mask', None) for x in inputs] else: return getattr(inputs, '_keras_mask', None) def get_output_mask_at(self, node_index): """Retrieves the output mask tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple outputs). """ output = self.get_output_at(node_index) if isinstance(output, list): return [getattr(x, '_keras_mask', None) for x in output] else: return getattr(output, '_keras_mask', None) @property def input_mask(self): """Retrieves the input mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Input mask tensor (potentially None) or list of input mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ inputs = self.input if isinstance(inputs, list): return [getattr(x, '_keras_mask', None) for x in inputs] else: return getattr(inputs, '_keras_mask', None) @property def output_mask(self): """Retrieves the output mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Output mask tensor (potentially None) or list of output mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ output = self.output if isinstance(output, list): return [getattr(x, '_keras_mask', None) for x in output] else: return getattr(output, '_keras_mask', None) def get_input_shape_at(self, node_index): """Retrieves the input shape(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'input_shapes', 'input shape') def get_output_shape_at(self, node_index): """Retrieves the output shape(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'output_shapes', 'output shape') def get_input_at(self, node_index): """Retrieves the input tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A tensor (or list of tensors if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'input_tensors', 'input') def get_output_at(self, node_index): """Retrieves the output tensor(s) of a layer at a given node. Arguments: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A tensor (or list of tensors if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index(node_index, 'output_tensors', 'output') @property def input(self): """Retrieves the input tensor(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer. Returns: Input tensor or list of input tensors. Raises: RuntimeError: If called in Eager mode. AttributeError: If no inbound nodes are found. """ if not self._inbound_nodes: raise AttributeError('Layer ' + self.name + ' is not connected, no input to return.') return self._get_node_attribute_at_index(0, 'input_tensors', 'input') @property def output(self): """Retrieves the output tensor(s) of a layer. Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer. Returns: Output tensor or list of output tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('Layer ' + self.name + ' has no inbound nodes.') return self._get_node_attribute_at_index(0, 'output_tensors', 'output') @property def input_shape(self): """Retrieves the input shape(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape. Returns: Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor). Raises: AttributeError: if the layer has no defined input_shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('The layer has never been called ' 'and thus has no defined input shape.') all_input_shapes = set( [str(node.input_shapes) for node in self._inbound_nodes]) if len(all_input_shapes) == 1: return self._inbound_nodes[0].input_shapes else: raise AttributeError('The layer "' + str(self.name) + ' has multiple inbound nodes, ' 'with different input shapes. Hence ' 'the notion of "input shape" is ' 'ill-defined for the layer. ' 'Use `get_input_shape_at(node_index)` ' 'instead.') def count_params(self): """Count the total number of scalars composing the weights. Returns: An integer count. Raises: ValueError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if self.__class__.__name__ == 'Sequential': with tf_utils.maybe_init_scope(self): self.build() # pylint: disable=no-value-for-parameter else: raise ValueError('You tried to call `count_params` on ' + self.name + ', but the layer isn\'t built. ' 'You can build it manually via: `' + self.name + '.build(batch_input_shape)`.') return int(sum(np.prod(w.shape.as_list()) for w in self.weights)) @property def output_shape(self): """Retrieves the output shape(s) of a layer. Only applicable if the layer has one output, or if all outputs have the same shape. Returns: Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor). Raises: AttributeError: if the layer has no defined output shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError('The layer has never been called ' 'and thus has no defined output shape.') all_output_shapes = set( [str(node.output_shapes) for node in self._inbound_nodes]) if len(all_output_shapes) == 1: return self._inbound_nodes[0].output_shapes else: raise AttributeError('The layer "%s"' ' has multiple inbound nodes, ' 'with different output shapes. Hence ' 'the notion of "output shape" is ' 'ill-defined for the layer. ' 'Use `get_output_shape_at(node_index)` ' 'instead.' % self.name) @property @doc_controls.do_not_doc_inheritable def inbound_nodes(self): """Deprecated, do NOT use! Only for compatibility with external Keras.""" return self._inbound_nodes @property @doc_controls.do_not_doc_inheritable def outbound_nodes(self): """Deprecated, do NOT use! Only for compatibility with external Keras.""" return self._outbound_nodes ############################################################################## # Methods & attributes below are public aliases of other methods. # ############################################################################## @deprecation.deprecated( date=None, instructions='Please use `layer.__call__` method instead.') @doc_controls.do_not_doc_inheritable def apply(self, inputs, *args, **kwargs): """Deprecated, do NOT use! This is an alias of `self.__call__`. Arguments: inputs: Input tensor(s). *args: additional positional arguments to be passed to `self.call`. **kwargs: additional keyword arguments to be passed to `self.call`. Returns: Output tensor(s). """ return self.__call__(inputs, *args, **kwargs) @deprecation.deprecated( date=None, instructions='Please use `layer.add_weight` method instead.') @doc_controls.do_not_doc_inheritable def add_variable(self, *args, **kwargs): """Deprecated, do NOT use! Alias for `add_weight`.""" return self.add_weight(*args, **kwargs) @property def variables(self): """Returns the list of all layer variables/weights. Alias of `self.weights`. Returns: A list of variables. """ return self.weights @property def trainable_variables(self): return self.trainable_weights @property def non_trainable_variables(self): return self.non_trainable_weights ############################################################################## # Methods & attributes below are all private and only used by the framework. # ############################################################################## def _set_dtype_and_policy(self, dtype): """Sets self._dtype and self._mixed_precision_policy.""" if dtype: if isinstance(dtype, policy.Policy): self._mixed_precision_policy = dtype self._dtype = self._mixed_precision_policy.default_variable_dtype else: # If a non-policy dtype is passed, no casting should be done. So we use # the "infer" policy, which does no casting. self._mixed_precision_policy = policy.Policy('infer') self._dtype = dtypes.as_dtype(dtype).name else: self._mixed_precision_policy = policy.global_policy() # If the global policy has not been set, it will be an "infer" policy # without a default variable dtype, and so self._dtype will be None. In # that case, self._dtype will be set when the layer is built or called. self._dtype = self._mixed_precision_policy.default_variable_dtype def _name_scope(self): return self.name def _init_set_name(self, name, zero_based=True): if not name: self._name = backend.unique_object_name( generic_utils.to_snake_case(self.__class__.__name__), zero_based=zero_based) else: self._name = name def _get_existing_metric(self, name=None): match = [m for m in self._metrics if m.name == name] if not match: return if len(match) > 1: raise ValueError( 'Please provide different names for the metrics you have added. ' 'We found {} metrics with the name: "{}"'.format(len(match), name)) return match[0] def _eager_add_metric(self, value, aggregation=None, name=None): # If the given metric is available in `metrics` list we just update state # on it, otherwise we create a new metric instance and # add it to the `metrics` list. metric_obj = getattr(value, '_metric_obj', None) if metric_obj: name = metric_obj.name match = self._get_existing_metric(name) if match: # Tensors that come from a Metric object already updated the Metric state. if not metric_obj: match(value) return if not metric_obj: assert aggregation is not None metric_obj, _ = base_layer_utils.create_mean_metric(value, name) self._metrics.append(metric_obj) def _symbolic_add_metric(self, value, aggregation=None, name=None): base_layer_utils.check_graph_consistency(value, method='add_metric') match = self._get_existing_metric(name) if aggregation is None: # Iterate over the metrics and check if the given metric exists already. # This can happen when a metric instance is created in subclassed model # layer `__init__` and we have tracked that instance already in # model.__setattr__. if match: result_tensor = value metric_obj = match elif hasattr(value, '_metric_obj'): # We track the instance using the metadata on the result tensor. result_tensor = value metric_obj = result_tensor._metric_obj self._metrics.append(metric_obj) else: raise ValueError( 'We do not support adding an aggregated metric result tensor that ' 'is not the output of a `tf.keras.metrics.Metric` metric instance. ' 'Without having access to the metric instance we cannot reset the ' 'state of a metric after every epoch during training. You can ' 'create a `tf.keras.metrics.Metric` instance and pass the result ' 'here or pass an un-aggregated result with `aggregation` parameter ' 'set as `mean`. For example: `self.add_metric(tf.reduce_sum(inputs)' ', name=\'mean_activation\', aggregation=\'mean\')`') else: # If a non-aggregated tensor is given as input (ie. `aggregation` is # explicitly set to `mean`), we wrap the tensor in `Mean` metric. if match: result_tensor = match(value) metric_obj = match else: metric_obj, result_tensor = base_layer_utils.create_mean_metric( value, name) self._metrics.append(metric_obj) def _handle_weight_regularization(self, name, variable, regularizer): """Create lambdas which compute regularization losses.""" def _loss_for_variable(v): """Creates a regularization loss `Tensor` for variable `v`.""" with backend.name_scope(name + '/Regularizer'): regularization = regularizer(v) return regularization if isinstance(variable, tf_variables.PartitionedVariable): for v in variable: self.add_loss(functools.partial(_loss_for_variable, v)) else: self.add_loss(functools.partial(_loss_for_variable, variable)) def _handle_activity_regularization(self, inputs, outputs): # Apply activity regularization. # Note that it should be applied every time the layer creates a new # output, since it is output-specific. if self._activity_regularizer: output_list = nest.flatten(outputs) with backend.name_scope('ActivityRegularizer'): for output in output_list: activity_loss = self._activity_regularizer(output) batch_size = math_ops.cast( array_ops.shape(output)[0], activity_loss.dtype) # Make activity regularization strength batch-agnostic. mean_activity_loss = activity_loss / batch_size base_layer_utils.check_graph_consistency( mean_activity_loss, method='activity_regularizer') self.add_loss(mean_activity_loss, inputs=inputs) def _set_mask_metadata(self, inputs, outputs, previous_mask): flat_outputs = nest.flatten(outputs) mask_already_computed = ( getattr(self, '_compute_output_and_mask_jointly', False) or all(getattr(x, '_keras_mask', None) is not None for x in flat_outputs)) # Only compute the mask if the Layer explicitly supports masking or has # overridden `compute_mask`. should_compute_mask = ( hasattr(self, 'compute_mask') and (self.supports_masking or not getattr(self.compute_mask, '_is_default', False))) if mask_already_computed: flat_masks = [getattr(x, '_keras_mask', None) for x in flat_outputs] elif not should_compute_mask: flat_masks = [None for _ in flat_outputs] else: output_masks = self.compute_mask(inputs, previous_mask) # `compute_mask` can return a single `None` even when a Layer # has multiple outputs. if output_masks is None: flat_masks = [None for _ in flat_outputs] else: flat_masks = nest.flatten(output_masks) for output, mask in zip(flat_outputs, flat_masks): try: output._keras_mask = mask except AttributeError: # C Type such as np.ndarray. pass if tf_utils.are_all_symbolic_tensors(flat_outputs): for output in flat_outputs: if getattr(output, '_keras_mask', None) is not None: # Do not track masks for `TensorFlowOpLayer` construction. output._keras_mask._keras_history_checked = True def _collect_input_masks(self, inputs, args, kwargs): """Checks if `mask` argument was passed, else gathers mask from inputs.""" if self._call_arg_was_passed('mask', args, kwargs): return self._get_call_arg_value('mask', args, kwargs) if not self._should_compute_mask: return None input_masks = nest.map_structure(lambda t: getattr(t, '_keras_mask', None), inputs) if generic_utils.is_all_none(input_masks): return None return input_masks def _call_arg_was_passed(self, arg_name, args, kwargs): if arg_name in kwargs: return True # Ignore `inputs` arg. if arg_name in dict(zip(self._call_fn_args[1:], args)): return True return False def _get_call_arg_value(self, arg_name, args, kwargs): if arg_name in kwargs: return kwargs[arg_name] # Ignore `inputs` arg. args_dict = dict(zip(self._call_fn_args[1:], args)) return args_dict[arg_name] def _set_connectivity_metadata_(self, inputs, outputs, args, kwargs): call_convention = getattr( self, '_call_convention', base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT) if args: if call_convention == (base_layer_utils .CallConvention.EXPLICIT_INPUTS_ARGUMENT): raise TypeError( 'This layer ("{}") takes an `inputs` argument in `call()`, ' 'and only the `inputs` argument may be specified as a positional ' 'argument. Pass everything else as a keyword argument ' '(those arguments will not be tracked ' 'as inputs to the layer).'.format(self.name)) elif call_convention == (base_layer_utils .CallConvention.SINGLE_POSITIONAL_ARGUMENT): raise TypeError( 'This layer ("{}") takes a single positional argument in `call()`,' ' which is by convention the `inputs` argument, ' 'and only this argument may be specified as a positional argument. ' 'Pass everything else as a keyword argument ' '(those arguments will not be tracked ' 'as inputs to the layer).'.format(self.name)) # If the layer returns tensors from its inputs, unmodified, # we copy them to avoid loss of tensor metadata. output_ls = nest.flatten(outputs) inputs_ls = nest.flatten(inputs) output_ls_copy = [] for x in output_ls: if x in inputs_ls: with backend.name_scope(self.name): x = array_ops.identity(x) output_ls_copy.append(x) outputs = nest.pack_sequence_as(outputs, output_ls_copy) inputs, kwargs = self._inputs_from_call_args( call_args=(inputs,) + args, call_kwargs=kwargs) # Add an inbound node to the layer, so it can keep track of this call. # This updates the layer history of the output tensor(s). kwargs.pop('mask', None) # `mask` should not be serialized. self._add_inbound_node( input_tensors=inputs, output_tensors=outputs, arguments=kwargs) return inputs, outputs def _inputs_from_call_args(self, call_args, call_kwargs): """Get Layer inputs from __call__ *args and **kwargs. Args: call_args: The positional arguments passed to __call__. call_kwargs: The keyword argument dict passed to __call__. Returns: A tuple of (inputs, non_input_kwargs). These may be the same objects as were passed in (call_args and call_kwargs). """ call_convention = getattr( self, '_call_convention', base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT) if (call_convention in ( base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT, base_layer_utils.CallConvention.SINGLE_POSITIONAL_ARGUMENT)): assert len(call_args) == 1 # TypeError raised earlier in __call__. return call_args[0], call_kwargs else: call_arg_spec = tf_inspect.getfullargspec(self.call) # There is no explicit "inputs" argument expected or provided to # call(). Arguments which have default values are considered non-inputs, # and arguments without are considered inputs. if call_arg_spec.defaults: if call_arg_spec.varargs is not None: raise TypeError( 'Layers may not accept both positional arguments and ' 'arguments with default values (unable to determine which ' 'are inputs to the layer). ' 'Issue occurred with layer "%s"' % (self.name)) keyword_arg_names = set( call_arg_spec.args[-len(call_arg_spec.defaults):]) else: keyword_arg_names = set() # Training is never an input argument name, to allow signatures like # call(x, training). keyword_arg_names.add('training') _, unwrapped_call = tf_decorator.unwrap(self.call) bound_args = inspect.getcallargs( unwrapped_call, *call_args, **call_kwargs) if call_arg_spec.varkw is not None: var_kwargs = bound_args.pop(call_arg_spec.varkw) bound_args.update(var_kwargs) keyword_arg_names = keyword_arg_names.union(var_kwargs.keys()) all_args = call_arg_spec.args if all_args and bound_args[all_args[0]] is self: # Ignore the 'self' argument of methods bound_args.pop(call_arg_spec.args[0]) all_args = all_args[1:] non_input_arg_values = {} input_arg_values = [] remaining_args_are_keyword = False for argument_name in all_args: if argument_name in keyword_arg_names: remaining_args_are_keyword = True else: if remaining_args_are_keyword: raise TypeError( 'Found a positional argument in a layer call after a non-input ' 'argument. All arguments after "training" must be keyword ' 'arguments, and are not tracked as inputs to the layer. ' 'Issue occurred with layer "%s"' % (self.name)) if remaining_args_are_keyword: non_input_arg_values[argument_name] = bound_args[argument_name] else: input_arg_values.append(bound_args[argument_name]) if call_arg_spec.varargs is not None: input_arg_values.extend(bound_args[call_arg_spec.varargs]) return input_arg_values, non_input_arg_values def _add_inbound_node(self, input_tensors, output_tensors, arguments=None): """Internal method to create an inbound node for the layer. Arguments: input_tensors: list of input tensors. output_tensors: list of output tensors. arguments: dictionary of keyword arguments that were passed to the `call` method of the layer at the call that created the node. """ inbound_layers = nest.map_structure(lambda t: t._keras_history.layer, input_tensors) node_indices = nest.map_structure(lambda t: t._keras_history.node_index, input_tensors) tensor_indices = nest.map_structure(lambda t: t._keras_history.tensor_index, input_tensors) # Create node, add it to inbound nodes. node_module.Node( self, inbound_layers=inbound_layers, node_indices=node_indices, tensor_indices=tensor_indices, input_tensors=input_tensors, output_tensors=output_tensors, arguments=arguments) # Update tensor history metadata. # The metadata attribute consists of # 1) a layer instance # 2) a node index for the layer # 3) a tensor index for the node. # The allows layer reuse (multiple nodes per layer) and multi-output # or multi-input layers (e.g. a layer can return multiple tensors, # and each can be sent to a different layer). for i, tensor in enumerate(nest.flatten(output_tensors)): tensor._keras_history = KerasHistory(self, len(self._inbound_nodes) - 1, i) # pylint: disable=protected-access def _get_node_attribute_at_index(self, node_index, attr, attr_name): """Private utility to retrieves an attribute (e.g. inputs) from a node. This is used to implement the methods: - get_input_shape_at - get_output_shape_at - get_input_at etc... Arguments: node_index: Integer index of the node from which to retrieve the attribute. attr: Exact node attribute name. attr_name: Human-readable attribute name, for error messages. Returns: The layer's attribute `attr` at the node of index `node_index`. Raises: RuntimeError: If the layer has no inbound nodes, or if called in Eager mode. ValueError: If the index provided does not match any node. """ if not self._inbound_nodes: raise RuntimeError('The layer has never been called ' 'and thus has no defined ' + attr_name + '.') if not len(self._inbound_nodes) > node_index: raise ValueError('Asked to get ' + attr_name + ' at node ' + str(node_index) + ', but the layer has only ' + str(len(self._inbound_nodes)) + ' inbound nodes.') values = getattr(self._inbound_nodes[node_index], attr) if isinstance(values, list) and len(values) == 1: return values[0] else: return values def _maybe_build(self, inputs): # Check input assumptions set before layer building, e.g. input rank. if not self.built: input_spec.assert_input_compatibility( self.input_spec, inputs, self.name) input_list = nest.flatten(inputs) if input_list and self._dtype is None: try: self._dtype = input_list[0].dtype.base_dtype.name except AttributeError: pass input_shapes = None if all(hasattr(x, 'shape') for x in input_list): input_shapes = nest.map_structure(lambda x: x.shape, inputs) # Only call `build` if the user has manually overridden the build method. if not hasattr(self.build, '_is_default'): # Any setup work performed only once should happen in an `init_scope` # to avoid creating symbolic Tensors that will later pollute any eager # operations. with tf_utils.maybe_init_scope(self): self.build(input_shapes) # We must set self.built since user defined build functions are not # constrained to set self.built. self.built = True # Optionally load weight values specified at layer instantiation. if getattr(self, '_initial_weights', None) is not None: self.set_weights(self._initial_weights) self._initial_weights = None def _symbolic_call(self, inputs): input_shapes = nest.map_structure(lambda x: x.shape, inputs) output_shapes = self.compute_output_shape(input_shapes) def _make_placeholder_like(shape): ph = backend.placeholder(shape=shape, dtype=self.dtype) ph._keras_mask = None return ph return nest.map_structure(_make_placeholder_like, output_shapes) def _get_trainable_state(self): """Get the `trainable` state of each sublayer. Returns: A dict mapping all sublayers to their `trainable` value. """ layers = trackable_layer_utils.filter_empty_layer_containers(self._layers) # Keep track of each top-level layers' `trainable` as well as the # state of all of its sublayers. trainable_state = {self: self.trainable} for layer in layers: trainable_state.update(layer._get_trainable_state()) return trainable_state def _set_trainable_state(self, trainable_state): """Set `trainable` state for each sublayer.""" layers = trackable_layer_utils.filter_empty_layer_containers(self._layers) if self in trainable_state: self.trainable = trainable_state[self] for layer in layers: layer._set_trainable_state(trainable_state) @property def _obj_reference_counts(self): """A dictionary counting the number of attributes referencing an object.""" self._maybe_create_attribute('_obj_reference_counts_dict', object_identity.ObjectIdentityDictionary()) return self._obj_reference_counts_dict def _maybe_create_attribute(self, name, default_value): """Create the attribute with the default value if it hasn't been created. This is useful for fields that is used for tracking purpose, _trainable_weights, or _layers. Note that user could create a layer subclass and assign an internal field before invoking the Layer.__init__(), the __setattr__() need to create the tracking fields and __init__() need to not override them. Args: name: String, the name of the attribute. default_value: Object, the default value of the attribute. """ if not hasattr(self, name): super(Layer, self).__setattr__(name, default_value) def __delattr__(self, name): # For any super.__delattr__() call, we will directly use the implementation # in Trackable and skip the behavior in AutoTrackable. The Layer was # originally use Trackable as base class, the change of using Module as base # class forced us to have AutoTrackable in the class hierarchy. Skipping # the __delattr__ and __setattr__ in AutoTrackable will keep the status quo. existing_value = getattr(self, name, None) # If this value is replacing an existing object assigned to an attribute, we # should clean it out to avoid leaking memory. First we check if there are # other attributes referencing it. reference_counts = self._obj_reference_counts if existing_value not in reference_counts: super(tracking.AutoTrackable, self).__delattr__(name) return reference_count = reference_counts[existing_value] if reference_count > 1: # There are other remaining references. We can't remove this object from # _layers etc. reference_counts[existing_value] = reference_count - 1 super(tracking.AutoTrackable, self).__delattr__(name) return else: # This is the last remaining reference. del reference_counts[existing_value] super(tracking.AutoTrackable, self).__delattr__(name) if (isinstance(existing_value, Layer) or trackable_layer_utils.has_weights(existing_value)): super(tracking.AutoTrackable, self).__setattr__( '_layers', [l for l in self._layers if l is not existing_value]) if isinstance(existing_value, tf_variables.Variable): super(tracking.AutoTrackable, self).__setattr__( '_trainable_weights', [w for w in self._trainable_weights if w is not existing_value]) super(tracking.AutoTrackable, self).__setattr__( '_non_trainable_weights', [w for w in self._non_trainable_weights if w is not existing_value]) def __setattr__(self, name, value): if (name == '_self_setattr_tracking' or not getattr(self, '_self_setattr_tracking', True) or getattr(self, '_is_graph_network', False) or # Exclude @property.setters from tracking hasattr(self.__class__, name)): try: super(tracking.AutoTrackable, self).__setattr__(name, value) except AttributeError: raise AttributeError( ('Can\'t set the attribute "{}", likely because it conflicts with ' 'an existing read-only @property of the object. Please choose a ' 'different name.').format(name)) return # Keep track of trackable objects, for the needs of `Network.save_weights`. value = data_structures.sticky_attribute_assignment( trackable=self, value=value, name=name) reference_counts = self._obj_reference_counts reference_counts[value] = reference_counts.get(value, 0) + 1 # Clean out the old attribute, which clears _layers and _trainable_weights # if necessary. try: self.__delattr__(name) except AttributeError: pass # TODO(scottzhu): Need to track Module object as well for weight tracking. # Be careful about metric if it becomes a Module in future. # Append value to self._layers if relevant if (isinstance(value, Layer) or trackable_layer_utils.has_weights(value)): self._maybe_create_attribute('_layers', []) # We need to check object identity to avoid de-duplicating empty # container types which compare equal. if not any((layer is value for layer in self._layers)): self._layers.append(value) if hasattr(value, '_use_resource_variables'): # Legacy layers (V1 tf.layers) must always use # resource variables. value._use_resource_variables = True # Append value to list of trainable / non-trainable weights if relevant # TODO(b/125122625): This won't pick up on any variables added to a # list/dict after creation. for val in nest.flatten(value): # TODO(b/126450014): Remove `_UnreadVariable` check here when assign ops # no longer return True for isinstance Variable checks. if (isinstance(val, tf_variables.Variable) and not isinstance(val, resource_variable_ops._UnreadVariable)): # pylint: disable=protected-access # Users may add extra weights/variables # simply by assigning them to attributes (invalid for graph networks) self._maybe_create_attribute('_trainable_weights', []) self._maybe_create_attribute('_non_trainable_weights', []) if val not in self._trainable_weights + self._non_trainable_weights: if val.trainable: self._trainable_weights.append(val) else: self._non_trainable_weights.append(val) backend.track_variable(val) # Skip the auto trackable from tf.Module to keep status quo. See the comment # at __delattr__. super(tracking.AutoTrackable, self).__setattr__(name, value) def _gather_children_attribute(self, attribute): assert attribute in { 'weights', 'trainable_weights', 'non_trainable_weights', 'updates', 'losses', 'metrics' } if hasattr(self, '_layers'): nested_layers = trackable_layer_utils.filter_empty_layer_containers( self._layers) return list( itertools.chain.from_iterable( getattr(layer, attribute) for layer in nested_layers)) return [] # This is a hack so that the is_layer (within # training/trackable/layer_utils.py) check doesn't get the weights attr. # TODO(b/110718070): Remove when fixed. def _is_layer(self): return True @property @tracking.cached_per_instance def _call_fn_args(self): all_args = tf_inspect.getfullargspec(self.call).args # Scrub `self` that appears if a decorator was applied. if all_args and all_args[0] == 'self': return all_args[1:] return all_args @property @tracking.cached_per_instance def _call_accepts_kwargs(self): return tf_inspect.getfullargspec(self.call).varkw is not None @property @tracking.cached_per_instance def _should_compute_mask(self): return ('mask' in self._call_fn_args or getattr(self, 'compute_mask', None) is not None) @property def _object_identifier(self): """String stored in object identifier field in the SavedModel proto. Returns: A string with the object identifier, which is used at load time. """ return '_tf_keras_layer' @property def _eager_losses(self): # A list of loss values containing activity regularizers and losses # manually added through `add_loss` during eager execution. It is cleared # after every batch. # Because we plan on eventually allowing a same model instance to be trained # in eager mode or graph mode alternatively, we need to keep track of # eager losses and symbolic losses via separate attributes. if not hasattr(self._thread_local, '_eager_losses'): self._thread_local._eager_losses = [] return self._thread_local._eager_losses @_eager_losses.setter def _eager_losses(self, losses): self._thread_local._eager_losses = losses @property def _tracking_metadata(self): """String stored in metadata field in the SavedModel proto. Returns: A serialized JSON storing information necessary for recreating this layer. """ # TODO(kathywu): Add support for metrics serialization. # TODO(kathywu): Synchronize with the keras spec (go/keras-json-spec) once # the python config serialization has caught up. # Create a dictionary containing python layer state attributes. Any new # attribute that impacts the layer execution in some way should be added to # this dict. # Unlike a model's JSON configuration, which only # contains class_name and each layer's get_config() object, this stores more # information to accurately recreate the layer. # For backwards compatibility, any changes to this list should be additive. # Modifying or removing attributes may only be done with a sufficient # explanation. metadata = dict( class_name=type(self).__name__, name=self.name, trainable=self.trainable, expects_training_arg=self._expects_training_arg, dtype=self.dtype, batch_input_shape=getattr(self, '_batch_input_shape', None)) try: # Store the config dictionary, which is only used by the revived object # to return the original config when revived_obj.get_config() is called. # It is not important for recreating the revived object. metadata['config'] = self.get_config() except NotImplementedError: # in the case of a subclassed model, the get_config() method will throw # a NotImplementedError. pass if self.input_spec is not None: # Layer's input_spec has already been type-checked in the property setter. metadata['input_spec'] = nest.map_structure( lambda x: None if x is None else serialize_keras_object(x), self.input_spec) else: metadata['input_spec'] = None if (self.activity_regularizer is not None and hasattr(self.activity_regularizer, 'get_config')): metadata['activity_regularizer'] = serialize_keras_object( self.activity_regularizer) else: metadata['activity_regularizer'] = None return json.dumps(metadata, default=serialization.get_json_type) def _list_extra_dependencies_for_serialization(self, serialization_cache): """Lists extra dependencies to serialize to SavedModel. By overriding this method, extra dependencies can be attached to the serialized Layer. For example, this is used to save the list of `variables` and `trainable_variables`, which are python properties in a Layer object, but are represented as a static list in the SavedModel. Args: serialization_cache: A dictionary shared between all objects in the same object graph. This object is passed to both `_list_extra_dependencies_for_serialization` and `_list_functions_for_serialization`. Returns: A dictionary mapping attribute names to trackable objects. The entire list of attributes are listed in the `saved_model._LayerAttributes` class. """ return (saved_model.serialize_all_attributes(self, serialization_cache) .objects_to_serialize) def _list_functions_for_serialization(self, serialization_cache): """Lists the functions to include when serializing a Layer. Args: serialization_cache: Dictionary passed to all objects in the same object graph during serialization. Returns: A dictionary mapping attribute names to `Function` or `ConcreteFunction`. The entire list of attributes are listed in the `saved_model._LayerAttributes` class. """ # Create a dictionary containing the layer's call and loss functions. fns = (saved_model.serialize_all_attributes(self, serialization_cache) .functions_to_serialize) # The parent Autotrackable class saves all user-defined tf.functions, and # returns them in _list_functions_for_serialization(). Add these functions # to the dict. fns.update(super(Layer, self)._list_functions_for_serialization( serialization_cache)) return fns class TensorFlowOpLayer(Layer): """Wraps a TensorFlow Operation in a Layer. This class is used internally by the Functional API. When a user uses a raw TensorFlow Operation on symbolic tensors originating from an `Input` Layer, the resultant operation will be wrapped with this Layer object in order to make the operation compatible with the Keras API. This Layer will create a new, identical operation (except for inputs and outputs) every time it is called. If `run_eagerly` is `True`, the op creation and calculation will happen inside an Eager function. Instances of this Layer are created when `autolambda` is called, which is whenever a Layer's `__call__` encounters symbolic inputs that do not have Keras metadata, or when a Network's `__init__` encounters outputs that do not have Keras metadata. Attributes: node_def: String, the serialized NodeDef of the Op this layer will wrap. constants: Dict of NumPy arrays, the values of any Tensors needed for this Operation that do not originate from a Keras `Input` Layer. Since all placeholders must come from Keras `Input` Layers, these Tensors must be treated as constant in the Functional API. name: String, the name of the Layer. trainable: Bool, whether this Layer is trainable. Currently Variables are not supported, and so this parameter has no effect. dtype: The default dtype of this Layer. Inherited from `Layer` and has no effect on this class, however is used in `get_config`. """ def __init__(self, node_def, constants=None, name=None, trainable=True, dtype=None): super(TensorFlowOpLayer, self).__init__( name=_TF_OP_LAYER_NAME_PREFIX + name, trainable=trainable, dtype=dtype) self.node_def = node_def_pb2.NodeDef.FromString(node_def) self.constants = constants or {} # Layer uses original op unless it is called on new inputs. # This means `built` is not set in `__call__`. self.built = True def call(self, inputs): if context.executing_eagerly(): return self._defun_call(inputs) return self._make_op(inputs) def _make_node_def(self, graph): node_def = node_def_pb2.NodeDef() node_def.CopyFrom(self.node_def) node_def.name = graph.unique_name(node_def.name) return node_def def _make_op(self, inputs): inputs = nest.flatten(inputs) graph = inputs[0].graph node_def = self._make_node_def(graph) with graph.as_default(): for index, constant in self.constants.items(): # Recreate constant in graph to add distribution context. value = tensor_util.constant_value(constant) if value is not None: constant = constant_op.constant(value, name=node_def.input[index]) inputs.insert(index, constant) # Check for case where first input should be a list of Tensors. if 'N' in node_def.attr: num_tensors = node_def.attr['N'].i inputs = [inputs[:num_tensors]] + inputs[num_tensors:] c_op = ops._create_c_op(graph, node_def, inputs, control_inputs=[]) op = graph._create_op_from_tf_operation(c_op) op._control_flow_post_processing() # Record the gradient because custom-made ops don't go through the # code-gen'd eager call path op_type = compat.as_str(op.op_def.name) attr_names = [compat.as_str(attr.name) for attr in op.op_def.attr] attrs = [] for attr_name in attr_names: attrs.append(attr_name) attrs.append(op.get_attr(attr_name)) attrs = tuple(attrs) execute.record_gradient(op_type, op.inputs, attrs, op.outputs, op.name) if len(op.outputs) == 1: return op.outputs[0] return op.outputs @function.defun def _defun_call(self, inputs): """Wraps the op creation method in an Eager function for `run_eagerly`.""" return self._make_op(inputs) def get_config(self): config = super(TensorFlowOpLayer, self).get_config() config.update({ 'node_def': self.node_def.SerializeToString(), 'constants': { i: backend.get_value(c) for i, c in self.constants.items() } }) return config class AddLoss(Layer): """Adds its inputs as a loss. Attributes: unconditional: Whether or not the loss should be conditioned on the inputs. """ def __init__(self, unconditional, **kwargs): super(AddLoss, self).__init__(**kwargs) self.unconditional = unconditional def call(self, inputs): self.add_loss(inputs, inputs=(not self.unconditional)) return inputs def get_config(self): config = super(AddLoss, self).get_config() config.update({'unconditional': self.unconditional}) return config class AddMetric(Layer): """Adds its inputs as a metric. Attributes: aggregation: 'mean' or None. How the inputs should be aggregated. metric_name: The name to use for this metric. """ def __init__(self, aggregation=None, metric_name=None, **kwargs): super(AddMetric, self).__init__(**kwargs) self.aggregation = aggregation self.metric_name = metric_name def call(self, inputs): self.add_metric(inputs, self.aggregation, self.metric_name) return inputs def get_config(self): config = super(AddMetric, self).get_config() config.update({ 'aggregation': self.aggregation, 'metric_name': self.metric_name }) return config class KerasHistory( collections.namedtuple('KerasHistory', ['layer', 'node_index', 'tensor_index'])): """Tracks the Layer call that created a Tensor, for Keras Graph Networks. During construction of Keras Graph Networks, this metadata is added to each Tensor produced as the output of a Layer, starting with an `InputLayer`. This allows Keras to track how each Tensor was produced, and this information is later retraced by the `keras.engine.Network` class to reconstruct the Keras Graph Network. Attributes: layer: The Layer that produced the Tensor. node_index: The specific call to the Layer that produced this Tensor. Layers can be called multiple times in order to share weights. A new node is created every time a Tensor is called. tensor_index: The output index for this Tensor. Always zero if the Layer that produced this Tensor only has one output. Nested structures of Tensors are deterministically assigned an index via `nest.flatten`. """ # Added to maintain memory and performance characteristics of `namedtuple` # while subclassing. __slots__ = () # Avoid breaking users who directly import this symbol from this file. # TODO(fchollet): remove this. InputSpec = input_spec.InputSpec # pylint:disable=invalid-name
the-stack_106_18361
# coding=utf-8 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # The class for a temperature and humidity sensor (Grove - Temperature and Humidity) from cisco_deviot.thing import Property, PropertyType from cisco_grovepi.sensor import Sensor class Thermometer(Sensor): def __init__(self, tid, name, pin): Sensor.__init__(self, tid, name, pin, "temperature") self.add_property(Property(name="temperature", type=PropertyType.INT, value=0, unit="°C", range=[0, 100])) self.add_property(Property(name="humidity", type=PropertyType.INT, value=0, unit="%", range=[0, 100])) def update_state(self): data = Sensor.analog_read(self, "dht") if data is not None: self.update_property(temperature=data[0], humidity=data[1])
the-stack_106_18362
import torch from torch import nn from torch.nn import DataParallel from torch.nn.parallel import DistributedDataParallel import torch.backends.cudnn as cudnn # from torchvision import models import numpy as np from FastAutoAugment.networks.resnet import ResNet from FastAutoAugment.networks.pyramidnet import PyramidNet from FastAutoAugment.networks.shakeshake.shake_resnet import ShakeResNet from FastAutoAugment.networks.wideresnet import WideResNet from FastAutoAugment.networks.shakeshake.shake_resnext import ShakeResNeXt from FastAutoAugment.networks.efficientnet_pytorch import EfficientNet, RoutingFn from FastAutoAugment.tf_port.tpu_bn import TpuBatchNormalization def get_model(conf, num_class=10, local_rank=-1): name = conf['type'] if name == 'resnet50': model = ResNet(dataset='imagenet', depth=50, num_classes=num_class, bottleneck=True) elif name == 'resnet200': model = ResNet(dataset='imagenet', depth=200, num_classes=num_class, bottleneck=True) elif name == 'wresnet40_2': model = WideResNet(40, 2, dropout_rate=0.0, num_classes=num_class) elif name == 'wresnet28_10': model = WideResNet(28, 10, dropout_rate=0.0, num_classes=num_class) elif name == 'shakeshake26_2x32d': model = ShakeResNet(26, 32, num_class) elif name == 'shakeshake26_2x64d': model = ShakeResNet(26, 64, num_class) elif name == 'shakeshake26_2x96d': model = ShakeResNet(26, 96, num_class) elif name == 'shakeshake26_2x112d': model = ShakeResNet(26, 112, num_class) elif name == 'shakeshake26_2x96d_next': model = ShakeResNeXt(26, 96, 4, num_class) elif name == 'pyramid': model = PyramidNet('cifar10', depth=conf['depth'], alpha=conf['alpha'], num_classes=num_class, bottleneck=conf['bottleneck']) elif 'efficientnet' in name: model = EfficientNet.from_name(name, condconv_num_expert=conf['condconv_num_expert'], norm_layer=None) # TpuBatchNormalization if local_rank >= 0: model = nn.SyncBatchNorm.convert_sync_batchnorm(model) def kernel_initializer(module): def get_fan_in_out(module): num_input_fmaps = module.weight.size(1) num_output_fmaps = module.weight.size(0) receptive_field_size = 1 if module.weight.dim() > 2: receptive_field_size = module.weight[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out if isinstance(module, torch.nn.Conv2d): # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py#L58 fan_in, fan_out = get_fan_in_out(module) torch.nn.init.normal_(module.weight, mean=0.0, std=np.sqrt(2.0 / fan_out)) if module.bias is not None: torch.nn.init.constant_(module.bias, val=0.) elif isinstance(module, RoutingFn): torch.nn.init.xavier_uniform_(module.weight) torch.nn.init.constant_(module.bias, val=0.) elif isinstance(module, torch.nn.Linear): # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py#L82 fan_in, fan_out = get_fan_in_out(module) delta = 1.0 / np.sqrt(fan_out) torch.nn.init.uniform_(module.weight, a=-delta, b=delta) if module.bias is not None: torch.nn.init.constant_(module.bias, val=0.) model.apply(kernel_initializer) else: raise NameError('no model named, %s' % name) if local_rank >= 0: device = torch.device('cuda', local_rank) model = model.to(device) model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) else: model = model.cuda() # model = DataParallel(model) cudnn.benchmark = True return model def num_class(dataset): return { 'cifar10': 10, 'reduced_cifar10': 10, 'cifar10.1': 10, 'cifar100': 100, 'svhn': 10, 'reduced_svhn': 10, 'imagenet': 1000, 'reduced_imagenet': 120, }[dataset]
the-stack_106_18363
import pytest from abi.ERC20 import ERC20 @pytest.fixture(scope="module") def burner(UniswapLPBurner, alice, receiver): yield UniswapLPBurner.deploy(receiver, receiver, alice, alice, {"from": alice}) UNISWAP_LP_DAI_ETH = "0xa478c2975ab1ea89e8196811f51a7b7ade33eb11" UNISWAP_LP_ETH_USDT = "0x0d4a11d5eeaac28ec3f61d100daf4d40471f1852" UNISWAP_LP_USDC_ETH = "0xb4e16d0168e52d35cacd2c6185b44281ec28c9dc" UNISWAP_LP_WBTC_ETH = "0xbb2b8038a1640196fbe3e38816f3e67cba72d940" SUSHI_LP_DAI_ETH = "0xc3d03e4f041fd4cd388c549ee2a29a9e5075882f" SUSHI_LP_ETH_USDT = "0x06da0fd433c1a5d7a4faa01111c044910a184553" SUSHI_LP_SUSHI_ETH = "0x795065dcc9f64b5614c407a6efdc400da6221fb0" SUSHI_LP_USDC_ETH = "0x397ff1542f962076d0bfe58ea045ffa2d347aca0" SUSHI_LP_WBTC_ETH = "0xceff51756c56ceffca006cd410b03ffc46dd3a58" SUSHI_LP_YFI_ETH = "0x088ee5007c98a9677165d78dd2109ae4a3d04d0c" TOKENS = [ UNISWAP_LP_DAI_ETH, UNISWAP_LP_ETH_USDT, UNISWAP_LP_USDC_ETH, UNISWAP_LP_WBTC_ETH, SUSHI_LP_DAI_ETH, SUSHI_LP_ETH_USDT, SUSHI_LP_SUSHI_ETH, SUSHI_LP_USDC_ETH, SUSHI_LP_WBTC_ETH, SUSHI_LP_YFI_ETH, ] @pytest.mark.parametrize("token", TOKENS) def test_burn(MintableTestToken, DAI, WETH, alice, receiver, burner, token): coin = MintableTestToken.from_abi("testToken", token, abi=ERC20) amount = 10 ** coin.decimals() mint_success = False fails = 0 while not mint_success and fails < 5: try: coin._mint_for_testing(alice, amount, {"from": alice}) mint_success = True except Exception: fails += 1 amount /= 2 coin.approve(burner, 2 ** 256 - 1, {"from": alice}) burner.burn(coin, {"from": alice}) assert coin.balanceOf(alice) == 0 assert coin.balanceOf(burner) == 0 assert coin.balanceOf(receiver) == 0 assert WETH.balanceOf(alice) == 0 assert WETH.balanceOf(burner) == 0 assert WETH.balanceOf(receiver) > 0
the-stack_106_18364
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt import unittest from random import choice import datetime import frappe from frappe.custom.doctype.custom_field.custom_field import create_custom_field from frappe.utils import random_string from frappe.utils.testutils import clear_custom_fields class TestDB(unittest.TestCase): def test_get_value(self): self.assertEqual(frappe.db.get_value("User", {"name": ["=", "Administrator"]}), "Administrator") self.assertEqual(frappe.db.get_value("User", {"name": ["like", "Admin%"]}), "Administrator") self.assertNotEqual(frappe.db.get_value("User", {"name": ["!=", "Guest"]}), "Guest") self.assertEqual(frappe.db.get_value("User", {"name": ["<", "Adn"]}), "Administrator") self.assertEqual(frappe.db.get_value("User", {"name": ["<=", "Administrator"]}), "Administrator") self.assertEqual(frappe.db.sql("""SELECT name FROM `tabUser` WHERE name > 's' ORDER BY MODIFIED DESC""")[0][0], frappe.db.get_value("User", {"name": [">", "s"]})) self.assertEqual(frappe.db.sql("""SELECT name FROM `tabUser` WHERE name >= 't' ORDER BY MODIFIED DESC""")[0][0], frappe.db.get_value("User", {"name": [">=", "t"]})) def test_set_value(self): todo1 = frappe.get_doc(dict(doctype='ToDo', description = 'test_set_value 1')).insert() todo2 = frappe.get_doc(dict(doctype='ToDo', description = 'test_set_value 2')).insert() frappe.db.set_value('ToDo', todo1.name, 'description', 'test_set_value change 1') self.assertEqual(frappe.db.get_value('ToDo', todo1.name, 'description'), 'test_set_value change 1') # multiple set-value frappe.db.set_value('ToDo', dict(description=('like', '%test_set_value%')), 'description', 'change 2') self.assertEqual(frappe.db.get_value('ToDo', todo1.name, 'description'), 'change 2') self.assertEqual(frappe.db.get_value('ToDo', todo2.name, 'description'), 'change 2') def test_escape(self): frappe.db.escape("香港濟生堂製藥有限公司 - IT".encode("utf-8")) def test_get_single_value(self): #setup values_dict = { "Float": 1.5, "Int": 1, "Percent": 55.5, "Currency": 12.5, "Data": "Test", "Date": datetime.datetime.now().date(), "Datetime": datetime.datetime.now(), "Time": datetime.timedelta(hours=9, minutes=45, seconds=10) } test_inputs = [{ "fieldtype": fieldtype, "value": value} for fieldtype, value in values_dict.items()] for fieldtype in values_dict.keys(): create_custom_field("Print Settings", { "fieldname": f"test_{fieldtype.lower()}", "label": f"Test {fieldtype}", "fieldtype": fieldtype, }) #test for inp in test_inputs: fieldname = f"test_{inp['fieldtype'].lower()}" frappe.db.set_value("Print Settings", "Print Settings", fieldname, inp["value"]) self.assertEqual(frappe.db.get_single_value("Print Settings", fieldname), inp["value"]) #teardown clear_custom_fields("Print Settings") def test_log_touched_tables(self): frappe.flags.in_migrate = True frappe.flags.touched_tables = set() frappe.db.set_value('System Settings', 'System Settings', 'backup_limit', 5) self.assertIn('tabSingles', frappe.flags.touched_tables) frappe.flags.touched_tables = set() todo = frappe.get_doc({'doctype': 'ToDo', 'description': 'Random Description'}) todo.save() self.assertIn('tabToDo', frappe.flags.touched_tables) frappe.flags.touched_tables = set() todo.description = "Another Description" todo.save() self.assertIn('tabToDo', frappe.flags.touched_tables) if frappe.db.db_type != "postgres": frappe.flags.touched_tables = set() frappe.db.sql("UPDATE tabToDo SET description = 'Updated Description'") self.assertNotIn('tabToDo SET', frappe.flags.touched_tables) self.assertIn('tabToDo', frappe.flags.touched_tables) frappe.flags.touched_tables = set() todo.delete() self.assertIn('tabToDo', frappe.flags.touched_tables) frappe.flags.touched_tables = set() create_custom_field('ToDo', {'label': 'ToDo Custom Field'}) self.assertIn('tabToDo', frappe.flags.touched_tables) self.assertIn('tabCustom Field', frappe.flags.touched_tables) frappe.flags.in_migrate = False frappe.flags.touched_tables.clear() def test_db_keywords_as_fields(self): """Tests if DB keywords work as docfield names. If they're wrapped with grave accents.""" # Using random.choices, picked out a list of 40 keywords for testing all_keywords = { "mariadb": ["CHARACTER", "DELAYED", "LINES", "EXISTS", "YEAR_MONTH", "LOCALTIME", "BOTH", "MEDIUMINT", "LEFT", "BINARY", "DEFAULT", "KILL", "WRITE", "SQL_SMALL_RESULT", "CURRENT_TIME", "CROSS", "INHERITS", "SELECT", "TABLE", "ALTER", "CURRENT_TIMESTAMP", "XOR", "CASE", "ALL", "WHERE", "INT", "TO", "SOME", "DAY_MINUTE", "ERRORS", "OPTIMIZE", "REPLACE", "HIGH_PRIORITY", "VARBINARY", "HELP", "IS", "CHAR", "DESCRIBE", "KEY"], "postgres": ["WORK", "LANCOMPILER", "REAL", "HAVING", "REPEATABLE", "DATA", "USING", "BIT", "DEALLOCATE", "SERIALIZABLE", "CURSOR", "INHERITS", "ARRAY", "TRUE", "IGNORE", "PARAMETER_MODE", "ROW", "CHECKPOINT", "SHOW", "BY", "SIZE", "SCALE", "UNENCRYPTED", "WITH", "AND", "CONVERT", "FIRST", "SCOPE", "WRITE", "INTERVAL", "CHARACTER_SET_SCHEMA", "ADD", "SCROLL", "NULL", "WHEN", "TRANSACTION_ACTIVE", "INT", "FORTRAN", "STABLE"] } created_docs = [] # edit by rushabh: added [:1] # don't run every keyword! - if one works, they all do fields = all_keywords[frappe.conf.db_type][:1] test_doctype = "ToDo" def add_custom_field(field): create_custom_field(test_doctype, { "fieldname": field.lower(), "label": field.title(), "fieldtype": 'Data', }) # Create custom fields for test_doctype for field in fields: add_custom_field(field) # Create documents under that doctype and query them via ORM for _ in range(10): docfields = { key.lower(): random_string(10) for key in fields } doc = frappe.get_doc({"doctype": test_doctype, "description": random_string(20), **docfields}) doc.insert() created_docs.append(doc.name) random_field = choice(fields).lower() random_doc = choice(created_docs) random_value = random_string(20) # Testing read self.assertEqual(list(frappe.get_all("ToDo", fields=[random_field], limit=1)[0])[0], random_field) self.assertEqual(list(frappe.get_all("ToDo", fields=[f"`{random_field}` as total"], limit=1)[0])[0], "total") # Testing read for distinct and sql functions self.assertEqual(list( frappe.get_all("ToDo", fields=[f"`{random_field}` as total"], distinct=True, limit=1, )[0] )[0], "total") self.assertEqual(list( frappe.get_all("ToDo", fields=[f"`{random_field}`"], distinct=True, limit=1, )[0] )[0], random_field) self.assertEqual(list( frappe.get_all("ToDo", fields=[f"count(`{random_field}`)"], limit=1 )[0] )[0], "count" if frappe.conf.db_type == "postgres" else f"count(`{random_field}`)") # Testing update frappe.db.set_value(test_doctype, random_doc, random_field, random_value) self.assertEqual(frappe.db.get_value(test_doctype, random_doc, random_field), random_value) # Cleanup - delete records and remove custom fields for doc in created_docs: frappe.delete_doc(test_doctype, doc) clear_custom_fields(test_doctype)
the-stack_106_18368
import discord import asyncio from packages.get_server_status import get_server_status, format_dict from packages.get_news import get_news, format_news from packages.format_op import format_op from unidecode import unidecode from packages.player_info import get_player_info, format_player_info from packages.live import get_lives, format_lives from packages.prefix import change_prefix from packages.quote import get_quote from packages.get_op_info import get_op_info from time import sleep import os from dotenv import load_dotenv load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') client = discord.Client() @client.event async def on_ready(): print('now online - hello, world') print(client.user.name) print(client.user.id) print('-'*20) @client.event async def on_message(message): global prefix log = open(r'log.txt', 'r+') found_prefix = False for line in log.readlines(): if str(message.guild.id) in line: prefix = line.split(' ')[1].replace('\n', '') found_prefix = True if not found_prefix: prefix = '?' if message.content.lower().startswith(f'{prefix.lower()}'): if message.content.lower().startswith(f'{prefix.lower()}help'): msg = discord.Embed(title='Commands', description="Here's a list of all commands!", colour=discord.Color.from_rgb(244, 175, 44)) msg.set_thumbnail(url='https://i.imgur.com/Vgrtz5u.png') msg.add_field(name=f'{prefix}pcstats', value='shows info regarding the status of the PC servers') msg.add_field(name=f'{prefix}ps4stats', value='shows info regarding the status of the PS4 servers') msg.add_field(name=f'{prefix}xboxstats', value='shows info regarding the status of the Xbox One servers') msg.add_field(name=f'{prefix}agent (agent name)', value="shows agent's general info") msg.add_field(name=f'{prefix}player (name) (platform)', value="tracks player's info (default platform is PC)") msg.add_field(name=f'{prefix}live', value=f"shows live streams on twitch ({prefix}lives also works)") msg.add_field(name=f'{prefix}prefix (new prefix)', value=f"changes the server's command prefix") msg.add_field(name=f'{prefix}quote', value=f"generates a very wise quote.") await message.channel.send(embed=msg) elif 'stats' in message.content.lower(): await message.channel.send("Working on it...") if message.content.lower().startswith(f'{prefix.lower()}pcstats'): status = get_server_status() info = format_dict(status["pc"]) await message.channel.send(embed=info) elif message.content.lower().startswith(f'{prefix.lower()}ps4stats'): status = get_server_status() info = format_dict(status["ps4"]) await message.channel.send(embed=info) elif message.content.lower().startswith(f'{prefix.lower()}xboxstats'): status = get_server_status() info = format_dict(status["xbox"]) await message.channel.send(embed=info) elif message.content.lower().startswith(f'{prefix.lower()}news'): await message.channel.send("Working on it...") news = get_news() emb = format_news(news) await message.channel.send(embed=emb) elif message.content.lower().startswith(f'{prefix.lower()}agent'): try: op = unidecode(message.content.lower().split(' ')[1]) except: msg = discord.Embed(title='Error', description=f"Please give me a valid agent", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) else: await message.channel.send("Working on it...") try: emb = format_op(get_op_info(op)) await message.channel.send(embed=emb) except: msg = discord.Embed(title='Error', description=f"Failed to find {op}'s information! Please check agent's name and try again", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) elif message.content.lower().startswith(f'{prefix.lower()}player'): try: player = unidecode(message.content.split(' ')[1]) except: msg = discord.Embed(title='Error', description=f"Please give me a valid player name and/or platform", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) else: try: if len(message.content.split(' ')) == 2: platform = 'pc' else: platform = unidecode(message.content.lower().split(' ')[2]).lower() await message.channel.send("Working on it...") player_info = format_player_info(get_player_info(platform, player)) await message.channel.send(embed=player_info["overview"]) await message.channel.send(embed=player_info["ranked"]) await message.channel.send(embed=player_info["season"]) except: msg = discord.Embed(title='Error', description=f"Failed to find {player}'s information! Please check player's name and platform and try again", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) elif message.content.lower().startswith(f'{prefix.lower()}lives') or message.content.lower().startswith(f'{prefix.lower()}live'): await message.channel.send("Working on it...") lives = get_lives()[:6] msg = format_lives(lives) await message.channel.send(embed=msg) elif message.content.lower().startswith(f'{prefix.lower()}prefix'): try: new_prefix = message.content.split(' ')[1] except: msg = discord.Embed(title='Error', description=f"Please give me a valid prefix", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) else: log = open(r'./log.txt', 'a') log.write(f'{message.guild.id}: {new_prefix}\n') log.close() change_prefix(new_prefix) msg = discord.Embed(title='Prefix', description=f"Sucessfully updated prefix to {new_prefix}", colour=discord.Color.from_rgb(244, 175, 44)) await message.channel.send(embed=msg) elif message.content.lower().startswith(f'{prefix.lower()}quote'): await message.channel.send(get_quote()) elif message.content.lower().startswith(f'{prefix.lower()}clear'): msg_list = message.content.split(' ') if len(msg_list) == 2: try: deleted = await message.channel.purge(limit=int(msg_list[1]) + 1) except: msg = discord.Embed(title='Error', description=f"Please give me a valid number of messages or upgrade my permissions!", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) else: msg = discord.Embed(title='Clear', description=f"Sucessfully deleted {len(deleted)} messages", colour=discord.Color.from_rgb(244, 175, 44)) await message.channel.send(embed=msg) else: try: deleted = await message.channel.purge(limit=100) msg = discord.Embed(title='Clear', description=f"Sucessfully deleted {len(deleted)} messages", colour=discord.Color.from_rgb(244, 175, 44)) await message.channel.send(embed=msg) except: msg = discord.Embed(title='Error', description=f"Please upgrade my permissions!", colour=discord.Color.from_rgb(255, 0, 0)) await message.channel.send(embed=msg) client.run(TOKEN)
the-stack_106_18370
""" IDE: PyCharm Project: social-media-bot Author: Robin Filename: analyze_tweets.py Date: 25.01.2020 """ import json import os from collections import defaultdict from datetime import datetime import dotenv import numpy as np import pandas as pd import spacy from matplotlib import pyplot from term_document_matrix import TermDocumentMatrix, filter_top_phrases nlp = spacy.load('en_core_web_sm') def text_analysis(tweets_filepath): matrix = TermDocumentMatrix(nlp) with open(tweets_filepath, 'r', encoding='utf8') as json_file: tweet_set = json.load(json_file) for tweet in tweet_set["tweets"]: text = tweet["text"].strip() id = tweet["tweet_id"] matrix.add_doc(id, text) phrases = matrix.get_most_frequent_phrases(2, 3) top_phrases = filter_top_phrases(phrases, 20) objects = [x[0] for x in top_phrases] y_pos = np.arange(len(objects)) performance = [x[1] for x in top_phrases] pyplot.bar(y_pos, performance, align='center', alpha=0.5) pyplot.xticks(y_pos, objects, rotation=45) pyplot.ylabel('Document Frequency') pyplot.title('Terms') pyplot.show() def general_stats(tweets_filepath): with open(tweets_filepath, 'r', encoding='utf8') as json_file: tweets = json.load(json_file)["tweets"] # preprocessing (categorize top5 mentions, timestamps to dates mention_count = defaultdict(int) for tweet in tweets: tweet["date"] = datetime.strptime(datetime.strptime(tweet["date"], "%c").strftime('%d.%m.%y'), '%d.%m.%y') for mention in tweet['mentions']: mention_count[mention] += 1 # only top 5 tags topx = 5 mention_items = list([k, mention_count[k]] for k in mention_count.keys()) mention_items.sort(key=lambda x: x[1], reverse=True) mention_items = mention_items[:topx] mention_tags = [k for (k, v) in mention_items] # create mention columns for tweet in tweets: for tag in mention_tags: if tag in tweet['mentions']: tweet[tag] = 1 else: tweet[tag] = 0 series = pd.DataFrame.from_records(tweets, index="tweet_id", exclude=['hashtags', 'url', 'text', 'mentions']) grouped = series.groupby('date').sum() grouped.plot() pyplot.show() for mention_tag in mention_tags: grouped = series.query(mention_tag + ">0").groupby('date').count() grouped.plot(y=[mention_tag]) pyplot.show() if __name__ == '__main__': dotenv.load_dotenv() tweets_file = os.getenv('TWITTER_DATA') general_stats(tweets_file) text_analysis(tweets_file)
the-stack_106_18371
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include urlpatterns = [ path("", include("django.contrib.auth.urls")), path("", include("users.urls")), path("", include("landing.urls")), path("dashboard/", include("dashboard.urls")), path("api/", include("workouts.urls")), path("admin/", admin.site.urls), ]
the-stack_106_18372
# -*- coding: utf-8 -*- # Copyright 2018-2019 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """time_input unit test.""" from tests import testutil import streamlit as st from parameterized import parameterized from datetime import datetime from datetime import time class TimeInputTest(testutil.DeltaGeneratorTestCase): """Test ability to marshall time_input protos.""" def test_just_label(self): """Test that it can be called with no value.""" st.time_input("the label") c = self.get_delta_from_queue().new_element.time_input self.assertEqual(c.label, "the label") self.assertLessEqual( datetime.strptime(c.default, "%H:%M").time(), datetime.now().time() ) @parameterized.expand( [(time(8, 45), "08:45"), (datetime(2019, 7, 6, 21, 15), "21:15")] ) def test_value_types(self, arg_value, proto_value): """Test that it supports different types of values.""" st.time_input("the label", arg_value) c = self.get_delta_from_queue().new_element.time_input self.assertEqual(c.label, "the label") self.assertEqual(c.default, proto_value)
the-stack_106_18373
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import os import time import netrender from netrender.utils import * from bpy.props import PointerProperty, StringProperty, BoolProperty, EnumProperty, IntProperty, CollectionProperty VERSION = b"0.5" PATH_PREFIX = "/tmp/" LAST_ADDRESS_TEST = 0 ADDRESS_TEST_TIMEOUT = 30 def base_poll(cls, context): rd = context.scene.render return (rd.engine in cls.COMPAT_ENGINES) def init_file(): if netrender.init_file != bpy.data.filepath: netrender.init_file = bpy.data.filepath netrender.init_data = True netrender.valid_address = False def init_data(netsettings): init_file() if netrender.init_data: netrender.init_data = False netsettings.active_slave_index = 0 while(len(netsettings.slaves) > 0): netsettings.slaves.remove(0) netsettings.active_blacklisted_slave_index = 0 while(len(netsettings.slaves_blacklist) > 0): netsettings.slaves_blacklist.remove(0) netsettings.active_job_index = 0 while(len(netsettings.jobs) > 0): netsettings.jobs.remove(0) def verify_address(netsettings, force=False): global LAST_ADDRESS_TEST init_file() if force or LAST_ADDRESS_TEST + ADDRESS_TEST_TIMEOUT < time.time(): LAST_ADDRESS_TEST = time.time() try: conn = clientConnection(netsettings, scan = False, timeout = 1) except: conn = None if conn: netrender.valid_address = True conn.close() else: netrender.valid_address = False return netrender.valid_address class NeedValidAddress(): @classmethod def poll(cls, context): return super().poll(context) and verify_address(context.scene.network_render) class NetRenderButtonsPanel(): bl_space_type = "PROPERTIES" bl_region_type = "WINDOW" bl_context = "render" # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here @classmethod def poll(cls, context): rd = context.scene.render return rd.engine == 'NET_RENDER' # Setting panel, use in the scene for now. class RENDER_PT_network_settings(NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Network Settings" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): return super().poll(context) def draw(self, context): layout = self.layout netsettings = context.scene.network_render verify_address(netsettings) layout.prop(netsettings, "mode", expand=True) if netsettings.mode in {'RENDER_MASTER', 'RENDER_SLAVE'}: layout.operator("render.netclientstart", icon='PLAY') layout.prop(netsettings, "path") row = layout.row() split = layout.split(factor=0.5) col = split.column() col.prop(netsettings, "server_address", text="Address") col = split.column() row = col.row() row.prop(netsettings, "server_port", text="Port") row.prop(netsettings, "use_ssl", text="SSL") if netsettings.mode != "RENDER_MASTER": layout.operator("render.netclientscan", icon='FILE_REFRESH', text="") if not netrender.valid_address: layout.label(text="No master at specified address") if netsettings.use_ssl and netsettings.mode == "RENDER_MASTER": layout.prop(netsettings, "cert_path", text="Certificate") layout.prop(netsettings, "key_path", text="Key") layout.operator("render.netclientweb", icon='QUESTION') class RENDER_PT_network_slave_settings(NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Slave Settings" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): scene = context.scene return super().poll(context) and scene.network_render.mode == "RENDER_SLAVE" def draw(self, context): layout = self.layout rd = context.scene.render netsettings = context.scene.network_render layout.prop(netsettings, "slave_tags", text="Tags") layout.prop(netsettings, "slave_render") layout.prop(netsettings, "slave_bake") layout.prop(netsettings, "use_slave_clear") layout.prop(netsettings, "use_slave_thumb") layout.prop(netsettings, "use_slave_output_log") layout.label(text="Threads:") layout.prop(rd, "threads_mode", expand=True) col = layout.column() col.enabled = rd.threads_mode == 'FIXED' col.prop(rd, "threads") class RENDER_PT_network_master_settings(NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Master Settings" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): scene = context.scene return super().poll(context) and scene.network_render.mode == "RENDER_MASTER" def draw(self, context): layout = self.layout netsettings = context.scene.network_render layout.prop(netsettings, "use_master_broadcast") layout.prop(netsettings, "use_master_force_upload") layout.prop(netsettings, "use_master_clear") class RENDER_PT_network_job(NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Job Settings" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): scene = context.scene return super().poll(context) and scene.network_render.mode == "RENDER_CLIENT" def draw(self, context): layout = self.layout netsettings = context.scene.network_render verify_address(netsettings) if netsettings.server_address != "[default]": layout.operator("render.netclientanim", icon='RENDER_ANIMATION') layout.operator("render.netclientsend", icon='FILE_BLEND') layout.operator("render.netclientsendbake", icon='PHYSICS') layout.operator("render.netclientsendframe", icon='RENDER_STILL') if netsettings.job_id: row = layout.row() row.operator("render.render", text="Get Image", icon='RENDER_STILL') row.operator("render.render", text="Get Animation", icon='RENDER_ANIMATION').animation = True layout.prop(netsettings, "job_type", text="Type") layout.prop(netsettings, "job_name", text="Name") layout.prop(netsettings, "job_category", text="Category") layout.prop(netsettings, "job_tags", text="Tags") layout.prop(netsettings, "job_render_engine", text="Engine") if netsettings.job_render_engine == "OTHER": layout.prop(netsettings, "job_render_engine_other", text="Other Engine") row = layout.row() row.prop(netsettings, "priority") row.prop(netsettings, "chunks") if netsettings.job_type == "JOB_BLENDER": layout.prop(netsettings, "save_before_job") class RENDER_PT_network_job_vcs(NetRenderButtonsPanel, bpy.types.Panel): bl_label = "VCS Job Settings" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): scene = context.scene return (super().poll(context) and scene.network_render.mode == "RENDER_CLIENT" and scene.network_render.job_type == "JOB_VCS") def draw(self, context): layout = self.layout netsettings = context.scene.network_render layout.operator("render.netclientvcsguess", icon='FILE_REFRESH', text="") layout.prop(netsettings, "vcs_system") layout.prop(netsettings, "vcs_revision") layout.prop(netsettings, "vcs_rpath") layout.prop(netsettings, "vcs_wpath") class RENDER_PT_network_slaves(NeedValidAddress, NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Slaves Status" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): netsettings = context.scene.network_render return super().poll(context) and netsettings.mode == "RENDER_CLIENT" def draw(self, context): layout = self.layout netsettings = context.scene.network_render row = layout.row() row.template_list("UI_UL_list", "net_render_slaves", netsettings, "slaves", netsettings, "active_slave_index", rows=2) sub = row.column(align=True) sub.operator("render.netclientslaves", icon='FILE_REFRESH', text="") sub.operator("render.netclientblacklistslave", icon='ZOOMOUT', text="") if len(netrender.slaves) > netsettings.active_slave_index >= 0: layout.separator() slave = netrender.slaves[netsettings.active_slave_index] layout.label(text="Name: " + slave.name) layout.label(text="Address: " + slave.address[0]) layout.label(text="Seen: " + time.ctime(slave.last_seen)) layout.label(text="Stats: " + slave.stats) class RENDER_PT_network_slaves_blacklist(NeedValidAddress, NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Slaves Blacklist" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): netsettings = context.scene.network_render return super().poll(context) and netsettings.mode == "RENDER_CLIENT" def draw(self, context): layout = self.layout netsettings = context.scene.network_render row = layout.row() row.template_list("UI_UL_list", "net_render_slaves_blacklist", netsettings, "slaves_blacklist", netsettings, "active_blacklisted_slave_index", rows=2) sub = row.column(align=True) sub.operator("render.netclientwhitelistslave", icon='ZOOMOUT', text="") if len(netrender.blacklist) > netsettings.active_blacklisted_slave_index >= 0: layout.separator() slave = netrender.blacklist[netsettings.active_blacklisted_slave_index] layout.label(text="Name: " + slave.name) layout.label(text="Address: " + slave.address[0]) layout.label(text="Seen: " + time.ctime(slave.last_seen)) layout.label(text="Stats: " + slave.stats) class RENDER_PT_network_jobs(NeedValidAddress, NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Jobs" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): netsettings = context.scene.network_render return super().poll(context) and netsettings.mode == "RENDER_CLIENT" def draw(self, context): layout = self.layout netsettings = context.scene.network_render row = layout.row() row.template_list("UI_UL_list", "net_render", netsettings, "jobs", netsettings, "active_job_index", rows=2) sub = row.column(align=True) sub.operator("render.netclientstatus", icon='FILE_REFRESH', text="") sub.operator("render.netclientcancel", icon='ZOOMOUT', text="") sub.operator("render.netclientcancelall", icon='PANEL_CLOSE', text="") sub.operator("render.netclientdownload", icon='RENDER_ANIMATION', text="") if len(netrender.jobs) > netsettings.active_job_index >= 0: layout.separator() job = netrender.jobs[netsettings.active_job_index] layout.label(text="Name: %s" % job.name) layout.label(text="Length: %04i" % len(job)) layout.label(text="Done: %04i" % job.results[netrender.model.FRAME_DONE]) layout.label(text="Error: %04i" % job.results[netrender.model.FRAME_ERROR]) import bl_ui.properties_render as properties_render class RENDER_PT_network_output(NeedValidAddress, NetRenderButtonsPanel, bpy.types.Panel): bl_label = "Output" COMPAT_ENGINES = {'NET_RENDER'} @classmethod def poll(cls, context): netsettings = context.scene.network_render return super().poll(context) and netsettings.mode == "RENDER_CLIENT" draw = properties_render.RENDER_PT_output.draw class NetRenderSlave(bpy.types.PropertyGroup): @classmethod def register(NetRenderSlave): NetRenderSlave.name = StringProperty( name="Name of the slave", description="", maxlen = 64, default = "") class NetRenderJob(bpy.types.PropertyGroup): @classmethod def register(NetRenderJob): NetRenderJob.name = StringProperty( name="Name of the job", description="", maxlen = 128, default = "") class NetRenderSettings(bpy.types.PropertyGroup): @classmethod def register(NetRenderSettings): def address_update_callback(self, context): netsettings = context.scene.network_render verify_address(netsettings, True) NetRenderSettings.server_address = StringProperty( name="Server address", description="IP or name of the master render server", maxlen = 128, default = "[default]", update = address_update_callback) NetRenderSettings.server_port = IntProperty( name="Server port", description="port of the master render server", default = 8000, min=1, max=65535) NetRenderSettings.use_master_broadcast = BoolProperty( name="Broadcast", description="broadcast master server address on local network", default = True) NetRenderSettings.use_ssl = BoolProperty( name="use ssl", description="use ssl encryption for communication", default = False) NetRenderSettings.cert_path = StringProperty( name="CertPath", description="Path to ssl certificate", maxlen = 128, default = "", subtype='FILE_PATH') NetRenderSettings.key_path = StringProperty( name="key", description="Path to ssl key file", maxlen = 128, default = "", subtype='FILE_PATH') NetRenderSettings.use_slave_clear = BoolProperty( name="Clear on exit", description="delete downloaded files on exit", default = True) NetRenderSettings.use_slave_thumb = BoolProperty( name="Generate thumbnails", description="Generate thumbnails on slaves instead of master", default = False) NetRenderSettings.slave_tags = StringProperty( name="Tags", description="Tags to associate with the slave (semi-colon separated)", maxlen = 256, default = "") NetRenderSettings.use_slave_output_log = BoolProperty( name="Output render log on console", description="Output render text log to console as well as sending it to the master", default = True) NetRenderSettings.slave_render = BoolProperty( name="Render on slave", description="Use slave for render jobs", default = True) NetRenderSettings.slave_bake = BoolProperty( name="Bake on slave", description="Use slave for baking jobs", default = True) NetRenderSettings.use_master_clear = BoolProperty( name="Clear on exit", description="Delete saved files on exit", default = False) NetRenderSettings.use_master_force_upload = BoolProperty( name="Force Dependency Upload", description="Force client to upload dependency files to master", default = False) default_path = os.environ.get("TEMP") if not default_path: if os.name == 'nt': default_path = "c:/tmp/" else: default_path = "/tmp/" elif not default_path.endswith(os.sep): default_path += os.sep NetRenderSettings.path = StringProperty( name="Path", description="Path for temporary files", maxlen = 128, default = default_path, subtype='FILE_PATH') NetRenderSettings.job_type = EnumProperty( items=( ("JOB_BLENDER", "Blender", "Standard Blender Job"), ("JOB_PROCESS", "Process", "Custom Process Job"), ("JOB_VCS", "VCS", "Version Control System Managed Job"), ), name="Job Type", description="Type of render job", default="JOB_BLENDER") NetRenderSettings.job_name = StringProperty( name="Job name", description="Name of the job", maxlen = 128, default = "[default]") NetRenderSettings.job_category = StringProperty( name="Job category", description="Category of the job", maxlen = 128, default = "") NetRenderSettings.job_tags = StringProperty( name="Tags", description="Tags to associate with the job (semi-colon separated)", maxlen = 256, default = "") NetRenderSettings.job_render_engine = EnumProperty( items = ( ("BLENDER_RENDER", "BLENDER", "Standard Blender Render"), ("CYCLES", "CYCLES", "Cycle Render"), ("OTHER", "OTHER", "Other non-default Render"), ), name="render", description="Render engine used to render this job", default="BLENDER_RENDER") NetRenderSettings.job_render_engine_other = StringProperty( name="Render engine", description="Render engine other than the builtin defaults (POVRAY_RENDER, ...)", maxlen = 128, default = "") NetRenderSettings.save_before_job = BoolProperty( name="Save Before Job", description="Save current file before sending a job", default = False) NetRenderSettings.chunks = IntProperty( name="Chunks", description="Number of frame to dispatch to each slave in one chunk", default = 5, min=1, max=65535) NetRenderSettings.priority = IntProperty( name="Priority", description="Priority of the job", default = 1, min=1, max=10) NetRenderSettings.vcs_wpath = StringProperty( name="Working Copy", description="Path of the local working copy", maxlen = 1024, default = "") NetRenderSettings.vcs_rpath = StringProperty( name="Remote Path", description="Path of the server copy (protocol specific)", maxlen = 1024, default = "") NetRenderSettings.vcs_revision = StringProperty( name="Revision", description="Revision for this job", maxlen = 256, default = "") NetRenderSettings.vcs_system = EnumProperty( items= netrender.versioning.ITEMS, name="VCS mode", description="Version Control System", default=netrender.versioning.ITEMS[0][0]) NetRenderSettings.job_id = StringProperty( name="Network job id", description="id of the last sent render job", maxlen = 64, default = "") NetRenderSettings.active_slave_index = IntProperty( name="Index of the active slave", description="", default = -1, min= -1, max=65535) NetRenderSettings.active_blacklisted_slave_index = IntProperty( name="Index of the active slave", description="", default = -1, min= -1, max=65535) NetRenderSettings.active_job_index = IntProperty( name="Index of the active job", description="", default = -1, min= -1, max=65535) NetRenderSettings.mode = EnumProperty( items=( ("RENDER_CLIENT", "Client", "Act as render client"), ("RENDER_MASTER", "Master", "Act as render master"), ("RENDER_SLAVE", "Slave", "Act as render slave"), ), name="Network mode", description="Mode of operation of this instance", default="RENDER_CLIENT") NetRenderSettings.slaves = CollectionProperty(type=NetRenderSlave, name="Slaves", description="") NetRenderSettings.slaves_blacklist = CollectionProperty(type=NetRenderSlave, name="Slaves Blacklist", description="") NetRenderSettings.jobs = CollectionProperty(type=NetRenderJob, name="Job List", description="") bpy.types.Scene.network_render = PointerProperty(type=NetRenderSettings, name="Network Render", description="Network Render Settings") @classmethod def unregister(cls): del bpy.types.Scene.network_render
the-stack_106_18374
import time from spaceone.inventory.libs.manager import AWSPowerStateManager from spaceone.inventory.libs.schema.base import ReferenceModel from spaceone.inventory.connector.auto_scaling import AutoScalingConnector from spaceone.inventory.model.auto_scaling import * class AutoScalingManager(AWSPowerStateManager): connector_name = 'AutoScalingConnector' def collect_power_state(self, params): print("** Auto Scaling Start **") start_time = time.time() auto_scaling_conn: AutoScalingConnector = self.locator.get_connector(self.connector_name, **params) auto_scaling_resources = [] for region_name in params.get('regions', []): # print(f'[ AutoScaling {region_name} ]') auto_scaling_conn.set_client(region_name) for asg in auto_scaling_conn.describe_auto_scaling_groups(): auto_scaling_data = AutoScalingGroup(asg, strict=False) auto_scaling_resource = AutoScalingResource({ 'data': auto_scaling_data, 'reference': ReferenceModel(auto_scaling_data.reference()) }) auto_scaling_resources.append(AutoScalingResponse({'resource': auto_scaling_resource})) print(f' Auto Scaling Finished {time.time() - start_time} Seconds') return auto_scaling_resources
the-stack_106_18375
def quadrado(b): return f'{b}^2 = {b**2}' def eh_par(n): if n < 2: return '' if n % 2 != 0: n -= 1 print(quadrado(n)) return eh_par(n-2) def quadrado_de_pares(): x = 1 while x != 0: x = int(input()) eh_par(x) quadrado_de_pares()
the-stack_106_18376
# Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import logging import os import boto3 import pytest from sagemaker import LocalSession, Session from sagemaker.tensorflow import TensorFlow from ..integration import NO_P2_REGIONS, NO_P3_REGIONS, get_ecr_registry logger = logging.getLogger(__name__) logging.getLogger('boto').setLevel(logging.INFO) logging.getLogger('botocore').setLevel(logging.INFO) logging.getLogger('factory.py').setLevel(logging.INFO) logging.getLogger('auth.py').setLevel(logging.INFO) logging.getLogger('connectionpool.py').setLevel(logging.INFO) SCRIPT_PATH = os.path.dirname(os.path.realpath(__file__)) def pytest_addoption(parser): parser.addoption('--docker-base-name', default='sagemaker-tensorflow-scriptmode') parser.addoption('--tag', default=None) parser.addoption('--region', default='us-west-2') parser.addoption('--framework-version', default='') parser.addoption('--processor', default='cpu', choices=['cpu', 'gpu', 'cpu,gpu']) parser.addoption('--py-version', default='3', choices=['2', '3', '2,3', '37']) parser.addoption('--account-id', default='142577830533') parser.addoption('--instance-type', default=None) parser.addoption('--generate-coverage-doc', default=False, action='store_true', help='use this option to generate test coverage doc') parser.addoption( "--efa", action="store_true", default=False, help="Run only efa tests", ) def pytest_configure(config): config.addinivalue_line("markers", "efa(): explicitly mark to run efa tests") def pytest_runtest_setup(item): if item.config.getoption("--efa"): efa_tests = [mark for mark in item.iter_markers(name="efa")] if not efa_tests: pytest.skip("Skipping non-efa tests") def pytest_collection_modifyitems(session, config, items): if config.getoption("--generate-coverage-doc"): from test.test_utils.test_reporting import TestReportGenerator report_generator = TestReportGenerator(items, is_sagemaker=True) report_generator.generate_coverage_doc(framework="tensorflow_2", job_type="training") def pytest_configure(config): os.environ['TEST_PY_VERSIONS'] = config.getoption('--py-version') os.environ['TEST_PROCESSORS'] = config.getoption('--processor') @pytest.fixture(scope='session') def docker_base_name(request): return request.config.getoption('--docker-base-name') @pytest.fixture(scope='session') def region(request): return request.config.getoption('--region') @pytest.fixture(scope='session') def framework_version(request): return request.config.getoption('--framework-version') @pytest.fixture def tag(request, framework_version, processor, py_version): provided_tag = request.config.getoption('--tag') default_tag = '{}-{}-py{}'.format(framework_version, processor, py_version) return provided_tag if provided_tag is not None else default_tag @pytest.fixture(scope='session') def sagemaker_session(region): return Session(boto_session=boto3.Session(region_name=region)) @pytest.fixture(scope='session') def sagemaker_local_session(region): return LocalSession(boto_session=boto3.Session(region_name=region)) @pytest.fixture(scope='session') def account_id(request): return request.config.getoption('--account-id') @pytest.fixture def instance_type(request, processor): provided_instance_type = request.config.getoption('--instance-type') default_instance_type = 'ml.c4.xlarge' if processor == 'cpu' else 'ml.p2.xlarge' return provided_instance_type if provided_instance_type is not None else default_instance_type @pytest.fixture() def py_version(): if 'TEST_PY_VERSIONS' in os.environ: return os.environ['TEST_PY_VERSIONS'].split(',') return None @pytest.fixture() def processor(): if 'TEST_PROCESSORS' in os.environ: return os.environ['TEST_PROCESSORS'].split(',') return None @pytest.fixture(autouse=True) def skip_by_device_type(request, processor): is_gpu = (processor == 'gpu') if (request.node.get_closest_marker('skip_gpu') and is_gpu) or \ (request.node.get_closest_marker('skip_cpu') and not is_gpu): pytest.skip('Skipping because running on \'{}\' instance'.format(processor)) @pytest.fixture(autouse=True) def skip_gpu_instance_restricted_regions(region, instance_type): if (region in NO_P2_REGIONS and instance_type.startswith('ml.p2')) or \ (region in NO_P3_REGIONS and instance_type.startswith('ml.p3')): pytest.skip('Skipping GPU test in region {}'.format(region)) @pytest.fixture def docker_image(docker_base_name, tag): return '{}:{}'.format(docker_base_name, tag) @pytest.fixture def ecr_image(account_id, docker_base_name, tag, region): registry = get_ecr_registry(account_id, region) return '{}/{}:{}'.format(registry, docker_base_name, tag) @pytest.fixture(autouse=True) def skip_py2_containers(request, tag): if request.node.get_closest_marker('skip_py2_containers'): if 'py2' in tag: pytest.skip('Skipping python2 container with tag {}'.format(tag))
the-stack_106_18377
_base_ = './retinanet_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
the-stack_106_18379
import scipy.ndimage.filters import pyredner import numpy as np import torch pyredner.set_use_gpu(torch.cuda.is_available()) scene = pyredner.load_mitsuba('scenes/bunny_box.xml') scene.shapes[-1].vertices += torch.tensor([0, 0.01, 0], device = pyredner.get_device()) args=pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 4, max_bounces = 6) render = pyredner.RenderFunction.apply # Render our target. The first argument is the seed for RNG in the renderer. img = render(0, *args) pyredner.imwrite(img.cpu(), 'results/test_bunny_box/target.exr') pyredner.imwrite(img.cpu(), 'results/test_bunny_box/target.png') target = pyredner.imread('results/test_bunny_box/target.exr') if pyredner.get_use_gpu(): target = target.cuda(device = pyredner.get_device()) bunny_vertices = scene.shapes[-1].vertices.clone() bunny_translation = torch.tensor([0.1,0.4,0.1], device = pyredner.get_device(), requires_grad=True) bunny_rotation = torch.tensor([-0.2,0.1,-0.1], device = pyredner.get_device(), requires_grad=True) bunny_rotation_matrix = pyredner.gen_rotate_matrix(bunny_rotation) scene.shapes[-1].vertices = \ (bunny_vertices-torch.mean(bunny_vertices, 0))@torch.t(bunny_rotation_matrix) + \ torch.mean(bunny_vertices, 0) + bunny_translation args=pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 4, max_bounces = 6) img = render(1, *args) pyredner.imwrite(img.cpu(), 'results/test_bunny_box/init.exr') pyredner.imwrite(img.cpu(), 'results/test_bunny_box/init.png') optimizer = torch.optim.Adam([bunny_translation, bunny_rotation], lr=1e-2) for t in range(200): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image bunny_rotation_matrix = pyredner.gen_rotate_matrix(bunny_rotation) scene.shapes[-1].vertices = \ (bunny_vertices-torch.mean(bunny_vertices, 0))@torch.t(bunny_rotation_matrix) + \ torch.mean(bunny_vertices, 0) + bunny_translation args=pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 4, max_bounces = 6) img = render(t+1, *args) pyredner.imwrite(img.cpu(), 'results/test_bunny_box/iter_{}.png'.format(t)) dirac = np.zeros([7,7], dtype=np.float32) dirac[3,3] = 1.0 dirac = torch.from_numpy(dirac) f = np.zeros([3, 3, 7, 7], dtype=np.float32) gf = scipy.ndimage.filters.gaussian_filter(dirac, 1.0) f[0, 0, :, :] = gf f[1, 1, :, :] = gf f[2, 2, :, :] = gf f = torch.from_numpy(f) if pyredner.get_use_gpu(): f = f.cuda(device = pyredner.get_device()) m = torch.nn.AvgPool2d(2) res = 256 diff_0 = (img - target).view(1, res, res, 3).permute(0, 3, 2, 1) diff_1 = m(torch.nn.functional.conv2d(diff_0, f, padding=3)) # 128 x 128 diff_2 = m(torch.nn.functional.conv2d(diff_1, f, padding=3)) # 64 x 64 diff_3 = m(torch.nn.functional.conv2d(diff_2, f, padding=3)) # 32 x 32 diff_4 = m(torch.nn.functional.conv2d(diff_3, f, padding=3)) # 16 x 16 loss = diff_0.pow(2).sum() / (res*res) + \ diff_1.pow(2).sum() / ((res/2)*(res/2)) + \ diff_2.pow(2).sum() / ((res/4)*(res/4)) + \ diff_3.pow(2).sum() / ((res/8)*(res/8)) + \ diff_4.pow(2).sum() / ((res/16)*(res/16)) print('loss:', loss.item()) loss.backward() print('bunny_translation.grad:', bunny_translation.grad) print('bunny_rotation.grad:', bunny_rotation.grad) optimizer.step() print('bunny_translation:', bunny_translation) print('bunny_rotation:', bunny_rotation) from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/bunny_box/iter_%d.png", "-vb", "20M", "results/bunny_box/out.mp4"])
the-stack_106_18382
#! -*- coding: utf-8 -*- # 自定义层 import tensorflow as tf from bert4keras.backend import keras, K, is_string from bert4keras.backend import get_all_attributes # 等价于 from keras.layers import * locals().update(get_all_attributes(keras.layers)) initializers = keras.initializers activations = keras.activations def sequence_masking(x, mask, mode=0, axis=None, heads=1): """为序列条件mask的函数 mask: 形如(batch_size, seq_len)的0-1矩阵; mode: 如果是0,则直接乘以mask; 如果是1,则在padding部分减去一个大正数。 axis: 序列所在轴,默认为1; heads: 相当于batch这一维要被重复的次数。 """ if mask is None or mode not in [0, 1]: return x else: if heads is not 1: mask = K.expand_dims(mask, 1) mask = K.tile(mask, (1, heads, 1)) mask = K.reshape(mask, (-1, K.shape(mask)[2])) if axis is None: axis = 1 if axis == -1: axis = K.ndim(x) - 1 assert axis > 0, 'axis muse be greater than 0' for _ in range(axis - 1): mask = K.expand_dims(mask, 1) for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1): mask = K.expand_dims(mask, K.ndim(mask)) if mode == 0: return x * mask else: return x - (1 - mask) * 1e12 class MultiHeadAttention(Layer): """多头注意力机制 """ def __init__(self, heads, head_size, key_size=None, kernel_initializer='glorot_uniform', **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.heads = heads self.head_size = head_size self.out_dim = heads * head_size self.key_size = key_size if key_size else head_size self.kernel_initializer = initializers.get(kernel_initializer) def build(self, input_shape): super(MultiHeadAttention, self).build(input_shape) self.q_dense = Dense(units=self.key_size * self.heads, kernel_initializer=self.kernel_initializer) self.k_dense = Dense(units=self.key_size * self.heads, kernel_initializer=self.kernel_initializer) self.v_dense = Dense(units=self.out_dim, kernel_initializer=self.kernel_initializer) self.o_dense = Dense(units=self.out_dim, kernel_initializer=self.kernel_initializer) def call(self, inputs, q_mask=False, v_mask=False, a_mask=False): """实现多头注意力 q_mask: 对输入的query序列的mask。 主要是将输出结果的padding部分置0。 v_mask: 对输入的value序列的mask。 主要是防止attention读取到padding信息。 a_mask: 对attention矩阵的mask。 不同的attention mask对应不同的应用。 """ q, k, v = inputs[:3] # 处理mask idx = 3 if q_mask: q_mask = inputs[idx] idx += 1 else: q_mask = None if v_mask: v_mask = inputs[idx] idx += 1 else: v_mask = None if a_mask: if len(inputs) > idx: a_mask = inputs[idx] else: a_mask = 'history_only' else: a_mask = None # 线性变换 qw = self.q_dense(q) kw = self.k_dense(k) vw = self.v_dense(v) # 形状变换 qw = K.reshape(qw, (-1, K.shape(q)[1], self.heads, self.key_size)) kw = K.reshape(kw, (-1, K.shape(k)[1], self.heads, self.key_size)) vw = K.reshape(vw, (-1, K.shape(v)[1], self.heads, self.head_size)) # 维度置换 qw = K.permute_dimensions(qw, (0, 2, 1, 3)) kw = K.permute_dimensions(kw, (0, 2, 1, 3)) vw = K.permute_dimensions(vw, (0, 2, 1, 3)) # 转为三阶张量 qw = K.reshape(qw, (-1, K.shape(q)[1], self.key_size)) kw = K.reshape(kw, (-1, K.shape(k)[1], self.key_size)) vw = K.reshape(vw, (-1, K.shape(v)[1], self.head_size)) # Attention a = K.batch_dot(qw, kw, [2, 2]) / self.key_size**0.5 a = sequence_masking(a, v_mask, 1, -1, self.heads) if a_mask is not None: if is_string(a_mask) and a_mask == 'history_only': ones = K.ones_like(a[:1]) a_mask = (ones - tf.linalg.band_part(ones, -1, 0)) * 1e12 a = a - a_mask else: a = a - (1 - a_mask) * 1e12 a = K.softmax(a) # 完成输出 o = K.batch_dot(a, vw, [2, 1]) o = K.reshape(o, (-1, self.heads, K.shape(q)[1], self.head_size)) o = K.permute_dimensions(o, (0, 2, 1, 3)) o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim)) o = self.o_dense(o) o = sequence_masking(o, q_mask, 0) return o def compute_output_shape(self, input_shape): return (input_shape[0][0], input_shape[0][1], self.out_dim) def get_config(self): config = { 'heads': self.heads, 'head_size': self.head_size, 'key_size': self.key_size, 'kernel_initializer': initializers.serialize(self.kernel_initializer), } base_config = super(MultiHeadAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) class LayerNormalization(Layer): """实现基本的Layer Norm,只保留核心运算部分 """ def __init__(self, **kwargs): super(LayerNormalization, self).__init__(**kwargs) self.epsilon = K.epsilon() * K.epsilon() def build(self, input_shape): super(LayerNormalization, self).build(input_shape) shape = (input_shape[-1], ) self.gamma = self.add_weight(shape=shape, initializer='ones', name='gamma') self.beta = self.add_weight(shape=shape, initializer='zeros', name='beta') def call(self, inputs): mean = K.mean(inputs, axis=-1, keepdims=True) variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True) std = K.sqrt(variance + self.epsilon) outputs = (inputs - mean) / std outputs *= self.gamma outputs += self.beta return outputs class PositionEmbedding(Layer): """定义位置Embedding,这里的Embedding是可训练的。 """ def __init__(self, input_dim, output_dim, merge_mode='add', embeddings_initializer='zeros', **kwargs): super(PositionEmbedding, self).__init__(**kwargs) self.input_dim = input_dim self.output_dim = output_dim self.merge_mode = merge_mode self.embeddings_initializer = initializers.get(embeddings_initializer) def build(self, input_shape): super(PositionEmbedding, self).build(input_shape) self.embeddings = self.add_weight( name='embeddings', shape=(self.input_dim, self.output_dim), initializer=self.embeddings_initializer, ) def call(self, inputs): input_shape = K.shape(inputs) batch_size, seq_len = input_shape[0], input_shape[1] pos_embeddings = self.embeddings[:seq_len] pos_embeddings = K.expand_dims(pos_embeddings, 0) pos_embeddings = K.tile(pos_embeddings, [batch_size, 1, 1]) if self.merge_mode == 'add': return inputs + pos_embeddings else: return K.concatenate([inputs, pos_embeddings]) def compute_output_shape(self, input_shape): if self.merge_mode == 'add': return input_shape else: return input_shape[:2] + (input_shape[2] + self.v_dim, ) def get_config(self): config = { 'input_dim': self.input_dim, 'output_dim': self.output_dim, 'merge_mode': self.merge_mode, 'embeddings_initializer': initializers.serialize(self.embeddings_initializer), } base_config = super(PositionEmbedding, self).get_config() return dict(list(base_config.items()) + list(config.items())) class FeedForward(Layer): """FeedForward层,其实就是两个Dense层的叠加 """ def __init__(self, units, activation='relu', kernel_initializer='glorot_uniform', **kwargs): super(FeedForward, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.kernel_initializer = initializers.get(kernel_initializer) def build(self, input_shape): super(FeedForward, self).build(input_shape) output_dim = input_shape[-1] self.dense_1 = Dense(units=self.units, activation=self.activation, kernel_initializer=self.kernel_initializer) self.dense_2 = Dense(units=output_dim, kernel_initializer=self.kernel_initializer) def call(self, inputs): x = self.dense_1(inputs) x = self.dense_2(x) return x def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), } base_config = super(FeedForward, self).get_config() return dict(list(base_config.items()) + list(config.items())) class EmbeddingDense(Layer): """运算跟Dense一致,但kernel用Embedding层的embeddings矩阵。 根据Embedding层的名字来搜索定位Embedding层。 """ def __init__(self, embedding_name, activation='softmax', **kwargs): super(EmbeddingDense, self).__init__(**kwargs) self.embedding_name = embedding_name self.activation = activations.get(activation) def call(self, inputs): if not hasattr(self, 'kernel'): embedding_layer = inputs._keras_history[0] if embedding_layer.name != self.embedding_name: def recursive_search(layer): """递归向上搜索,根据名字找Embedding层 """ last_layer = layer._inbound_nodes[0].inbound_layers if isinstance(last_layer, list): if len(last_layer) == 0: return None else: last_layer = last_layer[0] if last_layer.name == self.embedding_name: return last_layer else: return recursive_search(last_layer) embedding_layer = recursive_search(embedding_layer) if embedding_layer is None: raise Exception('Embedding layer not found') self.kernel = K.transpose(embedding_layer.embeddings) self.units = K.int_shape(self.kernel)[1] self.bias = self.add_weight(name='bias', shape=(self.units, ), initializer='zeros') outputs = K.dot(inputs, self.kernel) outputs = K.bias_add(outputs, self.bias) outputs = self.activation(outputs) return outputs def compute_output_shape(self, input_shape): return input_shape[:-1] + (self.units, ) def get_config(self): config = { 'embedding_name': self.embedding_name, 'activation': activations.serialize(self.activation), } base_config = super(EmbeddingDense, self).get_config() return dict(list(base_config.items()) + list(config.items())) custom_objects = { 'MultiHeadAttention': MultiHeadAttention, 'LayerNormalization': LayerNormalization, 'PositionEmbedding': PositionEmbedding, 'FeedForward': FeedForward, 'EmbeddingDense': EmbeddingDense } keras.utils.get_custom_objects().update(custom_objects)
the-stack_106_18383
from tensorflow.keras import backend def get_center_crop_location(source, destination): """ Returns the center crop area of source which matches with the destination size Returns: ((top_crop, bottom_crop), (left_crop, right_crop)) """ src_shape = backend.int_shape(source) dst_shape = backend.int_shape(destination) # Height to identify top and bottom crop src_height = src_shape[1] dst_height = dst_shape[1] crop_height = src_height - dst_height assert crop_height >= 0 half_height = int(crop_height / 2) if (crop_height % 2) != 0: # uneven cropping crop_top, crop_bottom = half_height, half_height + 1 else: # even cropping crop_top, crop_bottom = half_height, half_height # Width to identify left and right crop src_width = src_shape[2] dst_width = dst_shape[2] crop_width = src_width - dst_width assert crop_width >= 0 half_width = int(crop_width/2) if (crop_width % 2) != 0: # uneven cropping crop_left, crop_right = half_width, half_width + 1 else: # even cropping crop_left, crop_right = half_width, half_width # Return the final cropping rectangle return (crop_top, crop_bottom), (crop_left, crop_right)
the-stack_106_18386
# -*- coding: utf8 -*- from __future__ import unicode_literals, division, absolute_import from __builtin__ import object import logging import mock import pytest from flexget.plugins.api_t411 import T411RestClient, T411ObjectMapper, T411Proxy, FriendlySearchQuery, ApiError from flexget.utils.qualities import Requirements log = logging.getLogger('test_t411') class MockRestClient(object): search_result = { "query": "Mickey", "total": 1, "offset": 0, "limit": 10, "torrents": [{ "id": 123123, "name": "Mickey vs Donald S01E01 1080p dd5.1 10bit", "category": "14", "seeders": "11", "leechers": "2", "comments": "8", "isVerified": "1", "added": "2013-01-15 16:14:14", "size": "2670809119", "times_completed": "1256", "owner": "7589510", "categoryname": "Animation", "categoryimage": "t411-animation.png", "username": "MegaUsername", "privacy": "normal" }] } cat_result = { "12": { # Category ID index "id": "12", # Category ID "pid": "0", # Parent's catogory ID "name": "video", "cats": { # Subcategories "13": {"id": "13", "pid": "12", "name": "films"}, "14": {"id": "14", "pid": "12", "name": "cartoons"} } } } term_result = { "14": { # Category ID "11": { # Term type ID "type": "Application - Genre", # Term type definition "mode": "single", "terms": { # Terms of the term type "123": "Antivirus", "345": "Torrent clients" } }, "7": { "type": "Vidéo - Qualité", "mode": "single", "terms": {"12": "TVripHD 720 [Rip HD depuis Source HD]"} } } } details_result = { "id": 123123, "name": "Mock Title 720p", "category": 14, "terms": { "Application - Genre": "Antivirus", "Vidéo - Qualité": "TVripHD 720 [Rip HD depuis Source HD]" } } def __init__(self): self.details_called = False self.api_token = "LOL:CAT:TOKEN" def auth(self): return def is_authenticated(self): return True def retrieve_category_tree(self): return MockRestClient.cat_result def retrieve_terms_tree(self): return MockRestClient.term_result def search(self, query): self.last_query = query return MockRestClient.search_result def details(self, torrent_id): assert torrent_id == 123123 self.details_called = True return MockRestClient.details_result class TestRestClient(object): credentials = {'username': 'set', 'password': 'this'} api_token = 'you must set this value for online test' def build_unauthenticated_client(self): client = T411RestClient() client.credentials = TestRestClient.credentials del client.web_session.headers['Accept-Encoding'] return client def build_authenticated_client(self): client = T411RestClient() client.set_api_token(TestRestClient.api_token) del client.web_session.headers['Accept-Encoding'] return client def test_init_state(self): client = self.build_unauthenticated_client() assert not client.is_authenticated() @pytest.mark.online def test_auth(self): client = self.build_unauthenticated_client() client.auth() assert client.is_authenticated(), 'Client is not authenticated (are you using mocked credentials online?)' @pytest.mark.online def test_retrieve_categories(self): client = self.build_authenticated_client() json_tree_categories = client.retrieve_category_tree() json_category = json_tree_categories.get('210') assert json_category is not None, 'Category with id 210 wasn\'t found' assert json_category.get('id') == '210' assert json_category.get('pid') == '0' assert json_category.get('name') == u'Film/Vidéo' json_sub_categories = json_category.get('cats') assert json_sub_categories is not None, 'Cannot found excepted subcategories' json_sub_category = json_sub_categories.get('631') assert json_sub_category is not None assert json_sub_category.get('name') == 'Film' @pytest.mark.online def test_retrieve_terms(self): client = self.build_authenticated_client() json_terms = client.retrieve_terms_tree() assert json_terms is not None assert json_terms.get('234') is not None term_type = json_terms.get('234').get('11') assert term_type is not None assert term_type.get('type') == 'Application - Genre' assert term_type.get('mode') == 'single' @pytest.mark.online def test_malformed_search_response(self): """ Search without expression produces server response that contains some error messages. This test check if this case is properly handled :return: """ client = self.build_authenticated_client() search_result = client.search({}) assert search_result.get('query') is None assert search_result.get('limit') == 10 @pytest.mark.online def test_error_message_handler(self): exception_was_raised = False client = T411RestClient() client.set_api_token('LEAVE:THIS:TOKEN:FALSE') del client.web_session.headers['Accept-Encoding'] try: client.details(666666) except ApiError as e: exception_was_raised = True assert e.code == 202 pass assert exception_was_raised class TestObjectMapper(object): def test_map_category(self): category = T411ObjectMapper().map_category({ u'pid': u'0', u'id': u'210', u'name': u'Film/Vidéo', u'cats': { u'631': {u'pid': u'210', u'id': u'631', u'name': u'Film'}, u'633': {u'pid': u'210', u'id': u'633', u'name': u'Concert'}, u'634': {u'pid': u'210', u'id': u'634', u'name': u'Documentaire'}, u'635': {u'pid': u'210', u'id': u'635', u'name': u'Spectacle'}, u'636': {u'pid': u'210', u'id': u'636', u'name': u'Sport'}, u'637': {u'pid': u'210', u'id': u'637', u'name': u'Animation Série'}, u'639': {u'pid': u'210', u'id': u'639', u'name': u'Emission TV'}, u'455': {u'pid': u'210', u'id': u'455', u'name': u'Animation'}, u'402': {u'pid': u'210', u'id': u'402', u'name': u'Vidéo-clips'}, u'433': {u'pid': u'210', u'id': u'433', u'name': u'Série TV'} } }) assert category.id == 210 assert category.parent_id is None assert category.name == u'Film/Vidéo' assert len(category.sub_categories) == 10 def test_map_term_type_tree(self): tree = { "234": { "11": { "type": "Application - Genre", "mode": "single", "terms": { "158": "Edition multim\u00e9dia", "126": "Administration", "190": "Utilitaire", "169": "Lecteur multim\u00e9dia", "137": "Aspiration de site", "180": "Registre", "148": "Communaut\u00e9" } }, "43": { "type": "Langue", "mode": "single", "terms": { "729": "Fran\u00e7ais", "730": "Anglais", "731": "Multi (Fran\u00e7ais inclus)", "830": "Japonais" } } } } category_to_term_type, term_types = T411ObjectMapper().map_term_type_tree(tree) assert (234, 11) in category_to_term_type assert (234, 43) in category_to_term_type assert term_types.has_key(11) assert term_types.has_key(43) assert term_types.get(11).mode == 'single' assert term_types.get(11).name == 'Application - Genre', \ 'Expected "Application - Genre", found "%s"' % term_types.get(11).name assert len(term_types.get(11).terms) == 7 assert term_types.get(11).terms[0].name == "Edition multimédia" class TestProxy(object): def test_offline_proxy(self): proxy = T411Proxy() proxy.rest_client = MockRestClient() assert not proxy.has_cached_criterias() proxy.synchronize_database() assert proxy.has_cached_criterias() assert 'cartoons' in proxy.all_category_names() query = FriendlySearchQuery() query.expression = "Mickey" query.category_name = "cartoons" query.term_names.append("Antivirus") assert proxy.search(query)[0]['t411_torrent_id'] == 123123 assert (11,123) in proxy.rest_client.last_query['terms'] assert proxy.rest_client.last_query['category_id'] == 14 assert proxy.rest_client.last_query['expression'] == 'Mickey' def test_details(self): proxy = T411Proxy() proxy.rest_client = MockRestClient() details = proxy.details(123123) assert proxy.rest_client.details_called == True assert details.name == "Mock Title 720p" assert details.terms[0].id == 12 # Session not still bound! assert details.terms[0].type.id == 7 proxy.rest_client.details_called = False proxy.details(123123) assert proxy.rest_client.details_called == False, 'Proxy not used the cache' class TestInputPlugin(object): config = """ tasks: uncached_db: series: - Mickey vs Donald t411: category: cartoons terms: - Antivirus t411_lookup: fill """ @mock.patch('flexget.plugins.api_t411.T411Proxy.set_credential') @mock.patch('flexget.plugins.api_t411.T411RestClient.search') @mock.patch('flexget.plugins.api_t411.T411RestClient.retrieve_terms_tree') @mock.patch('flexget.plugins.api_t411.T411RestClient.retrieve_category_tree') @mock.patch('flexget.plugins.api_t411.T411RestClient.details') def test_schema(self, mock_details, mock_cat, mock_term, mock_search, mock_auth, execute_task): mock_details.return_value = MockRestClient.details_result mock_cat.return_value = MockRestClient.cat_result mock_term.return_value = MockRestClient.term_result mock_search.return_value = MockRestClient.search_result mock_auth.return_value = None task = execute_task('uncached_db') log.debug(task.all_entries) assert len(task.all_entries) == 1 entry = task.all_entries[0] quality = entry.get('quality') assert quality is not None log.debug(quality) quality_tester = Requirements('1080p hdtv 10bit dd5.1') assert quality_tester.allows(quality)
the-stack_106_18388
import os import base64 import logging import binascii import datetime import traceback import urllib.request from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.x509.oid import ExtensionOID, NameOID, AuthorityInformationAccessOID from .certstore import CertStore from .crl import CRL from .errors import InvalidCertificateDataTypeException, InvalidCertificateException, InvalidCRLException class Cert(object): def __init__(self, cert_data, data_type, cert_store=CertStore()): self._cert = self._cert_load(cert_data, data_type) self._cert_store = cert_store self._subject = self._cert_subject() self._issuer = self._cert_issuer() self._fingerprint = self._cert_fingerprint() self._pub_key = self._cert_pub_key() self._subject_key_id = self._cert_subject_key_identifier() self._authority_key_id = self._cert_authority_key_identifier() self._root = self._cert_is_root() self._aia = self._cert_aia() self._ocsp = self._cert_ocsp() self._crl = self._cert_crl() self._revoked = self._cert_is_revoked() def _cert_load(self, cert_data, data_type): if data_type not in ('PEM', 'DER'): raise InvalidCertificateDataTypeException('certificate type %s unknown' % data_type) try: if data_type == "PEM": return x509.load_pem_x509_certificate(cert_data, default_backend()) elif data_type == "DER": return x509.load_der_x509_certificate(cert_data, default_backend()) except Exception as e: raise InvalidCertificateException('certificate cannot be loaded: %s' % str(e)) from e def _cert_subject(self): return ",".join([x.value for x in self._cert.subject.get_attributes_for_oid(NameOID.COMMON_NAME)]) def _cert_issuer(self): return ",".join([x.value for x in self._cert.issuer.get_attributes_for_oid(NameOID.COMMON_NAME)]) def _cert_is_root(self): if len(self._cert.subject) != len(self._cert.issuer): return False else: for sub_attr in self._cert.subject: iss_attrs = self._cert.issuer.get_attributes_for_oid(sub_attr.oid) if not sub_attr.value in [iss_attr.value for iss_attr in iss_attrs]: return False return True def _cert_pub_key(self): return self._cert.public_key() def _cert_fingerprint(self): return binascii.hexlify(self._cert.fingerprint(hashes.SHA256())).decode('utf-8') def __str__(self): return "subject=%s fingerprint=%s" % (self._subject, self._fingerprint) def _cert_subject_key_identifier(self): ski = None try: ski_ext = self._cert.extensions.get_extension_for_oid(ExtensionOID.SUBJECT_KEY_IDENTIFIER) ski = binascii.hexlify(ski_ext.value.digest).decode('utf-8') except x509.ExtensionNotFound: logging.debug("Subject Key Identifier extension not found for cert: %s" % self) return ski def _cert_authority_key_identifier(self): aki = None try: aki_ext = self._cert.extensions.get_extension_for_oid(ExtensionOID.AUTHORITY_KEY_IDENTIFIER) aki = binascii.hexlify(aki_ext.value.key_identifier).decode('utf-8') except x509.ExtensionNotFound: logging.debug("Authority Key Identifier extension not found for cert: %s" % self) return aki def _cert_aia(self): aia = None if self._cert and not self._root: aia_ext = self._cert.extensions.get_extension_for_oid(ExtensionOID.AUTHORITY_INFORMATION_ACCESS) for ad in aia_ext.value: if ad.access_method == AuthorityInformationAccessOID.CA_ISSUERS: aia_uri = ad.access_location.value aia_data = None try: with urllib.request.urlopen(aia_uri) as response: aia_data = response.read() if aia_data: aia = MyCert(aia_data, "DER", self._cert_store) break except Exception as e: logging.debug("%s AIA uri %s download error: %s" % (self.__str__(), aia_uri, e)) if aia == None: aia = self._cert_store.get_cert(self._issuer) return aia def _cert_ocsp(self): ocsp = None if self._cert and not self._root: ocsp_ext = self._cert.extensions.get_extension_for_oid(ExtensionOID.AUTHORITY_INFORMATION_ACCESS) for ad in ocsp_ext.value: if ad.access_method == AuthorityInformationAccessOID.OCSP: ocsp_uri = ad.access_location.value ocsp_data = None try: ocsp_req_builder = x509.ocsp.OCSPRequestBuilder() ocsp_req_builder = ocsp_req_builder.add_certificate(self._cert, self._aia.raw_cert(), hashes.SHA1()) ocsp_req = ocsp_req_builder.build() ocsp_req = base64.b64encode(ocsp_req.public_bytes(serialization.Encoding.DER)).decode('utf-8') ocsp_uri = ocsp_uri + '/' + ocsp_req with urllib.request.urlopen(ocsp_uri) as response: ocsp_data = response.read() if ocsp_data: ocsp = x509.ocsp.load_der_ocsp_response(ocsp_data) break except Exception as e: logging.debug("%s OCSP uri %s error: %s" % (self.__str__(), ocsp_uri, e)) #traceback.print_exc() return ocsp def _cert_crl(self): crl = None if self._cert and not self._root: crl_ext = self._cert.extensions.get_extension_for_oid(ExtensionOID.CRL_DISTRIBUTION_POINTS) for dp in crl_ext.value: if crl: continue for crl_uri in dp.full_name: crl_uri = crl_uri.value crl_data = None if crl_uri.endswith('.crl'): try: with urllib.request.urlopen(crl_uri) as response: crl_data = response.read() if crl_data: crl = MyCRL(crl_data, "DER") break except Exception as e: logging.debug("%s CRL uri %s error: %s" %(self.__str__(), crl_uri, e)) #traceback.print_exc() return crl def is_expired(self): if self._cert: d = datetime.datetime.now() return not ((d > self._cert.not_valid_before) and (d < self._cert.not_valid_after)) return None def cert_pub_key(self): return self._pub_key def _cert_is_revoked(self): if self._cert: if self._root: return False if self._ocsp and self._ocsp.response_status == x509.ocsp.OCSPResponseStatus.SUCCESSFUL: # Add OCSP response signature verification and time check if ocsp.certificate_status == x509.ocsp.OCSPCertStatus.REVOKED: return True elif ocsp.certificate_status == x509.ocsp.OCSPCertStatus.UNKNOWN: return False elif ocsp.certificate_status == x509.ocsp.OCSPCertStatus.GOOD: return False if self._crl: if self._aia: if self._crl.is_expired(): raise InvalidCRLException("%s CRL has expired" % (self.__str__())) if self._crl.is_valid(self._aia.cert_pub_key()): return self._crl.is_revoked(self._cert.serial_number) else: raise InvalidCRLException("%s CRL cannot be verified with cert %s" % (self.__str__(), self.aia.__str__())) return None def is_root(self): return self._root; def is_revoked(self): return self._revoked; def ocsp_revoked(self): if self._cert: if self._ocsp: return self._ocsp.certificate_status == x509.ocsp.OCSPCertStatus.REVOKED return None def cert_is_valid(self): valid = True if self._cert: c = self while not c == None and valid: logging.debug("Checking cert: %s" % c) logging.debug("\troot: %s" % c.is_root()) logging.debug("\texpired: %s" % c.is_expired()) logging.debug("\trevoked: %s" % c.is_revoked()) logging.debug("\tocsp response: %s" % c.ocsp_revoked()) if c.is_expired(): valid = False if not c.is_root() and c.is_revoked() == True: valid = False if not c.is_root() and c._aia == None: valid = False c = c._aia else: valid = False return valid def raw_cert(self): return self._cert def cert_subject(self): return self._subject def cert_fingerprint(self): return self._fingerprint
the-stack_106_18389
from __future__ import absolute_import, division, print_function try: import boost_adaptbx.boost.python as bp except Exception: ext = None else: ext = bp.import_ext("fable_ext", optional=True) from six.moves import range # compare with fem/utils/string.hpp def py_fem_utils_unsigned_integer_scan(code, start=0, stop=-1): i = start while (i < stop): c = code[i] if (not c.isdigit()): break i += 1 if (i == start): return -1 return i # compare with ext.cpp def py_ext_get_code_stop(code, stop): len_code = len(code) if (stop < 0): return len_code assert stop <= len_code return stop # compare with ext.cpp def py_unsigned_integer_scan(code, start=0, stop=-1): return py_fem_utils_unsigned_integer_scan( code=code, start=start, stop=py_ext_get_code_stop(code, stop)) # compare with ext.cpp def py_floating_point_scan_after_exponent_char(code, start=0, stop=-1): code_stop = py_ext_get_code_stop(code=code, stop=stop) i = start if (i < code_stop): c = code[i] if (c == '+' or c == '-'): i += 1 return py_unsigned_integer_scan(code=code, start=i, stop=stop) return -1 # compare with ext.cpp def py_floating_point_scan_after_dot(code, start=0, stop=-1): code_stop = py_ext_get_code_stop(code=code, stop=stop) i = py_unsigned_integer_scan(code=code, start=start, stop=stop) if (i < 0): i = start if (i < code_stop): c = code[i] if (c == 'e' or c == 'd'): return py_floating_point_scan_after_exponent_char( code=code, start=i+1, stop=stop) return i # compare with ext.cpp def py_identifier_scan(code, start=0, stop=-1): code_stop = py_ext_get_code_stop(code=code, stop=stop) i = start if (i < code_stop): c = code[i]; i += 1 if ((c < 'a' or c > 'z') and c != '_'): return -1 while (i < code_stop): c = code[i]; i += 1 if ( (c < 'a' or c > 'z') and (c < '0' or c > '9') and c != '_'): return i-1 return i return -1 def py_find_closing_parenthesis(code, start=0, stop=-1): code_stop = py_ext_get_code_stop(code=code, stop=stop) n_inner = 0 for i in range(start, code_stop): c = code[i] if (c == ')'): if (n_inner == 0): return i n_inner -= 1 elif (c == '('): n_inner += 1 return -1 if (ext is not None): from fable_ext import * else: unsigned_integer_scan = py_unsigned_integer_scan floating_point_scan_after_exponent_char = \ py_floating_point_scan_after_exponent_char floating_point_scan_after_dot = py_floating_point_scan_after_dot identifier_scan = py_identifier_scan find_closing_parenthesis = py_find_closing_parenthesis class SemanticError(Exception): pass
the-stack_106_18392
from spotify_api import API token = open('token.txt', 'r').read() api = API(token) targetUser = api.get_user(input("Enter User ID: ")) playlists = targetUser.get_playlists() print(f'Playlist Analysis for "{targetUser.name}":\n') tot = [] for playlist in playlists: exp = [] for track in playlist.get_tracks(): exp.append(track.explicit) track.analyze() print(track.tempo) print(f'Playlist: {playlist.name}\n{exp.count(True)}/{len(exp)} ({exp.count(True)/len(exp)*100:.2f}%) Explicit!\n') tot.extend(exp) print(f'User "{targetUser.name}" Total:\n{tot.count(True)}/{len(tot)} ({tot.count(True)/len(tot)*100:.2f}%) Explicit!')
the-stack_106_18393
import math import numpy as np import scipy.interpolate # motion parameter L = 1.0 # wheel base ds = 0.1 # course distanse v = 1 # (5.4 / 3.6) # velocity [m/s] | [km/h]/3.6 = [m/s] # MoCap room # [x_min, x_max, y_min, y_max] # play_area=[-2.2, 2.3, -1.97, 1.58] class State: def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): self.x = x self.y = y self.yaw = yaw self.v = v def pi_2_pi(angle): return (angle + math.pi) % (2 * math.pi) - math.pi def update(state, v, delta, dt, L): state.v = v state.x = state.x + state.v * math.cos(state.yaw) * dt state.y = state.y + state.v * math.sin(state.yaw) * dt state.yaw = state.yaw + state.v / L * math.tan(delta) * dt state.yaw = pi_2_pi(state.yaw) # in_degree = str(np.rad2deg(state.yaw))[1:5] # print(f"\n--> Yaw: {in_degree}°") return state def generate_trajectory(s, km, kf, k0): n = s / ds time = s / v # [s] if isinstance(time, type(np.array([]))): time = time[0] if isinstance(km, type(np.array([]))): km = km[0] if isinstance(kf, type(np.array([]))): kf = kf[0] tk = np.array([0.0, time / 2.0, time]) kk = np.array([k0, km, kf]) t = np.arange(0.0, time, time / n) fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic") kp = [fkp(ti) for ti in t] dt = float(time / n) # plt.plot(t, kp) # plt.show() state = State() x, y, yaw = [state.x], [state.y], [state.yaw] for ikp in kp: state = update(state, v, ikp, dt, L) x.append(state.x) y.append(state.y) yaw.append(state.yaw) return x, y, yaw, dt def generate_last_state(s, km, kf, k0): n = s / ds time = s / v # [s] if isinstance(time, type(np.array([]))): time = time[0] if isinstance(km, type(np.array([]))): km = km[0] if isinstance(kf, type(np.array([]))): kf = kf[0] tk = np.array([0.0, time / 2.0, time]) kk = np.array([k0, km, kf]) t = np.arange(0.0, time, time / n) fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic") kp = [fkp(ti) for ti in t] dt = time / n # plt.plot(t, kp) # plt.show() state = State() _ = [update(state, v, ikp, dt, L) for ikp in kp] return state.x, state.y, state.yaw
the-stack_106_18396
# -*- coding: utf-8 -*- # # Copyright © 2011-2013 Pierre Raybaut # Licensed under the terms of the MIT License # (see spyderlib/__init__.py for details) """ Spyder base configuration management As opposed to spyderlib/config.py, this configuration script deals exclusively with non-GUI features configuration only (in other words, we won't import any PyQt object here, avoiding any sip API incompatibility issue in spyderlib's non-gui modules) """ from __future__ import print_function import os.path as osp import os import sys # Local imports from spyderlib import __version__ from spyderlib.utils import encoding from spyderlib.py3compat import (is_unicode, TEXT_TYPES, INT_TYPES, PY3, to_text_string, is_text_string) #============================================================================== # Only for development #============================================================================== # To activate/deactivate certain things for development # SPYDER_DEV is (and *only* has to be) set in bootstrap.py DEV = os.environ.get('SPYDER_DEV') # For testing purposes # SPYDER_TEST can be set using the --test option of bootstrap.py TEST = os.environ.get('SPYDER_TEST') #============================================================================== # Debug helpers #============================================================================== STDOUT = sys.stdout STDERR = sys.stderr def _get_debug_env(): debug_env = os.environ.get('SPYDER_DEBUG', '') if not debug_env.isdigit(): debug_env = bool(debug_env) return int(debug_env) DEBUG = _get_debug_env() def debug_print(*message): """Output debug messages to stdout""" if DEBUG: ss = STDOUT print(*message, file=ss) #============================================================================== # Configuration paths #============================================================================== # Spyder settings dir if TEST is None: SUBFOLDER = '.spyder%s' % __version__.split('.')[0] else: SUBFOLDER = 'spyder_test' # We can't have PY2 and PY3 settings in the same dir because: # 1. This leads to ugly crashes and freezes (e.g. by trying to # embed a PY2 interpreter in PY3) # 2. We need to save the list of installed modules (for code # completion) separately for each version if PY3: SUBFOLDER = SUBFOLDER + '-py3' def get_home_dir(): """ Return user home directory """ try: # expanduser() returns a raw byte string which needs to be # decoded with the codec that the OS is using to represent file paths. path = encoding.to_unicode_from_fs(osp.expanduser('~')) except: path = '' for env_var in ('HOME', 'USERPROFILE', 'TMP'): if osp.isdir(path): break # os.environ.get() returns a raw byte string which needs to be # decoded with the codec that the OS is using to represent environment # variables. path = encoding.to_unicode_from_fs(os.environ.get(env_var, '')) if path: return path else: raise RuntimeError('Please define environment variable $HOME') def get_conf_path(filename=None): """Return absolute path for configuration file with specified filename""" if TEST is None: conf_dir = osp.join(get_home_dir(), SUBFOLDER) else: import tempfile conf_dir = osp.join(tempfile.gettempdir(), SUBFOLDER) if not osp.isdir(conf_dir): os.mkdir(conf_dir) if filename is None: return conf_dir else: return osp.join(conf_dir, filename) def get_module_path(modname): """Return module *modname* base path""" return osp.abspath(osp.dirname(sys.modules[modname].__file__)) def get_module_data_path(modname, relpath=None, attr_name='DATAPATH'): """Return module *modname* data path Note: relpath is ignored if module has an attribute named *attr_name* Handles py2exe/cx_Freeze distributions""" datapath = getattr(sys.modules[modname], attr_name, '') if datapath: return datapath else: datapath = get_module_path(modname) parentdir = osp.join(datapath, osp.pardir) if osp.isfile(parentdir): # Parent directory is not a directory but the 'library.zip' file: # this is either a py2exe or a cx_Freeze distribution datapath = osp.abspath(osp.join(osp.join(parentdir, osp.pardir), modname)) if relpath is not None: datapath = osp.abspath(osp.join(datapath, relpath)) return datapath def get_module_source_path(modname, basename=None): """Return module *modname* source path If *basename* is specified, return *modname.basename* path where *modname* is a package containing the module *basename* *basename* is a filename (not a module name), so it must include the file extension: .py or .pyw Handles py2exe/cx_Freeze distributions""" srcpath = get_module_path(modname) parentdir = osp.join(srcpath, osp.pardir) if osp.isfile(parentdir): # Parent directory is not a directory but the 'library.zip' file: # this is either a py2exe or a cx_Freeze distribution srcpath = osp.abspath(osp.join(osp.join(parentdir, osp.pardir), modname)) if basename is not None: srcpath = osp.abspath(osp.join(srcpath, basename)) return srcpath def is_py2exe_or_cx_Freeze(): """Return True if this is a py2exe/cx_Freeze distribution of Spyder""" return osp.isfile(osp.join(get_module_path('spyderlib'), osp.pardir)) SCIENTIFIC_STARTUP = get_module_source_path('spyderlib', 'scientific_startup.py') #============================================================================== # Image path list #============================================================================== IMG_PATH = [] def add_image_path(path): if not osp.isdir(path): return global IMG_PATH IMG_PATH.append(path) for _root, dirs, _files in os.walk(path): for dir in dirs: IMG_PATH.append(osp.join(path, dir)) add_image_path(get_module_data_path('spyderlib', relpath='images')) from spyderlib.otherplugins import PLUGIN_PATH if PLUGIN_PATH is not None: add_image_path(osp.join(PLUGIN_PATH, 'images')) def get_image_path(name, default="not_found.png"): """Return image absolute path""" for img_path in IMG_PATH: full_path = osp.join(img_path, name) if osp.isfile(full_path): return osp.abspath(full_path) if default is not None: return osp.abspath(osp.join(img_path, default)) #============================================================================== # Translations #============================================================================== def get_translation(modname, dirname=None): """Return translation callback for module *modname*""" if dirname is None: dirname = modname locale_path = get_module_data_path(dirname, relpath="locale", attr_name='LOCALEPATH') # fixup environment var LANG in case it's unknown if "LANG" not in os.environ: import locale lang = locale.getdefaultlocale()[0] if lang is not None: os.environ["LANG"] = lang import gettext try: _trans = gettext.translation(modname, locale_path, codeset="utf-8") lgettext = _trans.lgettext def translate_gettext(x): if not PY3 and is_unicode(x): x = x.encode("utf-8") y = lgettext(x) if is_text_string(y) and PY3: return y else: return to_text_string(y, "utf-8") return translate_gettext except IOError as _e: # analysis:ignore #print "Not using translations (%s)" % _e def translate_dumb(x): if not is_unicode(x): return to_text_string(x, "utf-8") return x return translate_dumb # Translation callback _ = get_translation("spyderlib") #============================================================================== # Namespace Browser (Variable Explorer) configuration management #============================================================================== def get_supported_types(): """ Return a dictionnary containing types lists supported by the namespace browser: dict(picklable=picklable_types, editable=editables_types) See: get_remote_data function in spyderlib/widgets/externalshell/monitor.py get_internal_shell_filter method in namespacebrowser.py Note: If you update this list, don't forget to update doc/variablexplorer.rst """ from datetime import date editable_types = [int, float, complex, list, dict, tuple, date ] + list(TEXT_TYPES) + list(INT_TYPES) try: from numpy import ndarray, matrix, generic editable_types += [ndarray, matrix, generic] except ImportError: pass try: from pandas import DataFrame, TimeSeries editable_types += [DataFrame, TimeSeries] except ImportError: pass picklable_types = editable_types[:] try: from spyderlib.pil_patch import Image editable_types.append(Image.Image) except ImportError: pass return dict(picklable=picklable_types, editable=editable_types) # Variable explorer display / check all elements data types for sequences: # (when saving the variable explorer contents, check_all is True, # see widgets/externalshell/namespacebrowser.py:NamespaceBrowser.save_data) CHECK_ALL = False #XXX: If True, this should take too much to compute... EXCLUDED_NAMES = ['nan', 'inf', 'infty', 'little_endian', 'colorbar_doc', 'typecodes', '__builtins__', '__main__', '__doc__', 'NaN', 'Inf', 'Infinity', 'sctypes', 'rcParams', 'rcParamsDefault', 'sctypeNA', 'typeNA', 'False_', 'True_',] #============================================================================== # Mac application utilities #============================================================================== if PY3: MAC_APP_NAME = 'Spyder.app' else: MAC_APP_NAME = 'Spyder-Py2.app' def running_in_mac_app(): if sys.platform == "darwin" and MAC_APP_NAME in __file__: return True else: return False
the-stack_106_18397
""" Support for information about the German train system. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.deutsche_bahn/ """ import logging from datetime import timedelta import voluptuous as vol import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.helpers.entity import Entity REQUIREMENTS = ['schiene==0.18'] _LOGGER = logging.getLogger(__name__) CONF_DESTINATION = 'to' CONF_START = 'from' ICON = 'mdi:train' SCAN_INTERVAL = timedelta(minutes=2) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_DESTINATION): cv.string, vol.Required(CONF_START): cv.string, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Deutsche Bahn Sensor.""" start = config.get(CONF_START) destination = config.get(CONF_DESTINATION) add_devices([DeutscheBahnSensor(start, destination)], True) class DeutscheBahnSensor(Entity): """Implementation of a Deutsche Bahn sensor.""" def __init__(self, start, goal): """Initialize the sensor.""" self._name = '{} to {}'.format(start, goal) self.data = SchieneData(start, goal) self._state = None @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Return the icon for the frontend.""" return ICON @property def state(self): """Return the departure time of the next train.""" return self._state @property def device_state_attributes(self): """Return the state attributes.""" connections = self.data.connections[0] connections['next'] = self.data.connections[1]['departure'] connections['next_on'] = self.data.connections[2]['departure'] return connections def update(self): """Get the latest delay from bahn.de and updates the state.""" self.data.update() self._state = self.data.connections[0].get('departure', 'Unknown') if self.data.connections[0]['delay'] != 0: self._state += " + {}".format(self.data.connections[0]['delay']) class SchieneData(object): """Pull data from the bahn.de web page.""" def __init__(self, start, goal): """Initialize the sensor.""" import schiene self.start = start self.goal = goal self.schiene = schiene.Schiene() self.connections = [{}] def update(self): """Update the connection data.""" self.connections = self.schiene.connections( self.start, self.goal, dt_util.as_local(dt_util.utcnow())) for con in self.connections: # Detail info is not useful. Having a more consistent interface # simplifies usage of template sensors. if 'details' in con: con.pop('details') delay = con.get('delay', {'delay_departure': 0, 'delay_arrival': 0}) # IMHO only delay_departure is useful con['delay'] = delay['delay_departure'] con['ontime'] = con.get('ontime', False)
the-stack_106_18398
from SBAgent import SBAgent from SBEnvironment.SBEnvironmentWrapper import SBEnvironmentWrapper # for using reward as score and 50 times faster game play env = SBEnvironmentWrapper(reward_type="score", speed=50) level_list = [1, 2, 3] # level list for the agent to play dummy_agent = SBAgent(env=env, level_list=level_list) # initialise agent dummy_agent.state_representation_type = 'image' # use symbolic representation as state and headless mode env.make(agent=dummy_agent, start_level=dummy_agent.level_list[0], state_representation_type=dummy_agent.state_representation_type) # initialise the environment s, r, is_done, info = env.reset() # get ready for running for level_idx in level_list: is_done = False while not is_done: s, r, is_done, info = env.step([-100, -100]) # agent always shoots at -100,100 as relative to the slingshot env.current_level = level_idx+1 # update the level list once finished the level if env.current_level > level_list[-1]: # end the game when all game levels in the level list are played break s, r, is_done, info = env.reload_current_level() #go to the next level
the-stack_106_18399
""" SE-ResNet for CIFAR/SVHN, implemented in TensorFlow. Original paper: 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. """ __all__ = ['CIFARSEResNet', 'seresnet20_cifar10', 'seresnet20_cifar100', 'seresnet20_svhn', 'seresnet56_cifar10', 'seresnet56_cifar100', 'seresnet56_svhn', 'seresnet110_cifar10', 'seresnet110_cifar100', 'seresnet110_svhn', 'seresnet164bn_cifar10', 'seresnet164bn_cifar100', 'seresnet164bn_svhn', 'seresnet272bn_cifar10', 'seresnet272bn_cifar100', 'seresnet272bn_svhn', 'seresnet542bn_cifar10', 'seresnet542bn_cifar100', 'seresnet542bn_svhn', 'seresnet1001_cifar10', 'seresnet1001_cifar100', 'seresnet1001_svhn', 'seresnet1202_cifar10', 'seresnet1202_cifar100', 'seresnet1202_svhn'] import os import tensorflow as tf import tensorflow.keras.layers as nn from .common import conv3x3_block, flatten, is_channels_first from .seresnet import SEResUnit class CIFARSEResNet(tf.keras.Model): """ SE-ResNet model for CIFAR from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (32, 32) Spatial size of the expected input image. classes : int, default 10 Number of classification classes. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, channels, init_block_channels, bottleneck, in_channels=3, in_size=(32, 32), classes=10, data_format="channels_last", **kwargs): super(CIFARSEResNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes self.data_format = data_format self.features = tf.keras.Sequential(name="features") self.features.add(conv3x3_block( in_channels=in_channels, out_channels=init_block_channels, data_format=data_format, name="init_block")) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = tf.keras.Sequential(name="stage{}".format(i + 1)) for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(SEResUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, bottleneck=bottleneck, conv1_stride=False, data_format=data_format, name="unit{}".format(j + 1))) in_channels = out_channels self.features.add(stage) self.features.add(nn.AveragePooling2D( pool_size=8, strides=1, data_format=data_format, name="final_pool")) self.output1 = nn.Dense( units=classes, input_dim=in_channels, name="output1") def call(self, x, training=None): x = self.features(x, training=training) x = flatten(x, self.data_format) x = self.output1(x) return x def get_seresnet_cifar(classes, blocks, bottleneck, model_name=None, pretrained=False, root=os.path.join("~", ".tensorflow", "models"), **kwargs): """ Create SE-ResNet model for CIFAR with specific parameters. Parameters: ---------- classes : int Number of classification classes. blocks : int Number of blocks. bottleneck : bool Whether to use a bottleneck or simple block in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ assert (classes in [10, 100]) if bottleneck: assert ((blocks - 2) % 9 == 0) layers = [(blocks - 2) // 9] * 3 else: assert ((blocks - 2) % 6 == 0) layers = [(blocks - 2) // 6] * 3 channels_per_layers = [16, 32, 64] init_block_channels = 16 channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] if bottleneck: channels = [[cij * 4 for cij in ci] for ci in channels] net = CIFARSEResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, classes=classes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file in_channels = kwargs["in_channels"] if ("in_channels" in kwargs) else 3 input_shape = (1,) + (in_channels,) + net.in_size if net.data_format == "channels_first" else\ (1,) + net.in_size + (in_channels,) net.build(input_shape=input_shape) net.load_weights( filepath=get_model_file( model_name=model_name, local_model_store_dir_path=root)) return net def seresnet20_cifar10(classes=10, **kwargs): """ SE-ResNet-20 model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="seresnet20_cifar10", **kwargs) def seresnet20_cifar100(classes=100, **kwargs): """ SE-ResNet-20 model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="seresnet20_cifar100", **kwargs) def seresnet20_svhn(classes=10, **kwargs): """ SE-ResNet-20 model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="seresnet20_svhn", **kwargs) def seresnet56_cifar10(classes=10, **kwargs): """ SE-ResNet-56 model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="seresnet56_cifar10", **kwargs) def seresnet56_cifar100(classes=100, **kwargs): """ SE-ResNet-56 model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="seresnet56_cifar100", **kwargs) def seresnet56_svhn(classes=10, **kwargs): """ SE-ResNet-56 model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="seresnet56_svhn", **kwargs) def seresnet110_cifar10(classes=10, **kwargs): """ SE-ResNet-110 model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="seresnet110_cifar10", **kwargs) def seresnet110_cifar100(classes=100, **kwargs): """ SE-ResNet-110 model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="seresnet110_cifar100", **kwargs) def seresnet110_svhn(classes=10, **kwargs): """ SE-ResNet-110 model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="seresnet110_svhn", **kwargs) def seresnet164bn_cifar10(classes=10, **kwargs): """ SE-ResNet-164(BN) model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="seresnet164bn_cifar10", **kwargs) def seresnet164bn_cifar100(classes=100, **kwargs): """ SE-ResNet-164(BN) model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="seresnet164bn_cifar100", **kwargs) def seresnet164bn_svhn(classes=10, **kwargs): """ SE-ResNet-164(BN) model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="seresnet164bn_svhn", **kwargs) def seresnet272bn_cifar10(classes=10, **kwargs): """ SE-ResNet-272(BN) model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=272, bottleneck=True, model_name="seresnet272bn_cifar10", **kwargs) def seresnet272bn_cifar100(classes=100, **kwargs): """ SE-ResNet-272(BN) model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=272, bottleneck=True, model_name="seresnet272bn_cifar100", **kwargs) def seresnet272bn_svhn(classes=10, **kwargs): """ SE-ResNet-272(BN) model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=272, bottleneck=True, model_name="seresnet272bn_svhn", **kwargs) def seresnet542bn_cifar10(classes=10, **kwargs): """ SE-ResNet-542(BN) model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=542, bottleneck=True, model_name="seresnet542bn_cifar10", **kwargs) def seresnet542bn_cifar100(classes=100, **kwargs): """ SE-ResNet-542(BN) model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=542, bottleneck=True, model_name="seresnet542bn_cifar100", **kwargs) def seresnet542bn_svhn(classes=10, **kwargs): """ SE-ResNet-542(BN) model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=542, bottleneck=True, model_name="seresnet542bn_svhn", **kwargs) def seresnet1001_cifar10(classes=10, **kwargs): """ SE-ResNet-1001 model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="seresnet1001_cifar10", **kwargs) def seresnet1001_cifar100(classes=100, **kwargs): """ SE-ResNet-1001 model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="seresnet1001_cifar100", **kwargs) def seresnet1001_svhn(classes=10, **kwargs): """ SE-ResNet-1001 model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="seresnet1001_svhn", **kwargs) def seresnet1202_cifar10(classes=10, **kwargs): """ SE-ResNet-1202 model for CIFAR-10 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="seresnet1202_cifar10", **kwargs) def seresnet1202_cifar100(classes=100, **kwargs): """ SE-ResNet-1202 model for CIFAR-100 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="seresnet1202_cifar100", **kwargs) def seresnet1202_svhn(classes=10, **kwargs): """ SE-ResNet-1202 model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_seresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="seresnet1202_svhn", **kwargs) def _test(): import numpy as np import tensorflow.keras.backend as K data_format = "channels_last" # data_format = "channels_first" pretrained = False models = [ (seresnet20_cifar10, 10), (seresnet20_cifar100, 100), (seresnet20_svhn, 10), (seresnet56_cifar10, 10), (seresnet56_cifar100, 100), (seresnet56_svhn, 10), (seresnet110_cifar10, 10), (seresnet110_cifar100, 100), (seresnet110_svhn, 10), (seresnet164bn_cifar10, 10), (seresnet164bn_cifar100, 100), (seresnet164bn_svhn, 10), (seresnet272bn_cifar10, 10), (seresnet272bn_cifar100, 100), (seresnet272bn_svhn, 10), (seresnet542bn_cifar10, 10), (seresnet542bn_cifar100, 100), (seresnet542bn_svhn, 10), (seresnet1001_cifar10, 10), (seresnet1001_cifar100, 100), (seresnet1001_svhn, 10), (seresnet1202_cifar10, 10), (seresnet1202_cifar100, 100), (seresnet1202_svhn, 10), ] for model, classes in models: net = model(pretrained=pretrained, data_format=data_format) batch_saze = 14 x = tf.random.normal((batch_saze, 3, 32, 32) if is_channels_first(data_format) else (batch_saze, 32, 32, 3)) y = net(x) assert (tuple(y.shape.as_list()) == (batch_saze, classes)) weight_count = sum([np.prod(K.get_value(w).shape) for w in net.trainable_weights]) print("m={}, {}".format(model.__name__, weight_count)) assert (model != seresnet20_cifar10 or weight_count == 274847) assert (model != seresnet20_cifar100 or weight_count == 280697) assert (model != seresnet20_svhn or weight_count == 274847) assert (model != seresnet56_cifar10 or weight_count == 862889) assert (model != seresnet56_cifar100 or weight_count == 868739) assert (model != seresnet56_svhn or weight_count == 862889) assert (model != seresnet110_cifar10 or weight_count == 1744952) assert (model != seresnet110_cifar100 or weight_count == 1750802) assert (model != seresnet110_svhn or weight_count == 1744952) assert (model != seresnet164bn_cifar10 or weight_count == 1906258) assert (model != seresnet164bn_cifar100 or weight_count == 1929388) assert (model != seresnet164bn_svhn or weight_count == 1906258) assert (model != seresnet272bn_cifar10 or weight_count == 3153826) assert (model != seresnet272bn_cifar100 or weight_count == 3176956) assert (model != seresnet272bn_svhn or weight_count == 3153826) assert (model != seresnet542bn_cifar10 or weight_count == 6272746) assert (model != seresnet542bn_cifar100 or weight_count == 6295876) assert (model != seresnet542bn_svhn or weight_count == 6272746) assert (model != seresnet1001_cifar10 or weight_count == 11574910) assert (model != seresnet1001_cifar100 or weight_count == 11598040) assert (model != seresnet1001_svhn or weight_count == 11574910) assert (model != seresnet1202_cifar10 or weight_count == 19582226) assert (model != seresnet1202_cifar100 or weight_count == 19588076) assert (model != seresnet1202_svhn or weight_count == 19582226) if __name__ == "__main__": _test()
the-stack_106_18401
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb This optimizer code was adapted from the following (starting with latest) * https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py * https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py * https://github.com/cybertronai/pytorch-lamb Use FusedLamb if you can (GPU). The reason for including this variant of Lamb is to have a version that is similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install/use APEX. In addition to some cleanup, this Lamb impl has been modified to support PyTorch XLA and has been tested on TPU. Original copyrights for above sources are below. Modifications Copyright 2021 Ross Wightman """ # Copyright (c) 2021, Habana Labs Ltd. All rights reserved. # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2019 cybertronai # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import torch from torch.optim import Optimizer class Lamb(Optimizer): """Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) trust_clip (bool): enable LAMBC trust ratio clipping (default: False) always_adapt (boolean, optional): Apply adaptive learning rate to 0.0 weight decay parameter (default: False) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, grad_averaging=True, max_grad_norm=1.0, trust_clip=False, always_adapt=False): defaults = dict( lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm, trust_clip=trust_clip, always_adapt=always_adapt) super().__init__(params, defaults) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() device = self.param_groups[0]['params'][0].device one_tensor = torch.tensor(1.0, device=device) # because torch.where doesn't handle scalars correctly global_grad_norm = torch.zeros(1, device=device) for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') global_grad_norm.add_(grad.pow(2).sum()) global_grad_norm = torch.sqrt(global_grad_norm) # FIXME it'd be nice to remove explicit tensor conversion of scalars when torch.where promotes # scalar types properly https://github.com/pytorch/pytorch/issues/9190 max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device) clip_global_grad_norm = torch.where( global_grad_norm > max_grad_norm, global_grad_norm / max_grad_norm, one_tensor) for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 beta3 = 1 - beta1 if grad_averaging else 1.0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 if bias_correction: bias_correction1 = 1 - beta1 ** group['step'] bias_correction2 = 1 - beta2 ** group['step'] else: bias_correction1, bias_correction2 = 1.0, 1.0 for p in group['params']: if p.grad is None: continue grad = p.grad.div_(clip_global_grad_norm) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient valuesa state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=beta3) # m_t exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # v_t denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) update = (exp_avg / bias_correction1).div_(denom) weight_decay = group['weight_decay'] if weight_decay != 0: update.add_(p, alpha=weight_decay) if weight_decay != 0 or group['always_adapt']: # Layer-wise LR adaptation. By default, skip adaptation on parameters that are # excluded from weight decay, unless always_adapt == True, then always enabled. w_norm = p.norm(2.0) g_norm = update.norm(2.0) # FIXME nested where required since logical and/or not working in PT XLA trust_ratio = torch.where( w_norm > 0, torch.where(g_norm > 0, w_norm / g_norm, one_tensor), one_tensor, ) if group['trust_clip']: # LAMBC trust clipping, upper bound fixed at one trust_ratio = torch.minimum(trust_ratio, one_tensor) update.mul_(trust_ratio) p.add_(update, alpha=-group['lr']) return loss
the-stack_106_18404
import os from typing import List import numpy as np from pathlib import Path from alchemy.db.fs import raw_data_dir from alchemy.db.model import ( ClassificationAnnotation, EntityTypeEnum, Task, User, majority_vote_annotations_query, ) from alchemy.shared.utils import load_json, load_jsonl, save_jsonl from alchemy.train.no_deps.inference_results import InferenceResults from alchemy.train.no_deps.run import build_inference_cache, inference, train_model from alchemy.train.no_deps.utils import BINARY_CLASSIFICATION from alchemy.train.prep import prepare_next_model_for_label from alchemy.train.no_deps.paths import ( # Train Model; Model Inference _get_data_parser_fname, _get_inference_fname, _get_metrics_fname, ) LABEL = "IsTall" # TODO add a case to cover only 1 class present in the data. # This is easy to do, just set N=2. # Unclear what's the best way to surface that error just yet. class stub_model: def __init__(self): self.history = [] def predict(self, text: List[str]): self.history.append(text) preds = np.array([1] * len(text)) # This is the style when "Sliding Window" is enabled probs = [np.array([[-0.48803285, 0.56392884]], dtype=np.float32)] * len(text) return preds, probs def stub_train_fn(X, y, config): return stub_model() def stub_build_fn(config, model_dir): return stub_model() # Create many Annotations for a Label def _create_anno(ent, v, user, weight=1): return ClassificationAnnotation( entity_type=EntityTypeEnum.COMPANY, entity=ent, user=user, label=LABEL, value=v, weight=weight, ) def _populate_db_and_fs(dbsession, tmp_path, N, weight=1): # ========================================================================= # Add in a fake data file d = raw_data_dir(tmp_path, as_path=True) d.mkdir(parents=True) p = d / "data.jsonl" data = [ {"text": f"item {i} text", "meta": {"domain": f"{i}.com"}} for i in range(N) ] save_jsonl(str(p), data) # ========================================================================= # Create dummy data # Create many Users user = User(username=f"someuser") dbsession.add(user) dbsession.commit() ents = [d["meta"]["domain"] for d in data] annos = [ # Create a few annotations for the first 2 entities. _create_anno(ents[0], 1, user), _create_anno(ents[0], 1, user), _create_anno(ents[0], 1, user), _create_anno(ents[0], -1, user, weight=weight), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), _create_anno(ents[1], 1, user, weight=weight), _create_anno(ents[1], 1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], 0, user), _create_anno(ents[1], 0, user), ] for i in range(2, N): # Create one annotations for the rest of the entities. annos.append(_create_anno(ents[i], 1 if i % 2 else -1, user)) dbsession.add_all(annos) dbsession.commit() # Create a Task task = Task(name="Bball") task.set_labels([LABEL]) task.set_annotators([user.username]) task.set_patterns_file(None) task.set_patterns(["Shaq", "Lebron"]) task.set_data_filenames(["data.jsonl"]) dbsession.add(task) dbsession.commit() def test_train_flow_simple(dbsession, monkeypatch, tmp_path): monkeypatch.setenv("ALCHEMY_FILESTORE_DIR", str(tmp_path)) N = 2 _populate_db_and_fs(dbsession, tmp_path, N, weight=100) query = majority_vote_annotations_query(dbsession, LABEL) res = query.all() assert sorted(res) == [("0.com", -1, 100), ("1.com", 1, 101)] def test_train_flow_simple_equal_weight(dbsession, monkeypatch, tmp_path): monkeypatch.setenv("ALCHEMY_FILESTORE_DIR", str(tmp_path)) N = 2 _populate_db_and_fs(dbsession, tmp_path, N, weight=3) query = majority_vote_annotations_query(dbsession, LABEL) res = query.all() assert len(res) == N res = sorted(res) for i in range(N): assert res[i][0] == str(i) + ".com" assert res[i][1] in [-1, 1] if i == 0: assert res[i][2] == 3 elif i == 1: assert res[i][2] == 4 def test_train_flow(dbsession, monkeypatch, tmp_path): monkeypatch.setenv("ALCHEMY_FILESTORE_DIR", str(tmp_path)) N = 20 _populate_db_and_fs(dbsession, tmp_path, N) task = dbsession.query(Task).first() # Part 1. Prepare. label = task.get_labels()[0] raw_file_path = task.get_data_filenames(abs=True)[0] model = prepare_next_model_for_label(dbsession, label, raw_file_path) model_dir = model.dir(abs=True) # These are all the files we need to train a model. files = os.listdir(model_dir) assert set(files) == set(["data.jsonl", "config.json"]) data = load_jsonl(os.path.join(model_dir, "data.jsonl"), to_df=False) data = sorted(data, key=lambda d: d["text"]) print(data[0]) print(data[1]) print(len(data)) assert data[0] == {"text": "item 0 text", "labels": {"IsTall": 1}} assert data[1] == {"text": "item 1 text", "labels": {"IsTall": -1}} assert len(data) == 20 config = load_json(os.path.join(model_dir, "config.json")) assert config is not None assert config["train_config"] is not None # Part 2. Train model. train_model(model_dir, train_fn=stub_train_fn) data_parser_results = load_json(_get_data_parser_fname(model_dir)) assert data_parser_results["problem_type"] == BINARY_CLASSIFICATION metrics = load_json(_get_metrics_fname(model_dir)) assert metrics["test"] is not None assert metrics["train"] is not None # Part 3. Post-training Inference. f = tmp_path / "tmp_file_for_inference.jsonl" save_jsonl(str(f), [{"text": "hello"}, {"text": "world"}]) inference(model_dir, str(f), build_model_fn=stub_build_fn, generate_plots=False) ir = InferenceResults.load(_get_inference_fname(model_dir, str(f))) assert np.isclose(ir.probs, [0.7411514, 0.7411514]).all() # Part 4. New data update, run inference on the new data. f2 = tmp_path / "tmp_file_for_inference_v2.jsonl" save_jsonl( str(f2), [ {"text": "hello"}, {"text": "world"}, {"text": "newline_1"}, {"text": "newline_2"}, ], ) class Mock_DatasetStorageManager: def download(self, url): # Return the one data file we have locally. return str(f) mock_dsm = Mock_DatasetStorageManager() inference_cache = build_inference_cache(model_dir, mock_dsm) model, _ = inference( model_dir, str(f2), build_model_fn=stub_build_fn, generate_plots=False, inference_cache=inference_cache, ) assert model.history == [ ["newline_1", "newline_2"] ], "Model should have only been ran on the new lines" ir2 = InferenceResults.load(_get_inference_fname(model_dir, str(f2))) assert len(ir2.probs) == 4, "Inference should have 4 elements" assert ir.probs[:2] == ir2.probs[:2], "Result on the same items should be the same" def test_majority_vote_annotations_query(dbsession): user = User(username="fake_user") dbsession.add(user) dbsession.commit() ents = [str(i) + ".com" for i in range(3)] annos = [ # for this entity, the value -1 has the highest weight. _create_anno(ents[0], 1, user), _create_anno(ents[0], 1, user), _create_anno(ents[0], 1, user), _create_anno(ents[0], -1, user, weight=100), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), _create_anno(ents[0], 0, user), # for this entity, the weighted vote is a tie between 1 and -1. _create_anno(ents[1], 1, user, weight=3), _create_anno(ents[1], 1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], -1, user), _create_anno(ents[1], 0, user), _create_anno(ents[1], 0, user), _create_anno(ents[2], 1, user), ] dbsession.add_all(annos) dbsession.commit() query = majority_vote_annotations_query(dbsession, label=LABEL) res = query.all() assert len(res) == 3 res = sorted(res, key=lambda x: x[0]) for i in range(3): if i == 0: assert res[0] == ("0.com", -1, 100) elif i == 1: assert res[1][0] == "1.com" assert res[1][1] in [1, -1] assert res[1][2] == 4 else: assert res[2] == ("2.com", 1, 1)
the-stack_106_18406
from collections import namedtuple import enum class BlockType(enum.Enum): # Frames describing CLB features, interconnect, clocks and IOs. CLB_IO_CLK = 'CLB_IO_CLK' # Frames describing block RAM initialization. BLOCK_RAM = 'BLOCK_RAM' GridLoc = namedtuple('GridLoc', 'grid_x grid_y') GridInfo = namedtuple('GridInfo', 'bits sites tile_type pin_functions') BitAlias = namedtuple('BitAlias', 'tile_type start_offset sites') Bits = namedtuple('Bits', 'base_address frames offset words alias') BitsInfo = namedtuple('BitsInfo', 'block_type tile bits')
the-stack_106_18408
import RPi.GPIO as GPIO import time from constants import * def setInput(pin): try: GPIO.setup(pin, GPIO.IN) # set pin as an input pin except: GPIO.cleanup() GPIO.setmode(GPIO.BCM) # BCM pin-numbering scheme from Raspberry Pi GPIO.setup(pin, GPIO.IN) # set pin as an input pin def readInput(pin): value = GPIO.input(pin) if value == GPIO.HIGH: return False else: return True if __name__=="__main__": setInput(BUMPA) setInput(BUMPB) setInput(BUMPC) setInput(BUMPD) while True: print(readInput(BUMPA),readInput(BUMPB),readInput(BUMPC),readInput(BUMPD)) # time.sleep(0.1)
the-stack_106_18409
# Open3D: www.open3d.org # The MIT License (MIT) # See license file or visit www.open3d.org for details # examples/Python/Advanced/remove_geometry.py import open3d as o3d import numpy as np import time import copy def visualize_non_blocking(vis): vis.update_geometry() vis.poll_events() vis.update_renderer() pcd_orig = o3d.io.read_point_cloud("../../TestData/fragment.pcd") flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]] pcd_orig.transform(flip_transform) n_pcd = 5 pcds = [] for i in range(n_pcd): pcds.append(copy.deepcopy(pcd_orig)) trans = np.identity(4) trans[:3, 3] = [3 * i, 0, 0] pcds[i].transform(trans) vis = o3d.visualization.Visualizer() vis.create_window() start_time = time.time() added = [False] * n_pcd curr_sec = int(time.time() - start_time) prev_sec = curr_sec - 1 while True: curr_sec = int(time.time() - start_time) if curr_sec - prev_sec == 1: prev_sec = curr_sec for i in range(n_pcd): if curr_sec % (n_pcd * 2) == i and not added[i]: vis.add_geometry(pcds[i]) added[i] = True print("Adding %d" % i) if curr_sec % (n_pcd * 2) == (i + n_pcd) and added[i]: vis.remove_geometry(pcds[i]) added[i] = False print("Removing %d" % i) visualize_non_blocking(vis)
the-stack_106_18410
from unittest import mock import pytest from servicex_databinder import configuration @mock.patch("servicex_databinder.configuration._validate_config") def test_load_config(mock_validation): conf = configuration._load_config("config_example_uproot.yml") assert isinstance(conf, dict) mock_validation.assert_called_once() with pytest.raises(FileNotFoundError): conf = configuration._load_config("none.yml") def test_validate_config(): config_without_general = {} with pytest.raises(KeyError): configuration._validate_config(config_without_general) config_without_servicexbackendname = {"General": {}, "Sample": [{},]} with pytest.raises(KeyError): configuration._validate_config(config_without_servicexbackendname) config_without_wrong_backendname = { "General": { "ServiceXBackendName": "wrong_backend_name", }, "Sample": [{},]} with pytest.raises(ValueError): configuration._validate_config(config_without_wrong_backendname) config_without_outputdirectory = { "General": { "ServiceXBackendName": "uproot", }, "Sample": [{},]} with pytest.raises(KeyError): configuration._validate_config(config_without_outputdirectory) config_without_outputformat = { "General": { "ServiceXBackendName": "uproot", "OutputDirectory": "a", }, "Sample": [{},]} with pytest.raises(KeyError): configuration._validate_config(config_without_outputformat) config_wrong_outputformat = { "General": { "ServiceXBackendName": "uproot", "OutputDirectory": "a", "OutputFormat": "pandas", }, "Sample": [{},]} with pytest.raises(ValueError): configuration._validate_config(config_wrong_outputformat) config_without_rucio_did = { "General": { "ServiceXBackendName": "uproot", "OutputDirectory": "a", "OutputFormat": "parquet", }, "Sample": [{ "Name": "ttH", }] } with pytest.raises(KeyError): configuration._validate_config(config_without_rucio_did) config_without_rucio_scope = { "General": { "ServiceXBackendName": "uproot", "OutputDirectory": "a", "OutputFormat": "parquet", }, "Sample": [{ "Name": "ttH", "RucioDID": "user.kchoi:user.kchoi.A, user.kchoi.B", }] } with pytest.raises(ValueError): configuration._validate_config(config_without_rucio_scope) config_tree_not_with_uproot = { "General": { "ServiceXBackendName": "xaod", "OutputDirectory": "a", "OutputFormat": "root", }, "Sample": [{ "Name": "ttH", "RucioDID": "user.kchoi:user.kchoi.A, user.kchoi:user.kchoi.B", "Tree": "nominal", }] } with pytest.raises(KeyError): configuration._validate_config(config_tree_not_with_uproot) config_columns_with_funcadl = { "General": { "ServiceXBackendName": "xaod", "OutputDirectory": "a", "OutputFormat": "root", }, "Sample": [{ "Name": "ttH", "RucioDID": "user.kchoi:user.kchoi.A, user.kchoi:user.kchoi.B", "Columns": "jet_pt", "FuncADL": "Select()", }] } with pytest.raises(KeyError): configuration._validate_config(config_columns_with_funcadl) config_filter_with_funcadl = { "General": { "ServiceXBackendName": "xaod", "OutputDirectory": "a", "OutputFormat": "root", }, "Sample": [{ "Name": "ttH", "RucioDID": "user.kchoi:user.kchoi.A, user.kchoi:user.kchoi.B", "Filter": "jet_pt>15e3", "FuncADL": "Select()", }] } with pytest.raises(KeyError): configuration._validate_config(config_filter_with_funcadl) config_valid_uproot ={ "General": { "ServiceXBackendName": "uproot", "OutputDirectory": "a", "OutputFormat": "parquet", }, "Sample": [{ "Name": "ttH", "RucioDID": "user.kchoi:user.kchoi.A, user.kchoi:user.kchoi.B", "FuncADL": "Select()", }] } assert configuration._validate_config(config_valid_uproot) # def test_validate_config_for_uproot(): # config_valid_uproot ={ # "General": { # "ServiceXBackendName": "uproot_test", # "OutputDirectory": "a", # "OutputFormat": "parquet", # }, # "Sample": [{ # "Name": "ttH", # "RucioDID": "user.kchoi:user.kchoi", # "FuncADL": "Select()", # }] # } # assert configuration._validate_config(config_valid_uproot) # def test_validate_config_for_xaod(): # config_valid_xaod ={ # "General": { # "ServiceXBackendName": "xaod_test", # "OutputDirectory": "a", # "OutputFormat": "root", # }, # "Sample": [{ # "Name": "ttH", # "RucioDID": "user.kchoi:user.kchoi", # "FuncADL": 1, # }] # } # assert configuration._validate_config(config_valid_xaod)
the-stack_106_18411
# For relative imports to work in Python 3.6 import os, sys; sys.path.append(os.path.dirname(os.path.realpath(__file__))) from os.path import abspath, join from flask import Flask # main application app = None log = None def create_app( cfgfile ): ''' Create main app object, while ingesting the settings from the cfgfile ''' global app if app is None: static_folder = abspath('static') app = Flask( 'farm', #__name__, static_folder=static_folder, static_url_path='', instance_path=abspath(join( __file__, '../../conf' )), instance_relative_config=True) print('Serving static content from', static_folder, '...') if cfgfile: print('Loading config from', cfgfile, '...') app.config.from_pyfile(cfgfile) from .logger import create_log global log if log is None: log = create_log( app ) return app def init_app( app ): ''' Get the app ready to serve HTTP requests ''' assert app is not None print('Initializing...') from . import routes from . import dataset if not dataset.init_dataset(app.config): return False return True
the-stack_106_18413
from collections import OrderedDict import contextlib from datetime import date, datetime, time, timedelta from distutils.version import LooseVersion from functools import partial import os import warnings import numpy as np from numpy import nan import pytest from pandas.compat import PY36, BytesIO, iteritems, map, range, u import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series from pandas.core.config import get_option, set_option import pandas.util.testing as tm from pandas.util.testing import ensure_clean, makeCustomDataframe as mkdf from pandas.io.common import URLError from pandas.io.excel import ( ExcelFile, ExcelWriter, _OpenpyxlWriter, _XlsxWriter, _XlwtWriter, read_excel, register_writer) from pandas.io.formats.excel import ExcelFormatter from pandas.io.parsers import read_csv _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd)[:10] _frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])[:10] _tsframe = tm.makeTimeDataFrame()[:5] _mixed_frame = _frame.copy() _mixed_frame['foo'] = 'bar' @contextlib.contextmanager def ignore_xlrd_time_clock_warning(): """ Context manager to ignore warnings raised by the xlrd library, regarding the deprecation of `time.clock` in Python 3.7. """ with warnings.catch_warnings(): warnings.filterwarnings( action='ignore', message='time.clock has been deprecated', category=DeprecationWarning) yield @td.skip_if_no('xlrd', '1.0.0') class SharedItems(object): @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath("io", "data") self.frame = _frame.copy() self.frame2 = _frame2.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() def get_csv_refdf(self, basename): """ Obtain the reference data from read_csv with the Python engine. Parameters ---------- basename : str File base name, excluding file extension. Returns ------- dfref : DataFrame """ pref = os.path.join(self.dirpath, basename + '.csv') dfref = read_csv(pref, index_col=0, parse_dates=True, engine='python') return dfref def get_excelfile(self, basename, ext): """ Return test data ExcelFile instance. Parameters ---------- basename : str File base name, excluding file extension. Returns ------- excel : io.excel.ExcelFile """ return ExcelFile(os.path.join(self.dirpath, basename + ext)) def get_exceldf(self, basename, ext, *args, **kwds): """ Return test data DataFrame. Parameters ---------- basename : str File base name, excluding file extension. Returns ------- df : DataFrame """ pth = os.path.join(self.dirpath, basename + ext) return read_excel(pth, *args, **kwds) class ReadingTestsBase(SharedItems): # This is based on ExcelWriterBase @pytest.fixture(autouse=True, params=['xlrd', None]) def set_engine(self, request): func_name = "get_exceldf" old_func = getattr(self, func_name) new_func = partial(old_func, engine=request.param) setattr(self, func_name, new_func) yield setattr(self, func_name, old_func) @td.skip_if_no("xlrd", "1.0.1") # see gh-22682 def test_usecols_int(self, ext): df_ref = self.get_csv_refdf("test1") df_ref = df_ref.reindex(columns=["A", "B", "C"]) # usecols as int with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): with ignore_xlrd_time_clock_warning(): df1 = self.get_exceldf("test1", ext, "Sheet1", index_col=0, usecols=3) # usecols as int with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): with ignore_xlrd_time_clock_warning(): df2 = self.get_exceldf("test1", ext, "Sheet2", skiprows=[1], index_col=0, usecols=3) # parse_cols instead of usecols, usecols as int with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): with ignore_xlrd_time_clock_warning(): df3 = self.get_exceldf("test1", ext, "Sheet2", skiprows=[1], index_col=0, parse_cols=3) # TODO add index to xls file) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) tm.assert_frame_equal(df3, df_ref, check_names=False) @td.skip_if_no('xlrd', '1.0.1') # GH-22682 def test_usecols_list(self, ext): dfref = self.get_csv_refdf('test1') dfref = dfref.reindex(columns=['B', 'C']) df1 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0, usecols=[0, 2, 3]) df2 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, usecols=[0, 2, 3]) with tm.assert_produces_warning(FutureWarning): with ignore_xlrd_time_clock_warning(): df3 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, parse_cols=[0, 2, 3]) # TODO add index to xls file) tm.assert_frame_equal(df1, dfref, check_names=False) tm.assert_frame_equal(df2, dfref, check_names=False) tm.assert_frame_equal(df3, dfref, check_names=False) @td.skip_if_no('xlrd', '1.0.1') # GH-22682 def test_usecols_str(self, ext): dfref = self.get_csv_refdf('test1') df1 = dfref.reindex(columns=['A', 'B', 'C']) df2 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0, usecols='A:D') df3 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, usecols='A:D') with tm.assert_produces_warning(FutureWarning): with ignore_xlrd_time_clock_warning(): df4 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, parse_cols='A:D') # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) tm.assert_frame_equal(df4, df1, check_names=False) df1 = dfref.reindex(columns=['B', 'C']) df2 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0, usecols='A,C,D') df3 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, usecols='A,C,D') # TODO add index to xls file tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = dfref.reindex(columns=['B', 'C']) df2 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0, usecols='A,C:D') df3 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0, usecols='A,C:D') tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) @pytest.mark.parametrize("usecols", [ [0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0], ]) def test_usecols_diff_positional_int_columns_order(self, ext, usecols): expected = self.get_csv_refdf("test1")[["A", "C"]] result = self.get_exceldf("test1", ext, "Sheet1", index_col=0, usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) @pytest.mark.parametrize("usecols", [ ["B", "D"], ["D", "B"] ]) def test_usecols_diff_positional_str_columns_order(self, ext, usecols): expected = self.get_csv_refdf("test1")[["B", "D"]] expected.index = range(len(expected)) result = self.get_exceldf("test1", ext, "Sheet1", usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) def test_read_excel_without_slicing(self, ext): expected = self.get_csv_refdf("test1") result = self.get_exceldf("test1", ext, "Sheet1", index_col=0) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str(self, ext): expected = self.get_csv_refdf("test1")[["C", "D"]] result = self.get_exceldf("test1", ext, "Sheet1", index_col=0, usecols="A,D:E") tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str_invalid(self, ext): msg = "Invalid column name: E1" with pytest.raises(ValueError, match=msg): self.get_exceldf("test1", ext, "Sheet1", usecols="D:E1") def test_index_col_label_error(self, ext): msg = "list indices must be integers.*, not str" with pytest.raises(TypeError, match=msg): self.get_exceldf("test1", ext, "Sheet1", index_col=["A"], usecols=["A", "C"]) def test_index_col_empty(self, ext): # see gh-9208 result = self.get_exceldf("test1", ext, "Sheet3", index_col=["A", "B", "C"]) expected = DataFrame(columns=["D", "E", "F"], index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"])) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", [None, 2]) def test_index_col_with_unnamed(self, ext, index_col): # see gh-18792 result = self.get_exceldf("test1", ext, "Sheet4", index_col=index_col) expected = DataFrame([["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"]) if index_col: expected = expected.set_index(expected.columns[index_col]) tm.assert_frame_equal(result, expected) def test_usecols_pass_non_existent_column(self, ext): msg = ("Usecols do not match columns, " "columns expected but not found: " + r"\['E'\]") with pytest.raises(ValueError, match=msg): self.get_exceldf("test1", ext, usecols=["E"]) def test_usecols_wrong_type(self, ext): msg = ("'usecols' must either be list-like of " "all strings, all unicode, all integers or a callable.") with pytest.raises(ValueError, match=msg): self.get_exceldf("test1", ext, usecols=["E1", 0]) def test_excel_stop_iterator(self, ext): parsed = self.get_exceldf('test2', ext, 'Sheet1') expected = DataFrame([['aaaa', 'bbbbb']], columns=['Test', 'Test1']) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self, ext): parsed = self.get_exceldf('test3', ext, 'Sheet1') expected = DataFrame([[np.nan]], columns=['Test']) tm.assert_frame_equal(parsed, expected) def test_excel_passes_na(self, ext): excel = self.get_excelfile('test4', ext) parsed = read_excel(excel, 'Sheet1', keep_default_na=False, na_values=['apple']) expected = DataFrame([['NA'], [1], ['NA'], [np.nan], ['rabbit']], columns=['Test']) tm.assert_frame_equal(parsed, expected) parsed = read_excel(excel, 'Sheet1', keep_default_na=True, na_values=['apple']) expected = DataFrame([[np.nan], [1], [np.nan], [np.nan], ['rabbit']], columns=['Test']) tm.assert_frame_equal(parsed, expected) # 13967 excel = self.get_excelfile('test5', ext) parsed = read_excel(excel, 'Sheet1', keep_default_na=False, na_values=['apple']) expected = DataFrame([['1.#QNAN'], [1], ['nan'], [np.nan], ['rabbit']], columns=['Test']) tm.assert_frame_equal(parsed, expected) parsed = read_excel(excel, 'Sheet1', keep_default_na=True, na_values=['apple']) expected = DataFrame([[np.nan], [1], [np.nan], [np.nan], ['rabbit']], columns=['Test']) tm.assert_frame_equal(parsed, expected) @td.skip_if_no('xlrd', '1.0.1') # GH-22682 def test_deprecated_sheetname(self, ext): # gh-17964 excel = self.get_excelfile('test1', ext) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): read_excel(excel, sheetname='Sheet1') with pytest.raises(TypeError): read_excel(excel, sheet='Sheet1') @td.skip_if_no('xlrd', '1.0.1') # GH-22682 def test_excel_table_sheet_by_index(self, ext): excel = self.get_excelfile('test1', ext) dfref = self.get_csv_refdf('test1') df1 = read_excel(excel, 0, index_col=0) df2 = read_excel(excel, 1, skiprows=[1], index_col=0) tm.assert_frame_equal(df1, dfref, check_names=False) tm.assert_frame_equal(df2, dfref, check_names=False) df1 = excel.parse(0, index_col=0) df2 = excel.parse(1, skiprows=[1], index_col=0) tm.assert_frame_equal(df1, dfref, check_names=False) tm.assert_frame_equal(df2, dfref, check_names=False) df3 = read_excel(excel, 0, index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df4 = read_excel(excel, 0, index_col=0, skip_footer=1) tm.assert_frame_equal(df3, df4) df3 = excel.parse(0, index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) import xlrd with pytest.raises(xlrd.XLRDError): read_excel(excel, 'asdf') def test_excel_table(self, ext): dfref = self.get_csv_refdf('test1') df1 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0) df2 = self.get_exceldf('test1', ext, 'Sheet2', skiprows=[1], index_col=0) # TODO add index to file tm.assert_frame_equal(df1, dfref, check_names=False) tm.assert_frame_equal(df2, dfref, check_names=False) df3 = self.get_exceldf('test1', ext, 'Sheet1', index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) def test_reader_special_dtypes(self, ext): expected = DataFrame.from_dict(OrderedDict([ ("IntCol", [1, 2, -3, 4, 0]), ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]), ("BoolCol", [True, False, True, True, False]), ("StrCol", [1, 2, 3, 4, 5]), # GH5394 - this is why convert_float isn't vectorized ("Str2Col", ["a", 3, "c", "d", "e"]), ("DateCol", [datetime(2013, 10, 30), datetime(2013, 10, 31), datetime(1905, 1, 1), datetime(2013, 12, 14), datetime(2015, 3, 14)]) ])) basename = 'test_types' # should read in correctly and infer types actual = self.get_exceldf(basename, ext, 'Sheet1') tm.assert_frame_equal(actual, expected) # if not coercing number, then int comes in as float float_expected = expected.copy() float_expected["IntCol"] = float_expected["IntCol"].astype(float) float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0 actual = self.get_exceldf(basename, ext, 'Sheet1', convert_float=False) tm.assert_frame_equal(actual, float_expected) # check setting Index (assuming xls and xlsx are the same here) for icol, name in enumerate(expected.columns): actual = self.get_exceldf(basename, ext, 'Sheet1', index_col=icol) exp = expected.set_index(name) tm.assert_frame_equal(actual, exp) # convert_float and converters should be different but both accepted expected["StrCol"] = expected["StrCol"].apply(str) actual = self.get_exceldf( basename, ext, 'Sheet1', converters={"StrCol": str}) tm.assert_frame_equal(actual, expected) no_convert_float = float_expected.copy() no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str) actual = self.get_exceldf(basename, ext, 'Sheet1', convert_float=False, converters={"StrCol": str}) tm.assert_frame_equal(actual, no_convert_float) # GH8212 - support for converters and missing values def test_reader_converters(self, ext): basename = 'test_converters' expected = DataFrame.from_dict(OrderedDict([ ("IntCol", [1, 2, -3, -1000, 0]), ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]), ("BoolCol", ['Found', 'Found', 'Found', 'Not found', 'Found']), ("StrCol", ['1', np.nan, '3', '4', '5']), ])) converters = {'IntCol': lambda x: int(x) if x != '' else -1000, 'FloatCol': lambda x: 10 * x if x else np.nan, 2: lambda x: 'Found' if x != '' else 'Not found', 3: lambda x: str(x) if x else '', } # should read in correctly and set types of single cells (not array # dtypes) actual = self.get_exceldf(basename, ext, 'Sheet1', converters=converters) tm.assert_frame_equal(actual, expected) def test_reader_dtype(self, ext): # GH 8212 basename = 'testdtype' actual = self.get_exceldf(basename, ext) expected = DataFrame({ 'a': [1, 2, 3, 4], 'b': [2.5, 3.5, 4.5, 5.5], 'c': [1, 2, 3, 4], 'd': [1.0, 2.0, np.nan, 4.0]}).reindex( columns=['a', 'b', 'c', 'd']) tm.assert_frame_equal(actual, expected) actual = self.get_exceldf(basename, ext, dtype={'a': 'float64', 'b': 'float32', 'c': str}) expected['a'] = expected['a'].astype('float64') expected['b'] = expected['b'].astype('float32') expected['c'] = ['001', '002', '003', '004'] tm.assert_frame_equal(actual, expected) with pytest.raises(ValueError): self.get_exceldf(basename, ext, dtype={'d': 'int64'}) @pytest.mark.parametrize("dtype,expected", [ (None, DataFrame({ "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0] })), ({"a": "float64", "b": "float32", "c": str, "d": str }, DataFrame({ "a": Series([1, 2, 3, 4], dtype="float64"), "b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"), "c": ["001", "002", "003", "004"], "d": ["1", "2", np.nan, "4"] })), ]) def test_reader_dtype_str(self, ext, dtype, expected): # see gh-20377 basename = "testdtype" actual = self.get_exceldf(basename, ext, dtype=dtype) tm.assert_frame_equal(actual, expected) def test_reading_all_sheets(self, ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = 'test_multisheet' dfs = self.get_exceldf(basename, ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ['Charlie', 'Alpha', 'Beta'] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys()) def test_reading_multiple_specific_sheets(self, ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = 'test_multisheet' # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, 'Charlie', 'Charlie'] dfs = self.get_exceldf(basename, ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys()) def test_reading_all_sheets_with_blank(self, ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = 'blank_with_header' dfs = self.get_exceldf(basename, ext, sheet_name=None) expected_keys = ['Sheet1', 'Sheet2', 'Sheet3'] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403 def test_read_excel_blank(self, ext): actual = self.get_exceldf('blank', ext, 'Sheet1') tm.assert_frame_equal(actual, DataFrame()) def test_read_excel_blank_with_header(self, ext): expected = DataFrame(columns=['col_1', 'col_2']) actual = self.get_exceldf('blank_with_header', ext, 'Sheet1') tm.assert_frame_equal(actual, expected) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") @pytest.mark.parametrize("header,expected", [ (None, DataFrame([np.nan] * 4)), (0, DataFrame({"Unnamed: 0": [np.nan] * 3})) ]) def test_read_one_empty_col_no_header(self, ext, header, expected): # xref gh-12292 filename = "no_header" df = pd.DataFrame( [["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]] ) with ensure_clean(ext) as path: df.to_excel(path, filename, index=False, header=False) result = read_excel(path, filename, usecols=[0], header=header) tm.assert_frame_equal(result, expected) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") @pytest.mark.parametrize("header,expected", [ (None, DataFrame([0] + [np.nan] * 4)), (0, DataFrame([np.nan] * 4)) ]) def test_read_one_empty_col_with_header(self, ext, header, expected): filename = "with_header" df = pd.DataFrame( [["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]] ) with ensure_clean(ext) as path: df.to_excel(path, 'with_header', index=False, header=True) result = read_excel(path, filename, usecols=[0], header=header) tm.assert_frame_equal(result, expected) @td.skip_if_no('openpyxl') @td.skip_if_no('xlwt') def test_set_column_names_in_parameter(self, ext): # GH 12870 : pass down column names associated with # keyword argument names refdf = pd.DataFrame([[1, 'foo'], [2, 'bar'], [3, 'baz']], columns=['a', 'b']) with ensure_clean(ext) as pth: with ExcelWriter(pth) as writer: refdf.to_excel(writer, 'Data_no_head', header=False, index=False) refdf.to_excel(writer, 'Data_with_head', index=False) refdf.columns = ['A', 'B'] with ExcelFile(pth) as reader: xlsdf_no_head = read_excel(reader, 'Data_no_head', header=None, names=['A', 'B']) xlsdf_with_head = read_excel(reader, 'Data_with_head', index_col=None, names=['A', 'B']) tm.assert_frame_equal(xlsdf_no_head, refdf) tm.assert_frame_equal(xlsdf_with_head, refdf) def test_date_conversion_overflow(self, ext): # GH 10001 : pandas.ExcelFile ignore parse_dates=False expected = pd.DataFrame([[pd.Timestamp('2016-03-12'), 'Marc Johnson'], [pd.Timestamp('2016-03-16'), 'Jack Black'], [1e+20, 'Timothy Brown']], columns=['DateColWithBigInt', 'StringCol']) result = self.get_exceldf('testdateoverflow', ext) tm.assert_frame_equal(result, expected) @td.skip_if_no("xlrd", "1.0.1") # see gh-22682 def test_sheet_name_and_sheetname(self, ext): # gh-10559: Minor improvement: Change "sheet_name" to "sheetname" # gh-10969: DOC: Consistent var names (sheetname vs sheet_name) # gh-12604: CLN GH10559 Rename sheetname variable to sheet_name # gh-20920: ExcelFile.parse() and pd.read_xlsx() have different # behavior for "sheetname" argument filename = "test1" sheet_name = "Sheet1" df_ref = self.get_csv_refdf(filename) df1 = self.get_exceldf(filename, ext, sheet_name=sheet_name, index_col=0) # doc with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): with ignore_xlrd_time_clock_warning(): df2 = self.get_exceldf(filename, ext, index_col=0, sheetname=sheet_name) # backward compat excel = self.get_excelfile(filename, ext) df1_parse = excel.parse(sheet_name=sheet_name, index_col=0) # doc with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df2_parse = excel.parse(index_col=0, sheetname=sheet_name) # backward compat tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) tm.assert_frame_equal(df1_parse, df_ref, check_names=False) tm.assert_frame_equal(df2_parse, df_ref, check_names=False) def test_sheet_name_both_raises(self, ext): with pytest.raises(TypeError, match="Cannot specify both"): self.get_exceldf('test1', ext, sheetname='Sheet1', sheet_name='Sheet1') excel = self.get_excelfile('test1', ext) with pytest.raises(TypeError, match="Cannot specify both"): excel.parse(sheetname='Sheet1', sheet_name='Sheet1') def test_excel_read_buffer(self, ext): pth = os.path.join(self.dirpath, 'test1' + ext) expected = read_excel(pth, 'Sheet1', index_col=0) with open(pth, 'rb') as f: actual = read_excel(f, 'Sheet1', index_col=0) tm.assert_frame_equal(expected, actual) with open(pth, 'rb') as f: xls = ExcelFile(f) actual = read_excel(xls, 'Sheet1', index_col=0) tm.assert_frame_equal(expected, actual) def test_bad_engine_raises(self, ext): bad_engine = 'foo' with pytest.raises(ValueError, match="Unknown engine: foo"): read_excel('', engine=bad_engine) @tm.network def test_read_from_http_url(self, ext): url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/data/test1' + ext) url_table = read_excel(url) local_table = self.get_exceldf('test1', ext) tm.assert_frame_equal(url_table, local_table) @td.skip_if_not_us_locale def test_read_from_s3_url(self, ext, s3_resource): # Bucket "pandas-test" created in tests/io/conftest.py file_name = os.path.join(self.dirpath, 'test1' + ext) with open(file_name, "rb") as f: s3_resource.Bucket("pandas-test").put_object(Key="test1" + ext, Body=f) url = ('s3://pandas-test/test1' + ext) url_table = read_excel(url) local_table = self.get_exceldf('test1', ext) tm.assert_frame_equal(url_table, local_table) @pytest.mark.slow # ignore warning from old xlrd @pytest.mark.filterwarnings("ignore:This metho:PendingDeprecationWarning") def test_read_from_file_url(self, ext): # FILE localtable = os.path.join(self.dirpath, 'test1' + ext) local_table = read_excel(localtable) try: url_table = read_excel('file://localhost/' + localtable) except URLError: # fails on some systems import platform pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) @td.skip_if_no('pathlib') def test_read_from_pathlib_path(self, ext): # GH12655 from pathlib import Path str_path = os.path.join(self.dirpath, 'test1' + ext) expected = read_excel(str_path, 'Sheet1', index_col=0) path_obj = Path(self.dirpath, 'test1' + ext) actual = read_excel(path_obj, 'Sheet1', index_col=0) tm.assert_frame_equal(expected, actual) @td.skip_if_no('py.path') def test_read_from_py_localpath(self, ext): # GH12655 from py.path import local as LocalPath str_path = os.path.join(self.dirpath, 'test1' + ext) expected = read_excel(str_path, 'Sheet1', index_col=0) abs_dir = os.path.abspath(self.dirpath) path_obj = LocalPath(abs_dir).join('test1' + ext) actual = read_excel(path_obj, 'Sheet1', index_col=0) tm.assert_frame_equal(expected, actual) def test_reader_closes_file(self, ext): pth = os.path.join(self.dirpath, 'test1' + ext) f = open(pth, 'rb') with ExcelFile(f) as xlsx: # parses okay read_excel(xlsx, 'Sheet1', index_col=0) assert f.closed @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") def test_creating_and_reading_multiple_sheets(self, ext): # see gh-9450 # # Test reading multiple sheets, from a runtime # created Excel file with multiple sheets. def tdf(col_sheet_name): d, i = [11, 22, 33], [1, 2, 3] return DataFrame(d, i, columns=[col_sheet_name]) sheets = ["AAA", "BBB", "CCC"] dfs = [tdf(s) for s in sheets] dfs = dict(zip(sheets, dfs)) with ensure_clean(ext) as pth: with ExcelWriter(pth) as ew: for sheetname, df in iteritems(dfs): df.to_excel(ew, sheetname) dfs_returned = read_excel(pth, sheet_name=sheets, index_col=0) for s in sheets: tm.assert_frame_equal(dfs[s], dfs_returned[s]) def test_reader_seconds(self, ext): # Test reading times with and without milliseconds. GH5945. expected = DataFrame.from_dict({"Time": [time(1, 2, 3), time(2, 45, 56, 100000), time(4, 29, 49, 200000), time(6, 13, 42, 300000), time(7, 57, 35, 400000), time(9, 41, 28, 500000), time(11, 25, 21, 600000), time(13, 9, 14, 700000), time(14, 53, 7, 800000), time(16, 37, 0, 900000), time(18, 20, 54)]}) actual = self.get_exceldf('times_1900', ext, 'Sheet1') tm.assert_frame_equal(actual, expected) actual = self.get_exceldf('times_1904', ext, 'Sheet1') tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex(self, ext): # see gh-4679 mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]]) mi_file = os.path.join(self.dirpath, "testmultiindex" + ext) # "mi_column" sheet expected = DataFrame([[1, 2.5, pd.Timestamp("2015-01-01"), True], [2, 3.5, pd.Timestamp("2015-01-02"), False], [3, 4.5, pd.Timestamp("2015-01-03"), False], [4, 5.5, pd.Timestamp("2015-01-04"), True]], columns=mi) actual = read_excel(mi_file, "mi_column", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # "mi_index" sheet expected.index = mi expected.columns = ["a", "b", "c", "d"] actual = read_excel(mi_file, "mi_index", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "both" sheet expected.columns = mi actual = read_excel(mi_file, "both", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "mi_index_name" sheet expected.columns = ["a", "b", "c", "d"] expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = read_excel(mi_file, "mi_index_name", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # "mi_column_name" sheet expected.index = list(range(4)) expected.columns = mi.set_names(["c1", "c2"]) actual = read_excel(mi_file, "mi_column_name", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # see gh-11317 # "name_with_int" sheet expected.columns = mi.set_levels( [1, 2], level=1).set_names(["c1", "c2"]) actual = read_excel(mi_file, "name_with_int", index_col=0, header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_name" sheet expected.columns = mi.set_names(["c1", "c2"]) expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = read_excel(mi_file, "both_name", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_skiprows" sheet actual = read_excel(mi_file, "both_name_skiprows", index_col=[0, 1], header=[0, 1], skiprows=2) tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex_header_only(self, ext): # see gh-11733. # # Don't try to parse a header name if there isn't one. mi_file = os.path.join(self.dirpath, "testmultiindex" + ext) result = read_excel(mi_file, "index_col_none", header=[0, 1]) exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")]) expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns) tm.assert_frame_equal(result, expected) @td.skip_if_no("xlsxwriter") def test_read_excel_multiindex_empty_level(self, ext): # see gh-12453 with ensure_clean(ext) as path: df = DataFrame({ ("One", "x"): {0: 1}, ("Two", "X"): {0: 3}, ("Two", "Y"): {0: 7}, ("Zero", ""): {0: 0} }) expected = DataFrame({ ("One", "x"): {0: 1}, ("Two", "X"): {0: 3}, ("Two", "Y"): {0: 7}, ("Zero", "Unnamed: 4_level_1"): {0: 0} }) df.to_excel(path) actual = pd.read_excel(path, header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) df = pd.DataFrame({ ("Beg", ""): {0: 0}, ("Middle", "x"): {0: 1}, ("Tail", "X"): {0: 3}, ("Tail", "Y"): {0: 7} }) expected = pd.DataFrame({ ("Beg", "Unnamed: 1_level_1"): {0: 0}, ("Middle", "x"): {0: 1}, ("Tail", "X"): {0: 3}, ("Tail", "Y"): {0: 7} }) df.to_excel(path) actual = pd.read_excel(path, header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) @td.skip_if_no("xlsxwriter") @pytest.mark.parametrize("c_idx_names", [True, False]) @pytest.mark.parametrize("r_idx_names", [True, False]) @pytest.mark.parametrize("c_idx_levels", [1, 3]) @pytest.mark.parametrize("r_idx_levels", [1, 3]) def test_excel_multindex_roundtrip(self, ext, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels): # see gh-4679 with ensure_clean(ext) as pth: if c_idx_levels == 1 and c_idx_names: pytest.skip("Column index name cannot be " "serialized unless it's a MultiIndex") # Empty name case current read in as # unnamed levels, not Nones. check_names = r_idx_names or r_idx_levels <= 1 df = mkdf(5, 5, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels) df.to_excel(pth) act = pd.read_excel(pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels))) tm.assert_frame_equal(df, act, check_names=check_names) df.iloc[0, :] = np.nan df.to_excel(pth) act = pd.read_excel(pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels))) tm.assert_frame_equal(df, act, check_names=check_names) df.iloc[-1, :] = np.nan df.to_excel(pth) act = pd.read_excel(pth, index_col=list(range(r_idx_levels)), header=list(range(c_idx_levels))) tm.assert_frame_equal(df, act, check_names=check_names) def test_excel_old_index_format(self, ext): # see gh-4679 filename = "test_index_name_pre17" + ext in_file = os.path.join(self.dirpath, filename) # We detect headers to determine if index names exist, so # that "index" name in the "names" version of the data will # now be interpreted as rows that include null data. data = np.array([[None, None, None, None, None], ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"]]) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex(levels=[["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"]], codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], names=[None, None]) si = Index(["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(in_file, "single_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(in_file, "multi_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # The analogous versions of the "names" version data # where there are explicitly no names for the indices. data = np.array([["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"]]) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex(levels=[["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"]], codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], names=[None, None]) si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(in_file, "single_no_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(in_file, "multi_no_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) def test_read_excel_bool_header_arg(self, ext): # GH 6114 for arg in [True, False]: with pytest.raises(TypeError): pd.read_excel(os.path.join(self.dirpath, 'test1' + ext), header=arg) def test_read_excel_chunksize(self, ext): # GH 8011 with pytest.raises(NotImplementedError): pd.read_excel(os.path.join(self.dirpath, 'test1' + ext), chunksize=100) @td.skip_if_no("xlwt") @td.skip_if_no("openpyxl") def test_read_excel_parse_dates(self, ext): # see gh-11544, gh-12051 df = DataFrame( {"col": [1, 2, 3], "date_strings": pd.date_range("2012-01-01", periods=3)}) df2 = df.copy() df2["date_strings"] = df2["date_strings"].dt.strftime("%m/%d/%Y") with ensure_clean(ext) as pth: df2.to_excel(pth) res = read_excel(pth, index_col=0) tm.assert_frame_equal(df2, res) res = read_excel(pth, parse_dates=["date_strings"], index_col=0) tm.assert_frame_equal(df, res) date_parser = lambda x: pd.datetime.strptime(x, "%m/%d/%Y") res = read_excel(pth, parse_dates=["date_strings"], date_parser=date_parser, index_col=0) tm.assert_frame_equal(df, res) def test_read_excel_skiprows_list(self, ext): # GH 4903 actual = pd.read_excel(os.path.join(self.dirpath, 'testskiprows' + ext), 'skiprows_list', skiprows=[0, 2]) expected = DataFrame([[1, 2.5, pd.Timestamp('2015-01-01'), True], [2, 3.5, pd.Timestamp('2015-01-02'), False], [3, 4.5, pd.Timestamp('2015-01-03'), False], [4, 5.5, pd.Timestamp('2015-01-04'), True]], columns=['a', 'b', 'c', 'd']) tm.assert_frame_equal(actual, expected) actual = pd.read_excel(os.path.join(self.dirpath, 'testskiprows' + ext), 'skiprows_list', skiprows=np.array([0, 2])) tm.assert_frame_equal(actual, expected) def test_read_excel_nrows(self, ext): # GH 16645 num_rows_to_pull = 5 actual = pd.read_excel(os.path.join(self.dirpath, 'test1' + ext), nrows=num_rows_to_pull) expected = pd.read_excel(os.path.join(self.dirpath, 'test1' + ext)) expected = expected[:num_rows_to_pull] tm.assert_frame_equal(actual, expected) def test_read_excel_nrows_greater_than_nrows_in_file(self, ext): # GH 16645 expected = pd.read_excel(os.path.join(self.dirpath, 'test1' + ext)) num_records_in_file = len(expected) num_rows_to_pull = num_records_in_file + 10 actual = pd.read_excel(os.path.join(self.dirpath, 'test1' + ext), nrows=num_rows_to_pull) tm.assert_frame_equal(actual, expected) def test_read_excel_nrows_non_integer_parameter(self, ext): # GH 16645 msg = "'nrows' must be an integer >=0" with pytest.raises(ValueError, match=msg): pd.read_excel(os.path.join(self.dirpath, 'test1' + ext), nrows='5') def test_read_excel_squeeze(self, ext): # GH 12157 f = os.path.join(self.dirpath, 'test_squeeze' + ext) actual = pd.read_excel(f, 'two_columns', index_col=0, squeeze=True) expected = pd.Series([2, 3, 4], [4, 5, 6], name='b') expected.index.name = 'a' tm.assert_series_equal(actual, expected) actual = pd.read_excel(f, 'two_columns', squeeze=True) expected = pd.DataFrame({'a': [4, 5, 6], 'b': [2, 3, 4]}) tm.assert_frame_equal(actual, expected) actual = pd.read_excel(f, 'one_column', squeeze=True) expected = pd.Series([1, 2, 3], name='a') tm.assert_series_equal(actual, expected) @pytest.mark.parametrize("ext", ['.xls', '.xlsx', '.xlsm']) class TestXlrdReader(ReadingTestsBase): """ This is the base class for the xlrd tests, and 3 different file formats are supported: xls, xlsx, xlsm """ @td.skip_if_no("xlwt") def test_read_xlrd_book(self, ext): import xlrd df = self.frame engine = "xlrd" sheet_name = "SheetA" with ensure_clean(ext) as pth: df.to_excel(pth, sheet_name) book = xlrd.open_workbook(pth) with ExcelFile(book, engine=engine) as xl: result = read_excel(xl, sheet_name, index_col=0) tm.assert_frame_equal(df, result) result = read_excel(book, sheet_name=sheet_name, engine=engine, index_col=0) tm.assert_frame_equal(df, result) class _WriterBase(SharedItems): @pytest.fixture(autouse=True) def set_engine_and_path(self, request, merge_cells, engine, ext): """Fixture to set engine and open file for use in each test case Rather than requiring `engine=...` to be provided explicitly as an argument in each test, this fixture sets a global option to dictate which engine should be used to write Excel files. After executing the test it rolls back said change to the global option. It also uses a context manager to open a temporary excel file for the function to write to, accessible via `self.path` Notes ----- This fixture will run as part of each test method defined in the class and any subclasses, on account of the `autouse=True` argument """ option_name = 'io.excel.{ext}.writer'.format(ext=ext.strip('.')) prev_engine = get_option(option_name) set_option(option_name, engine) with ensure_clean(ext) as path: self.path = path yield set_option(option_name, prev_engine) # Roll back option change @pytest.mark.parametrize("merge_cells", [True, False]) @pytest.mark.parametrize("engine,ext", [ pytest.param('openpyxl', '.xlsx', marks=pytest.mark.skipif( not td.safe_import('openpyxl'), reason='No openpyxl')), pytest.param('openpyxl', '.xlsm', marks=pytest.mark.skipif( not td.safe_import('openpyxl'), reason='No openpyxl')), pytest.param('xlwt', '.xls', marks=pytest.mark.skipif( not td.safe_import('xlwt'), reason='No xlwt')), pytest.param('xlsxwriter', '.xlsx', marks=pytest.mark.skipif( not td.safe_import('xlsxwriter'), reason='No xlsxwriter')) ]) class TestExcelWriter(_WriterBase): # Base class for test cases to run with different Excel writers. def test_excel_sheet_by_name_raise(self, *_): import xlrd gt = DataFrame(np.random.randn(10, 2)) gt.to_excel(self.path) xl = ExcelFile(self.path) df = read_excel(xl, 0, index_col=0) tm.assert_frame_equal(gt, df) with pytest.raises(xlrd.XLRDError): read_excel(xl, "0") def test_excel_writer_context_manager(self, *_): with ExcelWriter(self.path) as writer: self.frame.to_excel(writer, "Data1") self.frame2.to_excel(writer, "Data2") with ExcelFile(self.path) as reader: found_df = read_excel(reader, "Data1", index_col=0) found_df2 = read_excel(reader, "Data2", index_col=0) tm.assert_frame_equal(found_df, self.frame) tm.assert_frame_equal(found_df2, self.frame2) def test_roundtrip(self, merge_cells, engine, ext): self.frame['A'][:5] = nan self.frame.to_excel(self.path, 'test1') self.frame.to_excel(self.path, 'test1', columns=['A', 'B']) self.frame.to_excel(self.path, 'test1', header=False) self.frame.to_excel(self.path, 'test1', index=False) # test roundtrip self.frame.to_excel(self.path, 'test1') recons = read_excel(self.path, 'test1', index_col=0) tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(self.path, 'test1', index=False) recons = read_excel(self.path, 'test1', index_col=None) recons.index = self.frame.index tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(self.path, 'test1', na_rep='NA') recons = read_excel(self.path, 'test1', index_col=0, na_values=['NA']) tm.assert_frame_equal(self.frame, recons) # GH 3611 self.frame.to_excel(self.path, 'test1', na_rep='88') recons = read_excel(self.path, 'test1', index_col=0, na_values=['88']) tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(self.path, 'test1', na_rep='88') recons = read_excel(self.path, 'test1', index_col=0, na_values=[88, 88.0]) tm.assert_frame_equal(self.frame, recons) # GH 6573 self.frame.to_excel(self.path, 'Sheet1') recons = read_excel(self.path, index_col=0) tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(self.path, '0') recons = read_excel(self.path, index_col=0) tm.assert_frame_equal(self.frame, recons) # GH 8825 Pandas Series should provide to_excel method s = self.frame["A"] s.to_excel(self.path) recons = read_excel(self.path, index_col=0) tm.assert_frame_equal(s.to_frame(), recons) def test_mixed(self, merge_cells, engine, ext): self.mixed_frame.to_excel(self.path, 'test1') reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=0) tm.assert_frame_equal(self.mixed_frame, recons) def test_ts_frame(self, *_): df = tm.makeTimeDataFrame()[:5] df.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(df, recons) def test_basics_with_nan(self, merge_cells, engine, ext): self.frame['A'][:5] = nan self.frame.to_excel(self.path, 'test1') self.frame.to_excel(self.path, 'test1', columns=['A', 'B']) self.frame.to_excel(self.path, 'test1', header=False) self.frame.to_excel(self.path, 'test1', index=False) @pytest.mark.parametrize("np_type", [ np.int8, np.int16, np.int32, np.int64]) def test_int_types(self, merge_cells, engine, ext, np_type): # Test np.int values read come back as int # (rather than float which is Excel's format). frame = DataFrame(np.random.randint(-10, 10, size=(10, 2)), dtype=np_type) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) int_frame = frame.astype(np.int64) tm.assert_frame_equal(int_frame, recons) recons2 = read_excel(self.path, "test1", index_col=0) tm.assert_frame_equal(int_frame, recons2) # Test with convert_float=False comes back as float. float_frame = frame.astype(float) recons = read_excel(self.path, "test1", convert_float=False, index_col=0) tm.assert_frame_equal(recons, float_frame, check_index_type=False, check_column_type=False) @pytest.mark.parametrize("np_type", [ np.float16, np.float32, np.float64]) def test_float_types(self, merge_cells, engine, ext, np_type): # Test np.float values read come back as float. frame = DataFrame(np.random.random_sample(10), dtype=np_type) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0).astype(np_type) tm.assert_frame_equal(frame, recons, check_dtype=False) @pytest.mark.parametrize("np_type", [np.bool8, np.bool_]) def test_bool_types(self, merge_cells, engine, ext, np_type): # Test np.bool values read come back as float. frame = (DataFrame([1, 0, True, False], dtype=np_type)) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0).astype(np_type) tm.assert_frame_equal(frame, recons) def test_inf_roundtrip(self, *_): frame = DataFrame([(1, np.inf), (2, 3), (5, -np.inf)]) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(frame, recons) def test_sheets(self, merge_cells, engine, ext): self.frame['A'][:5] = nan self.frame.to_excel(self.path, 'test1') self.frame.to_excel(self.path, 'test1', columns=['A', 'B']) self.frame.to_excel(self.path, 'test1', header=False) self.frame.to_excel(self.path, 'test1', index=False) # Test writing to separate sheets writer = ExcelWriter(self.path) self.frame.to_excel(writer, 'test1') self.tsframe.to_excel(writer, 'test2') writer.save() reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=0) tm.assert_frame_equal(self.frame, recons) recons = read_excel(reader, 'test2', index_col=0) tm.assert_frame_equal(self.tsframe, recons) assert 2 == len(reader.sheet_names) assert 'test1' == reader.sheet_names[0] assert 'test2' == reader.sheet_names[1] def test_colaliases(self, merge_cells, engine, ext): self.frame['A'][:5] = nan self.frame.to_excel(self.path, 'test1') self.frame.to_excel(self.path, 'test1', columns=['A', 'B']) self.frame.to_excel(self.path, 'test1', header=False) self.frame.to_excel(self.path, 'test1', index=False) # column aliases col_aliases = Index(['AA', 'X', 'Y', 'Z']) self.frame2.to_excel(self.path, 'test1', header=col_aliases) reader = ExcelFile(self.path) rs = read_excel(reader, 'test1', index_col=0) xp = self.frame2.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) def test_roundtrip_indexlabels(self, merge_cells, engine, ext): self.frame['A'][:5] = nan self.frame.to_excel(self.path, 'test1') self.frame.to_excel(self.path, 'test1', columns=['A', 'B']) self.frame.to_excel(self.path, 'test1', header=False) self.frame.to_excel(self.path, 'test1', index=False) # test index_label frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(self.path, 'test1', index_label=['test'], merge_cells=merge_cells) reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=0, ).astype(np.int64) frame.index.names = ['test'] assert frame.index.names == recons.index.names frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(self.path, 'test1', index_label=['test', 'dummy', 'dummy2'], merge_cells=merge_cells) reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=0, ).astype(np.int64) frame.index.names = ['test'] assert frame.index.names == recons.index.names frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(self.path, 'test1', index_label='test', merge_cells=merge_cells) reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=0, ).astype(np.int64) frame.index.names = ['test'] tm.assert_frame_equal(frame, recons.astype(bool)) self.frame.to_excel(self.path, 'test1', columns=['A', 'B', 'C', 'D'], index=False, merge_cells=merge_cells) # take 'A' and 'B' as indexes (same row as cols 'C', 'D') df = self.frame.copy() df = df.set_index(['A', 'B']) reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=[0, 1]) tm.assert_frame_equal(df, recons, check_less_precise=True) def test_excel_roundtrip_indexname(self, merge_cells, engine, ext): df = DataFrame(np.random.randn(10, 4)) df.index.name = 'foo' df.to_excel(self.path, merge_cells=merge_cells) xf = ExcelFile(self.path) result = read_excel(xf, xf.sheet_names[0], index_col=0) tm.assert_frame_equal(result, df) assert result.index.name == 'foo' def test_excel_roundtrip_datetime(self, merge_cells, *_): # datetime.date, not sure what to test here exactly tsf = self.tsframe.copy() tsf.index = [x.date() for x in self.tsframe.index] tsf.to_excel(self.path, "test1", merge_cells=merge_cells) reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(self.tsframe, recons) def test_excel_date_datetime_format(self, merge_cells, engine, ext): # see gh-4133 # # Excel output format strings df = DataFrame([[date(2014, 1, 31), date(1999, 9, 24)], [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)]], index=["DATE", "DATETIME"], columns=["X", "Y"]) df_expected = DataFrame([[datetime(2014, 1, 31), datetime(1999, 9, 24)], [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)]], index=["DATE", "DATETIME"], columns=["X", "Y"]) with ensure_clean(ext) as filename2: writer1 = ExcelWriter(self.path) writer2 = ExcelWriter(filename2, date_format="DD.MM.YYYY", datetime_format="DD.MM.YYYY HH-MM-SS") df.to_excel(writer1, "test1") df.to_excel(writer2, "test1") writer1.close() writer2.close() reader1 = ExcelFile(self.path) reader2 = ExcelFile(filename2) rs1 = read_excel(reader1, "test1", index_col=0) rs2 = read_excel(reader2, "test1", index_col=0) tm.assert_frame_equal(rs1, rs2) # Since the reader returns a datetime object for dates, # we need to use df_expected to check the result. tm.assert_frame_equal(rs2, df_expected) def test_to_excel_interval_no_labels(self, *_): # see gh-19242 # # Test writing Interval without labels. frame = DataFrame(np.random.randint(-10, 10, size=(20, 1)), dtype=np.int64) expected = frame.copy() frame["new"] = pd.cut(frame[0], 10) expected["new"] = pd.cut(expected[0], 10).astype(str) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_interval_labels(self, *_): # see gh-19242 # # Test writing Interval with labels. frame = DataFrame(np.random.randint(-10, 10, size=(20, 1)), dtype=np.int64) expected = frame.copy() intervals = pd.cut(frame[0], 10, labels=["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]) frame["new"] = intervals expected["new"] = pd.Series(list(intervals)) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_timedelta(self, *_): # see gh-19242, gh-9155 # # Test writing timedelta to xls. frame = DataFrame(np.random.randint(-10, 10, size=(20, 1)), columns=["A"], dtype=np.int64) expected = frame.copy() frame["new"] = frame["A"].apply(lambda x: timedelta(seconds=x)) expected["new"] = expected["A"].apply( lambda x: timedelta(seconds=x).total_seconds() / float(86400)) frame.to_excel(self.path, "test1") reader = ExcelFile(self.path) recons = read_excel(reader, "test1", index_col=0) tm.assert_frame_equal(expected, recons) def test_to_excel_periodindex(self, merge_cells, engine, ext): frame = self.tsframe xp = frame.resample('M', kind='period').mean() xp.to_excel(self.path, 'sht1') reader = ExcelFile(self.path) rs = read_excel(reader, 'sht1', index_col=0) tm.assert_frame_equal(xp, rs.to_period('M')) def test_to_excel_multiindex(self, merge_cells, engine, ext): frame = self.frame arrays = np.arange(len(frame.index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=['first', 'second']) frame.index = new_index frame.to_excel(self.path, 'test1', header=False) frame.to_excel(self.path, 'test1', columns=['A', 'B']) # round trip frame.to_excel(self.path, 'test1', merge_cells=merge_cells) reader = ExcelFile(self.path) df = read_excel(reader, 'test1', index_col=[0, 1]) tm.assert_frame_equal(frame, df) # GH13511 def test_to_excel_multiindex_nan_label(self, merge_cells, engine, ext): frame = pd.DataFrame({'A': [None, 2, 3], 'B': [10, 20, 30], 'C': np.random.sample(3)}) frame = frame.set_index(['A', 'B']) frame.to_excel(self.path, merge_cells=merge_cells) df = read_excel(self.path, index_col=[0, 1]) tm.assert_frame_equal(frame, df) # Test for Issue 11328. If column indices are integers, make # sure they are handled correctly for either setting of # merge_cells def test_to_excel_multiindex_cols(self, merge_cells, engine, ext): frame = self.frame arrays = np.arange(len(frame.index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=['first', 'second']) frame.index = new_index new_cols_index = MultiIndex.from_tuples([(40, 1), (40, 2), (50, 1), (50, 2)]) frame.columns = new_cols_index header = [0, 1] if not merge_cells: header = 0 # round trip frame.to_excel(self.path, 'test1', merge_cells=merge_cells) reader = ExcelFile(self.path) df = read_excel(reader, 'test1', header=header, index_col=[0, 1]) if not merge_cells: fm = frame.columns.format(sparsify=False, adjoin=False, names=False) frame.columns = [".".join(map(str, q)) for q in zip(*fm)] tm.assert_frame_equal(frame, df) def test_to_excel_multiindex_dates(self, merge_cells, engine, ext): # try multiindex with dates tsframe = self.tsframe.copy() new_index = [tsframe.index, np.arange(len(tsframe.index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.index.names = ['time', 'foo'] tsframe.to_excel(self.path, 'test1', merge_cells=merge_cells) reader = ExcelFile(self.path) recons = read_excel(reader, 'test1', index_col=[0, 1]) tm.assert_frame_equal(tsframe, recons) assert recons.index.names == ('time', 'foo') def test_to_excel_multiindex_no_write_index(self, merge_cells, engine, ext): # Test writing and re-reading a MI witout the index. GH 5616. # Initial non-MI frame. frame1 = DataFrame({'a': [10, 20], 'b': [30, 40], 'c': [50, 60]}) # Add a MI. frame2 = frame1.copy() multi_index = MultiIndex.from_tuples([(70, 80), (90, 100)]) frame2.index = multi_index # Write out to Excel without the index. frame2.to_excel(self.path, 'test1', index=False) # Read it back in. reader = ExcelFile(self.path) frame3 = read_excel(reader, 'test1') # Test that it is the same as the initial frame. tm.assert_frame_equal(frame1, frame3) def test_to_excel_float_format(self, *_): df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"]) df.to_excel(self.path, "test1", float_format="%.2f") reader = ExcelFile(self.path) result = read_excel(reader, "test1", index_col=0) expected = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"]) tm.assert_frame_equal(result, expected) def test_to_excel_output_encoding(self, merge_cells, engine, ext): # Avoid mixed inferred_type. df = DataFrame([[u"\u0192", u"\u0193", u"\u0194"], [u"\u0195", u"\u0196", u"\u0197"]], index=[u"A\u0192", u"B"], columns=[u"X\u0193", u"Y", u"Z"]) with ensure_clean("__tmp_to_excel_float_format__." + ext) as filename: df.to_excel(filename, sheet_name="TestSheet", encoding="utf8") result = read_excel(filename, "TestSheet", encoding="utf8", index_col=0) tm.assert_frame_equal(result, df) def test_to_excel_unicode_filename(self, merge_cells, engine, ext): with ensure_clean(u("\u0192u.") + ext) as filename: try: f = open(filename, "wb") except UnicodeEncodeError: pytest.skip("No unicode file names on this system") else: f.close() df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"]) df.to_excel(filename, "test1", float_format="%.2f") reader = ExcelFile(filename) result = read_excel(reader, "test1", index_col=0) expected = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"]) tm.assert_frame_equal(result, expected) # def test_to_excel_header_styling_xls(self, merge_cells, engine, ext): # import StringIO # s = StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import xlwt # import xlrd # except ImportError: # pytest.skip # filename = '__tmp_to_excel_header_styling_xls__.xls' # pdf.to_excel(filename, 'test1') # wbk = xlrd.open_workbook(filename, # formatting_info=True) # assert ["test1"] == wbk.sheet_names() # ws = wbk.sheet_by_name('test1') # assert [(0, 1, 5, 7), (0, 1, 3, 5), (0, 1, 1, 3)] == ws.merged_cells # for i in range(0, 2): # for j in range(0, 7): # xfx = ws.cell_xf_index(0, 0) # cell_xf = wbk.xf_list[xfx] # font = wbk.font_list # assert 1 == font[cell_xf.font_index].bold # assert 1 == cell_xf.border.top_line_style # assert 1 == cell_xf.border.right_line_style # assert 1 == cell_xf.border.bottom_line_style # assert 1 == cell_xf.border.left_line_style # assert 2 == cell_xf.alignment.hor_align # os.remove(filename) # def test_to_excel_header_styling_xlsx(self, merge_cells, engine, ext): # import StringIO # s = StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import openpyxl # from openpyxl.cell import get_column_letter # except ImportError: # pytest.skip # if openpyxl.__version__ < '1.6.1': # pytest.skip # # test xlsx_styling # filename = '__tmp_to_excel_header_styling_xlsx__.xlsx' # pdf.to_excel(filename, 'test1') # wbk = openpyxl.load_workbook(filename) # assert ["test1"] == wbk.get_sheet_names() # ws = wbk.get_sheet_by_name('test1') # xlsaddrs = ["%s2" % chr(i) for i in range(ord('A'), ord('H'))] # xlsaddrs += ["A%s" % i for i in range(1, 6)] # xlsaddrs += ["B1", "D1", "F1"] # for xlsaddr in xlsaddrs: # cell = ws.cell(xlsaddr) # assert cell.style.font.bold # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.top.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.right.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.bottom.border_style) # assert (openpyxl.style.Border.BORDER_THIN == # cell.style.borders.left.border_style) # assert (openpyxl.style.Alignment.HORIZONTAL_CENTER == # cell.style.alignment.horizontal) # mergedcells_addrs = ["C1", "E1", "G1"] # for maddr in mergedcells_addrs: # assert ws.cell(maddr).merged # os.remove(filename) @pytest.mark.parametrize("use_headers", [True, False]) @pytest.mark.parametrize("r_idx_nlevels", [1, 2, 3]) @pytest.mark.parametrize("c_idx_nlevels", [1, 2, 3]) def test_excel_010_hemstring(self, merge_cells, engine, ext, c_idx_nlevels, r_idx_nlevels, use_headers): def roundtrip(data, header=True, parser_hdr=0, index=True): data.to_excel(self.path, header=header, merge_cells=merge_cells, index=index) xf = ExcelFile(self.path) return read_excel(xf, xf.sheet_names[0], header=parser_hdr) # Basic test. parser_header = 0 if use_headers else None res = roundtrip(DataFrame([0]), use_headers, parser_header) assert res.shape == (1, 2) assert res.iloc[0, 0] is not np.nan # More complex tests with multi-index. nrows = 5 ncols = 3 from pandas.util.testing import makeCustomDataframe as mkdf # ensure limited functionality in 0.10 # override of gh-2370 until sorted out in 0.11 df = mkdf(nrows, ncols, r_idx_nlevels=r_idx_nlevels, c_idx_nlevels=c_idx_nlevels) # This if will be removed once multi-column Excel writing # is implemented. For now fixing gh-9794. if c_idx_nlevels > 1: with pytest.raises(NotImplementedError): roundtrip(df, use_headers, index=False) else: res = roundtrip(df, use_headers) if use_headers: assert res.shape == (nrows, ncols + r_idx_nlevels) else: # First row taken as columns. assert res.shape == (nrows - 1, ncols + r_idx_nlevels) # No NaNs. for r in range(len(res.index)): for c in range(len(res.columns)): assert res.iloc[r, c] is not np.nan def test_duplicated_columns(self, *_): # see gh-5235 df = DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B"]) df.to_excel(self.path, "test1") expected = DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B.1"]) # By default, we mangle. result = read_excel(self.path, "test1", index_col=0) tm.assert_frame_equal(result, expected) # Explicitly, we pass in the parameter. result = read_excel(self.path, "test1", index_col=0, mangle_dupe_cols=True) tm.assert_frame_equal(result, expected) # see gh-11007, gh-10970 df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A", "B"]) df.to_excel(self.path, "test1") result = read_excel(self.path, "test1", index_col=0) expected = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A.1", "B.1"]) tm.assert_frame_equal(result, expected) # see gh-10982 df.to_excel(self.path, "test1", index=False, header=False) result = read_excel(self.path, "test1", header=None) expected = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]]) tm.assert_frame_equal(result, expected) msg = "Setting mangle_dupe_cols=False is not supported yet" with pytest.raises(ValueError, match=msg): read_excel(self.path, "test1", header=None, mangle_dupe_cols=False) def test_swapped_columns(self, merge_cells, engine, ext): # Test for issue #5427. write_frame = DataFrame({'A': [1, 1, 1], 'B': [2, 2, 2]}) write_frame.to_excel(self.path, 'test1', columns=['B', 'A']) read_frame = read_excel(self.path, 'test1', header=0) tm.assert_series_equal(write_frame['A'], read_frame['A']) tm.assert_series_equal(write_frame['B'], read_frame['B']) def test_invalid_columns(self, *_): # see gh-10982 write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): write_frame.to_excel(self.path, "test1", columns=["B", "C"]) expected = write_frame.reindex(columns=["B", "C"]) read_frame = read_excel(self.path, "test1", index_col=0) tm.assert_frame_equal(expected, read_frame) with pytest.raises(KeyError): write_frame.to_excel(self.path, "test1", columns=["C", "D"]) def test_comment_arg(self, *_): # see gh-18735 # # Test the comment argument functionality to read_excel. # Create file to read in. df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]}) df.to_excel(self.path, "test_c") # Read file without comment arg. result1 = read_excel(self.path, "test_c", index_col=0) result1.iloc[1, 0] = None result1.iloc[1, 1] = None result1.iloc[2, 1] = None result2 = read_excel(self.path, "test_c", comment="#", index_col=0) tm.assert_frame_equal(result1, result2) def test_comment_default(self, merge_cells, engine, ext): # Re issue #18735 # Test the comment argument default to read_excel # Create file to read in df = DataFrame({'A': ['one', '#one', 'one'], 'B': ['two', 'two', '#two']}) df.to_excel(self.path, 'test_c') # Read file with default and explicit comment=None result1 = read_excel(self.path, 'test_c') result2 = read_excel(self.path, 'test_c', comment=None) tm.assert_frame_equal(result1, result2) def test_comment_used(self, *_): # see gh-18735 # # Test the comment argument is working as expected when used. # Create file to read in. df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]}) df.to_excel(self.path, "test_c") # Test read_frame_comment against manually produced expected output. expected = DataFrame({"A": ["one", None, "one"], "B": ["two", None, None]}) result = read_excel(self.path, "test_c", comment="#", index_col=0) tm.assert_frame_equal(result, expected) def test_comment_empty_line(self, merge_cells, engine, ext): # Re issue #18735 # Test that read_excel ignores commented lines at the end of file df = DataFrame({'a': ['1', '#2'], 'b': ['2', '3']}) df.to_excel(self.path, index=False) # Test that all-comment lines at EoF are ignored expected = DataFrame({'a': [1], 'b': [2]}) result = read_excel(self.path, comment='#') tm.assert_frame_equal(result, expected) def test_datetimes(self, merge_cells, engine, ext): # Test writing and reading datetimes. For issue #9139. (xref #9185) datetimes = [datetime(2013, 1, 13, 1, 2, 3), datetime(2013, 1, 13, 2, 45, 56), datetime(2013, 1, 13, 4, 29, 49), datetime(2013, 1, 13, 6, 13, 42), datetime(2013, 1, 13, 7, 57, 35), datetime(2013, 1, 13, 9, 41, 28), datetime(2013, 1, 13, 11, 25, 21), datetime(2013, 1, 13, 13, 9, 14), datetime(2013, 1, 13, 14, 53, 7), datetime(2013, 1, 13, 16, 37, 0), datetime(2013, 1, 13, 18, 20, 52)] write_frame = DataFrame({'A': datetimes}) write_frame.to_excel(self.path, 'Sheet1') read_frame = read_excel(self.path, 'Sheet1', header=0) tm.assert_series_equal(write_frame['A'], read_frame['A']) def test_bytes_io(self, merge_cells, engine, ext): # see gh-7074 bio = BytesIO() df = DataFrame(np.random.randn(10, 2)) # Pass engine explicitly, as there is no file path to infer from. writer = ExcelWriter(bio, engine=engine) df.to_excel(writer) writer.save() bio.seek(0) reread_df = read_excel(bio, index_col=0) tm.assert_frame_equal(df, reread_df) def test_write_lists_dict(self, *_): # see gh-8188. df = DataFrame({"mixed": ["a", ["b", "c"], {"d": "e", "f": 2}], "numeric": [1, 2, 3.0], "str": ["apple", "banana", "cherry"]}) df.to_excel(self.path, "Sheet1") read = read_excel(self.path, "Sheet1", header=0, index_col=0) expected = df.copy() expected.mixed = expected.mixed.apply(str) expected.numeric = expected.numeric.astype("int64") tm.assert_frame_equal(read, expected) def test_true_and_false_value_options(self, *_): # see gh-13347 df = pd.DataFrame([["foo", "bar"]], columns=["col1", "col2"]) expected = df.replace({"foo": True, "bar": False}) df.to_excel(self.path) read_frame = read_excel(self.path, true_values=["foo"], false_values=["bar"], index_col=0) tm.assert_frame_equal(read_frame, expected) def test_freeze_panes(self, *_): # see gh-15160 expected = DataFrame([[1, 2], [3, 4]], columns=["col1", "col2"]) expected.to_excel(self.path, "Sheet1", freeze_panes=(1, 1)) result = read_excel(self.path, index_col=0) tm.assert_frame_equal(result, expected) def test_path_path_lib(self, merge_cells, engine, ext): df = tm.makeDataFrame() writer = partial(df.to_excel, engine=engine) reader = partial(pd.read_excel, index_col=0) result = tm.round_trip_pathlib(writer, reader, path="foo.{ext}".format(ext=ext)) tm.assert_frame_equal(result, df) def test_path_local_path(self, merge_cells, engine, ext): df = tm.makeDataFrame() writer = partial(df.to_excel, engine=engine) reader = partial(pd.read_excel, index_col=0) result = tm.round_trip_pathlib(writer, reader, path="foo.{ext}".format(ext=ext)) tm.assert_frame_equal(result, df) @td.skip_if_no('openpyxl') @pytest.mark.parametrize("merge_cells,ext,engine", [ (None, '.xlsx', 'openpyxl')]) class TestOpenpyxlTests(_WriterBase): def test_to_excel_styleconverter(self, merge_cells, ext, engine): from openpyxl import styles hstyle = { "font": { "color": '00FF0000', "bold": True, }, "borders": { "top": "thin", "right": "thin", "bottom": "thin", "left": "thin", }, "alignment": { "horizontal": "center", "vertical": "top", }, "fill": { "patternType": 'solid', 'fgColor': { 'rgb': '006666FF', 'tint': 0.3, }, }, "number_format": { "format_code": "0.00" }, "protection": { "locked": True, "hidden": False, }, } font_color = styles.Color('00FF0000') font = styles.Font(bold=True, color=font_color) side = styles.Side(style=styles.borders.BORDER_THIN) border = styles.Border(top=side, right=side, bottom=side, left=side) alignment = styles.Alignment(horizontal='center', vertical='top') fill_color = styles.Color(rgb='006666FF', tint=0.3) fill = styles.PatternFill(patternType='solid', fgColor=fill_color) number_format = '0.00' protection = styles.Protection(locked=True, hidden=False) kw = _OpenpyxlWriter._convert_to_style_kwargs(hstyle) assert kw['font'] == font assert kw['border'] == border assert kw['alignment'] == alignment assert kw['fill'] == fill assert kw['number_format'] == number_format assert kw['protection'] == protection def test_write_cells_merge_styled(self, merge_cells, ext, engine): from pandas.io.formats.excel import ExcelCell sheet_name = 'merge_styled' sty_b1 = {'font': {'color': '00FF0000'}} sty_a2 = {'font': {'color': '0000FF00'}} initial_cells = [ ExcelCell(col=1, row=0, val=42, style=sty_b1), ExcelCell(col=0, row=1, val=99, style=sty_a2), ] sty_merged = {'font': {'color': '000000FF', 'bold': True}} sty_kwargs = _OpenpyxlWriter._convert_to_style_kwargs(sty_merged) openpyxl_sty_merged = sty_kwargs['font'] merge_cells = [ ExcelCell(col=0, row=0, val='pandas', mergestart=1, mergeend=1, style=sty_merged), ] with ensure_clean(ext) as path: writer = _OpenpyxlWriter(path) writer.write_cells(initial_cells, sheet_name=sheet_name) writer.write_cells(merge_cells, sheet_name=sheet_name) wks = writer.sheets[sheet_name] xcell_b1 = wks['B1'] xcell_a2 = wks['A2'] assert xcell_b1.font == openpyxl_sty_merged assert xcell_a2.font == openpyxl_sty_merged @pytest.mark.parametrize("mode,expected", [ ('w', ['baz']), ('a', ['foo', 'bar', 'baz'])]) def test_write_append_mode(self, merge_cells, ext, engine, mode, expected): import openpyxl df = DataFrame([1], columns=['baz']) with ensure_clean(ext) as f: wb = openpyxl.Workbook() wb.worksheets[0].title = 'foo' wb.worksheets[0]['A1'].value = 'foo' wb.create_sheet('bar') wb.worksheets[1]['A1'].value = 'bar' wb.save(f) writer = ExcelWriter(f, engine=engine, mode=mode) df.to_excel(writer, sheet_name='baz', index=False) writer.save() wb2 = openpyxl.load_workbook(f) result = [sheet.title for sheet in wb2.worksheets] assert result == expected for index, cell_value in enumerate(expected): assert wb2.worksheets[index]['A1'].value == cell_value @td.skip_if_no('xlwt') @pytest.mark.parametrize("merge_cells,ext,engine", [ (None, '.xls', 'xlwt')]) class TestXlwtTests(_WriterBase): def test_excel_raise_error_on_multiindex_columns_and_no_index( self, merge_cells, ext, engine): # MultiIndex as columns is not yet implemented 9794 cols = MultiIndex.from_tuples([('site', ''), ('2014', 'height'), ('2014', 'weight')]) df = DataFrame(np.random.randn(10, 3), columns=cols) with pytest.raises(NotImplementedError): with ensure_clean(ext) as path: df.to_excel(path, index=False) def test_excel_multiindex_columns_and_index_true(self, merge_cells, ext, engine): cols = MultiIndex.from_tuples([('site', ''), ('2014', 'height'), ('2014', 'weight')]) df = pd.DataFrame(np.random.randn(10, 3), columns=cols) with ensure_clean(ext) as path: df.to_excel(path, index=True) def test_excel_multiindex_index(self, merge_cells, ext, engine): # MultiIndex as index works so assert no error #9794 cols = MultiIndex.from_tuples([('site', ''), ('2014', 'height'), ('2014', 'weight')]) df = DataFrame(np.random.randn(3, 10), index=cols) with ensure_clean(ext) as path: df.to_excel(path, index=False) def test_to_excel_styleconverter(self, merge_cells, ext, engine): import xlwt hstyle = {"font": {"bold": True}, "borders": {"top": "thin", "right": "thin", "bottom": "thin", "left": "thin"}, "alignment": {"horizontal": "center", "vertical": "top"}} xls_style = _XlwtWriter._convert_to_style(hstyle) assert xls_style.font.bold assert xlwt.Borders.THIN == xls_style.borders.top assert xlwt.Borders.THIN == xls_style.borders.right assert xlwt.Borders.THIN == xls_style.borders.bottom assert xlwt.Borders.THIN == xls_style.borders.left assert xlwt.Alignment.HORZ_CENTER == xls_style.alignment.horz assert xlwt.Alignment.VERT_TOP == xls_style.alignment.vert def test_write_append_mode_raises(self, merge_cells, ext, engine): msg = "Append mode is not supported with xlwt!" with ensure_clean(ext) as f: with pytest.raises(ValueError, match=msg): ExcelWriter(f, engine=engine, mode='a') @td.skip_if_no('xlsxwriter') @pytest.mark.parametrize("merge_cells,ext,engine", [ (None, '.xlsx', 'xlsxwriter')]) class TestXlsxWriterTests(_WriterBase): @td.skip_if_no('openpyxl') def test_column_format(self, merge_cells, ext, engine): # Test that column formats are applied to cells. Test for issue #9167. # Applicable to xlsxwriter only. with warnings.catch_warnings(): # Ignore the openpyxl lxml warning. warnings.simplefilter("ignore") import openpyxl with ensure_clean(ext) as path: frame = DataFrame({'A': [123456, 123456], 'B': [123456, 123456]}) writer = ExcelWriter(path) frame.to_excel(writer) # Add a number format to col B and ensure it is applied to cells. num_format = '#,##0' write_workbook = writer.book write_worksheet = write_workbook.worksheets()[0] col_format = write_workbook.add_format({'num_format': num_format}) write_worksheet.set_column('B:B', None, col_format) writer.save() read_workbook = openpyxl.load_workbook(path) try: read_worksheet = read_workbook['Sheet1'] except TypeError: # compat read_worksheet = read_workbook.get_sheet_by_name(name='Sheet1') # Get the number format from the cell. try: cell = read_worksheet['B2'] except TypeError: # compat cell = read_worksheet.cell('B2') try: read_num_format = cell.number_format except Exception: read_num_format = cell.style.number_format._format_code assert read_num_format == num_format def test_write_append_mode_raises(self, merge_cells, ext, engine): msg = "Append mode is not supported with xlsxwriter!" with ensure_clean(ext) as f: with pytest.raises(ValueError, match=msg): ExcelWriter(f, engine=engine, mode='a') class TestExcelWriterEngineTests(object): @pytest.mark.parametrize('klass,ext', [ pytest.param(_XlsxWriter, '.xlsx', marks=pytest.mark.skipif( not td.safe_import('xlsxwriter'), reason='No xlsxwriter')), pytest.param(_OpenpyxlWriter, '.xlsx', marks=pytest.mark.skipif( not td.safe_import('openpyxl'), reason='No openpyxl')), pytest.param(_XlwtWriter, '.xls', marks=pytest.mark.skipif( not td.safe_import('xlwt'), reason='No xlwt')) ]) def test_ExcelWriter_dispatch(self, klass, ext): with ensure_clean(ext) as path: writer = ExcelWriter(path) if ext == '.xlsx' and td.safe_import('xlsxwriter'): # xlsxwriter has preference over openpyxl if both installed assert isinstance(writer, _XlsxWriter) else: assert isinstance(writer, klass) def test_ExcelWriter_dispatch_raises(self): with pytest.raises(ValueError, match='No engine'): ExcelWriter('nothing') @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_register_writer(self): # some awkward mocking to test out dispatch and such actually works called_save = [] called_write_cells = [] class DummyClass(ExcelWriter): called_save = False called_write_cells = False supported_extensions = ['xlsx', 'xls'] engine = 'dummy' def save(self): called_save.append(True) def write_cells(self, *args, **kwargs): called_write_cells.append(True) def check_called(func): func() assert len(called_save) >= 1 assert len(called_write_cells) >= 1 del called_save[:] del called_write_cells[:] with pd.option_context('io.excel.xlsx.writer', 'dummy'): register_writer(DummyClass) writer = ExcelWriter('something.xlsx') assert isinstance(writer, DummyClass) df = tm.makeCustomDataframe(1, 1) check_called(lambda: df.to_excel('something.xlsx')) check_called( lambda: df.to_excel( 'something.xls', engine='dummy')) @pytest.mark.parametrize('engine', [ pytest.param('xlwt', marks=pytest.mark.xfail(reason='xlwt does not support ' 'openpyxl-compatible ' 'style dicts')), 'xlsxwriter', 'openpyxl', ]) def test_styler_to_excel(engine): def style(df): # XXX: RGB colors not supported in xlwt return DataFrame([['font-weight: bold', '', ''], ['', 'color: blue', ''], ['', '', 'text-decoration: underline'], ['border-style: solid', '', ''], ['', 'font-style: italic', ''], ['', '', 'text-align: right'], ['background-color: red', '', ''], ['number-format: 0%', '', ''], ['', '', ''], ['', '', ''], ['', '', '']], index=df.index, columns=df.columns) def assert_equal_style(cell1, cell2, engine): if engine in ['xlsxwriter', 'openpyxl']: pytest.xfail(reason=("GH25351: failing on some attribute " "comparisons in {}".format(engine))) # XXX: should find a better way to check equality assert cell1.alignment.__dict__ == cell2.alignment.__dict__ assert cell1.border.__dict__ == cell2.border.__dict__ assert cell1.fill.__dict__ == cell2.fill.__dict__ assert cell1.font.__dict__ == cell2.font.__dict__ assert cell1.number_format == cell2.number_format assert cell1.protection.__dict__ == cell2.protection.__dict__ def custom_converter(css): # use bold iff there is custom style attached to the cell if css.strip(' \n;'): return {'font': {'bold': True}} return {} pytest.importorskip('jinja2') pytest.importorskip(engine) # Prepare spreadsheets df = DataFrame(np.random.randn(11, 3)) with ensure_clean('.xlsx' if engine != 'xlwt' else '.xls') as path: writer = ExcelWriter(path, engine=engine) df.to_excel(writer, sheet_name='frame') df.style.to_excel(writer, sheet_name='unstyled') styled = df.style.apply(style, axis=None) styled.to_excel(writer, sheet_name='styled') ExcelFormatter(styled, style_converter=custom_converter).write( writer, sheet_name='custom') writer.save() if engine not in ('openpyxl', 'xlsxwriter'): # For other engines, we only smoke test return openpyxl = pytest.importorskip('openpyxl') wb = openpyxl.load_workbook(path) # (1) compare DataFrame.to_excel and Styler.to_excel when unstyled n_cells = 0 for col1, col2 in zip(wb['frame'].columns, wb['unstyled'].columns): assert len(col1) == len(col2) for cell1, cell2 in zip(col1, col2): assert cell1.value == cell2.value assert_equal_style(cell1, cell2, engine) n_cells += 1 # ensure iteration actually happened: assert n_cells == (11 + 1) * (3 + 1) # (2) check styling with default converter # XXX: openpyxl (as at 2.4) prefixes colors with 00, xlsxwriter with FF alpha = '00' if engine == 'openpyxl' else 'FF' n_cells = 0 for col1, col2 in zip(wb['frame'].columns, wb['styled'].columns): assert len(col1) == len(col2) for cell1, cell2 in zip(col1, col2): ref = '%s%d' % (cell2.column, cell2.row) # XXX: this isn't as strong a test as ideal; we should # confirm that differences are exclusive if ref == 'B2': assert not cell1.font.bold assert cell2.font.bold elif ref == 'C3': assert cell1.font.color.rgb != cell2.font.color.rgb assert cell2.font.color.rgb == alpha + '0000FF' elif ref == 'D4': # This fails with engine=xlsxwriter due to # https://bitbucket.org/openpyxl/openpyxl/issues/800 if engine == 'xlsxwriter' \ and (LooseVersion(openpyxl.__version__) < LooseVersion('2.4.6')): pass else: assert cell1.font.underline != cell2.font.underline assert cell2.font.underline == 'single' elif ref == 'B5': assert not cell1.border.left.style assert (cell2.border.top.style == cell2.border.right.style == cell2.border.bottom.style == cell2.border.left.style == 'medium') elif ref == 'C6': assert not cell1.font.italic assert cell2.font.italic elif ref == 'D7': assert (cell1.alignment.horizontal != cell2.alignment.horizontal) assert cell2.alignment.horizontal == 'right' elif ref == 'B8': assert cell1.fill.fgColor.rgb != cell2.fill.fgColor.rgb assert cell1.fill.patternType != cell2.fill.patternType assert cell2.fill.fgColor.rgb == alpha + 'FF0000' assert cell2.fill.patternType == 'solid' elif ref == 'B9': assert cell1.number_format == 'General' assert cell2.number_format == '0%' else: assert_equal_style(cell1, cell2, engine) assert cell1.value == cell2.value n_cells += 1 assert n_cells == (11 + 1) * (3 + 1) # (3) check styling with custom converter n_cells = 0 for col1, col2 in zip(wb['frame'].columns, wb['custom'].columns): assert len(col1) == len(col2) for cell1, cell2 in zip(col1, col2): ref = '%s%d' % (cell2.column, cell2.row) if ref in ('B2', 'C3', 'D4', 'B5', 'C6', 'D7', 'B8', 'B9'): assert not cell1.font.bold assert cell2.font.bold else: assert_equal_style(cell1, cell2, engine) assert cell1.value == cell2.value n_cells += 1 assert n_cells == (11 + 1) * (3 + 1) @td.skip_if_no('openpyxl') @pytest.mark.skipif(not PY36, reason='requires fspath') class TestFSPath(object): def test_excelfile_fspath(self): with tm.ensure_clean('foo.xlsx') as path: df = DataFrame({"A": [1, 2]}) df.to_excel(path) xl = ExcelFile(path) result = os.fspath(xl) assert result == path def test_excelwriter_fspath(self): with tm.ensure_clean('foo.xlsx') as path: writer = ExcelWriter(path) assert os.fspath(writer) == str(path)
the-stack_106_18414
import sys import os import logging import codecs from ConfigParser import SafeConfigParser import ConfigParser class monitor_configuration(): def __init__(self, configuration_file): self.folder_localinbox = None self.folder_localoutbox = None self.folder_remoteinbox = None self.folder_remoteoutbox = None self.folder_remoteorphan = None self.folder_hl7flag = None self.folder_ack1flag = None self.folder_ack2flag = None self.folder_ack3flag = None self.folder_tobedeleted = None self.folder_logs = None self.sleeptime = 100 self.operation_method_is_copy = False self.operation_method_is_write = False self.operation_method_is_move = False self.operation_delay = 0.1 self.recheck_content = False self.hl7_operation_method_is_copy = False self.hl7_operation_method_is_move = False self.hl7_operation_delay = 0.1 self.hl7_operation_shell_commands = [] self.ack_operation_shell_commands = [] self.validate_configuration(configuration_file) def __get_option_list(self, parser, section, option_prefix, range_index): option_list = [] try: for index in range(range_index): option_name = option_prefix + "_" + str(index) option_value = parser.get(section, option_name) if option_value: option_value = option_value.strip() if len(option_value)>0: option_list.append(option_value) except ConfigParser.NoOptionError: return option_list return option_list def __get_log_option(self, log_str, default_log): log_dict = { 'DEBUG':logging.DEBUG, 'INFO':logging.INFO, 'WARNING':logging.WARNING, 'ERROR':logging.ERROR, 'CRITICAL':logging.CRITICAL } return log_dict.get(log_str, default_log) def validate_configuration(self, configuration_file): parser = SafeConfigParser() with codecs.open(configuration_file,'r', encoding='utf-8') as cf: parser.readfp(cf) self.folder_localinbox = parser.get('General','folder_localinbox') self.folder_localoutbox = parser.get('General','folder_localoutbox') self.folder_remoteinbox = parser.get('General','folder_remoteinbox') self.folder_remoteoutbox = parser.get('General','folder_remoteoutbox') self.folder_remoteorphan = parser.get('General','folder_remoteorphan') self.folder_hl7flag = parser.get('General','folder_hl7flag') self.folder_ack1flag = parser.get('General','folder_ack1flag') self.folder_ack2flag = parser.get('General','folder_ack2flag') self.folder_ack3flag = parser.get('General','folder_ack3flag') self.folder_tobedeleted = parser.get('General','folder_tobedeleted') self.folder_logs = parser.get('General', 'folder_logs') self.stdout_log = self.__get_log_option(parser.get('General', 'stdout_log'), logging.INFO) self.all_file_log = self.__get_log_option(parser.get('General', 'all_file_log'), logging.DEBUG) # ack operation parameters operation_method = parser.get('General','operation_method') if operation_method: operation_method = operation_method.upper() else: operation_method = 'COPY' if operation_method=='COPY': self.operation_method_is_copy = True elif operation_method =='WRITE': self.operation_method_is_write = True else: self.operation_method_is_move = True operation_delay = parser.get('General', 'operation_delay') try: self.operation_delay = float(operation_delay) except: self.operation_delay = 0.1 recheck_content = parser.get('General', 'recheck_content') if recheck_content and recheck_content.upper() == 'TRUE': self.recheck_content = True else: self.recheck_content = False # HL7 operation parameters hl7_operation_method = parser.get('General', 'hl7_operation_method') if hl7_operation_method: hl7_operation_method = hl7_operation_method.upper() else: hl7_operation_method = 'COPY' if hl7_operation_method == 'COPY': self.hl7_operation_method_is_copy = True else: self.hl7_operation_method_is_move = True hl7_operation_delay = parser.get('General', 'hl7_operation_delay') try: self.hl7_operation_delay = float(hl7_operation_delay) except: self.hl7_operation_delay = 0.1 self.sleeptime = int(parser.get('General', 'sleeptime')) #HL7 shell command self.hl7_operation_shell_commands = self.__get_option_list(parser, "General", "hl7_operation_shell_command", 20) self.ack_operation_shell_commands = self.__get_option_list(parser, "General", "ack_operation_shell_command", 20) tmp_folder = self.folder_localinbox if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_localoutbox if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_remoteinbox if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_remoteoutbox if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_remoteorphan if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_hl7flag if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_ack1flag if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_ack2flag if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_ack3flag if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_tobedeleted if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) tmp_folder = self.folder_logs if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) if __name__=='__main__': my_config = monitor_configuration(r'../sample/sample_config.ini') print(my_config.folder_localinbox)
the-stack_106_18415
import bme280 from smbus2 import SMBus import time import config#config file import RPi.GPIO as GPIO# this is used for the ligts from datetime import datetime if config.ParticulateStatus==1:#we'll only import the sps30 stuff if it is selected in the config file. from sps30 import SPS30 ''' The Sensors_Functions.py program is in charge of taking readings from the sensors. For instance, if we would print Temperature() in the console, it would return a temperature reading at the moment it was run. Similar functions exist for each sensor. At the end of the file, we have the header and the data functions which properly format everything for a .csv file. The header function generates a header depending on the sensors chosen in the config.py file. And for the data function, it generates a string of readings depending on the configuration file. ''' # Functions for each sensor. when we call them, they take a reading and return that value def Temperature(): #From the atmospheric sensor with SMBus(1) as bus: bme280.load_calibration_params(bus,config.addressBME280) bme280_data = bme280.sample(bus,config.addressBME280) ambient_temperature = bme280_data.temperature return round(ambient_temperature,3) def Pressure_atmos(): #From the atmospheric sensor with SMBus(1) as bus: bme280.load_calibration_params(bus,config.addressBME280) bme280_data = bme280.sample(bus,config.addressBME280) pressure = bme280_data.pressure return round(pressure*3040/4053,3) #default gives in hPa, but after several heated discussions over which unit to use, we agreed on using Torr. 760 Torr= 1 atmosphere def Humidity(): #From the atmospheric sensor with SMBus(1) as bus: bme280.load_calibration_params(bus,config.addressBME280) bme280_data = bme280.sample(bus,config.addressBME280) humidity = bme280_data.humidity return round(humidity,3) def diff_pressure():# a tiny time delay is used to prevent errors from taking place. with SMBus(1) as bus: bus.write_i2c_block_data(config.addressDiff_Pressure, 0x3F, [0xF9]) #Stop any cont measurement of the sensor time.sleep(0.5) bus.write_i2c_block_data(config.addressDiff_Pressure, 0x36, [0X03]) # The command code 0x3603 is split into two arguments, cmd=0x36 and [val]=0x03 time.sleep(0.5) reading=bus.read_i2c_block_data(config.addressDiff_Pressure,0,9) pressure_value=reading[0]+float(reading[1])/255 if pressure_value>=0 and pressure_value<128: diffirential_pressure=round(pressure_value*60/256,3) #scale factor adjustment elif pressure_value>128 and pressure_value<=256: diffirential_pressure=round(-(256-pressure_value)*60/256,3) #scale factor adjustment #it returns the differential pressure in Pa return diffirential_pressure def particulate_sensor(): #measures the different sized particles in the air, sadly cannot detect neutrinos or subatomic particles. with SPS30(1) as sps: sps.read_measured_values() return [round(sps.dict_values['pm1p0'],2),round(sps.dict_values['pm2p5'],2),round(sps.dict_values['pm4p0'],2),round(sps.dict_values['pm10p0'],2),round(sps.dict_values['nc0p5'],2),round(sps.dict_values['nc1p0'],2),round(sps.dict_values['nc2p5'],2),round(sps.dict_values['nc4p0'],2),round(sps.dict_values['nc10p0'],2),round(sps.dict_values['typical'],2)] #The header function generates a header for the .csv file. It will give the name for each column along with the units. def Header():#The header used when uploading the data to the csv file. statement='timestamp'#by default we'll always have the time. if config.TemperatureStatus==1: statement+=',Temperature_C' if config.PressureStatus==1: statement+=',Pressure_Torr' if config.HumidityStatus==1: statement+=',Percent_Humidity' if config.Pressure_DiffStatus==1: statement+=',Differential_Pressure_Pa' if config.ParticulateStatus==1: statement+=',MC1um_ug_per_m3,MC2point5um_ug_per_m3,MC4um_ug_per_m3,MC10um_ug_per_m3,0point5um_Counts_Per_cm3,1um_Counts_Per_cm3,2point5um_Counts_Per_cm3,4um_Counts_Per_cm3,10um_Counts_Per_cm3,Typical_Particle_Size_um' return statement #This is how all the data is collected and stringed together. It is properly formated for the bvl-MongoDB script. def data():#The data readings from the sensor. statement=str(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) if config.TemperatureStatus==1: statement+=','+str(Temperature()) if config.PressureStatus==1: statement+=','+str(Pressure_atmos()) if config.HumidityStatus==1: statement+=','+str(Humidity()) if config.Pressure_DiffStatus==1: statement+=','+str(diff_pressure()) if config.ParticulateStatus==1: for x in particulate_sensor(): statement+=','+str(x) return statement #rgb lights that will tell us if everything is ok. def lights(setting,period=0):#period is in minutes and is only used for the rainbow lights if config.LightSignals==0:#if lights are disabled, it will just skip over it. return None GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM)# this means that we are refering to the BCM Pi pins and not the Board pin numbers GPIO.setup(config.greenGPIO,GPIO.OUT)#Defining all the LED gpio pins as outputs for the Pi GPIO.setup(config.redGPIO,GPIO.OUT) GPIO.setup(config.blueGPIO,GPIO.OUT) if setting == 'green': GPIO.output(config.redGPIO,GPIO.LOW)#turns off all the other colors other than the selected one GPIO.output(config.blueGPIO,GPIO.LOW) GPIO.output(config.greenGPIO,GPIO.HIGH) if setting == 'off': GPIO.cleanup()#tunrs off all the pins if setting == 'red': GPIO.output(config.blueGPIO,GPIO.LOW) GPIO.output(config.greenGPIO,GPIO.LOW) GPIO.output(config.redGPIO,GPIO.HIGH) if setting == 'rainbow':#Soud's special request!!! RED = GPIO.PWM(config.redGPIO, 100) GREEN = GPIO.PWM(config.greenGPIO, 100) BLUE = GPIO.PWM(config.blueGPIO, 100) for i in range(int(4*period)):#it takes 15 seconds to cycle through the colors, we multiply it by 4 to make a minute and the period is chosen by the user. RED.start(100) GREEN.start(1) BLUE.start(1) for x in range(1,101):#power consciencious HSV curve GREEN.ChangeDutyCycle(x) RED.ChangeDutyCycle(101-x) time.sleep(0.05) for x in range(1,101): GREEN.ChangeDutyCycle(101-x) BLUE.ChangeDutyCycle(x) time.sleep(0.05) for x in range(1,101): RED.ChangeDutyCycle(x) BLUE.ChangeDutyCycle(101-x) time.sleep(0.05)
the-stack_106_18417
from GB_model import * #Paths to images of real, fake (phantom), and 'no signs' in npy format (each dir contains subdirectories, one for each expert) # (provide the parent directory to the dataset generator's output for real, fake, and nosign) real_path = 'data/real' fake_path = 'data/fake' nosign_path = 'data/real_nosign' # Init model GB = GhostBusters(save_path='models',device_ID="0") # Train model (first experts then combiner) GB.train(real_path,fake_path,nosign_path)
the-stack_106_18418
class Node: def __init__(self, value): self.value = value self.next = None class LinkedList: def __init__(self): self.head = None def unshift(self, value): node = Node(value) node.next = self.head self.head = node def create_linked_list(): llist = LinkedList() for i in range(0, 17, 4): llist.unshift(i) return llist def display(head): print("begin") while(head): print(head.value) head = head.next print("end") def reverse_linked_list(head): current = head prev = None while(current): temp = current.next current.next = prev prev = current current = temp return prev llist = create_linked_list() display(llist.head) reversed_head = reverse_linked_list(llist.head) display(reversed_head)
the-stack_106_18419
"""kinto_mpd - A kinto plugin to start/stop playing a playlist in MPD""" from kinto.core.events import ResourceChanged from mpd import MPDClient client = MPDClient() __version__ = '0.1.0' __author__ = 'Mathieu Agopian <[email protected]>' __all__ = [] def includeme(config): print("I am the ElasticSearch MPD plugin!") config.add_subscriber(on_resource_changed, ResourceChanged) def on_resource_changed(event): resource_name = event.payload['resource_name'] if resource_name != "record": return for change in event.impacted_records: print("Record changed:", change) try: client.connect("localhost", 6600) record = change['new'] if record.get('status', 'off') == 'on': client.clear() client.load(record['id']) client.play(0) else: client.stop() except Exception as e: print("Exception:", e) finally: client.close() client.disconnect()
the-stack_106_18421
import json import re from collections import OrderedDict from redash.query_runner import * # TODO: make this more general and move into __init__.py class ResultSet(object): def __init__(self): self.columns = OrderedDict() self.rows = [] def add_row(self, row): for key in row.keys(): self.add_column(key) self.rows.append(row) def add_column(self, column, column_type=TYPE_STRING): if column not in self.columns: self.columns[column] = {'name': column, 'type': column_type, 'friendly_name': column} def to_json(self): return json.dumps({'rows': self.rows, 'columns': self.columns.values()}) def parse_issue(issue, field_mapping): result = OrderedDict() result['key'] = issue['key'] for k, v in issue['fields'].iteritems():# output_name = field_mapping.get_output_field_name(k) member_names = field_mapping.get_dict_members(k) if isinstance(v, dict): if len(member_names) > 0: # if field mapping with dict member mappings defined get value of each member for member_name in member_names: if member_name in v: result[field_mapping.get_dict_output_field_name(k,member_name)] = v[member_name] else: # these special mapping rules are kept for backwards compatibility if 'key' in v: result['{}_key'.format(output_name)] = v['key'] if 'name' in v: result['{}_name'.format(output_name)] = v['name'] if k in v: result[output_name] = v[k] if 'watchCount' in v: result[output_name] = v['watchCount'] elif isinstance(v, list): if len(member_names) > 0: # if field mapping with dict member mappings defined get value of each member for member_name in member_names: listValues = [] for listItem in v: if isinstance(listItem, dict): if member_name in listItem: listValues.append(listItem[member_name]) if len(listValues) > 0: result[field_mapping.get_dict_output_field_name(k,member_name)] = ','.join(listValues) else: # otherwise support list values only for non-dict items listValues = [] for listItem in v: if not isinstance(listItem, dict): listValues.append(listItem) if len(listValues) > 0: result[output_name] = ','.join(listValues) else: result[output_name] = v return result def parse_issues(data, field_mapping): results = ResultSet() for issue in data['issues']: results.add_row(parse_issue(issue, field_mapping)) return results def parse_count(data): results = ResultSet() results.add_row({'count': data['total']}) return results class FieldMapping: def __init__(cls, query_field_mapping): cls.mapping = [] for k, v in query_field_mapping.iteritems(): field_name = k member_name = None # check for member name contained in field name member_parser = re.search('(\w+)\.(\w+)', k) if (member_parser): field_name = member_parser.group(1) member_name = member_parser.group(2) cls.mapping.append({ 'field_name': field_name, 'member_name': member_name, 'output_field_name': v }) def get_output_field_name(cls,field_name): for item in cls.mapping: if item['field_name'] == field_name and not item['member_name']: return item['output_field_name'] return field_name def get_dict_members(cls,field_name): member_names = [] for item in cls.mapping: if item['field_name'] == field_name and item['member_name']: member_names.append(item['member_name']) return member_names def get_dict_output_field_name(cls,field_name, member_name): for item in cls.mapping: if item['field_name'] == field_name and item['member_name'] == member_name: return item['output_field_name'] return None class JiraJQL(BaseHTTPQueryRunner): noop_query = '{"queryType": "count"}' default_doc_url = ("https://confluence.atlassian.com/jirasoftwarecloud/" "advanced-searching-764478330.html") response_error = "JIRA returned unexpected status code" requires_authentication = True url_title = 'JIRA URL' username_title = 'Username' password_title = 'Password' @classmethod def name(cls): return "JIRA (JQL)" @classmethod def annotate_query(cls): return False def __init__(self, configuration): super(JiraJQL, self).__init__(configuration) self.syntax = 'json' def run_query(self, query, user): jql_url = '{}/rest/api/2/search'.format(self.configuration["url"]) try: query = json.loads(query) query_type = query.pop('queryType', 'select') field_mapping = FieldMapping(query.pop('fieldMapping', {})) if query_type == 'count': query['maxResults'] = 1 query['fields'] = '' else: query['maxResults'] = query.get('maxResults', 1000) response, error = self.get_response(jql_url, params=query) if error is not None: return None, error data = response.json() if query_type == 'count': results = parse_count(data) else: results = parse_issues(data, field_mapping) return results.to_json(), None except KeyboardInterrupt: return None, "Query cancelled by user." register(JiraJQL)
the-stack_106_18422
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from codecs import open # To use a consistent encoding from os import path from setuptools import setup HERE = path.dirname(path.abspath(__file__)) # Get version info ABOUT = {} with open(path.join(HERE, 'datadog_checks', 'exchange_server', '__about__.py')) as f: exec(f.read(), ABOUT) # Get the long description from the README file with open(path.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() # Parse requirements def get_requirements(fpath): with open(path.join(HERE, fpath), encoding='utf-8') as f: return f.readlines() CHECKS_BASE_REQ = 'datadog_checks_base>=4.2.0' setup( name='datadog-exchange_server', version=ABOUT["__version__"], description='The MS Exchange check', long_description=long_description, long_description_content_type='text/markdown', keywords='datadog agent exchange check', # The project's main homepage. url='https://github.com/DataDog/integrations-core', # Author details author='Datadog', author_email='[email protected]', # License license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: System :: Monitoring', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], # The package we're going to ship packages=['datadog_checks.exchange_server'], # Run-time dependencies install_requires=[CHECKS_BASE_REQ], # Extra files to ship with the wheel package include_package_data=True, )
the-stack_106_18424
import os import random import socket import subprocess from contextlib import closing import six from dagster_graphql.client.util import parse_raw_log_lines from dagster_k8s.utils import get_pod_names_in_job, retrieve_pod_logs, wait_for_job_success from dagster import check IS_BUILDKITE = os.getenv('BUILDKITE') is not None def image_pull_policy(): # This is because when running local tests, we need to load the image into the kind cluster (and # then not attempt to pull it) because we don't want to require credentials for a private # registry / pollute the private registry / set up and network a local registry as a condition # of running tests if IS_BUILDKITE: return 'Always' else: return 'IfNotPresent' def get_test_namespace(): namespace_suffix = hex(random.randint(0, 16 ** 6))[2:] return 'dagster-test-%s' % namespace_suffix def within_docker(): '''detect if we're running inside of a docker container from: https://stackoverflow.com/a/48710609/11295366 ''' cgroup_path = '/proc/self/cgroup' return ( os.path.exists('/.dockerenv') or os.path.isfile(cgroup_path) and any('docker' in line for line in open(cgroup_path)) ) def which_(exe): '''Uses distutils to look for an executable, mimicking unix which''' from distutils import spawn # pylint: disable=no-name-in-module # https://github.com/PyCQA/pylint/issues/73 return spawn.find_executable(exe) def check_output(*args, **kwargs): try: return subprocess.check_output(*args, **kwargs) except subprocess.CalledProcessError as exc: output = exc.output.decode() six.raise_from(Exception(output), exc) def find_free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(('', 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] def remove_none_recursively(obj): '''Remove none values from a dict. This is used here to support comparing provided config vs. config we retrive from kubernetes, which returns all fields, even those which have no value configured. ''' if isinstance(obj, (list, tuple, set)): return type(obj)(remove_none_recursively(x) for x in obj if x is not None) elif isinstance(obj, dict): return type(obj)( (remove_none_recursively(k), remove_none_recursively(v)) for k, v in obj.items() if k is not None and v is not None ) else: return obj def wait_for_job_and_get_logs(job_name, namespace): '''Wait for a dagster-k8s job to complete, ensure it launched only one pod, and then grab the logs from the pod it launched. ''' check.str_param(job_name, 'job_name') check.str_param(namespace, 'namespace') wait_for_job_success(job_name, namespace=namespace) pod_names = get_pod_names_in_job(job_name, namespace) assert len(pod_names) == 1 pod_name = pod_names[0] raw_logs = retrieve_pod_logs(pod_name, namespace=namespace) return parse_raw_log_lines(raw_logs.split('\n'))
the-stack_106_18425
from __future__ import annotations import warnings import weakref from collections import defaultdict from dataclasses import dataclass from inspect import signature from typing import TYPE_CHECKING, Callable, Dict, List, Set, Union from .interactions import Shortcut from .key_bindings import KeymapProvider from .translations import trans if TYPE_CHECKING: from qtpy.QtWidgets import QPushButton def call_with_context(function, context): """ call function `function` with the corresponding value taken from context This is use in the action manager to pass the rights instances to the actions, without having the need for them to take a **kwarg, and is mostly needed when triggering actions via buttons, or to record. If we went a declarative way to trigger action we cannot refer to instances or objects that must be passed to the action, or at least this is problematic. We circumvent this by having a context (dictionary of str:instance) in the action manager, and anything can tell the action manager "this is the current instance a key". When an action is triggered; we inspect the signature look at which instances it may need and pass this as parameters. """ context_keys = [ k for k, v in signature(function).parameters.items() if v.kind not in (v.VAR_POSITIONAL, v.VAR_KEYWORD) ] ctx = {k: v for k, v in context.items() if k in context_keys} return function(**ctx) @dataclass class Action: command: Callable description: str keymapprovider: KeymapProvider # subclassclass or instance of a subclass def callable(self, context): if not hasattr(self, '_command_with_context'): self._command_with_context = lambda: call_with_context( self.command, context ) return self._command_with_context class ButtonWrapper: """ Pyside seem to have an issue where calling disconnect/connect seem to segfault. We wrap our buttons in this to no call disconnect and reconnect the same callback When not necessary. This also make it simpler to make connecting a callback idempotent, and make it easier to re-update all gui elements when a shortcut or description is changed. """ def __init__( self, button: QPushButton, extra_tooltip_text, action_name, action_manager, ): """ wrapper around button to disconnect an action only if it has been connected before. """ self._button = weakref.ref(button) self._connected = None self._extra_tooltip_text: str = extra_tooltip_text self._action_name = action_name self._action_manager = weakref.ref(action_manager) button.destroyed.connect(self._destroyed) def _destroyed(self): if self._action_manager() is None: return self._action_manager()._buttons[self._action_name].remove(self) def setToolTip(self, value): if self._button() is None: # destroyed signal not handled yet return return self._button().setToolTip( value + ' ' + self._extra_tooltip_text ) def clicked_maybe_connect(self, callback): if callback is not self._connected: if self._connected is not None: self._button().clicked.disconnect(self._connected) self._button().clicked.connect(callback) self._connected = callback else: # do nothing it's the same callback. pass @property def destroyed(self): return self._button() and self._button().destroyed class Context: def __init__(self): self._attr = {} self._callables = {} def __getitem__(self, key): if key in self._attr: return self._attr[key] elif key in self._callables: return self._callables[key]() def items(self): for k, v in self._attr.items(): yield k, v for k, v in self._callables.items(): yield k, v() def __setitem__(self, key, value): if callable(value): self._callables[key] = value else: self._attr[key] = value class ActionManager: """ Manage the bindings between buttons; shortcuts, callbacks gui elements... The action manager is aware of the various buttons, keybindings and other elements that may trigger an action and is able to synchronise all of those. Thus when a shortcut is bound; this should be capable of updating the buttons tooltip menus etc to show the shortcuts, descriptions... In most cases this should also allow to bind non existing shortcuts, actions, buttons, in which case they will be bound only once the actions are registered. For actions that need access to a global element (a viewer, a plugin, ... ), you want to give this item a unique name, and add it to the action manager `context` object. >>> action_manager.context['number'] = 1 ... action_manager.context['qtv'] = viewer.qt_viewer >>> def callback(qtv, number): ... qtv.dims[number] +=1 >>> action_manager.register_action('bump one', callback, ... 'Add one to dims', ... None) The callback signature is going to be inspected and required globals passed in. """ _actions: Dict[str, Action] def __init__(self): # map associating a name/id with a Comm self._actions: Dict[str, Action] = {} self._buttons: Dict[str, Set[ButtonWrapper]] = defaultdict(set) self._shortcuts: Dict[str, Set[str]] = defaultdict(set) self.context = Context() # Dict[str, Any] = {} self._stack: List[str] = [] self._tooltip_include_action_name = False def _debug(self, val): self._tooltip_include_action_name = val for name in self._buttons.keys(): self._update_gui_elements(name) def _validate_action_name(self, name): if len(name.split(':')) != 2: raise ValueError( trans._( 'Action names need to be in the form `package:name`, got {name!r}', name=name, deferred=True, ) ) def register_action( self, name: str, command: callable, description: str, keymapprovider: KeymapProvider, ): """ Register an action for future usage An action is generally a callback associated with - a name (unique), usually `packagename:name` - a description - A keymap provider (easier for focus and backward compatibility). Actions can then be later bound/unbound from button elements, and shortcuts; and the action manager will take care of modifying the keymap of instances to handle shortcuts; and UI elements to have tooltips with descriptions and shortcuts; Parameters ---------- name : str unique name/id of the command that can be used to refer to this command command : callable take 0, or 1 parameter; if `keymapprovider` is not None, will be called with `keymapprovider` as first parameter. description : str Long string to describe what the command does, will be used in tooltips. keymapprovider : KeymapProvider KeymapProvider class or instance to use to bind the shortcut(s) when registered. This make sure the shortcut is active only when an instance of this is in focus. Notes ----- Registering an action, binding buttons and shortcuts can happen in any order and should have the same effect. In particular registering an action can happen later (plugin loading), while user preference (keyboard shortcut), has already been happen. When this is the case, the button and shortcut binding is delayed until an action with the corresponding name is registered. See Also -------- bind_button, bind_shortcut """ self._validate_action_name(name) self._actions[name] = Action(command, description, keymapprovider) self._update_shortcut_bindings(name) self._update_gui_elements(name) def _update_buttons(self, buttons, tooltip: str, callback): for button in buttons: # test if only tooltip makes crash button.setToolTip(tooltip) button.clicked_maybe_connect(callback) def _update_gui_elements(self, name: str): """ Update the description and shortcuts of all the (known) gui elements. """ if name not in self._actions: return buttons = self._buttons.get(name, set()) desc = self._actions[name].description # update buttons with shortcut and description if name in self._shortcuts: shortcuts = self._shortcuts[name] joinstr = ( ' ' + trans._('or', msgctxt='<keysequence> or <keysequence>') + ' ' ) shortcut_str = ( '(' + joinstr.join( f"{Shortcut(shortcut).platform}" for shortcut in shortcuts ) + ')' ) else: shortcut_str = '' callable_ = self._actions[name].callable(self.context) append = '[' + name + ']' if self._tooltip_include_action_name else '' self._update_buttons(buttons, desc + shortcut_str + append, callable_) def _update_shortcut_bindings(self, name: str): """ Update the key mappable for given action name to trigger the action within the given context and """ if name not in self._actions: return action = self._actions[name] if name not in self._shortcuts: return shortcuts = self._shortcuts.get(name) keymapprovider = action.keymapprovider if hasattr(keymapprovider, 'bind_key'): for shortcut in shortcuts: keymapprovider.bind_key(shortcut, overwrite=True)( action.command ) def bind_button(self, name: str, button, extra_tooltip_text='') -> None: """ Bind `button` to trigger Action `name` on click. Parameters ---------- name : str name of the corresponding action in the form ``packagename:name`` button : QtStateButton | QPushButton A abject presenting a qt-button like interface that when clicked should trigger the action. The tooltip will be set the action description and the corresponding shortcut if available. extra_tooltip_text : str Extra text to add at the end of the tooltip. This is useful to convey more information about this action as the action manager may update the tooltip based on the action name. Notes ----- calling `bind_button` can be done before an action with the corresponding name is registered, in which case the effect will be delayed until the corresponding action is registered. """ self._validate_action_name(name) if hasattr(button, 'change'): button.clicked.disconnect(button.change) button_wrap = ButtonWrapper(button, extra_tooltip_text, name, self) assert button not in [x._button() for x in self._buttons[name]] self._buttons[name].add(button_wrap) self._update_gui_elements(name) def bind_shortcut(self, name: str, shortcut: str) -> None: """ bind shortcut `shortcut` to trigger action `name` Parameters ---------- name : str name of the corresponding action in the form ``packagename:name`` shortcut : str Shortcut to assign to this action use dash as separator. See `Shortcut` for known modifiers. Notes ----- calling `bind_button` can be done before an action with the corresponding name is registered, in which case the effect will be delayed until the corresponding action is registered. """ self._validate_action_name(name) self._shortcuts[name].add(shortcut) self._update_shortcut_bindings(name) self._update_gui_elements(name) def unbind_shortcut(self, name: str) -> Union[Set[str], None]: """ Unbind all shortcuts for a given action name. Parameters ---------- name : str name of the action in the form `packagename:name` to unbind. Returns ------- shortcuts: set of str | None Previously bound shortcuts or None if not such shortcuts was bound, or no such action exists. Warns ----- UserWarning: When trying to unbind an action unknown form the action manager, this warning will be emitted. """ action = self._actions.get(name, None) if action is None: warnings.warn( trans._( "Attempting to unbind an action which does not exists ({name}), " "this may have no effects. This can happen if your settings are out of " "date, if you upgraded napari, upgraded or deactivated a plugin, or made " "a typo in in your custom keybinding.", name=name, ), UserWarning, stacklevel=2, ) shortcuts = self._shortcuts.get(name) if shortcuts: if action and hasattr(action.keymapprovider, 'bind_key'): for shortcut in shortcuts: action.keymapprovider.bind_key(shortcut)(None) del self._shortcuts[name] self._update_gui_elements(name) return shortcuts def _get_layer_shortcuts(self, layers): """ Get shortcuts filtered by the given layers. Parameters ---------- layers : list of layers Layers to use for shortcuts filtering. Returns ------- dict Dictionary of layers with dictionaries of shortcuts to descriptions. """ layer_shortcuts = {} for layer in layers: layer_shortcuts[layer] = {} for name, shortcut in self._shortcuts.items(): action = self._actions.get(name, None) if action and layer == action.keymapprovider: layer_shortcuts[layer][str(shortcut)] = action.description return layer_shortcuts def _get_layer_actions(self, layer): """ Get actions filtered by the given layers. Parameters ---------- layer : Layer Layer to use for actions filtering. Returns ------- layer_actions: dict Dictionary of names of actions with action values for a layer. """ layer_actions = {} for name, action in self._actions.items(): if action and layer == action.keymapprovider: layer_actions[name] = action return layer_actions def _get_active_shortcuts(self, active_keymap): """ Get active shortcuts for the given active keymap. Parameters ---------- active_keymap : KeymapProvider The active keymap provider. Returns ------- dict Dictionary of shortcuts to descriptions. """ active_func_names = [i[1].__name__ for i in active_keymap.items()] active_shortcuts = {} for name, shortcut in self._shortcuts.items(): action = self._actions.get(name, None) if action and action.command.__name__ in active_func_names: active_shortcuts[str(shortcut)] = action.description return active_shortcuts action_manager = ActionManager()
the-stack_106_18427
# # Copyright 2018 CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from django.shortcuts import render, redirect from sf_t3d.decorators import login_required from django.http import HttpResponse import json from lib.osm.osmclient.clientv2 import Client import authosm.utils as osmutils import yaml import logging logging.basicConfig(level=logging.DEBUG) log = logging.getLogger('vimhandler.py') @login_required def list(request): user = osmutils.get_user(request) project_id = user.project_id result = {'type': 'ns', 'project_id': project_id} raw_content_types = request.META.get('HTTP_ACCEPT', '*/*').split(',') if 'application/json' not in raw_content_types: return __response_handler(request, result, 'vim_list.html') client = Client() result_client = client.vim_list(user.get_token()) result["datacenters"] = result_client['data'] if result_client and result_client['error'] is False else [] return __response_handler(request, result, 'vim_list.html') @login_required def create(request): user = osmutils.get_user(request) project_id = user.project_id result = {'project_id': project_id} if request.method == 'GET': return __response_handler(request, result, 'vim_create.html') else: try: new_vim_dict = request.POST.dict() client = Client() keys = ["schema_version", "schema_type", "name", "vim_url", "vim_type", "vim_user", "vim_password", "vim_tenant_name", "description"] vim_data = dict(filter(lambda i: i[0] in keys and len( i[1]) > 0, new_vim_dict.items())) vim_data['config'] = {} config_file = request.FILES.get('config_file') if config_file is not None: config = '' for line in config_file: config = config + line.decode() vim_data['config'] = yaml.load(config) elif 'config' in request.POST and request.POST.get('config') != '': vim_data['config'] = yaml.load(request.POST.get('config')) except Exception as e: return __response_handler(request, {'status': 400, 'code': 'BAD_REQUEST', 'detail': e.message}, url=None, status=400) result = client.vim_create(user.get_token(), vim_data) if result['error']: return __response_handler(request, result['data'], url=None, status=result['data']['status'] if 'status' in result['data'] else 500) else: return __response_handler(request, {}, url=None, status=200) @login_required def delete(request, vim_id=None): user = osmutils.get_user(request) try: client = Client() del_res = client.vim_delete(user.get_token(), vim_id) except Exception as e: log.exception(e) return __response_handler(request, del_res, 'vims:list', to_redirect=True) @login_required def show(request, vim_id=None): user = osmutils.get_user(request) project_id = user.project_id client = Client() result = client.vim_get(user.get_token(), vim_id) if isinstance(result, dict) and 'error' in result and result['error']: return render(request, 'error.html') return __response_handler(request, { "datacenter": result['data'], "project_id": project_id }, 'vim_show.html') def __response_handler(request, data_res, url=None, to_redirect=None, *args, **kwargs): raw_content_types = request.META.get('HTTP_ACCEPT', '*/*').split(',') if 'application/json' in raw_content_types or url is None: return HttpResponse(json.dumps(data_res), content_type="application/json", *args, **kwargs) elif to_redirect: return redirect(url, *args, **kwargs) else: return render(request, url, data_res)
the-stack_106_18429
"""Pytorch based computation backend.""" import math from collections.abc import Iterable from functools import wraps import numpy as _np import torch from torch import angle, arange, arccos, arccosh, arcsin, arctanh, argmin from torch import atan2 as arctan2 # NOQA from torch import bool as t_bool from torch import broadcast_tensors as broadcast_arrays from torch import ( ceil, clip, complex64, complex128, conj, cos, cosh, cross, divide, empty_like, eq, erf, exp, eye, flatten, float32, float64, floor, ) from torch import fmod as mod from torch import ( greater, hstack, imag, int32, int64, isnan, kron, less, log, logical_or, ) from torch import max as amax from torch import mean, meshgrid, moveaxis, nonzero, ones, ones_like, outer, polygamma from torch import pow as power from torch import real from torch import repeat_interleave as repeat from torch import ( reshape, sign, sin, sinh, stack, std, tan, tanh, trapz, uint8, unique, vstack, zeros, zeros_like, ) from ..constants import pytorch_atol, pytorch_rtol from . import autodiff # NOQA from . import linalg # NOQA from . import random # NOQA DTYPES = { int32: 0, int64: 1, float32: 2, float64: 3, complex64: 4, complex128: 5, } atol = pytorch_atol rtol = pytorch_rtol def _raise_not_implemented_error(*args, **kwargs): raise NotImplementedError searchsorted = _raise_not_implemented_error def _box_scalar(function): @wraps(function) def wrapper(x): if not torch.is_tensor(x): x = torch.tensor(x) return function(x) return wrapper abs = _box_scalar(abs) ceil = _box_scalar(ceil) cos = _box_scalar(cos) cosh = _box_scalar(cosh) exp = _box_scalar(exp) imag = _box_scalar(imag) log = _box_scalar(log) real = _box_scalar(real) sin = _box_scalar(sin) sinh = _box_scalar(sinh) tan = _box_scalar(tan) def comb(n, k): return math.factorial(n) // math.factorial(k) // math.factorial(n - k) def matmul(x, y, *, out=None): x, y = convert_to_wider_dtype([x, y]) return torch.matmul(x, y, out=out) def to_numpy(x): return x.numpy() def from_numpy(x): return torch.from_numpy(x) def one_hot(labels, num_classes): if not torch.is_tensor(labels): labels = torch.LongTensor(labels) return torch.nn.functional.one_hot(labels, num_classes).type(torch.uint8) def argmax(a, **kwargs): if a.dtype == torch.bool: return torch.as_tensor(_np.argmax(a.data.numpy(), **kwargs)) return torch.argmax(a, **kwargs) def convert_to_wider_dtype(tensor_list): dtype_list = [DTYPES[x.dtype] for x in tensor_list] wider_dtype_index = max(dtype_list) wider_dtype = list(DTYPES.keys())[wider_dtype_index] tensor_list = [cast(x, dtype=wider_dtype) for x in tensor_list] return tensor_list def less_equal(x, y, **kwargs): if not torch.is_tensor(x): x = torch.tensor(x) if not torch.is_tensor(y): y = torch.tensor(y) return torch.le(x, y, **kwargs) def empty(shape, dtype=float64): return torch.empty(*shape, dtype=dtype) def split(x, indices_or_sections, axis=0): if isinstance(indices_or_sections, int): indices_or_sections = x.shape[axis] // indices_or_sections return torch.split(x, indices_or_sections, dim=axis) indices_or_sections = _np.array(indices_or_sections) intervals_length = indices_or_sections[1:] - indices_or_sections[:-1] last_interval_length = x.shape[axis] - indices_or_sections[-1] if last_interval_length > 0: intervals_length = _np.append(intervals_length, last_interval_length) intervals_length = _np.insert(intervals_length, 0, indices_or_sections[0]) return torch.split(x, tuple(intervals_length), dim=axis) def logical_and(x, y): if torch.is_tensor(x): return torch.logical_and(x, y) return x and y def any(x, axis=None): if not torch.is_tensor(x): x = torch.tensor(x) if axis is None: return torch.any(x) if isinstance(axis, int): return torch.any(x.bool(), axis) if len(axis) == 1: return torch.any(x, *axis) axis = list(axis) for i_axis, one_axis in enumerate(axis): if one_axis < 0: axis[i_axis] = ndim(x) + one_axis new_axis = tuple(k - 1 if k >= 0 else k for k in axis[1:]) return any(torch.any(x.bool(), axis[0]), new_axis) def cast(x, dtype): if torch.is_tensor(x): return x.to(dtype=dtype) return array(x).to(dtype=dtype) def flip(x, axis): if isinstance(axis, int): axis = [axis] if axis is None: axis = list(range(x.ndim)) return torch.flip(x, dims=axis) def concatenate(seq, axis=0, out=None): seq = convert_to_wider_dtype(seq) return torch.cat(seq, dim=axis, out=out) def _get_largest_dtype(seq): dtype_dict = { 0: t_bool, 1: uint8, 2: int32, 3: int64, 4: float32, 5: float64, 6: complex128, } reverse_dict = {dtype_dict[key]: key for key in dtype_dict} dtype_code_set = {reverse_dict[t.dtype] for t in seq} return dtype_dict[max(dtype_code_set)] def array(val, dtype=None): if isinstance(val, (list, tuple)): if isinstance(val[0], (list, tuple)): aux_list = [array(t, dtype) for t in val] if dtype is None: local_dtype = _get_largest_dtype(aux_list) aux_list = [cast(t, local_dtype) for t in aux_list] return stack(aux_list) if not any([isinstance(t, torch.Tensor) for t in val]): val = _np.copy(_np.array(val)) elif any([not isinstance(t, torch.Tensor) for t in val]): tensor_members = [t for t in val if torch.is_tensor(t)] local_dtype = _get_largest_dtype(tensor_members) for index, t in enumerate(val): if torch.is_tensor(t) and t.dtype != local_dtype: cast(t, local_dtype) elif torch.is_tensor(t): val[index] = cast(t, dtype=local_dtype) else: val[index] = torch.tensor(t, dtype=local_dtype) val = stack(val) else: val = stack(val) if isinstance(val, (bool, int, float)): val = _np.array(val) if isinstance(val, _np.ndarray): val = torch.from_numpy(val) if not isinstance(val, torch.Tensor): val = torch.Tensor([val]) if dtype is not None: if val.dtype != dtype: val = cast(val, dtype) elif val.dtype == torch.float64: val = val.float() return val def all(x, axis=None): if not torch.is_tensor(x): x = torch.tensor(x) if axis is None: return x.bool().all() if isinstance(axis, int): return torch.all(x.bool(), axis) if len(axis) == 1: return torch.all(x, *axis) axis = list(axis) for i_axis, one_axis in enumerate(axis): if one_axis < 0: axis[i_axis] = ndim(x) + one_axis new_axis = tuple(k - 1 if k >= 0 else k for k in axis[1:]) return all(torch.all(x.bool(), axis[0]), new_axis) def get_slice(x, indices): """Return a slice of an array, following Numpy's style. Parameters ---------- x : array-like, shape=[dim] Initial array. indices : iterable(iterable(int)) Indices which are kept along each axis, starting from 0. Returns ------- slice : array-like Slice of x given by indices. Notes ----- This follows Numpy's convention: indices are grouped by axis. Examples -------- >>> a = torch.tensor(range(30)).reshape(3,10) >>> get_slice(a, ((0, 2), (8, 9))) tensor([8, 29]) """ return x[indices] def allclose(a, b, atol=atol, rtol=rtol): if not isinstance(a, torch.Tensor): a = torch.tensor(a) if not isinstance(b, torch.Tensor): b = torch.tensor(b) a = to_ndarray(a.float(), to_ndim=1) b = to_ndarray(b.float(), to_ndim=1) n_a = a.shape[0] n_b = b.shape[0] nb_dim = a.dim() if n_a > n_b: reps = (int(n_a / n_b),) + (nb_dim - 1) * (1,) b = tile(b, reps) elif n_a < n_b: reps = (int(n_b / n_a),) + (nb_dim - 1) * (1,) a = tile(a, reps) return torch.allclose(a, b, atol=atol, rtol=rtol) def shape(val): return val.shape def dot(a, b): return einsum("...i,...i->...", a, b) def maximum(a, b): return torch.max(array(a), array(b)) def minimum(a, b): return torch.min(array(a), array(b)) def to_ndarray(x, to_ndim, axis=0): x = array(x) if x.dim() == to_ndim - 1: x = torch.unsqueeze(x, dim=axis) return x def broadcast_to(x, shape): if not torch.is_tensor(x): x = torch.tensor(x) return x.expand(shape) def sqrt(x): if not isinstance(x, torch.Tensor): x = torch.tensor(x).float() return torch.sqrt(x) def isclose(x, y, rtol=rtol, atol=atol): if not torch.is_tensor(x): x = torch.tensor(x) if not torch.is_tensor(y): y = torch.tensor(y) return torch.isclose(x, y, atol=atol, rtol=rtol) def sum(x, axis=None, keepdims=None, **kwargs): if axis is None: if keepdims is None: return torch.sum(x, **kwargs) return torch.sum(x, keepdim=keepdims, **kwargs) if keepdims is None: return torch.sum(x, dim=axis, **kwargs) return torch.sum(x, dim=axis, keepdim=keepdims, **kwargs) def einsum(*args, **kwargs): einsum_str = args[0] input_tensors_list = args[1:] input_tensors_list = convert_to_wider_dtype(input_tensors_list) if len(input_tensors_list) == 1: return torch.einsum(einsum_str, input_tensors_list) einsum_list = einsum_str.split("->") input_str = einsum_list[0] if len(einsum_list) > 1: output_str = einsum_list[1] input_str_list = input_str.split(",") is_ellipsis = [input_str[:3] == "..." for input_str in input_str_list] all_ellipsis = bool(_np.prod(is_ellipsis)) if all_ellipsis: ndims = [len(input_str[3:]) for input_str in input_str_list] if len(input_str_list) > 2: raise NotImplementedError( "Ellipsis support not implemented for >2 input tensors" ) tensor_a = input_tensors_list[0] tensor_b = input_tensors_list[1] initial_ndim_a = tensor_a.ndim initial_ndim_b = tensor_b.ndim tensor_a = to_ndarray(tensor_a, to_ndim=ndims[0] + 1) tensor_b = to_ndarray(tensor_b, to_ndim=ndims[1] + 1) n_tensor_a = tensor_a.shape[0] n_tensor_b = tensor_b.shape[0] cond = ( n_tensor_a == n_tensor_b == 1 and initial_ndim_a != tensor_a.ndim and initial_ndim_b != tensor_b.ndim ) if cond: tensor_a = squeeze(tensor_a, axis=0) tensor_b = squeeze(tensor_b, axis=0) input_prefix_list = ["", ""] output_prefix = "" elif n_tensor_a != n_tensor_b: if n_tensor_a == 1: tensor_a = squeeze(tensor_a, axis=0) input_prefix_list = ["", "r"] output_prefix = "r" elif n_tensor_b == 1: tensor_b = squeeze(tensor_b, axis=0) input_prefix_list = ["r", ""] output_prefix = "r" else: raise ValueError("Shape mismatch for einsum.") else: input_prefix_list = ["r", "r"] output_prefix = "r" input_str_list = [ input_str.replace("...", prefix) for input_str, prefix in zip(input_str_list, input_prefix_list) ] input_str = input_str_list[0] + "," + input_str_list[1] einsum_str = input_str if len(einsum_list) > 1: output_str = output_str.replace("...", output_prefix) einsum_str = input_str + "->" + output_str result = torch.einsum(einsum_str, tensor_a, tensor_b, **kwargs) return result return torch.einsum(*args, **kwargs) def T(x): return torch.t(x) def transpose(x, axes=None): if axes: return x.permute(axes) if x.dim() == 1: return x if x.dim() > 2 and axes is None: return x.permute(tuple(range(x.ndim)[::-1])) return x.t() def squeeze(x, axis=None): if axis is None: return torch.squeeze(x) return torch.squeeze(x, dim=axis) def trace(x, axis1=0, axis2=1): min_axis = min(axis1, axis2) max_axis = max(axis1, axis2) if min_axis == 1 and max_axis == 2: return torch.einsum("...ii", x) if min_axis == -2 and max_axis == -1: return torch.einsum("...ii", x) if min_axis == 0 and max_axis == 1: return torch.einsum("ii...", x) if min_axis == 0 and max_axis == 2: return torch.einsum("i...i", x) raise NotImplementedError() def linspace(start, stop, num): return torch.linspace(start=start, end=stop, steps=num) def equal(a, b, **kwargs): if a.dtype == torch.ByteTensor: a = cast(a, torch.uint8).float() if b.dtype == torch.ByteTensor: b = cast(b, torch.uint8).float() return torch.eq(a, b, **kwargs) def diag_indices(*args, **kwargs): return tuple(map(torch.from_numpy, _np.diag_indices(*args, **kwargs))) def tril(mat, k=0): return torch.tril(mat, diagonal=k) def triu(mat, k=0): return torch.triu(mat, diagonal=k) def tril_indices(n, k=0, m=None): if m is None: m = n return torch.tril_indices(row=n, col=m, offset=k) def triu_indices(n, k=0, m=None): if m is None: m = n return torch.triu_indices(row=n, col=m, offset=k) def tile(x, y): if not torch.is_tensor(x): x = torch.tensor(x) return x.repeat(y) def expand_dims(x, axis=0): return torch.unsqueeze(x, dim=axis) def ndim(x): return x.dim() def hsplit(x, indices_or_section): if isinstance(indices_or_section, int): indices_or_section = x.shape[1] // indices_or_section return torch.split(x, indices_or_section, dim=1) def diagonal(x, offset=0, axis1=0, axis2=1): return torch.diagonal(x, offset=offset, dim1=axis1, dim2=axis2) def set_diag(x, new_diag): """Set the diagonal along the last two axis. Parameters ---------- x : array-like, shape=[dim] Initial array. new_diag : array-like, shape=[dim[-2]] Values to set on the diagonal. Returns ------- None Notes ----- This mimics tensorflow.linalg.set_diag(x, new_diag), when new_diag is a 1-D array, but modifies x instead of creating a copy. """ arr_shape = x.shape off_diag = (1 - torch.eye(arr_shape[-1])) * x diag = torch.einsum("ij,...i->...ij", torch.eye(new_diag.shape[-1]), new_diag) return diag + off_diag def prod(x, axis=None): if axis is None: axis = 0 return torch.prod(x, axis) def where(condition, x=None, y=None): if x is None and y is None: return torch.where(condition) if not torch.is_tensor(x): x = torch.tensor(x) if not torch.is_tensor(y): y = torch.tensor(y) y = cast(y, x.dtype) return torch.where(condition, x, y) def get_mask_i_float(i, n): """Create a 1D array of zeros with one element at one, with floating type. Parameters ---------- i : int Index of the non-zero element. n: n Length of the created array. Returns ------- mask_i_float : array-like, shape=[n,] 1D array of zeros except at index i, where it is one """ range_n = arange(cast(array(n), int32)) i_float = cast(array(i), int32) mask_i = equal(range_n, i_float) mask_i_float = cast(mask_i, float32) return mask_i_float def _is_boolean(x): if isinstance(x, bool): return True if isinstance(x, (tuple, list)): return _is_boolean(x[0]) if torch.is_tensor(x): return x.dtype in [torch.bool, torch.uint8] return False def _is_iterable(x): if isinstance(x, (list, tuple)): return True if torch.is_tensor(x): return ndim(x) > 0 return False def assignment(x, values, indices, axis=0): """Assign values at given indices of an array. Parameters ---------- x: array-like, shape=[dim] Initial array. values: {float, list(float)} Value or list of values to be assigned. indices: {int, tuple, list(int), list(tuple)} Single int or tuple, or list of ints or tuples of indices where value is assigned. If the length of the tuples is shorter than ndim(x), values are assigned to each copy along axis. axis: int, optional Axis along which values are assigned, if vectorized. Returns ------- x_new : array-like, shape=[dim] Copy of x with the values assigned at the given indices. Notes ----- If a single value is provided, it is assigned at all the indices. If a list is given, it must have the same length as indices. """ x_new = copy(x) use_vectorization = hasattr(indices, "__len__") and len(indices) < ndim(x) if _is_boolean(indices): x_new[indices] = values return x_new zip_indices = _is_iterable(indices) and _is_iterable(indices[0]) len_indices = len(indices) if _is_iterable(indices) else 1 if zip_indices: indices = tuple(zip(*indices)) if not use_vectorization: if not zip_indices: len_indices = len(indices) if _is_iterable(indices) else 1 len_values = len(values) if _is_iterable(values) else 1 if len_values > 1 and len_values != len_indices: raise ValueError("Either one value or as many values as indices") x_new[indices] = values else: indices = tuple(list(indices[:axis]) + [slice(None)] + list(indices[axis:])) x_new[indices] = values return x_new def assignment_by_sum(x, values, indices, axis=0): """Add values at given indices of an array. Parameters ---------- x: array-like, shape=[dim] Initial array. values: {float, list(float)} Value or list of values to be assigned. indices: {int, tuple, list(int), list(tuple)} Single int or tuple, or list of ints or tuples of indices where value is assigned. If the length of the tuples is shorter than ndim(x), values are assigned to each copy along axis. axis: int, optional Axis along which values are assigned, if vectorized. Returns ------- x_new : array-like, shape=[dim] Copy of x with the values assigned at the given indices. Notes ----- If a single value is provided, it is assigned at all the indices. If a list is given, it must have the same length as indices. """ x_new = copy(x) values = array(values) use_vectorization = hasattr(indices, "__len__") and len(indices) < ndim(x) if _is_boolean(indices): x_new[indices] += values return x_new zip_indices = _is_iterable(indices) and _is_iterable(indices[0]) if zip_indices: indices = list(zip(*indices)) if not use_vectorization: len_indices = len(indices) if _is_iterable(indices) else 1 len_values = len(values) if _is_iterable(values) else 1 if len_values > 1 and len_values != len_indices: raise ValueError("Either one value or as many values as indices") x_new[indices] += values else: indices = tuple(list(indices[:axis]) + [slice(None)] + list(indices[axis:])) x_new[indices] += values return x_new def copy(x): return x.clone() def cumsum(x, axis=None): if not torch.is_tensor(x): x = array(x) if axis is None: return x.flatten().cumsum(dim=0) return torch.cumsum(x, dim=axis) def cumprod(x, axis=None): if axis is None: axis = 0 return torch.cumprod(x, axis) def array_from_sparse(indices, data, target_shape): """Create an array of given shape, with values at specific indices. The rest of the array will be filled with zeros. Parameters ---------- indices : iterable(tuple(int)) Index of each element which will be assigned a specific value. data : iterable(scalar) Value associated at each index. target_shape : tuple(int) Shape of the output array. Returns ------- a : array, shape=target_shape Array of zeros with specified values assigned to specified indices. """ return torch.sparse.FloatTensor( torch.LongTensor(indices).t(), torch.FloatTensor(cast(data, float32)), torch.Size(target_shape), ).to_dense() def vectorize(x, pyfunc, multiple_args=False, **kwargs): if multiple_args: return stack(list(map(lambda y: pyfunc(*y), zip(*x)))) return stack(list(map(pyfunc, x))) def vec_to_diag(vec): return torch.diag_embed(vec, offset=0) def tril_to_vec(x, k=0): n = x.shape[-1] rows, cols = tril_indices(n, k=k) return x[..., rows, cols] def triu_to_vec(x, k=0): n = x.shape[-1] rows, cols = triu_indices(n, k=k) return x[..., rows, cols] def mat_from_diag_triu_tril(diag, tri_upp, tri_low): """Build matrix from given components. Forms a matrix from diagonal, strictly upper triangular and strictly lower traingular parts. Parameters ---------- diag : array_like, shape=[..., n] tri_upp : array_like, shape=[..., (n * (n - 1)) / 2] tri_low : array_like, shape=[..., (n * (n - 1)) / 2] Returns ------- mat : array_like, shape=[..., n, n] """ n = diag.shape[-1] (i,) = diag_indices(n, ndim=1) j, k = triu_indices(n, k=1) mat = torch.zeros((diag.shape + (n,))) mat[..., i, i] = diag mat[..., j, k] = tri_upp mat[..., k, j] = tri_low return mat def ravel_tril_indices(n, k=0, m=None): if m is None: size = (n, n) else: size = (n, m) idxs = _np.tril_indices(n, k, m) return torch.from_numpy(_np.ravel_multi_index(idxs, size)) def sort(a, axis=-1): sorted_a, _ = torch.sort(a, dim=axis) return sorted_a def amin(a, axis=-1): (values, _) = torch.min(a, dim=axis) return values def take(a, indices, axis=0): if not torch.is_tensor(indices): indices = torch.as_tensor(indices) return torch.squeeze(torch.index_select(a, axis, indices)) def _unnest_iterable(ls): out = [] if isinstance(ls, Iterable): for inner_ls in ls: out.extend(_unnest_iterable(inner_ls)) else: out.append(ls) return out def pad(a, pad_width, constant_value=0.0): return torch.nn.functional.pad( a, _unnest_iterable(reversed(pad_width)), value=constant_value )
the-stack_106_18430
from sharpy.plans.acts import ActBase from sharpy.plans.acts.morph_building import MorphBuilding from sc2 import UnitTypeId, AbilityId class MorphUnit(ActBase): def __init__(self, unit_type: UnitTypeId, ability_type: AbilityId, result_type: UnitTypeId, cocoon_type: UnitTypeId, target_count: int): super().__init__() self.target_count = target_count self.result_type = result_type self.ability_type = ability_type self.unit_type = unit_type self.cocoon_type = cocoon_type async def execute(self) -> bool: target_count = self.cache.own(self.result_type).amount start_units = self.cache.own(self.unit_type).ready.sorted_by_distance_to(self.knowledge.own_main_zone.center_location) cocoon_units = self.cache.own(self.cocoon_type) target_count += len(cocoon_units) for target in start_units: # type: Unit if target.orders and target.orders[0].ability.id == self.ability_type: target_count += 1 if target_count >= self.target_count: return True for target in start_units: if target.is_ready: if self.knowledge.can_afford(self.ability_type): self.do(target(self.ability_type)) self.knowledge.reserve_costs(self.ability_type) target_count += 1 if target_count >= self.target_count: return True if start_units: return False return True class MorphRavager(MorphUnit): def __init__(self, target_count: int): super().__init__(UnitTypeId.ROACH, AbilityId.MORPHTORAVAGER_RAVAGER, UnitTypeId.RAVAGER, UnitTypeId.RAVAGERCOCOON, target_count) class MorphOverseer(MorphUnit): def __init__(self, target_count: int): super().__init__(UnitTypeId.OVERLORD, AbilityId.MORPH_OVERSEER, UnitTypeId.OVERSEER, UnitTypeId.OVERLORDCOCOON, target_count) class MorphBroodLord(MorphUnit): def __init__(self, target_count: int): super().__init__(UnitTypeId.CORRUPTOR, AbilityId.MORPHTOBROODLORD_BROODLORD, UnitTypeId.BROODLORD, UnitTypeId.BROODLORDCOCOON, target_count) class MorphLurker(MorphUnit): def __init__(self, target_count: int): super().__init__(UnitTypeId.HYDRALISK, AbilityId.MORPH_LURKER, UnitTypeId.LURKERMP, UnitTypeId.LURKERMPEGG, target_count) class MorphBaneling(MorphUnit): def __init__(self, target_count: int): super().__init__(UnitTypeId.ZERGLING, AbilityId.MORPHZERGLINGTOBANELING_BANELING, UnitTypeId.BANELING, UnitTypeId.BANELINGCOCOON, target_count)
the-stack_106_18433
""" This script implements an incremental merge strategy, where there is a largeDB, and a smallDB. In general new PCL dataset files are merged into the smallDB (in order to speed up the merge). When the smallDB grows to some threshold, say 10% of the size of the largeDB, then the small and largeDB are merged together. This script handles the common path of merging a new set of PCL dataset files into a smallDB. Inputs: dirLargeDB: directory of the largeDB - for reference only and to validate that the datasets are disjoint and gene maps match. dirSmallDB: directory of the smallDB - the db files and metadata that the new PCL data will be combined into. dirNewPCL: the directory containing the new PCL files to merge in. newDsetFile: the list of the new datasets to merge in, the first column is the name of the pcl files found in dirNewPCL largeDsetFile: list of datasets in the largeDB smallDsetFile: list of datasets in the smallDB sleipnirBinDir: sleipnir binaries outDir: where the final merge of smallDB and newPCL will be written (somewhere other than the smallDB dir so that verification can happen) Example usage: conda activate genomics python seekIncrementalMerge.py -p <newPclDir> -dn <newDatasetList> \ -dl <largeDatasetList> -ds <smallDatasetList> -l <largeDBDir> \ -s <smallDBDir> -b <sleipnirBinaries> -o <mergedDir> \ """ import os import sys import argparse import glob import subprocess from datetime import datetime currPath = os.path.dirname(os.path.realpath(__file__)) sys.path.append(currPath) import seekUtils as sutils from seekCreateDB import createSeekDB # This script will create a new database from PCL files # It will use the parameters of an existing small and large database (which must agree). # It will then prepare the data for combining into the small database. # At the end it will print the command to run to merge the new database into the small database. # Notes: # If you just want to create a smallDB, use the seekCreateDB.py script # TODO - make it optional to specify a newPCL diretory. If none is specified # then merge the small and large db. def copyFile(fileName, srcDir, destDir): src = os.path.join(srcDir, fileName) dst = os.path.join(destDir, fileName) ret = subprocess.run(f'cp {src} {dst}', shell=True) assert ret.returncode == 0 def checkFilesMatch(fileName, dir1, dir2): f1 = os.path.join(dir1, fileName) f2 = os.path.join(dir2, fileName) ret = subprocess.run(f'diff {f1} {f2}', shell=True) assert ret.returncode == 0 def concatenateFiles(fileName, dir1, dir2, outDir): f1 = os.path.join(dir1, fileName) f2 = os.path.join(dir2, fileName) dst = os.path.join(outDir, fileName) ret = subprocess.run(f'cat {f1} {f2} > {dst}', shell=True) assert ret.returncode == 0 def combineDirs(subDirName, dir1, dir2, outDir): d1 = os.path.join(dir1, subDirName) d2 = os.path.join(dir2, subDirName) dst = os.path.join(outDir, subDirName) os.makedirs(dst, exist_ok=True) ret = subprocess.run(f'cp -a {d1}/* {dst}', shell=True) assert ret.returncode == 0 ret = subprocess.run(f'cp -a {d2}/* {dst}', shell=True) assert ret.returncode == 0 def main(args): refCfg = sutils.getDefaultConfig() refCfg.datasetsFile = os.path.basename(args.smallDsetFile) os.makedirs(args.outDir, exist_ok=True) # STEP 01: Load the dataset lists for the new, small and large DBs and make sure # they are all disjoint # check existence of the dataset map files if not os.path.exists(args.smallDsetFile): raise FileNotFoundError("Small DB dataset_platform map not found: " + args.smallDsetFile) if not os.path.exists(args.largeDsetFile): raise FileNotFoundError("Large DB dataset_platform map not found: " + args.largeDsetFile) if not os.path.exists(args.newDsetFile): raise FileNotFoundError("New dataset_platform map not found: " + args.newDsetFile) smallDsets = sutils.readDatasetList(args.smallDsetFile) largeDsets = sutils.readDatasetList(args.largeDsetFile) newDsets = sutils.readDatasetList(args.newDsetFile) smallDsets = set([dset[1] for dset in smallDsets]) largeDsets = set([dset[1] for dset in largeDsets]) newDsets = set([dset[1] for dset in newDsets]) large_small_overlap = largeDsets.intersection(smallDsets) large_new_overlap = largeDsets.intersection(newDsets) small_new_overlap = smallDsets.intersection(newDsets) # Datasets must be disjoint between all the databases assert not large_small_overlap, "large and small datasets overlap " + str(large_small_overlap) assert not large_new_overlap, "large and new datasets overlap " + str(large_new_overlap) assert not small_new_overlap, "small and new datasets overlap " + str(small_new_overlap) # STEP 02: Do some checks # check that large and small DBs have the same number/name of db files assert os.path.isdir(args.dirLargeDB) assert os.path.isdir(args.dirSmallDB) largeDBFileDir = os.path.join(args.dirLargeDB, refCfg.dbDir) smallDBFileDir = os.path.join(args.dirSmallDB, refCfg.dbDir) assert os.path.isdir(largeDBFileDir) assert os.path.isdir(smallDBFileDir) largeDBFiles = glob.glob1(largeDBFileDir, "*.db") largeDBFiles.sort() smallDBFiles = glob.glob1(smallDBFileDir, "*.db") smallDBFiles.sort() assert largeDBFiles == smallDBFiles # assert numDBFiles == numSmallDBFiles, "numDBFiles mismatch between large and small db" checkFilesMatch(refCfg.geneMapFile, args.dirLargeDB, args.dirSmallDB) checkFilesMatch(refCfg.quantFile, args.dirLargeDB, args.dirSmallDB) # STEP 03: Create a new database from the new incremental pcl files # make a temp directory to hold the incremental database dateStr = datetime.now().strftime("%Y%m%d_%H%M%S") incrDBDirName = os.path.join(args.outDir, "incr_dset_" + dateStr) os.makedirs(incrDBDirName) # copy over geneMap and quant files needed from refDB copyFile(refCfg.geneMapFile, args.dirLargeDB, incrDBDirName) copyFile(refCfg.quantFile, args.dirLargeDB, incrDBDirName) # set the configs newCfg = sutils.getDefaultConfig() newCfg.binDir = args.sleipnirBinDir newCfg.pclDir = args.dirNewPCL newCfg.datasetsFile = args.newDsetFile newCfg.inDir = incrDBDirName newCfg.outDir = incrDBDirName newCfg.numDbFiles = len(largeDBFiles) sutils.checkConfig(newCfg) # create the db res = createSeekDB(newCfg, None, runAll=True, concurrency=8) assert res == True, "createSeekDB failed" print(f'Incremental database created in {incrDBDirName}') # STEP 04: Combine metadata copyFile(refCfg.geneMapFile, args.dirLargeDB, args.outDir) copyFile(refCfg.quantFile, args.dirLargeDB, args.outDir) dsetFileBaseName = os.path.basename(args.smallDsetFile) concatenateFiles(dsetFileBaseName, args.dirSmallDB, incrDBDirName, args.outDir) concatenateFiles(refCfg.dsetSizeFile, args.dirSmallDB, incrDBDirName, args.outDir) combineDirs('prep', args.dirSmallDB, incrDBDirName, args.outDir) combineDirs('sinfo', args.dirSmallDB, incrDBDirName, args.outDir) combineDirs('gvar', args.dirSmallDB, incrDBDirName, args.outDir) combineDirs('pclbin', args.dirSmallDB, incrDBDirName, args.outDir) # STEP 05: Run the db combiner if args.yesToPrompts is False: reply = input('Proceed with dbCombiner command? ' + '(y/n): ') reply.lower().strip() if reply[0] != 'y': return -1 mergedCfg = sutils.getDefaultConfig() mergedCfg.binDir = args.sleipnirBinDir mergedCfg.inDir = args.dirSmallDB mergedCfg.outDir = args.outDir mergedCfg.datasetsFile = dsetFileBaseName mergedCfg.numDbFiles = len(largeDBFiles) sutils.checkConfig(mergedCfg) dbDirsToCombine = [smallDBFileDir, newCfg.dbDir] sutils.parallelCombineThreadDBs(mergedCfg, dbDirsToCombine, concurrency=8) # STEP 06: Run verification of the combined DB files if args.yesToPrompts is False: reply = input('Proceed with db verification command? ' + '(y/n): ') reply.lower().strip() if reply[0] != 'y': return -1 sutils.verifyCombinedDBs(mergedCfg, dbDirsToCombine, concurrency=8) print("Run SeekPrep to combine platform statistics files...") # STEP 07: Calculate the platform averages smallPlatDir = os.path.join(args.dirSmallDB, 'plat') incrPlatDir = os.path.join(incrDBDirName, 'plat') outPlatDir = os.path.join(args.outDir, 'plat') os.makedirs(outPlatDir, exist_ok=True) cmd = f'{args.sleipnirBinDir}/SeekPrep -f -m -i {mergedCfg.geneMapFile} ' \ f'-1 {smallPlatDir} -2 {incrPlatDir} -D {outPlatDir}' ret = subprocess.run(cmd, shell=True) assert ret.returncode == 0 # FINALIZATION STEPS # Recommend after completion of merge do the following by hand: # Rename small DB directory to prev.num # Rename combined DB directory to small DB name # Check size of small DB relative to large DB, and recommend combining # at some size/percentage threshold. return 0 if __name__ == "__main__": argParser = argparse.ArgumentParser() argParser.add_argument('--dirNewPCL', '-p', type=str, required=True, help='directory containing the PCL files for the new datasets') argParser.add_argument('--newDsetFile', '-dn', type=str, required=True, help='text file listing the new datasets and corresponding platforms, one per line') argParser.add_argument('--largeDsetFile', '-dl', type=str, required=True, help='text file listing the large DB datasets and corresponding platforms, one per line') argParser.add_argument('--smallDsetFile', '-ds', type=str, required=True, help='text file listing the small DB datasets and corresponding platforms, one per line') argParser.add_argument('--dirSmallDB', '-s', type=str, required=True, help='directory of existing small DB') argParser.add_argument('--dirLargeDB', '-l', type=str, required=True, help='directory of existing large DB') argParser.add_argument('--sleipnirBinDir', '-b', type=str, required=True, help='Directory where the Sleipnir binaries are installed') argParser.add_argument('--outDir', '-o', type=str, required=True, help='Output directory to write new database into') argParser.add_argument('--yesToPrompts', '-y', default=False, action='store_true', help='Answer yes to all prompts') args = argParser.parse_args() res = main(args) sys.exit(res)
the-stack_106_18435
#!/usr/bin/env python3 # # Copyright (c) 2017, Pivotal Software Inc. # from gppylib.commands import base from gppylib.commands.unix import * from gppylib.commands.gp import * from gppylib.gparray import GpArray from gppylib.gplog import get_default_logger class GpResGroup(object): def __init__(self): self.logger = get_default_logger() def validate(self): pool = base.WorkerPool() gp_array = GpArray.initFromCatalog(dbconn.DbURL(), utility=True) host_list = list(set(gp_array.get_hostlist(True))) msg = None for h in host_list: cmd = Command(h, "gpcheckresgroupimpl", REMOTE, h) pool.addCommand(cmd) pool.join() items = pool.getCompletedItems() failed = [] for i in items: if not i.was_successful(): failed.append("[%s:%s]"%(i.remoteHost, i.get_stderr().rstrip())) pool.haltWork() pool.joinWorkers() if failed: msg = ",".join(failed) return msg
the-stack_106_18436
import os import cv2 import torch import datetime import numpy as np from torchvision.utils import save_image import torch.nn.functional as F from cnn_raccoon import input_images_dict from cnn_raccoon import images_top_dir, img_relative_path def tensor_image_converter(tensor): """ Converts PyTorch Tensor to Numpy Array (Image) """ tensor = tensor.squeeze() if len(tensor.shape) > 2: tensor = tensor.permute(1, 2, 0) img = tensor.detach().cpu().numpy() return img def module2traced(module, inputs): """ Function taken from: https://github.com/FrancescoSaverioZuppichini/A-journey-into-Convolutional-Neural-Network-visualization- """ handles, modules = [], [] def trace(module, inputs, outputs): modules.append(module) def traverse(module): for m in module.children(): traverse(m) is_leaf = len(list(module.children())) == 0 if is_leaf: handles.append(module.register_forward_hook(trace)) traverse(module) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') module = module.to(device) _ = module(inputs.to(device)) [h.remove() for h in handles] return modules def convert_to_grayscale(cv2im): """ Converts 3d image to grayscale Args: cv2im (numpy arr): RGB image with shape (D,W,H) returns: grayscale_im (numpy_arr): Grayscale image with shape (1,W,D) credits to https://github.com/utkuozbulak/pytorch-cnn-visualizations """ grayscale_im = np.sum(np.abs(cv2im), axis=0) im_max = np.percentile(grayscale_im, 99) im_min = np.min(grayscale_im) grayscale_im = (np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1)) grayscale_im = np.expand_dims(grayscale_im, axis=0) return grayscale_im def image2cam(image, cam): """ Credits to: https://github.com/FrancescoSaverioZuppichini/A-journey-into-Convolutional-Neural-Network-visualization- """ h, w, c = image.shape cam -= np.min(cam) cam /= np.max(cam) cam = cv2.resize(cam, (w, h)) cam = np.uint8(cam * 255.0) img_with_cam = cv2.applyColorMap(cam, cv2.COLORMAP_JET) img_with_cam = cv2.cvtColor(img_with_cam, cv2.COLOR_BGR2RGB) img_with_cam = img_with_cam + (image * 255) img_with_cam /= np.max(img_with_cam) return img_with_cam def tensor2cam(image, cam): """ Credits to: https://github.com/FrancescoSaverioZuppichini/A-journey-into-Convolutional-Neural-Network-visualization- """ image_with_heatmap = image2cam(image.squeeze().permute(1, 2, 0).cpu().numpy(), cam.detach().cpu().numpy()) return torch.from_numpy(image_with_heatmap).permute(2, 0, 1) def save_input_images(images): """ Saves input images and expose them to the Flask server. :param images: Input images taken from Inspector """ input_images = images_top_dir + "/input_images" if not os.path.exists(input_images): os.mkdir(input_images) for i in range(images.shape[0]): ts = datetime.datetime.now().timestamp() img_path = input_images + "/img_{}_{}.jpg".format(str(ts).replace(".", ""), i) img_relative = img_relative_path + "/input_images" + "/img_{}_{}.jpg".format(str(ts).replace(".", ""), i) image = images[i] image = F.interpolate(image, size=128) save_image(image, img_path) if i in input_images_dict.keys(): input_images_dict[i].append(img_relative) else: input_images_dict[i] = img_relative
the-stack_106_18437
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from abc import ABC, abstractmethod from collections import namedtuple from typing import Any, Optional from magma.enodebd.data_models.data_model import InvalidTrParamPath from magma.enodebd.data_models.data_model_parameters import ParameterName from magma.enodebd.device_config.configuration_init import build_desired_config from magma.enodebd.exceptions import ConfigurationError, Tr069Error from magma.enodebd.logger import EnodebdLogger as logger from magma.enodebd.state_machines.acs_state_utils import ( does_inform_have_event, get_all_objects_to_add, get_all_objects_to_delete, get_all_param_values_to_set, get_obj_param_values_to_set, get_object_params_to_get, get_optional_param_to_check, get_param_values_to_set, get_params_to_get, parse_get_parameter_values_response, process_inform_message, ) from magma.enodebd.state_machines.enb_acs import EnodebAcsStateMachine from magma.enodebd.state_machines.timer import StateMachineTimer from magma.enodebd.tr069 import models AcsMsgAndTransition = namedtuple( 'AcsMsgAndTransition', ['msg', 'next_state'], ) AcsReadMsgResult = namedtuple( 'AcsReadMsgResult', ['msg_handled', 'next_state'], ) class EnodebAcsState(ABC): """ State class for the Enodeb state machine States can transition after reading a message from the eNB, sending a message out to the eNB, or when a timer completes. As such, some states are only responsible for message sending, and others are only responsible for reading incoming messages. In the constructor, set up state transitions. """ def __init__(self): self._acs = None def enter(self) -> None: """ Set up your timers here. Call transition(..) on the ACS when the timer completes or throw an error """ pass def exit(self) -> None: """Destroy timers here""" pass def read_msg(self, message: Any) -> AcsReadMsgResult: """ Args: message: tr069 message Returns: name of the next state, if transition required """ raise ConfigurationError( '%s should implement read_msg() if it ' 'needs to handle message reading' % self.__class__.__name__, ) def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Produce a message to send back to the eNB. Args: message: TR-069 message which was already processed by read_msg Returns: Message and possible transition """ raise ConfigurationError( '%s should implement get_msg() if it ' 'needs to produce messages' % self.__class__.__name__, ) @property def acs(self) -> EnodebAcsStateMachine: return self._acs @acs.setter def acs(self, val: EnodebAcsStateMachine) -> None: self._acs = val @abstractmethod def state_description(self) -> str: """ Provide a few words about what the state represents """ pass class WaitInformState(EnodebAcsState): """ This state indicates that no Inform message has been received yet, or that no Inform message has been received for a long time. This state is used to handle an Inform message that arrived when enodebd already believes that the eNB is connected. As such, it is unclear to enodebd whether the eNB is just sending another Inform, or if a different eNB was plugged into the same interface. """ def __init__( self, acs: EnodebAcsStateMachine, when_done: str, when_boot: Optional[str] = None, ): super().__init__() self.acs = acs self.done_transition = when_done self.boot_transition = when_boot self.has_enb_just_booted = False def read_msg(self, message: Any) -> AcsReadMsgResult: """ Args: message: models.Inform Tr069 Inform message """ if not isinstance(message, models.Inform): return AcsReadMsgResult(False, None) process_inform_message( message, self.acs.data_model, self.acs.device_cfg, ) if does_inform_have_event(message, '1 BOOT'): return AcsReadMsgResult(True, self.boot_transition) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Reply with InformResponse """ response = models.InformResponse() # Set maxEnvelopes to 1, as per TR-069 spec response.MaxEnvelopes = 1 return AcsMsgAndTransition(response, self.done_transition) def state_description(self) -> str: return 'Waiting for an Inform' class GetRPCMethodsState(EnodebAcsState): """ After the first Inform message from boot, it is expected that the eNB will try to learn the RPC methods of the ACS. """ def __init__(self, acs: EnodebAcsStateMachine, when_done: str, when_skip: str): super().__init__() self.acs = acs self.done_transition = when_done self.skip_transition = when_skip def read_msg(self, message: Any) -> AcsReadMsgResult: # If this is a regular Inform, not after a reboot we'll get an empty if isinstance(message, models.DummyInput): return AcsReadMsgResult(True, self.skip_transition) if not isinstance(message, models.GetRPCMethods): return AcsReadMsgResult(False, self.done_transition) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: resp = models.GetRPCMethodsResponse() resp.MethodList = models.MethodList() RPC_METHODS = ['Inform', 'GetRPCMethods', 'TransferComplete'] resp.MethodList.arrayType = 'xsd:string[%d]' \ % len(RPC_METHODS) resp.MethodList.string = RPC_METHODS return AcsMsgAndTransition(resp, self.done_transition) def state_description(self) -> str: return 'Waiting for incoming GetRPC Methods after boot' class BaicellsRemWaitState(EnodebAcsState): """ We've already received an Inform message. This state is to handle a Baicells eNodeB issue. After eNodeB is rebooted, hold off configuring it for some time to give time for REM to run. This is a BaiCells eNodeB issue that doesn't support enabling the eNodeB during initial REM. In this state, just hang at responding to Inform, and then ending the TR-069 session. """ CONFIG_DELAY_AFTER_BOOT = 600 def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done self.rem_timer = None def enter(self): self.rem_timer = StateMachineTimer(self.CONFIG_DELAY_AFTER_BOOT) logger.info( 'Holding off of eNB configuration for %s seconds. ' 'Will resume after eNB REM process has finished. ', self.CONFIG_DELAY_AFTER_BOOT, ) def exit(self): self.rem_timer = None def read_msg(self, message: Any) -> AcsReadMsgResult: if not isinstance(message, models.Inform): return AcsReadMsgResult(False, None) process_inform_message( message, self.acs.data_model, self.acs.device_cfg, ) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: if self.rem_timer.is_done(): return AcsMsgAndTransition( models.DummyInput(), self.done_transition, ) return AcsMsgAndTransition(models.DummyInput(), None) def state_description(self) -> str: remaining = self.rem_timer.seconds_remaining() return 'Waiting for eNB REM to run for %d more seconds before ' \ 'resuming with configuration.' % remaining class WaitEmptyMessageState(EnodebAcsState): def __init__( self, acs: EnodebAcsStateMachine, when_done: str, when_missing: Optional[str] = None, ): super().__init__() self.acs = acs self.done_transition = when_done self.unknown_param_transition = when_missing def read_msg(self, message: Any) -> AcsReadMsgResult: """ It's expected that we transition into this state right after receiving an Inform message and replying with an InformResponse. At that point, the eNB sends an empty HTTP request (aka DummyInput) to initiate the rest of the provisioning process """ if not isinstance(message, models.DummyInput): logger.debug("Ignoring message %s", str(type(message))) return AcsReadMsgResult(msg_handled=False, next_state=None) if self.unknown_param_transition: if get_optional_param_to_check(self.acs.data_model): return AcsReadMsgResult( msg_handled=True, next_state=self.unknown_param_transition, ) return AcsReadMsgResult( msg_handled=True, next_state=self.done_transition, ) def get_msg(self, message: Any) -> AcsReadMsgResult: """ Return a dummy message waiting for the empty message from CPE """ request = models.DummyInput() return AcsMsgAndTransition(msg=request, next_state=None) def state_description(self) -> str: return 'Waiting for empty message from eNodeB' class CheckOptionalParamsState(EnodebAcsState): def __init__( self, acs: EnodebAcsStateMachine, when_done: str, ): super().__init__() self.acs = acs self.done_transition = when_done self.optional_param = None def get_msg(self, message: Any) -> AcsMsgAndTransition: self.optional_param = get_optional_param_to_check(self.acs.data_model) if self.optional_param is None: raise Tr069Error('Invalid State') # Generate the request request = models.GetParameterValues() request.ParameterNames = models.ParameterNames() request.ParameterNames.arrayType = 'xsd:string[1]' request.ParameterNames.string = [] path = self.acs.data_model.get_parameter(self.optional_param).path request.ParameterNames.string.append(path) return AcsMsgAndTransition(request, None) def read_msg(self, message: Any) -> AcsReadMsgResult: """ Process either GetParameterValuesResponse or a Fault """ if type(message) == models.Fault: self.acs.data_model.set_parameter_presence( self.optional_param, False, ) elif type(message) == models.GetParameterValuesResponse: name_to_val = parse_get_parameter_values_response( self.acs.data_model, message, ) logger.debug( 'Received CPE parameter values: %s', str(name_to_val), ) for name, val in name_to_val.items(): self.acs.data_model.set_parameter_presence( self.optional_param, True, ) magma_val = self.acs.data_model.transform_for_magma(name, val) self.acs.device_cfg.set_parameter(name, magma_val) else: return AcsReadMsgResult(False, None) if get_optional_param_to_check(self.acs.data_model) is not None: return AcsReadMsgResult(True, None) return AcsReadMsgResult(True, self.done_transition) def state_description(self) -> str: return 'Checking if some optional parameters exist in data model' class SendGetTransientParametersState(EnodebAcsState): """ Periodically read eNodeB status. Note: keep frequency low to avoid backing up large numbers of read operations if enodebd is busy. Some eNB parameters are read only and updated by the eNB itself. """ PARAMETERS = [ ParameterName.OP_STATE, ParameterName.RF_TX_STATUS, ParameterName.GPS_STATUS, ParameterName.PTP_STATUS, ParameterName.MME_STATUS, ParameterName.GPS_LAT, ParameterName.GPS_LONG, ] def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done def read_msg(self, message: Any) -> AcsReadMsgResult: if not isinstance(message, models.DummyInput): return AcsReadMsgResult(False, None) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: request = models.GetParameterValues() request.ParameterNames = models.ParameterNames() request.ParameterNames.string = [] for name in self.PARAMETERS: # Not all data models have these parameters if self.acs.data_model.is_parameter_present(name): path = self.acs.data_model.get_parameter(name).path request.ParameterNames.string.append(path) request.ParameterNames.arrayType = \ 'xsd:string[%d]' % len(request.ParameterNames.string) return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Getting transient read-only parameters' class WaitGetTransientParametersState(EnodebAcsState): """ Periodically read eNodeB status. Note: keep frequency low to avoid backing up large numbers of read operations if enodebd is busy """ def __init__( self, acs: EnodebAcsStateMachine, when_get: str, when_get_obj_params: str, when_delete: str, when_add: str, when_set: str, when_skip: str, request_all_params: bool = False, ): super().__init__() self.acs = acs self.done_transition = when_get self.get_obj_params_transition = when_get_obj_params self.rm_obj_transition = when_delete self.add_obj_transition = when_add self.set_transition = when_set self.skip_transition = when_skip self.request_all_params = request_all_params def read_msg(self, message: Any) -> AcsReadMsgResult: if not isinstance(message, models.GetParameterValuesResponse): return AcsReadMsgResult(False, None) # Current values of the fetched parameters name_to_val = parse_get_parameter_values_response( self.acs.data_model, message, ) logger.debug('Fetched Transient Params: %s', str(name_to_val)) # Update device configuration for name in name_to_val: magma_val = \ self.acs.data_model.transform_for_magma( name, name_to_val[name], ) self.acs.device_cfg.set_parameter(name, magma_val) return AcsReadMsgResult(True, self.get_next_state()) def get_next_state(self) -> str: should_get_params = \ len( get_params_to_get( self.acs.device_cfg, self.acs.data_model, request_all_params=self.request_all_params, ), ) > 0 if should_get_params: return self.done_transition should_get_obj_params = \ len( get_object_params_to_get( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, ), ) > 0 if should_get_obj_params: return self.get_obj_params_transition elif len( get_all_objects_to_delete( self.acs.desired_cfg, self.acs.device_cfg, ), ) > 0: return self.rm_obj_transition elif len( get_all_objects_to_add( self.acs.desired_cfg, self.acs.device_cfg, ), ) > 0: return self.add_obj_transition return self.skip_transition def state_description(self) -> str: return 'Getting transient read-only parameters' class GetParametersState(EnodebAcsState): """ Get the value of most parameters of the eNB that are defined in the data model. Object parameters are excluded. """ def __init__( self, acs: EnodebAcsStateMachine, when_done: str, request_all_params: bool = False, ): super().__init__() self.acs = acs self.done_transition = when_done # Set to True if we want to request values of all parameters, even if # the ACS state machine already has recorded values of them. self.request_all_params = request_all_params def read_msg(self, message: Any) -> AcsReadMsgResult: """ It's expected that we transition into this state right after receiving an Inform message and replying with an InformResponse. At that point, the eNB sends an empty HTTP request (aka DummyInput) to initiate the rest of the provisioning process """ if not isinstance(message, models.DummyInput): return AcsReadMsgResult(False, None) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Respond with GetParameterValuesRequest Get the values of all parameters defined in the data model. Also check which addable objects are present, and what the values of parameters for those objects are. """ # Get the names of regular parameters names = get_params_to_get( self.acs.device_cfg, self.acs.data_model, self.request_all_params, ) # Generate the request request = models.GetParameterValues() request.ParameterNames = models.ParameterNames() request.ParameterNames.arrayType = 'xsd:string[%d]' \ % len(names) request.ParameterNames.string = [] for name in names: path = self.acs.data_model.get_parameter(name).path if path is not InvalidTrParamPath: # Only get data elements backed by tr69 path request.ParameterNames.string.append(path) return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Getting non-object parameters' class WaitGetParametersState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done def read_msg(self, message: Any) -> AcsReadMsgResult: """ Process GetParameterValuesResponse """ if not isinstance(message, models.GetParameterValuesResponse): return AcsReadMsgResult(False, None) name_to_val = parse_get_parameter_values_response( self.acs.data_model, message, ) logger.debug('Received CPE parameter values: %s', str(name_to_val)) for name, val in name_to_val.items(): magma_val = self.acs.data_model.transform_for_magma(name, val) self.acs.device_cfg.set_parameter(name, magma_val) return AcsReadMsgResult(True, self.done_transition) def state_description(self) -> str: return 'Getting non-object parameters' class GetObjectParametersState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str, request_all_params: bool = False): super().__init__() self.acs = acs self.done_transition = when_done self.request_all_params = request_all_params def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Respond with GetParameterValuesRequest """ names = get_object_params_to_get( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, self.request_all_params, ) # Generate the request request = models.GetParameterValues() request.ParameterNames = models.ParameterNames() request.ParameterNames.arrayType = 'xsd:string[%d]' \ % len(names) request.ParameterNames.string = [] for name in names: path = self.acs.data_model.get_parameter(name).path request.ParameterNames.string.append(path) return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Getting object parameters' class WaitGetObjectParametersState(EnodebAcsState): def __init__( self, acs: EnodebAcsStateMachine, when_delete: str, when_add: str, when_set: str, when_skip: str, ): super().__init__() self.acs = acs self.rm_obj_transition = when_delete self.add_obj_transition = when_add self.set_params_transition = when_set self.skip_transition = when_skip def read_msg(self, message: Any) -> AcsReadMsgResult: """ Process GetParameterValuesResponse """ if not isinstance(message, models.GetParameterValuesResponse): return AcsReadMsgResult(False, None) path_to_val = {} if hasattr(message.ParameterList, 'ParameterValueStruct') and \ message.ParameterList.ParameterValueStruct is not None: for param_value_struct in message.ParameterList.ParameterValueStruct: path_to_val[param_value_struct.Name] = \ param_value_struct.Value.Data logger.debug('Received object parameters: %s', str(path_to_val)) # Number of PLMN objects reported can be incorrect. Let's count them num_plmns = 0 obj_to_params = self.acs.data_model.get_numbered_param_names() while True: obj_name = ParameterName.PLMN_N % (num_plmns + 1) if obj_name not in obj_to_params or len(obj_to_params[obj_name]) == 0: logger.warning( "eNB has PLMN %s but not defined in model", obj_name, ) break param_name_list = obj_to_params[obj_name] obj_path = self.acs.data_model.get_parameter(param_name_list[0]).path if obj_path not in path_to_val: break if not self.acs.device_cfg.has_object(obj_name): self.acs.device_cfg.add_object(obj_name) num_plmns += 1 for name in param_name_list: path = self.acs.data_model.get_parameter(name).path value = path_to_val[path] magma_val = \ self.acs.data_model.transform_for_magma(name, value) self.acs.device_cfg.set_parameter_for_object( name, magma_val, obj_name, ) num_plmns_reported = \ int(self.acs.device_cfg.get_parameter(ParameterName.NUM_PLMNS)) if num_plmns != num_plmns_reported: logger.warning( "eNB reported %d PLMNs but found %d", num_plmns_reported, num_plmns, ) self.acs.device_cfg.set_parameter( ParameterName.NUM_PLMNS, num_plmns, ) # Now we can have the desired state if self.acs.desired_cfg is None: self.acs.desired_cfg = build_desired_config( self.acs.mconfig, self.acs.service_config, self.acs.device_cfg, self.acs.data_model, self.acs.config_postprocessor, ) if len( get_all_objects_to_delete( self.acs.desired_cfg, self.acs.device_cfg, ), ) > 0: return AcsReadMsgResult(True, self.rm_obj_transition) elif len( get_all_objects_to_add( self.acs.desired_cfg, self.acs.device_cfg, ), ) > 0: return AcsReadMsgResult(True, self.add_obj_transition) elif len( get_all_param_values_to_set( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, ), ) > 0: return AcsReadMsgResult(True, self.set_params_transition) return AcsReadMsgResult(True, self.skip_transition) def state_description(self) -> str: return 'Getting object parameters' class DeleteObjectsState(EnodebAcsState): def __init__( self, acs: EnodebAcsStateMachine, when_add: str, when_skip: str, ): super().__init__() self.acs = acs self.deleted_param = None self.add_obj_transition = when_add self.skip_transition = when_skip def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Send DeleteObject message to TR-069 and poll for response(s). Input: - Object name (string) """ request = models.DeleteObject() self.deleted_param = get_all_objects_to_delete( self.acs.desired_cfg, self.acs.device_cfg, )[0] request.ObjectName = \ self.acs.data_model.get_parameter(self.deleted_param).path return AcsMsgAndTransition(request, None) def read_msg(self, message: Any) -> AcsReadMsgResult: """ Send DeleteObject message to TR-069 and poll for response(s). Input: - Object name (string) """ if type(message) == models.DeleteObjectResponse: if message.Status != 0: raise Tr069Error( 'Received DeleteObjectResponse with ' 'Status=%d' % message.Status, ) elif type(message) == models.Fault: raise Tr069Error( 'Received Fault in response to DeleteObject ' '(faultstring = %s)' % message.FaultString, ) else: return AcsReadMsgResult(False, None) self.acs.device_cfg.delete_object(self.deleted_param) obj_list_to_delete = get_all_objects_to_delete( self.acs.desired_cfg, self.acs.device_cfg, ) if len(obj_list_to_delete) > 0: return AcsReadMsgResult(True, None) if len( get_all_objects_to_add( self.acs.desired_cfg, self.acs.device_cfg, ), ) == 0: return AcsReadMsgResult(True, self.skip_transition) return AcsReadMsgResult(True, self.add_obj_transition) def state_description(self) -> str: return 'Deleting objects' class AddObjectsState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done self.added_param = None def get_msg(self, message: Any) -> AcsMsgAndTransition: request = models.AddObject() self.added_param = get_all_objects_to_add( self.acs.desired_cfg, self.acs.device_cfg, )[0] desired_param = self.acs.data_model.get_parameter(self.added_param) desired_path = desired_param.path path_parts = desired_path.split('.') # If adding enumerated object, ie. XX.N. we should add it to the # parent object XX. so strip the index if len(path_parts) > 2 and \ path_parts[-1] == '' and path_parts[-2].isnumeric(): logger.debug('Stripping index from path=%s', desired_path) desired_path = '.'.join(path_parts[:-2]) + '.' request.ObjectName = desired_path return AcsMsgAndTransition(request, None) def read_msg(self, message: Any) -> AcsReadMsgResult: if type(message) == models.AddObjectResponse: if message.Status != 0: raise Tr069Error( 'Received AddObjectResponse with ' 'Status=%d' % message.Status, ) elif type(message) == models.Fault: raise Tr069Error( 'Received Fault in response to AddObject ' '(faultstring = %s)' % message.FaultString, ) else: return AcsReadMsgResult(False, None) instance_n = message.InstanceNumber self.acs.device_cfg.add_object(self.added_param % instance_n) obj_list_to_add = get_all_objects_to_add( self.acs.desired_cfg, self.acs.device_cfg, ) if len(obj_list_to_add) > 0: return AcsReadMsgResult(True, None) return AcsReadMsgResult(True, self.done_transition) def state_description(self) -> str: return 'Adding objects' class SetParameterValuesState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done def get_msg(self, message: Any) -> AcsMsgAndTransition: request = models.SetParameterValues() request.ParameterList = models.ParameterValueList() param_values = get_all_param_values_to_set( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, ) request.ParameterList.arrayType = 'cwmp:ParameterValueStruct[%d]' \ % len(param_values) request.ParameterList.ParameterValueStruct = [] logger.debug( 'Sending TR069 request to set CPE parameter values: %s', str(param_values), ) # TODO: Match key response when we support having multiple outstanding # calls. if self.acs.has_version_key: request.ParameterKey = models.ParameterKeyType() request.ParameterKey.Data =\ "SetParameter-{:10.0f}".format(self.acs.parameter_version_key) request.ParameterKey.type = 'xsd:string' for name, value in param_values.items(): param_info = self.acs.data_model.get_parameter(name) type_ = param_info.type name_value = models.ParameterValueStruct() name_value.Value = models.anySimpleType() name_value.Name = param_info.path enb_value = self.acs.data_model.transform_for_enb(name, value) if type_ in ('int', 'unsignedInt'): name_value.Value.type = 'xsd:%s' % type_ name_value.Value.Data = str(enb_value) elif type_ == 'boolean': # Boolean values have integral representations in spec name_value.Value.type = 'xsd:boolean' name_value.Value.Data = str(int(enb_value)) elif type_ == 'string': name_value.Value.type = 'xsd:string' name_value.Value.Data = str(enb_value) else: raise Tr069Error( 'Unsupported type for %s: %s' % (name, type_), ) if param_info.is_invasive: self.acs.are_invasive_changes_applied = False request.ParameterList.ParameterValueStruct.append(name_value) return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Setting parameter values' class SetParameterValuesNotAdminState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done def get_msg(self, message: Any) -> AcsMsgAndTransition: request = models.SetParameterValues() request.ParameterList = models.ParameterValueList() param_values = get_all_param_values_to_set( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, exclude_admin=True, ) request.ParameterList.arrayType = 'cwmp:ParameterValueStruct[%d]' \ % len(param_values) request.ParameterList.ParameterValueStruct = [] logger.debug( 'Sending TR069 request to set CPE parameter values: %s', str(param_values), ) for name, value in param_values.items(): param_info = self.acs.data_model.get_parameter(name) type_ = param_info.type name_value = models.ParameterValueStruct() name_value.Value = models.anySimpleType() name_value.Name = param_info.path enb_value = self.acs.data_model.transform_for_enb(name, value) if type_ in ('int', 'unsignedInt'): name_value.Value.type = 'xsd:%s' % type_ name_value.Value.Data = str(enb_value) elif type_ == 'boolean': # Boolean values have integral representations in spec name_value.Value.type = 'xsd:boolean' name_value.Value.Data = str(int(enb_value)) elif type_ == 'string': name_value.Value.type = 'xsd:string' name_value.Value.Data = str(enb_value) else: raise Tr069Error( 'Unsupported type for %s: %s' % (name, type_), ) if param_info.is_invasive: self.acs.are_invasive_changes_applied = False request.ParameterList.ParameterValueStruct.append(name_value) return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Setting parameter values excluding Admin Enable' class WaitSetParameterValuesState(EnodebAcsState): def __init__( self, acs: EnodebAcsStateMachine, when_done: str, when_apply_invasive: str, status_non_zero_allowed: bool = False, ): super().__init__() self.acs = acs self.done_transition = when_done self.apply_invasive_transition = when_apply_invasive # Set Params can legally return zero and non zero status # Per tr-196, if there are errors the method should return a fault. # Make flag optional to compensate for existing radios returning non # zero on error. self.status_non_zero_allowed = status_non_zero_allowed def read_msg(self, message: Any) -> AcsReadMsgResult: if type(message) == models.SetParameterValuesResponse: if not self.status_non_zero_allowed: if message.Status != 0: raise Tr069Error( 'Received SetParameterValuesResponse with ' 'Status=%d' % message.Status, ) self._mark_as_configured() if not self.acs.are_invasive_changes_applied: return AcsReadMsgResult(True, self.apply_invasive_transition) return AcsReadMsgResult(True, self.done_transition) elif type(message) == models.Fault: logger.error( 'Received Fault in response to SetParameterValues, ' 'Code (%s), Message (%s)', message.FaultCode, message.FaultString, ) if message.SetParameterValuesFault is not None: for fault in message.SetParameterValuesFault: logger.error( 'SetParameterValuesFault Param: %s, ' 'Code: %s, String: %s', fault.ParameterName, fault.FaultCode, fault.FaultString, ) return AcsReadMsgResult(False, None) def _mark_as_configured(self) -> None: """ A successful attempt at setting parameter values means that we need to update what we think the eNB's configuration is to match what we just set the parameter values to. """ # Values of parameters name_to_val = get_param_values_to_set( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, ) for name, val in name_to_val.items(): magma_val = self.acs.data_model.transform_for_magma(name, val) self.acs.device_cfg.set_parameter(name, magma_val) # Values of object parameters obj_to_name_to_val = get_obj_param_values_to_set( self.acs.desired_cfg, self.acs.device_cfg, self.acs.data_model, ) for obj_name, name_to_val in obj_to_name_to_val.items(): for name, val in name_to_val.items(): logger.debug( 'Set obj: %s, name: %s, val: %s', str(obj_name), str(name), str(val), ) magma_val = self.acs.data_model.transform_for_magma(name, val) self.acs.device_cfg.set_parameter_for_object( name, magma_val, obj_name, ) logger.info('Successfully configured CPE parameters!') def state_description(self) -> str: return 'Setting parameter values' class EndSessionState(EnodebAcsState): """ To end a TR-069 session, send an empty HTTP response """ def __init__(self, acs: EnodebAcsStateMachine): super().__init__() self.acs = acs def read_msg(self, message: Any) -> AcsReadMsgResult: """ No message is expected after enodebd sends the eNodeB an empty HTTP response. If a device sends an empty HTTP request, we can just ignore it and send another empty response. """ if isinstance(message, models.DummyInput): return AcsReadMsgResult(True, None) return AcsReadMsgResult(False, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: request = models.DummyInput() return AcsMsgAndTransition(request, None) def state_description(self) -> str: return 'Completed provisioning eNB. Awaiting new Inform.' class EnbSendRebootState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done self.prev_msg_was_inform = False def read_msg(self, message: Any) -> AcsReadMsgResult: """ This state can be transitioned into through user command. All messages received by enodebd will be ignored in this state. """ if self.prev_msg_was_inform \ and not isinstance(message, models.DummyInput): return AcsReadMsgResult(False, None) elif isinstance(message, models.Inform): self.prev_msg_was_inform = True process_inform_message( message, self.acs.data_model, self.acs.device_cfg, ) return AcsReadMsgResult(True, None) self.prev_msg_was_inform = False return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: if self.prev_msg_was_inform: response = models.InformResponse() # Set maxEnvelopes to 1, as per TR-069 spec response.MaxEnvelopes = 1 return AcsMsgAndTransition(response, None) logger.info('Sending reboot request to eNB') request = models.Reboot() request.CommandKey = '' self.acs.are_invasive_changes_applied = True return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Rebooting eNB' class SendRebootState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done self.prev_msg_was_inform = False def read_msg(self, message: Any) -> AcsReadMsgResult: """ This state can be transitioned into through user command. All messages received by enodebd will be ignored in this state. """ if self.prev_msg_was_inform \ and not isinstance(message, models.DummyInput): return AcsReadMsgResult(False, None) elif isinstance(message, models.Inform): self.prev_msg_was_inform = True process_inform_message( message, self.acs.data_model, self.acs.device_cfg, ) return AcsReadMsgResult(True, None) self.prev_msg_was_inform = False return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: if self.prev_msg_was_inform: response = models.InformResponse() # Set maxEnvelopes to 1, as per TR-069 spec response.MaxEnvelopes = 1 return AcsMsgAndTransition(response, None) logger.info('Sending reboot request to eNB') request = models.Reboot() request.CommandKey = '' return AcsMsgAndTransition(request, self.done_transition) def state_description(self) -> str: return 'Rebooting eNB' class WaitRebootResponseState(EnodebAcsState): def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done def read_msg(self, message: Any) -> AcsReadMsgResult: if not isinstance(message, models.RebootResponse): return AcsReadMsgResult(False, None) return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Reply with empty message """ return AcsMsgAndTransition(models.DummyInput(), self.done_transition) def state_description(self) -> str: return 'Rebooting eNB' class WaitInformMRebootState(EnodebAcsState): """ After sending a reboot request, we expect an Inform request with a specific 'inform event code' """ # Time to wait for eNodeB reboot. The measured time # (on BaiCells indoor eNodeB) # is ~110secs, so add healthy padding on top of this. REBOOT_TIMEOUT = 300 # In seconds # We expect that the Inform we receive tells us the eNB has rebooted INFORM_EVENT_CODE = 'M Reboot' def __init__( self, acs: EnodebAcsStateMachine, when_done: str, when_timeout: str, ): super().__init__() self.acs = acs self.done_transition = when_done self.timeout_transition = when_timeout self.timeout_timer = None self.timer_handle = None def enter(self): self.timeout_timer = StateMachineTimer(self.REBOOT_TIMEOUT) def check_timer() -> None: if self.timeout_timer.is_done(): self.acs.transition(self.timeout_transition) raise Tr069Error( 'Did not receive Inform response after ' 'rebooting', ) self.timer_handle = \ self.acs.event_loop.call_later( self.REBOOT_TIMEOUT, check_timer, ) def exit(self): self.timer_handle.cancel() self.timeout_timer = None def read_msg(self, message: Any) -> AcsReadMsgResult: if not isinstance(message, models.Inform): return AcsReadMsgResult(False, None) if not does_inform_have_event(message, self.INFORM_EVENT_CODE): raise Tr069Error( 'Did not receive M Reboot event code in ' 'Inform', ) process_inform_message( message, self.acs.data_model, self.acs.device_cfg, ) return AcsReadMsgResult(True, self.done_transition) def state_description(self) -> str: return 'Waiting for M Reboot code from Inform' class WaitRebootDelayState(EnodebAcsState): """ After receiving the Inform notifying us that the eNodeB has successfully rebooted, wait a short duration to prevent unspecified race conditions that may occur w.r.t reboot """ # Short delay timer to prevent race conditions w.r.t. reboot SHORT_CONFIG_DELAY = 10 def __init__(self, acs: EnodebAcsStateMachine, when_done: str): super().__init__() self.acs = acs self.done_transition = when_done self.config_timer = None self.timer_handle = None def enter(self): self.config_timer = StateMachineTimer(self.SHORT_CONFIG_DELAY) def check_timer() -> None: if self.config_timer.is_done(): self.acs.transition(self.done_transition) self.timer_handle = \ self.acs.event_loop.call_later( self.SHORT_CONFIG_DELAY, check_timer, ) def exit(self): self.timer_handle.cancel() self.config_timer = None def read_msg(self, message: Any) -> AcsReadMsgResult: return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: return AcsMsgAndTransition(models.DummyInput(), None) def state_description(self) -> str: return 'Waiting after eNB reboot to prevent race conditions' class ErrorState(EnodebAcsState): """ The eNB handler will enter this state when an unhandled Fault is received. If the inform_transition_target constructor parameter is non-null, this state will attempt to autoremediate by transitioning to the specified target state when an Inform is received. """ def __init__( self, acs: EnodebAcsStateMachine, inform_transition_target: Optional[str] = None, ): super().__init__() self.acs = acs self.inform_transition_target = inform_transition_target def read_msg(self, message: Any) -> AcsReadMsgResult: return AcsReadMsgResult(True, None) def get_msg(self, message: Any) -> AcsMsgAndTransition: if not self.inform_transition_target: return AcsMsgAndTransition(models.DummyInput(), None) if isinstance(message, models.Inform): return AcsMsgAndTransition( models.DummyInput(), self.inform_transition_target, ) return AcsMsgAndTransition(models.DummyInput(), None) def state_description(self) -> str: return 'Error state - awaiting manual restart of enodebd service or ' \ 'an Inform to be received from the eNB' class NotifyDPState(EnodebAcsState, ABC): """ Notify DP ... For Baicells QRTB we can expect an inform message on End Session state, either a queued one or a periodic one """ def __init__( self, acs: EnodebAcsStateMachine, when_inform: str, ): super().__init__() self.acs = acs self.inform_transition = when_inform @abstractmethod def enter(self): """ Perform additional actions on state enter """ pass def read_msg(self, message: Any) -> AcsReadMsgResult: """ Send an empty response if a device sends an empty HTTP message If its an inform, try to process it. It could be a queued inform or a periodic one. Args: message (Any): TR069 message Returns: AcsReadMsgResult """ if isinstance(message, models.DummyInput): return AcsReadMsgResult(msg_handled=True, next_state=None) elif isinstance(message, models.Inform): return AcsReadMsgResult(msg_handled=True, next_state=self.inform_transition) return AcsReadMsgResult(msg_handled=False, next_state=None) def get_msg(self, message: Any) -> AcsMsgAndTransition: """ Send back a message to enb Args: message (Any): TR069 message Returns: AcsMsgAndTransition """ request = models.DummyInput() return AcsMsgAndTransition(msg=request, next_state=None) def state_description(self) -> str: """ Describe the state Returns: str """ return 'Notifying DP. Awaiting new Inform.'
the-stack_106_18438
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Setup.py module for the workflow's worker utilities. All the workflow related code is gathered in a package that will be built as a source distribution, staged in the staging area for the workflow being run and then installed in the workers when they start running. This behavior is triggered by specifying the --setup_file command line option when running the workflow for remote execution. """ from __future__ import print_function import subprocess from distutils.command.build import build as _build import os import setuptools # This class handles the pip install mechanism. class build(_build): # pylint: disable=invalid-name """A build command class that will be invoked during package install. The package built using the current setup.py will be staged and later installed in the worker using `pip install package'. This class will be instantiated during install for this specific scenario and will trigger running the custom commands specified. """ sub_commands = _build.sub_commands + [('CustomCommands', None)] # Some custom command to run during setup. The command is not essential for this # workflow. It is used here as an example. Each command will spawn a child # process. Typically, these commands will include steps to install non-Python # packages. For instance, to install a C++-based library libjpeg62 the following # two commands will have to be added: # # ['apt-get', 'update'], # ['apt-get', '--assume-yes', 'install', 'libjpeg62'], # # First, note that there is no need to use the sudo command because the setup # script runs with appropriate access. # Second, if apt-get tool is used then the first command needs to be 'apt-get # update' so the tool refreshes itself and initializes links to download # repositories. Without this initial step the other apt-get install commands # will fail with package not found errors. Note also --assume-yes option which # shortcuts the interactive confirmation. # # Note that in this example custom commands will run after installing required # packages. If you have a PyPI package that depends on one of the custom # commands, move installation of the dependent package to the list of custom # commands, e.g.: # # ['pip', 'install', 'my_package'], # CUSTOM_COMMANDS = [ # 'apt-get update'.split(), # 'apt-get --assume-yes install python-tk'.split() ] class CustomCommands(setuptools.Command): """A setuptools Command class able to run arbitrary commands.""" def initialize_options(self): pass def finalize_options(self): pass def RunCustomCommand(self, command_list): print('Running command: %s' % command_list) p = subprocess.Popen( command_list, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # Can use communicate(input='y\n'.encode()) if the command run requires # some confirmation. stdout_data, _ = p.communicate() print('Command output: %s' % stdout_data) if p.returncode != 0: raise RuntimeError( 'Command %s failed: exit code: %s' % (command_list, p.returncode)) def run(self): for command in CUSTOM_COMMANDS: self.RunCustomCommand(command) # Configure the required packages and scripts to install. # Note that the Python Dataflow containers come with numpy already installed # so this dependency will not trigger anything to be installed unless a version # restriction is specified. REQUIRED_PACKAGES = [ 'pyresample netcdf4 google-cloud-storage ' 'retrying cloudml-hypertune'.split(), ] setuptools.setup( name='ltgpred', version='0.0.1', description='Predict lightning activity', install_requires=REQUIRED_PACKAGES, packages=setuptools.find_packages(), cmdclass={ # Command class instantiated and run during pip install scenarios. 'build': build, 'CustomCommands': CustomCommands, })
the-stack_106_18440
import json import re from ProxyPool.Utls import getPage from pyquery import PyQuery as pq class ProxyMetaClass(type): def __new__(cls, name, bases, attrs): count = 0 attrs['__CrawlFunc__'] = [] for k, v in attrs.items(): if 'crawl' in k: attrs['__CrawlFunc__'].append(k) count += 1 attrs['__CrawlFuncCount__'] = count return type.__new__(cls, name, bases, attrs) class Crawler(object, metaclass=ProxyMetaClass): def getProxies(self, callback): proxies = [] for proxy in eval("self.{}()".format(callback)): print('success get proxy:', proxy) proxies.append(proxy) return proxies # def crawl_daili66(self, page_count=4): # """ # 获取代理66 # :param page_count: 页码 # :return: 代理 # """ # start_url = 'http://www.66ip.cn/{}.html' # urls = [start_url.format(page) for page in range(1, page_count + 1)] # for url in urls: # print('Crawling', url) # html = getPage(url) # if html: # doc = pq(html) # trs = doc('.containerbox table tr:gt(0)').items() # for tr in trs: # ip = tr.find('td:nth-child(1)').text() # port = tr.find('td:nth-child(2)').text() # yield ':'.join([ip, port]) # def crawl_ip181(self): # start_url = 'http://www.ip181.com/' # html = getPage(start_url) # ip_address = re.compile('<tr.*?>\s*<td>(.*?)</td>\s*<td>(.*?)</td>') # # \s* 匹配空格,起到换行作用 # re_ip_address = ip_address.findall(html) # for address,port in re_ip_address: # result = address + ':' + port # yield result.replace(' ', '') def crawl_ip3366(self): for page in range(1, 4): start_url = 'http://www.ip3366.net/free/?stype=1&page={}'.format(page) html = getPage(start_url) ip_address = re.compile('<tr>\s*<td>(.*?)</td>\s*<td>(.*?)</td>') # \s * 匹配空格,起到换行作用 re_ip_address = ip_address.findall(html) for address, port in re_ip_address: result = address+':'+ port yield result.replace(' ', '') def crawl_kxdaili(self): start_url = 'https://www.kuaidaili.com/free/' html = getPage(start_url) ip_address = re.compile('<tr.*?>\s*<td>(.*?)</td>\s*<td>(.*?)</td>') # \s* 匹配空格,起到换行作用 re_ip_address = ip_address.findall(html) for address, port in re_ip_address: result = address + ':' + port yield result.replace(' ', '') # def crawl_premproxy(self): # for i in ['China-01','China-02','China-03','China-04','Taiwan-01']: # start_url = 'https://premproxy.com/proxy-by-country/{}.htm'.format(i) # html = getPage(start_url) # if html: # ip_address = re.compile('<td data-label="IP:port ">(.*?)</td>') # re_ip_address = ip_address.findall(html) # for address_port in re_ip_address: # yield address_port.replace(' ','') # def crawl_xroxy(self): # for i in ['CN','TW']: # start_url = 'http://www.xroxy.com/proxylist.php?country={}'.format(i) # html = getPage(start_url) # if html: # ip_address1 = re.compile("title='View this Proxy details'>\s*(.*).*") # re_ip_address1 = ip_address1.findall(html) # ip_address2 = re.compile("title='Select proxies with port number .*'>(.*)</a>") # re_ip_address2 = ip_address2.findall(html) # for address,port in zip(re_ip_address1,re_ip_address2): # address_port = address+':'+port # yield address_port.replace(' ','') # def crawl_kuaidaili(self): # for i in range(1, 4): # start_url = 'http://www.kuaidaili.com/free/inha/{}/'.format(i) # html = getPage(start_url) # if html: # ip_address = re.compile('<td data-title="IP">(.*?)</td>') # re_ip_address = ip_address.findall(html) # port = re.compile('<td data-title="PORT">(.*?)</td>') # re_port = port.findall(html) # for address,port in zip(re_ip_address, re_port): # address_port = address+':'+port # yield address_port.replace(' ','') # def crawl_xicidaili(self): # for i in range(1, 3): # start_url = 'http://www.xicidaili.com/nn/{}'.format(i) # headers = { # 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', # 'Cookie':'_free_proxy_session=BAh7B0kiD3Nlc3Npb25faWQGOgZFVEkiJWRjYzc5MmM1MTBiMDMzYTUzNTZjNzA4NjBhNWRjZjliBjsAVEkiEF9jc3JmX3Rva2VuBjsARkkiMUp6S2tXT3g5a0FCT01ndzlmWWZqRVJNek1WanRuUDBCbTJUN21GMTBKd3M9BjsARg%3D%3D--2a69429cb2115c6a0cc9a86e0ebe2800c0d471b3', # 'Host':'www.xicidaili.com', # 'Referer':'http://www.xicidaili.com/nn/3', # 'Upgrade-Insecure-Requests':'1', # } # html = getPage(start_url, options=headers) # if html: # find_trs = re.compile('<tr class.*?>(.*?)</tr>', re.S) # trs = find_trs.findall(html) # for tr in trs: # find_ip = re.compile('<td>(\d+\.\d+\.\d+\.\d+)</td>') # re_ip_address = find_ip.findall(tr) # find_port = re.compile('<td>(\d+)</td>') # re_port = find_port.findall(tr) # for address,port in zip(re_ip_address, re_port): # address_port = address+':'+port # yield address_port.replace(' ','') # def crawl_ip3366(self): # for i in range(1, 4): # start_url = 'http://www.ip3366.net/?stype=1&page={}'.format(i) # html = getPage(start_url) # if html: # find_tr = re.compile('<tr>(.*?)</tr>', re.S) # trs = find_tr.findall(html) # for s in range(1, len(trs)): # find_ip = re.compile('<td>(\d+\.\d+\.\d+\.\d+)</td>') # re_ip_address = find_ip.findall(trs[s]) # find_port = re.compile('<td>(\d+)</td>') # re_port = find_port.findall(trs[s]) # for address,port in zip(re_ip_address, re_port): # address_port = address+':'+port # yield address_port.replace(' ','') # def crawl_iphai(self): # start_url = 'http://www.iphai.com/' # html = getPage(start_url) # if html: # find_tr = re.compile('<tr>(.*?)</tr>', re.S) # trs = find_tr.findall(html) # for s in range(1, len(trs)): # find_ip = re.compile('<td>\s+(\d+\.\d+\.\d+\.\d+)\s+</td>', re.S) # re_ip_address = find_ip.findall(trs[s]) # find_port = re.compile('<td>\s+(\d+)\s+</td>', re.S) # re_port = find_port.findall(trs[s]) # for address,port in zip(re_ip_address, re_port): # address_port = address+':'+port # yield address_port.replace(' ','') # def crawl_89ip(self): # start_url = 'http://www.89ip.cn/apijk/?&tqsl=1000&sxa=&sxb=&tta=&ports=&ktip=&cf=1' # html = getPage(start_url) # if html: # find_ips = re.compile('(\d+\.\d+\.\d+\.\d+:\d+)', re.S) # ip_ports = find_ips.findall(html) # for address_port in ip_ports: # yield address_port # def crawl_data5u(self): # start_url = 'http://www.data5u.com/free/gngn/index.shtml' # headers = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', # 'Accept-Encoding': 'gzip, deflate', # 'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7', # 'Cache-Control': 'max-age=0', # 'Connection': 'keep-alive', # 'Cookie': 'JSESSIONID=47AA0C887112A2D83EE040405F837A86', # 'Host': 'www.data5u.com', # 'Referer': 'http://www.data5u.com/free/index.shtml', # 'Upgrade-Insecure-Requests': '1', # 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.108 Safari/537.36', # } # html = getPage(start_url, options=headers) # if html: # ip_address = re.compile('<span><li>(\d+\.\d+\.\d+\.\d+)</li>.*?<li class=\"port.*?>(\d+)</li>', re.S) # re_ip_address = ip_address.findall(html) # for address, port in re_ip_address: # result = address + ':' + port # yield result.replace(' ', '')
the-stack_106_18443
import pandas as pd from .helpers import pandas_to_json from .consts import profile_col_names pd.set_option('display.max_columns', 40) import sys # data processing def process_data(inf_dict, friends_dict, profile_dict, lk_dict, final_data_dict): # convert dicts to pandas dfs inf_df = pd.DataFrame(inf_dict, index=[0]) friends_df = pd.DataFrame(friends_dict) profile_df = pd.DataFrame(profile_dict, index=[0]) lk_df = pd.DataFrame(lk_dict) # rename columns in profile df profile_df.columns = profile_col_names # calculate additional infos and clean up dfs # inf_df: inf_df['info_rank'] = inf_df['info_rank'].str.split() inf_df['info_rank'] = inf_df['info_rank'].values.tolist()[0][1] # profile_df: profile_df = split_wins_and_losses(profile_df, ':') # lk_df: lk_df = lk_df[lk_df['result'] != 'irrelevant'] lk_df['match_type'] = lk_df.apply(lambda x: 'doubles' if x['lk_points'] == '-' else 'singles', axis=1) # return final data dict final_data_dict['Info Data'][0]['rows'] = inf_df.values.tolist() final_data_dict['Friends Data'][0]['rows'] = friends_df.values.tolist() final_data_dict['Profile Data'][0]['rows'] = profile_df.values.tolist() final_data_dict['LK Data'][0]['rows'] = lk_df.values.tolist() return final_data_dict def split_wins_and_losses(df, separator): """ splits a column by given separator and creates new columns args: df: a data frame separator: separator to split by returns: new df wit split columns """ for col in df: lst_entry = df[col].str.split(separator)[0] len_lst_entry = len(lst_entry) if len_lst_entry > 1: df[col + '_win'] = lst_entry[0] df[col + '_loss'] = lst_entry[1] del df[col] return df
the-stack_106_18447
# -------------------------------------------------------- # Pytorch multi-GPU Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import copy import itertools import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data.sampler import Sampler from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from roi_data_layer.randcrop_roibatchLoader import randcrop_roibatchLoader from utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from utils.net_utils import weights_normal_init, save_net, load_net, \ adjust_learning_rate, save_checkpoint, clip_gradient from fast_rcnn.vgg16 import vgg16 from fast_rcnn.resnet import resnet from fast_rcnn.alexnet import alexnet def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--net', dest='net', help='vgg16, res101, alexnet', default='vgg16', type=str) parser.add_argument('--imdb_name', dest='imdb_name', help='train imdb name', default='vocweak_2007_trainval/trainvalmini', type=str) parser.add_argument('--imdbval_name', dest='imdbval_name', help='validation imdb name', default='vocweak_2007_test', type=str) parser.add_argument('--start_epoch', dest='start_epoch', help='starting epoch', default=1, type=int) parser.add_argument('--epochs', dest='max_epochs', help='number of epochs to train', default=30, type=int) parser.add_argument('--save_epoch', dest='save_epoch', help='step of epochs to save', default=5, type=int) parser.add_argument('--model_id', dest='model_id', help='model id to save', default=13, type=int) parser.add_argument('--disp_interval', dest='disp_interval', help='number of iterations to display', default=100, type=int) parser.add_argument('--checkpoint_interval', dest='checkpoint_interval', help='number of iterations to display', default=10000, type=int) parser.add_argument('--save_dir', dest='save_dir', help='directory to save models', default="snapshots", type=str) parser.add_argument('--pretrained_weight', dest='pretrained_weight', help='pretrained weight', default="", type=str) parser.add_argument('--nw', dest='num_workers', help='number of worker to load data', default=0, type=int) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--bs', dest='batch_size', help='batch_size', default=1, type=int) parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') # config optimization parser.add_argument('--o', dest='optimizer', help='training optimizer', default="sgd", type=str) parser.add_argument('--lr', dest='lr', help='starting learning rate', default=0.001, type=float) parser.add_argument('--lr_decay_step', dest='lr_decay_step', help='step to do learning rate decay, unit is epoch', default=20, type=int) parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma', help='learning rate decay ratio', default=0.1, type=float) # set training session parser.add_argument('--s', dest='session', help='training session', default=1, type=int) # resume trained model parser.add_argument('--r', dest='resume', help='resume checkpoint or not', default=False, type=bool) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load model', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load model', default=0, type=int) # log and diaplay parser.add_argument('--use_tfb', dest='use_tfboard', help='whether use tensorboard', action='store_true') args = parser.parse_args() return args def iterate_once(iterable): return np.random.permutation(iterable) def iterate_eternally(indices): def infinite_shuffles(): while True: yield np.random.permutation(indices) return itertools.chain.from_iterable(infinite_shuffles()) class sampler(Sampler): def __init__(self, strong_inds, weak_inds): self.strong_inds = strong_inds self.weak_inds = weak_inds def __iter__(self): strong_iter = iterate_once(self.strong_inds) weak_iter = iterate_eternally(self.weak_inds) return ( [s_ind, w_ind] for (s_ind, w_ind) in zip(strong_iter, weak_iter) ) return iter(self.rand_num_view) def __len__(self): return len(self.strong_inds) if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.dataset == "pascal_voc": # args.imdb_name = "vocweak_2007_trainval/trainvalmid" # args.imdbval_name = "vocweak_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20'] elif args.dataset == "pascal_voc_0712": args.imdb_name = "voc_2007_trainval+voc_2012_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20'] elif args.dataset == "coco": args.imdb_name = "coco_2014_train+coco_2014_valminusminival" args.imdbval_name = "coco_2014_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50'] elif args.dataset == "imagenet": args.imdb_name = "imagenet_train" args.imdbval_name = "imagenet_val" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '30'] elif args.dataset == "vg": # train sizes: train, smalltrain, minitrain # train scale: ['150-50-20', '150-50-50', '500-150-80', '750-250-150', '1750-700-450', '1600-400-20'] args.imdb_name = "vg_150-50-50_minitrain" args.imdbval_name = "vg_150-50-50_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50'] args.cfg_file = "cfgs/{}_ls.yml".format( args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # torch.backends.cudnn.benchmark = True if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") # train set # -- Note: Use validation set and disable the flipped to enable faster loading. cfg.TRAIN.USE_FLIPPED = True cfg.USE_GPU_NMS = args.cuda imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name) print('{:d} roidb entries'.format(len(roidb))) weak_inds = [] strong_inds = [] for i in range(len(roidb)): if roidb[i]['boxes'].shape[0] > 0: strong_inds.append(i) for i in range(len(roidb)): if roidb[i]['boxes'].shape[0] == 0: weak_inds.append(i) train_size = len(strong_inds) print('{:d} strong entries and {:d} weak entries'.format(len(strong_inds), len(weak_inds))) output_dir = args.save_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(output_dir): os.makedirs(output_dir) batch_sampler = sampler(strong_inds, weak_inds) dataset = randcrop_roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, imdb.num_classes, training=True) dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=args.num_workers) # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) wnum_boxes = torch.LongTensor(1) wgt_boxes = torch.FloatTensor(1) rois = torch.FloatTensor(1) image_classes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() wnum_boxes = wnum_boxes.cuda() wgt_boxes = wgt_boxes.cuda() rois = rois.cuda() image_classes = image_classes.cuda() # make variable im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) wnum_boxes = Variable(wnum_boxes) wgt_boxes = Variable(wgt_boxes) rois = Variable(rois) image_classes = Variable(image_classes) if args.cuda: cfg.CUDA = True # initilize the network here. if args.net == 'vgg16': fastRCNN = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, pretrained_weight=args.pretrained_weight) elif args.net == 'res101': fastRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic, pretrained_weight=args.pretrained_weight) elif args.net == 'alexnet': fastRCNN = alexnet(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, pretrained_weight=args.pretrained_weight) else: print("network is not defined") pdb.set_trace() fastRCNN.create_architecture() lr = cfg.TRAIN.LEARNING_RATE lr = args.lr params = [] for key, value in dict(fastRCNN.named_parameters()).items(): if value.requires_grad: if 'bias' in key: params += [{'params': [value], 'lr':lr * (cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}] else: params += [{'params': [value], 'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}] if args.optimizer == "adam": lr = lr * 0.1 optimizer = torch.optim.Adam(params) elif args.optimizer == "sgd": optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM) if args.cuda: fastRCNN.cuda() if args.resume: load_name = os.path.join(output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) print("loading checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) args.session = checkpoint['session'] args.start_epoch = checkpoint['epoch'] fastRCNN.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) lr = optimizer.param_groups[0]['lr'] if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print("loaded checkpoint %s" % (load_name)) if args.mGPUs: fastRCNN = nn.DataParallel(fastRCNN) iters_per_epoch = int(train_size / args.batch_size) if args.use_tfboard: from tensorboardX import SummaryWriter logger = SummaryWriter("logs") for epoch in range(args.start_epoch, args.max_epochs + 1): # setting to train mode fastRCNN.train() loss_temp = 0 start = time.time() if epoch % (args.lr_decay_step + 1) == 0: adjust_learning_rate(optimizer, args.lr_decay_gamma) lr *= args.lr_decay_gamma data_iter = iter(dataloader) for step in range(iters_per_epoch): data = next(data_iter) im_data.data.resize_(data[0].size()).copy_(data[0]) im_info.data.resize_(data[1].size()).copy_(data[1]) gt_boxes.data.resize_(data[2].size()).copy_(data[2]) num_boxes.data.resize_(data[3].size()).copy_(data[3]) wgt_boxes.data.resize_(data[4].size()).copy_(data[4]) wnum_boxes.data.resize_(data[5].size()).copy_(data[5]) rois.data.resize_(data[6].size()).copy_(data[6]) image_classes.data.resize_(data[7].size()).copy_(data[7]) fastRCNN.zero_grad() rcnn_out_1, rcnn_out_2, rcnn_out_3, rcnn_out_4, rcnn_out_5 = fastRCNN( im_data, im_info, gt_boxes, num_boxes, wgt_boxes, wnum_boxes, rois, image_classes) out_rois_1, cls_prob_1, bbox_pred_1, RCNN_loss_cls_1, RCNN_loss_bbox_1, rois_label_1, image_loss_1 = rcnn_out_1 # out_rois_2, cls_prob_2, bbox_pred_2, RCNN_loss_cls_2, RCNN_loss_bbox_2, rois_label_2, image_loss_2 = rcnn_out_2 out_rois_3, cls_prob_3, bbox_pred_3, RCNN_loss_cls_3, RCNN_loss_bbox_3, rois_label_3, image_loss_3 = rcnn_out_3 out_rois_4, cls_prob_4, bbox_pred_4, RCNN_loss_cls_4, RCNN_loss_bbox_4, rois_label_4, image_loss_4 = rcnn_out_4 out_rois_5, cls_prob_5, bbox_pred_5, RCNN_loss_cls_5, RCNN_loss_bbox_5, rois_label_5, image_loss_5 = rcnn_out_5 loss = RCNN_loss_cls_1.mean() + RCNN_loss_bbox_1.mean() # loss += RCNN_loss_cls_2.mean() + RCNN_loss_bbox_2.mean() loss += RCNN_loss_cls_3.mean() + RCNN_loss_bbox_3.mean() loss += RCNN_loss_cls_4.mean() + RCNN_loss_bbox_4.mean() loss += RCNN_loss_cls_5.mean() + RCNN_loss_bbox_5.mean() loss += image_loss_1.mean() + image_loss_5.mean() RCNN_loss_cls = RCNN_loss_cls_1 RCNN_loss_bbox = RCNN_loss_bbox_1 rois_label = rois_label_1 loss_temp += loss.item() # backward optimizer.zero_grad() loss.backward() if args.net == "vgg16" or args.net == 'alexnet': clip_gradient(fastRCNN, 10.) # if args.net == 'res101': # clip_gradient(fastRCNN, 10.) optimizer.step() if step % args.disp_interval == 0: end = time.time() if step > 0: loss_temp /= (args.disp_interval + 1) if args.mGPUs: loss_rcnn_cls = RCNN_loss_cls.mean().item() loss_rcnn_box = RCNN_loss_bbox.mean().item() loss_image = image_loss_3.mean().item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt else: loss_rcnn_cls = RCNN_loss_cls.item() loss_rcnn_box = RCNN_loss_bbox.item() loss_image = image_loss_3.item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" % (args.session, epoch, step, iters_per_epoch, loss_temp, lr)) print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start)) print("\t\t\trcnn_cls: %.4f, rcnn_box %.4f" % (loss_rcnn_cls, loss_rcnn_box)) print("\t\t\timage_cls: %.4f" % (loss_image)) if args.use_tfboard: info = { 'loss': loss_temp, 'loss_rcnn_cls': loss_rcnn_cls, 'loss_rcnn_box': loss_rcnn_box } logger.add_scalars( "logs_s_{}/losses".format(args.session), info, (epoch - 1) * iters_per_epoch + step) loss_temp = 0 start = time.time() if epoch % args.save_epoch == 0: save_name = os.path.join( output_dir, 'model{}_{}_{}_{}.pth'.format(args.model_id, args.session, epoch, step)) save_checkpoint({ 'session': args.session, 'epoch': epoch + 1, 'model': fastRCNN.module.state_dict() if args.mGPUs else fastRCNN.state_dict(), 'optimizer': optimizer.state_dict(), 'pooling_mode': cfg.POOLING_MODE, 'class_agnostic': args.class_agnostic, }, save_name) print('save model: {}'.format(save_name)) if args.use_tfboard: logger.close()
the-stack_106_18448
from __future__ import print_function import os import re import sys import json import time import argparse import threading import subprocess import traceback from time import sleep import datetime from distutils.version import LooseVersion import pytz from google.cloud import storage from google.api_core.exceptions import PreconditionFailed from queue import Queue from contextlib import contextmanager import urllib3 import requests import demisto_client.demisto_api from demisto_client.demisto_api.rest import ApiException from slackclient import SlackClient from Tests.mock_server import MITMProxy, AMIConnection from Tests.test_integration import Docker, test_integration, disable_all_integrations from Tests.test_dependencies import get_used_integrations, get_tests_allocation_for_threads from demisto_sdk.commands.common.constants import RUN_ALL_TESTS_FORMAT, FILTER_CONF, PB_Status from demisto_sdk.commands.common.tools import print_color, print_error, print_warning, \ LOG_COLORS, str2bool # Disable insecure warnings urllib3.disable_warnings() SERVER_URL = "https://{}" INTEGRATIONS_CONF = "./Tests/integrations_file.txt" FAILED_MATCH_INSTANCE_MSG = "{} Failed to run.\n There are {} instances of {}, please select one of them by using " \ "the instance_name argument in conf.json. The options are:\n{}" SERVICE_RESTART_TIMEOUT = 300 SERVICE_RESTART_POLLING_INTERVAL = 5 LOCKS_PATH = 'content-locks' BUCKET_NAME = os.environ.get('GCS_ARTIFACTS_BUCKET') CIRCLE_BUILD_NUM = os.environ.get('CIRCLE_BUILD_NUM') WORKFLOW_ID = os.environ.get('CIRCLE_WORKFLOW_ID') CIRCLE_STATUS_TOKEN = os.environ.get('CIRCLECI_STATUS_TOKEN') SLACK_MEM_CHANNEL_ID = 'CM55V7J8K' PROXY_LOG_FILE_NAME = 'proxy_metrics.csv' ENV_RESULTS_PATH = './env_results.json' def options_handler(): parser = argparse.ArgumentParser(description='Utility for batch action on incidents') parser.add_argument('-k', '--apiKey', help='The Demisto API key for the server', required=True) parser.add_argument('-s', '--server', help='The server URL to connect to') parser.add_argument('-c', '--conf', help='Path to conf file', required=True) parser.add_argument('-e', '--secret', help='Path to secret conf file') parser.add_argument('-n', '--nightly', type=str2bool, help='Run nightly tests') parser.add_argument('-t', '--slack', help='The token for slack', required=True) parser.add_argument('-a', '--circleci', help='The token for circleci', required=True) parser.add_argument('-b', '--buildNumber', help='The build number', required=True) parser.add_argument('-g', '--buildName', help='The build name', required=True) parser.add_argument('-i', '--isAMI', type=str2bool, help='is AMI build or not', default=False) parser.add_argument('-m', '--memCheck', type=str2bool, help='Should trigger memory checks or not. The slack channel to check the data is: ' 'dmst_content_nightly_memory_data', default=False) parser.add_argument('-d', '--serverVersion', help='Which server version to run the ' 'tests on(Valid only when using AMI)', default="NonAMI") parser.add_argument('-l', '--testsList', help='List of specific, comma separated' 'tests to run') options = parser.parse_args() tests_settings = TestsSettings(options) return tests_settings class TestsSettings: def __init__(self, options): self.api_key = options.apiKey self.server = options.server self.conf_path = options.conf self.secret_conf_path = options.secret self.nightly = options.nightly self.slack = options.slack self.circleci = options.circleci self.buildNumber = options.buildNumber self.buildName = options.buildName self.isAMI = options.isAMI self.memCheck = options.memCheck self.serverVersion = options.serverVersion self.serverNumericVersion = None self.specific_tests_to_run = self.parse_tests_list_arg(options.testsList) self.is_local_run = (self.server is not None) @staticmethod def parse_tests_list_arg(tests_list): tests_to_run = tests_list.split(",") if tests_list else [] return tests_to_run class PrintJob: def __init__(self, message_to_print, print_function_to_execute, message_color=None): self.print_function_to_execute = print_function_to_execute self.message_to_print = message_to_print self.message_color = message_color def execute_print(self): if self.message_color: self.print_function_to_execute(self.message_to_print, self.message_color) else: self.print_function_to_execute(self.message_to_print) class ParallelPrintsManager: def __init__(self, number_of_threads): self.threads_print_jobs = [[] for i in range(number_of_threads)] self.print_lock = threading.Lock() self.threads_last_update_times = [time.time() for i in range(number_of_threads)] def should_update_thread_status(self, thread_index): current_time = time.time() thread_last_update = self.threads_last_update_times[thread_index] return current_time - thread_last_update > 300 def add_print_job(self, message_to_print, print_function_to_execute, thread_index, message_color=None, include_timestamp=False): if include_timestamp: message_to_print = f'[{datetime.datetime.now(datetime.timezone.utc)}] {message_to_print}' print_job = PrintJob(message_to_print, print_function_to_execute, message_color=message_color) self.threads_print_jobs[thread_index].append(print_job) if self.should_update_thread_status(thread_index): print("Thread {} is still running.".format(thread_index)) self.threads_last_update_times[thread_index] = time.time() def execute_thread_prints(self, thread_index): self.print_lock.acquire() prints_to_execute = self.threads_print_jobs[thread_index] for print_job in prints_to_execute: print_job.execute_print() self.print_lock.release() self.threads_print_jobs[thread_index] = [] class TestsDataKeeper: def __init__(self): self.succeeded_playbooks = [] self.failed_playbooks = [] self.skipped_tests = [] self.skipped_integrations = [] self.rerecorded_tests = [] self.empty_files = [] self.unmockable_integrations = {} def add_tests_data(self, succeed_playbooks, failed_playbooks, skipped_tests, skipped_integration, unmockable_integrations): # Using multiple appends and not extend since append is guaranteed to be thread safe for playbook in succeed_playbooks: self.succeeded_playbooks.append(playbook) for playbook in failed_playbooks: self.failed_playbooks.append(playbook) for playbook in skipped_tests: self.skipped_tests.append(playbook) for playbook in skipped_integration: self.skipped_integrations.append(playbook) for playbook_id, reason in unmockable_integrations.items(): self.unmockable_integrations[playbook_id] = reason def add_proxy_related_test_data(self, proxy): # Using multiple appends and not extend since append is guaranteed to be thread safe for playbook_id in proxy.rerecorded_tests: self.rerecorded_tests.append(playbook_id) for playbook_id in proxy.empty_files: self.empty_files.append(playbook_id) def print_test_summary(tests_data_keeper, is_ami=True): succeed_playbooks = tests_data_keeper.succeeded_playbooks failed_playbooks = tests_data_keeper.failed_playbooks skipped_tests = tests_data_keeper.skipped_tests unmocklable_integrations = tests_data_keeper.unmockable_integrations skipped_integration = tests_data_keeper.skipped_integrations rerecorded_tests = tests_data_keeper.rerecorded_tests empty_files = tests_data_keeper.empty_files succeed_count = len(succeed_playbooks) failed_count = len(failed_playbooks) skipped_count = len(skipped_tests) rerecorded_count = len(rerecorded_tests) if is_ami else 0 empty_mocks_count = len(empty_files) if is_ami else 0 unmocklable_integrations_count = len(unmocklable_integrations) print('\nTEST RESULTS:') tested_playbooks_message = '\t Number of playbooks tested - ' + str(succeed_count + failed_count) print(tested_playbooks_message) succeeded_playbooks_message = '\t Number of succeeded tests - ' + str(succeed_count) print_color(succeeded_playbooks_message, LOG_COLORS.GREEN) if failed_count > 0: failed_tests_message = '\t Number of failed tests - ' + str(failed_count) + ':' print_error(failed_tests_message) for playbook_id in failed_playbooks: print_error('\t - ' + playbook_id) if rerecorded_count > 0: recording_warning = '\t Tests with failed playback and successful re-recording - ' + str(rerecorded_count) + ':' print_warning(recording_warning) for playbook_id in rerecorded_tests: print_warning('\t - ' + playbook_id) if empty_mocks_count > 0: empty_mock_successes_msg = '\t Successful tests with empty mock files - ' + str(empty_mocks_count) + ':' print(empty_mock_successes_msg) proxy_explanation = '\t (either there were no http requests or no traffic is passed through the proxy.\n' \ '\t Investigate the playbook and the integrations.\n' \ '\t If the integration has no http traffic, add to unmockable_integrations in conf.json)' print(proxy_explanation) for playbook_id in empty_files: print('\t - ' + playbook_id) if len(skipped_integration) > 0: skipped_integrations_warning = '\t Number of skipped integration - ' + str(len(skipped_integration)) + ':' print_warning(skipped_integrations_warning) for playbook_id in skipped_integration: print_warning('\t - ' + playbook_id) if skipped_count > 0: skipped_tests_warning = '\t Number of skipped tests - ' + str(skipped_count) + ':' print_warning(skipped_tests_warning) for playbook_id in skipped_tests: print_warning('\t - ' + playbook_id) if unmocklable_integrations_count > 0: unmockable_warning = '\t Number of unmockable integrations - ' + str(unmocklable_integrations_count) + ':' print_warning(unmockable_warning) for playbook_id, reason in unmocklable_integrations.items(): print_warning('\t - ' + playbook_id + ' - ' + reason) def update_test_msg(integrations, test_message): if integrations: integrations_names = [integration['name'] for integration in integrations] test_message = test_message + ' with integration(s): ' + ','.join( integrations_names) return test_message def turn_off_telemetry(xsoar_client): """ Turn off telemetry on the AMI instance :param xsoar_client: Preconfigured client for the XSOAR instance :return: None """ body, status_code, _ = demisto_client.generic_request_func(self=xsoar_client, method='POST', path='/telemetry?status=notelemetry') if status_code != 200: print_error('Request to turn off telemetry failed with status code "{}"\n{}'.format(status_code, body)) sys.exit(1) def reset_containers(server, demisto_user, demisto_pass, prints_manager, thread_index): prints_manager.add_print_job('Resetting containers', print, thread_index) client = demisto_client.configure(base_url=server, username=demisto_user, password=demisto_pass, verify_ssl=False) body, status_code, _ = demisto_client.generic_request_func(self=client, method='POST', path='/containers/reset') if status_code != 200: error_msg = 'Request to reset containers failed with status code "{}"\n{}'.format(status_code, body) prints_manager.add_print_job(error_msg, print_error, thread_index) prints_manager.execute_thread_prints(thread_index) sys.exit(1) sleep(10) def has_unmockable_integration(integrations, unmockable_integrations): return list(set(x['name'] for x in integrations).intersection(unmockable_integrations.keys())) def get_docker_limit(): process = subprocess.Popen(['cat', '/sys/fs/cgroup/memory/memory.limit_in_bytes'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = process.communicate() return stdout, stderr def get_docker_processes_data(): process = subprocess.Popen(['ps', 'aux'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = process.communicate() return stdout, stderr def get_docker_memory_data(): process = subprocess.Popen(['cat', '/sys/fs/cgroup/memory/memory.usage_in_bytes'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = process.communicate() return stdout, stderr def send_slack_message(slack, chanel, text, user_name, as_user): sc = SlackClient(slack) sc.api_call( "chat.postMessage", channel=chanel, username=user_name, as_user=as_user, text=text, mrkdwn='true' ) def run_test_logic(conf_json_test_details, tests_queue, tests_settings, c, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, thread_index=0, is_mock_run=False): with acquire_test_lock(integrations, test_options.get('timeout'), prints_manager, thread_index, tests_settings.conf_path) as lock: if lock: status, inc_id = test_integration(c, server_url, integrations, playbook_id, prints_manager, test_options, is_mock_run, thread_index=thread_index) # c.api_client.pool.close() if status == PB_Status.COMPLETED: prints_manager.add_print_job('PASS: {} succeed'.format(test_message), print_color, thread_index, message_color=LOG_COLORS.GREEN) succeed_playbooks.append(playbook_id) elif status == PB_Status.NOT_SUPPORTED_VERSION: not_supported_version_message = 'PASS: {} skipped - not supported version'.format(test_message) prints_manager.add_print_job(not_supported_version_message, print, thread_index) succeed_playbooks.append(playbook_id) else: error_message = 'Failed: {} failed'.format(test_message) prints_manager.add_print_job(error_message, print_error, thread_index) playbook_id_with_mock = playbook_id if not is_mock_run: playbook_id_with_mock += " (Mock Disabled)" failed_playbooks.append(playbook_id_with_mock) if not tests_settings.is_local_run: notify_failed_test(slack, circle_ci, playbook_id, build_number, inc_id, server_url, build_name) succeed = status in (PB_Status.COMPLETED, PB_Status.NOT_SUPPORTED_VERSION) else: tests_queue.put(conf_json_test_details) succeed = False return succeed # run the test using a real instance, record traffic. def run_and_record(conf_json_test_details, tests_queue, tests_settings, c, proxy, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, thread_index=0): proxy.set_tmp_folder() proxy.start(playbook_id, record=True, thread_index=thread_index, prints_manager=prints_manager) succeed = run_test_logic(conf_json_test_details, tests_queue, tests_settings, c, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, thread_index=thread_index, is_mock_run=True) proxy.stop(thread_index=thread_index, prints_manager=prints_manager) if succeed: proxy.successful_rerecord_count += 1 proxy.clean_mock_file(playbook_id, thread_index=thread_index, prints_manager=prints_manager) proxy.move_mock_file_to_repo(playbook_id, thread_index=thread_index, prints_manager=prints_manager) else: proxy.failed_rerecord_count += 1 proxy.failed_rerecord_tests.append(playbook_id) proxy.set_repo_folder() return succeed def mock_run(conf_json_test_details, tests_queue, tests_settings, c, proxy, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, start_message, prints_manager, thread_index=0): rerecord = False if proxy.has_mock_file(playbook_id): start_mock_message = '{} (Mock: Playback)'.format(start_message) prints_manager.add_print_job(start_mock_message, print, thread_index, include_timestamp=True) proxy.start(playbook_id, thread_index=thread_index, prints_manager=prints_manager) # run test status, _ = test_integration(c, server_url, integrations, playbook_id, prints_manager, test_options, is_mock_run=True, thread_index=thread_index) # use results proxy.stop(thread_index=thread_index, prints_manager=prints_manager) if status == PB_Status.COMPLETED: proxy.successful_tests_count += 1 succeed_message = 'PASS: {} succeed'.format(test_message) prints_manager.add_print_job(succeed_message, print_color, thread_index, LOG_COLORS.GREEN) succeed_playbooks.append(playbook_id) end_mock_message = f'------ Test {test_message} end ------\n' prints_manager.add_print_job(end_mock_message, print, thread_index, include_timestamp=True) return if status == PB_Status.NOT_SUPPORTED_VERSION: not_supported_version_message = 'PASS: {} skipped - not supported version'.format(test_message) prints_manager.add_print_job(not_supported_version_message, print, thread_index) succeed_playbooks.append(playbook_id) end_mock_message = f'------ Test {test_message} end ------\n' prints_manager.add_print_job(end_mock_message, print, thread_index, include_timestamp=True) return if status == PB_Status.FAILED_DOCKER_TEST: error_message = 'Failed: {} failed'.format(test_message) prints_manager.add_print_job(error_message, print_error, thread_index) failed_playbooks.append(playbook_id) end_mock_message = f'------ Test {test_message} end ------\n' prints_manager.add_print_job(end_mock_message, print, thread_index, include_timestamp=True) return proxy.failed_tests_count += 1 mock_failed_message = "Test failed with mock, recording new mock file. (Mock: Recording)" prints_manager.add_print_job(mock_failed_message, print, thread_index) rerecord = True else: mock_recording_message = start_message + ' (Mock: Recording)' prints_manager.add_print_job(mock_recording_message, print, thread_index, include_timestamp=True) # Mock recording - no mock file or playback failure. c = demisto_client.configure(base_url=c.api_client.configuration.host, api_key=c.api_client.configuration.api_key, verify_ssl=False) succeed = run_and_record(conf_json_test_details, tests_queue, tests_settings, c, proxy, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, thread_index=thread_index) if rerecord and succeed: proxy.rerecorded_tests.append(playbook_id) test_end_message = f'------ Test {test_message} end ------\n' prints_manager.add_print_job(test_end_message, print, thread_index, include_timestamp=True) def run_test(conf_json_test_details, tests_queue, tests_settings, demisto_user, demisto_pass, proxy, failed_playbooks, integrations, unmockable_integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, is_ami=True, thread_index=0): start_message = f'------ Test {test_message} start ------' client = demisto_client.configure(base_url=server_url, username=demisto_user, password=demisto_pass, verify_ssl=False) if not is_ami or (not integrations or has_unmockable_integration(integrations, unmockable_integrations)): prints_manager.add_print_job(start_message + ' (Mock: Disabled)', print, thread_index, include_timestamp=True) run_test_logic(conf_json_test_details, tests_queue, tests_settings, client, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, prints_manager, thread_index=thread_index) prints_manager.add_print_job('------ Test %s end ------\n' % (test_message,), print, thread_index, include_timestamp=True) return mock_run(conf_json_test_details, tests_queue, tests_settings, client, proxy, failed_playbooks, integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server_url, build_name, start_message, prints_manager, thread_index=thread_index) def http_request(url, params_dict=None): try: res = requests.request("GET", url, verify=True, params=params_dict, ) res.raise_for_status() return res.json() except Exception as e: raise e def get_user_name_from_circle(circleci_token, build_number): url = "https://circleci.com/api/v1.1/project/github/demisto/content/{0}?circle-token={1}".format(build_number, circleci_token) res = http_request(url) user_details = res.get('user', {}) return user_details.get('name', '') def notify_failed_test(slack, circle_ci, playbook_id, build_number, inc_id, server_url, build_name): circle_user_name = get_user_name_from_circle(circle_ci, build_number) sc = SlackClient(slack) user_id = retrieve_id(circle_user_name, sc) text = "{0} - {1} Failed\n{2}".format(build_name, playbook_id, server_url) if inc_id == -1 \ else "{0} - {1} Failed\n{2}/#/WorkPlan/{3}".format(build_name, playbook_id, server_url, inc_id) if user_id: sc.api_call( "chat.postMessage", channel=user_id, username="Content CircleCI", as_user="False", text=text ) def retrieve_id(circle_user_name, sc): user_id = '' res = sc.api_call('users.list') user_list = res.get('members', []) for user in user_list: profile = user.get('profile', {}) name = profile.get('real_name_normalized', '') if name == circle_user_name: user_id = user.get('id', '') return user_id def create_result_files(tests_data_keeper): failed_playbooks = tests_data_keeper.failed_playbooks skipped_integration = tests_data_keeper.skipped_integrations skipped_tests = tests_data_keeper.skipped_tests with open("./Tests/failed_tests.txt", "w") as failed_tests_file: failed_tests_file.write('\n'.join(failed_playbooks)) with open('./Tests/skipped_tests.txt', "w") as skipped_tests_file: skipped_tests_file.write('\n'.join(skipped_tests)) with open('./Tests/skipped_integrations.txt', "w") as skipped_integrations_file: skipped_integrations_file.write('\n'.join(skipped_integration)) def change_placeholders_to_values(placeholders_map, config_item): """Replaces placeholders in the object to their real values Args: placeholders_map: (dict) Dict that holds the real values to be replaced for each placeholder. config_item: (json object) Integration configuration object. Returns: dict. json object with the real configuration. """ item_as_string = json.dumps(config_item) for key, value in placeholders_map.items(): item_as_string = item_as_string.replace(key, value) return json.loads(item_as_string) def set_integration_params(demisto_api_key, integrations, secret_params, instance_names, playbook_id, prints_manager, placeholders_map, thread_index=0): for integration in integrations: integration_params = [change_placeholders_to_values(placeholders_map, item) for item in secret_params if item['name'] == integration['name']] if integration_params: matched_integration_params = integration_params[0] if len(integration_params) != 1: found_matching_instance = False for item in integration_params: if item.get('instance_name', 'Not Found') in instance_names: matched_integration_params = item found_matching_instance = True if not found_matching_instance: optional_instance_names = [optional_integration.get('instance_name', 'None') for optional_integration in integration_params] error_msg = FAILED_MATCH_INSTANCE_MSG.format(playbook_id, len(integration_params), integration['name'], '\n'.join(optional_instance_names)) prints_manager.add_print_job(error_msg, print_error, thread_index) return False integration['params'] = matched_integration_params.get('params', {}) integration['byoi'] = matched_integration_params.get('byoi', True) integration['instance_name'] = matched_integration_params.get('instance_name', integration['name']) integration['validate_test'] = matched_integration_params.get('validate_test', True) elif integration['name'] == 'Demisto REST API': integration['params'] = { 'url': 'https://localhost', 'apikey': demisto_api_key, 'insecure': True, } return True def collect_integrations(integrations_conf, skipped_integration, skipped_integrations_conf, nightly_integrations): integrations = [] is_nightly_integration = False test_skipped_integration = [] for integration in integrations_conf: if integration in skipped_integrations_conf.keys(): skipped_integration.add("{0} - reason: {1}".format(integration, skipped_integrations_conf[integration])) test_skipped_integration.append(integration) if integration in nightly_integrations: is_nightly_integration = True # string description integrations.append({ 'name': integration, 'params': {} }) return test_skipped_integration, integrations, is_nightly_integration def extract_filtered_tests(is_nightly): if is_nightly: # TODO: verify this response return [], False, True with open(FILTER_CONF, 'r') as filter_file: filtered_tests = filter_file.readlines() filtered_tests = [line.strip('\n') for line in filtered_tests] is_filter_configured = bool(filtered_tests) run_all = RUN_ALL_TESTS_FORMAT in filtered_tests return filtered_tests, is_filter_configured, run_all def load_conf_files(conf_path, secret_conf_path): with open(conf_path) as data_file: conf = json.load(data_file) secret_conf = None if secret_conf_path: with open(secret_conf_path) as data_file: secret_conf = json.load(data_file) return conf, secret_conf def run_test_scenario(tests_queue, tests_settings, t, proxy, default_test_timeout, skipped_tests_conf, nightly_integrations, skipped_integrations_conf, skipped_integration, is_nightly, run_all_tests, is_filter_configured, filtered_tests, skipped_tests, secret_params, failed_playbooks, playbook_skipped_integration, unmockable_integrations, succeed_playbooks, slack, circle_ci, build_number, server, build_name, server_numeric_version, demisto_user, demisto_pass, demisto_api_key, prints_manager, thread_index=0, is_ami=True): playbook_id = t['playbookID'] nightly_test = t.get('nightly', False) integrations_conf = t.get('integrations', []) instance_names_conf = t.get('instance_names', []) test_message = 'playbook: ' + playbook_id test_options = { 'timeout': t.get('timeout', default_test_timeout), 'memory_threshold': t.get('memory_threshold', Docker.DEFAULT_CONTAINER_MEMORY_USAGE), 'pid_threshold': t.get('pid_threshold', Docker.DEFAULT_CONTAINER_PIDS_USAGE) } if not isinstance(integrations_conf, list): integrations_conf = [integrations_conf, ] if not isinstance(instance_names_conf, list): instance_names_conf = [instance_names_conf, ] test_skipped_integration, integrations, is_nightly_integration = collect_integrations( integrations_conf, skipped_integration, skipped_integrations_conf, nightly_integrations) if playbook_id in filtered_tests: playbook_skipped_integration.update(test_skipped_integration) skip_nightly_test = (nightly_test or is_nightly_integration) and not is_nightly # Skip nightly test if skip_nightly_test: prints_manager.add_print_job(f'\n------ Test {test_message} start ------', print, thread_index, include_timestamp=True) prints_manager.add_print_job('Skip test', print, thread_index) prints_manager.add_print_job(f'------ Test {test_message} end ------\n', print, thread_index, include_timestamp=True) return if not run_all_tests: # Skip filtered test if is_filter_configured and playbook_id not in filtered_tests: return # Skip bad test if playbook_id in skipped_tests_conf: skipped_tests.add(f'{playbook_id} - reason: {skipped_tests_conf[playbook_id]}') return # Skip integration if test_skipped_integration: return # Skip version mismatch test test_from_version = t.get('fromversion', '0.0.0') test_to_version = t.get('toversion', '99.99.99') if not (LooseVersion(test_from_version) <= LooseVersion(server_numeric_version) <= LooseVersion(test_to_version)): prints_manager.add_print_job(f'\n------ Test {test_message} start ------', print, thread_index, include_timestamp=True) warning_message = 'Test {} ignored due to version mismatch (test versions: {}-{})'.format(test_message, test_from_version, test_to_version) prints_manager.add_print_job(warning_message, print_warning, thread_index) prints_manager.add_print_job(f'------ Test {test_message} end ------\n', print, thread_index, include_timestamp=True) return placeholders_map = {'%%SERVER_HOST%%': server} are_params_set = set_integration_params(demisto_api_key, integrations, secret_params, instance_names_conf, playbook_id, prints_manager, placeholders_map, thread_index=thread_index) if not are_params_set: failed_playbooks.append(playbook_id) return test_message = update_test_msg(integrations, test_message) options = options_handler() stdout, stderr = get_docker_memory_data() text = 'Memory Usage: {}'.format(stdout) if not stderr else stderr if options.nightly and options.memCheck and not tests_settings.is_local_run: send_slack_message(slack, SLACK_MEM_CHANNEL_ID, text, 'Content CircleCI', 'False') stdout, stderr = get_docker_processes_data() text = stdout if not stderr else stderr send_slack_message(slack, SLACK_MEM_CHANNEL_ID, text, 'Content CircleCI', 'False') run_test(t, tests_queue, tests_settings, demisto_user, demisto_pass, proxy, failed_playbooks, integrations, unmockable_integrations, playbook_id, succeed_playbooks, test_message, test_options, slack, circle_ci, build_number, server, build_name, prints_manager, is_ami, thread_index=thread_index) def load_env_results_json(): if not os.path.isfile(ENV_RESULTS_PATH): return {} with open(ENV_RESULTS_PATH, 'r') as json_file: return json.load(json_file) def get_server_numeric_version(ami_env, is_local_run=False): """ Gets the current server version Arguments: ami_env: (str) AMI version name. is_local_run: (bool) when running locally, assume latest version. Returns: (str) Server numeric version """ default_version = '99.99.98' if is_local_run: print_color(f'Local run, assuming server version is {default_version}', LOG_COLORS.GREEN) return default_version env_json = load_env_results_json() if not env_json: print_warning(f'Did not find {ENV_RESULTS_PATH} file, assuming server version is {default_version}.') return default_version instances_ami_names = {env.get('AmiName') for env in env_json if ami_env in env.get('Role', '')} if len(instances_ami_names) != 1: print_warning(f'Did not get one AMI Name, got {instances_ami_names}.' f' Assuming server version is {default_version}') return default_version instances_ami_name = list(instances_ami_names)[0] extracted_version = re.findall(r'Demisto-(?:Circle-CI|MarketPlace)-Content-[\w-]+-([\d.]+)-[\d]{5}', instances_ami_name) if extracted_version: server_numeric_version = extracted_version[0] else: server_numeric_version = default_version # make sure version is three-part version if server_numeric_version.count('.') == 1: server_numeric_version += ".0" print_color(f'Server version: {server_numeric_version}', LOG_COLORS.GREEN) return server_numeric_version def get_instances_ips_and_names(tests_settings): if tests_settings.server: return [tests_settings.server] env_json = load_env_results_json() instances_ips = [(env.get('Role'), env.get('InstanceDNS')) for env in env_json] return instances_ips def get_test_records_of_given_test_names(tests_settings, tests_names_to_search): conf, secret_conf = load_conf_files(tests_settings.conf_path, tests_settings.secret_conf_path) tests_records = conf['tests'] test_records_with_supplied_names = [] for test_record in tests_records: test_name = test_record.get("playbookID") if test_name and test_name in tests_names_to_search: test_records_with_supplied_names.append(test_record) return test_records_with_supplied_names def get_json_file(path): with open(path, 'r') as json_file: return json.loads(json_file.read()) def execute_testing(tests_settings, server_ip, mockable_tests_names, unmockable_tests_names, tests_data_keeper, prints_manager, thread_index=0, is_ami=True): server = SERVER_URL.format(server_ip) server_numeric_version = tests_settings.serverNumericVersion start_message = "Executing tests with the server {} - and the server ip {}".format(server, server_ip) prints_manager.add_print_job(start_message, print, thread_index) is_nightly = tests_settings.nightly is_memory_check = tests_settings.memCheck slack = tests_settings.slack circle_ci = tests_settings.circleci build_number = tests_settings.buildNumber build_name = tests_settings.buildName conf, secret_conf = load_conf_files(tests_settings.conf_path, tests_settings.secret_conf_path) demisto_api_key = tests_settings.api_key demisto_user = secret_conf['username'] demisto_pass = secret_conf['userPassword'] default_test_timeout = conf.get('testTimeout', 30) tests = conf['tests'] skipped_tests_conf = conf['skipped_tests'] nightly_integrations = conf['nightly_integrations'] skipped_integrations_conf = conf['skipped_integrations'] unmockable_integrations = conf['unmockable_integrations'] secret_params = secret_conf['integrations'] if secret_conf else [] filtered_tests, is_filter_configured, run_all_tests = extract_filtered_tests(tests_settings.nightly) if is_filter_configured and not run_all_tests: is_nightly = True if not tests or len(tests) == 0: prints_manager.add_print_job('no integrations are configured for test', print, thread_index) prints_manager.execute_thread_prints(thread_index) return xsoar_client = demisto_client.configure(base_url=server, username=demisto_user, password=demisto_pass, verify_ssl=False) # turn off telemetry turn_off_telemetry(xsoar_client) proxy = None if is_ami: ami = AMIConnection(server_ip) ami.clone_mock_data() proxy = MITMProxy(server_ip) failed_playbooks = [] succeed_playbooks = [] skipped_tests = set([]) skipped_integration = set([]) playbook_skipped_integration = set([]) disable_all_integrations(xsoar_client, prints_manager, thread_index=thread_index) prints_manager.execute_thread_prints(thread_index) mockable_tests = get_test_records_of_given_test_names(tests_settings, mockable_tests_names) unmockable_tests = get_test_records_of_given_test_names(tests_settings, unmockable_tests_names) if is_nightly and is_memory_check: mem_lim, err = get_docker_limit() send_slack_message(slack, SLACK_MEM_CHANNEL_ID, f'Build Number: {build_number}\n Server Address: {server}\nMemory Limit: {mem_lim}', 'Content CircleCI', 'False') try: # first run the mock tests to avoid mockless side effects in container if is_ami and mockable_tests: proxy.configure_proxy_in_demisto(proxy=proxy.ami.docker_ip + ':' + proxy.PROXY_PORT, username=demisto_user, password=demisto_pass, server=server) executed_in_current_round, mockable_tests_queue = initialize_queue_and_executed_tests_set(mockable_tests) while not mockable_tests_queue.empty(): t = mockable_tests_queue.get() executed_in_current_round = update_round_set_and_sleep_if_round_completed(executed_in_current_round, prints_manager, t, thread_index, mockable_tests_queue) run_test_scenario(mockable_tests_queue, tests_settings, t, proxy, default_test_timeout, skipped_tests_conf, nightly_integrations, skipped_integrations_conf, skipped_integration, is_nightly, run_all_tests, is_filter_configured, filtered_tests, skipped_tests, secret_params, failed_playbooks, playbook_skipped_integration, unmockable_integrations, succeed_playbooks, slack, circle_ci, build_number, server, build_name, server_numeric_version, demisto_user, demisto_pass, demisto_api_key, prints_manager, thread_index=thread_index) proxy.configure_proxy_in_demisto(username=demisto_user, password=demisto_pass, server=server) # reset containers after clearing the proxy server configuration reset_containers(server, demisto_user, demisto_pass, prints_manager, thread_index) prints_manager.add_print_job("\nRunning mock-disabled tests", print, thread_index) executed_in_current_round, unmockable_tests_queue = initialize_queue_and_executed_tests_set(unmockable_tests) while not unmockable_tests_queue.empty(): t = unmockable_tests_queue.get() executed_in_current_round = update_round_set_and_sleep_if_round_completed(executed_in_current_round, prints_manager, t, thread_index, unmockable_tests_queue) run_test_scenario(unmockable_tests_queue, tests_settings, t, proxy, default_test_timeout, skipped_tests_conf, nightly_integrations, skipped_integrations_conf, skipped_integration, is_nightly, run_all_tests, is_filter_configured, filtered_tests, skipped_tests, secret_params, failed_playbooks, playbook_skipped_integration, unmockable_integrations, succeed_playbooks, slack, circle_ci, build_number, server, build_name, server_numeric_version, demisto_user, demisto_pass, demisto_api_key, prints_manager, thread_index, is_ami) prints_manager.execute_thread_prints(thread_index) except Exception as exc: if exc.__class__ == ApiException: error_message = exc.body else: error_message = f'~~ Thread {thread_index + 1} failed ~~\n{str(exc)}\n{traceback.format_exc()}' prints_manager.add_print_job(error_message, print_error, thread_index) prints_manager.execute_thread_prints(thread_index) failed_playbooks.append(f'~~ Thread {thread_index + 1} failed ~~') raise finally: tests_data_keeper.add_tests_data(succeed_playbooks, failed_playbooks, skipped_tests, skipped_integration, unmockable_integrations) if is_ami: tests_data_keeper.add_proxy_related_test_data(proxy) if build_name == 'master': updating_mocks_msg = "Pushing new/updated mock files to mock git repo." prints_manager.add_print_job(updating_mocks_msg, print, thread_index) ami.upload_mock_files(build_name, build_number) if playbook_skipped_integration and build_name == 'master': comment = 'The following integrations are skipped and critical for the test:\n {}'. \ format('\n- '.join(playbook_skipped_integration)) add_pr_comment(comment) # Sending proxy metrics to GCP try: storage_client = storage.Client() now = datetime.datetime.now().replace(microsecond=0).isoformat() # each log line will be comprised of the following metrics: # - Date # - Count of successful tests # - Count of failed tests # - Count of successful rerecords # - Count of failed rerecords # - IDs of the playbooks that were rerecorded successfully # - Ids of the playbooks that have failed rerecording new_proxy_line = f'{now},' \ f'{proxy.successful_tests_count},' \ f'{proxy.failed_tests_count},' \ f'{proxy.successful_rerecord_count},' \ f'{proxy.failed_rerecord_count},' \ f'{";".join(proxy.rerecorded_tests)},' \ f'{";".join(proxy.failed_rerecord_tests)}\n' bucket = storage_client.bucket(BUCKET_NAME) # Google storage objects are immutable and there is no way to append to them. # The workaround is to create a new temp file and then compose the log file with the new created file # see here for more info https://cloud.google.com/storage/docs/json_api/v1/objects/compose new_file_blob = bucket.blob(f'{LOCKS_PATH}/{WORKFLOW_ID}.txt') new_file_blob.upload_from_string(new_proxy_line) current_file_blob = bucket.blob(f'{LOCKS_PATH}/{PROXY_LOG_FILE_NAME}') current_file_blob.compose([current_file_blob, new_file_blob]) new_file_blob.delete() except Exception: prints_manager.add_print_job("Failed to save proxy metrics", print, thread_index) def update_round_set_and_sleep_if_round_completed(executed_in_current_round: set, prints_manager: ParallelPrintsManager, t: dict, thread_index: int, unmockable_tests_queue: Queue) -> set: """ Checks if the string representation of the current test configuration is already in the executed_in_current_round set. If it is- it means we have already executed this test and the we have reached a round and there are tests that were not able to be locked by this execution.. In that case we want to start a new round monitoring by emptying the 'executed_in_current_round' set and sleep in order to let the tests be unlocked Args: executed_in_current_round: A set containing the string representation of all tests configuration as they appear in conf.json file that were already executed in the current round prints_manager: ParallelPrintsManager object t: test configuration as it appears in conf.json file thread_index: Currently executing thread unmockable_tests_queue: The queue of remaining tests Returns: A new executed_in_current_round set which contains only the current tests configuration if a round was completed else it just adds the new test to the set. """ if str(t) in executed_in_current_round: prints_manager.add_print_job( 'all tests in the queue were executed, sleeping for 30 seconds to let locked tests get unlocked.', print, thread_index) executed_in_current_round = set() time.sleep(30) executed_in_current_round.add(str(t)) return executed_in_current_round def initialize_queue_and_executed_tests_set(tests): tests_queue = Queue() already_executed_test_playbooks = set() for t in tests: tests_queue.put(t) return already_executed_test_playbooks, tests_queue def get_unmockable_tests(tests_settings): conf, _ = load_conf_files(tests_settings.conf_path, tests_settings.secret_conf_path) unmockable_integrations = conf['unmockable_integrations'] tests = conf['tests'] unmockable_tests = [] for test_record in tests: test_name = test_record.get("playbookID") integrations_used_in_test = get_used_integrations(test_record) unmockable_integrations_used = [integration_name for integration_name in integrations_used_in_test if integration_name in unmockable_integrations] if test_name and (not integrations_used_in_test or unmockable_integrations_used): unmockable_tests.append(test_name) return unmockable_tests def get_all_tests(tests_settings): conf, _ = load_conf_files(tests_settings.conf_path, tests_settings.secret_conf_path) tests_records = conf['tests'] all_tests = [] for test_record in tests_records: test_name = test_record.get("playbookID") if test_name: all_tests.append(test_name) return all_tests def manage_tests(tests_settings): """ This function manages the execution of Demisto's tests. Args: tests_settings (TestsSettings): An object containing all the relevant data regarding how the tests should be ran """ tests_settings.serverNumericVersion = get_server_numeric_version(tests_settings.serverVersion, tests_settings.is_local_run) instances_ips = get_instances_ips_and_names(tests_settings) is_nightly = tests_settings.nightly number_of_instances = len(instances_ips) prints_manager = ParallelPrintsManager(number_of_instances) tests_data_keeper = TestsDataKeeper() if tests_settings.server: # If the user supplied a server - all tests will be done on that server. server_ip = tests_settings.server print_color("Starting tests for {}".format(server_ip), LOG_COLORS.GREEN) print("Starts tests with server url - https://{}".format(server_ip)) all_tests = get_all_tests(tests_settings) mockable_tests = [] print(tests_settings.specific_tests_to_run) unmockable_tests = tests_settings.specific_tests_to_run if tests_settings.specific_tests_to_run else all_tests execute_testing(tests_settings, server_ip, mockable_tests, unmockable_tests, tests_data_keeper, prints_manager, thread_index=0, is_ami=False) elif tests_settings.isAMI: # Running tests in AMI configuration. # This is the way we run most tests, including running Circle for PRs and nightly. if is_nightly: # If the build is a nightly build, run tests in parallel. test_allocation = get_tests_allocation_for_threads(number_of_instances, tests_settings.conf_path) current_thread_index = 0 all_unmockable_tests_list = get_unmockable_tests(tests_settings) threads_array = [] for ami_instance_name, ami_instance_ip in instances_ips: if ami_instance_name == tests_settings.serverVersion: # Only run tests for given AMI Role current_instance = ami_instance_ip tests_allocation_for_instance = test_allocation[current_thread_index] unmockable_tests = [test for test in all_unmockable_tests_list if test in tests_allocation_for_instance] mockable_tests = [test for test in tests_allocation_for_instance if test not in unmockable_tests] print_color("Starting tests for {}".format(ami_instance_name), LOG_COLORS.GREEN) print("Starts tests with server url - https://{}".format(ami_instance_ip)) if number_of_instances == 1: execute_testing(tests_settings, current_instance, mockable_tests, unmockable_tests, tests_data_keeper, prints_manager, thread_index=0, is_ami=True) else: thread_kwargs = { "tests_settings": tests_settings, "server_ip": current_instance, "mockable_tests_names": mockable_tests, "unmockable_tests_names": unmockable_tests, "thread_index": current_thread_index, "prints_manager": prints_manager, "tests_data_keeper": tests_data_keeper, } t = threading.Thread(target=execute_testing, kwargs=thread_kwargs) threads_array.append(t) t.start() current_thread_index += 1 for t in threads_array: t.join() else: for ami_instance_name, ami_instance_ip in instances_ips: if ami_instance_name == tests_settings.serverVersion: print_color("Starting tests for {}".format(ami_instance_name), LOG_COLORS.GREEN) print("Starts tests with server url - https://{}".format(ami_instance_ip)) all_tests = get_all_tests(tests_settings) unmockable_tests = get_unmockable_tests(tests_settings) mockable_tests = [test for test in all_tests if test not in unmockable_tests] execute_testing(tests_settings, ami_instance_ip, mockable_tests, unmockable_tests, tests_data_keeper, prints_manager, thread_index=0, is_ami=True) sleep(8) else: # TODO: understand better when this occurs and what will be the settings # This case is rare, and usually occurs on two cases: # 1. When someone from Server wants to trigger a content build on their branch. # 2. When someone from content wants to run tests on a specific build. server_numeric_version = '99.99.98' # assume latest print("Using server version: {} (assuming latest for non-ami)".format(server_numeric_version)) instance_ip = instances_ips[0][1] all_tests = get_all_tests(tests_settings) execute_testing(tests_settings, instance_ip, [], all_tests, tests_data_keeper, prints_manager, thread_index=0, is_ami=False) print_test_summary(tests_data_keeper, tests_settings.isAMI) create_result_files(tests_data_keeper) if tests_data_keeper.failed_playbooks: tests_failed_msg = "Some tests have failed. Not destroying instances." print(tests_failed_msg) sys.exit(1) def add_pr_comment(comment): token = os.environ['CONTENT_GITHUB_TOKEN'] branch_name = os.environ['CIRCLE_BRANCH'] sha1 = os.environ['CIRCLE_SHA1'] query = '?q={}+repo:demisto/content+org:demisto+is:pr+is:open+head:{}+is:open'.format(sha1, branch_name) url = 'https://api.github.com/search/issues' headers = {'Authorization': 'Bearer ' + token} try: res = requests.get(url + query, headers=headers, verify=False) res = handle_github_response(res) if res and res.get('total_count', 0) == 1: issue_url = res['items'][0].get('comments_url') if res.get('items', []) else None if issue_url: res = requests.post(issue_url, json={'body': comment}, headers=headers, verify=False) handle_github_response(res) else: print_warning('Add pull request comment failed: There is more then one open pull request for branch {}.' .format(branch_name)) except Exception as e: print_warning('Add pull request comment failed: {}'.format(e)) def handle_github_response(response): res_dict = response.json() if not res_dict.ok: print_warning('Add pull request comment failed: {}'. format(res_dict.get('message'))) return res_dict @contextmanager def acquire_test_lock(integrations_details: list, test_timeout: int, prints_manager: ParallelPrintsManager, thread_index: int, conf_json_path: str) -> None: """ This is a context manager that handles all the locking and unlocking of integrations. Execution is as following: * Attempts to lock the test's integrations and yields the result of this attempt * If lock attempt has failed - yields False, if it succeeds - yields True * Once the test is done- will unlock all integrations Args: integrations_details: test integrations details test_timeout: test timeout in seconds prints_manager: ParallelPrintsManager object thread_index: The index of the thread that executes the unlocking conf_json_path: Path to conf.json file Yields: A boolean indicating the lock attempt result """ locked = safe_lock_integrations(test_timeout, prints_manager, integrations_details, thread_index, conf_json_path) try: yield locked finally: if not locked: return safe_unlock_integrations(prints_manager, integrations_details, thread_index) prints_manager.execute_thread_prints(thread_index) def safe_unlock_integrations(prints_manager: ParallelPrintsManager, integrations_details: list, thread_index: int): """ This integration safely unlocks the test's integrations. If an unexpected error occurs - this method will log it's details and other tests execution will continue Args: prints_manager: ParallelPrintsManager object integrations_details: Details of the currently executed test thread_index: The index of the thread that executes the unlocking """ try: # executing the test could take a while, re-instancing the storage client storage_client = storage.Client() unlock_integrations(integrations_details, prints_manager, storage_client, thread_index) except Exception as e: prints_manager.add_print_job(f'attempt to unlock integration failed for unknown reason.\nError: {e}', print_warning, thread_index, include_timestamp=True) def safe_lock_integrations(test_timeout: int, prints_manager: ParallelPrintsManager, integrations_details: list, thread_index: int, conf_json_path: str) -> bool: """ This integration safely locks the test's integrations and return it's result If an unexpected error occurs - this method will log it's details and return False Args: test_timeout: Test timeout in seconds prints_manager: ParallelPrintsManager object integrations_details: test integrations details thread_index: The index of the thread that executes the unlocking conf_json_path: Path to conf.json file Returns: A boolean indicating the lock attempt result """ conf, _ = load_conf_files(conf_json_path, None) parallel_integrations_names = conf['parallel_integrations'] filtered_integrations_details = [integration for integration in integrations_details if integration['name'] not in parallel_integrations_names] integration_names = get_integrations_list(filtered_integrations_details) if integration_names: print_msg = f'Attempting to lock integrations {integration_names}, with timeout {test_timeout}' else: print_msg = 'No integrations to lock' prints_manager.add_print_job(print_msg, print, thread_index, include_timestamp=True) try: storage_client = storage.Client() locked = lock_integrations(filtered_integrations_details, test_timeout, storage_client, prints_manager, thread_index) except Exception as e: prints_manager.add_print_job(f'attempt to lock integration failed for unknown reason.\nError: {e}', print_warning, thread_index, include_timestamp=True) locked = False return locked def workflow_still_running(workflow_id: str) -> bool: """ This method takes a workflow id and checks if the workflow is still running If given workflow ID is the same as the current workflow, will simply return True else it will query circleci api for the workflow and return the status Args: workflow_id: The ID of the workflow Returns: True if the workflow is running, else False """ # If this is the current workflow_id if workflow_id == WORKFLOW_ID: return True else: try: workflow_details_response = requests.get(f'https://circleci.com/api/v2/workflow/{workflow_id}', headers={'Accept': 'application/json'}, auth=(CIRCLE_STATUS_TOKEN, '')) workflow_details_response.raise_for_status() except Exception as e: print(f'Failed to get circleci response about workflow with id {workflow_id}, error is: {e}') return True return workflow_details_response.json().get('status') not in ('canceled', 'success', 'failed') def lock_integrations(integrations_details: list, test_timeout: int, storage_client: storage.Client, prints_manager: ParallelPrintsManager, thread_index: int) -> bool: """ Locks all the test's integrations Args: integrations_details: List of current test's integrations test_timeout: Test timeout in seconds storage_client: The GCP storage client prints_manager: ParallelPrintsManager object thread_index: The index of the thread that executes the unlocking Returns: True if all the test's integrations were successfully locked, else False """ integrations = get_integrations_list(integrations_details) if not integrations: return True existing_integrations_lock_files = get_locked_integrations(integrations, storage_client) for integration, lock_file in existing_integrations_lock_files.items(): # Each file has content in the form of <circleci-build-number>:<timeout in seconds> # If it has not expired - it means the integration is currently locked by another test. workflow_id, build_number, lock_timeout = lock_file.download_as_string().decode().split(':') if not lock_expired(lock_file, lock_timeout) and workflow_still_running(workflow_id): # there is a locked integration for which the lock is not expired - test cannot be executed at the moment prints_manager.add_print_job( f'Could not lock integration {integration}, another lock file was exist with ' f'build number: {build_number}, timeout: {lock_timeout}, last update at {lock_file.updated}.\n' f'Delaying test execution', print, thread_index, include_timestamp=True) return False integrations_generation_number = {} # Gathering generation number with which the new file will be created, # See https://cloud.google.com/storage/docs/generations-preconditions for details. for integration in integrations: if integration in existing_integrations_lock_files: integrations_generation_number[integration] = existing_integrations_lock_files[integration].generation else: integrations_generation_number[integration] = 0 return create_lock_files(integrations_generation_number, prints_manager, storage_client, integrations_details, test_timeout, thread_index) def get_integrations_list(test_integrations: list) -> list: """ Since test details can have one integration as a string and sometimes a list of integrations- this methods parses the test's integrations into a list of integration names. Args: test_integrations: List of current test's integrations Returns: the integration names in a list for all the integrations that takes place in the test specified in test details. """ return [integration['name'] for integration in test_integrations] def create_lock_files(integrations_generation_number: dict, prints_manager: ParallelPrintsManager, storage_client: storage.Client, integrations_details: list, test_timeout: int, thread_index: int) -> bool: """ This method tries to create a lock files for all integrations specified in 'integrations_generation_number'. Each file should contain <circle-ci-build-number>:<test-timeout> where the <circle-ci-build-number> part is for debugging and troubleshooting and the <test-timeout> part is to be able to unlock revoked test files. If for any of the integrations, the lock file creation will fail- the already created files will be cleaned. Args: integrations_generation_number: A dict in the form of {<integration-name>:<integration-generation>} prints_manager: ParallelPrintsManager object storage_client: The GCP storage client integrations_details: List of current test's integrations test_timeout: The time out thread_index: Returns: """ locked_integrations = [] bucket = storage_client.bucket(BUCKET_NAME) for integration, generation_number in integrations_generation_number.items(): blob = bucket.blob(f'{LOCKS_PATH}/{integration}') try: blob.upload_from_string(f'{WORKFLOW_ID}:{CIRCLE_BUILD_NUM}:{test_timeout + 30}', if_generation_match=generation_number) prints_manager.add_print_job(f'integration {integration} locked', print, thread_index, include_timestamp=True) locked_integrations.append(integration) except PreconditionFailed: # if this exception occurs it means that another build has locked this integration # before this build managed to do it. # we need to unlock all the integrations we have already locked and try again later prints_manager.add_print_job( f'Could not lock integration {integration}, Create file with precondition failed.' f'delaying test execution.', print_warning, thread_index, include_timestamp=True) unlock_integrations(integrations_details, prints_manager, storage_client, thread_index) return False return True def unlock_integrations(integrations_details: list, prints_manager: ParallelPrintsManager, storage_client: storage.Client, thread_index: int) -> None: """ Delete all integration lock files for integrations specified in 'locked_integrations' Args: integrations_details: List of current test's integrations prints_manager: ParallelPrintsManager object storage_client: The GCP storage client thread_index: The index of the thread that executes the unlocking """ locked_integrations = get_integrations_list(integrations_details) locked_integration_blobs = get_locked_integrations(locked_integrations, storage_client) for integration, lock_file in locked_integration_blobs.items(): try: # Verifying build number is the same as current build number to avoid deleting other tests lock files _, build_number, _ = lock_file.download_as_string().decode().split(':') if build_number == CIRCLE_BUILD_NUM: lock_file.delete(if_generation_match=lock_file.generation) prints_manager.add_print_job( f'Integration {integration} unlocked', print, thread_index, include_timestamp=True) except PreconditionFailed: prints_manager.add_print_job(f'Could not unlock integration {integration} precondition failure', print_warning, thread_index, include_timestamp=True) def get_locked_integrations(integrations: list, storage_client: storage.Client) -> dict: """ Getting all locked integrations files Args: integrations: Integrations that we want to get lock files for storage_client: The GCP storage client Returns: A dict of the form {<integration-name>:<integration-blob-object>} for all integrations that has a blob object. """ # Listing all files in lock folder # Wrapping in 'list' operator because list_blobs return a generator which can only be iterated once lock_files_ls = list(storage_client.list_blobs(BUCKET_NAME, prefix=f'{LOCKS_PATH}')) current_integrations_lock_files = {} # Getting all existing files details for integrations that we want to lock for integration in integrations: current_integrations_lock_files.update({integration: [lock_file_blob for lock_file_blob in lock_files_ls if lock_file_blob.name == f'{LOCKS_PATH}/{integration}']}) # Filtering 'current_integrations_lock_files' from integrations with no files current_integrations_lock_files = {integration: blob_files[0] for integration, blob_files in current_integrations_lock_files.items() if blob_files} return current_integrations_lock_files def lock_expired(lock_file: storage.Blob, lock_timeout: str) -> bool: """ Checks if the time that passed since the creation of the 'lock_file' is more then 'lock_timeout'. If not- it means that the integration represented by the lock file is currently locked and is tested in another build Args: lock_file: The lock file blob object lock_timeout: The expiration timeout of the lock in seconds Returns: True if the lock has expired it's timeout, else False """ return datetime.datetime.now(tz=pytz.utc) - lock_file.updated >= datetime.timedelta(seconds=int(lock_timeout)) def main(): print("Time is: {}\n\n\n".format(datetime.datetime.now())) tests_settings = options_handler() # should be removed after solving: https://github.com/demisto/etc/issues/21383 # ------------- if 'master' in tests_settings.serverVersion.lower(): print('[{}] sleeping for 30 secs'.format(datetime.datetime.now())) sleep(45) # ------------- manage_tests(tests_settings) if __name__ == '__main__': main()
the-stack_106_18449
## # File: ObjectTransformerTests.py # Author: J. Westbrook # Date: 25-Apr-2019 # # Updates: # ## """ Tests for extractor and updater or selected values from collections (limited tests from mock-data repos) """ __docformat__ = "google en" __author__ = "John Westbrook" __email__ = "[email protected]" __license__ = "Apache 2.0" import logging import os import platform import resource import time import unittest from rcsb.exdb.utils.ObjectTransformer import ObjectTransformer from rcsb.utils.config.ConfigUtil import ConfigUtil logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]-%(module)s.%(funcName)s: %(message)s") logger = logging.getLogger() HERE = os.path.abspath(os.path.dirname(__file__)) TOPDIR = os.path.dirname(os.path.dirname(os.path.dirname(HERE))) class ObjectTransformerTests(unittest.TestCase): def __init__(self, methodName="runTest"): super(ObjectTransformerTests, self).__init__(methodName) self.__verbose = True def setUp(self): # self.__mockTopPath = os.path.join(TOPDIR, "rcsb", "mock-data") configPath = os.path.join(TOPDIR, "rcsb", "mock-data", "config", "dbload-setup-example.yml") # configName = "site_info_configuration" self.__cfgOb = ConfigUtil(configPath=configPath, defaultSectionName=configName, mockTopPath=self.__mockTopPath) # self.__fetchLimit = 5 # self.__startTime = time.time() logger.debug("Starting %s at %s", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime())) def tearDown(self): unitS = "MB" if platform.system() == "Darwin" else "GB" rusageMax = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss logger.info("Maximum resident memory size %.4f %s", rusageMax / 10 ** 6, unitS) endTime = time.time() logger.info("Completed %s at %s (%.4f seconds)", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime()), endTime - self.__startTime) def testTranformEntityProteinContent(self): """Test case - transform selected entity protein documents""" try: databaseName = "pdbx_core" collectionName = "pdbx_core_polymer_entity" obTr = ObjectTransformer(self.__cfgOb) ok = obTr.doTransform( databaseName=databaseName, collectionName=collectionName, fetchLimit=self.__fetchLimit, selectionQuery={"entity_poly.rcsb_entity_polymer_type": "Protein"} ) self.assertTrue(ok) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def objectTransformerSuite(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(ObjectTransformerTests("testTransformEntityProteinContent")) return suiteSelect if __name__ == "__main__": mySuite = objectTransformerSuite() unittest.TextTestRunner(verbosity=2).run(mySuite)
the-stack_106_18450
import torch.nn as nn from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from mm_modules.DCN.modules.deform_conv2d import DeformConv2dPack class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) H, W = H // self.patch_size[0], W // self.patch_size[1] return x, (H, W) class DeformablePatchEmbed_GELU(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.c_in = in_chans self.c_out = embed_dim self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.dconv = DeformConv2dPack(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, padding=0) self.norm_layer = nn.BatchNorm2d(embed_dim) self.act_layer = nn.GELU() for m in self.modules(): if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x, return_offset=False): B, C, H, W = x.shape x, offset = self.dconv(x, return_offset=return_offset) x = self.act_layer(self.norm_layer(x)).flatten(2).transpose(1, 2) H, W = H // self.patch_size[0], W // self.patch_size[1] if return_offset: return x, (H, W), offset else: return x, (H, W) patch_dict = { 'default': PatchEmbed, 'dcn_v1_bn_gelu': DeformablePatchEmbed_GELU, }
the-stack_106_18451
# Copyright 2012 by Wibowo Arindrarto. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Bio.SearchIO parser for BLAST+ XML output formats.""" # for more info: http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.mod.dtd import re import warnings from itertools import chain from xml.etree import ElementTree from xml.sax.saxutils import XMLGenerator, escape from Bio import BiopythonParserWarning from Bio.SearchIO._index import SearchIndexer from Bio.SearchIO._model import QueryResult, Hit, HSP, HSPFragment __all__ = ("BlastXmlParser", "BlastXmlIndexer", "BlastXmlWriter") # element - optional qresult attribute name mapping _ELEM_QRESULT_OPT = { "Statistics_db-num": ("stat_db_num", int), "Statistics_db-len": ("stat_db_len", int), "Statistics_eff-space": ("stat_eff_space", float), "Statistics_hsp-len": ("stat_hsp_len", int), "Statistics_kappa": ("stat_kappa", float), "Statistics_lambda": ("stat_lambda", float), "Statistics_entropy": ("stat_entropy", float), } # element - hit attribute name mapping _ELEM_HIT = { # 'Hit_def': ('description', str), # not set by this dict "Hit_accession": ("accession", str), "Hit_len": ("seq_len", int), } # element - hsp attribute name mapping _ELEM_HSP = { "Hsp_bit-score": ("bitscore", float), "Hsp_score": ("bitscore_raw", int), "Hsp_evalue": ("evalue", float), "Hsp_identity": ("ident_num", int), "Hsp_positive": ("pos_num", int), "Hsp_gaps": ("gap_num", int), "Hsp_density": ("density", float), } # element - fragment attribute name mapping _ELEM_FRAG = { "Hsp_query-from": ("query_start", int), "Hsp_query-to": ("query_end", int), "Hsp_hit-from": ("hit_start", int), "Hsp_hit-to": ("hit_end", int), "Hsp_query-frame": ("query_frame", int), "Hsp_hit-frame": ("hit_frame", int), "Hsp_align-len": ("aln_span", int), "Hsp_pattern-from": ("pattern_start", int), "Hsp_pattern-to": ("pattern_end", int), "Hsp_hseq": ("hit", str), "Hsp_qseq": ("query", str), } # dictionary for mapping tag name and meta key name _ELEM_META = { "BlastOutput_db": ("target", str), "BlastOutput_program": ("program", str), "BlastOutput_version": ("version", str), "BlastOutput_reference": ("reference", str), "Parameters_expect": ("param_evalue_threshold", float), "Parameters_entrez-query": ("param_entrez_query", str), "Parameters_filter": ("param_filter", str), "Parameters_gap-extend": ("param_gap_extend", int), "Parameters_gap-open": ("param_gap_open", int), "Parameters_include": ("param_include", str), "Parameters_matrix": ("param_matrix", str), "Parameters_pattern": ("param_pattern", str), "Parameters_sc-match": ("param_score_match", int), "Parameters_sc-mismatch": ("param_score_mismatch", int), } # these are fallback tags that store information on the first query # outside the <Iteration> tag # only used if query_{ID,def,len} is not found in <Iteration> # (seen in legacy Blast <2.2.14) _ELEM_QRESULT_FALLBACK = { "BlastOutput_query-ID": ("id", str), "BlastOutput_query-def": ("description", str), "BlastOutput_query-len": ("len", str), } # element-attribute maps, for writing _WRITE_MAPS = { "preamble": ( ("program", "program"), ("version", "version"), ("reference", "reference"), ("db", "target"), ("query-ID", "id"), ("query-def", "description"), ("query-len", "seq_len"), ("param", None), ), "param": ( ("matrix", "param_matrix"), ("expect", "param_evalue_threshold"), ("sc-match", "param_score_match"), ("sc-mismatch", "param_score_mismatch"), ("gap-open", "param_gap_open"), ("gap-extend", "param_gap_extend"), ("filter", "param_filter"), ("pattern", "param_pattern"), ("entrez-query", "param_entrez_query"), ), "qresult": ( ("query-ID", "id"), ("query-def", "description"), ("query-len", "seq_len"), ), "stat": ( ("db-num", "stat_db_num"), ("db-len", "stat_db_len"), ("hsp-len", "stat_hsp_len"), ("eff-space", "stat_eff_space"), ("kappa", "stat_kappa"), ("lambda", "stat_lambda"), ("entropy", "stat_entropy"), ), "hit": ( ("id", "id"), ("def", "description"), ("accession", "accession"), ("len", "seq_len"), ), "hsp": ( ("bit-score", "bitscore"), ("score", "bitscore_raw"), ("evalue", "evalue"), ("query-from", "query_start"), ("query-to", "query_end"), ("hit-from", "hit_start"), ("hit-to", "hit_end"), ("pattern-from", "pattern_start"), ("pattern-to", "pattern_end"), ("query-frame", "query_frame"), ("hit-frame", "hit_frame"), ("identity", "ident_num"), ("positive", "pos_num"), ("gaps", "gap_num"), ("align-len", "aln_span"), ("density", "density"), ("qseq", "query"), ("hseq", "hit"), ("midline", None), ), } # optional elements, based on the DTD _DTD_OPT = ( "BlastOutput_query-seq", "BlastOutput_mbstat", "Iteration_query-def", "Iteration_query-len", "Iteration-hits", "Iteration_stat", "Iteration_message", "Parameters_matrix", "Parameters_include", "Parameters_sc-match", "Parameters_sc-mismatch", "Parameters_filter", "Parameters_pattern", "Parameters_entrez-query", "Hit_hsps", "Hsp_pattern-from", "Hsp_pattern-to", "Hsp_query-frame", "Hsp_hit-frame", "Hsp_identity", "Hsp_positive", "Hsp_gaps", "Hsp_align-len", "Hsp_density", "Hsp_midline", ) # compile RE patterns # for capturing BLAST version _RE_VERSION = re.compile(r"\d+\.\d+\.\d+\+?") # for splitting ID-description pairs _RE_ID_DESC_PAIRS_PATTERN = re.compile(" +>") # for splitting ID and description (must be used with maxsplit = 1) _RE_ID_DESC_PATTERN = re.compile(" +") def _extract_ids_and_descs(raw_id, raw_desc): """Extract IDs, descriptions, and raw ID from raw values (PRIVATE). Given values of the ``Hit_id`` and ``Hit_def`` elements, this function returns a tuple of three elements: all IDs, all descriptions, and the BLAST-generated ID. The BLAST-generated ID is set to ``None`` if no BLAST-generated IDs are present. """ ids = [] descs = [] blast_gen_id = raw_id if raw_id.startswith("gnl|BL_ORD_ID|"): id_desc_line = raw_desc else: id_desc_line = raw_id + " " + raw_desc # create a list of lists, each list containing an ID and description # or just an ID, if description is not present id_desc_pairs = [ re.split(_RE_ID_DESC_PATTERN, x, 1) for x in re.split(_RE_ID_DESC_PAIRS_PATTERN, id_desc_line) ] # make sure empty descriptions are added as empty strings # also, we return lists for compatibility reasons between Py2 and Py3 for pair in id_desc_pairs: if len(pair) != 2: pair.append("") ids.append(pair[0]) descs.append(pair[1]) return (ids, descs, blast_gen_id) class BlastXmlParser: """Parser for the BLAST XML format.""" def __init__(self, handle, use_raw_query_ids=False, use_raw_hit_ids=False): """Initialize the class.""" self.xml_iter = iter(ElementTree.iterparse(handle, events=("start", "end"))) self._use_raw_query_ids = use_raw_query_ids self._use_raw_hit_ids = use_raw_hit_ids self._meta, self._fallback = self._parse_preamble() def __iter__(self): """Iterate over BlastXmlParser object yields query results.""" yield from self._parse_qresult() def _parse_preamble(self): """Parse all tag data prior to the first query result (PRIVATE).""" # dictionary for containing all information prior to the first query meta = {} # dictionary for fallback information fallback = {} # parse the preamble part (anything prior to the first result) for event, elem in self.xml_iter: # get the tag values, cast appropriately, store into meta if event == "end" and elem.tag in _ELEM_META: attr_name, caster = _ELEM_META[elem.tag] if caster is not str: meta[attr_name] = caster(elem.text) else: meta[attr_name] = elem.text # delete element after we finish parsing it elem.clear() continue # capture fallback values # these are used only if the first <Iteration> does not have any # ID, ref, or len. elif event == "end" and elem.tag in _ELEM_QRESULT_FALLBACK: attr_name, caster = _ELEM_QRESULT_FALLBACK[elem.tag] if caster is not str: fallback[attr_name] = caster(elem.text) else: fallback[attr_name] = elem.text elem.clear() continue if event == "start" and elem.tag == "Iteration": break # we only want the version number, sans the program name or date if meta.get("version") is not None: meta["version"] = re.search(_RE_VERSION, meta["version"]).group(0) return meta, fallback def _parse_qresult(self): """Parse query results (PRIVATE).""" # parse the queries for event, qresult_elem in self.xml_iter: # </Iteration> marks the end of a single query # which means we can process it if event == "end" and qresult_elem.tag == "Iteration": # we'll use the following schema # <!ELEMENT Iteration ( # Iteration_iter-num, # Iteration_query-ID?, # Iteration_query-def?, # Iteration_query-len?, # Iteration_hits?, # Iteration_stat?, # Iteration_message?)> # assign query attributes with fallbacks query_id = qresult_elem.findtext("Iteration_query-ID") if query_id is None: query_id = self._fallback["id"] query_desc = qresult_elem.findtext("Iteration_query-def") if query_desc is None: query_desc = self._fallback["description"] query_len = qresult_elem.findtext("Iteration_query-len") if query_len is None: query_len = self._fallback["len"] blast_query_id = query_id # handle blast searches against databases with Blast's IDs # 'Query_' marks the beginning of a BLAST+-generated ID, # 'lcl|' marks the beginning of a BLAST legacy-generated ID if not self._use_raw_query_ids and ( query_id.startswith("Query_") or query_id.startswith("lcl|") ): # store the Blast-generated query ID id_desc = query_desc.split(" ", 1) query_id = id_desc[0] try: query_desc = id_desc[1] except IndexError: query_desc = "" hit_list, key_list = [], [] for hit in self._parse_hit( qresult_elem.find("Iteration_hits"), query_id ): if hit: # need to keep track of hit IDs, since there could be duplicates, if hit.id in key_list: warnings.warn( "Renaming hit ID %r to a BLAST-generated ID " "%r since the ID was already matched " "by your query %r. Your BLAST database " "may contain duplicate entries." % (hit.id, hit.blast_id, query_id), BiopythonParserWarning, ) # fallback to Blast-generated IDs, if the ID is already present # and restore the desc, too hit.description = "%s %s" % (hit.id, hit.description) hit.id = hit.blast_id # and change the hit_id of the HSPs contained for hsp in hit: hsp.hit_id = hit.blast_id else: key_list.append(hit.id) hit_list.append(hit) # create qresult and assign its attributes qresult = QueryResult(hit_list, query_id) qresult.description = query_desc qresult.seq_len = int(query_len) qresult.blast_id = blast_query_id for key, value in self._meta.items(): setattr(qresult, key, value) # statistics are stored in Iteration_stat's 'grandchildren' with the # following DTD # <!ELEMENT Statistics ( # Statistics_db-num, # Statistics_db-len, # Statistics_hsp-len, # Statistics_eff-space, # Statistics_kappa, # Statistics_lambda, # Statistics_entropy)> stat_iter_elem = qresult_elem.find("Iteration_stat") if stat_iter_elem is not None: stat_elem = stat_iter_elem.find("Statistics") for key, val_info in _ELEM_QRESULT_OPT.items(): value = stat_elem.findtext(key) if value is not None: caster = val_info[1] # recast only if value is not intended to be str if value is not None and caster is not str: value = caster(value) setattr(qresult, val_info[0], value) # delete element after we finish parsing it qresult_elem.clear() yield qresult def _parse_hit(self, root_hit_elem, query_id): """Yield a generator object that transforms Iteration_hits XML elements into Hit objects (PRIVATE). :param root_hit_elem: root element of the Iteration_hits tag. :type root_hit_elem: XML element tag :param query_id: QueryResult ID of this Hit :type query_id: string """ # Hit level processing # Hits are stored in the Iteration_hits tag, with the following # DTD # <!ELEMENT Hit ( # Hit_num, # Hit_id, # Hit_def, # Hit_accession, # Hit_len, # Hit_hsps?)> # feed the loop below an empty list so iteration still works if root_hit_elem is None: root_hit_elem = [] for hit_elem in root_hit_elem: # BLAST sometimes mangles the sequence IDs and descriptions, so we need # to extract the actual values. raw_hit_id = hit_elem.findtext("Hit_id") raw_hit_desc = hit_elem.findtext("Hit_def") if not self._use_raw_hit_ids: ids, descs, blast_hit_id = _extract_ids_and_descs( raw_hit_id, raw_hit_desc ) else: ids, descs, blast_hit_id = [raw_hit_id], [raw_hit_desc], raw_hit_id hit_id, alt_hit_ids = ids[0], ids[1:] hit_desc, alt_hit_descs = descs[0], descs[1:] hsps = list(self._parse_hsp(hit_elem.find("Hit_hsps"), query_id, hit_id)) hit = Hit(hsps) hit.description = hit_desc hit._id_alt = alt_hit_ids hit._description_alt = alt_hit_descs hit.blast_id = blast_hit_id for key, val_info in _ELEM_HIT.items(): value = hit_elem.findtext(key) if value is not None: caster = val_info[1] # recast only if value is not intended to be str if value is not None and caster is not str: value = caster(value) setattr(hit, val_info[0], value) # delete element after we finish parsing it hit_elem.clear() yield hit def _parse_hsp(self, root_hsp_frag_elem, query_id, hit_id): """Yield a generator object that transforms Hit_hsps XML elements into HSP objects (PRIVATE). :param root_hsp_frag_elem: the ``Hit_hsps`` tag :type root_hsp_frag_elem: XML element tag :param query_id: query ID :type query_id: string :param hit_id: hit ID :type hit_id: string """ # Hit_hsps DTD: # <!ELEMENT Hsp ( # Hsp_num, # Hsp_bit-score, # Hsp_score, # Hsp_evalue, # Hsp_query-from, # Hsp_query-to, # Hsp_hit-from, # Hsp_hit-to, # Hsp_pattern-from?, # Hsp_pattern-to?, # Hsp_query-frame?, # Hsp_hit-frame?, # Hsp_identity?, # Hsp_positive?, # Hsp_gaps?, # Hsp_align-len?, # Hsp_density?, # Hsp_qseq, # Hsp_hseq, # Hsp_midline?)> # if value is None, feed the loop below an empty list if root_hsp_frag_elem is None: root_hsp_frag_elem = [] for hsp_frag_elem in root_hsp_frag_elem: coords = {} # temporary container for coordinates frag = HSPFragment(hit_id, query_id) for key, val_info in _ELEM_FRAG.items(): value = hsp_frag_elem.findtext(key) caster = val_info[1] # adjust 'from' and 'to' coordinates to 0-based ones if value is not None: if key.endswith("-from") or key.endswith("-to"): # store coordinates for further processing coords[val_info[0]] = caster(value) continue # recast only if value is not intended to be str elif caster is not str: value = caster(value) setattr(frag, val_info[0], value) # set the similarity characters into aln_annotation dict frag.aln_annotation["similarity"] = hsp_frag_elem.findtext("Hsp_midline") # process coordinates # since 'x-from' could be bigger than 'x-to', we need to figure # out which one is smaller/bigger since 'x_start' is always smaller # than 'x_end' for coord_type in ("query", "hit", "pattern"): start_type = coord_type + "_start" end_type = coord_type + "_end" try: start = coords[start_type] end = coords[end_type] except KeyError: continue else: # convert to python range and setattr setattr(frag, start_type, min(start, end) - 1) setattr(frag, end_type, max(start, end)) # set molecule type, based on program prog = self._meta.get("program") if prog == "blastn": frag.molecule_type = "DNA" elif prog in ["blastp", "blastx", "tblastn", "tblastx"]: frag.molecule_type = "protein" hsp = HSP([frag]) for key, val_info in _ELEM_HSP.items(): value = hsp_frag_elem.findtext(key) caster = val_info[1] if value is not None: if caster is not str: value = caster(value) setattr(hsp, val_info[0], value) # delete element after we finish parsing it hsp_frag_elem.clear() yield hsp class BlastXmlIndexer(SearchIndexer): """Indexer class for BLAST XML output.""" _parser = BlastXmlParser qstart_mark = b"<Iteration>" qend_mark = b"</Iteration>" block_size = 16384 def __init__(self, filename, **kwargs): """Initialize the class.""" SearchIndexer.__init__(self, filename) # TODO: better way to do this? iter_obj = self._parser(self._handle, **kwargs) self._meta, self._fallback = iter_obj._meta, iter_obj._fallback def __iter__(self): """Iterate over BlastXmlIndexer yields qstart_id, start_offset, block's length.""" qstart_mark = self.qstart_mark qend_mark = self.qend_mark blast_id_mark = b"Query_" block_size = self.block_size handle = self._handle handle.seek(0) re_desc = re.compile( b"<Iteration_query-ID>(.*?)" br"</Iteration_query-ID>\s+?" b"<Iteration_query-def>" b"(.*?)</Iteration_query-def>" ) re_desc_end = re.compile(b"</Iteration_query-def>") counter = 0 while True: start_offset = handle.tell() line = handle.readline() if not line: break if qstart_mark not in line: continue # The following requirements are to make supporting BGZF compressed # BLAST XML files simpler (avoids complex offset manipulations): assert line.count(qstart_mark) == 1, "XML without line breaks?" assert line.lstrip().startswith(qstart_mark), line if qend_mark in line: # Should cope with <Iteration>...</Iteration> on one long line block = line else: # Load the rest of this block up to and including </Iteration> block = [line] while line and qend_mark not in line: line = handle.readline() assert qstart_mark not in line, line block.append(line) assert line.rstrip().endswith(qend_mark), line block = b"".join(block) assert block.count(qstart_mark) == 1, "XML without line breaks? %r" % block assert block.count(qend_mark) == 1, "XML without line breaks? %r" % block # Now we have a full <Iteration>...</Iteration> block, find the ID regx = re.search(re_desc, block) try: qstart_desc = regx.group(2) qstart_id = regx.group(1) except AttributeError: # use the fallback values assert re.search(re_desc_end, block) qstart_desc = self._fallback["description"].encode() qstart_id = self._fallback["id"].encode() if qstart_id.startswith(blast_id_mark): qstart_id = qstart_desc.split(b" ", 1)[0] yield qstart_id.decode(), start_offset, len(block) counter += 1 def _parse(self, handle): """Overwrite SearchIndexer parse (PRIVATE). As we need to set the meta and fallback dictionaries to the parser. """ generator = self._parser(handle, **self._kwargs) generator._meta = self._meta generator._fallback = self._fallback return next(iter(generator)) def get_raw(self, offset): """Return the raw record from the file as a bytes string.""" qend_mark = self.qend_mark handle = self._handle handle.seek(offset) qresult_raw = handle.readline() assert qresult_raw.lstrip().startswith(self.qstart_mark) while qend_mark not in qresult_raw: qresult_raw += handle.readline() assert qresult_raw.rstrip().endswith(qend_mark) assert qresult_raw.count(qend_mark) == 1 # Note this will include any leading and trailing whitespace, in # general expecting " <Iteration>\n...\n </Iteration>\n" return qresult_raw class _BlastXmlGenerator(XMLGenerator): """Event-based XML Generator.""" def __init__(self, out, encoding="utf-8", indent=" ", increment=2): """Initialize the class.""" XMLGenerator.__init__(self, out, encoding) # the indentation character self._indent = indent # nest level self._level = 0 # how many indentation character should we increment per level self._increment = increment # container for names of tags with children self._parent_stack = [] # determine writer method def startDocument(self): """Start the XML document.""" self._write( '<?xml version="1.0"?>\n' '<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN" ' '"http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">\n' ) def startElement(self, name, attrs=None, children=False): """Start an XML element. :param name: element name :type name: string :param attrs: element attributes :type attrs: dictionary {string: object} :param children: whether the element has children or not :type children: bool """ if attrs is None: attrs = {} self.ignorableWhitespace(self._indent * self._level) XMLGenerator.startElement(self, name, attrs) def endElement(self, name): """End and XML element of the given name.""" XMLGenerator.endElement(self, name) self._write("\n") def startParent(self, name, attrs=None): """Start an XML element which has children. :param name: element name :type name: string :param attrs: element attributes :type attrs: dictionary {string: object} """ if attrs is None: attrs = {} self.startElement(name, attrs, children=True) self._level += self._increment self._write("\n") # append the element name, so we can end it later self._parent_stack.append(name) def endParent(self): """End an XML element with children.""" # the element to end is the one on top of the stack name = self._parent_stack.pop() self._level -= self._increment self.ignorableWhitespace(self._indent * self._level) self.endElement(name) def startParents(self, *names): """Start XML elements without children.""" for name in names: self.startParent(name) def endParents(self, num): """End XML elements, according to the given number.""" for i in range(num): self.endParent() def simpleElement(self, name, content=None): """Create an XML element without children with the given content.""" self.startElement(name, attrs={}) if content: self.characters(content) self.endElement(name) def characters(self, content): """Replace quotes and apostrophe.""" content = escape(str(content)) for a, b in (('"', "&quot;"), ("'", "&apos;")): content = content.replace(a, b) self._write(content) class BlastXmlWriter: """Stream-based BLAST+ XML Writer.""" def __init__(self, handle, use_raw_query_ids=True, use_raw_hit_ids=True): """Initialize the class.""" self.xml = _BlastXmlGenerator(handle, "utf-8") self._use_raw_query_ids = use_raw_query_ids self._use_raw_hit_ids = use_raw_hit_ids def write_file(self, qresults): """Write the XML contents to the output handle.""" xml = self.xml self.qresult_counter, self.hit_counter, self.hsp_counter, self.frag_counter = ( 0, 0, 0, 0, ) # get the first qresult, since the preamble requires its attr values first_qresult = next(qresults) # start the XML document, set the root element, and create the preamble xml.startDocument() xml.startParent("BlastOutput") self._write_preamble(first_qresult) # and write the qresults xml.startParent("BlastOutput_iterations") self._write_qresults(chain([first_qresult], qresults)) xml.endParents(2) xml.endDocument() return ( self.qresult_counter, self.hit_counter, self.hsp_counter, self.frag_counter, ) def _write_elem_block(self, block_name, map_name, obj, opt_dict=None): """Write sibling XML elements (PRIVATE). :param block_name: common element name prefix :type block_name: string :param map_name: name of mapping between element and attribute names :type map_name: string :param obj: object whose attribute value will be used :type obj: object :param opt_dict: custom element-attribute mapping :type opt_dict: dictionary {string: string} """ if opt_dict is None: opt_dict = {} for elem, attr in _WRITE_MAPS[map_name]: elem = block_name + elem try: content = str(getattr(obj, attr)) except AttributeError: # ensure attrs that is not present is optional if elem not in _DTD_OPT: raise ValueError( "Element %r (attribute %r) not found" % (elem, attr) ) else: # custom element-attribute mapping, for fallback values if elem in opt_dict: content = opt_dict[elem] self.xml.simpleElement(elem, content) def _write_preamble(self, qresult): """Write the XML file preamble (PRIVATE).""" xml = self.xml for elem, attr in _WRITE_MAPS["preamble"]: elem = "BlastOutput_" + elem if elem == "BlastOutput_param": xml.startParent(elem) self._write_param(qresult) xml.endParent() continue try: content = str(getattr(qresult, attr)) except AttributeError: if elem not in _DTD_OPT: raise ValueError( "Element %s (attribute %s) not found" % (elem, attr) ) else: if elem == "BlastOutput_version": content = "%s %s" % (qresult.program.upper(), qresult.version) elif qresult.blast_id: if elem == "BlastOutput_query-ID": content = qresult.blast_id elif elem == "BlastOutput_query-def": content = " ".join([qresult.id, qresult.description]).strip() xml.simpleElement(elem, content) def _write_param(self, qresult): """Write the parameter block of the preamble (PRIVATE).""" xml = self.xml xml.startParent("Parameters") self._write_elem_block("Parameters_", "param", qresult) xml.endParent() def _write_qresults(self, qresults): """Write QueryResult objects into iteration elements (PRIVATE).""" xml = self.xml for num, qresult in enumerate(qresults): xml.startParent("Iteration") xml.simpleElement("Iteration_iter-num", str(num + 1)) opt_dict = {} if self._use_raw_query_ids: query_id = qresult.blast_id query_desc = qresult.id + " " + qresult.description else: query_id = qresult.id query_desc = qresult.description opt_dict = { "Iteration_query-ID": query_id, "Iteration_query-def": query_desc, } self._write_elem_block("Iteration_", "qresult", qresult, opt_dict) # the Iteration_hits tag only has children if there are hits if qresult: xml.startParent("Iteration_hits") self._write_hits(qresult.hits) xml.endParent() # otherwise it's a simple element without any contents else: xml.simpleElement("Iteration_hits", "") xml.startParents("Iteration_stat", "Statistics") self._write_elem_block("Statistics_", "stat", qresult) xml.endParents(2) # there's a message if no hits is present if not qresult: xml.simpleElement("Iteration_message", "No hits found") self.qresult_counter += 1 xml.endParent() def _write_hits(self, hits): """Write Hit objects (PRIVATE).""" xml = self.xml for num, hit in enumerate(hits): xml.startParent("Hit") xml.simpleElement("Hit_num", str(num + 1)) # use custom hit_id and hit_def mapping if the hit has a # BLAST-generated ID opt_dict = {} if self._use_raw_hit_ids: hit_id = hit.blast_id hit_desc = " >".join( [f"{x} {y}" for x, y in zip(hit.id_all, hit.description_all)] ) else: hit_id = hit.id hit_desc = hit.description + " >".join( [ f"{x} {y}" for x, y in zip(hit.id_all[1:], hit.description_all[1:]) ] ) opt_dict = {"Hit_id": hit_id, "Hit_def": hit_desc} self._write_elem_block("Hit_", "hit", hit, opt_dict) xml.startParent("Hit_hsps") self._write_hsps(hit.hsps) self.hit_counter += 1 xml.endParents(2) def _write_hsps(self, hsps): """Write HSP objects (PRIVATE).""" xml = self.xml for num, hsp in enumerate(hsps): xml.startParent("Hsp") xml.simpleElement("Hsp_num", str(num + 1)) for elem, attr in _WRITE_MAPS["hsp"]: elem = "Hsp_" + elem try: content = self._adjust_output(hsp, elem, attr) # make sure any elements that is not present is optional # in the DTD except AttributeError: if elem not in _DTD_OPT: raise ValueError( "Element %s (attribute %s) not found" % (elem, attr) ) else: xml.simpleElement(elem, str(content)) self.hsp_counter += 1 self.frag_counter += len(hsp.fragments) xml.endParent() def _adjust_output(self, hsp, elem, attr): """Adjust output to mimic native BLAST+ XML as much as possible (PRIVATE).""" # adjust coordinates if attr in ( "query_start", "query_end", "hit_start", "hit_end", "pattern_start", "pattern_end", ): content = getattr(hsp, attr) + 1 if "_start" in attr: content = getattr(hsp, attr) + 1 else: content = getattr(hsp, attr) # adjust for 'from' <--> 'to' flip if it's not a translated search # and frames are different # adapted from /src/algo/blast/format/blastxml_format.cpp#L216 if hsp.query_frame != 0 and hsp.hit_frame < 0: if attr == "hit_start": content = getattr(hsp, "hit_end") elif attr == "hit_end": content = getattr(hsp, "hit_start") + 1 # for seqrecord objects, we only need the sequence string elif elem in ("Hsp_hseq", "Hsp_qseq"): content = str(getattr(hsp, attr).seq) elif elem == "Hsp_midline": content = hsp.aln_annotation["similarity"] elif elem in ("Hsp_evalue", "Hsp_bit-score"): # adapted from src/algo/blast/format/blastxml_format.cpp#L138-140 content = "%.*g" % (6, getattr(hsp, attr)) else: content = getattr(hsp, attr) return content # if not used as a module, run the doctest if __name__ == "__main__": from Bio._utils import run_doctest run_doctest()
the-stack_106_18453
# main.py - makes it possible to run the program from terminal with # python3 -m sudokusolver # from sudokusolver import solver # put solver.run() in main to run # Run to solve the board def solve(): rec_solve() # Recusive function that solves the board def rec_solve(row=0, col=0): next_row, next_col = get_next_coord(row, col) if board[row][col] == 0: for i in range(1, 10): # Loop through all possible numbers if is_valid(row, col, i): board[row][col] = i print_board(board) if next_row == -1 and next_col == -1: # board completed return True if not rec_solve(next_row, next_col): board[row][col] = 0 else: return True else: return rec_solve(next_row, next_col) # Get the next pposition to look at def get_next_coord(row, col): next_row = row next_col = col + 1 if next_col == 9: next_col = 0 next_row += 1 if next_row == 9: return -1, -1 return next_row, next_col # Check if the value n is valid on picked position def is_valid(row, col, n): return not (in_square(get_square(row, col), n) or ( in_row(row, n) or in_col(col, n))) # Get square number based on row and col def get_square(row, col): return (row // 3) * 3 + col // 3 # Check if value exists in square def in_square(square, n): row = square // 3 * 3 col = square % 3 * 3 for i in range(row, row + 3): for j in range(col, col + 3): if board[i][j] == n: return True return False # Check if value exists in row def in_row(row, n): return n in board[row] # Check if value exists in col def in_col(col, n): for row in board: if row[col] == n: return True return False # Print out the game board in its current state def print_board(board): print("####") for row in board: print(row) print("####") board_1 = [ [0, 0, 0, 2, 6, 0, 7, 0, 1], [6, 8, 0, 0, 7, 0, 0, 9, 0], [1, 9, 0, 0, 0, 4, 5, 0, 0], [8, 2, 0, 1, 0, 0, 0, 4, 0], [0, 0, 4, 6, 0, 2, 9, 0, 0], [0, 5, 0, 0, 0, 3, 0, 2, 8], [0, 0, 9, 3, 0, 0, 0, 7, 4], [0, 4, 0, 0, 5, 0, 0, 3, 6], [7, 0, 3, 0, 1, 8, 0, 0, 0] ] board_2 = [ [0, 0, 0, 2, 6, 0, 0, 0, 1], [0, 0, 0, 0, 7, 0, 0, 0, 0], [0, 9, 0, 0, 0, 4, 5, 0, 0], [0, 2, 0, 1, 0, 0, 0, 4, 0], [0, 0, 4, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 3, 0, 2, 8], [0, 0, 0, 3, 0, 0, 0, 0, 4], [0, 4, 0, 0, 0, 0, 0, 3, 0], [7, 0, 3, 0, 1, 0, 0, 0, 0] ] if __name__ == '__main__': # Solve the sudoku board = board_1 solve() print("\n Solution") print_board(board)
the-stack_106_18455
import random # Tool Commands def UserInput () : UserIn = int(input("Enter your 4 digit guess: ")) return UserIn def ListToString(s): str1 = " " return (str1.join(s)) # Inialize Variables MasterCode = list(str(random.randrange(1000,9999))) x = 1 # Inital User Interface print("You have 10 guesses to find the correct 4 digit number.") print("A 'Y' indicates that the digit is correct, a 'N' indicates that the digit is incorrect") print("-------------------------------------------------------") # Command Loop with 10 cycles while x < 11: # Empty list to store output correct/incorrect answers Answer = [] # Prompting the user for a guess UserGuess = list(str(UserInput())) if (len(UserGuess)) != 4: print("Your guess must be exactly 4 digits") pass else: # Loop to check if the answer is correct and adding that to the Answer list for i in range(0,4): if (UserGuess[i] == MasterCode[i]): Answer.append("Y") else: Answer.append("N") print(ListToString(Answer)) print("You now have", 10-x, "guesses left.") print("-----------------------------------") # Checking Win condition if (ListToString(Answer).replace(" ","") == "YYYY"): print("You Win!!") break else: x+=1 if (x == 10): print("You Loose!") break
the-stack_106_18457
''' 实验名称:2.4寸LCD液晶显示屏 版本:v1.0 日期:2021.9 作者:01Studio 实验平台:pyWiFi-ESP32-S2P 说明:通过编程实现LCD的各种显示功能,包括填充、画点、线、矩形、圆形、显示英文、显示图片等。 ''' #导入相关模块 from tftlcd import LCD24 import time #定义常用颜色 RED = (255,0,0) GREEN = (0,255,0) BLUE = (0,0,255) BLACK = (0,0,0) WHITE = (255,255,255) ######################## # 构建2.4寸LCD对象并初始化 ######################## d = LCD24(portrait=1) #默认方向竖屏 #填充白色 d.fill(WHITE) #画点 d.drawPixel(5, 5, RED) #画线段 d.drawLine(5, 10, 200, 10, RED) #画矩形 d.drawRect(5, 30, 200, 40, RED, border=5) #画圆 d.drawCircle(100, 120, 30, RED, border=5) #写字符,4种尺寸 d.printStr('Hello 01Studio', 10, 200, RED, size=1) d.printStr('Hello 01Studio', 10, 230, GREEN, size=2) d.printStr('Hello 01Studio', 10, 270, BLUE, size=3) time.sleep(5) #等待5秒 #显示图片 d.Picture(0,0,"/picture/1.jpg") time.sleep(3) d.Picture(0,0,"/picture/2.jpg") time.sleep(3) d.Picture(0,0,"/picture/01studio.jpg")
the-stack_106_18459
import torch from configs.experiment_config import FNNConfig as experiment_config from experiments.deep_experiment import DeepExperiment # Regression task of one-dimensional data class D_1_2_1_Experiment(DeepExperiment): def __init__(self): super(D_1_2_1_Experiment, self).__init__() def before_test(self): super(D_1_2_1_Experiment, self).before_test() self.logger.info("=" * 10 + "test start" + "=" * 10) for i, (data, gt) in enumerate(self.test_loader): self.test_one_batch(data, gt, "float") self.logger.info("=" * 10 + "testing end" + "=" * 10) def test_one_batch(self, data, gt, data_type=None): data = self.prepare_data(data, data_type) gt = self.prepare_data(gt, data_type) self.optimizer.zero_grad() out = self.net_structure(data) loss = self.loss_function(out, gt) self.logger.info("One Batch:test_loss is {}".format(loss)) def train_one_epoch(self, epoch): train_loss = 0 self.net_structure.train() for sample, label in self.train_loader: sample = self.prepare_data(sample, 'float') label = self.prepare_data(label, 'float') self.optimizer.zero_grad() out = self.net_structure(sample) loss = self.loss_function(out, label) loss.backward() self.optimizer.step() train_loss += loss.data train_loss = train_loss / len(self.train_loader) self.logger.info("EPOCH:{}\t train_loss:{:.6f}\t".format(epoch, train_loss)) self.scheduler.step() return train_loss def valid_one_epoch(self, epoch): self.net_structure.eval() with torch.no_grad(): valid_loss = 0 for data, label in self.valid_loader: data = self.prepare_data(data, 'float') label = self.prepare_data(label, 'float') self.net_structure.zero_grad() predict = self.net_structure(data) valid_loss += self.loss_function(predict, label) valid_loss /= len(self.valid_loader) self.logger.info("Epoch:{}\t valid_loss:{:.6f}".format(epoch, valid_loss)) return valid_loss
the-stack_106_18460
import itertools import multiprocessing import runpy import sys from os import path as osp import pytest def run_main(*args): # patch sys.args sys.argv = list(args) target = args[0] # run_path has one difference with invoking Python from command-line: # if the target is a file (rather than a directory), it does not add its # parent directory to sys.path. Thus, importing other modules from the # same directory is broken unless sys.path is patched here. if osp.isfile(target): sys.path.insert(0, osp.dirname(target)) runpy.run_path(target, run_name="__main__") def powerset(iterable): s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1) ) def run_main_subproc(args): # This test needs to be done in its own process as there is a potentially for # an OpenGL context clash otherwise mp_ctx = multiprocessing.get_context("spawn") proc = mp_ctx.Process(target=run_main, args=args) proc.start() proc.join() assert proc.exitcode == 0 @pytest.mark.gfxtest @pytest.mark.skipif( not osp.exists("data/scene_datasets/habitat-test-scenes/skokloster-castle.glb") or not osp.exists("data/scene_datasets/habitat-test-scenes/van-gogh-room.glb"), reason="Requires the habitat-test-scenes", ) @pytest.mark.parametrize( "args", [ ("examples/tutorials/stereo_agent.py", "--no-display"), ("examples/tutorials/lighting_tutorial.py", "--no-show-images"), ("examples/tutorials/new_actions.py",), ( "examples/tutorials/nb_python/rigid_object_tutorial.py", "--no-show-video", "--no-make-video", ), ( "examples/tutorials/nb_python/ECCV_2020_Navigation.py", "--no-make-video", "--no-display", ), ( "examples/tutorials/nb_python/ECCV_2020_Interactivity.py", "--no-make-video", "--no-display", ), ("examples/tutorials/semantic_id_tutorial.py", "--no-show-images"), ], ) def test_example_modules(args): run_main_subproc(args) @pytest.mark.gfxtest @pytest.mark.skipif( not osp.exists("data/scene_datasets/habitat-test-scenes/skokloster-castle.glb"), reason="Requires the habitat-test-scenes", ) @pytest.mark.parametrize( "args", [ ["examples/example.py"] + list(p) for p in powerset( [ "--compute_shortest_path", "--compute_action_shortest_path", "--enable_physics", "--semantic_sensor", "--depth_sensor", "--recompute_navmesh", ] ) if not (("--compute_action_shortest_path" in p) and ("--enable_physics" in p)) ], ) def test_example_script(args): run_main_subproc(args)
the-stack_106_18465
import abc import os import pygame class Plot(abc.ABC): def draw(self, game:"Game", surface:"pygame.Surface", plot_dir:str, update:bool) -> None: # Make the temporary image file path file_path = os.path.join(plot_dir, f"{self.__class__.__name__}.png") # Plot the data if update: self.plot(game, file_path, surface.get_height(), surface.get_width()) # Draw the plot image surface.blit(pygame.image.load(file_path), (0,0)) @abc.abstractmethod def plot(self, game:"Game", file_path:str, height:int, width:int)\ -> None: """Plot the game information saving the plot to the given file path Parameters ---------- game: Game The object that holds all information about the simulation. file_path: str The file path to save the plot to. """ ...
the-stack_106_18466
import ee import time import sys ee.Initialize() STATUS = "Status: {}" def wait_for_completion(task_descripsion, widget_alert): """Wait until the selected process is finished. Display some output information Args: task_descripsion (str) : name of the running task widget_alert (v.Alert) : alert to display the output messages """ state = 'UNSUBMITTED' while state != 'COMPLETED': widget_alert.add_live_msg(STATUS.format(state)) time.sleep(5) #search for the task in task_list current_task = isTask(task_descripsion) state = current_task.state def isTask(task_descripsion): """Search for the described task in the user Task list return None if nothing is find Args: task_descripsion (str): the task descripsion Returns task (ee.Task) : return the found task else None """ tasks_list = ee.batch.Task.list() current_task = None for task in tasks_list: if task.config['description'] == task_descripsion: current_task = task break return current_task
the-stack_106_18467
pkgname = "pcre" pkgver = "8.45" pkgrel = 0 build_style = "gnu_configure" configure_args = [ "--with-pic", "--enable-utf8", "--enable-unicode-properties", "--enable-pcretest-libedit", "--enable-pcregrep-libz", "--enable-pcregrep-libbz2", "--enable-newline-is-anycrlf", "--enable-jit", "--enable-static", "--disable-stack-for-recursion", ] hostmakedepends = ["pkgconf"] makedepends = ["zlib-devel", "libbz2-devel", "libedit-devel"] pkgdesc = "Perl Compatible Regular Expressions" maintainer = "q66 <[email protected]>" license = "BSD-3-Clause" url = "http://www.pcre.org" source = f"$(SOURCEFORGE_SITE)/{pkgname}/{pkgname}/{pkgver}/{pkgname}-{pkgver}.tar.bz2" sha256 = "4dae6fdcd2bb0bb6c37b5f97c33c2be954da743985369cddac3546e3218bffb8" options = ["!cross"] def post_install(self): self.install_license("LICENCE") @subpackage("libpcrecpp") def _libpcrecpp(self): self.pkgdesc = f"{pkgdesc} (C++ shared libraries)" return ["usr/lib/libpcrecpp.so.*"] @subpackage("libpcre") def _libpcre(self): self.pkgdesc = f"{pkgdesc} (shared libraries)" return self.default_libs() @subpackage("pcre-devel") def _devel(self): self.depends += ["zlib-devel", "libbz2-devel"] return self.default_devel(man = True, extra = ["usr/share/doc"])
the-stack_106_18468
import copy from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Sequence from typing import Tuple import warnings import numpy as np import optuna from optuna import distributions from optuna import samplers from optuna._imports import try_import from optuna._study_direction import StudyDirection from optuna.exceptions import ExperimentalWarning from optuna.samplers import BaseSampler from optuna.study import Study from optuna.trial import FrozenTrial from optuna.trial import TrialState with try_import() as _imports: import skopt from skopt.space import space class SkoptSampler(BaseSampler): """Sampler using Scikit-Optimize as the backend. Example: Optimize a simple quadratic function by using :class:`~optuna.integration.SkoptSampler`. .. testcode:: import optuna def objective(trial): x = trial.suggest_float("x", -10, 10) y = trial.suggest_int("y", 0, 10) return x ** 2 + y sampler = optuna.integration.SkoptSampler() study = optuna.create_study(sampler=sampler) study.optimize(objective, n_trials=10) Args: independent_sampler: A :class:`~optuna.samplers.BaseSampler` instance that is used for independent sampling. The parameters not contained in the relative search space are sampled by this sampler. The search space for :class:`~optuna.integration.SkoptSampler` is determined by :func:`~optuna.samplers.intersection_search_space()`. If :obj:`None` is specified, :class:`~optuna.samplers.RandomSampler` is used as the default. .. seealso:: :class:`optuna.samplers` module provides built-in independent samplers such as :class:`~optuna.samplers.RandomSampler` and :class:`~optuna.samplers.TPESampler`. warn_independent_sampling: If this is :obj:`True`, a warning message is emitted when the value of a parameter is sampled by using an independent sampler. Note that the parameters of the first trial in a study are always sampled via an independent sampler, so no warning messages are emitted in this case. skopt_kwargs: Keyword arguments passed to the constructor of `skopt.Optimizer <https://scikit-optimize.github.io/#skopt.Optimizer>`_ class. Note that ``dimensions`` argument in ``skopt_kwargs`` will be ignored because it is added by :class:`~optuna.integration.SkoptSampler` automatically. n_startup_trials: The independent sampling is used until the given number of trials finish in the same study. consider_pruned_trials: If this is :obj:`True`, the PRUNED trials are considered for sampling. .. note:: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0. .. note:: As the number of trials :math:`n` increases, each sampling takes longer and longer on a scale of :math:`O(n^3)`. And, if this is :obj:`True`, the number of trials will increase. So, it is suggested to set this flag :obj:`False` when each evaluation of the objective function is relatively faster than each sampling. On the other hand, it is suggested to set this flag :obj:`True` when each evaluation of the objective function is relatively slower than each sampling. """ def __init__( self, independent_sampler: Optional[BaseSampler] = None, warn_independent_sampling: bool = True, skopt_kwargs: Optional[Dict[str, Any]] = None, n_startup_trials: int = 1, *, consider_pruned_trials: bool = False, ) -> None: _imports.check() self._skopt_kwargs = skopt_kwargs or {} if "dimensions" in self._skopt_kwargs: del self._skopt_kwargs["dimensions"] self._independent_sampler = independent_sampler or samplers.RandomSampler() self._warn_independent_sampling = warn_independent_sampling self._n_startup_trials = n_startup_trials self._search_space = samplers.IntersectionSearchSpace() self._consider_pruned_trials = consider_pruned_trials if self._consider_pruned_trials: warnings.warn( "`consider_pruned_trials` option is an experimental feature." " The interface can change in the future.", ExperimentalWarning, ) def reseed_rng(self) -> None: self._independent_sampler.reseed_rng() def infer_relative_search_space( self, study: Study, trial: FrozenTrial ) -> Dict[str, distributions.BaseDistribution]: search_space = {} for name, distribution in self._search_space.calculate(study).items(): if distribution.single(): if not isinstance(distribution, distributions.CategoricalDistribution): # `skopt` cannot handle non-categorical distributions that contain just # a single value, so we skip this distribution. # # Note that `Trial` takes care of this distribution during suggestion. continue search_space[name] = distribution return search_space def sample_relative( self, study: Study, trial: FrozenTrial, search_space: Dict[str, distributions.BaseDistribution], ) -> Dict[str, Any]: self._raise_error_if_multi_objective(study) if len(search_space) == 0: return {} complete_trials = self._get_trials(study) if len(complete_trials) < self._n_startup_trials: return {} optimizer = _Optimizer(search_space, self._skopt_kwargs) optimizer.tell(study, complete_trials) return optimizer.ask() def sample_independent( self, study: Study, trial: FrozenTrial, param_name: str, param_distribution: distributions.BaseDistribution, ) -> Any: self._raise_error_if_multi_objective(study) if self._warn_independent_sampling: complete_trials = self._get_trials(study) if len(complete_trials) >= self._n_startup_trials: self._log_independent_sampling(trial, param_name) return self._independent_sampler.sample_independent( study, trial, param_name, param_distribution ) def _log_independent_sampling(self, trial: FrozenTrial, param_name: str) -> None: logger = optuna.logging.get_logger(__name__) logger.warning( "The parameter '{}' in trial#{} is sampled independently " "by using `{}` instead of `SkoptSampler` " "(optimization performance may be degraded). " "You can suppress this warning by setting `warn_independent_sampling` " "to `False` in the constructor of `SkoptSampler`, " "if this independent sampling is intended behavior.".format( param_name, trial.number, self._independent_sampler.__class__.__name__ ) ) def _get_trials(self, study: Study) -> List[FrozenTrial]: complete_trials = [] for t in study.get_trials(deepcopy=False): if t.state == TrialState.COMPLETE: complete_trials.append(t) elif ( t.state == TrialState.PRUNED and len(t.intermediate_values) > 0 and self._consider_pruned_trials ): _, value = max(t.intermediate_values.items()) if value is None: continue # We rewrite the value of the trial `t` for sampling, so we need a deepcopy. copied_t = copy.deepcopy(t) copied_t.value = value complete_trials.append(copied_t) return complete_trials def after_trial( self, study: Study, trial: FrozenTrial, state: TrialState, values: Optional[Sequence[float]], ) -> None: self._independent_sampler.after_trial(study, trial, state, values) class _Optimizer(object): def __init__( self, search_space: Dict[str, distributions.BaseDistribution], skopt_kwargs: Dict[str, Any] ) -> None: self._search_space = search_space dimensions = [] for name, distribution in sorted(self._search_space.items()): if isinstance(distribution, distributions.UniformDistribution): # Convert the upper bound from exclusive (optuna) to inclusive (skopt). high = np.nextafter(distribution.high, float("-inf")) dimension = space.Real(distribution.low, high) elif isinstance(distribution, distributions.LogUniformDistribution): # Convert the upper bound from exclusive (optuna) to inclusive (skopt). high = np.nextafter(distribution.high, float("-inf")) dimension = space.Real(distribution.low, high, prior="log-uniform") elif isinstance(distribution, distributions.IntUniformDistribution): count = (distribution.high - distribution.low) // distribution.step dimension = space.Integer(0, count) elif isinstance(distribution, distributions.IntLogUniformDistribution): low = distribution.low - 0.5 high = distribution.high + 0.5 dimension = space.Real(low, high, prior="log-uniform") elif isinstance(distribution, distributions.DiscreteUniformDistribution): count = int((distribution.high - distribution.low) // distribution.q) dimension = space.Integer(0, count) elif isinstance(distribution, distributions.CategoricalDistribution): dimension = space.Categorical(distribution.choices) else: raise NotImplementedError( "The distribution {} is not implemented.".format(distribution) ) dimensions.append(dimension) self._optimizer = skopt.Optimizer(dimensions, **skopt_kwargs) def tell(self, study: Study, complete_trials: List[FrozenTrial]) -> None: xs = [] ys = [] for trial in complete_trials: if not self._is_compatible(trial): continue x, y = self._complete_trial_to_skopt_observation(study, trial) xs.append(x) ys.append(y) self._optimizer.tell(xs, ys) def ask(self) -> Dict[str, Any]: params = {} param_values = self._optimizer.ask() for (name, distribution), value in zip(sorted(self._search_space.items()), param_values): if isinstance(distribution, distributions.DiscreteUniformDistribution): value = value * distribution.q + distribution.low if isinstance(distribution, distributions.IntUniformDistribution): value = value * distribution.step + distribution.low if isinstance(distribution, distributions.IntLogUniformDistribution): value = int(np.round(value)) value = min(max(value, distribution.low), distribution.high) params[name] = value return params def _is_compatible(self, trial: FrozenTrial) -> bool: # Thanks to `intersection_search_space()` function, in sequential optimization, # the parameters of complete trials are always compatible with the search space. # # However, in distributed optimization, incompatible trials may complete on a worker # just after an intersection search space is calculated on another worker. for name, distribution in self._search_space.items(): if name not in trial.params: return False distributions.check_distribution_compatibility(distribution, trial.distributions[name]) param_value = trial.params[name] param_internal_value = distribution.to_internal_repr(param_value) if not distribution._contains(param_internal_value): return False return True def _complete_trial_to_skopt_observation( self, study: Study, trial: FrozenTrial ) -> Tuple[List[Any], float]: param_values = [] for name, distribution in sorted(self._search_space.items()): param_value = trial.params[name] if isinstance(distribution, distributions.DiscreteUniformDistribution): param_value = (param_value - distribution.low) // distribution.q if isinstance(distribution, distributions.IntUniformDistribution): param_value = (param_value - distribution.low) // distribution.step param_values.append(param_value) value = trial.value assert value is not None if study.direction == StudyDirection.MAXIMIZE: value = -value return param_values, value
the-stack_106_18469
import sys from sqlalchemy import MetaData, Column, Table, Integer, String, Text, \ Numeric, CHAR, ForeignKey, INTEGER, Index, UniqueConstraint, \ TypeDecorator, CheckConstraint, text, PrimaryKeyConstraint, \ ForeignKeyConstraint, VARCHAR, DECIMAL, DateTime, BigInteger, BIGINT, \ SmallInteger from sqlalchemy.types import NULLTYPE from sqlalchemy.engine.reflection import Inspector from alembic.operations import ops from alembic import autogenerate from alembic.migration import MigrationContext from alembic.testing import TestBase from alembic.testing import config from alembic.testing import assert_raises_message from alembic.testing.mock import Mock, patch from alembic.testing import eq_, is_, is_not_ from alembic.util import CommandError from ._autogen_fixtures import AutogenTest, AutogenFixtureTest py3k = sys.version_info >= (3, ) class AutogenCrossSchemaTest(AutogenTest, TestBase): __only_on__ = 'postgresql' @classmethod def _get_db_schema(cls): m = MetaData() Table('t1', m, Column('x', Integer) ) Table('t2', m, Column('y', Integer), schema=config.test_schema ) Table('t6', m, Column('u', Integer) ) Table('t7', m, Column('v', Integer), schema=config.test_schema ) return m @classmethod def _get_model_schema(cls): m = MetaData() Table('t3', m, Column('q', Integer) ) Table('t4', m, Column('z', Integer), schema=config.test_schema ) Table('t6', m, Column('u', Integer) ) Table('t7', m, Column('v', Integer), schema=config.test_schema ) return m def test_default_schema_omitted_upgrade(self): def include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name == "t3" else: return True self._update_context( object_filters=include_object, include_schemas=True, ) uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(self.autogen_context, uo) diffs = uo.as_diffs() eq_(diffs[0][0], "add_table") eq_(diffs[0][1].schema, None) def test_alt_schema_included_upgrade(self): def include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name == "t4" else: return True self._update_context( object_filters=include_object, include_schemas=True, ) uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(self.autogen_context, uo) diffs = uo.as_diffs() eq_(diffs[0][0], "add_table") eq_(diffs[0][1].schema, config.test_schema) def test_default_schema_omitted_downgrade(self): def include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name == "t1" else: return True self._update_context( object_filters=include_object, include_schemas=True, ) uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(self.autogen_context, uo) diffs = uo.as_diffs() eq_(diffs[0][0], "remove_table") eq_(diffs[0][1].schema, None) def test_alt_schema_included_downgrade(self): def include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name == "t2" else: return True self._update_context( object_filters=include_object, include_schemas=True, ) uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(self.autogen_context, uo) diffs = uo.as_diffs() eq_(diffs[0][0], "remove_table") eq_(diffs[0][1].schema, config.test_schema) class AutogenDefaultSchemaTest(AutogenFixtureTest, TestBase): __only_on__ = 'postgresql' def test_uses_explcit_schema_in_default_one(self): default_schema = self.bind.dialect.default_schema_name m1 = MetaData() m2 = MetaData() Table('a', m1, Column('x', String(50))) Table('a', m2, Column('x', String(50)), schema=default_schema) diffs = self._fixture(m1, m2, include_schemas=True) eq_(diffs, []) def test_uses_explcit_schema_in_default_two(self): default_schema = self.bind.dialect.default_schema_name m1 = MetaData() m2 = MetaData() Table('a', m1, Column('x', String(50))) Table('a', m2, Column('x', String(50)), schema=default_schema) Table('a', m2, Column('y', String(50)), schema="test_schema") diffs = self._fixture(m1, m2, include_schemas=True) eq_(len(diffs), 1) eq_(diffs[0][0], "add_table") eq_(diffs[0][1].schema, "test_schema") eq_(diffs[0][1].c.keys(), ['y']) def test_uses_explcit_schema_in_default_three(self): default_schema = self.bind.dialect.default_schema_name m1 = MetaData() m2 = MetaData() Table('a', m1, Column('y', String(50)), schema="test_schema") Table('a', m2, Column('x', String(50)), schema=default_schema) Table('a', m2, Column('y', String(50)), schema="test_schema") diffs = self._fixture(m1, m2, include_schemas=True) eq_(len(diffs), 1) eq_(diffs[0][0], "add_table") eq_(diffs[0][1].schema, default_schema) eq_(diffs[0][1].c.keys(), ['x']) class AutogenDefaultSchemaIsNoneTest(AutogenFixtureTest, TestBase): __only_on__ = 'sqlite' def setUp(self): super(AutogenDefaultSchemaIsNoneTest, self).setUp() # prerequisite eq_(self.bind.dialect.default_schema_name, None) def test_no_default_schema(self): m1 = MetaData() m2 = MetaData() Table('a', m1, Column('x', String(50))) Table('a', m2, Column('x', String(50))) def _include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name in 'a' and obj.schema != 'main' else: return True diffs = self._fixture( m1, m2, include_schemas=True, object_filters=_include_object) eq_(len(diffs), 0) class ModelOne(object): __requires__ = ('unique_constraint_reflection', ) schema = None @classmethod def _get_db_schema(cls): schema = cls.schema m = MetaData(schema=schema) Table('user', m, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('a1', Text), Column("pw", String(50)), Index('pw_idx', 'pw') ) Table('address', m, Column('id', Integer, primary_key=True), Column('email_address', String(100), nullable=False), ) Table('order', m, Column('order_id', Integer, primary_key=True), Column("amount", Numeric(8, 2), nullable=False, server_default=text("0")), CheckConstraint('amount >= 0', name='ck_order_amount') ) Table('extra', m, Column("x", CHAR), Column('uid', Integer, ForeignKey('user.id')) ) return m @classmethod def _get_model_schema(cls): schema = cls.schema m = MetaData(schema=schema) Table('user', m, Column('id', Integer, primary_key=True), Column('name', String(50), nullable=False), Column('a1', Text, server_default="x") ) Table('address', m, Column('id', Integer, primary_key=True), Column('email_address', String(100), nullable=False), Column('street', String(50)), UniqueConstraint('email_address', name="uq_email") ) Table('order', m, Column('order_id', Integer, primary_key=True), Column('amount', Numeric(10, 2), nullable=True, server_default=text("0")), Column('user_id', Integer, ForeignKey('user.id')), CheckConstraint('amount > -1', name='ck_order_amount'), ) Table('item', m, Column('id', Integer, primary_key=True), Column('description', String(100)), Column('order_id', Integer, ForeignKey('order.order_id')), CheckConstraint('len(description) > 5') ) return m class AutogenerateDiffTest(ModelOne, AutogenTest, TestBase): __only_on__ = 'sqlite' def test_diffs(self): """test generation of diff rules""" metadata = self.m2 uo = ops.UpgradeOps(ops=[]) ctx = self.autogen_context autogenerate._produce_net_changes( ctx, uo ) diffs = uo.as_diffs() eq_( diffs[0], ('add_table', metadata.tables['item']) ) eq_(diffs[1][0], 'remove_table') eq_(diffs[1][1].name, "extra") eq_(diffs[2][0], "add_column") eq_(diffs[2][1], None) eq_(diffs[2][2], "address") eq_(diffs[2][3], metadata.tables['address'].c.street) eq_(diffs[3][0], "add_constraint") eq_(diffs[3][1].name, "uq_email") eq_(diffs[4][0], "add_column") eq_(diffs[4][1], None) eq_(diffs[4][2], "order") eq_(diffs[4][3], metadata.tables['order'].c.user_id) eq_(diffs[5][0][0], "modify_type") eq_(diffs[5][0][1], None) eq_(diffs[5][0][2], "order") eq_(diffs[5][0][3], "amount") eq_(repr(diffs[5][0][5]), "NUMERIC(precision=8, scale=2)") eq_(repr(diffs[5][0][6]), "Numeric(precision=10, scale=2)") self._assert_fk_diff( diffs[6], "add_fk", "order", ["user_id"], "user", ["id"] ) eq_(diffs[7][0][0], "modify_default") eq_(diffs[7][0][1], None) eq_(diffs[7][0][2], "user") eq_(diffs[7][0][3], "a1") eq_(diffs[7][0][6].arg, "x") eq_(diffs[8][0][0], 'modify_nullable') eq_(diffs[8][0][5], True) eq_(diffs[8][0][6], False) eq_(diffs[9][0], 'remove_index') eq_(diffs[9][1].name, 'pw_idx') eq_(diffs[10][0], 'remove_column') eq_(diffs[10][3].name, 'pw') eq_(diffs[10][3].table.name, 'user') assert isinstance( diffs[10][3].type, String ) def test_include_symbol(self): diffs = [] def include_symbol(name, schema=None): return name in ('address', 'order') context = MigrationContext.configure( connection=self.bind.connect(), opts={ 'compare_type': True, 'compare_server_default': True, 'target_metadata': self.m2, 'include_symbol': include_symbol, } ) diffs = autogenerate.compare_metadata( context, context.opts['target_metadata']) alter_cols = set([ d[2] for d in self._flatten_diffs(diffs) if d[0].startswith('modify') ]) eq_(alter_cols, set(['order'])) def test_include_object(self): def include_object(obj, name, type_, reflected, compare_to): assert obj.name == name if type_ == "table": if reflected: assert obj.metadata is not self.m2 else: assert obj.metadata is self.m2 return name in ("address", "order", "user") elif type_ == "column": if reflected: assert obj.table.metadata is not self.m2 else: assert obj.table.metadata is self.m2 return name != "street" else: return True context = MigrationContext.configure( connection=self.bind.connect(), opts={ 'compare_type': True, 'compare_server_default': True, 'target_metadata': self.m2, 'include_object': include_object, } ) diffs = autogenerate.compare_metadata( context, context.opts['target_metadata']) alter_cols = set([ d[2] for d in self._flatten_diffs(diffs) if d[0].startswith('modify') ]).union( d[3].name for d in self._flatten_diffs(diffs) if d[0] == 'add_column' ).union( d[1].name for d in self._flatten_diffs(diffs) if d[0] == 'add_table' ) eq_(alter_cols, set(['user_id', 'order', 'user'])) def test_skip_null_type_comparison_reflected(self): ac = ops.AlterColumnOp("sometable", "somecol") autogenerate.compare._compare_type( self.autogen_context, ac, None, "sometable", "somecol", Column("somecol", NULLTYPE), Column("somecol", Integer()), ) diff = ac.to_diff_tuple() assert not diff def test_skip_null_type_comparison_local(self): ac = ops.AlterColumnOp("sometable", "somecol") autogenerate.compare._compare_type( self.autogen_context, ac, None, "sometable", "somecol", Column("somecol", Integer()), Column("somecol", NULLTYPE), ) diff = ac.to_diff_tuple() assert not diff def test_custom_type_compare(self): class MyType(TypeDecorator): impl = Integer def compare_against_backend(self, dialect, conn_type): return isinstance(conn_type, Integer) ac = ops.AlterColumnOp("sometable", "somecol") autogenerate.compare._compare_type( self.autogen_context, ac, None, "sometable", "somecol", Column("somecol", INTEGER()), Column("somecol", MyType()), ) assert not ac.has_changes() ac = ops.AlterColumnOp("sometable", "somecol") autogenerate.compare._compare_type( self.autogen_context, ac, None, "sometable", "somecol", Column("somecol", String()), Column("somecol", MyType()), ) diff = ac.to_diff_tuple() eq_( diff[0][0:4], ('modify_type', None, 'sometable', 'somecol') ) def test_affinity_typedec(self): class MyType(TypeDecorator): impl = CHAR def load_dialect_impl(self, dialect): if dialect.name == 'sqlite': return dialect.type_descriptor(Integer()) else: return dialect.type_descriptor(CHAR(32)) uo = ops.AlterColumnOp('sometable', 'somecol') autogenerate.compare._compare_type( self.autogen_context, uo, None, "sometable", "somecol", Column("somecol", Integer, nullable=True), Column("somecol", MyType()) ) assert not uo.has_changes() def test_dont_barf_on_already_reflected(self): from sqlalchemy.util import OrderedSet inspector = Inspector.from_engine(self.bind) uo = ops.UpgradeOps(ops=[]) autogenerate.compare._compare_tables( OrderedSet([(None, 'extra'), (None, 'user')]), OrderedSet(), inspector, MetaData(), uo, self.autogen_context ) eq_( [(rec[0], rec[1].name) for rec in uo.as_diffs()], [('remove_table', 'extra'), ('remove_table', 'user')] ) class AutogenerateDiffTestWSchema(ModelOne, AutogenTest, TestBase): __only_on__ = 'postgresql' schema = "test_schema" def test_diffs(self): """test generation of diff rules""" metadata = self.m2 self._update_context( include_schemas=True, ) uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(self.autogen_context, uo) diffs = uo.as_diffs() eq_( diffs[0], ('add_table', metadata.tables['%s.item' % self.schema]) ) eq_(diffs[1][0], 'remove_table') eq_(diffs[1][1].name, "extra") eq_(diffs[2][0], "add_column") eq_(diffs[2][1], self.schema) eq_(diffs[2][2], "address") eq_(diffs[2][3], metadata.tables['%s.address' % self.schema].c.street) eq_(diffs[3][0], "add_constraint") eq_(diffs[3][1].name, "uq_email") eq_(diffs[4][0], "add_column") eq_(diffs[4][1], self.schema) eq_(diffs[4][2], "order") eq_(diffs[4][3], metadata.tables['%s.order' % self.schema].c.user_id) eq_(diffs[5][0][0], "modify_type") eq_(diffs[5][0][1], self.schema) eq_(diffs[5][0][2], "order") eq_(diffs[5][0][3], "amount") eq_(repr(diffs[5][0][5]), "NUMERIC(precision=8, scale=2)") eq_(repr(diffs[5][0][6]), "Numeric(precision=10, scale=2)") self._assert_fk_diff( diffs[6], "add_fk", "order", ["user_id"], "user", ["id"], source_schema=config.test_schema ) eq_(diffs[7][0][0], "modify_default") eq_(diffs[7][0][1], self.schema) eq_(diffs[7][0][2], "user") eq_(diffs[7][0][3], "a1") eq_(diffs[7][0][6].arg, "x") eq_(diffs[8][0][0], 'modify_nullable') eq_(diffs[8][0][5], True) eq_(diffs[8][0][6], False) eq_(diffs[9][0], 'remove_index') eq_(diffs[9][1].name, 'pw_idx') eq_(diffs[10][0], 'remove_column') eq_(diffs[10][3].name, 'pw') class CompareTypeSpecificityTest(TestBase): def _fixture(self): from alembic.ddl import impl from sqlalchemy.engine import default return impl.DefaultImpl( default.DefaultDialect(), None, False, True, None, {}) def test_string(self): t1 = String(30) t2 = String(40) t3 = VARCHAR(30) t4 = Integer impl = self._fixture() is_(impl.compare_type(Column('x', t3), Column('x', t1)), False) is_(impl.compare_type(Column('x', t3), Column('x', t2)), True) is_(impl.compare_type(Column('x', t3), Column('x', t4)), True) def test_numeric(self): t1 = Numeric(10, 5) t2 = Numeric(12, 5) t3 = DECIMAL(10, 5) t4 = DateTime impl = self._fixture() is_(impl.compare_type(Column('x', t3), Column('x', t1)), False) is_(impl.compare_type(Column('x', t3), Column('x', t2)), True) is_(impl.compare_type(Column('x', t3), Column('x', t4)), True) def test_integer(self): t1 = Integer() t2 = SmallInteger() t3 = BIGINT() t4 = String() t5 = INTEGER() t6 = BigInteger() impl = self._fixture() is_(impl.compare_type(Column('x', t5), Column('x', t1)), False) is_(impl.compare_type(Column('x', t3), Column('x', t1)), True) is_(impl.compare_type(Column('x', t3), Column('x', t6)), False) is_(impl.compare_type(Column('x', t3), Column('x', t2)), True) is_(impl.compare_type(Column('x', t5), Column('x', t2)), True) is_(impl.compare_type(Column('x', t1), Column('x', t4)), True) def test_datetime(self): t1 = DateTime() t2 = DateTime(timezone=False) t3 = DateTime(timezone=True) impl = self._fixture() is_(impl.compare_type(Column('x', t1), Column('x', t2)), False) is_(impl.compare_type(Column('x', t1), Column('x', t3)), True) is_(impl.compare_type(Column('x', t2), Column('x', t3)), True) class AutogenerateCustomCompareTypeTest(AutogenTest, TestBase): __only_on__ = 'sqlite' @classmethod def _get_db_schema(cls): m = MetaData() Table('sometable', m, Column('id', Integer, primary_key=True), Column('value', Integer)) return m @classmethod def _get_model_schema(cls): m = MetaData() Table('sometable', m, Column('id', Integer, primary_key=True), Column('value', String)) return m def test_uses_custom_compare_type_function(self): my_compare_type = Mock() self.context._user_compare_type = my_compare_type uo = ops.UpgradeOps(ops=[]) ctx = self.autogen_context autogenerate._produce_net_changes(ctx, uo) first_table = self.m2.tables['sometable'] first_column = first_table.columns['id'] eq_(len(my_compare_type.mock_calls), 2) # We'll just test the first call _, args, _ = my_compare_type.mock_calls[0] (context, inspected_column, metadata_column, inspected_type, metadata_type) = args eq_(context, self.context) eq_(metadata_column, first_column) eq_(metadata_type, first_column.type) eq_(inspected_column.name, first_column.name) eq_(type(inspected_type), INTEGER) def test_column_type_not_modified_custom_compare_type_returns_False(self): my_compare_type = Mock() my_compare_type.return_value = False self.context._user_compare_type = my_compare_type diffs = [] ctx = self.autogen_context diffs = [] autogenerate._produce_net_changes(ctx, diffs) eq_(diffs, []) def test_column_type_modified_custom_compare_type_returns_True(self): my_compare_type = Mock() my_compare_type.return_value = True self.context._user_compare_type = my_compare_type ctx = self.autogen_context uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(ctx, uo) diffs = uo.as_diffs() eq_(diffs[0][0][0], 'modify_type') eq_(diffs[1][0][0], 'modify_type') class PKConstraintUpgradesIgnoresNullableTest(AutogenTest, TestBase): __backend__ = True # test workaround for SQLAlchemy issue #3023, alembic issue #199 @classmethod def _get_db_schema(cls): m = MetaData() Table( 'person_to_role', m, Column('person_id', Integer, autoincrement=False), Column('role_id', Integer, autoincrement=False), PrimaryKeyConstraint('person_id', 'role_id') ) return m @classmethod def _get_model_schema(cls): return cls._get_db_schema() def test_no_change(self): diffs = [] ctx = self.autogen_context autogenerate._produce_net_changes(ctx, diffs) eq_(diffs, []) class AutogenKeyTest(AutogenTest, TestBase): __only_on__ = 'sqlite' @classmethod def _get_db_schema(cls): m = MetaData() Table('someothertable', m, Column('id', Integer, primary_key=True), Column('value', Integer, key="somekey"), ) return m @classmethod def _get_model_schema(cls): m = MetaData() Table('sometable', m, Column('id', Integer, primary_key=True), Column('value', Integer, key="someotherkey"), ) Table('someothertable', m, Column('id', Integer, primary_key=True), Column('value', Integer, key="somekey"), Column("othervalue", Integer, key="otherkey") ) return m symbols = ['someothertable', 'sometable'] def test_autogen(self): uo = ops.UpgradeOps(ops=[]) ctx = self.autogen_context autogenerate._produce_net_changes(ctx, uo) diffs = uo.as_diffs() eq_(diffs[0][0], "add_table") eq_(diffs[0][1].name, "sometable") eq_(diffs[1][0], "add_column") eq_(diffs[1][3].key, "otherkey") class AutogenVersionTableTest(AutogenTest, TestBase): __only_on__ = 'sqlite' version_table_name = 'alembic_version' version_table_schema = None @classmethod def _get_db_schema(cls): m = MetaData() Table( cls.version_table_name, m, Column('x', Integer), schema=cls.version_table_schema) return m @classmethod def _get_model_schema(cls): m = MetaData() return m def test_no_version_table(self): diffs = [] ctx = self.autogen_context autogenerate._produce_net_changes(ctx, diffs) eq_(diffs, []) def test_version_table_in_target(self): diffs = [] Table( self.version_table_name, self.m2, Column('x', Integer), schema=self.version_table_schema) ctx = self.autogen_context autogenerate._produce_net_changes(ctx, diffs) eq_(diffs, []) class AutogenCustomVersionTableSchemaTest(AutogenVersionTableTest): __only_on__ = 'postgresql' version_table_schema = 'test_schema' configure_opts = {'version_table_schema': 'test_schema'} class AutogenCustomVersionTableTest(AutogenVersionTableTest): version_table_name = 'my_version_table' configure_opts = {'version_table': 'my_version_table'} class AutogenCustomVersionTableAndSchemaTest(AutogenVersionTableTest): __only_on__ = 'postgresql' version_table_name = 'my_version_table' version_table_schema = 'test_schema' configure_opts = { 'version_table': 'my_version_table', 'version_table_schema': 'test_schema'} class AutogenerateDiffOrderTest(AutogenTest, TestBase): __only_on__ = 'sqlite' @classmethod def _get_db_schema(cls): return MetaData() @classmethod def _get_model_schema(cls): m = MetaData() Table('parent', m, Column('id', Integer, primary_key=True) ) Table('child', m, Column('parent_id', Integer, ForeignKey('parent.id')), ) return m def test_diffs_order(self): """ Added in order to test that child tables(tables with FKs) are generated before their parent tables """ ctx = self.autogen_context uo = ops.UpgradeOps(ops=[]) autogenerate._produce_net_changes(ctx, uo) diffs = uo.as_diffs() eq_(diffs[0][0], 'add_table') eq_(diffs[0][1].name, "parent") eq_(diffs[1][0], 'add_table') eq_(diffs[1][1].name, "child") class CompareMetadataTest(ModelOne, AutogenTest, TestBase): __only_on__ = 'sqlite' def test_compare_metadata(self): metadata = self.m2 diffs = autogenerate.compare_metadata(self.context, metadata) eq_( diffs[0], ('add_table', metadata.tables['item']) ) eq_(diffs[1][0], 'remove_table') eq_(diffs[1][1].name, "extra") eq_(diffs[2][0], "add_column") eq_(diffs[2][1], None) eq_(diffs[2][2], "address") eq_(diffs[2][3], metadata.tables['address'].c.street) eq_(diffs[3][0], "add_constraint") eq_(diffs[3][1].name, "uq_email") eq_(diffs[4][0], "add_column") eq_(diffs[4][1], None) eq_(diffs[4][2], "order") eq_(diffs[4][3], metadata.tables['order'].c.user_id) eq_(diffs[5][0][0], "modify_type") eq_(diffs[5][0][1], None) eq_(diffs[5][0][2], "order") eq_(diffs[5][0][3], "amount") eq_(repr(diffs[5][0][5]), "NUMERIC(precision=8, scale=2)") eq_(repr(diffs[5][0][6]), "Numeric(precision=10, scale=2)") self._assert_fk_diff( diffs[6], "add_fk", "order", ["user_id"], "user", ["id"] ) eq_(diffs[7][0][0], "modify_default") eq_(diffs[7][0][1], None) eq_(diffs[7][0][2], "user") eq_(diffs[7][0][3], "a1") eq_(diffs[7][0][6].arg, "x") eq_(diffs[8][0][0], 'modify_nullable') eq_(diffs[8][0][5], True) eq_(diffs[8][0][6], False) eq_(diffs[9][0], 'remove_index') eq_(diffs[9][1].name, 'pw_idx') eq_(diffs[10][0], 'remove_column') eq_(diffs[10][3].name, 'pw') def test_compare_metadata_include_object(self): metadata = self.m2 def include_object(obj, name, type_, reflected, compare_to): if type_ == "table": return name in ("extra", "order") elif type_ == "column": return name != "amount" else: return True context = MigrationContext.configure( connection=self.bind.connect(), opts={ 'compare_type': True, 'compare_server_default': True, 'include_object': include_object, } ) diffs = autogenerate.compare_metadata(context, metadata) eq_(diffs[0][0], 'remove_table') eq_(diffs[0][1].name, "extra") eq_(diffs[1][0], "add_column") eq_(diffs[1][1], None) eq_(diffs[1][2], "order") eq_(diffs[1][3], metadata.tables['order'].c.user_id) def test_compare_metadata_include_symbol(self): metadata = self.m2 def include_symbol(table_name, schema_name): return table_name in ('extra', 'order') context = MigrationContext.configure( connection=self.bind.connect(), opts={ 'compare_type': True, 'compare_server_default': True, 'include_symbol': include_symbol, } ) diffs = autogenerate.compare_metadata(context, metadata) eq_(diffs[0][0], 'remove_table') eq_(diffs[0][1].name, "extra") eq_(diffs[1][0], "add_column") eq_(diffs[1][1], None) eq_(diffs[1][2], "order") eq_(diffs[1][3], metadata.tables['order'].c.user_id) eq_(diffs[2][0][0], "modify_type") eq_(diffs[2][0][1], None) eq_(diffs[2][0][2], "order") eq_(diffs[2][0][3], "amount") eq_(repr(diffs[2][0][5]), "NUMERIC(precision=8, scale=2)") eq_(repr(diffs[2][0][6]), "Numeric(precision=10, scale=2)") eq_(diffs[2][1][0], 'modify_nullable') eq_(diffs[2][1][2], 'order') eq_(diffs[2][1][5], False) eq_(diffs[2][1][6], True) def test_compare_metadata_as_sql(self): context = MigrationContext.configure( connection=self.bind.connect(), opts={'as_sql': True} ) metadata = self.m2 assert_raises_message( CommandError, "autogenerate can't use as_sql=True as it prevents " "querying the database for schema information", autogenerate.compare_metadata, context, metadata ) class PGCompareMetaData(ModelOne, AutogenTest, TestBase): __only_on__ = 'postgresql' schema = "test_schema" def test_compare_metadata_schema(self): metadata = self.m2 context = MigrationContext.configure( connection=self.bind.connect(), opts={ "include_schemas": True } ) diffs = autogenerate.compare_metadata(context, metadata) eq_( diffs[0], ('add_table', metadata.tables['test_schema.item']) ) eq_(diffs[1][0], 'remove_table') eq_(diffs[1][1].name, "extra") eq_(diffs[2][0], "add_column") eq_(diffs[2][1], "test_schema") eq_(diffs[2][2], "address") eq_(diffs[2][3], metadata.tables['test_schema.address'].c.street) eq_(diffs[3][0], "add_constraint") eq_(diffs[3][1].name, "uq_email") eq_(diffs[4][0], "add_column") eq_(diffs[4][1], "test_schema") eq_(diffs[4][2], "order") eq_(diffs[4][3], metadata.tables['test_schema.order'].c.user_id) eq_(diffs[5][0][0], 'modify_nullable') eq_(diffs[5][0][5], False) eq_(diffs[5][0][6], True) class OrigObjectTest(TestBase): def setUp(self): self.metadata = m = MetaData() t = Table( 't', m, Column('id', Integer(), primary_key=True), Column('x', Integer()) ) self.ix = Index('ix1', t.c.id) fk = ForeignKeyConstraint(['t_id'], ['t.id']) q = Table( 'q', m, Column('t_id', Integer()), fk ) self.table = t self.fk = fk self.ck = CheckConstraint(t.c.x > 5) t.append_constraint(self.ck) self.uq = UniqueConstraint(q.c.t_id) self.pk = t.primary_key def test_drop_fk(self): fk = self.fk op = ops.DropConstraintOp.from_constraint(fk) is_(op.to_constraint(), fk) is_(op.reverse().to_constraint(), fk) def test_add_fk(self): fk = self.fk op = ops.AddConstraintOp.from_constraint(fk) is_(op.to_constraint(), fk) is_(op.reverse().to_constraint(), fk) is_not_(None, op.to_constraint().table) def test_add_check(self): ck = self.ck op = ops.AddConstraintOp.from_constraint(ck) is_(op.to_constraint(), ck) is_(op.reverse().to_constraint(), ck) is_not_(None, op.to_constraint().table) def test_drop_check(self): ck = self.ck op = ops.DropConstraintOp.from_constraint(ck) is_(op.to_constraint(), ck) is_(op.reverse().to_constraint(), ck) is_not_(None, op.to_constraint().table) def test_add_unique(self): uq = self.uq op = ops.AddConstraintOp.from_constraint(uq) is_(op.to_constraint(), uq) is_(op.reverse().to_constraint(), uq) is_not_(None, op.to_constraint().table) def test_drop_unique(self): uq = self.uq op = ops.DropConstraintOp.from_constraint(uq) is_(op.to_constraint(), uq) is_(op.reverse().to_constraint(), uq) is_not_(None, op.to_constraint().table) def test_add_pk_no_orig(self): op = ops.CreatePrimaryKeyOp('pk1', 't', ['x', 'y']) pk = op.to_constraint() eq_(pk.name, 'pk1') eq_(pk.table.name, 't') def test_add_pk(self): pk = self.pk op = ops.AddConstraintOp.from_constraint(pk) is_(op.to_constraint(), pk) is_(op.reverse().to_constraint(), pk) is_not_(None, op.to_constraint().table) def test_drop_pk(self): pk = self.pk op = ops.DropConstraintOp.from_constraint(pk) is_(op.to_constraint(), pk) is_(op.reverse().to_constraint(), pk) is_not_(None, op.to_constraint().table) def test_drop_column(self): t = self.table op = ops.DropColumnOp.from_column_and_tablename(None, 't', t.c.x) is_(op.to_column(), t.c.x) is_(op.reverse().to_column(), t.c.x) is_not_(None, op.to_column().table) def test_add_column(self): t = self.table op = ops.AddColumnOp.from_column_and_tablename(None, 't', t.c.x) is_(op.to_column(), t.c.x) is_(op.reverse().to_column(), t.c.x) is_not_(None, op.to_column().table) def test_drop_table(self): t = self.table op = ops.DropTableOp.from_table(t) is_(op.to_table(), t) is_(op.reverse().to_table(), t) is_(self.metadata, op.to_table().metadata) def test_add_table(self): t = self.table op = ops.CreateTableOp.from_table(t) is_(op.to_table(), t) is_(op.reverse().to_table(), t) is_(self.metadata, op.to_table().metadata) def test_drop_index(self): op = ops.DropIndexOp.from_index(self.ix) is_(op.to_index(), self.ix) is_(op.reverse().to_index(), self.ix) def test_create_index(self): op = ops.CreateIndexOp.from_index(self.ix) is_(op.to_index(), self.ix) is_(op.reverse().to_index(), self.ix)
the-stack_106_18470
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' import time import shutil import os import math import matplotlib.pyplot as plt import skimage.io as skio import skimage.transform as sktf import skimage.exposure as skexp import numpy as np import keras from keras.layers import Conv2D, UpSampling2D, \ Flatten, Activation, Reshape, MaxPooling2D, Input, merge from keras.models import Model import keras.losses import keras.callbacks as kall import pandas as pd from keras.preprocessing.image import ImageDataGenerator from keras.utils.vis_utils import plot_model as kplot from keras.utils import np_utils from keras.utils.vis_utils import plot_model from run01_fcncls_channel_train_v2 import readDataImagesCls, prepareCervixAndChannelInfo, buildModelFCNNCLS_UpSampling2D_V3 def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() ##################################################### if __name__ == '__main__': # (1) Setup Tran/Validation data fidx = '/home/ar/@Kaggle/01_Intel_&_MobileODT_Cervical_Cancer_Screening/data/test/00_test_original-1024x1024-bordered/idx.txt' # fidx = '/home/ar/@Kaggle/01_Intel_&_MobileODT_Cervical_Cancer_Screening/data/test/00_test_original-512x512-bordered/idx.txt' fidxOut = '{0}-fcncls-v5.csv'.format(fidx) wdirVal = os.path.dirname(fidx) pathImgs = pd.read_csv(fidx)['path'].as_matrix() pathImgs = np.array([os.path.join(wdirVal, '{0}'.format(xx)) for xx in pathImgs]) # (2) Input/Output models sizeImg = 1024 # sizeImg = 512 pathModelRestart = '/home/ar/@Kaggle/01_Intel_&_MobileODT_Cervical_Cancer_Screening/data/train-original-1024x1024-bordered/models_test/model_fcncls_channel_V2_valAcc_v1.h5' # pathModelRestart = '/home/ar/@Kaggle/01_Intel_&_MobileODT_Cervical_Cancer_Screening/data/train-original-512x512-bordered/model_fcncls_channel_V2_valLoss_v1.h5' dataShape = (sizeImg, sizeImg, 3) mskShape = (sizeImg, sizeImg) numCls = 4 model = buildModelFCNNCLS_UpSampling2D_V3(inpShape=dataShape, numCls=numCls) model.load_weights(pathModelRestart) model.summary() # (5) Preload data numImg = len(pathImgs) # arrResults = np.zeros((numImg, numCls-1)) arrImgIdx = [] for ipath, path in enumerate(pathImgs): arrImgIdx.append(os.path.basename(path)) fimgMasked = '{0}-msk.png-channel.png'.format(path) timg4 = skio.imread(fimgMasked) # tinf = prepareCervixAndChannelInfo(timg) # dataBatch = preprocImgForInference(timg, tinf,batchSize=64, isRandomize=True) timg3 = timg4[:,:,:3].astype(np.float32)/127.5 - 1.0 tmsk = timg4[:,:, 3] ret = model.predict_on_batch(timg3.reshape([1] + list(timg3.shape)))[0] retProb = ret.reshape((sizeImg, sizeImg, numCls)) retProbTypes = ret.copy() # retProbTypes[:,0] = 0 retSortIdx = np.argsort(-retProbTypes, axis=1)[:,0].reshape(mskShape) retSortIdx[tmsk<100]=0 # (1) if np.sum(retSortIdx>0)>7: retProbL = retProb.reshape([-1, numCls]) retSortIdxL = retSortIdx.reshape(-1) tmpProbs = [] for xx in range(3): tprobCls = np.sum(retProb[:,:,xx+1] * (retSortIdx==(xx+1)) ) tmpProbs.append(tprobCls) tmpProbs = np.array(tmpProbs) tmpProbs /= tmpProbs.sum() tmpProbs[tmpProbs<0.1] = 0.1 tmpProbs /= tmpProbs.sum() probCls = tmpProbs else: probCls = np.array([0.1688, 0.5273, 0.3038]) # (2) # if np.sum(retSortIdx>0)>7: # tmpProbs = np.array([float(np.sum(retSortIdx==(xx+1))) for xx in range(3)]) # tmpProbs /= tmpProbs.sum() # tmpProbs[tmpProbs>0.9] = 0.9 # tmpProbs /= tmpProbs.sum() # probCls = tmpProbs # else: # probCls = np.array([0.1688, 0.5273, 0.3038]) # plt.imshow(retSortIdx) # plt.show() # # (3) # tmskChn = (tmsk.reshape(-1)==128) # probOnChn = ret.copy() # probOnChn[~tmskChn] = 0 # # if np.sum(probOnChn)>0.001: # probCls = np.sum(probOnChn, axis=0)[1:] # else: # probCls = np.array([0.1688,0.5273,0.3038]) # probClsMean = probCls / np.sum(probCls) # probClsSMax = softmax(probClsMean) # arrResults[ipath] = probClsMean arrResults[ipath] = probCls print ('\t[{0}/{1}]'.format(ipath, numImg)) print ('---') with open(fidxOut, 'w') as f: f.write('image_name,Type_1,Type_2,Type_3\n') for ii in range(len(arrImgIdx)): fimgIdx = arrImgIdx[ii] probs = arrResults[ii] f.write('{0},{1:0.5f},{2:0.5f},{3:0.5f}\n'.format(fimgIdx, probs[0], probs[1], probs[2])) print ('-')
the-stack_106_18471
""" References: * https://arxiv.org/abs/2104.13963 * https://github.com/facebookresearch/suncet/blob/master/src/losses.py Majority of the code comes from here: https://github.com/facebookresearch/suncet/blob/master/src/losses.py """ from . import config from copy import deepcopy import tensorflow as tf def get_paws_loss(multicrop=6, tau=0.1, T=0.25, me_max=True): """ Computes PAWS loss :param multicrop: number of small views :param tau: cosine temperature :param T: sharpening temperature :param me_max: mean entropy maximization flag :return: PAWS loss """ def sharpen(proba): """ Target sharpening function """ sharp_p = proba ** (1.0 / T) sharp_p /= tf.reduce_sum(sharp_p, axis=1, keepdims=True) return sharp_p def snn(query, supports, labels): """ Soft Nearest Neighbours similarity classifier """ # Step 1: Normalize embeddings query = tf.math.l2_normalize(query, axis=1) supports = tf.math.l2_normalize(supports, axis=1) # Step 2: Compute similarity return tf.nn.softmax(query @ tf.transpose(supports) / tau, axis=1) @ labels def loss( anchor_views, anchor_supports, anchor_support_labels, target_views, target_supports, target_support_labels, sharpen=sharpen, snn=snn, ): # -- NOTE: num views of each unlabeled instance = 2+multicrop # 2 global views and 6 local views batch_size = len(anchor_views) // (2 + multicrop) # Step 1: Compute anchor predictions probs = snn(anchor_views, anchor_supports, anchor_support_labels) # Step 2: Compute targets for anchor predictions targets = tf.stop_gradient( snn(target_views, target_supports, target_support_labels) ) targets = tf.stop_gradient(sharpen(targets)) if multicrop > 0: mc_target = tf.stop_gradient( 0.5 * (targets[:batch_size] + targets[batch_size:]) ) targets = tf.stop_gradient( tf.concat([targets, *[mc_target for _ in range(multicrop)]], axis=0) ) # For numerical stability mask = tf.stop_gradient(tf.math.greater(targets, 1e-4)) mask = tf.stop_gradient(tf.cast(mask, dtype=targets.dtype)) targets *= tf.stop_gradient(mask) # Step 3: compute cross-entropy loss H(targets, queries) loss = tf.reduce_mean(tf.reduce_sum(tf.math.log(probs ** (-targets)), axis=1)) # Step 4: compute me-max regularizer rloss = 0.0 if me_max: avg_probs = tf.reduce_mean(sharpen(probs), axis=0) rloss -= tf.reduce_sum(tf.math.log(avg_probs ** (-avg_probs))) return loss, rloss return loss def get_suncet_loss( num_classes=10, batch_size=64 * config.SUP_VIEWS, temperature=0.1, rank=0 ): """ Computes supervised noise contrastive estimation loss (refer https://arxiv.org/abs/2006.10803) :param num_classes: number of image classes :param batch_size: number of images per class per batch :param temperature: cosine temperature :param rank: denotes the rank of the current deivce (0 in this implementation) :return: SUNCET loss """ local_images = batch_size * num_classes total_images = deepcopy((local_images)) diag_mask = tf.Variable(tf.ones((local_images, total_images))) offset = rank * local_images for i in range(local_images): diag_mask[i, offset + i].assign(0.0) diag_mask = tf.convert_to_tensor(diag_mask) def contrastive_loss(z, labels): # Step 1: Normalize embeddings z = tf.math.l2_normalize(z, axis=1) # Step 2: Compute class predictions exp_cs = tf.math.exp(z @ tf.transpose(z) / temperature) * diag_mask exp_cs_sum = tf.reduce_sum(exp_cs, axis=1, keepdims=True) probs = tf.math.divide(exp_cs, exp_cs_sum) @ labels # Step 3: compute loss for predictions targets = labels[offset : offset + local_images] overlap = probs ** (-targets) loss = tf.reduce_mean(tf.reduce_sum(tf.math.log(overlap), axis=1)) return loss return contrastive_loss
the-stack_106_18472
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from xnas.search_algorithm.utils import Categorical from xnas.core.utils import index_to_one_hot, one_hot_to_index import copy # SNG + DDPNAS class MIGO: """ Stochastic Natural Gradient for Categorical Distribution """ def __init__(self, categories, delta_init=1., step=3, pruning=True, init_theta=None, max_mize=True, sample_with_prob=False, utility_function='picewise', utility_function_hyper=0.5, momentum=True, gamma=0.9, sampling_number_per_edge=1): # Categorical distribution self.p_model = Categorical(categories) # valid dimension size self.p_model.C = np.array(self.p_model.C) self.valid_d = len(self.p_model.C[self.p_model.C > 1]) if init_theta is not None: self.p_model.theta = init_theta self.delta = delta_init self.eps = self.delta self.sample = [] self.objective = [] self.max_mize = -1 if max_mize else 1 # this is for dynamic distribution self.sample_with_prob = sample_with_prob self.ignore_index = [] self.sample_index = [] self.pruned_index = [] self.pruning = pruning self.steps = step self.current_step = 1 self.training_finish = False self.utility_function = utility_function self.utility_function_hyper = utility_function_hyper self.Momentum = momentum self.gamma = gamma self.velocity = np.zeros(self.p_model.theta.shape) self.init_record() self.sampling_number_per_edge = sampling_number_per_edge def init_record(self): for i in range(self.p_model.d): self.ignore_index.append([]) self.sample_index.append(list(range(self.p_model.Cmax))) self.pruned_index.append([]) def get_delta(self): return self.delta def record_information(self, sample, objective): self.sample.append(sample) self.objective.append(objective*self.max_mize) def sampling(self): if self.sampling_number_per_edge == 1: return index_to_one_hot(self.sampling_index(), self.p_model.Cmax) else: sample = [] sample_one_hot_like = np.zeros([self.p_model.d, self.p_model.Cmax]) for i in range(self.p_model.d): # get the prob if self.sample_with_prob: prob = copy.deepcopy(self.p_model.theta[i, self.sample_index[i]]) prob = prob / prob.sum() sample.append(np.random.choice( self.sample_index[i], size=self.sampling_number_per_edge, p=prob, replace=False)) else: sample.append(np.random.choice(self.sample_index[i], size=self.sampling_number_per_edge, replace=False)) if len(self.sample_index[i]) > 0: for j in sample[i]: self.sample_index[i].remove(int(j)) for j in range(self.sampling_number_per_edge): sample_one_hot_like[i, int(sample[i][j])] = 1 return sample_one_hot_like def sampling_best(self): sample = [] for i in range(self.p_model.d): sample.append(np.argmax(self.p_model.theta[i])) sample = np.array(sample) return index_to_one_hot(sample, self.p_model.Cmax) def sampling_index(self): # fairness sampling sample = [] for i in range(self.p_model.d): # get the prob if self.sample_with_prob: prob = copy.deepcopy(self.p_model.theta[i, self.sample_index[i]]) prob = prob / prob.sum() sample.append(int(np.random.choice(self.sample_index[i], p=prob))) else: sample.append(int(np.random.choice(self.sample_index[i]))) if len(self.sample_index[i]) > 0: self.sample_index[i].remove(sample[i]) return np.array(sample) def mle(self): """ Get most likely categorical variables (one-hot) """ m = self.p_model.theta.argmax(axis=1) x = np.zeros((self.p_model.d, self.p_model.Cmax)) for i, c in enumerate(m): x[i, c] = 1 return x def update(self): if len(self.sample_index[0]) < self.sampling_number_per_edge: objective = np.array(self.objective) sample_array = np.array(self.sample) self.update_function(sample_array, objective) self.sample = [] self.objective = [] self.current_step += 1 if self.pruning and self.current_step > self.steps: # pruning the index pruned_weight = copy.deepcopy(self.p_model.theta) for index in range(self.p_model.d): if not len(self.pruned_index[index]) == 0: pruned_weight[index, self.pruned_index[index]] = np.nan self.pruned_index[index].append(np.nanargmin(pruned_weight[index, :])) if len(self.pruned_index[0]) >= (self.p_model.Cmax - self.sampling_number_per_edge): self.training_finish = True self.current_step = 1 self.update_sample_index() def update_sample_index(self): for i in range(self.p_model.d): self.sample_index[i] = list(set(range(self.p_model.Cmax)) - set(self.pruned_index[i])) def update_function(self, c_one, fxc, range_restriction=True): aru, idx = self.utility(fxc) if np.all(aru == 0): # If all the points have the same f-value, # nothing happens for theta and breaks. # In this case, we skip the rest of the code. return ng = np.mean(aru[:, np.newaxis, np.newaxis] * (c_one[idx] - self.p_model.theta), axis=0) # more readable sl = [] for i, K in enumerate(self.p_model.C): theta_i = self.p_model.theta[i, :] s_i = 1. / np.sqrt(theta_i) * ng[i, :] sl += list(s_i) sl = np.array(sl) pnorm = np.sqrt(np.dot(sl, sl)) + 1e-8 self.eps = self.delta / pnorm if self.Momentum: self.velocity = self.gamma * self.velocity + (1 - self.gamma) * self.eps * ng self.p_model.theta += self.velocity else: self.p_model.theta += self.eps * ng for i in range(self.p_model.d): ci = self.p_model.C[i] # Constraint for theta (minimum value of theta and sum of theta = 1.0) theta_min = 1. / (self.valid_d * (ci - 1)) if range_restriction and ci > 1 else 0. self.p_model.theta[i, :ci] = np.maximum(self.p_model.theta[i, :ci], theta_min) theta_sum = self.p_model.theta[i, :ci].sum() tmp = theta_sum - theta_min * ci self.p_model.theta[i, :ci] -= (theta_sum - 1.) * (self.p_model.theta[i, :ci] - theta_min) / tmp # Ensure the summation to 1 self.p_model.theta[i, :ci] /= self.p_model.theta[i, :ci].sum() def utility(self, f, rho=0.25, negative=True): """ Ranking Based Utility Transformation w(f(x)) / lambda = 1/mu if rank(x) <= mu 0 if mu < rank(x) < lambda - mu -1/mu if lambda - mu <= rank(x) where rank(x) is the number of at least equally good points, including it self. The number of good and bad points, mu, is ceil(lambda/4). That is, mu = 1 if lambda = 2 mu = 1 if lambda = 4 mu = 2 if lambda = 6, etc. If there exist tie points, the utility values are equally distributed for these points.a """ eps = 1e-14 idx = np.argsort(f) lam = len(f) mu = int(np.ceil(lam * rho)) if self.utility_function == 'picewise': _w = np.zeros(lam) _w[:mu] = 1 / mu _w[lam - mu:] = -1 / mu if negative else 0 elif self.utility_function == 'log': _w = np.zeros(lam) _x = np.array([i+1 for i in range(lam)]) _x = (_x - np.mean(_x)) / np.max(_x) * 1.5 _w = np.flip(np.clip(self.utility_function_hyper * np.log((1+_x)/(1-_x)), a_min=-1, a_max=1)) elif self.utility_function == 'distance_log': _w = np.zeros(lam) _f = np.sort(f) - np.min(f) _x = (_f / np.max(_f) - 0.5) _w = np.flip(np.clip(self.utility_function_hyper * np.log((1 + _x) / (1 - _x)), a_min=-1, a_max=1)) else: raise NotImplementedError w = np.zeros(lam) istart = 0 for i in range(f.shape[0] - 1): if f[idx[i + 1]] - f[idx[i]] < eps * f[idx[i]]: pass elif istart < i: w[istart:i + 1] = np.mean(_w[istart:i + 1]) istart = i + 1 else: w[i] = _w[i] istart = i + 1 w[istart:] = np.mean(_w[istart:]) return w, idx def log_header(self, theta_log=False): header_list = ['delta', 'eps', 'theta_converge'] if theta_log: for i in range(self.p_model.d): header_list += ['theta%d_%d' % (i, j) for j in range(self.C[i])] return header_list def log(self, theta_log=False): log_list = [self.delta, self.eps, self.p_model.theta.max(axis=1).mean()] if theta_log: for i in range(self.p_model.d): log_list += ['%f' % self.p_model.theta[i, j] for j in range(self.C[i])] return log_list def load_theta_from_log(self, theta_log): self.p_model.theta = np.zeros((self.p_model.d, self.p_model.Cmax)) k = 0 for i in range(self.p_model.d): for j in range(self.p_model.C[i]): self.p_model.theta[i, j] = theta_log[k] k += 1
the-stack_106_18473
# -*- coding: utf-8 -*- import scrapy class scrapykmbab08Spider(scrapy.Spider): name = "scrapykmbab08" allowed_domains = ["ganjoor.net"] if 2 == 1: start_urls = ["https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab08/sh"] else: start_urls = ["https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab08/sh" + "1"] order = 1 def parse(self, response): index = 0 sh = dict() sh["type"] = "fasl" sh["text"] = dict() for i, poem in enumerate(response.css("div.poem>article>*")): if index == 0: if 0 == 1: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 0 == 2: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m2>p::text").extract()).strip() elif 0 == 3: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 0 == 4: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m2>p::text").extract()).strip() else: sh["title"] = ''.join(response.css("div.poem>article>h2>a::text").extract_first()).strip() if poem.css("p::text").extract_first() is None or 'rel="bookmark"' in poem.css('*').extract_first() or 'class="spacer"' in poem.css('*').extract_first() or '<div style=' in poem.css('*').extract_first(): continue if len(poem.css("div.m1>p")) == 1: if poem.css("div.b"): if '٭٭٭' not in poem.css("div.m1>p::text").extract_first() and ''.join(poem.css("div.m1>p::text").extract()).strip() != '': sh["text"][index] = dict([ ("m1", ''.join(poem.css("div.m1>p::text").extract()).strip()), ("m2", ''.join(poem.css("div.m2>p::text").extract()).strip()), ]) else: if '٭٭٭' not in poem.css("p:first-child::text").extract_first() and ''.join(poem.css("p:first-child::text").extract()).strip() != '': sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: if poem.css("div.b2"): if '٭٭٭' not in poem.css("p:first-child::text").extract_first() and ''.join(poem.css("p:first-child::text").extract()).strip() != '': sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: if '٭٭٭' not in poem.css('p::text').extract_first() and ''.join(poem.css('p::text').extract()).strip() != '': sh['text'][index] = dict([ ('p', ''.join(poem.css('p::text').extract()).strip()) ]) index = index + 1 sh["order"] = self.order self.order = self.order + 1 yield sh # next_page = response.css("div.navigation>div.navleft>a::attr(href)").extract_first() if self.order < (2 + 1): next_page = response.urljoin("https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab08/sh" + str(self.order)) yield scrapy.Request(next_page, callback=self.parse)
the-stack_106_18475
import json import sys import asyncio from typing import Dict class DataController(object): def __init__(self): self.dataFile: str = "data.json" self.settingsFile: str = "settings.json" async def get_data(self) -> Dict[str, any]: try: with open(self.dataFile, 'r') as f: return json.load(f) except (FileNotFoundError, IOError): print("\x1b[1;31m[ERROR]:\x1b[0m data.json file not found, create a new.") jsonData: Dict[str, any] = { "warns": {}, "ticket-channel-ids": [], "ticket-id-counter": 0, "users-with-active-tickets": [] } with open(self.dataFile, 'w') as f: json.dump(jsonData, f, ensure_ascii=True, indent=4) return jsonData async def get_settings(self) -> Dict[str, any]: try: with open(self.settingsFile, 'r') as f: return json.load(f) except (FileNotFoundError, IOError): print("\x1b[1;31m[ERROR]:\x1b[0m settings.json not found, create a new with default data, please fill data with yours") jsonSettings: Dict[str, any] = { "warns":{ "ban-warns-reach": True, "max-warns": 3, "ban-time": 10800 }, "channels": { "support-channel-id": "000000000000000000", "support-category-id": "000000000000000000", "support-log-channeld-id": "000000000000000000" }, "support-role": "ADMIN", "enable-channel-logger": True } with open(self.settingsFile, 'w+') as f: json.dump(jsonSettings, f, ensure_ascii=True, indent=4) return jsonSettings async def save_data(self, data: dict) -> None: with open(self.dataFile, 'w') as f: json.dump(data, f, ensure_ascii=True, indent=4)
the-stack_106_18476
# from layout2 import Layout # import layout2 from layout2 import Layout, UPPER_LEFT_CORNER, UPPER_RIGHT_CORNER,\ HORIZONTAL_BAR, VERTICAL_BAR, LOWER_LEFT_CORNER, LOWER_RIGHT_CORNER,\ RTL, RTLPOP import curses def test_layout_creation(): board = Layout('src/English.csv') assert board def test_layout_creation_missing_file(): try: board = Layout('src/Klingon.csv') assert not board except FileNotFoundError: assert True else: assert False def test_layout_dump(): board = Layout('src/English.csv') assert 'a' in board.dump_keyboard() def test_position_calc_known(): board = Layout('src/English.csv') row, col = board.calculate_position('1') assert row == 1 and col == 4, f'row {row} != {1} and col {col} != {4}' def test_position_calc_unknown(): board = Layout('src/English.csv') row, col = board.calculate_position('ب') assert row == -1 and col == -1, f'row {row} != {-1} and col {col} != {-1}' def test_boxit(): board = Layout('src/English.csv') result = board.boxit('a') constructed = UPPER_LEFT_CORNER + HORIZONTAL_BAR +\ UPPER_RIGHT_CORNER + '\n' +\ VERTICAL_BAR + 'a' + VERTICAL_BAR + '\n' +\ LOWER_LEFT_CORNER + HORIZONTAL_BAR + LOWER_RIGHT_CORNER + '\n' assert result == constructed def test_boxit_RTL(): board = Layout('src/Farsi_RTL.csv') result = board.boxit('ا') constructed = UPPER_LEFT_CORNER + HORIZONTAL_BAR +\ UPPER_RIGHT_CORNER + '\n' +\ VERTICAL_BAR + f'{RTL}ا{RTLPOP}' + VERTICAL_BAR + '\n' +\ LOWER_LEFT_CORNER + HORIZONTAL_BAR + LOWER_RIGHT_CORNER + '\n' assert result == constructed def test_key_position_default(): board = Layout('src/English.csv') board.screen_init() board.show_keyboard(0, 0) screen = board.screen_dump() value = screen['1,4'] assert value == 49, f'Expected 49, got {value} instead.' board.screen_deinit() def test_key_hint_on(): board = Layout('src/English.csv') board.screen_init() board.show_keyboard(0, 0) board.key_visibility('1') screen = board.screen_dump() value = screen['1,4'] expected = ord('1') | curses.A_STANDOUT assert value == expected, f'Expected {expected}, got {value} instead.' board.screen_deinit() def test_key_hint_off(): board = Layout('src/English.csv') board.screen_init() board.show_keyboard(0, 0) board.key_visibility('1') board.key_visibility('1', 'OFF') screen = board.screen_dump() value = screen['1,4'] expected = ord('1') assert value == expected, f'Expected {expected}, got {value} instead.' board.screen_deinit()
the-stack_106_18477
__author__ = "saeedamen" # Saeed Amen # # Copyright 2016 Cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on a "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # if __name__ == "__main__": ###### below line CRUCIAL when running Windows, otherwise multiprocessing # doesn"t work! (not necessary on Linux) from findatapy.util import SwimPool; SwimPool() from findatapy.timeseries import Filter, Calendar import pandas as pd calendar = Calendar() filter = Filter() # choose run_example = 0 for everything # run_example = 1 - get holidays for FX, EUR and EURUSD, as well as # listing weekends # run_example = 2 - get FX delivery dates and FX option expiries for # various tenors # run_example = 3 - get number of days between pandas DatetimeIndex # run_example = 4 - filter time series by EURUSD holidays # run_example = 4 - option expiries for USDJPY run_example = 0 if run_example == 1 or run_example == 0: # Get the holidays (which aren"t weekends) print(calendar.get_holidays(start_date="01 Jan 1999 00:50", end_date="31 Dec 1999", cal="FX")) print(calendar.get_holidays(start_date="01 Jan 2000 00:10", end_date="31 Dec 2000", cal="EUR")) print(calendar.get_holidays(start_date="01 Jan 2000 00:10", end_date="31 Dec 2000", cal="EURUSD")) # Get the holidays (which are weekends) print(calendar.get_holidays(start_date="01 Jan 1999 00:50", end_date="31 Dec 1999", cal="WKD")) if run_example == 2 or run_example == 0: # Get delivery dates for these horizon dates - typically would use # to get forward maturities print(calendar.get_delivery_date_from_horizon_date( pd.to_datetime([pd.Timestamp("02 Nov 2020")]), "ON", cal="EURUSD")) print(calendar.get_delivery_date_from_horizon_date( pd.to_datetime([pd.Timestamp("02 Nov 2020")]), "1W", cal="EURUSD")) print(calendar.get_delivery_date_from_horizon_date( pd.to_datetime([pd.Timestamp("27 Nov 2020")]), "1W", cal="EURUSD")) # Get 1M expires for these horizon dates - typically would use to get # option expiries print(calendar.get_expiry_date_from_horizon_date( pd.to_datetime([pd.Timestamp("26 Oct 2020")]), "1M", cal="EURUSD")) if run_example == 3 or run_example == 0: # Create a list of business days and one which is + 1 day bus_days = pd.bdate_range("1 Jan 2020", "30 Jan 2020") bus_days_plus = bus_days + pd.Timedelta(days=7) print(calendar.get_delta_between_dates(bus_days, bus_days_plus)) if run_example == 4 or run_example == 0: # Filter a time series by EURUSD holidays df = pd.DataFrame(index=pd.bdate_range("1 Jan 2020", "31 Dec 2020")) df["Prices"] = 1 df_filtered = filter.filter_time_series_by_holidays(df, "EURUSD") print(len(df.index)) print(len(df_filtered.index)) if run_example == 5 or run_example == 0: # Get expiry for USDJPY # Get 1M expires for these horizon dates - typically would use to get # option expiries print(calendar.get_expiry_date_from_horizon_date( pd.to_datetime([pd.Timestamp("26 Nov 2008")]), "1M", cal="USDJPY"))
the-stack_106_18478
from __future__ import absolute_import import logging from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from django import forms from .jira import JIRAClient, JIRAError log = logging.getLogger(__name__) class JIRAFormUtils(object): @staticmethod def make_choices(x): return [(y["id"], y["name"] if "name" in y else y["value"]) for y in x] if x else [] class JIRAOptionsForm(forms.Form): instance_url = forms.CharField( label=_("JIRA Instance URL"), widget=forms.TextInput(attrs={'class': 'span6', 'placeholder': 'e.g. "https://jira.atlassian.com"'}), help_text=_("It must be visible to the Sentry server"), required=True ) username = forms.CharField( label=_("Username"), widget=forms.TextInput(attrs={'class': 'span6'}), help_text=_("Ensure the JIRA user has admin perm. on the project"), required=True ) password = forms.CharField( label=_("Password"), widget=forms.PasswordInput(attrs={'class': 'span6'}), required=False ) default_project = forms.ChoiceField( label=_("Linked Project"), ) ignored_fields = forms.CharField( label=_("Ignored Fields"), widget=forms.Textarea(attrs={'class': 'span11', 'placeholder': 'e.g. "components, security, customfield_10006"'}), help_text=_("Comma-separated list of properties that you don't want to show in the form"), required=False ) default_priority = forms.ChoiceField( label=_("Default Priority"), required=False ) default_issue_type = forms.ChoiceField( label=_("Default Issue Type"), required=False, ) auto_create = forms.BooleanField( label=_("Auto create JIRA tickets"), help_text=_("Automatically create a JIRA ticket for EVERY new issue"), required=False ) def __init__(self, data=None, *args, **kwargs): super(JIRAOptionsForm, self).__init__(data=data, *args, **kwargs) initial = kwargs.get("initial") or {} for key, value in self.data.items(): initial[key.lstrip(self.prefix or '')] = value has_credentials = all(initial.get(k) for k in ('instance_url', 'username', 'password')) project_safe = False can_auto_create = False # auto_create is not available on new configurations has_auto_create = 'auto_create' in initial if has_credentials: jira = JIRAClient(initial['instance_url'], initial['username'], initial['password']) try: projects_response = jira.get_projects_list() except JIRAError as e: if e.status_code == 401: has_credentials = False else: projects = projects_response.json if projects: project_choices = [(p.get('key'), "%s (%s)" % (p.get('name'), p.get('key'))) for p in projects] project_safe = True can_auto_create = True self.fields["default_project"].choices = project_choices if project_safe and has_auto_create: try: priorities_response = jira.get_priorities() except JIRAError as e: if e.status_code == 401: has_credentials = False else: priorities = priorities_response.json if priorities: priority_choices = [(p.get('id'), "%s" % (p.get('name'))) for p in priorities] self.fields["default_priority"].choices = priority_choices default_project = initial.get('default_project') if default_project: try: meta = jira.get_create_meta_for_project(default_project) except JIRAError as e: if e.status_code == 401: has_credentials = False can_auto_create = False else: if meta: self.fields["default_issue_type"].choices = JIRAFormUtils.make_choices(meta["issuetypes"]) else: can_auto_create = False if not has_credentials: self.fields['password'].required = True else: self.fields['password'].help_text = _("Only enter a new password if you wish to update the stored value") if not project_safe: del self.fields["default_project"] del self.fields["default_issue_type"] del self.fields["default_priority"] del self.fields["ignored_fields"] if not can_auto_create: del self.fields["auto_create"] def clean_password(self): """ Don't complain if the field is empty and a password is already stored, no one wants to type a pw in each time they want to change it. """ pw = self.cleaned_data.get("password") if pw: return pw else: old_pw = self.initial.get("password") if not old_pw: raise ValidationError("A Password is Required") return old_pw def clean_instance_url(self): """ Strip forward slashes off any url passed through the form. """ url = self.cleaned_data.get("instance_url") if url and url[-1:] == "/": return url[:-1] else: return url def clean_auto_create(self): cd = self.cleaned_data if not cd.get('auto_create'): return False if not (cd.get('default_priority') and cd.get('default_issue_type')): raise ValidationError("Default priority and issue type must be configured.") return cd['auto_create'] def clean(self): """ try and build a JIRAClient and make a random call to make sure the configuration is right. """ cd = self.cleaned_data missing_fields = False if not cd.get("instance_url"): self.errors["instance_url"] = ["Instance URL is required"] missing_fields = True if not cd.get("username"): self.errors["username"] = ["Username is required"] missing_fields = True if missing_fields: raise ValidationError("Missing Fields") if cd.get("password"): jira = JIRAClient(cd["instance_url"], cd["username"], cd["password"]) try: sut_response = jira.get_priorities() except JIRAError as e: if e.status_code == 403 or e.status_code == 401: self.errors["username"] = ["Username might be incorrect"] self.errors["password"] = ["Password might be incorrect"] raise ValidationError("Unable to connect to JIRA: %s, if you have " "tried and failed multiple times you may have" " to enter a CAPTCHA in JIRA to re-enable API" " logins." % e.status_code) else: logging.exception(e) raise ValidationError("Unable to connect to JIRA: the remote " "server returned an unhandled %s status " " code" % e.status_code) if not sut_response.json: raise ValidationError("Unable to connect to JIRA: " "the response did not contain valid JSON, did " "you enter the correct instance URL?") return cd # A list of common builtin custom field types for JIRA for easy reference. CUSTOM_FIELD_TYPES = { "select": "com.atlassian.jira.plugin.system.customfieldtypes:select", "textarea": "com.atlassian.jira.plugin.system.customfieldtypes:textarea", "multiuserpicker": "com.atlassian.jira.plugin.system.customfieldtypes:multiuserpicker" } class JIRAIssueForm(forms.Form): project = forms.CharField(widget=forms.HiddenInput()) issuetype = forms.ChoiceField( label="Issue Type", help_text="Changing the issue type will refresh the page with the required form fields.", required=True ) summary = forms.CharField( label=_("Issue Summary"), widget=forms.TextInput(attrs={'class': 'span6'}) ) description = forms.CharField( widget=forms.Textarea(attrs={"class": 'span6'}) ) def __init__(self, *args, **kwargs): self.ignored_fields = set((kwargs.pop("ignored_fields") or '').split(",")) initial = kwargs.get("initial") jira_client = kwargs.pop("jira_client") project_key = kwargs.pop("project_key") priorities = jira_client.get_priorities().json versions = jira_client.get_versions(project_key).json # Returns the metadata the configured JIRA instance requires for # creating issues for a given project. # https://developer.atlassian.com/static/rest/jira/5.0.html#id200251 meta = jira_client.get_create_meta(project_key).json # Early exit, somehow made it here without properly configuring the # plugin. if not meta or not priorities: super(JIRAIssueForm, self).__init__(*args, **kwargs) self.errors["__all__"] = [ "Error communicating with JIRA, Please check your configuration."] return # Early exit #2, no projects available. if len(meta["projects"]) == 0: super(JIRAIssueForm, self).__init__(*args, **kwargs) self.errors["__all__"] = [ "Error in JIRA configuration, no projects found for user {}.".format(jira_client.username) ] return # Looking up the project meta by exact key, so it's always the first # one. project = meta["projects"][0] issue_types = project["issuetypes"] # check if the issuetype was passed as a GET parameter self.issue_type = initial.get("issuetype") if self.issue_type: matching_type = [t for t in issue_types if t["id"] == self.issue_type] self.issue_type = matching_type[0] if len(matching_type) > 0 else None # still no issue type? just use the first one. if not self.issue_type: self.issue_type = issue_types[0] # set back after we've played with the inital data kwargs["initial"] = initial # call the super to bind self.fields from the defaults. super(JIRAIssueForm, self).__init__(*args, **kwargs) self.fields["project"].initial = project["id"] self.fields["issuetype"].choices = JIRAFormUtils.make_choices(issue_types) # apply ordering to fields based on some known built-in JIRA fields. # otherwise weird ordering occurs. anti_gravity = {"priority": -150, "fixVersions": -125, "components": -100, "security": -50} dynamic_fields = self.issue_type.get("fields").keys() dynamic_fields.sort(key=lambda f: anti_gravity.get(f) or 0) # build up some dynamic fields based on required shit. for field in dynamic_fields: if field in self.fields.keys() or field in [x.strip() for x in self.ignored_fields]: # don't overwrite the fixed fields for the form. continue mb_field = self.build_dynamic_field(self.issue_type["fields"][field]) if mb_field: # apply field to form self.fields[field] = mb_field if "priority" in self.fields.keys(): # whenever priorities are available, put the available ones in the list. # allowedValues for some reason doesn't pass enough info. self.fields["priority"].choices = JIRAFormUtils.make_choices(priorities) if "fixVersions" in self.fields.keys(): self.fields["fixVersions"].choices = JIRAFormUtils.make_choices(versions) def clean_description(self): """ Turn code blocks that are in the stack trace into JIRA code blocks. """ desc = self.cleaned_data["description"] return desc.replace("```", "{code}") def clean(self): """ The form clean method needs to take advantage of the loaded issue type fields and meta info so it can determine the format that the datatypes should render as. """ very_clean = self.cleaned_data # protect against mis-configured plugin submitting a form without an # issuetype assigned. if not very_clean.get("issuetype"): raise ValidationError("Issue Type is required. Check your plugin configuration.") fs = self.issue_type["fields"] for field in fs.keys(): f = fs[field] if field in ["description", "summary"]: continue if field in very_clean.keys(): v = very_clean.get(field) if v: schema = f["schema"] if schema.get("type") == "string" and not schema.get("custom") == CUSTOM_FIELD_TYPES["select"]: continue # noop if schema["type"] == "user" or schema.get('items') == "user": v = {"name": v} elif schema.get("custom") == CUSTOM_FIELD_TYPES.get("multiuserpicker"): # custom multi-picker v = [{"name": v}] elif schema["type"] == "array" and schema.get('items') != "string": v = [{"id": vx} for vx in v] elif schema["type"] == "array" and schema.get('items') == "string": v = [v] elif schema.get("custom") == CUSTOM_FIELD_TYPES.get("textarea"): v = v elif (schema.get("type") != "string" or schema.get('items') != "string" or schema.get("custom") == CUSTOM_FIELD_TYPES.get("select")): v = {"id": v} very_clean[field] = v else: # We don't want to pass blank data back to the API, so kill # None values very_clean.pop(field, None) if not (isinstance(very_clean["issuetype"], dict) and "id" in very_clean["issuetype"]): # something fishy is going on with this field, working on some JIRA # instances, and some not. # testing against 5.1.5 and 5.1.4 does not convert (perhaps is no longer included # in the projectmeta API call, and would normally be converted in the # above clean method.) very_clean["issuetype"] = {"id": very_clean["issuetype"]} return very_clean def build_dynamic_field(self, field_meta): """ Builds a field based on JIRA's meta field information """ schema = field_meta["schema"] # set up some defaults for form fields fieldtype = forms.CharField fkwargs = { 'label': field_meta["name"], 'required': field_meta["required"], 'widget': forms.TextInput(attrs={'class': 'span6'}) } # override defaults based on field configuration if (schema["type"] in ["securitylevel", "priority"] or schema.get("custom") == CUSTOM_FIELD_TYPES.get("select")): fieldtype = forms.ChoiceField fkwargs["choices"] = JIRAFormUtils.make_choices(field_meta.get('allowedValues')) fkwargs["widget"] = forms.Select() elif schema.get("items") == "user" or schema["type"] == "user": fkwargs["widget"] = forms.TextInput(attrs={ 'class': 'user-selector', 'data-autocomplete': field_meta.get("autoCompleteUrl") }) elif schema["type"] in ["timetracking"]: # TODO: Implement timetracking (currently unsupported alltogether) return None elif schema.get("items") in ["worklog", "attachment"]: # TODO: Implement worklogs and attachments someday return None elif schema["type"] == "array" and schema["items"] != "string": fieldtype = forms.MultipleChoiceField fkwargs["choices"] = JIRAFormUtils.make_choices(field_meta.get("allowedValues")) fkwargs["widget"] = forms.SelectMultiple() # break this out, since multiple field types could additionally # be configured to use a custom property instead of a default. if schema.get("custom"): if schema["custom"] == CUSTOM_FIELD_TYPES.get("textarea"): fkwargs["widget"] = forms.Textarea(attrs={'class': 'span6'}) return fieldtype(**fkwargs)
the-stack_106_18479
# -*- coding: utf-8 -*- """ Functions for audio featurization. """ import os import math import logging import numpy as np import soundfile as sf import librosa SIGMA_EPS = 1e-12 def stft(frame, _sr, wind, _hop, nfft, synth=False, zphase=False): if not zphase: return np.fft.rfft(frame, n=nfft) fsize = len(wind) woff = (fsize - (fsize % 2)) // 2 zp = np.zeros(nfft - fsize) return np.fft.rfft(np.concatenate((frame[woff:], zp, frame[:woff]))) def istft(frame, _sr, wind, nfft, zphase=False): frame = np.fft.irfft(frame, nfft) if zphase: fsize = len(wind) frame = np.roll(frame, (fsize - (fsize % 2)) // 2)[:fsize] return frame def onlineMVN_perframe( frame_feature, frame_counter, mu, sigmasquare, frameshift=0.01, tauFeat=3., tauFeatInit=0.1, t_init=0.1): """Online mean and variance normalization (per frequency)""" n_init_frames = math.ceil(t_init / frameshift) alpha_feat_init = math.exp(-frameshift / tauFeatInit) alpha_feat = math.exp(-frameshift / tauFeat) if frame_counter < n_init_frames: alpha = alpha_feat_init else: alpha = alpha_feat mu = alpha * mu + (1 - alpha) * frame_feature sigmasquare = alpha * sigmasquare + (1 - alpha) * frame_feature**2 sigma = np.sqrt(np.maximum(sigmasquare - mu**2, SIGMA_EPS)) # limit for sqrt norm_feature = (frame_feature - mu) / sigma frame_counter += 1 return norm_feature, mu, sigmasquare, frame_counter def magphasor(complexspec): """Decompose a complex spectrogram into magnitude and unit phasor. m, p = magphasor(c) such that c == m * p. """ mspec = np.abs(complexspec) pspec = np.empty_like(complexspec) zero_mag = mspec == 0. # fix zero-magnitude pspec[zero_mag] = 1. pspec[~zero_mag] = complexspec[~zero_mag] / mspec[~zero_mag] return mspec, pspec def logpow(sig, floor=-30.): """Compute log power of complex spectrum. Floor any -`np.inf` value to (nonzero minimum + `floor`) dB. If all values are 0s, floor all values to -80 dB. """ log10e = np.log10(np.e) pspec = sig.real**2 + sig.imag**2 zeros = pspec == 0 logp = np.empty_like(pspec) if np.any(~zeros): logp[~zeros] = np.log(pspec[~zeros]) logp[zeros] = np.log(pspec[~zeros].min()) + floor / 10 / log10e else: logp.fill(-80 / 10 / log10e) return logp def hamming(wsize, hop=None): "Compute the Hamming window" if hop is None: return np.hamming(wsize) # For perfect OLA reconstruction in time if wsize % 2: # Fix endpoint problem for odd-size window wind = np.hamming(wsize) wind[0] /= 2. wind[-1] /= 2. else: # even-size window wind = np.hamming(wsize + 1) wind = wind[:-1] assert tnorm(wind, hop), \ "[wsize:{}, hop:{}] violates COLA in time.".format(wsize, hop) return wind def tnorm(wind, hop): amp = tcola(wind, hop) if amp is None: return False wind /= amp return True def tcola(wind, _hop): wsize = len(wind) hsize = 160 buff = wind.copy() # holds OLA buffer and account for time=0 for wi in range(hsize, wsize, hsize): # window moving forward wj = wi + wsize buff[wi:] += wind[:wsize - wi] for wj in range(wsize - hsize, 0, -hsize): # window moving backward wi = wj - wsize buff[:wj] += wind[wsize - wj:] if np.allclose(buff, buff[0]): return buff[0] return None def audioread(path, sr=None, start=0, stop=None, mono=True, norm=False): path = os.path.abspath(path) if not os.path.exists(path): logging.error('File does not exist: %s', path) raise ValueError("[{}] does not exist!".format(path)) try: x, xsr = sf.read(path, start=start, stop=stop) except RuntimeError: # fix for sph pcm-embedded shortened v2 logging.warning('Audio type not supported for file %s. Trying sph2pipe...', path) if len(x.shape) == 1: # mono if sr and xsr != sr: print("Resampling to sampling rate:", sr) x = librosa.resample(x, xsr, sr) xsr = sr if norm: print("Normalization input data") x /= np.max(np.abs(x)) return x, xsr # multi-channel x = x.T if sr and xsr != sr: x = librosa.resample(x, xsr, sr, axis=1) xsr = sr if mono: x = x.sum(axis=0) / x.shape[0] if norm: for chan in range(x.shape[0]): x[chan, :] /= np.max(np.abs(x[chan, :])) return x, xsr def audiowrite(data, sr, outpath, norm=False): logging.debug("Writing to: %s", outpath) if np.max(np.abs(data)) == 0: # in case all entries are 0s logging.warning("All-zero output! Something is not quite right," " check your input audio clip and model.") outpath = os.path.abspath(outpath) outdir = os.path.dirname(outpath) if not os.path.exists(outdir): os.makedirs(outdir) sf.write(outpath, data, sr)
the-stack_106_18480
#!/usr/bin/env python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl import kfp.compiler as compiler import databricks def create_cluster(cluster_name): return databricks.CreateClusterOp( name="createcluster", cluster_name=cluster_name, spark_version="5.3.x-scala2.11", node_type_id="Standard_D3_v2", spark_conf={ "spark.speculation": "true" }, num_workers=2 ) def submit_run(run_name, cluster_id, parameter): return databricks.SubmitRunOp( name="submitrun", run_name=run_name, existing_cluster_id=cluster_id, libraries=[{"jar": "dbfs:/docs/sparkpi.jar"}], spark_jar_task={ "main_class_name": "org.apache.spark.examples.SparkPi", "parameters": [parameter] } ) def delete_run(run_name): return databricks.DeleteRunOp( name="deleterun", run_name=run_name ) def delete_cluster(cluster_name): return databricks.DeleteClusterOp( name="deletecluster", cluster_name=cluster_name ) @dsl.pipeline( name="DatabricksCluster", description="A toy pipeline that computes an approximation to pi with Azure Databricks." ) def pipeline_calc(cluster_name="test-cluster", run_name="test-run", parameter="10"): create_cluster_task = create_cluster(cluster_name) submit_run_task = submit_run(run_name, create_cluster_task.outputs["cluster_id"], parameter) delete_run_task = delete_run(run_name) delete_run_task.after(submit_run_task) delete_cluster_task = delete_cluster(cluster_name) delete_cluster_task.after(delete_run_task) if __name__ == "__main__": compiler.Compiler()._create_and_write_workflow( pipeline_func=pipeline_calc, package_path=__file__ + ".tar.gz")
the-stack_106_18481
#!/usr/bin/env python from __future__ import print_function import logging import os import signal import sys import uuid import zipfile import errno from buck_logging import setup_logging from buck_tool import ExecuteTarget, install_signal_handlers, \ BuckStatusReporter from buck_project import BuckProject, NoBuckConfigFoundException from tracing import Tracing from subprocutils import propagate_failure THIS_DIR = os.path.dirname(os.path.realpath(__file__)) # Kill all buck processes def killall_buck(reporter): # Linux or macOS if os.name != 'posix': message = 'killall is not implemented on: ' + os.name logging.error(message) reporter.status_message = message return 10 # FATAL_GENERIC for line in os.popen('jps -l'): split = line.split() if len(split) != 2: raise Exception('cannot parse a line in jps -l outout: ' + repr(line)) pid = int(split[0]) name = split[1] if name != 'com.facebook.buck.cli.bootstrapper.ClassLoaderBootstrapper': continue os.kill(pid, signal.SIGTERM) return 0 def main(argv, reporter): def get_repo(p): # Try to detect if we're running a PEX by checking if we were invoked # via a zip file. if zipfile.is_zipfile(argv[0]): from buck_package import BuckPackage return BuckPackage(p, reporter) else: from buck_repo import BuckRepo return BuckRepo(THIS_DIR, p, reporter) # If 'killall' is the second argument, shut down all the buckd processes if sys.argv[1:] == ['killall']: return killall_buck(reporter) install_signal_handlers() try: tracing_dir = None build_id = str(uuid.uuid4()) reporter.build_id = build_id with Tracing("main"): with BuckProject.from_current_dir() as project: tracing_dir = os.path.join(project.get_buck_out_log_dir(), 'traces') with get_repo(project) as buck_repo: # If 'kill' is the second argument, shut down the buckd # process if sys.argv[1:] == ['kill']: buck_repo.kill_buckd() return 0 return buck_repo.launch_buck(build_id) finally: if tracing_dir: Tracing.write_to_dir(tracing_dir, build_id) if __name__ == "__main__": exit_code = 0 reporter = BuckStatusReporter(sys.argv) fn_exec = None exception = None try: setup_logging() exit_code = main(sys.argv, reporter) except ExecuteTarget as e: # this is raised once 'buck run' has the binary # it can get here only if exit_code of corresponding buck build is 0 fn_exec = e.execve except NoBuckConfigFoundException: exc_type, exception, exc_traceback = sys.exc_info() # buck is started outside project root exit_code = 3 # COMMANDLINE_ERROR except IOError as e: exc_type, exception, exc_traceback = sys.exc_info() if e.errno == errno.ENOSPC: exit_code = 14 # FATAL_DISK_FULL elif e.errno == errno.EPIPE: exit_code = 141 # SIGNAL_PIPE else: exit_code = 13 # FATAL_IO except KeyboardInterrupt: reporter.status_message = 'Python wrapper keyboard interrupt' exit_code = 130 # SIGNAL_INTERRUPT except Exception: exc_type, exception, exc_traceback = sys.exc_info() # 11 is fatal bootstrapper error exit_code = 11 if exception is not None: logging.error(exception, exc_info=(exc_type, exception, exc_traceback)) if reporter.status_message is None: reporter.status_message = str(exception) # report result of Buck call try: reporter.report(exit_code) except Exception as e: logging.debug(str(e)) # execute 'buck run' target if fn_exec is not None: fn_exec() propagate_failure(exit_code)
the-stack_106_18484
from chainer_chemistry.dataset.preprocessors.common \ import construct_atomic_number_array from chainer_chemistry.dataset.preprocessors.common import type_check_num_atoms from chainer_chemistry.dataset.preprocessors.mol_preprocessor import MolPreprocessor class AtomicNumberPreprocessor(MolPreprocessor): """Atomic number Preprocessor Args: max_atoms (int): Max number of atoms for each molecule, if the number of atoms is more than this value, this data is simply ignored. Setting negative value indicates no limit for max atoms. out_size (int): It specifies the size of array returned by `get_input_features`. If the number of atoms in the molecule is less than this value, the returned arrays is padded to have fixed size. Setting negative value indicates do not pad returned array. """ def __init__(self, max_atoms=-1, out_size=-1): super(AtomicNumberPreprocessor, self).__init__() if max_atoms >= 0 and out_size >= 0 and max_atoms > out_size: raise ValueError('max_atoms {} must be equal to or larger than ' 'out_size {}'.format(max_atoms, out_size)) self.max_atoms = max_atoms self.out_size = out_size def get_input_features(self, mol): """get input features Args: mol (Mol): Returns: """ type_check_num_atoms(mol, self.max_atoms) atom_array = construct_atomic_number_array(mol, out_size=self.out_size) return atom_array
the-stack_106_18485
###################################################################### # # # Copyright 2009-2018 Lucas Heitzmann Gabrielli. # # This file is part of gdspy, distributed under the terms of the # # Boost Software License - Version 1.0. See the accompanying # # LICENSE file or <http://www.boost.org/LICENSE_1_0.txt> # # # ###################################################################### import numpy import gdspy print('Using gdspy module version ' + gdspy.__version__) # ------------------------------------------------------------------ # # POLYGONS # ------------------------------------------------------------------ # # First we need a cell to add the polygons to. poly_cell = gdspy.Cell('POLYGONS') # We define the polygon through its vertices. points = [(0, 0), (2, 2), (2, 6), (-6, 6), (-6, -6), (-4, -4), (-4, 4), (0, 4)] # Create the polygon on layer 1. poly1 = gdspy.Polygon(points, 1) # Add the new polygon to the cell. poly_cell.add(poly1) # Create another polygon from the same set of points, but rotate it # 180 degrees and add it to the cell. poly2 = gdspy.Polygon(points, 1).rotate(numpy.pi) poly_cell.add(poly2) # To create rectangles we don't need to give the 4 corners, only 2. # Note that we don't need to create a variable if we are not going to # use it, just add the rectangle directly to the cell. Create a # rectangle in layer 2. poly_cell.add(gdspy.Rectangle((18, 1), (22, 2), 2)) # There are no circles in the GDSII specification, so rounded shapes # are actually many-sided polygons. Create a circle in layer 2, # centered at (27, 2), and with radius 2. poly_cell.add(gdspy.Round((27, 2), 2, layer=2)) # The Round class is quite versatile: it provides circles, pie slices, # rings and ring sections, like this one in layer 2. poly_cell.add( gdspy.Round( (23.5, 7), 15, inner_radius=14, initial_angle=-2.0 * numpy.pi / 3.0, final_angle=-numpy.pi / 3.0, layer=2)) # ------------------------------------------------------------------ # # PATHS # ------------------------------------------------------------------ # path_cell = gdspy.Cell('PATHS') # Start a path from the origin with width 1. path1 = gdspy.Path(1, (0, 0)) # Add a straight segment to the path in layer 1, datatype 1, with length # 3, going in the '+x' direction. Since we'll use this layer/datatype # configuration again, we can setup a dict containing this info. spec = {'layer': 1, 'datatype': 1} path1.segment(3, '+x', **spec) # Add a curve to the path by specifying its radius as 2 and its initial # and final angles. path1.arc(2, -numpy.pi / 2.0, numpy.pi / 6.0, **spec) # Add another segment to the path in layer 1, with length 4 and # pointing in the direction defined by the last piece we added above. path1.segment(4, **spec) # Add a curve using the turn command. We specify the radius 2 and # turning angle. The agnle can also be specified with 'l' and 'r' for # left and right turns of 90 degrees, or 'll' and 'rr' for 180 degrees. path1.turn(2, -2.0 * numpy.pi / 3.0, **spec) # Final piece of the path. Add a straight segment and tapper the path # width from the original 1 to 0.5. path1.segment(3, final_width=0.5, **spec) path_cell.add(path1) # We can also create parallel paths simultaneously. Start 2 paths with # width 0.5 each,nd pitch 1, originating where our last path ended. path2 = gdspy.Path(0.5, (path1.x, path1.y), number_of_paths=2, distance=1) # Add a straight segment to the paths gradually increasing their # distance to 1.5, in the direction in which the last path ended. spec['layer'] = 2 path2.segment(3, path1.direction, final_distance=1.5, **spec) # Path commands can be concatenated. Add a turn and a tapper segment # in one expression, followed by a final turn. path2.turn(2, -2.0 * numpy.pi / 3.0, **spec).segment( 4, final_distance=1, **spec) path2.turn(4, numpy.pi / 6.0, **spec) path_cell.add(path2) # Create another single path 0.5 wide, starting where the path above # ended, and add to it a line segment in the 3rd layer in the '-y' # direction. path3 = gdspy.Path(0.5, (path2.x, path2.y)) path3.segment(1, '-y', layer=3) # We can create paths based on parametric curves. First we need to # define the curve function, with 1 argument. This argument will vary # from 0 to 1 and the return value should be the (x, y) coordinates of # the path. This could be a lambda-expression if the function is # simple enough. We will create a spiral path. Note that the function # returns (0, 0) when t=0, so that our path is connected. def spiral(t): r = 4 - 3 * t theta = 5 * t * numpy.pi x = 4 - r * numpy.cos(theta) y = -r * numpy.sin(theta) return (x, y) # We can also create the derivative of the curve to pass to out path # path member, otherwise it will be numerically calculated. In the # spiral case we don't want the exact derivative, but the derivative of # the spiral as if its radius was constant. This will ensure that our # path is connected at the start (geometric problem of this kind of # spiral). def dspiral_dt(t): theta = 5 * t * numpy.pi dx_dt = numpy.sin(theta) dy_dt = -numpy.cos(theta) return (dx_dt, dy_dt) # Add the parametric spiral to the path in layer 3. Note that we can # still tapper the width (linearly or with a taper function). To make # the curve smoother, we increase the number of evaluations of the # function (fracture will be performed automatically to ensure polygons # with less than 200 points). path3.parametric( spiral, dspiral_dt, final_width=lambda t: 0.1 + abs(0.4 * (1 - 2 * t)**3), number_of_evaluations=600, layer=3) path_cell.add(path3) # Polygonal paths are defined by the points they pass through. The # width of the path can be given as a number, representing the path # width along is whole extension, or as a list, where each element is # the width of the path at one point. Our path will have width 0.5 in # all points, except the last, where it will tapper up to 1.5. More # than 1 path can be defined in parallel as well (useful for buses). # The distance between the paths work the same way as the width: it's # either a constant number, or a list. We create 5 parallel paths that # are larger and further apart on the last point. The paths are put in # layers 4 and 5. Since we have 5 paths, the list of layers will be # run more than once, so the 5 paths will actually be in layers 4, 5, 4, # 5, and 4. points = [(20, 12), (24, 8), (24, 4), (24, -2)] widths = [0.5] * (len(points) - 1) + [1.5] distances = [0.8] * (len(points) - 1) + [2.4] polypath = gdspy.PolyPath( points, widths, number_of_paths=5, distance=distances, layer=[4, 5]) # We can round the corners of any Polygon or PolygonSet with the fillet # method. Here we use a radius of 0.2. # polypath.fillet(0.2) path_cell.add(polypath) # L1Paths use only segments in 'x' and 'y' directions, useful for some # lithography mask writers. We specify a path composed of 16 segments # of length 4. The turns after each segment can be either 90 degrees # CCW (positive) or CW (negative). The absolute value of the turns # produces a scaling of the path width and distance between paths in # segments immediately after the turn. lengths = [4] * 8 turns = [-1, -1, 1, 1, -1, -2, 1, 0.5] l1path = gdspy.L1Path( (-1, -11), '+y', 0.5, lengths, turns, number_of_paths=3, distance=0.7, layer=6) path_cell.add(l1path) # ------------------------------------------------------------------ # # POLYGON OPERATIONS # ------------------------------------------------------------------ # # Boolean operations can be executed with either gdspy polygons or # point lists). The operations are union, intersection, subtraction, # symmetric subtracion (respectively 'or', 'and', 'not', 'xor'). oper_cell = gdspy.Cell('OPERATIONS') # Here we subtract the previously created spiral from a rectangle with # the 'not' operation. oper_cell.add( gdspy.fast_boolean( gdspy.Rectangle((10, -4), (17, 4)), path3, 'not', layer=1)) # Polygon offset (inset and outset) can be used, for instance, to # define safety margins around shapes. spec = {'layer': 7} path4 = gdspy.Path(0.5, (21, -5)).segment(3, '+x', **spec)\ .turn(4, 'r', **spec).turn(4, 'rr', **spec)\ .segment(3, **spec) oper_cell.add(path4) # Merge all parts into a single polygon. merged = gdspy.fast_boolean(path4, None, 'or', max_points=0) # Offset the path shape by 0.5 and add it to the cell. oper_cell.add(gdspy.offset(merged, 1, layer=8)) # ------------------------------------------------------------------ # # SLICING POLYGONS # ------------------------------------------------------------------ # # If there is the need to cut a polygon or set of polygons, it's better # to use the slice function than set up a boolean operation, since it # runs much faster. Slices are multiple cuts perpendicular to an axis. slice_cell = gdspy.Cell('SLICE') original = gdspy.Round((0, 0), 10, inner_radius=5) # Slice the original ring along x = -7 and x = 7. result = gdspy.slice(original, [-7, 7], 0, layer=1) # The result is a tuple of polygon sets, one for each slice. To keep # add the region betwen our 2 cuts, we chose result[1]. slice_cell.add(result[1]) # If the cut needs to be at an angle we can rotate the geometry, slice # it, and rotate back. original = gdspy.PolyPath([(12, 0), (12, 8), (28, 8), (28, -8), (12, -8), (12, 0)], 1, 3, 2) original.rotate(numpy.pi / 3, center=(20, 0)) result = gdspy.slice(original, 7, 1, layer=2) result[0].rotate(-numpy.pi / 3, center=(20, 0)) slice_cell.add(result[0]) # ------------------------------------------------------------------ # # REFERENCES AND TEXT # ------------------------------------------------------------------ # # Cells can contain references to other cells. ref_cell = gdspy.Cell('REFS') ref_cell.add(gdspy.CellReference(poly_cell, (0, 30), x_reflection=True)) ref_cell.add(gdspy.CellReference(poly_cell, (25, 0), rotation=180)) # References can be whole arrays. Add an array of the operations cell # with 2 lines and 3 columns and 1st element at (25, 10). ref_cell.add( gdspy.CellArray('OPERATIONS', 3, 2, (35, 30), (25, 10), magnification=1.5)) # Text are also sets of polygons. They have edges parallel to 'x' and # 'y' only. ref_cell.add( gdspy.Text( 'Created with gsdpy ' + gdspy.__version__, 7, (-7, -35), layer=6)) # Labels are special text objects which don't define any actual # geometry, but can be used to annotate the drawing. Rotation, # magnification and reflection of the text are not supported by the # included GUI, but they are included in the resulting GDSII file. ref_cell.add( gdspy.Label( 'Created with gdspy ' + gdspy.__version__, (-7, -36), 'nw', layer=6)) # ------------------------------------------------------------------ # # TRANSLATION AND REFLECTION # ------------------------------------------------------------------ # trans_cell = gdspy.Cell('TRANS') # Any geometric object can be translated by providing the distance to # translate in the x-direction and y-direction: translate(dx, dy) rect1 = gdspy.Rectangle((80, 0), (81, 1), 1) rect1.translate(2, 0) trans_cell.add(rect1) # Translatable objects can also be copied & translated in the same way. rect2 = gdspy.Rectangle((80, 0), (81, 1), 2) rect3 = gdspy.copy(rect2, 0, 3) trans_cell.add(rect2) trans_cell.add(rect3) # Reference Cells are also translatable, and thus copyable. ref1 = gdspy.CellReference(poly_cell, (25, 0), rotation=180) ref2 = gdspy.copy(ref1, 30, 30) trans_cell.add(ref1) trans_cell.add(ref2) # Same goes for Labels & Text text1 = gdspy.Text( 'Created with gdspy ' + gdspy.__version__, 7, (-7, -35), layer=6) text2 = gdspy.copy(text1, 0, -20) label1 = gdspy.Label( 'Created with gdspy ' + gdspy.__version__, (-7, -36), 'nw', layer=6) label2 = gdspy.copy(label1, 0, -20) trans_cell.add(text1) trans_cell.add(text2) trans_cell.add(label1) trans_cell.add(label2) # Reflection across a line defined by the intersection of two points # allows the mirroring of an polygon over an abritrary axis: mirror(p1,p2) rect4 = gdspy.Rectangle((80, 0), (81, 1), 3) rect4.mirror((80, 2), (79, 0)) trans_cell.add(rect4) # ------------------------------------------------------------------ # # OUTPUT # ------------------------------------------------------------------ # # Output the layout to a GDSII file (default to all created cells). # Set the units we used to micrometers and the precision to nanometers. gdspy.write_gds('tutorial.gds', unit=1.0e-6, precision=1.0e-9) # ------------------------------------------------------------------ # # IMPORT # ------------------------------------------------------------------ # # Import the file we just created, and extract the cell 'POLYGONS'. To # avoid naming conflict, we will rename all cells. gdsii = gdspy.GdsLibrary() gdsii.read_gds( 'tutorial.gds', rename={ 'POLYGONS': 'IMPORT_POLY', 'PATHS': 'IMPORT_PATHS', 'OPERATIONS': 'IMPORT_OPER', 'SLICE': 'IMPORT_SLICE', 'REFS': 'IMPORT_REFS', 'TRANS': 'IMPORT_TRANS' }, layers={ 1: 7, 2: 8, 3: 9 }) # Now we extract the cells we want to actually include in our current # structure. Note that the referenced cells will be automatically # extracted as well. gdsii.extract('IMPORT_REFS') # ------------------------------------------------------------------ # # VIEWER # ------------------------------------------------------------------ # # View the layout using a GUI. Full description of the controls can # be found in the online help at http://gdspy.sourceforge.net/ gdspy.LayoutViewer()
the-stack_106_18486
# -*- coding: utf-8 -*- from __future__ import division, print_function import os import sys import unittest # noinspection PyProtectedMember from numpy.testing import (assert_allclose, assert_array_less, assert_equal, assert_raises) from pyod.models.kde import KDE from pyod.utils.data import generate_data from scipy.stats import rankdata from sklearn.base import clone from sklearn.metrics import roc_auc_score # temporary solution for relative imports in case pyod is not installed # if pyod is installed, no need to use the following line sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) class TestKDE(unittest.TestCase): def setUp(self): self.n_train = 200 self.n_test = 100 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42, ) self.clf = KDE(contamination=self.contamination) self.clf.fit(self.X_train) def test_parameters(self): assert ( hasattr(self.clf, "decision_scores_") and self.clf.decision_scores_ is not None ) assert hasattr(self.clf, "labels_") and self.clf.labels_ is not None assert hasattr(self.clf, "threshold_") and self.clf.threshold_ is not None assert hasattr(self.clf, "_mu") and self.clf._mu is not None assert hasattr(self.clf, "_sigma") and self.clf._sigma is not None def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert roc_auc_score(self.y_test, pred_scores) >= self.roc_floor def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert pred_proba.min() >= 0 assert pred_proba.max() <= 1 def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method="linear") assert pred_proba.min() >= 0 assert pred_proba.max() <= 1 def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method="unify") assert pred_proba.min() >= 0 assert pred_proba.max() <= 1 def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method="something") def test_prediction_labels_confidence(self): pred_labels, confidence = self.clf.predict(self.X_test, return_confidence=True) assert_equal(pred_labels.shape, self.y_test.shape) assert_equal(confidence.shape, self.y_test.shape) assert confidence.min() >= 0 assert confidence.max() <= 1 def test_prediction_proba_linear_confidence(self): pred_proba, confidence = self.clf.predict_proba( self.X_test, method="linear", return_confidence=True ) assert pred_proba.min() >= 0 assert pred_proba.max() <= 1 assert_equal(confidence.shape, self.y_test.shape) assert confidence.min() >= 0 assert confidence.max() <= 1 def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring="roc_auc_score") self.clf.fit_predict_score(self.X_test, self.y_test, scoring="prc_n_score") with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring="something") def test_predict_rank(self): pred_scores = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_scores), atol=4) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_scores = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_scores), atol=4) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def test_model_clone(self): clone_clf = clone(self.clf) def tearDown(self): pass if __name__ == "__main__": unittest.main()
the-stack_106_18487
import torch import torchvision def yoloParseOutput(model_output, nr_bbox=2): """Parses the dense ouput to the predicted values""" # Get outputs x_norm_rel = model_output[..., 0:nr_bbox] # Center x y_norm_rel = model_output[..., nr_bbox:nr_bbox*2] # Center y h_norm_sqrt = model_output[..., nr_bbox*2:nr_bbox*3] # Height w_norm_sqrt = model_output[..., nr_bbox*3:nr_bbox*4] # Width pred_conf = torch.sigmoid(model_output[..., nr_bbox * 4:nr_bbox * 5]) # Object Confidence pred_cls = model_output[..., nr_bbox * 5:] # Class Score return x_norm_rel, y_norm_rel, h_norm_sqrt, w_norm_sqrt, pred_conf, pred_cls def yoloDetect(model_output, input_shape, threshold=None): """Computes the detections used in YOLO: https://arxiv.org/pdf/1506.02640.pdf""" cell_map_shape = torch.tensor(model_output.shape[1:3], device=model_output.device) cell_shape = input_shape / cell_map_shape x_norm_rel, y_norm_rel, h_norm_sqrt, w_norm_sqrt, pred_conf, pred_cls_conf = yoloParseOutput(model_output) h = h_norm_sqrt**2 * input_shape[0] w = w_norm_sqrt**2 * input_shape[1] x_rel = x_norm_rel * cell_shape[0] y_rel = y_norm_rel * cell_shape[1] cell_top_left = getGrid(input_shape, cell_map_shape) bbox_center = cell_top_left[None, :, :, None, :] + torch.stack([x_rel, y_rel], dim=-1) bbox_top_left_corner = bbox_center - torch.stack([h, w], dim=-1) // 2 if threshold is None: return torch.cat([bbox_top_left_corner, h.unsqueeze(-1), w.unsqueeze(-1), pred_conf.unsqueeze(-1)], dim=-1) detected_bbox_idx = torch.nonzero((pred_conf > threshold)).split(1, dim=-1) # detected_bbox_idx = (pred_conf > threshold).nonzero().split(1, dim=-1) batch_idx = detected_bbox_idx[0] if batch_idx.shape[0] == 0: return torch.zeros([0, 7]) detected_top_left_corner = bbox_top_left_corner[detected_bbox_idx].squeeze(1) detected_h = h[detected_bbox_idx] detected_w = w[detected_bbox_idx] pred_conf = pred_conf[detected_bbox_idx] pred_cls = torch.argmax(pred_cls_conf[detected_bbox_idx[:-1]], dim=-1) pred_cls_conf = pred_cls_conf[detected_bbox_idx[:-1]].squeeze(1) pred_cls_conf = pred_cls_conf[torch.arange(pred_cls.shape[0]), pred_cls.squeeze(-1)] # Convert from x, y to u, v det_bbox = torch.cat([batch_idx.float(), detected_top_left_corner[:, 1, None].float(), detected_top_left_corner[:, 0, None].float(), detected_w.float(), detected_h.float(), pred_cls.float(), pred_cls_conf[:, None].float(), pred_conf], dim=-1) return cropToFrame(det_bbox, input_shape) def getGrid(input_shape, cell_map_shape): """Constructs a 2D grid with the cell center coordinates.""" cell_shape = input_shape / cell_map_shape cell_top_left = torch.meshgrid([torch.arange(start=0, end=cell_map_shape[0]*cell_shape[0], step=cell_shape[0], device=cell_shape.device), torch.arange(start=0, end=cell_map_shape[1]*cell_shape[1], step=cell_shape[1], device=cell_shape.device)]) return torch.stack(cell_top_left, dim=-1) def cropToFrame(bbox, image_shape): """Checks if bounding boxes are inside frame. If not crop to border""" array_width = torch.ones_like(bbox[:, 1]) * image_shape[1] - 1 array_height = torch.ones_like(bbox[:, 2]) * image_shape[0] - 1 bbox[:, 1:3] = torch.max(bbox[:, 1:3], torch.zeros_like(bbox[:, 1:3])) bbox[:, 1] = torch.min(bbox[:, 1], array_width) bbox[:, 2] = torch.min(bbox[:, 2], array_height) bbox[:, 3] = torch.min(bbox[:, 3], array_width - bbox[:, 1]) bbox[:, 4] = torch.min(bbox[:, 4], array_height - bbox[:, 2]) return bbox def nonMaxSuppression(detected_bbox, iou=0.6): """ Iterates over the bboxes to peform non maximum suppression within each batch. :param detected_bbox[0, :]: [batch_idx, top_left_corner_u, top_left_corner_v, width, height, predicted_class, predicted class confidence, object_score]) :param iou: intersection over union, threshold for which the bbox are considered overlapping """ i_sample = 0 keep_bbox = [] while i_sample < detected_bbox.shape[0]: same_batch_mask = detected_bbox[:, 0] == detected_bbox[i_sample, 0] nms_input = detected_bbox[same_batch_mask][:, [1, 2, 3, 4, 7]].clone() nms_input[:, [2, 3]] += nms_input[:, [0, 1]] # (u, v) or (x, y) should not matter keep_idx = torchvision.ops.nms(nms_input[:, :4], nms_input[:, 4], iou) keep_bbox.append(detected_bbox[same_batch_mask][keep_idx]) i_sample += same_batch_mask.sum() if len(keep_bbox) != 0: filtered_bbox = torch.cat(keep_bbox, dim=0) else: filtered_bbox = torch.zeros([0, 8]) return filtered_bbox
the-stack_106_18488
from __future__ import unicode_literals import pytest from prompt_toolkit_dev.application import Application from prompt_toolkit_dev.application.current import set_app from prompt_toolkit_dev.input.defaults import create_pipe_input from prompt_toolkit_dev.key_binding.key_bindings import KeyBindings from prompt_toolkit_dev.key_binding.key_processor import KeyPress, KeyProcessor from prompt_toolkit_dev.keys import Keys from prompt_toolkit_dev.layout import Layout, Window from prompt_toolkit_dev.output import DummyOutput class Handlers(object): def __init__(self): self.called = [] def __getattr__(self, name): def func(event): self.called.append(name) return func def set_dummy_app(): """ Return a context manager that makes sure that this dummy application is active. This is important, because we need an `Application` with `is_done=False` flag, otherwise no keys will be processed. """ app = Application( layout=Layout(Window()), output=DummyOutput(), input=create_pipe_input()) return set_app(app) @pytest.fixture def handlers(): return Handlers() @pytest.fixture def bindings(handlers): bindings = KeyBindings() bindings.add( Keys.ControlX, Keys.ControlC)(handlers.controlx_controlc) bindings.add(Keys.ControlX)(handlers.control_x) bindings.add(Keys.ControlD)(handlers.control_d) bindings.add( Keys.ControlSquareClose, Keys.Any)(handlers.control_square_close_any) return bindings @pytest.fixture def processor(bindings): return KeyProcessor(bindings) def test_remove_bindings(handlers): with set_dummy_app(): h = handlers.controlx_controlc h2 = handlers.controld # Test passing a handler to the remove() function. bindings = KeyBindings() bindings.add(Keys.ControlX, Keys.ControlC)(h) bindings.add(Keys.ControlD)(h2) assert len(bindings.bindings) == 2 bindings.remove(h) assert len(bindings.bindings) == 1 # Test passing a key sequence to the remove() function. bindings = KeyBindings() bindings.add(Keys.ControlX, Keys.ControlC)(h) bindings.add(Keys.ControlD)(h2) assert len(bindings.bindings) == 2 bindings.remove(Keys.ControlX, Keys.ControlC) assert len(bindings.bindings) == 1 def test_feed_simple(processor, handlers): with set_dummy_app(): processor.feed(KeyPress(Keys.ControlX, '\x18')) processor.feed(KeyPress(Keys.ControlC, '\x03')) processor.process_keys() assert handlers.called == ['controlx_controlc'] def test_feed_several(processor, handlers): with set_dummy_app(): # First an unknown key first. processor.feed(KeyPress(Keys.ControlQ, '')) processor.process_keys() assert handlers.called == [] # Followed by a know key sequence. processor.feed(KeyPress(Keys.ControlX, '')) processor.feed(KeyPress(Keys.ControlC, '')) processor.process_keys() assert handlers.called == ['controlx_controlc'] # Followed by another unknown sequence. processor.feed(KeyPress(Keys.ControlR, '')) processor.feed(KeyPress(Keys.ControlS, '')) # Followed again by a know key sequence. processor.feed(KeyPress(Keys.ControlD, '')) processor.process_keys() assert handlers.called == ['controlx_controlc', 'control_d'] def test_control_square_closed_any(processor, handlers): with set_dummy_app(): processor.feed(KeyPress(Keys.ControlSquareClose, '')) processor.feed(KeyPress('C', 'C')) processor.process_keys() assert handlers.called == ['control_square_close_any'] def test_common_prefix(processor, handlers): with set_dummy_app(): # Sending Control_X should not yet do anything, because there is # another sequence starting with that as well. processor.feed(KeyPress(Keys.ControlX, '')) processor.process_keys() assert handlers.called == [] # When another key is pressed, we know that we did not meant the longer # "ControlX ControlC" sequence and the callbacks are called. processor.feed(KeyPress(Keys.ControlD, '')) processor.process_keys() assert handlers.called == ['control_x', 'control_d'] def test_previous_key_sequence(processor): """ test whether we receive the correct previous_key_sequence. """ with set_dummy_app(): events = [] def handler(event): events.append(event) # Build registry. registry = KeyBindings() registry.add('a', 'a')(handler) registry.add('b', 'b')(handler) processor = KeyProcessor(registry) # Create processor and feed keys. processor.feed(KeyPress('a', 'a')) processor.feed(KeyPress('a', 'a')) processor.feed(KeyPress('b', 'b')) processor.feed(KeyPress('b', 'b')) processor.process_keys() # Test. assert len(events) == 2 assert len(events[0].key_sequence) == 2 assert events[0].key_sequence[0].key == 'a' assert events[0].key_sequence[0].data == 'a' assert events[0].key_sequence[1].key == 'a' assert events[0].key_sequence[1].data == 'a' assert events[0].previous_key_sequence == [] assert len(events[1].key_sequence) == 2 assert events[1].key_sequence[0].key == 'b' assert events[1].key_sequence[0].data == 'b' assert events[1].key_sequence[1].key == 'b' assert events[1].key_sequence[1].data == 'b' assert len(events[1].previous_key_sequence) == 2 assert events[1].previous_key_sequence[0].key == 'a' assert events[1].previous_key_sequence[0].data == 'a' assert events[1].previous_key_sequence[1].key == 'a' assert events[1].previous_key_sequence[1].data == 'a'
the-stack_106_18489
import datetime import logging import pytz import os import random import re import time from pathlib import Path import logzero import pandas as pd import torch import torch.nn as nn import numpy as np from sklearn.metrics import roc_auc_score from torch.utils.data import DataLoader from logzero import logger from torch.utils.tensorboard import SummaryWriter from torch.optim.lr_scheduler import ReduceLROnPlateau from model import get_model from dataset import SetiSimpleDataset, get_transforms from config import load_config from util import parse_args, get_folds from optimizer import get_optimizer from scheduler import get_scheduler from module import train_fn, valid_fn, mixup_train_fn from loss import FocalLoss import torch.backends.cudnn as cudnn import horovod.torch as hvd import torch.utils.data.distributed import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) from util import bn_to_syncbn, DummySummaryWriter # Some of the code was adapted from the following URL # https://www.kaggle.com/yasufuminakama/cassava-resnext50-32x4d-starter-training ROOT = Path.cwd().parent INPUT = ROOT / "input" DATA = INPUT / "sbl" TRAIN = DATA / "train" TEST = DATA / "test" def get_path_label(df: pd.DataFrame, img_dir: str): """Get file path and target info.""" path_label = { "paths": [img_dir / f"{img_id[0]}/{img_id}.npy" for img_id in df["id"].values], "labels": df[CLASSES].values.astype("f"), "id": df["id"].values } return path_label def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True class ReduceLROnPlateauPatch(ReduceLROnPlateau): def get_lr(self): return [ group['lr'] for group in self.optimizer.param_groups ] def train_loop(conf, hvd, folds, fold, logger, log_basename, total_epochs, new_train, new_test): logger.info(f"=============== fold: {fold} training ===============") if conf.ckpt_path: conf.ckpt_path = re.sub('fold._best', f"fold{fold}_best", conf.ckpt_path) logger.info(f"replace ckpt_path: {conf.ckpt_path}") # foldsをidでソートしておく(ddpのvalidationのため) folds = folds.sort_values(by=['id']).reset_index(drop=True) # loader trn_idx = folds[folds['fold'] != fold].index val_idx = folds[folds['fold'] == fold].index train_folds = folds.loc[trn_idx].reset_index(drop=True) valid_folds = folds.loc[val_idx].reset_index(drop=True) if new_train: valid_folds = pd.read_csv(DATA / 'train_labels.csv') if new_test: valid_folds = pd.read_csv(DATA / 'sample_submission.csv') tb_logname = os.path.join(conf.log_dir, f"{log_basename}_fold{fold}") if hvd.rank() == 0: tb_writer = SummaryWriter(log_dir=tb_logname) else: tb_writer = DummySummaryWriter() train_path_label = get_path_label(train_folds, TRAIN) valid_path_label = get_path_label(valid_folds, TRAIN) if new_train: valid_path_label = get_path_label(valid_folds, TRAIN) if new_test: valid_path_label = get_path_label(valid_folds, TEST) # pseudo label if conf.pseudo_label: pseudo_folds = pd.read_csv('pseudo_test_labels.csv') pseudo_path_label = get_path_label(pseudo_folds, TEST) train_path_label['paths'] = np.concatenate([train_path_label['paths'], pseudo_path_label['paths']]) train_path_label['labels'] = np.concatenate([train_path_label['labels'], pseudo_path_label['labels']]) train_path_label['id'] = np.concatenate([train_path_label['id'], pseudo_path_label['id']]) logger.info("use pseudo labeled data") train_dataset = SetiSimpleDataset(paths=train_path_label['paths'], labels=train_path_label['labels'], ids=train_path_label['id'], transform=get_transforms(conf, conf.train_trans_mode), target_only=conf.target_only, seed=conf.seed) valid_dataset = SetiSimpleDataset(paths=valid_path_label['paths'], labels=valid_path_label['labels'], ids=valid_path_label['id'], transform=get_transforms(conf, conf.valid_trans_mode), target_only=conf.target_only, with_id=True) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=hvd.size(), rank=hvd.rank()) valid_sampler = torch.utils.data.distributed.DistributedSampler( valid_dataset, num_replicas=hvd.size(), rank=hvd.rank()) train_loader = DataLoader(train_dataset, batch_size=conf.train_bs, sampler=train_sampler, num_workers=conf.num_workers, pin_memory=conf.pin_memory, drop_last=True) valid_loader = DataLoader(valid_dataset, batch_size=conf.valid_bs, sampler=valid_sampler, num_workers=conf.num_workers, pin_memory=conf.pin_memory, drop_last=False) if conf.mixup: # gen second train_dataset train_dataset2 = SetiSimpleDataset(paths=train_path_label['paths'], labels=train_path_label['labels'], ids=train_path_label['id'], transform=get_transforms(conf, conf.train_trans_mode), target_only=conf.target_only, seed=conf.seed+1000) train_sampler2 = torch.utils.data.distributed.DistributedSampler( train_dataset2, num_replicas=hvd.size(), rank=hvd.rank()) train_loader2 = DataLoader(train_dataset2, batch_size=conf.train_bs, sampler=train_sampler2, num_workers=conf.num_workers, pin_memory=conf.pin_memory, drop_last=True) # update print_freq if conf.print_freq == 0: conf.print_freq = max(2, len(train_loader) // 10) # model device = torch.device(conf.device) if conf.loss_type == 'bce': criterion = nn.BCEWithLogitsLoss() elif conf.loss_type == 'focal': criterion = FocalLoss(gamma=conf.focal_loss_gamma) else: raise NotImplementedError(conf.loss_type) model = get_model(conf, conf.backbone_model_name, logger) if conf.sync_bn: model.apply(bn_to_syncbn) logger.info('convert bn to sync_bn') if conf.overwrite_gem_p: model.global_pool.p.data.fill_(conf.overwrite_gem_p) logger.info(f"overwrite_gem_p: {conf.overwrite_gem_p}") model = model.to(device) hvd.broadcast_parameters(model.state_dict(), root_rank=0) parameters = [ {'params': model.parameters()} ] named_parameters = list(model.named_parameters()) optimizer = get_optimizer(conf, parameters) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=named_parameters, compression=hvd.Compression.none) hvd.broadcast_optimizer_state(optimizer, root_rank=0) scheduler = get_scheduler(conf, optimizer, train_loader, logger) global_step = 0 best_score = 0 best_loss = np.inf current_lr = scheduler.get_last_lr() logger.info(f"lr: {current_lr}") tb_writer.add_scalar('Other/LearningRate', current_lr[0], global_step) best_y_true = None best_y_preds = None for epoch in range(conf.epochs): start_time = time.time() if conf.train: if conf.mixup: avg_loss, global_step = mixup_train_fn(conf, global_step, train_loader, train_loader2, model, criterion, optimizer, epoch, scheduler, device, train_sampler, train_sampler2, logger, tb_writer) else: avg_loss, global_step = train_fn(conf, global_step, train_loader, model, criterion, optimizer, epoch, scheduler, device, train_sampler, logger, tb_writer) # val avg_loss, score, y_true, y_preds = valid_fn(conf, global_step, valid_loader, model, criterion, device, True, hvd, logger, tb_writer, new_test) if isinstance(scheduler, ReduceLROnPlateau): if conf.plateau_mode == 'min': scheduler.step(avg_loss) elif conf.plateau_mode == 'max': scheduler.step(score) current_lr = scheduler.get_last_lr() logger.info(f"lr: {current_lr}") tb_writer.add_scalar('Other/LearningRate', current_lr[0], global_step) if conf.train: if score > best_score: best_score = score logger.info(f'Fold {fold} Epoch {epoch+1} - Save Best Score: {best_score:.4f} Model') if hvd.rank() == 0: torch.save({'model': model.state_dict()}, f'{OUTPUT_DIR}/fold{fold}_best_score.pth') best_y_true = y_true best_y_preds = y_preds if avg_loss < best_loss: best_loss = avg_loss logger.info(f'Fold {fold} Epoch {epoch+1} - Save Best Loss: {best_loss:.4f} Model') if hvd.rank() == 0: torch.save({'model': model.state_dict()}, f'{OUTPUT_DIR}/fold{fold}_best_loss.pth') if hvd.rank() == 0: torch.save({'model': model.state_dict()}, f'{OUTPUT_DIR}/fold{fold}_epoch{epoch}.pth') else: if score > best_score: best_score = score best_y_true = y_true best_y_preds = y_preds elapsed = time.time() - start_time if conf.train: logger.info(f'Fold {fold} Epoch {epoch+1} - AUROC score: {score:.4f} Best: {best_score:.4f} time: {elapsed:.0f}s') logger.info(f'output_dir: {OUTPUT_DIR}') else: logger.info(f'AUROC score: {score:.4f}') total_epochs -= 1 full_elapsed = total_epochs * int(elapsed) time_delta = datetime.timedelta(seconds=full_elapsed) now = datetime.datetime.now(pytz.timezone('Asia/Tokyo')) end_time = now + time_delta logger.info(f"Expected remaining seconds: {full_elapsed} sec") logger.info(f"Expected end time: {end_time}") valid_folds['preds'] = best_y_preds return best_score, best_y_true, best_y_preds, valid_folds if __name__ == '__main__': args = parse_args() conf = load_config(args.conf) for (key, value) in args._get_kwargs(): if key in ['input_width', 'input_height', 'scale_width', 'scale_height', 'valid_bs', 'valid_trans_mode', 'ckpt_path', 'train_fold', 'overwrite_gem_p', 'tta_hflip', 'tta_vflip', 'tta_sigmoid', 'seed']: if value: setattr(conf, key, value) if args.test or args.new_train or args.new_test: conf.train = False conf.epochs = 1 seed_everything(conf.seed) hvd.init() torch.manual_seed(conf.seed) torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(conf.seed) cudnn.benchmark = True FOLD_SEED = conf.fold_seed CLASSES = ["target",] N_FOLDS = conf.n_fold formatter = logging.Formatter('%(message)s') logzero.formatter(formatter) if not os.path.exists(conf.log_dir): os.makedirs(conf.log_dir, exist_ok=True) if args.new_train: log_basename = f"new_train_{conf.prefix}-{conf.backbone_model_name}-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}" elif args.new_test: log_basename = f"new_test_{conf.prefix}-{conf.backbone_model_name}-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}" else: log_basename = f"{conf.prefix}-{conf.backbone_model_name}-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}" log_filename = f"{log_basename}.log" logzero.logfile(os.path.join(conf.log_dir, log_filename)) # メインのnode以外のloggerを停止 if hvd.rank() == 0: logzero.logfile(os.path.join(conf.log_dir, log_filename)) else: logzero.logfile('', disableStderrLogger=True) logger.info(conf) OUTPUT_DIR = f"{conf.model_dir}/{conf.prefix}_{conf.backbone_model_name}" if hvd.rank() == 0: os.makedirs(f"{OUTPUT_DIR}", exist_ok=True) logger.info(f"output_dir: {OUTPUT_DIR}") train = get_folds(conf, N_FOLDS, FOLD_SEED, DATA, logger) trn_fold = [int(elem) for elem in conf.train_fold.split(',')] total_epochs = conf.epochs * len(trn_fold) oof_y_true = [] oof_y_preds = [] oof_df = pd.DataFrame() submit_df_list = [] for fold in range(conf.n_fold): if fold in trn_fold: best_score, best_y_true, best_y_preds, _oof_df =\ train_loop(conf, hvd, train, fold, logger, log_basename, total_epochs, args.new_train, args.new_test) if args.new_train or args.new_test: if args.ensemble_sigmoid: _oof_df['preds'] = torch.tensor(_oof_df['preds'].values).sigmoid().numpy() submit_df_list.append(_oof_df) if args.new_test: prefix = 'new_test' elif args.new_train: prefix = 'new_train' elif args.test: prefix = 'oof' else: prefix = 'oof' _oof_df.to_csv(f"{OUTPUT_DIR}/{prefix}_fold{fold}.csv", index=False) else: oof_df = pd.concat([oof_df, _oof_df]) oof_y_true.append(best_y_true) oof_y_preds.append(best_y_preds) logger.info(f"fold{fold} Best Score: {best_score:.4f}") total_epochs -= conf.epochs if args.new_train or args.new_test: sub_df = None if not args.new_test: for oof_df in submit_df_list: if sub_df is not None: sub_df['preds'] = sub_df['preds'] + oof_df['preds'] else: sub_df = oof_df score = roc_auc_score(sub_df.target.values, sub_df.preds.values) logger.info(f"oof test score: {score}") else: for oof_df in submit_df_list: if sub_df is not None: sub_df['target'] = sub_df['target'] + oof_df['preds'] else: oof_df = oof_df.drop('target', axis=1) oof_df.columns = ['id', 'target'] sub_df = oof_df if hvd.rank() == 0: sub_df = sub_df.sort_values(by=['id']).reset_index(drop=True) if args.new_train: sub_df.to_csv(f"{OUTPUT_DIR}/new_train.csv", index=False) if args.new_test: sub_df.to_csv(f"{OUTPUT_DIR}/new_test.csv", index=False) else: if len(trn_fold) == N_FOLDS: oof_y_true = np.concatenate(oof_y_true) oof_y_preds = np.concatenate(oof_y_preds) score = roc_auc_score(oof_y_true, oof_y_preds) logger.info(f"oof score: {score}") if hvd.rank() == 0: oof_df = oof_df.sort_values(by=['id']).reset_index(drop=True) oof_df.to_csv(f"{OUTPUT_DIR}/oof_df.csv", index=False) logger.info(f"log saved: {os.path.join(conf.log_dir, log_filename)}")
the-stack_106_18490
from django.conf import settings from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'hackernews.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'', include('stories.urls')), ) if settings.DEBUG: urlpatterns += patterns( 'django.views.static', (r'media/(?P<path>.*)', 'serve', {'document_root': settings.MEDIA_ROOT}), )
the-stack_106_18491
# -*- coding: utf-8 -*- from mamonsu.plugins.pgsql.plugin import PgsqlPlugin as Plugin from .pool import Pooler class Oldest(Plugin): OldestXidSql = """ select greatest(max(age(backend_xmin)), max(age(backend_xid))) from pg_catalog.pg_stat_activity; """ OldestXidSql_bootstrap = """ select public.mamonsu_get_oldest_xid(); """ OldestQuerySql = """ select extract(epoch from max(now() - xact_start)) from pg_catalog.pg_stat_activity; """ OldestQuerySql_bootstrap = """ select public.mamonsu_get_oldest_query(); """ DEFAULT_CONFIG = { 'max_xid_age': str(5000 * 60 * 60), 'max_query_time': str(5 * 60 * 60) } def run(self, zbx): if Pooler.is_bootstraped() and Pooler.bootstrap_version_greater('2.3.2'): xid = Pooler.query(self.OldestXidSql_bootstrap)[0][0] query = Pooler.query(self.OldestQuerySql_bootstrap)[0][0] else: xid = Pooler.query(self.OldestXidSql)[0][0] query = Pooler.query(self.OldestQuerySql)[0][0] zbx.send('pgsql.oldest[xid_age]', xid) zbx.send('pgsql.oldest[query_time]', query) def graphs(self, template): result = template.graph({ 'name': 'PostgreSQL oldest query running time', 'items': [{ 'key': 'pgsql.oldest[query_time]', 'color': '00CC00' }] }) result += template.graph({ 'name': 'PostgreSQL age of oldest xid', 'items': [{ 'key': 'pgsql.oldest[xid_age]', 'color': '00CC00' }] }) return result def items(self, template): return template.item({ 'key': 'pgsql.oldest[xid_age]', 'name': 'PostgreSQL: age of oldest xid', 'value_type': Plugin.VALUE_TYPE.numeric_unsigned }) + template.item({ 'key': 'pgsql.oldest[query_time]', 'name': 'PostgreSQL: oldest query running time in sec', 'units': Plugin.UNITS.s }) def triggers(self, template): return template.trigger({ 'name': 'PostgreSQL oldest xid is too big on {HOSTNAME}', 'expression': '{#TEMPLATE:pgsql.oldest[xid_age]' '.last()}&gt;' + self.plugin_config('max_xid_age') }) + template.trigger({ 'name': 'PostgreSQL query running is too old on {HOSTNAME}', 'expression': '{#TEMPLATE:pgsql.oldest[query_time]' '.last()}&gt;' + self.plugin_config('max_query_time') })
the-stack_106_18493
import numpy as np from sklearn.model_selection import train_test_split from xgboost import XGBClassifier # NOTE: Make sure that the class is labeled 'class' in the data file tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64) features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1) training_features, testing_features, training_classes, testing_classes = \ train_test_split(features, tpot_data['class'], random_state=42) exported_pipeline = XGBClassifier(learning_rate=0.01, max_depth=6, min_child_weight=2, n_estimators=100, nthread=1, subsample=0.55) exported_pipeline.fit(training_features, training_classes) results = exported_pipeline.predict(testing_features)
the-stack_106_18494
#!/usr/bin/env python # -*- coding: UTF-8 -*- import random import numpy as np from functools import reduce from activators import SigmoidActivator, IdentityActivator # 全连接层实现类 class FullConnectedLayer(object): def __init__(self, input_size, output_size, activator): ''' 构造函数 input_size: 本层输入向量的维度 output_size: 本层输出向量的维度 activator: 激活函数 ''' self.input_size = input_size self.output_size = output_size self.activator = activator # 权重数组W self.W = np.random.uniform(-0.1, 0.1, (output_size, input_size)) # 偏置项b self.b = np.zeros((output_size, 1)) # 输出向量 self.output = np.zeros((output_size, 1)) def forward(self, input_array): ''' 前向计算 input_array: 输入向量,维度必须等于input_size ''' # 式2 self.input = input_array self.output = self.activator.forward( np.dot(self.W, input_array) + self.b) def backward(self, delta_array): ''' 反向计算W和b的梯度 delta_array: 从上一层传递过来的误差项 ''' # 式8 self.delta = self.activator.backward(self.input) * np.dot( self.W.T, delta_array) self.W_grad = np.dot(delta_array, self.input.T) self.b_grad = delta_array def update(self, learning_rate): ''' 使用梯度下降算法更新权重 ''' self.W += learning_rate * self.W_grad self.b += learning_rate * self.b_grad def dump(self): print('W: %s\nb:%s' % (self.W, self.b)) # 神经网络类 class Network(object): def __init__(self, layers): ''' 构造函数 ''' self.layers = [] for i in range(len(layers) - 1): self.layers.append( FullConnectedLayer( layers[i], layers[i+1], SigmoidActivator() ) ) def predict(self, sample): ''' 使用神经网络实现预测 sample: 输入样本 ''' output = sample for layer in self.layers: layer.forward(output) output = layer.output return output def train(self, labels, data_set, rate, epoch): ''' 训练函数 labels: 样本标签 data_set: 输入样本 rate: 学习速率 epoch: 训练轮数 ''' for i in range(epoch): for d in range(len(list(data_set))): self.train_one_sample(labels[d], data_set[d], rate) def train_one_sample(self, label, sample, rate): self.predict(sample) self.calc_gradient(label) self.update_weight(rate) def calc_gradient(self, label): delta = self.layers[-1].activator.backward( self.layers[-1].output ) * (label - self.layers[-1].output) for layer in self.layers[::-1]: layer.backward(delta) delta = layer.delta return delta def update_weight(self, rate): for layer in self.layers: layer.update(rate) def dump(self): for layer in self.layers: layer.dump() def loss(self, output, label): return 0.5 * ((label - output) * (label - output)).sum() def gradient_check(self, sample_feature, sample_label): ''' 梯度检查 network: 神经网络对象 sample_feature: 样本的特征 sample_label: 样本的标签 ''' # 获取网络在当前样本下每个连接的梯度 self.predict(sample_feature) self.calc_gradient(sample_label) # 检查梯度 epsilon = 10e-4 for fc in self.layers: for i in range(fc.W.shape[0]): for j in range(fc.W.shape[1]): fc.W[i,j] += epsilon output = self.predict(sample_feature) err1 = self.loss(sample_label, output) fc.W[i,j] -= 2*epsilon output = self.predict(sample_feature) err2 = self.loss(sample_label, output) expect_grad = (err1 - err2) / (2 * epsilon) fc.W[i,j] += epsilon print('weights(%d,%d): expected - actural %.4e - %.4e' % ( i, j, expect_grad, fc.W_grad[i,j])) from bp import train_data_set def transpose(args): return map( lambda arg: map( lambda line: np.array(line).reshape(len(line), 1) , arg) , args ) class Normalizer(object): def __init__(self): self.mask = [ 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80 ] def norm(self, number): data = list(map(lambda m: 0.9 if number & m else 0.1, self.mask)) return np.array(data).reshape(8, 1) def denorm(self, vec): binary = list(map(lambda i: 1 if i > 0.5 else 0, vec[:,0])) for i in range(len(self.mask)): binary[i] = binary[i] * self.mask[i] return reduce(lambda x,y: x + y, binary) def train_data_set(): normalizer = Normalizer() data_set = [] labels = [] for i in range(0, 256): n = normalizer.norm(i) data_set.append(n) labels.append(n) return labels, data_set def correct_ratio(network): normalizer = Normalizer() correct = 0.0; for i in range(256): if normalizer.denorm(network.predict(normalizer.norm(i))) == i: correct += 1.0 print('correct_ratio: %.2f%%' % (correct / 256 * 100)) def test(): labels, data_set = list(transpose(train_data_set())) labels=list(labels) data_set=list(data_set) net = Network([8, 3, 8]) rate = 0.5 mini_batch = 20 epoch = 10 for i in range(epoch): net.train(labels, list(data_set), rate, mini_batch) print('after epoch %d loss: %f' % ( (i + 1), net.loss(labels[-1], net.predict(data_set[-1])) )) rate /= 2 correct_ratio(net) def gradient_check(): ''' 梯度检查 ''' labels, data_set = transpose(train_data_set()) net = Network([8, 3, 8]) net.gradient_check(data_set[0], labels[0]) return net
the-stack_106_18495
from scipy.optimize import fsolve from matplotlib import cm, rcParams from shapely import geometry import matplotlib.pyplot as plt import numpy as np import pandas as pd import math, csv, os """ ToDo : check if this is equivalent to the G-function for weak coupling """ c = ['#aa3863', '#d97020', '#ef9f07', '#449775', '#3b7d86'] rcParams.update({'figure.autolayout': True}) # equation of u1 that must be verified in the system with phi != 0, 1 def u1(phi, T, gamma, beta, I) : if isinstance(phi, np.ndarray) : res = (np.exp((1-phi)*T)*(2-2*I) + 2*I)/(1 + np.exp(-2*gamma*(1-phi)*T)) - gamma*beta else : res = (math.exp((1-phi)*T)*(2-2*I) + 2*I)/(1 + math.exp(-2*gamma*(1-phi)*T)) - gamma*beta return res def u(I, phi, T, gamma, beta) : res = (np.exp((1-phi)*T)*(2-2*I) + 2*I)/(1 + np.exp(-2*gamma*(1-phi)*T)) - 1 return res # equation of u1 that must be verified in the system with phi != 0, 1 def u2(phi, T, gamma, beta, I) : if isinstance(phi, np.ndarray) : res = (np.exp(phi*T)*(2-2*I) + 2*I)/(1 + np.exp(-2*gamma*phi*T)) - gamma*beta else : res = (math.exp(phi*T)*(2-2*I) + 2*I)/(1 + math.exp(-2*gamma*phi*T)) - gamma*beta return res def v(I, phi, T, gamma, beta) : res = (np.exp(phi*T)*(2-2*I) + 2*I)/(1 + np.exp(-2*gamma*phi*T)) -1 return res # next theoretical value of u2 def theo_u2(phi, T, gamma, beta, I) : return math.exp(-T+phi*T)*((u1(phi, T, gamma, beta, I)+gamma*beta)/2 - I - math.exp(-2*gamma*(T-phi*T))*(u1(phi, T, gamma, beta, I)+gamma*beta)/2) + I def if_eq(t, phi, Tm1, gamma, beta, I) : return math.exp(-t)*((theo_u2(phi, Tm1, gamma, beta, I)+gamma*beta)/2 - I + math.exp(-2*gamma*t)*(theo_u2(phi, Tm1, gamma, beta, I)+gamma*beta)/2) + I - 1 # next theoretical value of u1 def theo_u1(phi, Tm1, gamma, beta, I) : T = fsolve(if_eq, 1, args=(phi, Tm1, gamma, beta, I)) return math.exp(-T)*((theo_u2(phi, Tm1, gamma, beta, I)+gamma*beta)/2 - I - math.exp(-2*gamma*T)*(theo_u2(phi, Tm1, gamma, beta, I)+gamma*beta)/2) + I def F_function(phi, T, gamma, beta, I) : return -math.exp(-(1+2*gamma)*phi*T)*u2(phi,T, gamma, beta, I) - u1(phi,T, gamma, beta, I) +1 - math.exp(-(1+2*gamma)*phi*T)*gamma*beta def tosolve(i, phi, T, gamma, beta, I) : return [F_function(i[0], i[1], gamma, beta, I), theo_u2(phi, T, gamma, beta, I) - u2(i[0], i[1], gamma, beta, I)] def F(T, phi, I) : if isinstance(phi, np.ndarray) : res = -np.exp(-(1+2*gamma)*phi*T)*u2(phi,T, gamma, beta, I) - u1(phi,T, gamma, beta, I) +1 - np.exp(-(1+2*gamma)*phi*T)*gamma*beta else : res = -math.exp(-(1+2*gamma)*phi*T)*u2(phi,T, gamma, beta, I) - u1(phi,T, gamma, beta, I) +1 - math.exp(-(1+2*gamma)*phi*T)*gamma*beta return res min_I = 2 with open('gamma_0.1.dat', newline='') as file: datareader = csv.reader(file, delimiter=' ') for row in datareader: if float(row[1]) == 0.5 and float(row[0]) < min_I : min_I = float(row[0]) # Only makes sense if I > I_low i.e. when forks stop existing (see bifurcation diagram code or figures) !!! nb_values = 201 currents = np.linspace(min_I, 2, 201) # currents I, 501 phi = np.linspace(0, 1, nb_values) # phis gamma = 0.1 beta = 0.2 diffs = [] cycles = [] #epsilon = 10**(-2) for I in currents : #T = np.zeros(nb_values) #for i in range(nb_values) : #for j in np.linspace(0, 10, 1000) : #if F(j, phi[i], I) > -epsilon and F(j, phi[i], I) < epsilon : #T[i] = j #break T = fsolve(F, np.ones(nb_values), args=(phi, I)) T[T < 0] = T[np.where(T > 0)[0][0]] T[T < 0] = 0 #if I < 1.1 : #T[T == 1] = 0 diff = [] nb_cycles = [] print(I) print('---') for k in range(len(phi)): if u1(phi[k], T[k], gamma, beta, I) + gamma*beta >= 1 or u2(phi[k], T[k], gamma, beta, I) + gamma*beta >= 1 : nb_cycles.append(np.nan) elif theo_u1(phi[k], T[k], gamma, beta, I) + gamma*beta >= 1 or theo_u2(phi[k], T[k], gamma, beta, I) + gamma*beta >= 1 or phi[k] == 0 or phi[k] == 1: if phi[k] <= 0.5 : nb_cycles.append(T[k]) elif phi[k] > 0.5 : nb_cycles.append(T[k]) else : [phi_nxt, T_nxt] = fsolve(tosolve, [phi[k], T[k]], args=(phi[k], T[k], gamma, beta, I)) if (phi[k] < 0.5 and phi_nxt-phi[k] < 0) or (phi[k] > 0.5 and phi_nxt-phi[k] > 0) : nb_cycles.append(0) phi_curr, T_curr = phi[k], T[k] #print('---') while phi_nxt >= 0 and phi_nxt <= 1 and phi_nxt != phi_curr: #print("phi curr", phi_curr, T_curr) #print("phi nxt", phi_nxt, T_nxt) if phi_nxt >= 0 and phi_nxt <= 1 : nb_cycles[-1] += T[k] phi_curr, T_curr = phi_nxt, T_nxt try: [phi_nxt, T_nxt] = fsolve(tosolve, [phi_curr, T_curr], args=(phi_curr, T_curr, gamma, beta, I)) except OverflowError: nb_cycles[-1] += T[k] break else : nb_cycles.append(np.nan) cycles.append(nb_cycles) cycles = np.array(cycles) with np.printoptions(threshold=np.inf): print('nb_cycles ', nb_cycles) print('cycles ', cycles) print('phi ', phi) print('currents ', currents) # clev = np.arange(diffs.min(),diffs.max(),.001) #plt.plot(phi, nb_cycles) h = plt.contourf(currents, phi, np.transpose(cycles), cmap="viridis") plt.show() np.savez('mesh_cycles.npz', I = currents, phi = phi, cycles = np.transpose(cycles))